' * l National Library
of Canada du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

Il pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially it the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in fuil orin part of this microform is governed
by the Canadian Sopynght Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL 339 (r PYD4)C

AVIS

La qualité de cette microforme dépend grandement de l1a
qualité de la these sourmise au microfilmage Nous avons
tout fait pour assurer une qualité supéneure de reproduc
tion

Sl manque des pages, veulllez communiquer avec
lunwversiteé qui a contéré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages onginales ont été dactylogra
phiées a l'aide d'un ruban usé ou si luniversté nous a fai
parvenir une photocopie de quaiité inférieure

La reproduction, méme partielle, de cette microforme est
soumise & la Lot canadienne sur le droit d'auteur, SRC
1970, ¢. C-30, et ses amendements subséquents

ied

Canada

Neural Networks: Learning and Growth as different aspects of the
same natural process; Neurons with variable firing strength
and Formal Neurons

Constantinos Bassias

A Thesis
in
The Department
of
Physics

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University
Montréal, Québec, Canada

August 1991

© Constantinos Bassias, 1991

-_

R |

National Library
of Canada

Bibliothéque nationale
du Canada

Canadian Theses Service

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'avteur conserve la propriété du droit d'auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN ©-315-73680-1

i1

Canadi

ABSTRACT

Neural Networks: Learning and Growth as different aspects of the
same natural process; Neurons with variable firing strengih
and Formal Neurons

Constantinos Bassias, Ph. D.
Concordia University, 1991

Two neural network models, namely the Hopfield model and
a variant of it with low levels of activity, are studicd
employing neurons with variable firing strength. Appropriate
storage prescriptions are found for their synaptic
efficacies. Their storage capacity is discussed using a noise
analysis and it is proven that the noise in the network
becomes minimal when all neurons fire with the same strength.

A very broad and general learning process for any stable
neural network with an energy function defined in the linecar
space of all polynomials of N variables is derived and serves
as an appropriate foundation on which growth in feedhack
networks can be studied. The two processes, growth and
learning, are viewed as different aspects of the same
classification mechanism controlled by the magnitude of &
single parameter A. The existence of a "parent" sys-em as the
condition under which growth can take place without
disturbing the stability of the neural network is
established. Results from simulations show that the learning

process enhances the performance of a network as associative

il

memory, in agreement with previously reported calculations
done for special cases of the process. When, in addition,
growth is allowed to take place efficient networks with
economy of space are developed able to perform tasks of
memorization and pattern recognition. The scale and font
invariant recognition of English letters is given as an
exanple.

A response function for neurons that store all the
infrrmation needed for their processing in addressable memory
locations is proposed and the limitations of single-layered
networks made up of those neurons are explored. Multi-layered
networks are suggested as an alternative and a training
program is developed for the implementation by them of any
Boolean function. This program is applied in the computation
of the parity function of 4 binary variables. The result is
an extremely compact and memory efficient network which
highlights the advantages of using such general purpose

neurons and networks made up from them.

1v

T

ACKNOWLEDGEMENT S

The author expresses his sincere gratitude to Profesuo:
B. Frank for his continued help and guidance throughout the
entire course of the research presented in this thesis. o iv
also thankful to him for providing partial financial support
from his NSERC grant and moral support when needed the most.

The teaching assistantship provided by the Department of
Physics is also gratefully acknowledged.

CHAPTER I
CHAPTER II

II.1
I1.2
I1.3
1I1.4
II.5

II.6
CHAPTER III
III.1

IIT.2
II1.3
CHAPTER IV

Iv.1
Iv.2

TABLE OF CONTENTS

Fage
INTRODUCTION:- - vevveennsn- e 1
A GENERAL FRAMEWCORK FOR NEURAL
I\TETWORK RESEARCH 5
The MUY O+t teetosanesstnonsenareessarsanessns 7
ThE SYNAPSES:trrrvrrrrrrrrentreeeetnarernni. 12
The cerebral COYLEOXreerroroecertantonsnreronecann 14
LEAYNANG v v reerre i 17
The connection between neural networks and
Statistical Mechanics:.:vovvriiiiiiiiii .. 0
DA S CUSSION: v v v+ rrrvrremernneneeenenniaeneranns. 25
NEURONS WITH VARIABLE MAXIMM FIRING RATES 27
Noise analysis and the storage capacity of
the network with Hebbian learning; the
Hopfield model: -« cwveerrrreereuemieeuineeiannn, 32
A model with low levels of activity:::------- 34
CONCIUSLION: cvvrrrrerersetsstsenneatenneonssnnnss 39
GENERALIZED LEARNING IN NEURAL NETWORKS
WITH A PARAMETRIC LYAPUNOV FUNCTION::::-:---- 40
Linearization of the Hamiltonian function--- 42
The choice and implementation of the
classification algorithm::-« eevvvrvvinniinnns. 50

Vi

Iv.4
V.5
CHAPTER V

V.1
V.2
V.3
V.4

CHAPTER VI
VI.1

VI.2
CHAPTER VII
REFERENCES
APPENDIX A

e

‘, APPENDIX B

APPENDIX C

A particular example: Neurons with self-

1INt eraACTIONS: -t rrreerrrrrsrsretnnet i, N
Simulations and Results:crcererreiiaonn, Ha
Concluding REMArKS: rsererrveertnrereiienenia, o

GROWTH IN STABLE FEEDBACK SYSTEMS DERIVED

FROM A GENERALIZED LEARNING ALGORITHM:::----. 71
The "parent” SYSLEM::««treerrrreeeramnann, e
A growth algorithm for feedback systems:---- &
Simulations and Results:c-rerrerrerconreennns L
DiSCUSSION rrerrerrrrrres ittt o
FORMAL NEURONS AND LOGIC NODES: <+ wtrervveres 3y

Training a network of formal neurons with

NiAAEN UMLES cvrrerrererrner e nerianann, o
Concluding REMArks: - -rerevvsrmreneeneiiiiini., e
CONCLUSTON: +vvvrsrrrrnrtnaotuanaieeneannannnnns SIR]
... 101
The minimum of Var(ng) ececeeeeeorierennenn, 1017

The Hamiltonian function for the Neural

Network using neurons with self-

ANEETrACLIONS t e sttt ts vttt IR Oked
Listings of the conputer programs:::«:..----- 110
vii

Chapter |

introduction

This thesis consists of three distinct topics in neural
network (NN) research and a brief description of each one of
them is given in their corresponding chapters. The three
topics are:

(i) Derivation of two well-known models of neural
networks as the minimum noise models for neurons with
variable firing strength. Binary neurons are used for many
neural network models. Their behaviour consists in either
firing at maximum strength or not firing at all. A model
neural network is proposed wherein each neuron has its own
firing strength. From this general model, models with
homogeneous firing strengths can be derived as the ones that
minimize the noise in the network.

(i1) Learning and growth in neural networks with
feedback. Learning is the most significant stage in the
design of a network. It represents basically the effect of
the environment on the network. It allows it to respond
differently to different stimuli. In this thesis, learning is
seen as a gardening process: the gardening of an energy
landscape. This point of view is not new but it is brought
here to its full potential via a linearization of the energy
function. On the other hand, growth in neural networks is a

very recent subject. The position taken here is that growth

r——

o

occurs as a developmental process: the development of new
synapses among neurons. For the first time a common mechanism
is suggested for both learning and growth. These two
different processes are characterized by different values of
a common parameter, the learning strength.

(iii) An algorithm for the computation of Boolean
functions by a multi-layered network of a new type of neuroi.
The formal neuron is a new type of neuron. It stores all the
infcrmation it requires in addressable memory locations
instead of storing it in the synaptic weights. Formal neurons
with a specific response function are proposed in this
thesis. Some of their properties are studied and an algoritimn
for the computation of Boolean functions by multi-layerccd
rnetworks of formal neurons is evaluated.

Information processing with neural networks is definitely
a new subject for physicists but it is also a 40-year-old
discipline. It is a field that now unites a very brnad
scientific community: mathematicians, physicists, parall«!
processing experts, optical technologists,
neurophysiologists, experimental biologists and cognitive
scientists. The fact, though, that from the point of view of
physics the interest in neural nets is less than a decad:
old, suggests that a relatively long introduction to the
subject in this thesis would be useful.

Chapter I1I serves this purpose. It contains the noecenrary
background information and the principles that conctitute a

foundation for neural network studies. It also given arn

account of the most recent discoveries in biology that serve
as the body of experimental facts by which the proposed
theories should be judged. And finally it discusses the scope
and limit of applicability of methods from statistical
physics to the study of neural nets.

The derivation of two NN models, namely the Hopofield
model and a model with low levels of activity, from a more
general model that employs neurons with variable firing
strengths, 1is carried out in Chapter III. This is
accomplished using a noise analysis argument for the total
noise in the general model.

In Chapter IVthe generalized learning method is
developed. First a linearization of the energy function is
carried out. Then a learning scheme is proposed that can be
applied to any system with such an energy function. The
learning process is finally studied on a specific model. A
description is provided of the computer simulations used for
the study of the model as well as an analysis of the results.

The learning process is carried further to encompass
growth for a certain group of neural networks in Chapter V.
This group contains the networks that are derivable from a
larger "parent" network by switching off some of its
interactions. An example of a growing network is given and
the results of the computer simulations done on it are
discussed.

Chapter VIdeals with formal neurons. An introduction to

them is carried out in the first part of that chapter. The

equivalence of formal neuron networks to conventional neural
networks is established, and a formal neuron with 4
particular response function is proposed. A training
algorithm for multi-layered networks of those neurons is
applied to the parity problem of 4 *“nary inputs and a
discussion of its performance is provided. Finally, the

conclusions are given in Chapter VII.

Chapter i

A general framework for neural network
research

Information processing with neural networks (NN) is a
relatively new discipline. The natural phenomenon that this
discipline studies is the brain. The brain computes by
absorbing experience; therefore, one can define information
processing with neural networks as the discipline which
studies the class of machines that compute by absorbing
experience. Moreover these machines are cellular, are
composed of smaller units, the neurons, and have a natural
propensity for storing knowledge gained by experience.

The drive behind neural network research is the desire
for a better understanding of the complex processes that take
place in the central nervous systems of animals. The drive
behind information processing with neural networks is the
fascination one has for the speed with which the brain
performs tasks of pattern recognition using components much
slower than those found in computers. Recognition is one of
several stages on a scale going from early to late processing
in the brain. One starts with sensory processing, then a
fuzzy stage of preprocessing (fuzzy because it is not clear
when it starts and when it ends), recognition, and finally
attention. It is safe to assumel 2 that pattern recognition

is the 'typical' cortex activity and it is done well. Here

are some facts to prove it. (i) Presumably3, in a typical
pattern recognition computation, much smaller cell assemblies
are involved than in attention states. (ii) Also time
intervals involved in recognition may be between 20 ms and
200 ms, instead of 10s for the attention states4. (iii) The
cortex performs its recognition of the vast number of
patterns, in a typical human environment, using neurons that
can fire at a maximum rate of 200 spikes per second and
usually fire at a rate of 20 spikes per second? (in contrast
to a 40MHz clock speed for moderm personal computers).

There is a number of reasons for the recent interest in
neural networks. The first reason is that information
processing with neural networks is now believed to be
computationally completeS. This means that given a
computational task there is an appropriate neural network,
and appropriate training, that will perform it. On the othe:
hand neural nets promise rapid solutions for certain tasks
which would require much longer time in conventional
computers. This is enough reason for a financial
justification of the development of neural computing
methods. Another reason 1s that neural nets promise a
functional use of knowledge gained from experienceS. It is in
speech, language and scene understanding that such ability is
essential and it is here that the neural net can perform

functions beyond the capability of conventicnal systems.

A neural network can be generally described in
mathematical terms as a self-organising mapf. What one means
by this will be explained in the following paragraphs.

Let My be the space of inputs to the network (usually a
probability space). Let ;Q be an Nj-dimensional vector (or
pattern) in this space, the input vector. Let My be the space
of outputs and QO an No-dimensional vector (or pattern) in
this space, the output vector. Let F: Mi-> My be a function
that maps %i to %o. The map Fis called self-organising if it
is adapted during training, i.e. it is modified by
experience. Training is a period when one presents an input
vector g to the network, causing the map F to change in a
specific way, according to a learning algorithm. The vector g
is drawn from a subset of the input space called the training
set.

The map F can be chosen as one representing as closely as
possible the processes taking place in the brain, or it can
represent a learning machine with abstract components having
nothing to do with naturally occurring computational systems.
As physicists we should try to discover the laws of neural
computing and not try to explain the behaviour of a
particular brain or a robot. Thus, our models should take
into account the known facts, (as few as they may be), about
the brain but not be limited by them. Our models should help
to extract crucial parameters of neural computing from the
inessential details, and stimulate new experimental activity

in neurophysiology and cognitive science.

II.1 The neuron

The neuron is the structural unit from which neural nets
are built. Thus one interprets the map F as representing a
finite set of processing units. This means that the map F
describes the processing done to the input ;(i by a set of I
neurons. It is useful to distinguish between three types of
neurons: input, output, and hidden. Input neurons receive
inputs from sources external to the system under study. The
output neurons send signals out of the system. The hidden
neurons are those whose only inputs and outputs are within
the system. They are not "visible" to outside systems.

Schematically, a neuron, i, may be represented as in the

following figure:

Inputs from other neurons

Output to other neurons

Figure1. Schematic representation of a neuron.

The well known and used dendrite-soma-axon model of the
neuron? is still valid with rare exceptions. A neuron
receives its input from other neurons through a set of
dendrites. These inputs are integrated in the soma of the
neuron and the response is transmitted through the axon to
other neurons. The Jjunction between an axon of one cell and a
dendrite of another is called a synapse.

Recent observations indicate that axons form synapses
with the individual segments of other axons in certain cells
of the cerebral cortex4. This fact justifies the use of
multi-neuron interactions in Chapters IV and V. Also
dendrites sometimes form synapses with other dendrites8 (but
n 't in the cerebral cortex). In general the known tyoes of
direct connections between neurons are presented in Figure 2
in the next page?d.

These direct connections, though, are not the only way of
communication between neurons. Peptides are recently
discovered 'special' neurotransmitters that appear to
modulate synaptic functions rather than actually cause them8.
They do so over relatively long periods of time (seconds or
minutes as opposed to milliseconds). They act over larger
areas by the process of diffusion, and provide an alternetive
slow, but broadcast-like means f r neurons to communicate. A
single neuron can produce several peptides. They might
provide a mechanism for the realization of the generalized

learning processes proposed in Chapters IV and V.

10

Dendrite

=

Axon
Dendrite

Dendrite Dendrite

Dendrite @ @

Figure 2. Diagrammatic representation of the four different

types of direct connections between neurons.

How many types of neurons are there? At least two tyres
of neural cells in the cortex are anatomically different. The

pyramidal and the non-pyramidal stellate cellsl0, The forner

11

are excitatory (they make only excitatory synapses) the
latter are inhibitory and appear to have only local
connections and not to interconnect cortical areas. Another
division appears to be into cells that are 'spiny' and those
that are not8. The latter are characterized by receiving both
sorts of inputs (excitatory and inhibitory) on both soma and
dendrites, while the former receive non-excitatory somatic
inputs.

The output of a neuron in most cases is a spike. The
exceptions are neurons with short axons where the output
consists of graded potentials instead of spikes4. This makes
models sensible where a continuous map F is used. The
question of the relevance of the spikes, though, is an open
one. Spikes may be totally irrelevant to the functional
behaviour of the cortexll. The firing frequency of a neuron
may be the relevant variablel?. On the other hand the spike
structure may be absolutely essential, due to synchronicity
effects?3., Some problems may be overcome by seeing the
probability of firing (i.e. a stochastic variable) rather
than the average firing rate as being the carrier of
information8.

Another characteristic of a neuron seems to be its
threshold. This is the value the potential has to reach at
the axon hillock (the part of the cell membrane near the
axon), before the axon can fire. Finally one should note the

fact that normally in the cortex a neuron is switching

AT, e

e

12

between two low-activity states3 (say, one with 5 spikes pet
second and the other with 20).

Neurobiologists have a long list of paramete:is
characterizing a single neuron and it is an ever-increasing
one. The above-mentioned parameters are those considered
essential in this thesis, the ones that will be used to

further detemmine the nature and the structure of the map F.

II.2 The synapses
Small stellate neurons usually receive about 10° input o8,
larger pyramidal cells 103 and the largest pyramidal cells
have about 10?. The axons of stellate cells make all
synapses inhibitory on their contact sites. On the other hand
the axons of pyramidal cells make all synapses excitato.,; on
their contact sites. Modern discoveries have changed vety
little the Hebbian!4 idea that synapses are the main sitoen
for modifications due to learning. The question of on which
side (the presynaptic or the postsynaptic) the change
occurs, remains unanswered. At issue is the existence of o
Hebbian-like mechanism!4 for synaptic modification, which
will be assumed in Chapter III, because the convergence of
signals from the presynaptic and postsynaptic neurons wiil
take place more naturally on the postsynaptic membrans3 &:
shown in Figure 3.
If, however, a presynaptic mechanism takes place, tie:.
the information from the postsynaptic neuron must arrive <.
the presynaptic membrane via a retrograde signal through

:
Ly

13

Post

Neurotransmitter

1

}
Electrochemical

signal

Figure3. The Hebbian mechanism for synaptic modification. The

response of the postsynaptic neuron and presynaptic signal

determine the changes in the postsynaptic membrane.

Figure4. A possible

circuit by which presynaptic modification
can take place.

14

junction3 (Figure 4) or via other mechanisms (maybe even ad
hoc circuitry).

The mechanisms of synaptic modification are very
important in neural network modeling. They provide insights
in developing efficient learning algorithms. They affect the
most significant period in the development of a neural not,
namely training. They tell us how the map F should be chanood
in order to respond to a multitude of patterns in its

environment.

1I1.3 The cexebral cortex

The neo-cortex part (where, crudely, most of the 'clowey’
processing must be done) is crganized in major layersB: (a) o
superficial layer which mainly receives axons from ot
layers; (b) an upper layer of small pyramidal neurons; (¢) o
middle layer that contains small stellate neurons; and (d) u
deep layer where the larger neurons resided. 7. Aron:
generally connect towards the surface (vertically) acros:s
layers?. Horizontal structures appear to be much more loral.
The neo-cortex, besides being layered, has been diviacd int-
more than 100 distinct areas on each side of the human bLreln,
each being both anatomically and functionally distinct4.15,

The architecture of the cell assemblies in the cereira!
cortex have given rise to an ensemble of neural networry
modelslé.8, from which two simple extremes deserve to s
distinguished: the feed-forward ‘perceptron'l? andd tie

feedback 'ganglion'l8, The 'perceptrons' are laye:c-d

15

structures819, where information flows from the first layer
(input) to the last layer (output). They simulate the layered
structure of the cortex and they will be the point of
discussion in Chapter VI.

In such a case the map Fcan be considered as a g-stage

mapping process:
Xi=>X1=>..... ->Xg-1 > X, (1)

where ;(1 E;Q (;(i) , with dimension Nj,is the first stage of the
map. It maps the input vactor ;(i to the output ;(1 of the first
processing layer. It represents the first layer of the
network. Similarly the vectors ;(k = ;<k (;(1 ,;<m, eee) (I<k,m<k, ..),
with dim(;(k)=Nk, represent the hidden layers of the network.
The vector ’)\(k depends only on the previous stages of the map
since that is required for the network to be a causal one.

On the other hand the 'ganglions' are defined here as
richly interconnected structures8 20 where the inputs govern
the initial network state. The 'ganglions' simulate the local
horizontal structures of the cortex and they are the major
topic of investigation in this thesis.

In this case processing of the information occurs via the
internal dynamics of the network. The dynamics are a product
of the iteration of the map ¥. It is well known?! that such
systems, in the case of a nonlinear ¥, may behave
periodically or may show chaotic behaviour thus being quite

unpredictable. Let F: Mj -> Mj (in this case the input and

16

the output spaces are identical). One is interested in tiw
behaviour of points in Mj under iteration of F. Let ! donote

the nth iterate of F. That is,

F2=FoF,
F3 = FofFoF,

and so forth.

Ifze M, the sequence of points

z, ¥z), P2 @),....

is called the orbit of z. The main question in dynamics is:
can one predict the fate of all orbits of F? That is, wha!
can be said about the behaviour of F(zZ) as n-> «? There ai.-
three different patterns of behaviour?? for the orbits of F:
(1) They eventually settle into an attracting firxed point
(attractor) and this persistent state then contains the
output of the camputation.
(11) They eventually enter an attractive periodic orhit o
cycle with a certain period T. This cycle then is the outyr
of the neural network.
(1i1) The orbit behaves erratically, without ever converqirgg
to a periodic ortit.

So far the experimental evidence for persistent stateos
comes either from very primitive circuits (such acn
invertebrate ceniral pattern generators), or from e/’ -
related recordings (such as delayed template matching) in

tasks involving short-term memory and attention3.

17

Finally another important feature of neural information-
processing in the cortex is that there is no time
discretization. The neurons seem to provide continuously
available output. That is, there does not seem to be an
appreciable decision phase during which a unit provides no
output. Rather it seems that the state of a unit reflects its

current input8.

1I1.4 learning

The ability to learn from experience is the single most
important characteristic of neural netwcrks. The position
taken here will be that the learning sites arc¢ both the
neurons and the synapses. Assume a network of N neurons each
of which is described by a set of parameters (for example
threshold, type, etc.). This set of parameters constitutes
the first learning site. The neurons are connected to one
another via synaptic junctions. This pattern of connectivity
constitutes the other part of the knowledge encoded into the
network. It is convenient to represent the synaptic pattern
of connectivity by a matrix J, which will be called the
synaptic matrix. Changing the processing in a neural network
involves modifying the synaptic matrix J. It constitutes the
second learning site. Three types of changes are conceivable:
development of new connections (Chapter V), loss of existing
ones or modification of the strengths of connections that

already exist (Chapters IIland IV).

18

Two different learning schemes are to be found in nature
and they have their counterparts in the design of learning
algorithms for artificial neural networks. The two schemes
are supervised learning5.8:23 and unsupervised learning5.8.
It is worth exploring the fundamental differences between
them.

In supervised learning a human supervisor examines each
training pattern (a vector E from the training set) before it
is applied to the learning machine, and assigns a class latx]
to that pattern. To be of any use, the class label must have
some perceptual significance to the human supervisor. The
following is an example of what we consider to be supervised
human learning; one says to a child, "Look! There is a bird",
and points to an eagle. On another occasion one points to «
duck and says, "Look! There is a bird." The visual patteins
presented by these two examples of class 'bird' are quitc
different in some ways. The rule of the supervised training
has been to link these two examples into the single clacs
'bird'. In mathematical temms during supervised learning onc
changes the map in suchﬁg way that the network will produrce o
target output ¥ = tg(f) corresponding to a given training
pattern g.

However, it is hard to believe that the above-mentionecd
child, faced with an eagle and a duck, would not have
recognized their similarity and associated them in its mird.
In that case, all that the supervision did was to cause tle

word ‘bird' to be associated with these two eramples cof what

19

was already a naturally distinct class in the mind of the
child. A class is naturally distinct if the description of
its members in some feature space is much closer together
than to any other image?4. This suggests that any group of
patterns that 1s worthy of a name in our perception will form
a distinct cluster in a naturally occuraing featul:\e space in
our brains. In mathematical terms if tg(§) = ;(o = & then the
training program is unsupervised and the output of some
hidden neurons should be thought of as the output of the
networké. This output can be visualized as a reduced or
internal representation of g in some feature space. The
clustering in the feature space is achieved by setting an
overall goal or purpose for the network. An example® of such
a goal is the minimization of the weighted squares of the

differences between the input & and the output ;(o :

ng@) o
(2)

~

where P£<é) is a probability measure induced on the input
space by the training set.

Let Si(t) be a dynamical variable describing the temporal
evolution of neuron i. This variable may represent particular
conceptual objects such as words, letters, features and

concepts, or it may represent an abstract element (like a

20

picture element [pixel]). Whatever it represents Sj(t) alone
is just a part of a pattern, the vector

Y = (S1(t),S2(E) yeeesSilt),.nn, SNE)),
and it is the pattern as a whole that is the meaningful level
of analysis. In general an equation can be constructed to

describe the temporal evolution of the neural network

”~

Y (t+dt) = G (t=1),J), (3)

where 1 1s a delay interval. The state of the network at time
t+dt is determined by its condition during the time interval
between t-t and t. In the whole of this thesis 1 will be taken
equal to zero.

One of the most common cases is when J represents
connections of only one type, and therefore Jim represecnts
the strength and sense of the connection from neuron i to
neuron m. If one adds to that the constraint that each neuron
simply sums the signals it receives from the other neurons

without delay one gets the well~known®, class of models
Si (t+dt) = G (Z JimSm ()) (4)
m

Virtually all learning rules for models of this typ< can
be considered a variant of the Hebbian learning rule
suggested by Hebb in his classic book Organization of

Behavior¥, Hebb's basic idea is this: If & neurorn i reccivw.,

21

an input from another neuron m , then if both are active the
synaptic strength Jjy should increase. This idea has been
extended and modified so that it has taken a more general

form8

AJim = q(S1(t) ,t1 ()) *r(Sm(t), Jim), (5)

where tj (t) is a kind of teaching input to neuron i.

Eg. (5) states that the change in the synaptic strength
Jim 1s given as a product of two functions g() and r(), where
g() depends on the state of neuron i and a teaching input to
it, and r() depends on the state of neuron m and the synaptic
strength Jim. There are many versions of this rule. In
Chapter III the simplest version of Hebbian learning will be
employed. This version is an unsupervised learning process
(there is no teaching input to neuron i) and the functions
g() and r() are simply proportional to their first arguments.

Thus one has

AJim = ASi (L) *Sm(t) (6)

where Ais the constant of proportionality and represents the
learmning rate.

Another common variation of Eg. (5) is the delta rule.
This rule (known also as the Widrow-Hoff25,26 rule) is a
supervised learning process and is mostly used as a learning

mechanism for perceptrons. The change in Jim is proporticnal

v~ ———-

22

to the difference between the actual state of neuron i and a
desired or target state, ti(t) as in Eg. (5), provided by the
teacher. The function r() is again simply proportional to its

first argument. In this case one has

AJim = A(tj (£)=Si(t)) *Sm(t) (7)

The perceptron learning rule for which the perceptron
convergence theorem has been proved!? is a special case of
Eg. (7) for binary Si(t). As a final point one should note
that recent challenges?? to the Hebbian mechanism fo:
learning based on coincidence of incoming signals from two

presynaptic neurons, still ocbey Eqg. (5).

II Th nn ion ween neural networks an
istical ni

It is far from evident that the type of systems we have
described should in any way resemble those encounteircd in
physics. Surprisingly enough there is an argument.28
(Changeux?? , Purves and Lichtman30, Eigen3! and Kauffman3!)
that supports the position that the above systems could ix
viewed as disordered systems. This despite the fact that
these systems look like they are goal oriented, with subtle
interrelationships and use experience to achieve efficiancy.
The argument states that while a part of a biological systen

may have been perfectly modelled to perform a function,

23

another part, or even the same part but looked at on a
different scale, can be analyzed assuming randomness. In the
particular case of a mammalian brain one can distinguish
different pieces whose interconnections seem like the result
of a careful design. Looking inside each of these pieces one
discovers a great amount of randomness. The argument also
stresses the fact that it is impossible for every single
detail in the mammalian brain to be optimized because the
amount of information needed for this optimization surpasses
by a large factor the information content of the DNA (compare
4109, the information content of a DNA strand composed of 10°
nucleotides of 4 different types, with the information

contained in the way 1010 neurons are connected by 1014

(10%)
[(2010)00°] if all the

synapses, which can be as large as
synapses are assumed to be different). In other words the
mammalian brain has many more variables than the ones that
have been put under control by the genetic code.

The situation is therefore not very different from the
one encountered in statistical mechanics with macroscopic
variables under control and microscopic variables being
random. The difficult task is to identify the relevant
macroscopic variables that control the emergence of a typical
behaviour as a collective manifestation of the large number
of microscopic degrees of freedom.

An approach to information processing with neural

networks closer to statistical mechanics was initiated by

24

Little32,33 and later developed by many authors (Kohonen24,
Cooper et al.3¢ , Hinton and Anderson3S). All their models
are high-feedback models, the map F is iterated, and employ
the idea that recognition is like falling into the basin of
attraction of a fixed point or limit cycle. This is also the
basic idea behind the models proposed here in Chapters 11T, 1V
and V. The existence of a fixed point is a major topic of the
stability theory of all non-linear dynamic systems. Stability
is of course a fundamental requirement of all neural networks
if they are to serve any useful purpose. A great variety of
techniques for the study and prediction of stability have
been developed, but the most important approach to thi.
problem remains that introduced by A. M. Lyapunov3é in 1907.
The basis of this methrd is the association of a Lyapunov
function, H, to a dynamic system of the form:
d ()

Rl U0 F(a
dt (

[es)
=

where z is an N-dimensional vector. This is essentially [.
(3) . Then Lyapunov's theorem states that the system descrilx:d
by Eq. (8) is (asymptotically) stable if and only if therc

exists an H such that

(N

3 M: H(zZ) 2 M v

The general problem of finding a Lyapunov function for any
non-linear system is not solved yet and thus one relies on
intuition and analogy in the search for such a function.

If, though, a Lyapunov function is found for a particular
feedback network it can be associated with the Hamiltonian
function of an equivalent physical system37.38, In such a
case the evolution of the network is equivalent to a path in
the phase space of the corresponding physical system. In the
absence of noise the system will wander in the phase space
till it reaches an energy minimum and will stay there. The
configuration of the dynamical variables corresponding to
that minimum is a fixed point of the network. The very
important role of noisel! can be played by a heat bath of
temperature T with which the network is supposed to be in
contact. Then a free energy function can be defined for noisy
networks and their macroscopic behaviour can be studied using

methods from statistical mechanics.

IT.6 Di ion
The ideas and concepts discussed in this chapter form the
backbone on which the theories and models presented in the
following chapters will be based. As a concluding remark one
should mention that neural network research at its present

state mainly consists of a large collection of models from a

26

variety of disciplines. An attempt was made in this chapte:
to present what could be thought of as a minimum common set
of ideas and concepts necessary for the development of any

neural network model.

Chapter Il

Neurons with variable maximum firing rates

The study of neural networks within the framework of
statistical mechanics that was sparked by Little32 was
carried out further, after the introduction by Hopfieldl®, of
a model that turned out to be exactly soluble38 39 and had a
strong affinity with statistical mechanics. This model is
related to models used in the theoretical analysis of certain
materials called spin glasses40.,41,42, These are magnetic
materials which have a random orientational ordering (glass)
of magnetic moments (spins). The spin sites are randomly
interconnected by positive and negative competing
interactions. One can see from that the relation to neurons
connected with excitatory and inhibitory synapses.

The Hopfield model consists of a fully connected set of
neurons with feedback. Such a network is represented
diagrammatically in Figure 5. Hopfield's introduction of an
energy func .on that governs the dynamics of the collective
activity of such a set of N neurons, has produced many
interesting and diverse results43,44,45,

In almost all the models derived from Hopfield's basic
model, the maximum firing strength of the neurons is taken to
be the same for all neurons, and to be unity (the exception
being the threshold-linear neurons introduced by Treves46).

We are interested in the question of diverse firing strengths

28

Neurons

Outputs

Figure 5. A schematic representation of a fully connected
neural network with feedback. The inputs, represented by

circles, do not do any processing.

and their consequences. Although the most impressive results
in neural network research come from models where a
Hamiltonian function cannot be defined8 5, we here study &
system for which such a function exists; such a system is

more amenable to theoretical treatment.

29

The neurons will be modeled as bi-valued devices4’. A set
of positive quantities aj are here introduced, one for each
neuron, such that the ith neuron can be either in the firing
state with firing strength Vi= a; >0, or in the quiescent state
with Vi= 0. (In Hopfield's model aji is taken to be 1 and is
interpreted as the maximum firing rate of the neuron.) A
network composed of N such neurons could be used to model the
behaviour of gestalts in which specialization has driven the
neurons into a diversified standard behaviour with different
firing strengths. These different strengths can be taken to
represent different maximum firing rates for the various
neurons. (It is of importance to note here that this is not
the absolute maximum firing rate (=250Hz) that a neuron can
in fact achieve (which latter is independent of the function
which that neuron performs) but rather an experimental
assessment of the behaviour of a neuron that does a
particular job within the context of its gestalt. Such a
neuron can be cbserved to fire wilh a specific maximum firing
rate characteristic of its operation.) The neurons are
interconnected through synaptic junctions of strength Jij -
and the input potential on each neuron is the sum of all
post-synaptic potentials delivered to it.

Assuming, for the moment, V;(t) to be the dynamical
variable that describes the temporal evolution of neuron i,
then the dynamics ¢of the model, in the absence of noise

(T=0), 1is determined by the equation,

30

Vi (E+1) = a3 *@() JigVy(t)-Uy)
3 (+1) (10)

where ® is the Heaviside function

11if x>0
O((x)= {

0ifx< 0 (11)
Ui is the threshold for neuron i, time has been digitized and
the neurons are updated asynchronously (Eg. (10) is applicd
to one neuron chosen randomly at each time step). Eg. (10) i
just a particular realization of Eg. (3).

If Jiy=J4i, one can define the Hamiltonian function

H=-1/2) Ji3ViVy +) ViUs
i, i

(i¢j) . (l:‘

i\
—

The change AHdue to the change AV;(t) = Vi (t)-V;i (1-1)
(with AV4(t) = 0 for j#i) is

A = -() JugVy(e-1)-Us)av ()
J (#1) (

[
0
L

P

and the dynamics lead to local minima of the Hamiltonian in
Eg. (12), as can be seen from the fact (using Eg. (10)) that
AH 1is either negative or zero, and thus H is a decreasing

function of time. The other part of Lyapunov's theorem (Eg.

31

(9)) is also satisfied because the above Hamiltonian is

bounded below by M, where

M= -1/2 Z NEEYER -Z aslusl
i, i

(1#3) . (14)
An equivalent model is obtained under the transformation,

S; = 2Vi-aj (15)

where S; takes the values % aj, and replaces Vi as a dynamic
variable. Note that Si can be viewed as an Ising spin
variable.

The dynamics of this system is described at T=0 by

Si(t+1) = ay sign (Y, JisS5(t))
3 (1) (16)

with Hamiltonian

==-1/2 Z J145185
i,
(1=3) . (17)

The Hamiltonian in Eq. (17) is equivalent to the one in Eg.
(12) to within a configuration-independent constant if after

the transfomation in Egq. (15) one sets

32

Z Ji481 = 2U;
i

In this chapter we will investigate the properties of the
Hamiltonian in Eq. (17) with respect to deviations of the
firing strength aj from unity, the value that it takes in the

Hopfield model.

III.1 Noi 1vsi i t1 I it 3
! k with Hebbj] ing: the Hopfield el
Assume that the network learns according to the Hebbian

rule:

p
Jis = (/yad) Y (2V-ay) (2Vy-ay)
k H=1 (19)
or,

p
Jiy= (1/) af) Y, i?ﬁ%
K

k=1 (20)

after the transformation in Eq. (15) with & in place of Sj.
Here each E..? is an independent, quenched, random variahle,
which takes the values +aj; and -a; with equal probability;
the set of &5 with v fixed will be called the pattern EV .
This is an unsupervised learning process. The network
starts with initial synaptic strengths equal to 0 and
proceeds to learn a set of p patterns by modifying itc

synapses as follows

33

g3 = 395 + <1/§: af) £5E;

~
whenever a new pattern & is presented to it.

The local field h; acting on the site i, when the system

~ ~
is in the state Y=£& , is

h1=2 Ji385 = (l/zak Z 2@1@ &5 =

3 (1) 3 (i) W72
=(1/Y af) / D a3+ Y Z E5E5E
k 3 (i) j(=i) P

(pv)

p
wlwza|z damuze 3 5
. k 3 (#1) k 5 (o) =1
(u=v) . (22)

The second term in braces is the noise nj at the lattice
site i coming from the other patterns; when it becomes
sufficiently large it will destroy the stability of the

AV

stored pattern & . This second term is a random variable with

zero mean, and with variance

(/Y ad) (1/ad) Y, Z eleseiel) =) 3 ab/(Xah”
k

3 (=i) u=1 3 (=1)
(u=v) (23)

The translationally invariant noise n¢ is defined as the

sum over the whole lattice of all the noises nj

e e e T

PERCIRT 34 5 =

34

ne = Y nj ‘
j 7 (24)

and is also a random variable with zero mean and with

variance

Var (ng) = (N-2) (p-1) Y a%/(T a)? +p-1
3 k . (25)

To have maximum storage capacity one must minimize Eq.
(25) with respect to the a3. The minimum occurs when (sece
Appendix A)
ay = a for every j_ (26)
Substituting &3 = a VvV j, into Eg. (22) one obtains the
Hopfield model result

hi=§\;{[1-1/N +an , (27)

where the noise nj has variance (1-1/N) (p-1)/N (cf. result of

ref 48, which is the same as the one above to O(1/N)).

I11.2 7 jel with 1]] £ activit

To accommodate the fact that the neurons in the brain ar«
most of their time quiet one might consider a modification of
Hopfield's model that breaks the symmetry between the state:
+ai and -ai4®. For instance, in such a case, every compcrt.

&i can be chosen independently with probability P (%),

35
PED) = (1/2) (148 Ei-ai) + (1/2) (1-wdEi+ay). (28)

The average of each & is aaj and the stored patterns are
necessarily correlated, though in a rather simple way. One

has

gl =@ + a2(1-8%))af. (29)

To consider the effects of neurons with maximum firing
strength differing from unity on such a model, a modification
of the learning rule is needed. The reason is simple. If one
chooses Eq. (21) as a learning rule then the local field
acting on the spin on site i has a contribution from the
other patterns, which does not average to zero. In the state
Si= &X,

2 P Helev v 1
hi= Y J138=(1/Xaf) Y X §i18483 = &i (14ny)
J (1) k I (i) w=l (30)
and the noise
p
ng = (Vah WY ad Y Y e
k j 1) W2
(V) (31)

is a random variable with mean

2
2 &

4 J(#i)

DI
k

n; = (p-l)a = (p-1)od

36

On the other hand one might want to apply a rule proposed by
Amit, Gutfreund and Sompolinsky43. In their model Hebb's rule
was modified, and had taken the form

8= B+ (/N E-) (€ (33)

which could be written for neurons with variable maximum

firing strengths as

I = B¢+ (/Y ad) (Ei-o) (8-
k .

Eq. (34) leads to a new set of synaptic efficacies

Jiy= <1/Zak Z (E; =) é;-ow

p=1 (=5)
With the above synaptic efficacies the local field at neuron

i in pattern v is

he 3 Sy = WXah S o) o] -

j(#1) j (#1) =l

g\i[(Y d-Easad) Y afa Y, e+ e/a)E Y, éj) al)]

(1) J(#1) J(=1) J(#1)

\% D u H VeV
(1@) Y Y E-o) (f,j—a)éjaiJ:
k

3 (e1) KOV

37

2 a%—az z adj

{ $ £y
=§\£ J (1) j (1) 1_a_1)+

2
S4)@
k

p
+&“i[(1/<a§2 af)) Z Y (E-a) (Ef;-a)é”j&“iJ

k Ji) ROV

where we have used the fact that &5 = @a and the

D Eg=a) a

(1) j(#1) . (36)

approximation

The noise term in the expression for the local field is

P
o= (/@@ D Y (E-o @ogk

k j(2i) RV

which again does not average to zero.

Thus one has to modify the above learning rule in such a
way that the contribution from the other patterns to the
local field on site i will have a zero mean. The following
assignment for the synaptic efficacies will serve this
purpose

o

Jiy= (/Y af) Y, (Ei-oay) (Ey-0ay)
X p=1 . (37)

38

Using the synaptic strengths Eq. (37) and Eq. (36) one
obtains for the local field hj

P
hy= z Ji3Sy = (l/g af) Z 2 (E:il_aai) (Efg-aaj)i‘j=

§ (#4) 3 (21) H2

k
P
+g§[(1/(a§2) Y, ¥ (Ei-oay) <§§*aaj)é\3€§J

X j(ei) BV

The first term in the above expression is the signal fi on
site i and the second temm is the noise nj.

The signal term has a minimum and

2
2

while the noise term is a random variable with zero mean and

variance

var(ng) = ®71 (1_0[2)2((';) ag)/(%agﬂ))
3 (i

The minimum of the noise to signal ratir,
NS=vvar(ni) / fi min with respect to the set of site firing

strengths aj occurs again when all aj's are equal as can s

39

seen from the similarity of form between Eg. (23) and Eqg.
(39). Substituting a3 = a V j, into Eg. (38) and (39) one

\/ (N-1) (p-l
1-lal) (N—-1)

recovering the result of ref 49.

obtains for NS

1II.3 Conclusion

In this chapter it has been proven that the Hopfield
model and one of its variations with low levels of activity,
can be found from a more general model which employs neurons
with variable maximum firing strength, as that particular
realization which exhibits minimal total noise (or,
equivalently, maximal storage capacity). This has been done
using a noise analysis argument for the total noise nt in the
case of the Hopfield model and the same argument for the

noise to signal ratio NS in the case of its variant.

Chapter 1V

Generalized learning in Neural Networks with a
parametric Lyapunov function

The discussion in the previous chapter involved high-
feedback models for which a Lyapunov or energy function
existed. The learning method employed was an unsupervised
Hebbian type learning which gave the synaptic strengths as
functions of the patterns one wished to store in the network.
The existence (which had to be demonstrated) of the energy
function ensured the stability of the networks.

In this chapter it is assumed that for a given dynamic
system described by Eq. (8), a Lyapunov function erists, thus
ensuring its stability. Moreover it is assumed that this
Lyapunov function can be written in parametric form, with the
parameters depending on the patterns one stores in the neurdal
network. That means that this energy function characterizes o
whole class of stable dynamical systems differing from each
other only in the coefficients of their Hamiltonian
functions. Under the previous assumptions falls a wide
category of networks which includes the Hopfield network and
all its proposed variations (e.g. ref 44 and 50), feedhack
networks with multi-neuron interactions5!, Potts-qglasn
models32 of neural nets, and networks in the presence of

external fieldsS3,

41

For all these models a learning process is proposed which
is superimposed on any unsupervised learning that initially
defines the synaptic efficacies. It is a supervised learning
process and it is a natural and rather simple local errcr
correction process involving one or many patterns at a time.
The basic idea behind this generalized learning is a natural
modelling of the energy landscape. This idea is not
new54.55,56 but it finds here its most general and
unrestricted application. Through this modelling the stored
patterns are forced to become local minima (attractors) of
the energy landscape, while other "unwanted" states of the
system gradually gain energy thus moving away from the local
minimum. The process results in a chocsing, from the set of
all stable systems, of the one which optimizes the given
goal, namely to store and accurately retrieve a given set of
patterns even in the presence of noise.

The question concerning the depth of the minima and the
height of the barriers between them (the content-
addressability) is also addressed and it is found that the
basins of attraction of the different stored patterns can be
systematically enlarged by the generalized learning process
if as it has been argued also in ref 56 and 57 one teaches
the system to recognize the original stored pattern even in
the presence of noise. For example one presents to the system
a noisy modification of a pattern (or equivalently a pattern
at a temperature T#0) and through the generalized learning

process teaches the system to recognize it.

42

The above mentioned learning process also offers an
alternative to previously proposed mechanisms that switch the
network from recognition to learning when the pattern
presented is too distant from all the stored memories. One
mechanism proposed by ParisiS3? to overcome the problem
arising from the fact that Hopfield networks will always
‘recognize' an input_ iterating down to the nearest
attractor , is the introduction of asymmetry into the
synaptic couplings. In such a case, though, there is a risk

of destabilizing the system.

IV.1 L i zat] £ the Hamiltonj Funct

Given a set of N neurons arranged in a general
architecture with feedback, an example of which is shown in
Fig.6, described by a state vector

Y = (S1(6),52(E),vr,Si(E),nen, SHIE)),

QeI@L and evolving under Eq. (3) (or equivalently Eg. (8)),
assume that there exists a Lyapunov function H guaranteeing
the stability of the system. Moreover assume that the

Lyapunov function has the fomm:

m Iy . _
H=Z Z Jiy...ix S1'ee Sy

i1=0 in=0 (40)

If one defines the functions:

0i;...1,=51 .- .5y (41)

43

i

=

neural array k+1

2

neural array k

i

feedforward
vactor

neural array k-1

/

feedback vector

input vector from

previous array

Figure6. A general multi-layer neural network with feedback.
The neural arrays in each layer are groups of interconnected
neurons. Their output is communicated to the next layer
through the feedforward connections and to the previous layer

through the feedback connections.

44

then Eq. (40) can be written as

m my
H=2 ---z iy, 81l i

i,=0 iv=0 . (42)

The coefficients Ji,...in must be arbitrary and thus Eq.
(42) describes a class of stable systems each systemn
corresponding to a different choice of Ji,...iy's.

The unsupervised training the system undergoes initially
can be expressed as a relation between a given set of

patterns and the coefficients of the Hamiltonian function.

~L A2 Ap
Let SE;: £ ,5,...8) be the set of p patterns one wishes to

embed in the network. Then any general unsupervised training

can be realized as:
Jiy. .y = @€ ,...,8) (43)
® being any mapping from the set of patterns to the space of

the connection strengths. Usually (e.g. ref 49 and 52) the

mapping ® is just a polynomial and Eg. (43) beccmes

P ki kx
_ BT SR PRI Juru
Ji1...in—z Z oo Z le...jN,‘ugl RN

=1l 51=0 Iv=0 (44)

Both learning rules of the previous chapter are spetia.

cases of Eg. (44). For example Egq. (20) is reccvered if one

45
i...1n
sets in Eq. (44) all le...jn;u equa! to zero except the ones
that have two superscripts equal to one. For those one must

set

1;...1n
Bj1...‘jn,‘}l = (l/za)z() 6i1...iN ,j]...jN
k

where

1l if a =f
5a,fs={

0 otherwise (45)

(the Kronecker 8) and ij...iy , Ji...Jn have to be considered
as N-bit binary words.

For a given input vector {l\fl e RN the system will evolve
under Eq. (3) until eventually trapped in a local minimum of
the Hamiltonian function. Let ﬁl be that minimum (and note
that this is the limit point of an orbit starting with {l\fl),
and thus is the output vector of the network. The input
vector \Tll can be taken either as a pattern gk Or some noisy
modification of it. Let gkbe the desired output of the

~1
network for input ¥ as decided by the supervisor.

~1 ~k
If N # & then there should be a modification of the

synaptic strengths Ji;...ixn . Let

T 4= B 4 ATy (46)

46

if Jﬁﬁ.n is different from zero. Otherwise (i.e., if
J%% 4= 0) no change takes place in the synaptic efficacies.
This means that no development of new connections is allowed
in the network. One might want later on to remove this
restriction and investigate the effects of growth in this
class of models (this is done in the next chapter). In Eq.
(46) Ais a positive parameter determining the learning
strength.

This modification must result in a certain remodeling of
the energy landscape. In the new energy landscape the desired
output gkshould be energetically more favourable than the
vector ﬁl. The energy change introduced by the change in the
Jiy...ix's is

m My
AH (Y)z}\'z coe Z AJil...iN ei]...iw
i=0 in=0 . (47)

The proposed modeling of the energy landscape implies that
~ a1
for Y ="

m My
Al .. (I
MEYD D e D AT i >0
i;=0 in=0 (4%)

~ ~k
while for Y= §

m My
~X 5k ink
AH(E) =7»Z -.-ZAJn...iN g T <0
i1=0 in=0 . (47)

47

After completing the modification of the Ji;...iy's one
proceeds by supplying the network with another input vector
‘le and obtaining another output ﬁz as a local minimum of the
new Hamiltonian function. Assume that one wants to assign {4}2
to the pattern g“ If g“;t ﬁz another modification of the
Ji;...in's takes place. And so on. The process is repeated

until all the inputs have been classified correctly.

Let Sy be the set of outputs of the network during the

learning process
_ (21 22
Sn_“ln l"'). (50)

Each pattern in SgC RN is represented by a point in the N-

dimensional space RV, Each outrut in SnC RN is represented
by a point in the same space. Eg. (48) and (49) are linear
forms in the (m +1)x(my +1)x...x{my +1)-~ dimensional 6-
space. This space is a subset of RM where M =
(mp +1)x(my +1)x...x(my +1), In order to simplify the notation

one can introduce the following symbolism:

i= (il,---,iN)
m= (my,...,My)

Ji = Jiy.. .4

8; = 6i...1yx
Also

m m My

48
K ik piwk
of = &' ...y (51)
of = npitl oyt (52)

In this notation Eq. (42), (46), (48) and (49) become:

m
H =2 Ji 64
i=0 (53)
J = 0919 1aady (54)
m
AH(R) =) AJ; o} >0
i=0 (55)
" m
AH(E) =AY AJs of <0
i=0 (56)

Let p be the number of zeros in the J matrix. lLet Q he
the space spanned by the 6;'s which have nonzero coefficients
in the expression for the Hamiltonian (Eq. (53). Then dim(€2)
= Mpand Q ¢ RM_p. let L = M-p, then each ;k is represented
by a point in the L-dimensional Q space and each o s
represented by another point in the same space. All o Lelony
to one class; let it be named class A. All ;';k belong Lo
another class; let it be named class B. Now, it should lr
recalled that the coefficients AJ; in Eg. (47) are unknowun aird
developing a method to find them is the whole purposc of fnin

discussion. The problem of finding them can be stated now

49

though, in a different way. What we actually want to do is to
separate classes A and B by a decision boundary in €2 such
that AH&) =0 on the boundary while AH&) > 0 on one side of
the boundary and AH&) < 0 on the other side of the boundary.
The fact that AH&) is a linear function imposes the
condition that the decision boundary must be a hyperplane in
Q.

Schematically:

A other dimensions

decision boundary

01

Figure 7. Diagram showing classes A and B in Q and a
hyperplane separating them. The third axis represents here

all the L-2 remaining dimensions.

50

Then the problem of finding the coefficients AJ; that
satisfy Eg. (55) and (56) is simply that of finding the
decision boundary in Figure 7, if such a boundary exists. But
this is a very well known classification problem within the
neural network framework. For example if the two classes A
and B are linearly separable a simple perceptron algorithml?

will suffice.

IV.2 The choi § imo] tati e +)

] i ficati 1 it}
Let HP be a hyperplane in Q as shown in Figure 7,

S \
HP={?<EQ: Y AT % =0

i=0 f . (57)

This hyperplane divides Q into two subspaces, () and (3, with

J S \
(+)=\;(EQ: ZAJi xi>O[
i=0 (5%)

and

m
A ={xeQ: ZAJi %y <0
i=0

J. o

The kth stage of the proposed algorithm consiatao nf
\ . . ~k, .
supplying the network with an input vector W, in Rl, wnich
/\k "}-’_ .
one desires to associate with the pattern & . Let M in R is

the output of the network at this stage. Then one forwr v

51

~k
vectors ¢ and mk, in Q, according to Eg. (51) and (52)
~k
respectively. Given ¢ and @ one has the new s=ts Sz; and ST\

a5, well as the classes B and A. One then can give these two
classes as input to an L -neuron single-layered perceptron.
If o" in Sy belongs to () and thus is misclassified, then the

perceptron aigorithm suggests that one should change the

AJ;'s as follows:

(A3if"™ = (A" + o, Vi, Osisk (60a)

-~m
By the same token if ¢ in Sg belongs to {f) then it is also
misclassified. The perceptron algerithm, for an input vector

~m
equal to ¢ , then gives for the change in the AJ,'s

(AJi)m+1 = (A" -¢;, vi, Osi<I) (60b)

If o or ;m are correctly classified then no change in
the AJ;'s occurs. In the case that only two vectors are given
to be classified at the kth stage of the algorithm and if in
addition the vectors " and Om are of the sar= magnitude (as
in the case with binary neurcns) then Eg. (60a) and (60b) can
i combined into ore and the total change i the AJ:'s, at
the Kth stage of the algorithm will be:

)k

(;\Ji)k”‘ = (:\fi - (r)}i(- 0}; , Vi, UKL (600)

Eqg. (60a) and (60b) or Eg. (60c) supplied with the initial
condition (AJ:) =0, ¥V i is the essence of Lthe learning
scheme proposed in this chapter. This is a local learning
rule in the sense that changes in a synapse are caused by the
condition of the neurons at the endpoints of that synapse.

By the general perceptron convergence theoreml? this
algorithm will converge in finite time if the two classes of
points in £, class A and class B are linearly separable.
Otherwise the learning algorithm will cycleS8,

At this point one should make the additi-nal assunption
that every component Si (L) of the- stato veot ; is bounded,
This is & very plausible assumption givern thr limitations of
the actual biological networks. Then the Hamiltonian fanct ion

N

itself is bounded and ore can argue as follow :

If the Hamiltonian H is bounded, then ~s long as the
classes A and B remain linearly separabl~, tho network will
eventually store the set ESQ of p patterns ong vichas Lo ondard

~\

in it, and the learning process will stop. Lot & be any

~ 1N
pattern 1in 53; . et H(g) e its initial e . ray

H : in \'
Hi(< E T
‘1)
- * e~ ~ry A - - - - SORPANY = I . Y
.Lt 158 e.'.'}'t:.’:tb‘(l ‘\—A’)qt, E:: [oyr(l-‘ ":.‘r,"), M Lottt .'»'_l’ !:/4' I /»./

at each ster of the generalized learning alo oo e s rgy
~
lJandscape in the vicinity of the pattern 3 RIS IS
b B o
iro such a way that the erergy of & ir rorienntioaliy

53

decreased. Because H is bounded it will eventually reach a

2

rminimum Hmin (§) . The above argument holds for every pattern
Sg; thus all the p patterns will beccme local minima of
the Hamiltonian H and the learning algorithm will stop.
Of course as the number of patterns in Sg increases, the

nurber of points in the classes A and B increases. The number
of points in class A increases much faster than the number of
points in B because class A contains all the outputs of the
network for all the input vectors which are fed many times
into the network while class B contains only p patterns. Thus
eventually the two classes will not be linearly separable,
and one erpects a critical value oc of the ratio p/N to exist
above which no generalized learning is possikle (for binary
neurons and random patterns cne can consult ref 45, 56, 59
and 60 on the value of ag).

Another advantage of this method is that it can be
applied to effective Hamiltonians used to describe
synchronous dynamics, i.e., networks of neurons that are
updated in paraliel (Eq (3) is applied to all the neurons at
cach time step). An example of such a Hamiltonian is the one
charaeterizing Little's32 model. It has been shownfl that as
leng as the connectivity matrix J is symmetric, Little's
mode]l leads to a stationary Gibbs distribution of states,

e (=BH), thh the effective Hamiltonian

Z m[/cosh[Z J14S3 ﬂ

54

One could use a Taylor expansion to linearize (62) and then
apply the generalized learning algorithm to the resulting

linear effective Hamiltonian.

IV.3 2 ticul le : N 4]
1£-int ti

A network consisting of a fully connected set of neurons

with feedback and in which the neurons are allowed to self-

interact is studied under the framework of the generalized

1 Neurons 2 * N
. | v2 .« ® vN
Qutputs

Figure8. A fully connected network with feedpacr in which the

neurons are allowed to self-interact.

35

learning algorithm presented above. Such a network is
represented diagrammatically in the following figure.
Assuming, as before, Sj(t) to be the dynamical variable
that describes the temporal evolution of neuron i (it could
be called a spin), then the dynamics of the network under
discussion, in the absence of noise (T=0), is determined by

the equation,

S (t+1) =sign(Y, Ji3S5(0)
3 (63)

As 1is obvious from Eg. (63) the time evolution of the network
is considered at discrete time intervals. We will consider
the case where the neurons are updated asynchronously. This
means that at time t one neuron is selected at random, its

local field

hy = 2 J; 355 (t)
3 (64)

is evaluated and the spin S; is flipped if it was misaligned
with its local field, and otherwise remains unchanged. All
the other spins remain unchanged.

Such a dynamical system is definitely stable if Jij5=Jy
and J;; > 0. Then one can define the Hamiltonian function (see

Appendix B)

H=-1/2 Z Ji45iS5
i,3
(i=3) . (65)

56

(This system might be stable even if Ji; < 0 but governed by a
different Hamiltonian.)

The Hamiltonian in Eq. (65) is identical to the Hopfield
Hamiltonian. Thus one does expect the general thermodynamic
properties of the two systems to be identical. The advantage
of using a system with self interactions is, though, three-
fold. First, it can be shown$? that on a fully connected
network a diagonal term of order 1 (for non-diagonal terms of
order 1/YN) influences the convergence properties favourabhly
and one would like to evaluate the effects of non-zero scif
interacting terms in systems with finite N. Second, one car
see and compare how the two systems (one with and the other
without self-interactions) behave under the generalized
learning algorithm. And third, one would like to remove the
conditions of stability for both systems and thus to asasess
the robustness of the generalized learning.

The neurons here are binary units, S; =% 1, and the
space of inputs is restricted to
{11‘1}N = {11‘1b411‘1)---x(1r‘1}. In order to apply generalized
learning to this Hamiltonian one has to transfcrm Fg. (69)

into the form of Eg. (40). Eg. (65) can be written as

1 1
H=- 3 Ji58i55 = 3 .o Y, Jip.ix Ste. Sy
3>i i;=0 in=0 (66)

with,

57

Jo...4k...0 = 0, 1x=l, V ix, 1sksN (68)
Jo...44.0.40...0 = Jkm » ik = Im =1, V (k,m), 1lsk,mN (gg
and all other Ji,...i,'s with more than two indices equal to 1
vanishing.

One also selects a set Sg of binary pattermns (§g=i1) to
be stored in the network. For the initial Jij 's one can
choose a simple Hebbian assignment, thus selecting a

particular network having

P
Jig =(1/N) Y ELES
u=1 (70)

This is of the form of Eg. (44) with

iy

ii..,
Bj1 e T (1/N) 8i1...iN P P, Y
whenever two and only two of the superscripts ij,...,iyequal

to one. In all other cases

i1.. .1y =0

Jie..dnp

Now to the model characterized by Eg. (66) to (70) one can
apply the generalized learning process as described in the
previous section.

One should mention here that in this particular case, Eq.

(60c) which expresses the generalized learning algorithm for

58

binary neurons and error correction involving only onc

pattern at a time, can be written in the simplified fowm

(a3s5)< =(AJij)k + (n'i‘n’;}— BED .Y (9, Osi, 3N (97,

From this form one can see that the learning process of Kroy
and Podppeld6 is just a special case of the generaliuzod

learning that is proposed here.

IV.4 Simulati { R 1

The first part of the simulations was done in order to
evaluate the effect of the inclusion of self-interactions in
the performance of small networks armed with generaliz
learning. The computer program first (for a listing sec
Appendix C) generated an array of N neurons. Each neuron in
this array was a structure that contained all the relevant
information to the particular neuron. For the above exanyle
the relevant information was the value of the dynamical
variable S;j(t) that describes the neuron and the valucs o

the synaptic strengths that connect it with other necuron:.
After that the program generated the set E3§ of p patterns one

wished to embed in the network. For this part of the
simulation this set included p random uncorrelated bitiary
patterns. Each component of each pattern was chooo

independently according to:

59

pEh) = (1/2)8EL-1) + (1/2)8 EL+1)

by the use of a random number generator. The function §(x) is
Dirac's delta function.

This set of patterns was then used for the computation of
the initial synaptic strengths for each neuron according to
Eg. (70) and then stored in memory. For the rest of the

simulation this set constituted just the reference set. After
that a set of input vectors SW was created. This set

contained the original patterns and several noisy
modifications of them. The noisy modifications were obtained
by randomly flipping a certain percentage of the neurons in
the original pattern (this percentage was taken between 1%

and 35%). An input vector ¥ was then selected randomly from
Sy and fed into the network. The processing by the network
v

was done as follows. A neuron i was selected at random from
the N neurons in the network. Its value then was determined
by Eci. (63). Then another neuron was selected at random and
so on until no neuron changed its value when Eg. (63) was
applied to it.

The values of the N neurons in the network at that point
constituted the output of the network. That output was
compared to the original pattern g in the reference set from
which G was generated. If the output and the original pattern
were identical no change occurred, otherwise the synaptic

strengths of each neuron were modified as specified by the

60

generalized learning process Eg. (60c). As it is easy to see
for the particular model of binary neurons employed here
there can be no change in the self-interaction strenqgths by
the learning process.

After that another input vector was selected and fed into
the network and the process was repeated until all the input
vectors were properly memorized. The value of the learning
strength was taken to be 0.0001 and the self-interaction
strengths were taken to be positive and of order p/N.

In the first five of the following graphs the number oi
learning steps needed for the memorization of p patterns is
plotted against p for networks of different sizes. Fu:
comparison, results without self-interaction terms are also
given in the same graphs. The critical number of pattermns fom
which generalized learning is necessary can be also {ound
from these graphs. It is the value of p for which the
learning steps become different from 1.

For the results of the simulations presented in Graph 1 «
network with 16 neurons was used. Each bar on this graph
represents an average over 100 networks. Each network starts
with a different set of synaptic strengths corresponding to
the different set of random patterns it stores. It is evidaont
that the advantages of using self-interactions persist evern
when one applies the generalized learning aigorithm. The
networks that used self-interactions took one third of the
time (measured in number of learning steps) taken by the

networks without self-interactions to perform the same tasb.

61

The ratio of the time taken by networks with self-
interactions to that taken by networks without self-
interactions seems to be independent of the storage ratio p/N

at least up to p = 0.6*N.

Without self-interactiorffi [JWith self-interaction

7000 -
6000 -
5000 -
4000 -
3000 -
2000 1
1000 -

@ 3 — 3 T o o

vw T o —~ un
o
-+

1 2 3 4 5 6 7 8 9

Number of patterns

Graph 1. Learning steps versus number of memorized

uncorrelated random patterns for a network with 16 neurons.

Graph 2 shows the critical number of patterns for which
the generalized learning becores necessary. The network used
had 16 neurons and again each bar on the graph represents an

average over 100 networks. One can see that the critical

62

number of patterns is twice as much for the network with
self-interactions as for the one without them. The critical
number of patterns is actually the storage capacity of the
network without generalized learning. Thus one can conclude:
that using self-interactions increases the storage capacity

of the network for small N.

Without self-interaction i [JWith self-interaction

(o)

o
-1
1

70 4

Q@ 35 — 3 " o o

3 4 5

w TV o —~ o»n
-l
n

Number of patierns

Graph2. Generalized learning becomes necessary at p=3 for
network without self-interacting terms and at p=5 {01
network with self-interactions. Both results are given {nr «

network of 16 neurons.

63

without self-interactionsll [With self-interactions

5000 -+
4500 -
4000 4
3500 -
3000 -
2500 -
2000 A
1500 -
1000 4
500 -

0 o p—ef—f———t}

2 3 4 5 6 7 8 9 10 11 12 13 14

L3 L ¥

© 3 =3 " o r

T

e

w O o — n
-

Number of patterns

Graph3. Learning steps versus patterns for a network with 32

neurons.

Without self-interaction } [JWith self-interaction

35 ¢
30 1
25 -
20 -

L L)

LS

@3 ~3 " por

15T
10 -
54
0 -

T

n T o = on

Number of patterns

Graph4. The critical number of patterns for N=32.

64

For Graphs 3 and 4 the networks used had 32 neu:uon.
While the ratio of learning steps remained 1/3 for network:
with and without self-interactions, the ratio of the storage
capacity of the corresponding networks without generalized
learning increased to 1/1.5.

The critical number of patterns is almost equal for the
two models when one uses a network with 64 neurons, as can i
seen from Graph 5. The ratio of the learning times between
the network with self-interactions and the one without
remained almost constant between 1/2.5 and 1/2.7.

The above results are in accordance with ref 62. When ornw
uses self-interactions the convergence properties are
improved. Moreover this improvement persists durina tlhr
application of the generalized learning algorithm. For sm:ll
N even the storage capacity of the network without
generalized learning was increased. In all the cases of
course, generalized learning allowed the storage of more

patterns in the network than would have been possible without

it.
The average retrieval quality
P P N
— an
me= (1/p)) mE, W) = (1/Np)),) &}
n=1 p=l i=1 (72)
for networks of different sizes and for various noise Ie-:

was calculated and is plotted in Graph 6. Th

65

Without selt-interactions ll [JWith self-interactions

@ I3 — 3 T 0o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

nw T o — un

Number of patterns

Graph5. Time in learning steps versus the number of stored
patterns in a network of 64 neurons. The critical number of
patterns is p=7 for a network without self-interacting terms

and p=8 for a network with self-interactions.

included self-interactions and the number of patterns stored
in each network was p=9 (in all cases the use of generalized
learring was necessary in order to store those patterns). A
noisy modification of a pattern is presented to a trained
network (a network that has learned the p patterns). The
output of the network is used to evaluate the average
retrieval quality via Eg. (72). Each point in the graph

represents an average of 20 different noisy modifications of

66

the same set of patterns at constant noise level. The noise n
is defined as the percentage of randomly flipped spins in thc
original pattern.

As one can see, the average retrieval quality drops in
general with the noise level _ one does not expect the

network to recognize a highly distorted version of a pattern.

B N=16
1.0 4
® N=32
B N:=64
] -
z : .
1 0.9
3
o
©® 1 o] ®
&
E 0.8 1
2 8
Q
g
5 0.7 1
>
<
0}
0.6 L) T — T T T . T ™

v I
0.04 0.06 0.08 0.10 0.2 0.14 0.16

Noise n

Graph 6. Average retrieval quality of 9 patterns stored in

networks of various sizes versus noise level.

67

The drop, though, is much more prominent for high values of
the storage ratio p/N. This reflects the well known fact4
that as the storage ratio increases the basins of attraction
of the stored patterns become smaller and smaller and
eventually vanish for a critical storage ratio o .

The second part of the simulations had the purpose of
assessing the effect of different self-interaction strengths
on the generalized learning algorithm. The same computer
program was used as in the first part. The value of the
learning strength was taken again to be 0.0001 but this time
the strength of the self-interaction was varied. The results
of the simulations are presented in Graph 7.

A network with 64 neurons was used for these simulations
and 11 patterns were embedded in it. Each point in the graph
represents the average over 100 networks. As in the case
where no generalized learning is present®2 increasing the
self-interaction strength improves the convergence properties
of the algorithm. A large negative value, though, of the
self-interaction acts in reverse. This can be explained by
realizing that the self~interaction at least for the first N
time steps acts as a local magnetic field antiparallel to the
input and as such it highlights the negative of the input
pattern (the input pattern with all its spins reversed).
This has as a result the delay of the convergence of Eg. (63)
to its fixed point for every neuron.

Finally the question of robustness was addressed. For two

networks, one made of 16 neurons and the other made of 32

68
30 -
o
n 20"
o
g
/]
o
£ o]
S
b
] 10 a
o o]
- (o]
0 v rr v T I 1T 1

¢.51 0.34 0.17 0.085 0.057 0 -0.17

Self-interaction strength

Graph7. Time in learning steps versus self-interaction

strength for p=11 and N=64.

neurons, the symmetry condition of the synaptic matrir J wao
gradually relaxed. The same program was used as in thc
previous simulations but now the calculation of the initial
synaptic strengths was not done according tc Eg. (70). Zn
asymmetry was introduced. This was done by using Egq. (70) to
compute the initial value of Jiy, with i greater than i, and

then assign a fraction of it as the value for Jy. That

69

fraction was then gradually diminished till it became zerc
and the robustness of the generalized learning was studied acs
a function of the increasing asymmetry in the synaptic
strengths. The algorithm was proven robust even with
extremely asymmetric connections, i.e., when Jiy#0 and
Jsyi = 0. In such a case the network does not converge to a
fired point to begin with but it is eventually trapped at a
metastable point. This point is regarded as the initieal
output of the network. After the application cf the
generalized learning algorithm though, the synaptic matri:
becomes increasingly more symmetric and more fixed points of

the network dynamics start to appear.

IV.5 Concluding Remarks

In this Chapter a powerful and general method was
proposed for the training of stable feedback networks. Its
application is not restricted to binary inputs which is
predominantly the case when one deals with neural networks
from the point of view of statistical mechanics. It can be
applied to graded or even continuous inputs which is the
usual case in engineering applications (signal and image
processing, robotics, etc.).

It is a natural process because it involves only local
adjustments of the synaptic connections and thus does not
require a mechanism by which a single neuron will be informed

abcut the activity of all the other neurons in the network.

70

(Such a mechanism is not known to exist in the cential
nervous systems of animals.)

The method was tested through simulation on a particula:
feedback network and was found to improve its storaqe
capacity as well as its retrieval properties. Training of the
network in the presence of noise, (T#0) was though the
crucial factor in enlarging the basins of attraction of the
stored patterns (memories), thus improving the retricval
quality of the network and its function as associative
mamory .

The method assumes that it trains a stable network but If
as in the case of the previous network one were to remove Ule:
conditions of stability the generalized learning method woni]
be found to improve the stability of the network. Th.:
generalized learning enforced a set of patterns to boootn:
attractors of the dynamics of the network when only chaotic

orbits were present.

Chapter V

Growth in stable feedback systems derived
from a generalized learning algorithm

Changing the knowledge structure in a neural network
involves modifying the pattern of interconnections, i.e., the
matrix J. In general there are three kinds of possible
modifications: (i) the development of new connections; (ii)
the loss of existing connections; and (iii) the modification
of the strengths of connections that already exist. Very
little work has been done on the first two types of
modifications. The interest in growth algorithms is presently
concentrated in feed-forward networks like multi-layer
perceptrons63, 64 and neural network decision trees65. The
type of growth in those models is not merely a growth of new
synapses but also a growth in size: new neurons are employed
as they are needed and their synaptic connections are
computed. The growth of new synapses can to a first order
approximation, be considered as a special case of the
modification of existing synapses. For example whenever one
changes the strength of a connection between two neurons away
from zero to some positive or negative value, it has the same
effect as growing a new connection.

Within this approximation, a modification of the
cgeneralized learning process that was proposed in the

previous chapter can be used to explore growth processes in

72

feedback networks described by a parametric Lyapunov
function. Thus here learning and growth are viewed awu
different aspects of the same mechanism. In certain cases if
the architecture and the dynamics permit one can move
smoothly from one dynamical system with a certain
connectivity matrix J (given in the parametric form of Eq.
(43) or (44)) to another dynamical system with connectivity
matrix J'.

This can happen if there is a "parent" stable system from
which all the other systems can be derived as special cases
by reducing certain elements of its connectivity matrix to
zero. If such a "parent" system exists then one can say that
this system forms a framework in which growth can take plac:
in the spirit mentioned in the above paragraph, without

disturbing the stability of the system.

V.1 The "parent'" system
Consider the system of N binary neurons in which the

dynamical behaviocur of neuron iy is governed by

Sy, (t+1)=sign (hi1 + 2 J1,1,54, (t) +Z Ji,4,4,54, (£) Si, (€) +...

b) 17<i3

+ 2 Ji;. .. 1651, (£) 83, (1) ... S5)

1,<isz<, . . <ix (7’

(.
~—

and the index ii is different from all other indices.

73

The Hamiltonian for this system, within a configuration-

independent constant, is

1 1
H = z "'ZJml---mN Srin--.gr\}\l
m=0 my=0 , (74)

where Jm...m is invariant under permutations of the indices
My, ... M.

The systems discussed in Chapter III as well as the
example of Chapter IV are special cases of the above system
with certain elements of its synaptic matrix J turned off.
The fact that such a system exists allows one to take a
subsystem of Eq. (74) and let it grow as the needs of the
task at hand demand. Thus one does not waste memory space and
communication time by choosing a very big totally
interconnected network with multi-spin interactions to
perform a given task that might require a much simpler
network with a smaller number of synapses and probably only
pair-interactions.

For example, one can start with a partially connected
Hopfield-type network (Eq. (17)) . A partially connected
network proposed by Canning and Gardner$é employs connection

strengths defined by

P
Jiy =(1/N)) Di®iEy ij Jus=0
u=1

74

where D is a symmetric matrix which defines the connection
architecture. It has a 0 or 1 at position 1,7 depending on
whether site i is connected to site j or not. Such a system
has an increased storage capacity per connection but requires
many more neurons to have any significant storage capacity
over a fully connected system. Assume now that someone wants
to store p patterns in a network. Then if a partially
connected network is not sufficient to store those patterns,
one must increase the storage capacity by switching on the
magnetic fields hi or by switching on more pair connecticrns

or even by switching on multi-neuron interactions.

V.2 A growth algorithm for feedback systems

One starts with a certain subsystem Hg(Js) of a "parent"
system H(J), where Jg and J are the connectivity matrices of
the subsystem and the "parent" system respectively. Onc
embeds the patterns to be stored in the subsystem Hg (Jg)
according to Eg. (43) . Then one proceeds with the generalized
learning process described in the previous chapter. If the
classes A and B generated by the process are not linearly
separable, the process will cycle, meaning that the subsystern
Hg (Js) 1s not capable of storing the desired patterns under
Eq. (43) supplemented with the use of generalized learning.
Then one relaxes the restriction that if J?ﬁ{.nﬁ= 0 no change
takes place in the synaptic efficacies and allows the systen
to grow. This means that we decrease the number of zeros p irn

the Js matrix thus increasing dim(Q). The new subsystem

75

Hg' (Jg') is now defined in a higher-dimensional space '. The
final values of Jg may or may not be of any use to the new
subsystem. One must remember that the classes A and B
generated by Hs(Js) were not linearly separable in £ and thus
will not be linearly separable in '. The new subsystem must
generate its own class A' (whilz B, the class containing the
patterns remains the same) in Q'. Hg' (Js') is actually a new
Hamiltonian system with its own energy landscape. The
advantage is that in the higher-dimensional space Q' one
expects that the set of points generated will be more
sparsely distributed; thus in a sense one can store more
patterns before reaching the point where A' and B are not
linearly separable.

Starting anew with subsystem Hg' (Jg') but retaining any
initial assignments of the synaptic strengths due to an

unsupervised learning, one has

Hg' (Jg') = Hg(Jg) + AH (75)

and AH = 0 to begin with. One must allow AH to grow fast till
it reaches at leas: the order of magnitude of Hg(Js)
evaluated at any of its minima if one really wants to have a
new Hamiltonian system with its own class A'. If AH grows
slowly it will be for the greatest part of the generalized
learning a small correction to Hg(Jg); thus the set of points

in class A is more likely to be generated again. (Simulations

76

done with different growth rates fo

i

AH are in complete
agreement with the above statenent.)

The above discussion dmplies that Fg. (1) should be
initially applied with much areater learnina strenath A (of
order unity) for the new connections than 1oy the old ones.

We will denote this value of Aduring arowth s Ay . Fg. (549)

should read during growth

Joew o J«’iﬂd .4)1AJJS +7u3(£\Jj)S' ("N

where the superscript S refers to the connertion matyix Jg

while the superscript $' to the matrim Jg - Jsr. The matrices

Js and Jg belong to the zare linear opam, e Dl oy rpans
to which, the ceonnectivioy matria of e ™ gpont ayateng®
. ;
—~ T~ - - - - Y oe ~y v, 0 .
belongs. The fast-growth - riod should ol vie
/\\l /\\v

AH(é y = O(Hs(&_ V) \1:1, ceeg (75

wnere O() denotes ordar of mam itowi-, Loy b the Joeaaning
strength should be homousnized Yo a omal. velue oy fine
tuning of the enera, landscapc. Eg. (77) 1o replacca by b
(54) and the generalized learning contimes as i Chaytor IM.

Here one should mention that the guestion of optimal
learning rate is task dependent and one carcot infor much
from specific sizuations. D the othe: Yara the learning

trength Als kert sma

77

generalized learning process to affect drastically the basins
of attraction of the original energy landscape imposed on the
system by the unsupervised learning. The reverse reasoning
dominates when one allows the system to grow. One wants large

scale changes in the energy landscape thus AH should be on
equal footing with Hg and Aq should be of order unity.

The way the new connections grow is always governed by
Eg. (60a) and (60b) or Eg. (60c), the fundamental equations
of our learning scheme, thus ensuring that the desired
patterns are always lowering their energy while the unwanted
ones increase theirs. The method described here ensures that
the new Hamiltonian subsystem Hg' (Jg') will create its own

class of points A'. Whether or not A' and B will be linearly
separable depends on the set Esgof the p patterns. If it is

not, though, one can proceed by allowing the network to grow
again till one finds a network that will store and
effectively retrieve the p patterns.

The problem of finding the minimal growth, starting from
a given subsystem Hg(Jg), that will store a given set of
patterns is a very difficult cne. Thus we here suggest a
heuristic approach for building a network. In the synaptic
matrix J = [Ji...iy] of the "parent" system there are N
groups of elements with one index nonzero and all the other
indices equal to zer., N2 groups with two indices nonzero and
NN groups with all indices nonzero. Given an initial

subsystem Hg (Jg) we assume that Js has some elements with one

78

index nonzero, some elements with two indices nonzero and o
forth. One lets the network grow by first switching on the
rest of the elements in J with only one index nonzero, then
the rest of the elements in J with two indices nonzero, and
SO on.

In other words, one first allows more interactions with u
local magnetic field33, then allows more pair interactions
before switching on the three-neuron interactions®’. This is

a crude way of growth that does not take into account the
structure of Sg. For example with a few three-ncuron

interactions cne might succeed in storing the p patteriu
while with a lot of interactions with local magnetic ficld:
might not. On the other hand there are only N local ficlcl,
but N3 three-neuron synapses so with the above heuristic
approach one hopes to achieve better space economy and nei/lx:
reach a network that is close to the minimal network that

will store the p pattemns.

V.3 Simulati | R 11

The first problem one faces following the above algorithm
is to decide whether or not a set of patterns can be stored
by the generalized learning by a network Hg' (Js'). One
actually has to wait ad infinitum to find if the perceptron
algorithm (Eq. (60a) and (60b)) will cycle or terminatr
(although one could use Linear Programming to detect non

linear separability in polynomial time). This of course ic

79

rot practical so one defines an upper bound for the number of
learning steps and any task that requires more steps than
this upper bound is considered unattainable by the given
system. This upper bound was taken here to be 4000 learning
steps. Many tasks of the simulations in the previous chapter
required more than 4000 learning steps but those tasks were
inherently difficult for the computers used for the
simulations (for example it took approximately 9h of
computing time to teach a network of 16 neurons to recognize
9 uncorrelated patterns on a Macintosh SE). But one can use
the growth algorithm not only for achieving an otherwise
impossible task but also to simplify a difficult (time-
consuming) task. If a given task is too difficult for a given
network, one can let this network grow in the expectation
that the task will be easier for the network with a higher-
dimensional Q.

The purpose of the first part of the simulations in this
chapter was to assess how the growth process transforms a
problem unsolvable by a system Hg(Js) to a problem solvable
by a higher-dimensional system (i.e. a system with a higher-
dimensional Q). Two difficult problems were selected from the
previous simulations. The problem of storing 9 uncorrelated
patterns in a l6é-neuron Hopfield-network and the problem of
storing 14 uncorrelated patterns in a 32-neuron Hopfield-
network (no self-interactions present). A program similar to
the one used in Chapter IV was used reflecting the fact that

the two processes, learning and growth, are not considered

80

fundamentally different in the present work. An array of N

neurons, a set ng of p patterns anc a set of input vectors

Ehuwas again generated by the program in the same way as in

the previous chapter. The processing by the network was done
as before. The value of the learning strength was taken to v
0.0001 and the self-interaction strengths were switched oft.
At this point a counter of the learning steps was adderl. 1f
the number of learning steps exceeded 4000 then a neuron was
selected at random and its interaction with a local maanctic
field hi was allowed. The value of the magnetic field I
started from 0 and grew according to Eqg. (60c) and (77) with
a growth strength Ag=0.1 while all the pair interaction
strengths were modified with a learning strength of nmapl! o
0.0001. As one can see the growth strength is 1000 tim .
greater than the learning strength. The order of magnitud. of
the newly introduced interaction was evaluated at the ol of
each learning step. When it became comparable to Lhe
magnitude of the pair-interaction Hamiltonian evaluated of
the desired output of the network and for every such oy,
growth stopped and learning was resumed by setting iq - %.
The learning steps were again counted and if they exceoedsd
4000 another neuron was selected at random and its
interaction with a local magnetic field hj was allowed. 7.1l
so on. The process of growth stopped when enough interarticn:

with the local magnetic fields were introduced Lo mare. Lie

81

task at hand feasible (less then 4000 learning steps). Graph

8 shows the results of this simulation.

7000 -
~—&— N=32p-=14

~—— N=16p=9

steps

Learning

% local magnetic fields present

Graph 8. The percentage of interactions with local magnetic
fields grown in order to make two different tasks feasible;
one storing 9 patterns in a l6-neuron network, and the other
storing 14 patterns in a 32-neuron network. For a task to be

feasible the number of learning steps had to be less than
4000 (below the dotted line).

82

Ea~h point in this graph represents an average oi H
networks, each with a different set of initial synaptic
strengths corresponding to the different set of randonm
patterns it stores. As one can see, for the more difficult
task, i.e., storing 9 uncorrelated patterns in a Hop{ield not
with 16 neurons, approximately 37% of the neurons had to arow
interactions with their local magnetic fields before thoe task
became feasible. For the easier task, i.e., storina 14
uncorrelated patterns in a 32-neuron net approwimately 209 of
the neurons were interacting with their local magnetic fields
when the task became feasible. Thus one concludes that the
growth process selects with space eccrnomy a network that
performs the given task.

The next part of the simulations was done in order t
assess the effect of varying growth strengths in the
performance of the growth algorithm. A network of 64 nouron.
was employed and the task was to embed 11 uncorrelatod
patterns in it. The original difficulty of this task, in
other words, the number of learning steps it took ti.
generalized learning algorithm to perform it, was 1Z. The
network grew in one shot, meaning that all the neurons wer:~
suddenly allowed to interact with their local magnetic fields
and the growth strength was a varying parameter. The result:
of this simulation are presented in Graph 9.

From this graph it can be seen that a growth strendgth f
equal magnitude to the learning strength does noct affent tie

difficulty of the task. In other words, if a task 1=

83

20 -
—O—— Learning steps
Original difficulty of task
0N
o
&
[}
10
2 l
£
(3]
V]
-l
0 T T
.0001 .001 .01 N 1

Growth strength

Graph9. Difficulty of task in learning steps versus growth

strength Ag for storing 11 patterns in a 64-neuron network.

The original difficulty is also shown as a straight line.

impossible, small growth strength will not make it possible.
On the other hand a growth strength 100 times greater than
the learning strengtih reduces the difficulty of the task to
1/3 of its original value, while for Ag between 1001 and

1000A, the difficulty of the task decreases slowly with

84

increasing Ag. The minimum number of learning steps for this
simulation is 2, one step for the network to realize that the
given task cannot be performed by the original subsystem with
pair-interactions only, and another step to switch on all the
magnetic fields and give them appropriate values so that the
new network memorizes the given patterns. As in the previous
simulation the points in Graph 9 represent averages ove: H0
different networks.

The last part of the simulations done for this chuypten
was goal oriented. The question was how the generaliiiai
learning and the growth algorithms will perform in an actual
pattern recognition situation. The situation was set ro i«
the recognition of characters from the English alphabet.

The human mind creates a concept for each lettor of the

alphabet which is scale and font invariant. The letters k, kK,
}(, }i, k, k, kR, are all recognized as the same letter lr/ .
human. The situation is different for a computer. All thics.
letters are different bitmaps in the computer memory. Thr
concept of a letter has to be artificially created for the
computer. Part of the program created for this simulation ha
to do that (for a listing refer to ZAppendiz C).

First one selects a base font and size for the lettrrs,
The Geneva font of size 14 in a Macintosh SE computer war

selected. This consists of the following set of letters.

85

A B CDEFGHIJKLMNOPQRSTUV,WXY,
Z,abecdefghijoklmopaqarstuvwx.y,
2.

One chooses a portion of this set, let's say tne set
s={A,p,,M, zx, ac}

and presents it to the network through a retina. A retina is

ONORN BN BN BN BN BN
C® e e OO0 e
O ® ®® O O OO
C® 00 OO OO0
ON BN BN JNORNORIGONN _
OO0 © 06 06 00
OO 000 00O
OO O0O0O0OO0OO0O0

Figure 9. Representation of the letter C suitable for

processing by a 64-neuron binary network.

86

a special part of the computer memory (part of the screen

buffer) in which the letters are scanned one by one and then

retrieval quality

Average

B Number of sets S
0.99

0.98
0.97
0.96
0.95
0.94
0.93
0.92

0.9
0.87

Number of sets S

Graph 10. Average retrieval quality versus the nunber of sets,

S of letters from the English alphabet.

are preprocessed. The use of binary neurons imposes on Lhe:

retina the interpretation as a set of black and white pizcls.

The preprocessing of the letters consisted cf a size

87

renormalization down or up to the size of the network used,

in this particular case a network with 64 neurons.

As an example, the form of the letter C is shown when it

is presented to the network, in Figure 9. We defined this

preprocessed 8x8 array as the concept of the letter C, for the
computer. This array is then transformed into a %4x1 vector
by putting each row of the array beside the previous one.
This constitutes an input vector to the 64-neuron network.

This is done for all the letters in the set S and the

resulting set is the set Sg of the patterns to be memorized.

With this Sg one calculates the initial synaptic

strengths. This was done for a Hopfield net Eq. (65) with

Hebbian learning Eq. (70) without self-interactions. After
that the set S\Il was prepared by choosing the same letters as

in S but of different fonts and sizes and present them to the

network through the retina. For example one might choose for

the set S\p the letters

A p, LMz xa¢ApLMZzxacApl,M,zxX,
a, C.

(in the actual simulations the set S\p contained

approximately 100 variations of each letter in S). All these

letters can be considered as noisy modifications of the

838

letters in S. These letters were fed into the network and
then the generalized learning algorithm and the growth
algorithm governed the processing done on them. All this
constituted the training phase of the network. After the
network was trained all the letters in S were presented to it
in a font and size chosen randomly not necessarily in a font
and size used in the training set and the average retrieval
quality for that set of letters was computed using Eq. (72).

Many different sets were used in the simulations. They
varied in size from sets containing a few letters to sels
containing the whole alphabet (larger networks were uscd to
process larger sets of letters). They also varied in content:
some sets had only small letters as members, some contained
only capital letters and some consisted of mixtures of
capital and small letters indiscriminately.

In order to assess the ability of the network to
recognize letters that look similar, sets with different

average correlation

p P N
0=—1 O = —2 BiES
p(p-1) 2_’ Y Npe-l) Z‘ Z ’
B, v= p,v=1 i=1
(L>v) (u>v)

were employed. A plot of the average retrieval quality
against the number of sets exhibiting that retrieval qualivy,
for a total of 68 different sets of letters is given in Graph,

10. Most of the sets (72%) had over 0.95 average retricvel

89

quality, a very encouraging result for font and scale

invariant character recognition.

V.4 Di .

In this chapter growth is introduced as the development
of new synapses between neurons. It is closely linked to
learaing in the sensz that both processes (growth aiw
learning) are governed by the same equations. On the other
hand, growth becomes necessary when learning fails to make a
network capable of performing a given task or if a given task
is extremely difficult for the network. It is possible Lhat
the mechanisms described here are similar to the one:s
existing in the brain. When a task becomes impossible for the
brain to perform (for example, injury to the motor corte:
creates a loss of control of part of the body), new synapses
are developed to overcome the problem and render the task
possible once again.

Using the growth mechanisms one can construct networko
that are suitable for performing particular tasks in patterin
recognition. These networks are more efficient than their
fixed architecture counterparts, as results from tests o

recognition of the letters of the English alphaket prove.

Chapter VI

Formal neurons and logic nodes

Most of the approaches to neural networks try to be close
to what is known of real neurons. Neural network research
though is not limited to just mimicking what nature has
already done (it might even be impossible). As mentioned in
Chapter II the list of different types of neurons and the
list of parameters characterizing each of them is an ever
increasing one. Extending this experimental trend arbitrarily
to its limit one might attempt to consider neurons of the
foremost generality. Such a neuron will be a device that
performs a logic function. How it performs it becomes
unimportant. One does not care either about the details of
the connections (e.g. their strength or their symmetry) or
about the details of the neural function (e.g. sum-of-
weighted-inputs).

A neuron like that may be represented diagrammatically as
in Figure 10. There are n+l inputs to the neuron namely
1,4, ...,y and one output 0. What logic function the neuron
performs is decided by a single number R. The meaning of R
will be explained in the following paragraphs.

Assume that each input takes values from Zj (the set of
integers < k). Then the output can be any function in Zj . In

other words
O =1 (W...,1,) . (79)

91

n+l
There are k(k) such functions.

n—1 ln

L K; 1
R

Figure 10. Typical representation of a formal neuron with n

inputs and one output characterized by a single number R.

If one defines

15k
3=0 (80)

i
.MD

then v belongs to an*‘l. Essentially v is just the number

Lol . - .1n expressed in the k basis. Now take any number F,
n+l

0 <R < k(k) . There is a one to one correspondence between

the numbers R and the functions f in Eq. (79). One camn
actually rewrite Eq. (79) in terms of R

—
[qu)
b1

92

where [] denotes the integer part and mod() is the modulo
function. Each different R in Eg. (81) will give a different
function £ in Eq. (79). A neuron of the form presented in
Figure 10 and supplied with an R as in Eg. (81) will be
called a formal neuron. A similar neuron represented though
by a canonical logic expression has been introduced by
I.Aleksander5 68 and it is named a logic node.

As an example assume 4 binary inputs to the formal neuron
and assign it the task to fire if the number of inputs that
are firing are more than two (firing=1l, not-firing=0). A
formal neuron with R=59,520 will perform that task. In this

case k=2 and

59, 520

2V

.-

mod (2)

The outputs of the above neuron for all the possible inputs
are shown in the Table 1.

All is fine as long as one is restricted to a small
nurber of inputs. But R increases as }Jknﬂ) with the number of
inputs n and any significant number of inputs will make it
totally unrealistic. The first thing one might want to try is
to clamp R at a definite size. Assume that R is allowed to
have only m digits in the k basis. Then Eg. (81) should be

rewritten as

(82)

93

v =0 0=0 £(0,0,0,0)=0
v=1 0=0 £(1,0,0,0)=0
v =2 O0=0 £(0,1,0,0)=0
v =3 0=0 £(1,1,0,0)=0
v =4 0=20 £(0,0,1,0)=0
v =75 0=20 £(1,0,1,0)=0
v =6 0=0 £(0,1,1,0)=0
v = 0=1 £(1,1,1,0)=1
v =8 0=0 £(0,0,0,1)=0
v = 0=0 £(1,0,0,1)=0

| v = 10 0 =0 £(0,1,0,1)=0
v =11 0=1 £(1,1,0,1)=1
v = 12 0=0 £(0,0,1,1)=0
v =13 0=1 £(1,0,1,1)=1
v = 14 0=1 £(0,1,1,1)=1
v = 15 0=1 £(1,1,1,1)=1

; Table 1. The values of a 4-input binary function that becrme-:

E cne if more than two of its inputs are one.

g

;

;

E

94

This will be the response function associated with a
formal neuron from now on. It might be considered as the
definition of the response function of a formal neuron. One
is interested in the type of functions Eg. (82) computes. In
order to find an answer to that assume the natural ordering
in the set Eﬂkn+1, the set to which v belongs. Moreover assume
that the inputs v are arranged in increasing order, the

function f is applied to them in that order and the outputs O

are given in that order. Then it is easy to see that Eg. (82)
computes functions f for which the outputs O are repeating
themselves with period m (one just has to realize that when
expressed in the k basis, the vth digit of R gives the
output O of the formal neuron). As the well-known perceptron
computes linearly separable functions, the formal neuron of
Eq. (82) computes some kind of periodic functions. The number
of such periodic functions is k™,a very small portion of the
total number of functions. As in the case of perceptrons the
solution is to introduce hidden units. An example of such a

network with hidden units is given in Figure 11.

VI.1 Traini ! k of £] it}
].ii O!

First of all assume that one allows R to have a maximum

number of digits mmax, in the k basis. Then suppose that a

certain function f of n inputs has to be implemented. One

orders the inputs v of the function in increasing order. If

95

the outputs of f form a periodic sequence with period m € mpy

then one fomal neuron suffices.

\\ [/ \\ [/ \\ [/
R R R

NIV

Figure 11. A network of formal neurons with hidden units.

Otherwise one divides the inputs into two equal groups,
Ir and I> (if this 1s not possible one group will contain cne
input more than the other). For simplicity and without loss
of generality assume that the two groups are equal. Then one

assigns a formal neuron R;, to I; and a formal neuron k» to
I>. Assume O; to be the output of R; and O; to be the cutput

96

of Ry. One assigns a formal neuron R3 of two inputs to the
outputs 0; and 0,.

The formal neurons Ri, Rz and R3 are unknown and one
would like to find the network with the smallest R's that
will implement the function f. So one starts with m=2 for all
R's and chooses random assignments for R;, Rz and R3. Then the
first input v is presented at the inputs. Let v; be the part
of v that is presented to Rj, and vy the part of v that is
presented to Rp. If the output O3 of R3 is the correct output
for the function f then one locks the \ﬁﬂnod(m) digit of Rj,
the Véﬁnod(m) digit of Ry and the resulting digit of R3 into
their present values and the second input is fed into the
network (one has to keep in mind that all the R's must be
expressed in the k basis for this computation).

If the output O3 of R3 is incorrect then one examines the
\ﬁmnod(m) digit of Rj, the \émnod(m) digit of Ry and the
resulting digit of R3, the ones that are locked retain their
values while the others change in all possible combinations
trying to satisfy the function f. If a satisfactory solution
is found, one locks the values of the V%mnod(m) digit of Ri,
the V%ﬁnod(m) digit of Ry and the resulting digit of R3, for
which the solution is found. If no solution is found one
resets the Vﬁﬂnod(m) digit of Rj, the \éhmod&m) digit of Rp
and all the digits of R3 visited during the previous search
to random numbers. Then one feeds another input to the

network. When all the inputs are exhausted in this way one

]

97

starts from the beginning and presents the first input to the
network again.

If a set of R;, Ry and R3 that will compute f is not
found in this search one concludes that the given task is
impossible for the present value of m. Then one increases m

and repeats the above process with the condition

m < min(nmm,ka (83)

where n: is thenumber of inputs to the formal neuron i. If a

solution is not found again one concludes that the given task
is impossible for the given architecture and mMmay . Then the
number of hidden units is increased and the process startr.
from the beginning by dividing the number of inpats inte
three equal groups and so on.

Simulations have shown that the above training will
eventually find a solution to the given task but therc is no
formal proof for the convergence of this algorithm. Tt
solutions found are usually very memory-efficient. Fen
example for the implementation of the parity function of 4
binary inputs with mpax Set equal to 4 the solution found war.
R: = Ry = R3 = 6 . There was no solution with m=2; the ahbove
solation has m=3. Computer times were also short. This is duc
to the fact that the computation in Eg. (82) 1s a fast one.
It requires the calculation of vmod(m) and the isolatinn of

the vthmod(m) digit of R.

98

Cne drawback of this algorithm is that it produces
rnetworks that do not generalize. A possible sclution to this

problem is the use of larger R's than are actually necessary.

VI.2 Concluding Remarks

Formal neurons provide an alternative for memory
efficient and faster neural networks. They can be implemented
with existing technoloay because their information content
can be stored in addressable memory locations (RAM) very
common in conventional computers. The modification of their
information content is also easy because it involves only a
change in the value of a memory location. This solves the
problem of plasticity occurring in conventional neural
networks (their synaptic strengths have to be hardwired) and
makes possible the construction of general purpose neural

nets.

Chapter VIii

Conclusion

The main points of the theories and simulations presented
in this thesis can be summarized as follows:

(1) The Hopfield model and its variant with low levels of
activity are the minimum noise models derived from more
general models employing neurons with variable firing
strengths.

(11) The generalized learning algorithm Eq. (60) is a
method for enhancing the performance of any feedback newral
netwcrk with a Hamiltonian in the space of all polynomiatls of
N variables, these variables being discrete or continuous.
The enhancement is both in storage capacity and retrieval
quality. In addition, application of the generalized learning
to non-Hamiltonian systems improves their convergence
properties in certain cases.

(1ii) A common mechanism is possible for the tur,
distinct processes of learning and growth. The two proccssc:
are characterized by different values of a single paramcii:
A, a small value characterizes the learning process and ~
large value the growing process. Growth will not disturb the
stability of feedback networks if a "parent" network cmich:,
in which they can grow. They provide a means frr oonctirs o
of fast and memory-efficient associative memories and rwe oo

recognizers.

100

(iv} Networks of formal neurons provide an alternative
to conventional ores. The use of such neurons allows the
implementation of general purpose NN with existing
technology. The proposed response function for formal neurons
and the training algorithm for multi-layered networks made up
of them result in the construction of computationally fast
and extremely compact networks for the implementation of

integer functions.

References

l1amit, D. J. (1989) Modeling Brain Function
(Canbridge:Carbridge University Press)

2peretto, P. (1989) The Modeling of Neural Networks (Les
Ulis: Editions de Physique)

3Toulouse, G. (1989) J. Phys. A: Math. Gen. 22, 1959-1968
4Carlson, N. (1981) Physiology of Behavior (Allyn and Bacon,
Inc.)

5Aleksander, I. (1989) Neural Computing Architectures (The
MIT Press, Cambridge, Massachusetts)

6Luttrell, S. P. (1989) First IEE International Conference on
Artificial Neural Networks (Great Britain)

TReadings from Scientific American (1971) Perception:
Mechanisms and Models (W. H. Freeman ar. . Company)

8Rumelhart, D. E. & McClelland, J. L. (eds.) (1986) Parallel
Distributed Processing, Vols. 1 and 2 (Cambridge Mass: MIT
press)

9% reeman, W. J. (1991) Scientific American Feb 1991
10Gottlieb, D. (1988) Scientific American Feb 1988

liHaken, H. (1987) Computational Systems, Natural and
Artificial (Springer, Berlin)

12Hopfield, J. J. (1984) Proc. Natl. Acad. Sci. 81, 3088-3097
13Cotterill, R. M. J. (1986) Physica Scripta. T13, 161-168
WHebb, D. O. (1949) The organization of behavior. (New York:

Wiley)

102

15prodmann, K. (1909) Principle of Comparative Localization

in the Cerebral Cortex Presented on the basis of
Cytoarchitecture (Leipzig: Barth)

16Wasserman, P. D. (1989) Neural Computing: Theory and
Practice. (New York. Van Nostrand Reinhold)

17Rosenblatt, F. (1962) Principles of neurodynamics (New
York: Spartan Books)

18Hopfield, J. J. (1982) Proc. Natl. Acad. Sci. 79, 2554-2558
18Denker, J., Schwartz, D., Wittner, B., Solla, S., Hopfield,
J., Howard, R., Jackel, L., (1987) Camplex Systems 1, 877-922
20Grossberg, S. (1987) The Adaptive Brain, Vols. 1 and 2.
(Amsterdam: North-Holland)

21pevaney, R. L. (1989) Proceeding of Symposia in Applied
Mathematics 39

22Devaney, R. L. (1985) An Introduction to chaotic dynamical
systems, (Menlo Park: addison-Wesley)

23Hansel, D. & Sompolinsky, H. (1990) Europhys. Lett. 11, (7)
687-692

24Kohonen, T. (1984) Self Organisation and Associative Memory
(Heidelberg: Springer Verlag)

25Widrow, B. & Hoff, M. E. (1960) Adaptive switching
circuits. IRE WESCON Convention Record, part 4, pp. 96-104.
New York: Institute of Radio Engineers

26Widrow, B. (1963) A statistical theory of Adaptation.
Adaptive control systems. (New York: Pergamon Press)

2771kon, D. L. & Rasmussen, H. (1988) A Spatial Temporal
Model of Cell Activation in Science, 239, No.4843, 998-1005

103

28Mézard, M., Parisi, G. and Virasoro, M. A. (1987) Spin
Glass Theory and Beyond. (World Scientific)

29Changeux, J. P. (1985) Neuronal Man (New York: Pantheon)
purves, D. & Lichtman, J. W. (1985) Principles of Neural
Development (Sunderland Mass.: Sinauer Associates Inc.)
31Bienenstock, E., Fogelman, F. & Weisbuch, G. (Eds). (1985)
Disordered Systems and Biological Organization (Berlin:
Springer)

32Little, W. A. (1974) Math. Biosci. 19, 101-120

33ittle, W. A. & Shaw, G. L. (1978) Math. Biosci. 39, 281-
289

34Cooper, L. N., Liberman, F. & Oja, E. (1979) Biol. Cybern.
33, 9-28

35Hinton, G. E. & Anderson, J. A. (Eds). (1981) Parallel
models of associative memory (Hillsdale, NJ : Erlbaum)
36Lyapunov, A. M. (1907) Le probléme général de la stabilite
du mouvement Bnn. Fac. Sci. Toulouse 9, 203-474

37amit, D. J., Gutfreund, H., & Sompolinsky, H. (1985) Phys.
Rev. A 32, 1007-1018

38amit, D. J., Gutfreund, H., & Sompolinsky, H. (1985) Phys.
Rev. Lett. 55, 1530-1533

39Bruce, A. D., Gardner, E. J. & Wallace, D. J. (1927) J.
Phys. A: Math. Gen. 20, 2909-2934

40FEdwards, S. F. & Anderson, P. W. (1975) J. Phys. F: [:tal
Phys. 5, 965-974

41Sherrington, D. & Kirkpetrick, S. {1978) Phys. Rev. B 17,
4384-4403

104

42pzrisi, G. (1980) J. Phys. A: Math. Gen. 13, 1101-1112
43yan Hemmen, J. L. & Zagrebnov, V. A. (1987) J. Phys. A:
Math. Gen. 20, 3989-3999

44Kanter, I. & Sompolinsky, H. (1987) Phys. Rev. A 35, 380-
39%2

45Gardner, E. & Derrida, B. (1988) J. Phys. A: Math. Gen. 21,
271-284

46Treves, A. (1990) Phys. Rev. A.

47McCulloch, W. S. & Pitts, W. (1943) Bulletin of Math.
Biophys. 5, 115-133

48pmit, D. J., Gutfreund, H. & Sompolinsky, H. (1987) Ann.
Phys. 173, 30-67

49mit, D. J., Gutfreund, H. & Sompolinsky, H. (1987) Phys.
Rev. A 35, 2293-2303

50yan Hemmen, J. L., Keller, G. & Kihn, R. (1988) Europhys.
Lett. 5, 663-668

S5lGardner, E. (1987) J. Phys. A: Math. Gen. 20, 3453-3464
52Kanter, I. (1988) Phys. Rev. A 37, 2739-2742

53Engel, A., Englisch, H. & Schitte, A. Europhys. Lett. 8,
393-327

54Bruce, A. D., Canning, A., Forrest, B., Gardner, E., &
Wallace, D. J. (1986) Proc. Conf. on Neural Networks for
Computing, Snowbird (New York: AIP)

55Gardner, E., Stroud, N. & Wallace, D. J. (1987)

56pippel, G. & Krey, U. (1987) Europhys. Lett. 4, 979-985
Slparisi, G. (1986) J. Phys. A: Math. Gen. L675-L680

105

58Minsky, M. & Papert, S. (1969) Perceptrons: an Introduction
to Computational Geometry (Cambridge Mass: MIT Press)
59Forrest, B. M. (1988) J. Phys. A: Math. Gen., 21, 245-255
60Gardner, E. (1989) J. Phys. A: Math. Gen 22, 1569-1974
6lperetto, P. (1984) Biol. Cybern. 50, 51-58

62Mgzard, M., Nadal, J. P. & Krauth, W. (1988)

63Mézard, M. & Nadal, J. P. (1989) J. Phys. A 22, 2191-2203
64Marchand, M., Golea, M. & Rujadn, P. (1990) Europhys. Lett.
11, 487-492

65Golea, M. & Marchand, M. (1990) Europhys. Lett. 12, 205-210
66Canning, A. & Gardner, E. (1988) J. Phys. A: Math. Gen. 21,
3275-3284

67personnaz, L., Guyon, I. & Dreyfus, G. (1987) Europhys.
Lett. 4, 863-867

68Eckmiller, R. & Malsburg, C. (Eds). (1989) Neural Computers
(Heidelberg: Spinger-Verlag)

APPENDIX A
The minimum of Var(n,)

The first derivative of Var(nt) with respect to g is

given by

k

ia [a? T -Y ag}
d Var (ng) _ (N-2) (p=1) J

d a 3 af)’
k

An extremum occurs when
d Var (nt) _,
a a y L = 1 I © ¢ oy N

and from Eg. (Al) one gets a system of equations with

solution

af (Y af) =) aj =ar=ar=...=ay=
k 3

In order to prove that this extremum is a minimum one has to
examine the Hessian matrix of the second derivatives of

var (ny) . One has

, 16 [3&2 (S ad)2 {z a‘;)(z)]
Jd° Var (ng) _ (N-2) (p=1) k j k

Jd & dap (Za§)4
k

+

107

Ba;a.{i(zaj 2a?n(2ai -2af (¥, af) }
] X k

EAN
k

+ (N-2) (p-1)

The diagonal elements of the above matrix at the extranum

point ai;=a,=...=ay=a, are equal to

8 (N-1) (N-2) (p-1)
Na?

while the non-diagonal elements at the same point are ecqual

to
8 (N-2) (p-1)

N3a?

As N-oo and if p=cN where ¢ is a positive constant

independent of N the off-diagonal elements of the Hessian

matrix vanish while the diagonal elements become equal to

&
a2>0'

Thus the Hessian matrix is positive definite and the

extremum point ay=as=...=ay=a, 1s a minimum.

APPENDIX B

The Hamitonian function for the Neural Network using

neurons with self-interactions

Take as a starting point the relation
-xsign(x) <0,

which implies that
=) J13S3(t) sign (), Jis84(t)) <O
J 3

and is equivalent to
- 25 (t+1)), Ji3S3(t) <0
3

Rut Si (t+1)=Si (t) can be either 0 or 2S; (t+l) thus

- [si(er1)-51 1) 31355 () <0
3
from which one gets using the fact that only the spin i might

change at t+l

‘l:si (t+1) Z Ji3S4 (£+l) =54 (t) Z Ji4S4(t) :l-

3 (1) J (1)

-Jii (S3 (£+1) 851 (£)-1)<0 (B1)

Eq. (Bl) can be summed over all spins i if the synaptic

matrix J is symmetric, leading to

109

=) Ju5Ss (t+1) Sy (el Z Ji3S1 (£) S5 (t)

i,3
(i=3) (1¢3)

=Y g (S (£+1) Si(6)-1) <0
i . (B2)

The energy for each pair-interaction in Eg. (B2) has been

counted twice. Thus, if Jy; > 0 for every i the function

H=-(1/2)), Ji58iS;
i, J
(i23)

can serve as a Lyapunov function for the network of neurons

with self-interactions.

APPENDIX C

Listings of the computer programs

The computer programs used in this thesis are written in
C, Pascal and FORTRAN programming languages. The C programs
are written using the Think C compiler for the Macintosh SE
computer while the FORTRAN and Pascal programs are written

using the C.D.C. compilers for a Cyber 835.
The C language programs:

[*This is the header part of the program. It contains definitions of

constants and structures*/

#define MAXNEURONS 256
#define MAXBUFFER 15
#define MAXTIME 10

#define MAXLAYERS 5
#detine MAXMEMORY 666000
#define NIL oL

typedef int *net;

struct neuron{
char type;
char updating;
char recurence;
char feedback;
int timepar[MAXTIME];
int thresh;
int magfield,
int *responsefunct;
int *values;
int “instarfMAXLAYERS];

h

111

/* The declarations in the Network.c source file. */

#include "Network.h"

extern WindowPtr InpwWindow,NetWindow,OutWindow,AnalWindow;
extern int neurons[MAXLAYERS],bufinp,fon,siz;

externint hneurons[MAXLAYERS),vneurons[MAXLAYERS];
extern Rect drinpRect,drNetRect,drOutRect,drAnalRect;

externint buffefMAXNEURONS][MAXBUFFER];

extern int store[MAXNEURONSJ[MAXBUFFER;];

struct neuron mynet{MAXNEURONS];

net thenet;
Rect r= {5,5,50,50};

char cc1[MAXBUFFER];
int coun;

/* The main program. */

main()
{
halfinit();
init();
initbufter();
InitAdress();
for(;})
{events();
InitCursor();}

/* Initialization of the Macintosh Toolbox. */
init()

{
FlushEvents(everyEvent,0);
InitCursor();

InitFonts();

TEInit();

MaxApplZone();

}

/* Buffer initialization. */

initbuffer()
{
registerint i j;
coun=1;
for (i=0;i<MAXNEURONS; ++i)
for(j=0;j<MAXBUFFER;++j)
butfer[i][j]=-1;

/* Initialization of the Macintosh screen. */

halfinit()

{

InitGraf(&thePort);
InitWindows();
initMenus();
SetUpFiles();
ClearMenuBar();
fill_stmenus();
SetUpinpWindow();
SetPon(InpWindow);
InitDialogs(NIL);

}

/* Memory initialization. */
initAdress()

{
long int i,j,c=MAXNEURONS*MAXNEURONS*MAXLAYERS;
MemTest(CompactMem(MAXMEMORY));
thenet= (net) NewPtr(MAXMEMORY);
for (i=0;i<MAXNEURONS;++i)
{for (j=0;j<MAXLAYERS;++j)
mynet[i].instar{jj=thenet+MAXNEURONS"*(MAXLAYERS"i+ MAXNEURONS"j),
mynetli].values=thenet+c+MAXTIME"i;}

)

/* Memory test. */

MemTest(y)

Size y;

{

longinti;

if(y<MAXMEMORY)
{ MoveT0(6,52);

113

TextFont(appiFont);

TextFace(bold);

TextSize(12);

DrawString(" NOT ENOUGH MEMORY ");
for(i=0;i<200000;++i)

finish():}

I* The event traping subroutine. */
events()

int ok;
EventRecord event;
HiliteMenu(0);
SystemTask();
ok=GetNextEvent (everyEvent,&event);
if (ok)
switch (event.what)
{case mouseDown:
mouse__click(&event);
break;
case mouseUp:
case keyDown:
case keyUp:
case autoKey:
if (event.modifiers & cmdKey)
dgo_menu(MenuKey((char) (event.message &charCodeMask)));
else
{SetPort(InpWindow);
ShowWindow(InpWindow);
EraseRect(&r);
do_input((char) (event.message &charCodeMask),fon siz);
ccifcoun-1}=(char) (event.message &charCodeMask);
coun = (coun-bufinp) ? coun+1 :1 }
break;
case activateEwvt:
break;
}

}

/* This routine handles the events that are initiated by a mouse
device. */

mouse_click(event)
EventRecord *event;

WindowPtir mouse_window;,
int place=FindWindow(event->where,&mouse_window);
switch(place)
{ case inSysWindo\vs:
SystemClick(event,mouse_window);
break;
case inMenuBar:
do_menu (MenuSelect(event->where));
break;
case inContent:
if (mouse_window == InpWindow)
{if (mouse_window !=FrontWindow())
SeiectWindow(InpWindow),
else
invalRect(& InpWindow->portRect);
}
if (mouse_window == NetWindow)
{if (mouse_window I=FrontWindow())
SelectWindow(NetWindow);
else
InvalRect(&NetWindow->portRect);

if (mouse_window == OutWindow)
{if (mouse_window !=FrontWindow())
SelectWindow(OutWindow);
else
InvalRect(&OutWindow->poriRect);
}
if (mouse_window == AnalWindow)
{if (mouse_window !=FrontWindow())
SelectWindow(AnalWindow);
else
InvalRect{&AnalWindow->portRect);

break;
case inDrag:
if (mouse_window ==InpWindow)
DragWindow(InpWindow, event->where, &drinpRect);
if (mouse_window == NetWindow)
DragWindow(NetWindow,event->where, &drNetRect);
if (mouse_window == OutWindow)
DragWindow(OutWindow,event->where, &drOutRect);
if (mouse_window == AnalWindow)
DrigWindow(AnaIWindow,event->where, &drAnalRect);
break;
case inGoAway:
if (mouse_window == InpWindow && TrackGoAway(InpWindow, event->where))
HideWindow(InpWindow);

115

if(mouse_window ==NetWindow && TrackGoAway(NetWindow, event->where))
HideWindow(NetWindow);

if(mouse_window ==OutWindow && TrackGoAway(OutWindow, event->where))
HideWindow(OutWindow);

if(mouse_window==AnalWindow&&TrackGoAway(AnalWindow event->where))
HideWindow(AnalWindow);

break;
}
}

/* The unsupervised assignment for the synaptic strengths. */
hebbJs()
{

register int s,k,j,i,tf;
tf=9000/neurons(0];
for (i=0;i<neurons[0];++i)
{for (j=i+1;j<neurons[0];++))
{s=0;
for (k=0;k<bufinp;++k)
s+=storeli]{k]*storefj}{Kk];
*(mynet][i].instar[0]+j)=tf"s;
*(mynet[jl.instar{0]+i)=tf*s;}
*(mynet[i].instar[0]+i)=0;}

/* The representation of the network on the screen. */

ShowNeurons()

{

Rect 1,

register int i j,vdim,hdim,rc;

vdim=115/(vneurons[0]-1)+1;

hdim=120/hneurons[0]+1;
for(i=0;i<hneurons[0];++i)
{rc=i*vneurons[0];

for(j=0;j<vneurons[0];++j)

{ rr.top=10+vdim’j;
rr.left=35+hdim"i;
rr.oottom=10+vdim*(j+1)-3;
rr.right=35+hdim*(i+1)-3;
EraseOval(&rr);
FrameOval(&rr);
if("(mynet[rc+j].values)==1)

PaintOval(&rr);

116

/* The assignment of a pattern to the network. */

assign(c1)

registerint c1;

{

registerint i;

for (i=0;i<neuroris[0];++i)
*(mynet][i].values)=bufferfi][c1);

/* The relaxation process. */

process(c2)
intc2;

msequencial();
mranchoice();
msequencial();
return(compare(c2));

/* Sequential test of the neurons. */

sequencial()

register int s,i.j;
for (i=0;i<neurons[0];++i)
{s=0;
for (j=0;j<neurons[0];++j)
{s+="(mynet[i].instar[0)+))* (*(mynet[j].values));}
*(mynet[i].values) = (s>0) ? 1 : -1;}

/* Random test of the neurons. */

ranchoice()

{

register int s,i,j,k;

for (i=0;i<neurons{[0];++i)

{k=ran(neurons[0});

s=0;
for (j=0;j<neurons[0];++j)

{s+="(mynet[k].instar[0]+))* (*(mynet[j).values));}

*(mynet[k].values) = (s>0) ? 1 :-1;}

117

/* Comparison of the stationary output of the network with the
desired output of the network during learning */

compare(c2)
register int c2;

register int s,i;
s=0;
for (i=0;i<neurons[0];++i)
s+=store[i)[c2])-*(mynet]i].values);
if(s==0)
return(1);
else
{mdynamic(c2);
return(0);}

/* The generalized learning. */

dynamic(c2)
register int c2;

register int I=1,i,j;
for (i=0;i<neurons[0);++i)
{for (j=0;j<neurons|[0];++j)
(mynet]i}.instar[0]+j)-=1"((mynet[i].values)*(*(mynet[j].values))-
-store[i][c2]"store[j]{c2));
*(mynet[i].instar{0]+i)=0;}

/* Presentation of the results of the learning process on the
screen.*/

ShowlLearn(x)

int x;

{

inti;

Str255 s;
SetPort(OutWindow);
ShowWindow(OQutWindow);
SelectWindow(OutWindow);
MoveTo(6,12);

TextFont(1),
TextFace(bold);
TextSize(12);

DrawString(" LEARNED LETTERS ");
TextFace(italic);
for(i=0;i<bufinp;++i)
{MoveTo(5+9%,30);

118

DrawChar(cc1[i]);}
MoveTo(2,33);
LineTo(160,33);
MoveTo(6,47);
NumToString(x,&s);
DrawString(s);

}

/* The testing of the network*/

neuprocess(c2)
int c2;

msequencial();
mranchoice();
msequencial();
return(compare1(c2));

/* Comparison of the stationary output of the network with the
desired output of the network during testing */

compare1(c2)

register int ¢2;

{

register int s,i;

s=0;

for (i=0;i<neurons[0];++i)
if (store[il[c2]-*(mynet[i].values))
++8S;

if(s<5)
return(1);

else
return(0);

}

/* Presentation of the results of the testing phase on the screen.*/

ShowOutput(x)
int x;

{

SetPort(OutWindow);
ShowWindow(OutWindow);
SelectWindow(OutWindow);
MoveTo(6,12);

TextFont(1);
TextFace(bold);
TextSize(12);

119

DrawString(" OUTPUT ");
TextFace(italic);
if (x==1)

{ MoveTo(5,30);

DrawChar(cc1[0));}

else

{MoveTo(2,33);

DrawString(" NOTRECOGNIZED ")}
}

/* Smooth exiting from the program.*/

finish()

{ExitToSheH();
}

/* Different cursor for waiting. */
please_wait()

{

CursHandle hCurs;

Cursor waitCursor;
hCurs=GetCursor(watchCursor);
waitCursor=""hCurs;
SetCursor(&waitCursor);

}

/¥ The following three routines control the growth of unary
interactions for a growing network., */

msequencial()
{
register int s,i,j;
for (i=0;i<neurons[O];++i)
{s=0;
for (j=0;j<i;++j)
{s+="(mynet[i].instar[0]+))* (*(mynet[j].values));}
for (j=i+1;j<neurons{0];++j)
{s+="(mynet(i].instar[0] +})" (*(mynet[j].values));
*(mynet[i].values) = ({s+"(mynet[i].instar[0]+i))>0) ? 1 :-1}}

mranchoice()

{

register int s,i,j.k;

120

for (i=0;i<neurons[0};++i)
{k=ran(neurons[0]);
s=0;
for (j=0;j<i;++j)
{s+="(mynet[K].instar[0]+j)* (*(mynet[j].values));}
for (j=i+1;j<neurons[0];++j)
{s+="(mynet[K].instar[0]+j)* (*(mynet[j].values));}
(mynet[k].values) = ((s+(mynet[i].instar[0]+))>0) ? 1 : -1}

mdynamic(c2)
register int c2;

{
register int I=1,i,j;
count6++;
for (i=0;i<neurons|0];++i)
{for (j=0;j<neurons[0];++j)
(mynet[i].instar{0]+j)-=I(*(mynet[i]. values)* (*(myn¢ t[j].values))-
-store[ij[c2]"store(j][c2]);

for (i=0;i<7;++i)
{if (count6 < 4)
(mynet[i].instar[0]+i)-=1000(*mynet[i].values-store[i}[c2]);
else
*(mynetfi].instar[0)+i)-=I"("mynet[i].values-store[i]){c2]) ;}

/* The deciarations in the Window.c source file. */

#include "Network.h"

WindowPtr InpWindow,OutWindow,NetWindow,AnalWindow;
Rect drNetRect,drinpRect,drOutRect,drAnalRect;

Rect winNetBounds = {40,40,215,250};

Rect wininpBounds = { 40,300,200,450};

Rect winOutBounds = {230,300,330,450};

Rect winAnalBounds= {240,40,330,250};

/* This routine defines the Network Window. */

SetUpNetWindow()
{

121

drNetRect=screenBits.bounds;

NetWindow=NewWindow(NIL,&winNetBounds,"\pNETWORK" true,noGrowDoc
Proc,-1L true,0);

}

/¥ This routine defines the Output Window. */

SetUpOutWindow()

drOutRect=screenBits.bounds;

OutWindow=NewWindow(NIL,&winOutBounds,"\pOUTPUT" true,noGrowDocPr
oc,-1L,true,0);

}

/¥ This routine defines the Input Window. */

SetUplnpWindow()

drinpRect=screenBits.bounds;

InpWindow=NewWindow(NIL,&winIinpBounds,"\pINPUT" true,noGrowDocProc,

. 1L,true,0);

}

/* This routine defines the Analysis Window. */

SetUpAnalWindow()

drAnalRect=screenBits.bounds;

AnalWindow=NewWindow(NIL,&winAnalBounds,"\pANALYSIS" true,noGrowD
ocProc,-1L,true,0);

}

/* The declarations in the Print.c source file. */

#include <PrintMgr.h>
#include "Network.h"

#define topMargin 20
#define leftMargin 20
#define bottomMargin 20
#define tabChar ((char)\t')

static THPrint hPrint = NIL;
static int tabWidth=7;

extern WindowPFtr InpWindow;

122

char c="a’,
/* Checking the printer. */
CheckPrintHandle()

if (hPrint==NIL)
PrintDefault(hPrint = (TPrint **) NewHandle(sizeof(TPrint)));
}

/* Setting up the page. */
DoPageSetUp()
{

PrOpen();
CheckPrintHandle();

if (PrStiDialog(hPrint)) ;
PrClose();

}
/* Drawing Text on the page. */

MyDrawText()

{
Point pt;

if { (c!=tabChar))
DrawText(&c, 0,1);
else {
GetPen(&pt);
Move((tabWidth-{pt.h-leftMargin)%tabWidth), 0);

}

/* Printing the document. */

PrDoc(hPrint)

THPrint hPrint;

{

int font=1;
int size=12;

Rect printRect;
int lineBase;
int lineHeight;
Fontinfo info;
TPPrPort printPort;

123
printPort = PrOpenDoc(hPrint, OL, OL);
SetPort(printPort);

TextFont(font);

TextSize(size);
printRect = (**hPrint).prinfo.rPage;
GetFontlnfo(&info);
lineHeight = info.leading+info.ascent+info.descent;
PrOpenPage(printPort, OL);
MoveTo(printRect.left+leftMargin,
(lineBase = printRect.top+lineHeight)),
while (¢ != (char)\r') ;
MyDrawText();
MoveTo(printRect.left+leftMargin, (lineBase += lineHeight)):
PrClosePage(printPort);
PrCloseDoc(printPort);

}

/* Printing the text in the document. */
PrintText()

TPPrPort printPort;
GrafPtr savePort;
TPrStatus prStatus;

int copies;

PrOpen();

CheckPrintHandle();

SetCursor(&arrow);
GetPort(&savePort);
PrDoc (hPrint);
PrPicFile(hPrint, OL, OL, OL, &prStatus);

SetPort(savePort);
PrClose();

/* The declarations in the Menu.c source file. */
#include "Network.h"

extern WindowPtr InpWindow,NetWindow,QutWindow,AnalWindow;
extern int buffer{MAXNEURONS][MAXBUFFER];

enum { APPLE_ID =1,
START_ID,
LAYER_ID,

124

TIME_ID,
STATES_ID,
CONTINUE_ID,
NEURON_ID,
GEOMETRY1_ID,
GEOMETRY2_ID,
RECURENCE_ID,
EXIT_ID,

FILE_ID,
INPUT_ID,
PREPROCESS_ID,
LEARNIN_ID,
LEARNOUT_ID,
NETWORK_ID,
FONT_ID,
SIZE_ID,
DRAW_ID,
NEURPROC_ID

b

enum {DESIGN_NET =1,
TRAIN_NET ,
TEST_NET,
QUIT1=5};

enum {SAVE_SPECS=1,
GOTOSTART=3,
QuIT};

enum {LOAD_SPECS=1,
LOAD_SYNAP,
SAVE_SYNAP,
PRINT_SYNAP,
PRINT_ANALYSIS};

enum {RANDOM=1,
DESIGN};

enum {RENORM=1,
NATURALY};

enum {HEBB=1,
SPINGLASS,
SYNCHRONUS};

enum {ERROR=1,
DYNAMIC};

Calam c S--aChdaC e

enum {PROCES_SPECS=1,
START=3,
STOP,
SHOW};

enum {SYSTEMF=0,
APPLF,
NEWYORKEF,
GENEVA,
MONACO};

enum {MORE=1};

int fon=3,siz=22,neurons[MAXLAYERS)}={81,0,0,0,0},bufinp=15;

int hneurons[MAXLAYERS]=({9,0,0,0,0},flag1=1 state=2,
flag2[MAXLAYERS]={0,0,0,0,0};

int vneurons|[MAXLAYERS)={9,0,0,0,0},flag0=-1,layers=1,ntime=1;

int store]MAXNEURONS][MAXBUFFER];

MenuHandle
applemenu,startmenu,neumenu,layermenu,timemenu,geoimenu,exitmenu;
MenuHandle filemenu,inputmenu,preprocessmenu,learninmenu,learnoutmenu,
MenuHandle
networkmenu,statesmenu,fontmenu,sizemenu,drawmenu,neurprocmenu;
MenuHandle continuemenu,recurmenu,geo2menu;

/* The start-up menu bar. */
fill_stmenus()

defineMenus();

InsertMenu(applemenu,0);

insertMenu(startmenu,0);

DrawMenuBar();

AddResMenu(applemenu, 'DRVR');

AppencMenu (startmenu,"\pDesign_NET/D;Train_NET/L;Test_NET/T;(-
;Quit/Q");

}

/* The start-up menus. */
defineMenus()

{

applemenu=NewMenu(APPLE_ID,"\p\024");
startmenu=NewMenu(START_ID,"\pSTART");
layermenu=NewMenu(LAYER_ID,"\pLAYERS");
timemenu=NewMenu(TIME_ID,"pTIME");

126

statesmenu=NewMenu(STATES_ID,"\pSTATES");
continuemenu=NewMenu(CONTINUE_ID,"\pCONTINUE");
neumenu=NewMenu(NEURON_ID,"pNEURONS"),
geoimenu=NewMenu{GEOMETRY1_ID,"\pINGEOMETRY");
geo2menu=NewMenu(GEOMETRY2_ID,"pINTERGEOMETRY");
recurmenu=NewMenu(RECURENCE_ID,"\pRECURENCE-FB");
exitmenu=NewMenu(EXIT_ID,"\pEXIT");
filemenu=NewMenu(FILE_ID,"\pFile");
inputmenu=NewMenu(INPUT_ID,"\plnput");
learninmenu=NewMenu(LEARNIN_ID,"\pinLearn"},
learnoutmenu=NewMenu(LEARNOUT_ID,"\pOutLearn");
networkmenu=NewMenu(NETWORK_ID,"\pNetwork");
neurprocmenu=NewMenu(NEURPROC_ID,"\pProcess");

}

int count1;
/* The design menu bar. */
fill_desmenus()

DisposeMenu(startmenu);

ClearMenuBar();

InsertMenu(applemenu,0);

InsertMenu(layermenu,0);

InsertMenu(timemenu,0);

InsentMenu(statesmenu,0);

InsetMenu(geo2menu,0);

InsentMenu(continuemenu,0);

count1=0;

DrawMenuBar();

AppendMenu(layermenu,”\p1;2;3;4;5;(-;Other");

AppendMenu(timemenu,"p1;2;3;4;5,10");

AppendMenu(statesmenu,"\pS=1:2;8=1;S=3:2;(-;Potts2;Potts3;Potts4;(-
;,Continuous”);

AppendMenu(geo2menu,"\pMFT;DILUTE");

AppendMenu(continuemenu,"\pMORE");

/* The change of menu bar. */
cont_menus()

DisposeMenu(layermenu);
DisposeMenu(timemenu);
DisposeMenu(statesmenu);
DisposeMenu(geo2menu);
DisposeMenu(continuemenu);

127

ClearMenuBar();

insertMenu(applemenu,0);

InsetMenu(neumenu,0);

InsertMenu(geo1menu,0);

InsertMenu(recurmenu,0);

InsertMenu(exitmenu,0);

DrawMenuBar();

AppendMenu(neumenu,"\p16;32;64;128,256");
AppendMenu(geo1menu,"\pMFT;Dilute;N-Neighbours");
AppendMenu(recurmenu,”\pRecurrent;Non-Recurrent;(-;1,2;3:4;5");
AppendMenu(exitmenu,"\pSaveSpecs/S;(-;GoToStart/G;Quit/Q");
}

/* The training menu bar . */

fill_trainmenus()

DisposeMenu(startmenu);

DisposeMenu(neumenu),;

DisposeMenu(geoimenu);

DisposeMenu(recurmenu);

ClearMenuBar();

InsertMenu(applemenu,0);

InsertMenu(filemenu,0);

InsertMenu(inputmenu,0),

InsertMenu(learninmenu,0);

InsertMenu(learnoutmenu,0);

InsertMenu(networkmenu,0);

InsertMenu(exitmenu,0);

DrawMenuBar();

AppendMenu(filemenu,"\pLoad Specs;Load SynMat;Save SynMat,Print
SynMat;Print Analysis");
AppendMenu(inputmenu,”\pRandom;Design;(-
:1:2:3:4:5,6,7;8;9;10;11;12;13;14;15");
AppendMenu(learninmenu,"\pHebb;SpinGlass;Synchronus”);
AppendMenu(learnoutmenu,"\pError;Dynamic");
AppendMenu(networkmenu,"\pProcesSpecs;(-;Start/R;Stop/P;Show");
AppendMenu(exitmenu,"\pSaveSpecs/S;(-;GoToStart/G;Quit/Q"),

}

/* The design menus., */

filldesignmenus()

{

ClearMenuBar();
fontmenu=NewMenu(FONT_ID,"\pFonts");
sizemenu=NewMenu(SIZE_ID,"\pSize"};

128

drawmenu=NewMenu(DRAW_ID,"\pDraw");
preprocessmenu=NewMenu(PREPROCESS_ID,"\pPreprocess");
InsertMenu(fontmenu,0);

insertMenu(sizemenu,0);

InsertMenu(drawmenu,0);

InsertMenu(preprocessmenu,0);

DrawMenuBar();

AppendMenu (fontmenu, "\pSystem;Apple;newYork;geneva;monaco”);
AppendMenu (sizemenu, "\p9;10;12;14,16,18,20;22;24,34,44");
AppendMenu(preprocessmenu,"\pRenorm;Natural”);

/* The training menus. */

back_trainmenus()

DisposeMenu(fontmenu);
DisposeMenu(sizemenu);
DisposeMenu(drawmenu);
DisposeMenu(preprocessmenu);
ClearMenuBar();
InsertMenu(applemenu,0);
InsertMenu(filemenu,0);
InsertMenu(inputmenu,0);
InsertMenu(learninmenu,0);
InsertMenu(learnoutmenu,0);
InsertMenu(networkmenu,0);
InsertMenu(exitmenu,0);
DrawMenuBar();

}

/¥ The testing menu bar and menus. */

fill_testmenus()

DisposeMenu(learninmenu);
DisposeMenu(learnoutmenu);
DisposeMenu(networkmenu);
ClearMenuBar();
InsertMenu(applemenu,0);
InsertMenu(filemenu,0);
InsertMenu(inputmenu,0);
InsertMenu(neurprocmenu,0);
InsertMenu(exitmenu,0);
DrawMenuBar();
AppendMenu(filemenu,"\pLoad Specs;Load SynMat;Save SynMat;Print
SynMat;Print Analysis");

129

AppendMenu(inputmenu,”"\pRandom;Design;(-;1;2;3:4,5;10;15");
AppendMenu(reurprocmenu,”\pStart_Process"),

AppendMenu(exitmenu,"\pSaveSpecs/S;(-;GoToStart/G;Quit/Q");
}

/* The following two routines are adjusting the menus. */

Adjust_conm()

if (counti==layers)
enable(exitmenu,3,1);

else
enable(exitmenu,3,0);

}

static
enable(menu,item,ok)
Handle menu;

{
if(ok)
Enableltem(menu,item);
else
Disableltem(menu,item);
}

/* This routine controls the actions initiated by a menu
a specific menu bar. */

do_menu (command)
long command,

{
int menu_id=HiWord(command);
int item = LoWord (command);
Str255 item_name;

GrafPtr savePor;
WindowPeek frontWindow;
registerint i,j;

switch (menu_id)

{case APPLE_ID:
GetPort(&savePort);
Getltem(applemenu,item,item_name);
OpenDeskAcc(item_name);
SetPort(savePort);

choice from

130

break;
case START_ID:
switch(item)
{case DESIGN_NET:
fill_desmenus();break;
case TRAIN_NET:
fill_trainmenus();SetUpNetWindow();SetUpOutWindow();
SetUpAnalWindow();break;
case TEST_NET:
fill_testmenus();SetUpNetWindow();SetUpOutWindow();
SetUpAnalWindow();break;
case QUIT1:
finish();break;}
break;
case NEURON_ID:
switch(item)
{case 1.
neuronsfcount1]}=16;hneurons{count1]}=vneurons[count1]=4;
count1++; Adjust_conm(count1);
break;
case 2:
neurons[count1]=32;hneurons[count1]=4;vneuronsfcount1]=8;
count1++; Adjust_conm(count1);
break;
case 3:
neurons[count1]=64;hneurons[count1]=vneurons[count1]=8;
count1++; Adjust_conm(count1);
break;
case 4:
neurons[count1]=128;hneuronsfcount1]=8;vneuronsfcount1)=16;
count1++; Adjust_conm(count1);
break;
case 5:
neuronsfcount1]=256;hneurons|count1]=vneurons[count1]=16;
count++; Adjust_conm(count1);
break;}
break;
case LAYER_ID:
switch(item)
{default:
layers=item;break;}
break;
case TIME_ID:
switch(item)
{ case 6:
ntime=10;break;
default:
ntime=item;break;)
break;

131

case STATES_ID:
switch(item)
{case 1:
case 2:
case 3.
flag1=1;state=item+1;break;
default:
flag1=0;state=item-3;break;}
break;
case CONTINUE_ID:
switch(item)
{case MORE:
cont_menus();
count1=0;
Adjust_conm(count1);
break;}
break;
case GEOMETRY1_ID:
flag0=item-2;
break;
case EXIT_ID:
switch(item)
{case SAVE_SPECS:
savespecs();break;
case GOTOSTART:
halfinit();
break;
case QUIT:
finish();break;}
break;
case FILE_ID:
switch(item)
{case LOAD_SPECS:
loadspecs();break;
case LOAD_SYNAP:
break;
case SAVE_SYNAP:
break;
case PRINT_SYNAP:
SetPort(InpWindow);
DoPageSetUp();
PrintText();break;
case PRINT_ANALYSIS:
break;}
break;
case INPUT_ID:
SetPort(InpWindow);
ShowWindow(InpWindow);
SelectWindow(InpWindow);

132

HideWindow(OutWindowy);
HideWindow(AnalWindow);
switch (item)
{case RANDOM:
random_input();break;
case DESIGN:
filldesignmenus();break;
default:
bufinp=item-3;break;}
break;
case PREPROCESS_ID:
switch(item)
{case RENORM:
scan_input(siz);
break;
case NATURAL:
break;}
break;
case LEARNIN_ID:
switch(item)
{case HEBB: |
corelmatrix(); |
{for (j=0;j<bufinp;++j) 1
for (i=0;i<neurons[0];++i)
storeli][jl=buffer[i[i];

}
hebbdJs();
break;
case SPINGLASS:
break;
case SYNCHRONUS:
break;}
break;
case LEARNOUT_ID:
switch(item)
{case ERROR:
break;
case DYNAMIC:
break;}
break;
case NETWORK_ID:
switch(item)
{case PROCES_SPECS:
fillprocessmenu();break;
case START:
ShowLearn(Select());
break;}
break;
case NEURPROC_ID:

133

switch(item)

{case 1:
SetPort(NetWindow);
SelectWindow(NetWindow);
assign(0);
ShowNeurons();
ShowOutput(neuprocess(0));
break;}

break;
case FONT_ID:
switch (item)

{fon=item;}

break;
case SIZE_ID:
switch(item)
{case 1:
siz=9;
break;
case 10:
siz=34;
break;
case 11:
siz=44,
break;
default:
siz=2*(3+item);
break;}
break;

}
}

/* The following routine feeds the inputs to the network. */

Select()

int count1,count2,count3,count4=0,count5;
SetPort(NetWindow);
SelectWindow(NetWindow)-
for (countS5=1;count5<=1;++count5)
{count3=0;
while(count3-bufinp)
{count2=ran(bufinp);
count3=0;
++count4;
events();
for (count1=0;count1<bufinp;++count1)
{assign((count1+count2)%bufinp);

134

ShowNeurons();
count3+=process((count1+count2)%bufinp);
ShowNeurons();}

random_input();
corelmatrix();
hebbJs();

return(count4);

/* The declarations in the Input.c source file. */

#include "Network.h"

extern int flag1,state,neurons[MAXLAYERS],bufinp;
extern int hneurons[MAXLAYERS],vneurons[MAXLAYERS];
extern WindowPtr InpWindow,AnalWindow;

int buffer MAXNEURONS][MAXBUFFER];
int count=1;

/* This routine creates random patterns as input. */

random_input()

{

-egisterint i,j;

randSeed=Time,;

if (flag1)

{if (state-3)

{for (j=0;j<bufinp;++j)
for(i=0;i<neurons[0];++i)
buffer[i][j]=2"ran(state)-state+1;

else

{for (j=0;j<bufinp;++j)
for(i=0;i<neurons|0];++i)
buffer[i][jl=Random()%state;

}

else
{tor (j=0;j<bufinp;++j)
for(i=0;i<neurons[0];++i)
buffer{i][jl=ran(state);

135

}

/* This routine puts letters on the retina. */

do_input(c,f,s)
charc;
int f,s;

{
MoveTo(15,45);
TextFont(f);
TextFace(bold);
TextSize(s);
DrawChar(c);

/* This routine scans the letters on the retina. */

scan_input(s)
ints;
S
registerint ij;
int to,lef,botto,righ;
Rect inrect;
randSeed=Time;
to=46-s;
lef=15;
botto=47;
righ=15+s-1;
SetPort(InpWindow);
please_wait();
for(i=lef;;++i)
for(j=botto;j>=to;--j)
if (GetPixel(i,j))
{ inrect.left=i;
goto for2;}
for2:
for (i=righ;;--i)
for(j=botto;j>=to;--j)
if (GetPixel(i,j))
{inrect.right=i+1;
goto for3;}
for3:
for (i=to;;++i)
for(j=lef;j<=righ;++j)
if (GetPixel(j,i))
{inrect.top=i;
goto for4;}
fora:
for (i=botto;;--i)

136

for(j=lef;j<=righ;++j)
if (GetPixel(j,i))
{inrect.bottom=i+1;
goto act;}

act:

preproccess(inrect);

if(count-bufinp)
++count;

else
{back_trainmenus();
count=1;}

}

/* The following two routines renormalize the input in order to
present it to the network in a suitable format. */

preproccess(inrect)
Rect inrect;

registerint i,j,a,b,rc;
Rect intrect;
double a1,b1;
al=(inrect.right-inrect.left-1)/hneurons[0],
a=INT(a1)+1;
b1=(inrect.bottom-inrect.top-1)/vneurons{0];
b=INT(b1)+1;
for(i=0;i<hneurons[0];++i)
{ re=i*vneurons[0];
for(j=0;j<vneurons[0];++j)
{intrect.left=inrect.left+i*a-1;
intrect.top=inrect.top+j*b-1;
intrect.right=intrect.left+a;
intrect.bottom=intrect.top+b;
if (Valrect(intrect)>=1)
buffer[rc+j][count-1]=1;
else
buffer[rc+j}[count-1]=-1;}

Valrect(intrect)
Rect intrect;

register int s=0K,j;
for(k=intrect.left;k<intrect.right;++k)

137

for(j=intrect.top;j<intrect.bottom;++j)
s+=GetPixel(k,j);
return s;

}

/* The calculation of the average correlation of the input patterns.
*

corelmatrix()

{
int q[15][15];
register inti,j,s,l,q1;
Str255 str,
q1=0;
for(i=0;i<bufinp;++i)
for(j=i+1;j<bufinp;++j)
{s=0;
for(1=0;l<neurons[0];++!)
s+=buffer{l][i]*buffer{l)[il;
qfi]lil=s:
qillil=s;
q1=ql+s;}
SetPort(AnalWindow);
ShowWindow(AnalWindow);
SelectWindow(AnalWindow);
MoveTo(6,25);
TextFont(1);
TextFace(bold);
TextSize(12);
NumToString(q1,&str);
DrawString(str);

/* A function that returns the integer part of its argument. */

INT(x)
double x;
{

intt

i=X;
return (i);

}

/* A function that returns a positive random integer less than its
argument. */

ran(x)
int x;

{

int k;
k=Random()%x;
if(k<0) k=-K;
return(k);

/* A function that returns the sign of an integer. */

sign(x)
int x;

{

if (x>=0)
return(1);

else
return(-1);

/* The declarations in the Files.c source file.

#tinclude "Network.h"

extern int neurons[MAXLAYERS];
extern WindowPtr OutWindow:

Str255 theFileName;
static int theVRefNum;

/* Setting up a file.*/
SetUpFiles()

{
pStrCopy("\p",theFileName);
theVRefNum=0;

}

/* Saving a network's specifications. */
savespecs()

int vRef;
Str255 fn;
if(theFileName[0]}==0)
{fn[0]=0;
if(SaveAs(fn,&vRef))

*

P N T

e Y

139
{pStrCopy(fn,theFileName);
theVRefNum=vRef;}

else
SaveFile(theFileName,theVRefNum);
}

static Point SFPwhere = {106,104},
static SFReply reply;

static Point SFGwhere={90,82};
long size=sizeof(neurons[0]);

/* Saving as a different file the network's specifications. */

SaveAs(in,vRef)
Str255 in;
int *vRef;

int refNum;
if (NewFile(fn,vRef))
if (CreateFile(fn,vRef,&refNum))
{WriteFile(refNum,&neurons,size);
FSClose(refNum);
return(1);}
else
{FileError("\pError creating file ",in);}
return(0);

/* Saving the file with the network's specifications. */

SaveFile(fn,vrn)
Str255 fn;
int vrn;

int refNum;

if (FSOpen(fn,vrn,&refNum)==nokErr)
{WriteFile(refNum,&neurons,size);
FSClose(refNum);
return(1);}

else FileError("\pError opening file “,fn);

return(0);

/* Opening a new file. */

NewfFile(fn,vRef)
Str255 fn;
int *vRef;

{SFPutFiIe(SFPwhere,"\p",fn,OL.&reply);
if(reply.good)
{pStrCopy(reply.fName,fn);
*vRef=reply.vRefNum;
return(1);

else
return(0);

}

/* Creating a new file. */

CreateFile(fn,vRef,theRef)

Str255 fn;

int *vRef;

int *theRef;

{

intio;

io=Create(fn,"vRef,'CEM8','TEXT);

if ((lo==n0Er) || (ilo==dupFNErr)) io=FSOpen(fn,*vRef theRef);
return((io==nokErr) || (io=dupFNETrT));

}

/* Writing in a file. */

WriteFile (refNum,p,num)

int refNum;

int *p;

long num;

{

int io;
SetFPos(refNum,fsFromStart,0);
io=FSWrite (refNum,&num,p);

}

/* Reading a network's specifications. */
loadspe: ()

int vRef,refNum;

Str255 fn,ns;
if(OldFile(fn,&vRef))

141

if(FSOpen(fn,vRef,&refNum)==noErr)

{if(ReadFile(refNum,&neurons))
{pStrCopy(fn,theFileName);
theVRefNum=vRef;}

if(FSClose(refNum)==noErr);

SetPort(OutWindow);

MoveTo (20,20);

NumToString(-neurons[0],&ns);

DrawString(ns);

else FileError("\pError opening”,fn);

}
/* Opening an old file. */

OidFile(fn,vRef)
Str255 fn;
int *vRef;

{

SFTypelList myTypes;

myTypes[0)="TEXT";
SFGetFile(SFGwhere,"\p",0L,1,myTypes,0L,&reply);
if(reply.good)

{pStrCopy(reply.fName,fn);

*vRef=reply.vRefNum;

return(1);}

else return(0);

/* Reading from an old file. */

ReadFile(refNum,pc)
int refNum;
int *pc;

{

char Buffer[256);

long count;

int io;

do

{count=256;
SetFPos(refNum,fsFromStart,0);
io=FSRead(refNum,&count,&Buffer);
*pc=Buffer[1];

while (io==noErr);
return(io==eofErr);

}

142

/* Copy one string on another. */

pStrCopy(p1,p2)
register char *p1,p2;

register int len;

len="p2++="p1++;
while(--len>=0) *p2++="p1++,

/* Error alert when opening a file. */

FileError(s,f)
Str255 s f;

{
ParamText(s.f,"\p","\p");
Alert(2,0L);

/* THE NEXT PART iS A SET OF TRANSPORTABLE ROUTINES.
THESE ROUTINES ARE MACHINE INDEPENDENT AND CAN RUN
ON A MAINFRAME. */

/* The declarations in the Transinput.c source file. */

#include "Network.h"
#include "stdio.h"

extern int flag1,state,neurons[MAXLAYERS],bufinp;

int bufferfMAXNEURONS][MAXBUFFER];
int count=1;

/* This routine creates random patterns as input. */

random_input()

{

register int i j;

randSeed=Time;

if (flag1)

{if (state-3)

{for (j=0;j<bufinp;++j)
for(i=0;i<neurons[0];++i)

143

buffer[i][j]=2"ran(state)-state+1;

else

{for (j=0;j<bufinp;++j)
for(i=0;i<neurons[0];++i)
buffer[i][jl=Random()%state;

}

else
{for (j=0;j<bufinp;++j)
for(i=0;i<neurons[Q];++i)
buffer{i][j]=ran(state);

}

/* The calculation of the average correlation of the input patterns.
*
/

corelmatrix()

{
int q[15][15);
register int i,j,s,l,q1;
q1=0;
for(i=0;i<bufinp;++i)
for(j=i+1;j<bufinp;++j)
{s=0;
for(l=0;l<neurons[0];++1)
s+=buffer{l][i]*"buffer{l][j];
qlillj=s:
qfilli}=s:
qi=ql+s;}
print{("\n The correlation is %d",s);

/* A function that returns the integer part of its argument. */

INT(x)
double x;
{

inti;

i=X;
return (i);

}

/* A function that returns a positive random integer less than its
argument. */

144

ran(x)
int x;

{

int K;
k=Random()%x;
if(k<0) k=-K;
return(k);

}

/* A function that returns the sign of an integer. */

sign(x)
int X;

{

if (x>=0)
return(1);

else
return(-1);

}

/* The declarations in the TransSpesif.c source file. */

#include "Network.h"
#include "stdio.h"

int fon=3,siz=22,neurons[MAXLAYERS]={81} bufinp=15;
int flag1=1,state=2,flag2[MAXLAYERS]={0},
int flag0=-1 layers=1,ntime=1,counti,count6;

/* A routine that reads the specifications of a network from the
keyboard. */

readvalues()

{

int first,choose1,cho02,cho03;

FILE “fopen(), *fp;
printf ("Sellect Action: DESIGN_NET =1\n");

printf (" TRAIN_NET =2\n");
printf (" TEST_NET =3\n");
printf (" QUIT1T =5\n"),

scanf("%d",&first),

145

if (first 1= 5)
{switch(first)
{case 1:

printf("LAYERS="),
scanf("%d",&layers);
printf("\nTIME="),
scanf("%d",&ntime);
printf("\nSPIN MODEL (2 for spin 1/2)");

printf("\n (3 for spin 1)");
printf("\n (4 for spin 3/2)");
printf("\n (-2 for Potts 2)");
printf("\n (-3 for Potts 3)\n");

scanf("%d",&state);
{flagl = (state<0) 70 : 1,
state=abs(state);}
printf("\nTYPE OF GEOMETRY BETWEEN THE LAYERS");

printf("\n (-1 for totally connected layers)");

printf("\n (0 for dilute connectiors among the layers)\n");
scanf("%d",&flag0);

count1=0;

while (count1 < layers)
{printf("\nNO OF NEURONS IN %2d LAYER =" layers);
scanf("%d",&neurons[count1]);
printf("\nGEOMETRY IN %2d LAYER" layers);
printf("\n (0 for totally connected neurons)”);
printf("\n (1 for diluted connections among neurons)\n");
scanf("%d" &flag2[count1]);
counti++;}
printf("\nSave = 1");
printf("\nGoToStart = 2");
printf("\nQuit = 3\n");
scanf("%d" ,&choose1);
if (choose1==1)
{tp=fopen("SPECS","a");
fprintf(fp,"%4d %4d %4d %4d %4d\n" layers,ntime flag1,state,tlag0);
count1=0;
while (counti < layers)
{fprintf(fp,"%4d %4d\n",neurons[count1],flag2[count1]);
count1++;}
fclose(fp);
readvalues();}
else if (choosel1== 2)
readvalues();
else
finish();
case 2.
print{("\nLoad Specs =1");
printf("\nLoad SynMatrix =2");
printf("\nSave SynMatrix =3");

printf("\ninput =4\n");
scanf("%d",&choo2);
switch (choo2)
{ case 1:
break;
case 2:
break;
case 3
break;
case 4:
printf("\nBUFFER INPUT="),
scanf("%d",&bufinp);
printf("%4d\n", flag0);
random_input();
break;}
printf("\nSelect Learning Procedure”);
printf("\n Hebb=1");
printf("\n Spinglass=2");
printf("\n Synchronous=3\n"),
scanf("%d",&choo3);
switch (choo3)
{ case 1:
corelmatrix();
hebbJs();
break;
case 2:
break;
case 3
break;}
printf("\nTHE NETWORK IS PROCESSING NOW");
printf("\nThe number of iterations was %4d \n",Select());
readvalues();
case 3:
break;
}

)
finish();
}

/* The following routine feeds the inputs to the network.

Select()

int count1,count2,count3,count4=0,count5;
for (countS=1;count5<=20;++count5)
{count3=0;

while(count3-bufinp)

{count2=ran(bufinp);

Y

147

count3=0;

++countd;

for (count1=0;count1<bufinp;++count1)
{assign((count1+count2)%bufinp);
count3+=process((countt +count2)%bufinp);

}

}
random_input();
count6=0;
corelmatrix();
hebbJs();

return(count4);

/* The declarations in the TransNetwork.c source file. */

#include "Network.h"
#include "stdio.h"
#include "MemoryMgr.h"

extern int neurons{MAXLAYERS],bufinp,fon,siz,count6;
externint bufferfMAXNEURONS][MAXBUFFER],

struct neuron mynet{MAXNEURONS];

net thenet;
/* The main routine in the transportable program. */

main()

{

initbuffer();
InitAdress();
readvalues();

}

/* The buffer initialization in the transportable program. */

148

initbuffer()

register int i,j;
for (i=0;i<MAXNEURONS; ++i)
for(j=0;j<MAXBUFFER;++j)
bufter(i][j}=-1;

/* The memory Iinitialization in the transportable program. */

InitAdress()

{

long int i,j,c=MAXNEURONS*"MAXNEURONS*MAXLAYERS;

char *malloc();

Stra255 s;

thenet= (net) malloc(MAXMEMORY);

for (i=0;i<cMAXNEURONS;++i)

{for (j=0;j<MAXLAYERS;++j)

mynet[i].instar[j]:thenet+50000+MAXNEURONSr\;'(SMAXLAYERS‘i+MAXNEURO

'j);

mynet[i].values=thenet+c+MAXTIME"i;}

I* The unsupervised assignment for the synaptic strengths. */
hebbJs()

register int s k,j,itf;
tf=9000/neurons|0];
for (i=0;i<neurons[0];++i)
{for (j=i+1;j<neurons[0];++])
{s=0,
for (k=0;k<bufinp;++k)
s+=buffer[i][k]*buffer]j]k];
*(mynet(i].instar{0]+j)=tf"s;
*(mynet[j).instar{0}+i)=tf"s;}
*(mynet[i].instar{0]+i)=0;}

/* The assignment of a pattern to the network. */

assign(c1)

register int c1;

{

register int i;

for (i=0;i<neurons[0];++)

149

*(mynet[i].values)=buffer[il[c1];

/* The relaxation process. */

process(c2)
int c2,

sequencial();
ranchoice();
sequencial();
return{(compare(c2)),

/¥ The following two routines perform sequential tests on
the neurons in a network with or without self interactions.
* [

sequencial()
{
register int s,i,j;
for (i=0;i<neurons[0];++i)
{s=0;
for (j=0;j<i;++j)
{s+="(mynet[i].instar[0]+j)*(*(mynet[j].values));}
for (j=i+1;j<neurons[0];++ij)
{s+="(mynet[i].instar[0]+))* (*(mynet[j].values));}
(mynet[i].values) = ((s+(mynet[i].instar[0]+i))>0) ? 1 : -1;}

Wsequencial()

{

register int s,ij;

for (i=0;i<neurons[0];++i)

{s=0;
for (j=0;j<neurons[0];++j)

{s+="(mynet[i].instar[0]+j)*(*(mynet[j].values));}

*(mynet[i].values) = (s>0) ? 1 : -1}

/¥ The following two routines perform random tests on the
neurons in a network with or without self interactions. */

ranchoice()

{
register int s,i,j.k;
for (i=0;i<neurons[0];++i)

150

{k=ran(neurons[0]);
s=0;
for (j=0;j<i;++j)
{s+="(mynet[k].instar[0]+))"(*(mynet[j].values)):}
for (j=i+1;j<neurons(0];++j)
{s+="(mynet[k].instar[0]+j)"(*(mynet[j].values)):}
(mynet[Kk].values) = ((s+"(mynet[il.instar[0]+i})>0) ? 1 :-1;}

Wranchoice()

register int s,i,j,k;
for (i=0;i<neurons[0];++i)
{k=ran(neurons[0]);
s=0,
for (j=0;j<neurons[0};++])
{s+="(mynet[k].instar[0]+j)*(*(mynet[j].values));}
*(mynet[k].values) = (s>0) 21 : -1;}

/* This routine compares the output of the network with
the desired output of the network during training., */

compare(c2)
register int c2;
{
register int s,i;
s=0;
for (i=0;i<neurons[0];++i)
s+=buffer[ij[c2]-*(mynet[i].values);
if(s==0)
return(1);
else
{dynamic(c2);
return(0);}

/* The following two routines perform the generalized
learning and growth algorithms. */

Gdynamic(c2)
register int c2;

register int I=1,i,j;

count6++;

for (i=0,i<neurons[0];++i)
{for (j=0;j<neurons[0];++j)

151

(mynet[il.instar[0]+j)-=I"((mynet]i].values)* (*(mynet[j].values))-
bufferi][c2]"buffer[j][c2));

for (i=0;i<7;++i)
{if {count6 < 4)
(mynetfi].instar[0]+i)-=1000(*mynet|i].values-buffer(i][c2]);
el
‘(ms;net[i].instar[0]+i)-=l*(*mynet[i].values-buffer[i][cZ]);}

dynamic(c2)
register int c2;

register int I=1,i,j,tf;
tf=9000/neurons[0];
for (i=0;i<neurons[0];++i)
{for (j=0;j<neurons[0];++))
(mynet]i].instar[0]+))-=I"((mynet[i].values)*(*(mynet[j.values))-
bufferfi][c2]*buffer[j}[c2});
*(mynet[i].instar[0]+i)=3*tf*bufinp;}

/* This routine performs the testing of the network. */
neuprocess(c2)
int c2;

sequencial();
ranchoice();
sequencial();
return(comparet(c2));

/* This routine compares the output of the network with
the desired output of the network during testing. */

compare1(c2)

register int c2;

{

register int s,i;

s=0,

for (i=0;i<neurons[0];++i)
if (bufferfi][c2]}-*(mynet|i].values))

++S;

if(s<5)
return(1);

else
return(0);

}

152

The FORTRAN programs

/* This program decodes the output of a digitizer for
a page of handwritten and typed letters. */

PROGRAM DECOD(INPUT,OUTPUT)
CHARACTER C(120,50)*1,C1(120,50)*2,C2(77)*1,A*2,A1*1
INTEGER K(120,50),K1(12,50,33)
OPEN (UNIT=2,FILE='SC10",STATUS='0OLD’)
REWIND (2)

8 FORMAT (120At1)
READ (2,8) ((C(1,J),1=1,120),J=1,50)
CLOSE (UNIT=2)
DO 20 J=1,50
DO 20 1=1,120
Ci(l,J)="2?

20 CONTINUE
DO 10 J=1,50
I1=0
DO 10 I=1,120
1=11+1
A1=C(I1J)

IF (1-120) 12,12,10

12 IF(A1.EQ.'?”)GOTO1

Ci(lJ)=C(,)/ir?
GO TO 10

1 C1(1,J)=C(1+1,J)//C(I1 +2,J)
H=l11+2

10 CONTINUE

11 C2(1)='A’
C2(2)="B'

C2(3)="C'
C2(4)="D
C2(5)="E'
C2(6)="F'
C2(7)="G'
C2(8)=|?|
C2(9)='?
C2(10)="H'
C2(11)="
C2(12)=V'
C2(13)='K'
C2(14)="L"
C2(15)='M'
C2(16)="N'
C2(17)="0
C2(18)="?

Q
n
W
)
Wi
293l

153

40

30

30

80

C2(68)="?
C2(69)="?
C2(70)="8'
C2(71)="9"
C2(72)=""
C2(73)=";
C2(74)='<'
C2(75)="="
C2(76)=">'
C2(77)="?
DO 30 J=1,50
DO 30 1=1,120
A=C1(l,J)
IF (A.EQ.'??") THEN
K(l1J)=0
GOTO 30
ELSE
IF (A(2:2).EQ.'"?") THEN
DO 40 L=1,76
IF (A(1:1).EQ.C2(L)) THEN
K(l,J)=(L/10)*8+(L-(L/10)*10)
GOTO 30
ENDIF
CONTINUE
ELSE
DO 50 L=1,76
DO 50 N=1,76
IF (A(1:1).EQ.C2(L) .AND. A(2:2).EQ.C2(N)) THEN
K(l,J)=(L/10)*512+(L-(L/>0)*10)*64+(N/10)*8+(N-(N/10)*10)
GO TO 30
ENDIF
CONTINUE
ENDIF
ENDIF
CONTINUE
PRINT*, (K(1,9),1=1,120)
DO 80 11=1,12
DO 80 12=1,50
DO 80 13=1,33
K1(11,12,13)=0
CONTINUE
DO 100 J=1,50
L1=1
11=0
L=0
DO 701=1,120
L=L+K(l,J)
IF (L.GT.35) THEN
1 =114+1

IF (K1(1,J,L1).NE.O) THEN
£2=35+INT(L1*51.4)
IF (L.GT.L2) THEN
IF (L.LT.1668) THEN
K1(11,J,L1)=L2-L+K(l,J)
N1=INT((L-L2)/51.4)
IF (N1) 74,73,74
74 DO 72 13=L1+1,L1+N1
K1(1,J,I13)=51
72 CONTINUE
L1=L1+N1
73 Li=L1+1
11=1
K1(1,J,L1)=L-L.2
GO TO70
ELSE
K1(1,J,L1)=L2-L+K(1,J)
N1=INT((1668-L2)/51.4)
IF (N1) 81,82,81
81 DO 83 13=L1+1,L1+N1
K1(1,4,13)=51
83 CONTINUE
L1=L1+N1
82 L1=L1+1
K1(1,J,L1)=1668-L2
GO TO 100
ENDIF
ELSE
K1(11,J,L1)=K(1,J)
GOTO70
ENDIF
ELSE
L1=INT((L-35)/51.4)
IF (L1) 75,76,75
75 DO 71 13=1,L1
K1(1,J,13)=51
71 CONTINUE
76 Li=L1+1
K1(1,J,L1)=L-35-INT((L1-1)*51.4)
GOTO 70
ENDIF
ELSE
GOTO 70
ENDIF
70 CONTINUE
100 CONTINUE
PRINT*, (K1(1,19,29),1=1,10)
OPEN (UNIT=2FILE='LET1',STATUS='NEW')
REWIND (2)

156

DO 110 1=1,33

WRITE (2,%) ((K1(11.J,1),11=1,12),J=1,50)
110 CONTINUE

CLOSE (UNIT=2)

STOP

END

/* To read and write a pattern in a file. */

PROGRAM PATPAR(INPUT,OUTPUT)
INTEGER XI(121,6)
OPEN (UNIT=2,FILE='PAT1',STATUS='0LD)
REWIND (2)
DO 3J1=1,6
DO 3 J2=1,121
READ (2,") XI(J2,J1)
3 CONTINUE
CLOSE (UNIT=2)
OPEN (UNIT=2,FILE='PAT7',STATUS="0LD)
DO 4 J=1,121
WRITE (2,%) XI(J,1)
4 CONTINUE
CLOSE (UNIT=2)
STOP
END

/* The main program for the recognition of patterns. */

PROGRAM RECOGN(INPUT,OUTPUT)
COMMON X(9),H(9),X1(9,6),G(9.9),C(6,6),ND(6),A(9)
INTEGER X,XI,H,ND,C
INTEGER IM(6)
PLAM=0.3
CM=0.1
100 CALL COMM(M6,M1,M2)
IF (M8) 9,20,20
20 IF (M2)1,2,1
1 CALL TEACHER(PLAM,M1,CM,M6)
2 IF (M1)14,15,15
15 CALL READ1
14 CALL READ4
PRINT *'DO YOU WANT TO INPUT A LETTER?(1/0)’
READ *M3
IF (M3) 11,12,11
11 CALL INPUT

157

GOTO 13

12 CALL READ3

13 CALL RECOG1(M1,CM)
CALL COMPAR1(FLG,NUI)
CALL OUTPUT
IF (FLG) 3,4,3

3 PRINT *FAILURE'

4 PRINT *NUI

5 CONTINUE
PRINT *'PUT THE PROPER PATTERN NUMBER'
READ *,NNU
IF (NNU-NUI) 8,99,8

8 CALL NJJK(PLAM,NNU)
CALL LEARN(PLAM,M1,CM)
CALL WRITE

99 GOTO 100

9 CONTINUE
STOP
END

/* Communications with the user. */

SUBROUTINE COMM(M6,M1,M2)
PRINT *WEIGHTS ?(1/0)'
READ *,M6
PRINT *'MAGNETIC FIELD ?(1/0/-1)
READ *,M1
PRINT *,'DO YOU WANT ME TO START A TEACHING SESSION?(1/0)'
READ *,M2
RETURN
END

/* The main training routine. */

SUBROUTINE TEACHER(PLAM,M1,CM,M86)
COMMON X(9),H(9),X1(9,6),G(9,9),C(6,6),ND(6),A(9)
INTEGER X,XI,H,C,ND
PRINT *'DO YOU WANT GEOMETRICAL FIGURES ?(1/0)
READ *M5
IF (M5) 5,6,5

5 CALL PATT1
GOTO 13

6 PRINT *,DO YOU WANT TO INPUT ANOTHER SET OF PATTERNS?(1/0)
READ * M4
IF (Md4) 11,12,11

11 CALL PATT2
GOTO 13

12 CALL READ4

13 IF (M6) 20,21,20
20 CALL WEIGHT
21 CALL CORR(C)
DO 1J=19
G(J,J)=0.0
1 CONTINUE
CALL JJK
CALL LEARN(PLAM,M1,CM)
CALL WRITE
RETURN
END

/* This routine assigns different firing rates to the neurons. */

SUBROUTINE WEIGHT
COMMON X(9),H(9),X1(3,6),G(2,9),C(6,6),ND(6),A(9)
INTEGER X,H,X|

A(1)=1

A(2)=1

A(3)=1

A(4)=1

A(5)=-1

A(6)=4.5

A(7)=1

A(8)=1

A(9)=1

RETURN

END

/* The initial assignment of the synaptic matrix. */

SUBROUTINE JJK
COMMON X(9),H(9),X1(9,6),G(9,9),C(6,6),ND(6),A(9)
INTEGER X1,X,H,C,ND
DO 1J=1,8
DO 1 K=J+1,9
SNU=0.0
DO 2 NU=1,6
SNU=SNU-+XI(J,NU)*XI(K.NU)*A(J)* A(K)
2 CONTINUE
G(J,K)=SNU/9.0
G(K,J)=G(J,K)
1 CONTINUE
RETURN
END

/* The change in the synaptic matrix due to learning. */

159

SUBROUTINE NJJK(PLAMNUI)
COMMON X(9),H(9).X1(9,6).G(9.9),C(6.6),ND(6),A(9)
INTEGER XI,X,H,C,ND
DO 1J=1,8
DO 1K=J+19
GW.K)=G(J, K -PLAM*AW)*AK)* (X(J)*X(K)-XI(J,NUI*XI(K.NUI)9.0
G(KJ)=G(J K)
1 CONTINUE
RETURN
END

/* The following three routines calculate the energy in the
network.*/

SUBROUTINE HAM(HM)
COMMON X(9),H(9),X1(9,6),G(9,9),C(6,6),ND(6),A(9)
INTEGER H,X,XI,ND
HM=0.0
DO 1J=1,8
DO 1 K=J+1,9
HM=HM-G(J,K)*H(J)*H(K)
1 CONTINUE
RETURN
END

SUBROUTINE HAM1(HM,CM)

COMMON X(9),H(9),X1(9,6),G(9,9),C(6,6),ND(5)

INTEGER H,X,XI,C,ND

HM=0.0

DO 6 L=1,6

DO 6 M=1,6

MM1=4*ND(L)-C(L,M)-3*9

HM=HM-CM*SIGN(1,MM1)*ABS(ND(L))
6 CONTINUE

RETURN

END

SUBRQUTINE HAM2(HM,CM)

COMMON X(9),H(9),X1(9,6),G(9,9),C(6,6),ND(6)
INTEGER H,X,XI,C,ND

CALL HAM(HM)

HM1=HM

CALL HAM1(HM,CM)

HM=HM+HM?1

RETURN

END

/* The following three routines calculate the energy change. */

/t

6
8

160

SUBROUTINE DH2(K,DE,CM)
COMMON X(9),H(9).X1(9,6),.G(9,9),C(6,6),ND(6)
INTEGER X!,X,H,K.C,ND

CALL DH(K,DE)

DE2=DE

CALL DH1(K,DE,CM)

DE=DE2+DE

RETURN

END

SUBROUTINE DH1(K,DE,CM)
COMMON X(9),H(9).X1(9,6),G(9.9),C(6,6).ND(6)
INTEGER XI,X,H,K,C,ND

DE=0.0

DO 1 L=1,6

LL=ND(L)

ND(L)=ND(L)+2*H(K)*XI(K,L)

DO 1 M=1,6

M1=4*ND(L)-C(L,M)-3*9

M2=4*LL-C(L,M)-3'9
DE=DE-CM*(SIGN(1,M1)*ABS(ND(L))-SIGN(1,M2)*ABS(LL))
CONTINUE

RETURN

END

SUBROUTINE DH(K,DE)
COMMON X(9),H(9),X1(9,6),G(9,9),C(6,6),ND(6),A(9)
INTEGER X1,X,H,K

HO=0.0

DO 2L1=1,9

HO=HO-G(K,L1)*H(L1)

CONTINUE

DE=2.0"H(K)*HO

RETURN

END

The next six routines check the neuron values . */

SUBROUTINE RELAX2
COMMON X(9),H(9).XI(9,6),G(9.9),C(6,6),ND(6),A(9)
INTEGER H,X XI

DO 1J=1,9

H(J)=H(J)*(-1)

CALL DH(J,DE)

IF (DE) 2,4.4

E=N

-t

161

H(J)=H(J)"(-1)
GOTO1
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE RELAX1
COMMON X(9),H(9),X1(9,6),G(9,9).C(6.,6),ND(6),A(9)
INTEGER H,X XI
DO 1 MU=1,9
J=INT(RANF()*9.0)+1
H(J)=H{J)"(-1)
CALL DH(J,DE)
IF (DE) 2,4,4
H(J)=H(J)*(-1)
GO TO 1
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE RELAX4(CM)
COMMON X(9),H(9),X1(9,6),G(9,9),C(6.6).ND(6)
INTEGER H,X,XI,C,ND

DO 1J=1,9

H(J)=H({J)*(-1)

CALL DH1(J,DE,CM)

IF (DE) 2,4,4

H(J)=H(J)*(-1)

DO 3 L=1,6
ND(L)=ND(L)+2*H(J)*XI(J,L)
CONTINUE
GO TO1

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE RELAX3(CM)

COMMON X(9),H(9).X1(9,6),G(9,9),C(6,6),ND(6)
INTEGER H,X,XI,C,ND

DO 1 MU=1,9

J=INT(RANF()*9.0)+1

H(J)=H(J)*(-1)

CALL DH1(J,DE,CM)

H @

162

IF (DE) 2,4,4
H(J)=H(J)*(-1)
DO3L=1,6
ND(L)=ND(L)+2*H(J)*XI{J,L)
CONTINUE
GOTO1
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE RELAX6(CM)
COMMON X(9),H(9),X1(9,6),G(9,9),.C(6,6),ND(6)
INTEGER H,X,XI,C,ND
DO 1J=1,9
HJ)=H)*(-1)
CALL DH2(,DE,CM)
IF (DE) 2,4,4
HJ)=H)*(-1)
DO3L=16
ND(L)=ND(L)+2*H{J)*XI(J.L)
CONTINUE
GOTO1
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE RELAX5(CM)
COMMON X(9),H(9),X1(9,6),G(9,9),C(6,6),ND(6)
INTEGER H,X,XI,C,ND
DO 1 MU=1,9
J=INT(RANF()*9.0)+1
HW)=H{J)*(-1)
CALL DH2(J,DE,CM)
IF (DE) 2,4,4
H(J)=H(J)"(-1)
DO 3L=1,6
ND(L)=ND(L)+2*H(J)*XI(J,L)
CONTINUE
GOTO 1
CONTINUE
CONTINUE
RETURN
END

163

/* The relaxation process. */

SUBROUTINE RECOG1(M1,CM)
COMMON X(9),H(9),X(9,6),G(9,9),C(6.6),ND(6),A(9)
INTEGER H,X,XI,ND,C
IF (M1) 1,2,3

2 DO51=13
CALL RELAX1
CALL RELAX2
CALL RELAX1

5 CONTINUE
GOTO7

1 CALL DOT(ND)

DO 6 L=13

CALL RELAX3(CM)
CALL RELAX4(CM)
CALL RELAX3(CM)

6 CONTINUE
GOTO7

3 CALL DOT(ND)

DO 8 L=1,3

CALL RELAX5(CM)
CALL RELAX6(CM)
CALL RELAX5(CM)

8 CONTINUE

7 DO 20 M=1,9
X(M)=H(M)

20 CONTINUE
RETURN
END

/* Permuting the patterns. */

SUBROUTINE PERM(IM)
INTEGER IM(8)
DO 3 L=1,3
I=INT(RANF()*6.0)+1
2 J=INT(RANF()*6.0)+1
IF(-J) 1,2,1
1 K=IM(l)
IM(1)=IM(J)
IM(J)=K
3 CONTINUE
RETURN
END

/* The next two routines compare the output of the relaxation with
the desired output. */

164

SUBROUTINE COMPARE(FLG,NUI)
COMMON X(9),H(9).XI(9,6)
INTEGER XI,X,H,FLG
ISUM=0
FLG=0
DO31=1.9
ISUM=XI(1,NUI)-X(1)
IF(ISUM) 2,32

3 CONTINUE
GOTO 4

2 FLG=1

4 CONTINUE
RETURN
END

SUBROUTINE COMPAR1(FLG,NUI)
COMMON X(9),H(9).XI(9,6)
INTEGER XI,X,H,FLG
NUI=0
ID=0
ID1=0
FLG=0
DO 311=16
DO 4 1=1,9
ID=ABS(XI(1,11)-X(1))
4 CONTINUE
IF (ID) 6,5,6
6 IF(ID-ID1)7,33
7 ID1=ID
NUI=!1
3 CONTINUE
GOTOS8
5 FLG=1
NUI=I1
8 CONTINUE
RETURN
END

/* The following two routines implement the generalized
learning.*/

SUBROUTINE MODIFY(NUI,M1)
COMMON X(9),H(9).X1(9,6),G(9,9),C(6,6),ND(6)
INTEGER XI,H,X,C,ND
DO 11=1,9
H()=XI(L,NU1)

1 CONTINUE
K=INT(RANF()*9.0)+1

H(K)=-H(K)

IF (M1) 2,3,2
CALL DOT(ND)
CONTINUE

RETURN

END

SUBROUTINE LEARN(PLAM,M1,CM)
COMMON X(9),H(9),X{9,6).G(9.9),C(6.6),ND(6),A(9)
INTEGER XI.X,H,FLG
INTEGER IM(8)
DO 23 1JK=1,6
IM(K)=IJK
23 CONTINUE
1 1D=0
CALL PERM(IM)
DO 2 L=1,6
NUI=IM(L)
CALL MODIFY(NUI,M1)
CALL RECOG1(M1,CM)
CALL COMPARE(FLG,NUI)
IF (FLG) 3,4,3
ID=ID+1
IF (M1) 6,7,8
CALL HAM1(HMIN,CM)
GOTO9
CALL HAM(HMIN)
GOTO9
CALL HAM2(HMIN,CM)
PRINT *,HMIN
GOTO 2
CALL NJJK(PLAM,NUI)
CONTINUE
PRINT *,ID
IF (ID-6) 1,5,5
5 CONTINUE
RETURN
END

N w w0 ~I (0] RS

/* The next two routines store patterns in a file. */

SUBROUTINE PATT1
COMMON X(9),H(9),X1(9,6)
INTEGER XILX,H
DO11=1,6
DO 1J=1,9
XI(J,h)=-1

1 CONTINUE

CI N -

E-N

/t

DO 21=6,9,3
XK1, 1)=1
CONTINUE
DO 31=4,6
Xi(1,2)=1
CONTINUE
DO4i1=19,4
XI(1,3)=1
CONTINUE
DO5I1=1,9,5
Xi(1,4)=1
CONTINUE
DO61=3,9,4
XI(1,5)=1
CONTINUE
DO 71=3,9,5
X{(1,6)=1
CONTINUE
DO8I=7,8
XI(1,6)=1
CONTINUE
RETURN
END

SUBROUTINE PATT2
COMMON X(9),H(9),XI(9.6)
INTEGER X,H,X|
OPEN (UNIT=2,FILE='"PAT8' STATUS='NEW')
REWIND (2)
DO 2J=1,6
DO1I=1,9
X1(1J)=-1
CONTINUE
CONTINUE
READ *K,M
IF (K) 3,3,4
XI(K,M)=1
GO TO5
CONTINUE
WRITE (2,%) ((XI(1,J),}=1,9)J=1,6)
CLOSE (UNIT=2)
RETURN
END

Presentation of the input pattern.*/

SUBROUTINE INPUT
COMMON X(9),H(9),X1(9,6)

167

INTEGER X,H,XI
OPEN (UNIT=2,FILE='PATY', STATUS="NEW
REWIND (2)
DO 1 I=1,9
H(l)=-1
CONTINUE
READ * K
IF (K) 3,3,4
H(K)=1
GOTO5
CONTINUE
WRITE (2,%) (H(11),11=1,9)
CLOSE (UNIT=2)
RETURN
END

W H~h =

I* Read the stored synaptic strengths.*/

SUBROUTINE READH1
COMMON X(9),H(9),XI(9,6),G(9,9)
INTEGER X ,XI.H
DO 11=1,9
G(1,)=0.0
1 CONTINUE
OPEN (UNIT=2,FILE='GMAT',STATUS='0LD)
REWIND (2)
DO 2 J1=1,8
DO 2 J2=J1+1,9
READ (2,%) G(J1,J2)
G(J2,01)=G(J1,J2)
2 CONTINUE
CLOSE (UNIT=2)
RETURN
END

/* Find the average correlation of the input patterns. */

| SUBROUTINE CORR(C)
‘ COMMON X(9),H(9),X1(9,6)
: INTEGER C(6,6)
FL INTEGER X,XI,H
DO 1 I=1,6
t DO111=1,6
1 C(111)=0
1 CONTINUE

AC=0.0

DO2L=1,5

C(L,L)=9

DO2L1=L+16

168

DO 2L2=1,9

C(L,L1)=C(L,L1)+X}L2,L)XI(L2,L1)

C(L1,L)=C(L,L1)
2 CONTINUE

C(6,6)=9

DO 3 K=1,5

DO 3 K1=K+1,6

AC=AC+C(K,K1)
3 CONTINUE

AC=AC/15.0

PRINT *,AC

RETURN

END

/* The average Hamming distance of the input patterns. */

SUBROUTINE DIST(C,D)
INTEGER C(6,6)
DIMENSION D(6,6)
DO 1 K=1,6
DO 1 K1=1,6
D(K,K1)=0.0
1 CONTINUE
DO 2 I=1,5
DO 2 1=I+1,6
D(1,11)=9.0/2.0-C(K,K1)/2.0
2 CONTINUE
RETURN
END

/* The inner products of vectors. */

SUBROUTINE DOT(ND)
COMMON X(9),H(9),X1(9,6),G(9,9),C(6.6)
INTEGER X,H,XI.C
INTEGER ND(6)
DO 1 I=1,6
ND(1)=0
1 CONTINUE
DO 2 L=16
DO 2 J=19
ND(L)=ND(L)+XI(J.L)*H(J)
2 CONTINUE
RETURN
END

/* The next 2 routines are reading patterns from a file. */

SUBROUTINE READ3

169

COMMON X(9),H(9),X1(,6),G(9,9),C(6,6),ND(6)
INTEGER X,XI,H,ND,C

OPEN (UNIT=2,FILE="PAT2', STATUS="OLD)
REWIND (2)

READ (2,%) (H(K),K=1,9)

CLOSE (UNIT=2)

RETURN

END

SUBROUTINE READ4

COMMON X(9),H(9).X1(9,6).G(9,9),C(6,6),ND(6)
INTEGER X,XI,H,C,ND

OPEN (UNIT=2,FILE="PAT8' STATUS="0LD)
REWIND (2)

READ (2,%) ((X1(J2,J1),J2=1,9),J1=1,6)

CLOSE (UNIT=2)

RETURN

END

/* This routine writes the values of the synaptic matrix in a file. */
SUBROUTINE WRITE
COMMON X(9),H(9),X1(9,6),G(9,9),C(6,6),ND(6)
INTEGER X,XI,H,ND,C
OPEN (UNIT=2,FILE="GMAT',STATUS='0LD")
REWIND (2)
DO 10J=18
DO 10 J1=J+1,9
WRITE (2,*) G(J,J1)
10 CONTINUE
CLOSE (UNIT=2)
RETURN
END

I* The presentation of the network's output to the user. */
SUBROUTINE OUTPUT
COMMON X(8)
INTEGER X
PRINT 10

10 FORMAT (3(/))
DO2L=1,9
IF (X(L)-1) 1,2,

1 X(L)=0

2 CONTINUE
DO 30 L=1,11
PRINT *,(X()),1=3"L-2,3"L)

30 CONTINUE
RETURN
END

170

The Pascal programs

(*O000000OO00000000000000000000000000000000000000
00,0,0,0,0,0,6,0.0,6,0,0/0/0,0/0,0(0/0,0/0,000.00y

PROGRAM UNPAK (INPUT,OUTPUT);

(*00000000COOOOC000000000000000

THIS PROGRAM UNPACKS DIGITIZED PATTERNS WHICH HAVE BEEN
STORED IN APACKED FORMAT.

INPUT: FILE CONTAINS ONE LINE PER PATTERN AS FOLLOV 'S:

- THE FIRST 2 INTEGERS ARE SOME IDENTIFICATION NUMBERS

- THE THIRD INTEGER IS THE IDENTITY OF THE DIGIT (0 TO 9)

- THE 4TH AND 5TH INTEGERS ARE THE ROW AND COLUMN
NUMBERS

- ALL THE FOLLOWING INTEGERS ARE GIVING THE LENGTH OF

THE ALTERNATING SEQUENCES OF BACKGROUND AND

OBJECT PIXELS;

NOTE THAT THE PATTERNS ALWAYS HAVE 2 EMPTY ROWS AT
THE TOP AND ONE EMPTY COLUMN AT THE LEFT (THIS LAST
"RULE" MEANS THE FIRST SEQUENCE OF EACH LINE IS
ALWAYS FOR BACKGROUND). OBVIOUSLY, WHEN THE SUM OF
THE LENGTHS OF SEQUENCES IS EQUAL TO THE NUMBER OF
COLUMNS, WE HAVE COMPLETED A LINE ETC...

OUTPUT: FOR EACH PATTERN:

- FIRST LINE IS GIVING ROW AND COLUMN NUMBERS, AS WELL
AS IDENTITY OF CHARACTER AND COUNT (4 INTEGERS IN
ALL)
- ALL OTHER LINES REPRESENT A ROW OF THE PATTERN
USING
" FOR BACKGROUND AND "M" FOR OBJECT REGIONS:
NOTE THAT THE FIRST 2 EMPTY ROWS AND THE FIRST EMPTY
COLUMN ARE REMOVED.
")

VAR

FILENUM, ZIPCODE, IDEN, ROW, COL: INTEGER,;
I, J, COUNT, LENG, TOTLENG, K :INTEGER;
CHOICE : ARRAYI[0..1] OF CHAR;

171

CH : CHAR,;

BEGIN
LINELIMIT (OUTPUT,-1);
CHOICE[0]:=""; CHOICE[1]:= 'M";
FOR COUNT:=1 TO 100 DO

BEGIN
READ (INPUT,FILENUM,ZIPCODE,IDEN,ROW,COL);

READ (INPUT,LENG); READ (INPUT,LENG);
ROW:= ROW - 2;
WRITELN (OUTPUT,ROW:5,COL-1:5,IDEN:5,COUNT:5);
FOR I:=1 TO ROW DO
BEGIN
TOTLENG:=0;
READ (INPUT,LENG);
CH:= CHOICE[0];
FOR J:=1 TO LENG-1 DO WRITE (OUTPUT,CH);
TOTLENG:= TOTLENG + LENG;
Ki= 0;
WHILE TOTLENG < COL DO
BEGIN
Ki=1-K;
CH:= CHOICE[K];
READ (INPUT,LENG);
FOR J:=TOTLENG+1 TO TOTLENG+LENG DO WRITE
(OUTPUT,CH);
TOTLENG:= TOTLENG + LENG
END;
WRITELN (OUTPUT)
END;
READLN (INPUT)
END
END.

