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Abstract

Nicotine Potentiation of Brain Stimulation Reward:
An Analysis of Repeated Treatments

Pasqualino Bauco

The "rate-frequency" variant of the "curve-shift"
paradigm was used to address the question of whether
nicotine potentiates the rewarding effects of midline
mesencephalic brain stimulation and if so whether the
magnitude of this potentiation changes with successive drug
treatments. The effects of nicotine (0.05, 0.1, 0.2 or 0.4
mg/kg, s.c.) were assessed daily for 10 days in animals
lever pressing under a FR-1 schedule for midline
mesencephalic brain stimulation. The two lower doses caused
parallel leftward shifts of the function relating response
rate to stimulation frequency, suggesting synergism between
nicotine and the rewarding impact of the stimulation. There
was neither tolerance nor sensitization to the effects of
repeated low doses. The two higher doses caused ataxia and
depressed asymptotic responding on the first two days of
testing; tolerance to these effects were seen and stable
parallel leftward shifts in the rate frequency functions
were observed from the third day of testing onward. The
peak leftward shift was approximately 30-40% (approximately
0.2 log units). These results demonstrate that nicotine
does not merely affect the capacity of animals to lever-

press for brain-stimulation but also alters the rewarding



impact of the brain stimulation in a manner comparable to

opiates and psychomotor stimulants.
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Nicotine and the tobacco habit

Despite the current evidence linking chronic tobacco
smoking to several diseases such as lung and pancreatic
cancer and coronary disease many habitual smokers of tobacco
who attempt to cease their habit are seemingly unable to do
so. Of the many constituents of tobacco, nicotine has been
the most extensively investigated for its possible
contribution to the maintenance of the tobacco habit.
Nicotine is an alkaloid that was first isolated from leaves
of the tobacco plant by Posselt and Reiman in 1828. As
early as the 1920s the view that nicotine is the substance
that establishes and maintains the tobacco habit began to
gain greater acceptance among scientists (Armstrong-Jones,
1929; Henningfield & Goldberg, 1988; Larson, Haag, &
Silvette, 1961). There is now a general agreement among
researchers that nicotine is the "habit-forming" substance
present in tobacco (Gilbert, 1979; Henningfield, 1984a).

Several lines of evidence support this view.

Physiological properties of nicotine

Nicotine has several physiological actions in the
peripheral and in the central nervous system. In each
system nicotine acts at nicotinic cholinergic receptors and
mimics actions of the neurotransmitter acetylcholine (Aceto

& Martin, 1982).
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In the autonomic nervous system nicotine acts at the Cs
type receptors found primarily at autonomic ganglia and at
the Cl0 type receptors found at skeletal neuromuscular
junctions (see, Taylor, 1990). Some effects of nicotine are
vasoconstriction (associated with a decrease in skin
temperature), abnormally fast heart beat (tachycardia), and
an elevation in blood pressure (Henningfield, 1984b). When
administered in relatively high intravenous doses, nicotine
can produce an abnormally slow heart action (bradycardia)
and an irregular heart beat (Henningfield, Miyasato,
Johnson, & Jasinski, 1981).

Nicotine has many actions in the central nervous
system. Injections of nicotine into different regions of
the brain can cause such varied actions as changes in
arterial blood pressure, decreased body temperature,
increased respiration, increased salivation,
antinociception, ar increase in reflexes such as ear
twitching (Hall, 1984), and increased locomotion (Muaco &
Wise, 1990a; Museo & Wise, 1990b); relatively large doses
can produce ataxia, convulsions, and even catalepsy (Hall,
1984). The habit-forming actions cf nicotine also appear to
be centrally mediated and there is reason to believe that
they involve the same central structures as are involved in
the locomotor response (Clarke, 1987; Clarke, 1990; Clarke,

Fu, Jakubovic, & Fibiger, 1988).
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Evidence that the habit-forming effects of nicotine are
centrally mediated comes from two paradigms: the intravenous
self-administration paradigm and the conditioned place-
preference paradigm. Intravenous self-administration is
attenuated by centrally but not peripherally acting
nicotinic antagonists in lower animals (Corrigall & Coen,
1989; Goldberg & Henningfield, 1988; Goldberg & Spealman,
1982; Goldberg, Spealman, & Goldberg, 1981; Risner &
Goldberg, 1983) and in humans (Pomerleau, Pomerleau, &
Majchrzak, 1987). Conditioned place preferences can be
established by intraventricular or pedunculopontine nucleus
injections of nicotine (Iwamoto, 1990). Microinjection of
the nicotinic agonist cytisine into the ventral tegmental
area is also effective (Museo and Wise, 1990c). While the
minimally effective dose for the establishment of
conditioned place preferences following intracranial
administration is 2 to 3 pg (Iwamoto, 1990) a dose greater
than 100 pg is regqaired to establish conditioned preferences
when nicotine is administered systemically (Fudala, Teoh, &
Iwamoto, 1985). This evidence supports the view that the
habit-forminy effects of nicotine are centrally mediated.

The demonstration that a place preference can be
established following injections of nicotine or an agonist
into some but not all areas of the brain sugjests that there
exists some degree of localization of function within the

central nervous system. Some areas in the central nervous



system that have been shown to contain high densities of
nicotinic receptors are the interpeduncular nucleus, most of
the thalamic nuclei, superior colliculus, medial habenula,
ventral tegmental area, substantia nigra pars compacta,
dentate gyrus, and layers III and IV of the cerebral cortex
(Clarke, Pert, & Pert, 1984; Clarke, Schwartz, Paul, Pert, &
Pert, 1985; London, Waller, & Wamsley, 1985; Rainbow,
Schwartz, Parsons, & Kellar, 1984). Moderate nicotinic
receptor densities have been found in the neostriatum,
ventral striatum, dorsal tegmental nucleus, and cerebellum
{Clarke, Pert, & Pert, 1984; Clarke, Schwartz, Paul, Pert, &
Pert, 1985).

Interestingly, some areas in the brain that contain
nicotinic receptors also possess dopamine-containing
neurons. One hypothesis that has been under investigation
is that the neurotransmitter dopamine is involved in the
mediation of the habit-forming properties of nicotine as
well as habit-forming drugs in general (Wise, 1978; Wise &
Bozarth, 1987; Wise & Rompre 1989). The interaction of
nicotine with the neurotransmitter dopamine is explored
below.

Nicotine interacts with neurons that contain and
release many neurotransmitters (e.g., serotonin,
norepinephrine, and dopamine) and with neuroendocrinological
substances (e.g., serum prolactin, adrenocorticotrophic

hormone) (Aceto & Martin, 1982; Balfour, 1984). Yet, it is



the effects of nicotine on midbrain dopamine-containing
neurons that have received the greatest degree of attention
and appear to have the greatest relevance to the drug's
rewarding properties. The hypothesized role of dopamine in
mediating the rewarding effects of habit-forming substances
(Wise, 1978; Wise & Bozarth, 1987; Wise & Rompré, 1989) and
the high distribution of nicotinic receptors in regions of
dopamine-containing neurons suggest that the midbrain
dopamine system is implicated in the acquisition and
maintenance of the nicotine habit.

The midbrain dopamine system comprises two populations
of dopamine neurons: the ventral tegmental area, or AlO
neurons, with axons projecting primarily to cortical and
limbic structures such as the nucleus accumbens, olfactory
tubercle, hippocampus, septum, and amygdala (Domesick, 1988;
Fallon, 1988; Fallon & Mcore, 1978); and the substantia
nigra, or A9 neurons, that send fibres primarily to the
caudate-putamen and to a lesser degree to some cortical and
limbic structures (Fallon & Moore, 1978; Lindvall &
Bjorklund, 1983; Lindvall & Bjorklund, 1984; Ungerstedt,
1971) . The high density of nicotinic receptor binding sites
at the level of the midbrain dopamine cell bodies, in
addition to the more moderate densities at the level of the
terminal regions, suggests that nicotine may influence the

functioning of these neurons.



Nicotine's effects upon mesolimbic and nigrostriatal
dopamine-containing neurons have been investigated using in
vitro and in vivo preparations. 1In in vitro intracellular
preparations, application of nicotine to ventral tegmental
dopamine neurons potentiates dopamine impulse flow
(Calabresi, Lacey, & North, 1989). In in vivo preparations,
acute systemic (Clarke, Hommer, Pe-t, & Skirboll, 1985;
Grenhoff, Aston-Jones, & Svensson, 1986; Lichtensteiger,
Hefti, Felix, Huwyler, Melamed, & Schlumpf, 1982),
intravenous (Clarke, Hommer, Pert, & Skirboll, 1985), or
iontophoretic (Lichtensteiger, Hefti, Felix, Huwyler,
Melamed, & Schlumpf, 1982) nicotine treatment potentiates
substantia nigra dopamine cell firing as assessed by
extracellular single unit recording in anaesthetized
animals. Systemic and intravenous nicotine treatment have
also been shown to increase firing of ventral tegmental area
dopamine neurons (Grenhoff, Aston-Jones, & Svensson, 1986;
Mereu, Yoon, Boi, Gessa, Naes, & Westfall, 1987).
Furthermore, ventral tegmental dopamine neurons are more
sensitive to nicotine's effect than are dopamine neurons in
the substantia nigra (Mereu, Yoon, Boi, Gessa, Naes, &
Westfall, 1987).

Dopamine release from the terminal areas has been
investigated in preparations using the technique of in vivo
microdialysis. Systemic injections of nicotine causes

dopamine release in the striatum and nucleus accumbens;
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this release of dopamine is greater in the nucleus accumbens
than in the striatum (Di Chiara, & Imperato, 1988; Di
Chiara, Imperato, & Mulas, 1987; Imperato, Mulas, & Di
Chiara, 1986). Dopamine release is also caused or
potentiated when nicotine is administered directly into
nucleus accumbens (Mifsud, Hernandez, & Hoebel, 1989).

In in vitro slice or synaptosomal preparations,
nicotine has been shown to increase dopamine release from
striatal tissue (Giorguieff-Chesselet, Kemel, Wandscheer, &
Glowinski, 1979; Sakurai, Takano, Kohjimoto, Honda, &
Kamiya, 1982; Westfall, 1974; Westfall, Grant, & Perry,
1983). Dopamine release is also potentiated following the
application of nicotine to nucleus accumbens tissue
preparations (Rowell, Carr, & Garner, 1987). These data
suggest that one of nicotine's actions is on the terminals
of the dopamine fibers; nicotine can influence dopamine
release from dopaminergic terminals that are no longer

conducting impulses.

Behavioral properties of nicotine

Nicotine exerts several effects on the behavior of
organisms. Some behavioral effects include changes in
locomotor activity, operant responding, conditioned
avoidance, aggression, and food and water intake (Clarke,
1987). Further, nicotine has been shown to improve subject

performance on stimulus discrimination, learning, memory, as



8

well as other tasks (Pomerleau & Pomerleau, 1984). Nicotine
can exert both depressant and stimulant behavioral actions
in humans (Gilbert, 1979) and in lower animals (Clarke &
Kumar 1983a; Clarke & Kumar, 1983b; Morrison, & Stephenson,
1972).

In acute preparations the depressant effects of
nicotine typically dominate behavior. This behavioral
depression is observed following a treatment that results in
moderate to high circulating levels of nicotine in the
brain. These high-dose effects have been demonstrated in
studies of the effects of nicotine on locomotor activity
(Clarke & Kumar, 1983a; Stolerman, Fink, & Jarvik, 1973),
operant responding for brain stimulation, food or water
reward, and shock avoidance (Domino, 1973; Pradhan, 1970;
Pradhan & Bowling, 1971; Risner, Goldberg, Prada, & Cone,
1985; Spealman, Goldberg & Gardner, 198l1). With repeated
testing tolerance develcps to the high-dose locomotor effect
(Clarke & Kumar, 1983a; Clarke & Kumar, 1983b; Morrison &
Stephenson, 1972) and only behavioral stimulation or
activation is observed.

Immediately following treatment with a relatively low
dose of nicotine and at longer latencies following treatment
with a high dose, nicotine's stimulant action dominates
behavior. Here, nicotine increases operant responding and
conditioned avoidance behavior (Domino, 1973; Pradhan &

Bowling, 1971; Risner, Goldberg, Prada & Cone, 1985;
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Spealman, Goldberg, & Gardner, 1981). This low-dose effect
is best characterized by nicotine's effect on locomotor
activity. At relatively low doses nicotine acts
predominately to stimulate locomotor activity in rats
(Iwamoto, 1984; Morrison & Stephenson, 1973; Pradhan, 1970).

While tolerance develops to the high~dose effect of

nicotine, with repeated testing it does not develop to the
low~-dose or potentiating effect. There is evidence to
suggest that with repeated testing the low-dose locomotor-
activating effects undergo sensitization (Hakan & Ksir,
1988; Ksir, Hakan, Hall, & Kellar, 1985), or to what some
have interpreted as the development of tolerance to
nicotine's sedative effects (Clarke & Kumar, 1983a; Clarke &
Kumar, 1983b). This suggests that the depressant high-dose
and the stimulant low-dose effects function under separate

rather than a common mechanism of action.

Rewarding properties of nicotine

The habit~-forming properties of drugs and other stimuli
and events are discussed in psychological theory under the
rubric of "reinforcement". It is widely held (e.g., Mowrer,
1947; Rescorla & Sclomon, 1967; Schlossberg, 1937; Skinner,
1937) that there are two fundamentally different forms of
reinforcement: "operant" reinforcement which involves
strengthening of associations between responses and their

consequences, and Pavlovian reinforcement which involves
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the strengthening of associations between stimuli. Unlike
the effects of drugs on behavior, drug reinforcement is an
inferred rather than a directly observable phenomenon. Two
paradigms, the drug self-administration and the conditioned
place-preference paradigm, have been developed to assess the
ability of habit-forming drugs to establish response habits
and to establish conditioned stimulus preferences,
respectively. Nicotine is reinforcing in each paradigm. 1In
the operant tradition nicotine is said to be "reinforcing"
because it maintains or strengthens a behavior upon which
drug delivery is made contingent, as demonstrated in the
drug self-administration paradigm (Weeks, 1962). Nicotine
is seen to be reinforcing in the Pavlovian sense because by
being "paired" or "associated" with certain environmental
stimuli it establishes a preference for those stimuli, such
that they come to elicit conditioned approach reactions
(Beach, 1957a; Beach, 1957b; Rossi & Reid, 1976; Schwartz &
Marchok, 1974; Spragg, 1940).

Drugs that are abused by humans are also self-
administered by lower animals (Griffiths, Brady, & Bradford,
1979; Schuster & Johanson, 1974; Schuster & Thompson, 1969;
Weeks, 1962; Woods, 1978). Given this parallel between
human and animal drug self-administration, the self-
administration paradigm has been proposed as a method to
predict the "abuse liability" (Collins, Weeks, Cooper, Good,

& Russell, 1984), or the habit forming potential of drugs.
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The drug self-administration paradigm is an operant
paradigm. The definiag characteristic of operant
reinforcement is that the reinforcer is administered or
delivered to the animal in a response-contingent manner; the
animal must earn the reinforcer. Cigarette smoking is the
most common form of nicotine self-administration in humans.
The self-administration of nicotine in this manner is under
pharmacological control. Manipulations that alter the
dosage of nicotine delivered per cigarette results in
compensatory changes in smoking behavior (Benowitz, 1986;
Henningfield, 1984b; Sepkovic, Parker, Axelrad, Haley, &
Wynder, 1984). For example, increasing urinary pH (which
increases the excretion of nicotine) results in compensatory
increases in smoking (Benowitz & Jacob, 1985) . Pretreatment
with nicotine (by chewing nicotine gum) dose-dependently
decreases subsequent cigarette smoking (Nemeth-Coslett,
Henningfield, O'Keefe, & Griffiths, 1987). When given the
opportunity to self-administer nicotine intravenously
cigarette smoking decreases (Henningfield, Miyasato, &
Jasinski, 1983). 1In contrast, treatment with centrally
acting nicotinic antagonists increases tobacco smoking
(Pomerleau, Pomerleau, & Majchrzak, 1987; Stolerman,
Goldfarb, Fink, & Jarvik, 1973).

In the laboratory the self-administration of nicotine
has been demonstrated across a range of species. Humans

(Goldberg & Henningfield, 1988; Henningfield & Goldberg,
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1983; Henningfield, Miyasato, & Jasinski, 1983) as well as
rats (Corrigal & Coen 1989; Cox, Goldstein & Nelson, 1984;
Goldberg & Henningfield, 1988; Griffiths & Henningfield,
1982), baboons (Ator & Griffiths, 1983), and squirrel
monkeys (Goldberg, Spealman, & Goldbery, 1981; Goldberg,
Spealman, Risner, & Henningfield, 1983) will self-administer
nicotine intravenously.

Drugs known to serve as operant reinforcers also
establish conditioned place preferences (Bozarth, 1987a;
Carr, Fibiger, & Phillips, 1989; Wise, 1989; Wise & Bozarth,
1987). When drug injections are administered in a
distinctive portion of the animal's environment, the animal
will develop a learned preference for that portion of the
environment that is revealed when it is tested in a drug-
free state. These "conditioned place preferences" are
established by Pavlovian pairing of drug injections with
environmental stimuli; in the conditioned place-preference
paradigm there is no contingency between the behaviour of
the animal and the administration of drug. Tbhz Pavlovian
conditioning involved in the conditioned place-preference
paradigm is thus fundamentally different from the operant
conditioning involved in the self-administration paradigm.
The place-preference paradigm has been proposed as a
reliable method to study this facet of drug reinforcement

(van der Kooy, 1987; Wise, 1989).
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Nicotine's ability to establish a conditioned place
preference has been investigated under systemic and
intracranial administration. Nicotine administered
systemically has been reported by some investigators to
establish conditioned place preferences (Fudala & Iwamoto,
1986; Fudala, Teoh, & Iwamoto, 1985). Pre-treatment with
mecamylamine, a centrally acting nicotinic antagonist,
blocks nicotine's e<fect in this paradigm whiie pre-
treatment with hexamethonium, a nicotinic antagonist that
does not readily enter the central nervous system, does not
(Fudala, Teoh, & Iwamoto, 1985). Other investigators,
however, have failed to demonstrate nicotine induced place
preferences (Clarke & Fibiger, 1987; Jorenby, Steinpreis,
Sherman, & Baker, 1990). Methodological differences across
place-preference studies may account for this inconsistency.
Intracerebroventricular or pedunculopontine microinjections
of nicotine establish conditioned place preferences that are
blocked by co-administration of mecamylamine (Iwamoto, 1990)
(a nicotinic antagonist that readily enters the central
nervous system). Microinjection of cytisine, a nicotinic
agonist, into the ventral tegmental area also establishes
conditiored place preferences (Museo & Wise 1990c). The
ability of mecamylamine but not hexamethonium (a nicotinic
antagonist that acts principally in the peripheral nervous
system) to block systemic nicotine induced place preference

suggests that these rewarding effects of nicotine are
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centrally mediated. The demonstration that a place
preference can be established following microinjections of
nicotine or an agonist directly into the brain and that this
effect also can be blocked by mecamylamine lends further
support to this view.

Electrical stimulation of the medial forebrain bundle
and the contiguous midline mesencephalon is powerfully
rewarding (Olds & Milner, 1954; Miliaressis, Bouchard, &
Jacobowitz, 1975; Rompré & Miliaressis, 1985). The
stimulation serves as an operant reinforcer and is also
reinforcing in the conditioned place-preference paradigm
(Ettenberg & Cuvauchelle, 1988); in addition to its
response-contingent reinforcing effects, the stimulation has
proactive "priming" effects that encourage responding in a
manner that is thought to be independent of reinforcement
per se (Gallistel, Stellar, & Bubis, 1974). The lay term
"reward" is usually used to subsume these presumably
independent effects of the stimulation.

Nicotine causes rats to increase the rate at which they
self-administer rewarding brain stimulation (Newman, 1972;
Olds & Domino, 1969a; Olds & Domino, 1969b; Pradhan &
Bowling, 1971; Schaefer & Michael, 1986). It is not clear
from this finding, however, whether nicotine increases the
rewarding impact of the stimulation or rather increases the
performance capacity of the animal. The hypothesis

developed below is that nicotine, like other rewarding
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drugs, potentiates the habit-formirng properties of brain

stimulation reward.

Interaction of rewarding drugs with rewarding brain
stimulation

Drugs that are rewarding in their own right (as
determined by the self-administration and conditioned place-
preference paradigms) also appear to potentiate the
rewarding action of brain stimulation reward. The evidence
that amphetamine and morphine potentiate the rewarding
effects of brain stimulation and not merely the response
capacity of the animal has emerged from several recent
refinements of the analysis of the brain stimulation reward

paradigm.

Self-stimulation: Dissociating between performance and
reward

A central issue in the self-stimulation literature is
that of the "reward-performance" distinction. The question
of interest is whether observed changes in an animal's
behavioral output (typically lever pressing) following
various manipulations reflect changes in the organism's
capacity to respond or rather reflect changes in the
rewarding impact of the brain stimulation.

The ability to distinguish between changes in

performance and changes in reward are critical to the self-
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stimulation and drug reward specialist. The choice of a
dependent measure is therefore of utmost importance. Early
self-stimulation work relied on an analysis of simple
response rates as the dependent measure from which changes
in the reward strength of the stimulation were inferred.

The limitations of response rate measures are best
characterized by data from “choice measure" experiments.
Animals will often chose stimulation that supports low rates
of self-stimulation (such as the septum) over sites that
support high rates (Hodos & Valenstein, 1962; Ross, 1973).
Animals responding for stimulation at a variety of
frequencies or intensities that all produce asymptotic cr
maximal response rates will, when given the choice between
low and high stimuliation, consistently choose the high
frequency or intensity over the low (Miliaressis & Malette,
1987; Waraczynski, Stellar, & Gallistel, 1987). A problem
with simple response rate measures, therefore, is that they
are insensitive to differences in reward strength that are
clearly important to the animal when stimulation frequencies
that produce maximal response rates are tested. In response
to the major criticisms of the early self-stimulation
paradigm several alternative dependent variables havec been
developed (Gallistel, 1983; Liebman, 1982; Stellar & Rice,
1989; Valenstein, 1964; Wise, 1989; Wise & Rompreé, 1989).
one of these involves threshold measures (Fenton & Liebman,

1982; Fouriezos & Wise, 1976; Franklin & McCoy, 1979;
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Gallistel, Boytim, Gomita, & Klebanoff, 1982; Kornetsky &
Esposito, 1981; Kornetsky, Esposito, Mclean, & Jacobson,
1979; Kornetsky & Wheeling, 1982; Zarevics & Setler, 1981).

A paradigm that has emerged as the paradigm of choice
when both the rewarding value of the stimulation and the
performance capacity of the animal are to be measuired is the
"curve-shift" paradigm. The curve-shift paradigm was first
extensively discussed by Edmonds and Gallistel (1974) and
has since been used by many self-stimulation specialists
(Fibiger & Phillips, 1981; Franklin, 1978; Gallistel &
Freyd, 1987; Liebman, 1983; Miliaressis, Rompré, Laviolette,
Philippe, & Coulombe, 1986; Shizgal & Murray, 1989; Stellar
& Rice, 19°9; Wise, 1989; Wise & Rompré, 1989; Yeomans,
Kofman, & McFarlane, 1985). One variant of the curve-shift
paradign is the "rate-frequency" variant. In the rate-
frequency variant, stimulation intensity, train of
stimulation, and duration of the stimulation pulse are held
constant and only stimulation frequency (pulses of
stimulation per second) is varied from one trial to the
next. The procedure involves recording the animal's
performance at each frequency tested including frequencies
that fail to sustain some level of responding, some that
produce moderate responding, and some that produce maximal
or asymptotic responding. When the rate of responding is

plotted as a function of stimulation frequency, the
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resulting rate-frequency curve approximates an ogival or
sigmoidal form (Fig. 1).

Of interest is the displacement or shift of the rate-
frequency curve following various manipulations. It is the
displacement of the curve that allows one to infer changes
in the rewarding impact of the stimulation. The rate-
frequency curve can shift in two important ways. The first
type of shift is a lateral (leftward or rightward) shift.
Lateral shifts in the rate-frequency curve are thought to
reflect changes in the rewarding impact of the stimulation.
Parallel leftward shifts reflect an increase in the
rewarding impact of the stimulation because the animal
requires lower doses (frequency) of stimulation to produce
responding at pre-treatment levels. Conversely, a parallel
rightward shift reflects a decrease in the rewarding impact
of the stimulation since higher stimulation frequencies are
required to produce pre-treatment rates of responding.

A second type of shift that can occur in the rate-
frequency curve is a vertical (upward or downward) shift.
For example increasing the performance requirements on an
animal results in a downward vertical shift. Marbles placed
on the floor of a runway, making animals run on an incline
(Edmonds & Gallistel, 1974), or increasing the force
required to depress a lever (Miliaressis, Rompre,

Laviolette, Phillippe, & Coulombe, 1986) all decrease
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asymptotic performance but do not result in significant

parallel lateral shifts of the rate-frequency curve.

Effects of rewarding drugs on brain stimulation

Drugs that are rewarding in their own right tend also
to potentiate brain stimulation reward. The interaction of
brain stimulation with habit-forming drugs from various drug
classes is reviewed in the sections below.

Low and moderate systemic doses of amphetamine increase
the rate of responding for brain stimulation (Domino & 0Olds,
1972; Robertson & Mogenson, 1979; Stein, 1964). Systemic
treatment with amphetamine also lowers the threshold for
brain stimulation (Esposito & Kornetsky, 1980; Greenshaw,
Sanger, & Blackman, 1985; Hubner, Bain, & Kornetsky, 1987:;
Schaefer & Michael, 1988; Wauquier & Niemegeers, 1974).
Systemic amphetamine produces a parallel leftward shift of
the rate-frequency curve (Colle & Wise, 1988; Gallistel &
Freyd, 1986; Gallistel & Karras, 1984). Amphetamine,
therefore, potentiates the rewarding impact of brain
stimulation.

Moderate and high systemic doses of morphine have
biphasic effects on self-stimulation rate. Self-stimulation
rate is depressed for one to three hours after initial
injections of moderate systemic doses (0lds & Travis, 1960)
and this period is followed by a period of one or two hours

of response acceleration (Bush, Bush, Miller, & Reid, 197~
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Lorens, 1976; Lorens & Mitchell, 1973; Schaefer & Holtzman,

1979). Systemic morphine injections lower the threshold for
seif-stimulation even in the period when simple response
rate is depressed (Esposito & Kornetsky, 1977; Esposito,
McLean, & Kornetsky, 1979; Hubner, Bain, & Kornetsky, 1987;
Marcus & Kornetsky, 1974; van Wolfswinkel & van Ree, 1985).
When assessed using the curve-shift paradigm low systemic
doses produce leftward shifts of the rate-intensity function
(Glick, Weaver, & Meibach, 1982). The initial suppression in
simple response rate following moderate and high systemic
doses of morphine undergoes tolerance with repeated dosing
(Bush, Bush, Miller, & Reid, 1976; Lorens, 1976). With
repeated injections tolerance does not develop, however, to
the reward potentiating (threshold lowering) effects of
morphine (Kelley & Reid, 1977; van Wolfswinkel & van Ree,
1985).

The effects of ethanol have been inconsistent. Rate-~
dependent effects on self-stimulation have been reported.
At equivalent doses systemic ethanol has, in a number of
studies, been reported to increase rate of responding for
self-stimulation (De Witte & Bada, 1983; Lewis, Andrade, &
Reynolds, 1989; Lorens & Sainati, 1978) and, in other cases,
to have no effect or to decrease response rates (Carlson &
Lydic, 1976; Schaefer & Michael, 1987; Schaefer, Richardson,
Bonsall, & Michael, 1988). 1In threshold studies ethanol has

been reported to decrease self-stimulation thresholds in
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some cases (Lewis & Phelps, 1987) and to have no effect on
self~stimulation thresholds in others (Schaefer & Michael,
1987; Unterwald, Clark, Bain, & Kornetsky, 1984; Unterwald &
Kornetsky, 1985). The effects of ethanol on self-
stimulation using the curve-shift paradigm have only been
investigated in a single experiment. Intravenous ethanol
did not produce a clear parallel leftward shift of the rate-
frequency curve (Trojniar & Wise, in preparation).

Ethanol's intoxicating effects, rate-dependent effects, its
relatively short duration of action, and the methodological
differences across ethanol self-stimulation studies have
made these data difficult to interpret.

Moderate and high systemic doses of delta®-
tetrahydrocannabinol (THC) (the psychoactive substance in
marijuana) have biphasic effects on self-stimulation rate.
Self-stimulation response rates are depressed in the first
hour immediately following treatment and this period is
followed by a one to two hour period of increased respornse
rates (Bailey & Pradhan, 1972; Bhattacharyya, Aulakh,
Pradhan, Ghosh, & Pradhan, 1980). With repeated injections,
tolerance rapidly develops to the initial response
suppressive effects (Becker & Reid, 1977). Systemic THC
lowers the threshold for self-stimulation (Gardner, Paredes,
Smith, Donner, Milling, Cohen, & Morrison, 1988; Gardner,

Paredes, sSmith, & Zukin, 1989). These data suggest that THC
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shares with amphetamine and morphine the ability to
potentiate the rewarding impact of brain stimulation.
Evidence of the ability of benzodiazepines to
potentiate responding for brain stimulation is not as robust
or as clear as it is for psychomotor stimulant drugs and
opiates (Wise, 1980). Low to moderate systemic doses of
benzodiazepines have been reported to increase self-
stimulation rates in some animals and to decrease rates in
other similarly treated animals (0lds, 1966; Panksepp,
Gandelman, & Trowill, 1970). The effect of benzodiazepines
on rate of responding for brain stimulation is also affected
by the stimulation site chosen. Doses of diazepam that
potentiate responding in animals with hippocampal electrodes
reduce response rates in animals with hypothalamic
stimulating electrodes (Caudarella, Campbell, & Milgram,
1982; Caudarella, Estrade, Cazala, & Gauthier, 1984). 1In
the hands of some experimenters, however, increased rates of
responding for brain stimulation have been obtained
following treatment with low to moderate doses of
chlordiazepoxide (D.mino & 0lds, 1972; Ichitani, Iwasaki, &
Satoh, 1985; Lorens & Sainati, 1978; Olds, 1972; Wauquier,
1976) as well as for diazepam (Caudarella, Campbell, &
Milgram, 1982; Olds, 1976; Wauquier, 1976). Systemic
treatment with high doses of benzodiazepines have been shown
to depress response rates (Domino & Olds, 1972; 0Oldr 1972:

Olds, 1976). Low doses of chlordiazepoxide (Stark, Turk,
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Redman, & Henderson, 1963) lower the threshold for self-
stimulation thereby suggesting that under certain conditions
benzodiazepines can potentiate brain stimulation reward.

Systemic injections of low to moderate doses of
barbiturates such as pentobarbital increase the rate of
responding for lateral hypothalamic brain stimulation while
high doses depress response rates (Mogenson, 1964; Reid,
Gibson, Gledhill, & Porter, 1964). No threshold or curve-
shift studies have been undertaken to study the systemic
effects of barbiturates on self-stimulation. As with
benzodiazepines, the response potentiating effects of
barbiturates are not as robust as those of opiates and
stimulant drugs (Wise, 1980). The low dose response
potentiating effects of barbiturates, however, do suggest
that compounds from this drug class may also function in a
synergistic manner with brain stimulation to potentiate
reward.

Low systemic doses of caffeine increase the rate of
responding for brain stimulation while high doses reduce
response rates (Valdes, McGuire, & Annau, 1982). In one
investigation using a threshold measure of self-stimulation,
systemic low doses of caffeine had no effect on threshold
while high doses increased the threshold for self-
stimulation (Mumford, Neill, & Holtzman, 1988). In contrast
equivalent low doses of caffeine reduced the "ON" latency

(la ncy to trigger a photobeam that results in delivery of
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continuous stimulation) which suggests that caffeine
potentiated brain stimulation reward. The contradictory
evidence from the threshold experiments is difficult to
reconcile. The evidence that low doses increase response
rates for br:in stimulation, however, suggests that under
certain conuitions caffeine potentiates brain stimulation

reward.

The mechanisms of drug reward seem homologous with those of
facilitation of brain stimulation

The strongest empirical support for the notion that
common brain mechanisms play a role in the rewarding and
reward-facilitating effects of drugs (see below) comes from
the fact that those brain sites in which central drug
injections are rewarding in their own right are the same as
those where central drug injections facilitate rewarding
brain stimulation. To date amphetamine and morphine have
been well characterized in each of the relevant paradigms.

The brain site identified with the rewarding and
reward-facilitating effects of amphetamine is the nucleus
accumbens. Rats lever press for microinjections of
amphetamine directly into the nucleus accumbens (Hoebel,
Monaco, Hernandez, Aulisi, Stanley, & Lenard, 1983; Lenard,
Hernandez, & Hoebel, 1980; Monaco, Hernandez, & Hoebel,
1980) but not for amphetamine microinjections into the

caudate, ventral accumbens (Hoebel, Monaco, Hernandez,
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Aulisi, Stanley, & Lenard, 1983), or into the lateral
ventricles (Monaco, Hernandez, & Hoebel, 1980). Selective
neurotoxic lesions of the nucleus accumbens block the
acquisition (Lyness, Friedle, & Moore, 1979) and maintenance
of intravenous stimulant (cocaine or amphetamine) self-
administration (Pettit, Ettenberg, Bloom, & Koob, 1984), as
do selective neurotoxic lesions of ventral tegmental area
dopamine neurons (Roberts & Koob, 1982); 6-hydroxydopamine
(6~0OHDA) lesions dorsal to the nucleus accumbens or lesions
of the caudate do not disrupt stimulant self-administration
(unpublished observation as reported in Roberts & Koob,
1982).

The same site that is implicated in amphetamine self-
administration is involved in amphetamine-induced place
preferences; amphetamine injections into the nucleus
accumbens establish conditioned place preferences (Aulisi &
Hoebel, 1983; Carr & White, 1983; Carr & White, 1986).
Injections into the amygdala, medial prefrontal cortex, area
postrema (Carr & White, 1986), and caudate (Carr & White,
1983; Carr & White, 1986) have been ineffective. Neurotoxin
6~0OHDA lesions of the nucleus accumbens antagonize
conditioned place preferences established with systemic
amphetamine (Spyraki, Fibiger, & Phillips, 1982).

The only known site where amphetamine injections
potentiate the rewarding effects of brain stimulation is

also the nucleus accumbens. Amphetamine microinjected into
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the nucleus accumbens has been shown to increase rates of
medial forebrain bundle self-stimulation (Broekkamp,
Pijnenburg, Cools, & Van Rossum, 1975), while injections
into the anterior hypothalamus and ventricular system have
little or no effect on rate of responding. Amphetamine
injected into the nucleus accumbens produces a parallel
leftward shift of the rate-frequency curve following drug
treatment (Colle & Wise, 1988). When amphetamine is
injected into the caudate, a dose four times that which
produces a minimal effect in the nucleus accumbens is
required to produce a leftward shift in the rate-frequency
curve (Colle & Wise, 1988).

There are two sites where opiates have rewarding and
reward-potentiating actions: the ventral tegmental area and
the nucleus accumbens. Animals self-administer morphine
directly into the ventral tegmental area (Bozarth & Wise,
1981; van Ree & de Wied, 1980; Welzl, Kuhn, & Huston, 1989)
but not into the caudate, lateral hypothalamus or
periventricular gray (Bozarth & Wise, 1980). Rats will also
self-administer the selective mu and delta agonists DAGO and
DPDPE into the ventral tegmental area (Devine & Wise, 1990).
Morphine self-administration into the ventral tegmental area
is blocked by systemic injections of the opiate antagonist
naloxone (Bozarth & Wise, 1981) thereby confirming that the
self-administration of morphine is an opiate receptor-

mediated effect. Selective dopaminergic lesions of the
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ventral tegmental area block the acquisition of intravenous
opiate self-administration (Bozarth & Wise, 1986).

The nucleus accumbens is the second site where opiate
injections are rewarding. Rats self-administer morphine or
enkephalin directly into the nucleus accumbens (Goeders,
Lane, & Smith, 1984; Olds, 1982). Co-treatment with
naloxone results in compensatory increases in self-
administration (Goeders, Lane, & Smith, 1984). Neurotoxin
(6~0HDA) lesions of the nucleus accumbens attenuate
responding for intravenous morphine such that a doubling of
the dose is required (post lesion) to maintain self-
administration (Smith, Guerin, Co, Barr, & Lane, 1985). The
disruption of heroin self-administration correlates
positively with the degree of nucleus accumbens destruction
by kainic acid lesions (Zito, Vickers, & Roberts, 1985).

The brain sites implicated in the rewarding effects of
self-administered opiates are also implicated in opiate-
induced place-preferences. Morphine or the mixed opiate
agonist [D-Ala2]-Mets—Enkephalinamide injections into the
ventral tegmental area establish conditioned place
preferences (Bozarth, 1987b; Phillips & LePiane, 1980;
Phillips & Lepiane, 1982; Phillips, Lepiane, & Fibiger, 1983
as do morphine microinjections into the nucleus accumbens
(van der Kooy, Mucha, O'Shaughnessy, & Bucenieks, 1982).
Pretreatment with naloxone blocks the establishment of

ventral tegmental morphine place preferences (Phillips &
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LePiane, 1980). Electrolytic (Kelsey, Carlezon, & Falls,
1989) and 6-OHDA lesions (Schwartz & Marchok, 1974) of the
nucleus accumbens block the establishment of conditioned
preferences with systemic morphine. Opiat2 injections into
other brain regions such as the amygdala, caudate, and
nucleus ambiguous have failed to establish conditioned
preferences (van der Kooy, Mucha, O!'Shaughnessy, &
Bucenieks, 1982).

The ventral tegmental area and the nucleus accumbens
are also sites where opiate injections potentiate the
rewarding impact of brain stimulation. Morphine injected
into the ventral tegmental area and nucleus accumbens
potentiate lever press rates for stimulation of the medial
forebrain bundle (Broekkamp, Phillips, & Cools, 1979;
Broekkamp, van den Boggard, Heijnen, Rops, Cools, & van
Rossum, 1976). Using the curve-shift paradigm, Jenck,
Gratton, and Wise (1987) have shown that injections of
morphine or the delta opioid agonist DPDPE into the ventral
tegmental area produce parallel leftward shifts of the rate-
frequency curve in animals lever-pressing for hypothalamic
brain stimulation. The reward potentiating effect of both
morphine and DPDPE are antagonized by systemic pre-treatment
with naloxone (Jenck, Gratton, & Wise, 1987). Ventral
tegmental area morphine injections, but not injections
dorsal to it, also produce parallel leftward shifts in the

rate-freguency curve in animals lever-pressing for midline
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mesencephalic brain stimulation (Rompré & Wise, 1989).
Microinjections of morphine or the mu opioid agonist DAGO
into the nucleus accumbens produce leftward shifts of the

rate-frequency curve (West & Wise, 1988).

Brain stimulation reward as a paradigm with practical
advantages

If it is true that the same brain mechanisms mediate
the direct rewarding effects of drugs and also their ability
to facilitate brain stimulation reward, the brain
stimulation reward paradigm offers the student of drug
reward several methodological advantages over the self-
administration and the conditioned place-preference
paradigms. The pavadigmatic advantages of the brain
stimulation paradigm as well as some limitations of the drug
self-administration and conditioned place-preference

paradigms are discussed in the sections below.

Limitations of self-administration

Despite important advances in our understanding of drug
reward that continue to be made with the drug self-
administration paradigm, there are some paradigmatic
limitations that must be outlined. The first problem is the
use of simple rate measures as the dependent variable. As
with brain stimulation, dependent measures based on simple

response rates can be affected by factors that alter the
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capacity of the animal to make an appropriate response that
leads to the delivery of the drug. Drugs that affect an
animal's capacity to respond can alter self-administration
response patterns without necessarily reflecting "true"
changes in a drug's ability to serve as a reinforcer.
Sedation seen following high-dose drug self-administration
is one example of "non-reward" effects that may alter an
animal's self-administration response profile. Conclusions
from data derived from measures based on simple response
rates should therefore be made with caution (see Wise,
1989). A second limitation of self-administration paradigms
is that the animal and not the experimenter controls
delivery of the drug. The volume of drug intake within
subjects can be affected by factors that are not under the
experimenter's control and that may not be exclusively
related to a drug's rewarding properties. A third problem
is that of scaling reward. Since the rate of lever-pressing
is under control of the effective duration (Dougherty &
Pickens, 1976; Yokel & Pickens, 1974) rather than the
relative intensity of each rewarding injection, there is no
established way to quantify reward strength from the
performance of trained animals. Acquisition of the lever-
pressing response offers a measure that varies with drug
dose per reward, but acquisition is variable and rates of
acquisition will also vary inversely with the duration of

reward associated with earned injections. Thus this method
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offers no obvious way to scale the degree of effectiveness
of different drugs or even different doses of the same drug.
If an animal self-administers a arug five times in one hour
for dose one, ten times an hour for dose two, and twenty
times an hour for duse three we can say that for this drug
the animal's rate of self-administration doubled as we
progressed from dose one to two and doubled again from dose
two to three. There is no basis, however, to arrive at any
conclusions regarding the magnitude of reward between the
three doses of drug in this example. We cannot conclude
that dose two is twice as rewarding as dose one or that dose
two is only half as rewarding as dose three. Although we
can say that this drug is rewarding we cannot arrive at any

conclusions about how rewarding it is.

Limitations of conditioned place preference

The conditioned place-preferance paradigm also has
limitations. First, absolute preferences for the drug-
paired compartment are rarely obtained. Thus it is
difficult to know whether the drug sstablishes a true
preference for the drug-associated cues or rather alleviates
distress associated with the non-drugged (withdrawal)
condition. Second, place preferences are frequently an all
or none phenomenon; graded dose-response curves are rarely

obtained. Essentially, the paradigm is susceptible to
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ceiling or floor effects. A third problem is the inability

to scale reward in this paradigm.

Advantages of brain stimulation reward

If the assumption is valid that a common mechanism
mediates the direct rewarding and reward-facilitating
effects of drugs of abuse, the brain stimulation reward
paradigm offers the researcher a number of advantages over
the self-administration and conditioned place-preference
paradigms. First, the self-stimulation behavior is
extremely robust. Animals lever press thousands of times
per hour for rewarding brain stimulation. Starving animals
will forgo eating if given free access to rewarding brain
stimulation (Routtenberg, 1964) and will cross an
electrified grid floor to obtain brain stimulation in the
goal box (0lds, 1958). Second, the curve-shift paradigm
enables us to dissociate reward-relevant from reward-
irrelevant drug effects. Third, each rate-frequency or
rate-intensity curve covers the full range of effective
stimulation levels, rather than being based on arbitrary
parameters that might be subject to floor or ceiling
effects. Indeed, the curve-shift paradigm makes the
experimenter aware of the floor and ceiling for the response
rates of interest, thus insuring against misinterpretations
that might arise from more arbitrary choices of experimental

parameters. The fourth and perhaps most important advantage
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of the curve-shift rate-frequency paradigm is that it allows
us to assess reward value on a ratio scale, whereas the
self-administration and place-preference paradigms do not.
Equal changes in the log of the stimulation frequency
following a drug manipulation reflect equal changes in the
perceived impact of the stimulation (Gallistel & Freyd,
1987; Miliaressis, Rompré, Laviolette, Philippe, & Coulombe,
1986; Wise & Rompré, 1989), and equal changes in the
stimulation frequency are directly related to the number of
impulses evoked in the reward-related fibers at the

electrode tip (Gallistel, Shizgal, & Yeomans, 1981).

Effects of nicotine on the rewarding effects of brain
stimulation

Some of the first reports of the effects of nicotine on
brain stimulation reward have come from studies in which the
aim was to inestigate the effects of different cholinergic
agonists on self-stimulation (0lds & Domino, 1969a; 0lds &
Domino, 1969b). In the two decades following these first
reports few experiments on the effects of nicotine on brain
stimulation have been published.

The eariy studies involved the use of simple lever-
pressing rates as the sole dependent measure. In acute
systemic treatment, nicotine has been reported by some
investigators to have a bi-phasic effect on self-stimulation

rates. At moderate to high doses (0lds & Domino, 1969%a;
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0lds & Domino, 1969b) and when pre-drug response rates were
high, (Pradhan & Bowling, 1971), nicotine was found by
these workers to initially depress self-stimulation. This
initial response suppression was followed minutes later by
increased rates of responding. No initial suppression was
observed when pre-drug response rates were low (Pradhan &
Bowling, 1971). In contrast, nicotine has been reported by
other workers to have no effect on rate of self-stimulation
when tested on a continuous reinforcement schedule but to
increase rates when tested at low doses on a partial
reinforcement (FR-15) schedule (Schaefer & Michael, 1986).
Using two variants of a shuttle paradigm, Clarke and Kumar
(1983¢c, 1984) reported in one instance that nicotine
affected the rate of responding but did not alter the
efficacy of brain stimulation reward (Clarke & Kumar, 1983c)
while in a second instance nicotine was argued to potentiate
brain stimulation reward (Clarke & Kumar, 1984).

More recently two abstracts dealing with the effects of
nicotine on brain stimulation reward have been published.
In the first, nicotine was shown to lower self-stimulation
thresholds (Lyons, Bain, & Kornetsky, 1988). 1In the second,
nicotine increased response rates for brain stimulation in
rats tested on a fixed-interval schedule where stimulation
could be earned once every 15 sec (FI-15 schedule) or a
fixed-ratio schedule where every 15th response was rewarded

(FR-15 schedule: Schaefer & Michael, 1989).
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Present investigation

The purpose of the present experiment was to more fully
characterize the effects of systemic nicotine on brain
stimulation reward. The curve-shift paradigm was used to
characterize not only the effects of nicotine on the
rewarding impact of the stimulation, but also the effects of
nicotine on the response capability of the animal.
Stimulation sites in the mesencephalic central gray were
used because stimulation in this region activates the medial
forebrain bundle reward system (Boye & Rompré, unpublished
data) without directly activating the dopamine fibers that
are activated by nicotine itself. Finally, the animals were
tested ten times at one of four doses in order to assess the
possibility that tolerance or sensitization might develop to

any effects of the drug on the reward mechanism.
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Methods

Subjects

Twenty-four male Long-Evans rats (Charles River,
Boston, MA.) with pre-operative weights between 300 and 350
g were tested. The animals were housed individually in
polyethylene cages with wood chip bedding. Lighting was
maintained on a 12-h light 12-h dark cycle, and animals had
free access to food and water. The animals were divided

into four groups of six animals each.

Surgery

Each animal was implanted with a midline mesencephalic
stimulating electrode under pentobarbital anesthesia (65
mg/kg, i.p.); atropine (0.6 mg/kg, i.p.) was administered 20
min prior to the anesthetic to minimize bronchial
secretions. Each electrode (Miliaressis, 1981) consisted of
a plastic guide and a moveable stainless-steel wire (0.25 mm
in diameter). The wire was insulated with varnish, except
for the rounded tip. Flat-skull coordinates for the
intended midline mesencephalic electrode placements (n=24)
were -7.6 mm posterior to bregma, 0.0 mm lateral to the
midline, and 6.0 mm ventral to the skull surface. Four
stainless-steel screws were used to anchor the electrode

assembly; the screws were wrapped with uninsulated wire and
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connected to an electrical contact to serve as anodes. The

entire assembly was embedded in dental cement.

Materials and apparatus

Stimulation was controlled by a microprocessor-based
system (Campbell, Evans, & Gallistel, 1985). A computer
program controlled delivery of stimulation via a constant
current generator (Campbell, Evans, & Gallistel, 1985).
Stimulation was given in 0.5-sec trains of 0.1 ms
rectangular cathodal pulses. Each animal was placed in a
test cage and connected to the stimulator by a flexible wire
lead (Miliaressis, 1981) and a mercury commutator (Mercotac
Inc, San Diego CA).

The animals were tested in 26x26 cm cages with an
operant lever protruding 2.5 cm from the rear wall at a
height of 7.5 cm from the floor. The operant lever
controlled a microswitch connected to the current generator.
Each test cage was enclosed within a larger wooden box to

attenuate external noise.

Procedure

The animals were screened for self-stimulation 7 days
after surgery; stimulation frequency was set at 72 hz, and
current intensity was set to a low value of 200 pa. The
animal received several primes of stimulation, and if it

began to explore the environment (e.g. sniffing, forward
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locomotion) in response to the primes it was shaped by being
rewarded for closer and closer approximations to the lever-
press response. If an animal did not ultimately lever-press
for stimulation at this intensity the current was increased
in 50 pa increments and the shaping procedure repeated until
the animal started lever-pressing or until the current
intensity had been raised to 800 pa. Once a current level
was reached that supported a minimum of 30 lever-presses per
min the animal was allowed to lever press freely for this
level of stimulation. The animal was screened for one hour
on each of three consecutive days. If the animal did not
learn to lever-press or if the current produced aversive
side-effects (e.g., gross head or body movements to one
side, spinning, retreating to a corner of the test cage,
shrieking, or jumping) the electrode was lowered by 0.32 mm
and the animal was retested 24 h later. This procedure was
continued until the animal learned to lever-press or until
the electrode had been lowered to its maximum.

Following the initial screening the animals were
trained to lever-press for brain stimulation across a
descending range of stimulation frequencies. Stimulation
parameters were held constant for periods of 50-s; five 0.5-
s "priming" stimulations were administered at the beginning
of each 0.5-s trial. There was a half-se>ond pause between
trials. Each series of trials began with the highest

frequency of stimulation for a given animal and stimulation
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frequency was reduced by 0.05 log units (approximately 12%)
for successive trials. The initial stimulation frequency
was determined on an individual basis; it was set at one
step higher than the average frequency that produced
asymptotic (maximal) responding on the previous day.
Stimulation frequency was stepped down in equal log units
until three frequencies were tested with no responding.
Rate of responding was measured at each stimulation
frequency; the function relating response rate to
stimulation frequency (rate-frequency function) was the
basis for determinations of reward threshold and performance
asymptote. Eight rate-frequency functions were determined
daily, the end of one marking the start of the next.
During the training period, the stimulation intensity
(another contribution to the stimulation "dose") was
adjusted to bring each animal's frequency threshold (the
minimal stimulation necessary to maintain responding) within
the range of 40-60Hz. When frequency thresholds varied by
less than 10% over three consecutive days, an animal was
deemed ready for drug testing.

Drug testing was conducted daily for 10 days with each
group receiving one of the four doses of nicotine. The drug
tests were preceded by a vehicle test (day 0). Each drug
and vehicle test began with a baseline test in which each
animal was tested such that a total of three rate-frequency

functions were determined (10-12 min per function). In the
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baseline condition the first rate-frequency function was
considered unreliable and not used in the analysis.
Following the baseline condition animals were removed from
their test cages and injected with the drug or vehicle.
Immediately following treatment the animals were returned to
their test cages and tested sucih that five more rate-
frequency functions could be determined (15 min per

function).

Histology

At the end of the experiment the animals were
anesthetized with an injection of chloral hydrate (400 mg/kg
i.p.). Next, a 1.5 mA anodal current was passed through
each animal's stimulating electrode. The animals were then
perfused with physiological saline followed by a formalin-
cyanide solution (10% formalin, 3% potassium ferrocyanide,
3% potassium ferricyanide, and 0.5% trichloroacetic acid).
Each animal was then decorticated and the brain was stored
in 10% formalin. The brains were placed in the formalin
solution for a minimum of 7 days and then in a solution
consisting of 10% formalin and 30% sucrose for 24-48 hours
prior to histological sectioning. The brains were then
frozen and sliced in 40 pm sections. Those sections
containing the electrode track were mounted and stained with
thionin for histological determination of electrode

placements.
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Estimate of self-stimulation threshold

The threshold frequency (Theta-0) was estimated from
the rate-frequency functions as follows; the pulse-
frequencies required to sustain responding at 20, 30, 40,
50, and 60% of asymptotic responding were estimated by
graphic interpolation and the threshold for lever-pressing
was defined as the point where a line of best f£it through
these points crossed the abscissa. This estimate of
threshold represents one attempt to identify the lowest
level of stimulation frequency that has a reinforcing impact
for the animal (Coulombe & Miliaressis, 1987; Miliaressis,
Rompreé, Laviolette, Philippe, & Coulombe, 1986) and that
does not rely on a single arbitrarily chosen point along the
rate-frequency function as the threshold for self-

stimulation.

Drug

Nicotine tartrate was administered in dosages of 0.05,
0.1, 0.2, or 0.4 mg/kg (dose was calculated as the free
base); independent groups of animals (n=6 per group) each
recelved one dose. The drug was dissolved in sterile

physiological saline, prepared daily prior to testing.
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Results

Nicotine caused parallel leftward shifts of the rate-
frequency functions. Typical rate-frequency curves for
baseline conditions and for each of the four nicotine doses
are shown in Figure 1. Even at the 0.40 mg/kg dose,
nicotine produced a parallel leftward shift without altering
asymptotic response rates. Because nicotine caused parallel
shifts in the functions, effects of nicotine on reward
thresholds were the same regardless of whether the Theta-0
criterion or any of a number of alternative threshold
criteria were used.

Nicotine was effective for approximately 45 minutes
after these injections. Threshold and asymptote values are
shown in Figure 2 for each of the five repeated rate-
frequency functions averaged across days 3 to 10; values
from the first two days were not included because the
animals showed signs of ataxia and unstable thresholds on
these but not subsequent days (see below). A repeated
measures analysis of variance (ANOVA) revealed that
thresholds varied significantly as a function of time after
injection (F[4,80]=32.47, p<0.0l). The threshold lowering
effects of nicotine began to wane by the fourth rate
frequency curve (60 min. post-injection). Nicotine had more
complex effects on asymptotes, as revealed by Day X Time
(F[28,560]=2.03, p<0.01) and Dose X Time (F[12,80]=12.076,

p<0.01) interactions. The low doses of nicotine increased
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Figure 1. Rate of bar-pressing as a function of stimulation
frequency under baseline (open circles) and nicotine (filled
squares) conditions. Data are from a single animal in each

dose condition; data in the nicotine condition were taken in
the second rate-frequency determination, approximately 30

min after injection.
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Figure 2. Mean threshold and asymptote values (expressed as
percentage of pre-injection baselines) as a function of dose

and time after nicotine injection.
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asymptotic responding; this effect was statistically
significant in the first two rate~frequency determinations.
The high dose decreased asymptotes during the first
determination and had no further significant effect on
asymptote. The high-dose suppression of asymptote was
correlated with frank ataxia, which was particularly
prominent the first two days of testing.

It was apparent from the time-course data that the
effectiveness of nicotine was significantly reduced by the
fourth threshold determination, so comparisons across days
were made on the basis of the means of the first three
determinations. This is reflected in the fact that wh.le
there were high-dose elevations of threshold and depressions
of asymptote on the first two days of ctesting, both
thresholds and the asymptotes were stable for the remaining
8 days of testing. While there were significant effects of
days in both the threshold and the asymptote data when
considered over the full 10 days of testing (F[9,180]=3.83,
p<0.01 and F[{9,180]=7.37, p<0.0l, respectively), there were
no significant effects of days when the data for the last 8
days were analyzed separately (F[{7,140]1=1.13, p>0.05 and
F[(7,140])=1.96, p>0.05, respectively). Both the elevations
of threshold and the depressions of asymptote were
associated with periods of obvious ataxia.

There were no significant differences between the

effects of nicotine doses on either thresholds or asymptotes
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as reflected in the ANOVAs for either days 1-10 or 3-10

(Fig. 3). While thresholds under nicotine were
significantly different from thresholds under saline (the
pre-nicotine saline data were compared to the effects of
nicotine on day 3 and on day 10; t=11.48, p<0.0l; t=6.79,
p<0.01l, respectively), thresholds under various doses of
nicotine did not differ significantly as reflected in an
ANOVA. While the differences between doses were not large
and were not statistically significant as reflected in the
ANOVAs, the effects of 0.2 mg/kg were consistently superior
to the effects of the two lower doses and the one higher
dose (binomial sign test, p<0.0l1; Fig. 4). All electrode
tips were located in the caudal aspect of the mesencephalic
central gray region within the area of the dorsal raphe

nucleus (Fig. 5).
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Figure 3. Mean threshold and asymptote values (expressed as
a percentage of pre-injection baselines) across days of

testing.
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Figure 4. Mean threshold and asymptote values across the
first three rate-frequency curves for test days 3 and 10
(expressed as a percentage of pre-injection baselines).
Asterisks indicate statistical significance of differences
between mean values for drug and vehicle comparisons.

(*p<0.05, **p<0.01l).
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Figure 5. Histological localization of electrode tip.
Reconstructions are based on the stereotaxic atlas of
Paxinos and Watson (1986). The number beside each brain

slice represents the distance posterior to bregma.
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Discussion

The present study confirms that nicotine shares with
other habit-forming drugs the ability to potentiate the
rewarding impact of midline mesencephalic brain stimulation.
At each of the four doses tested nicotine produced a
parallel leftward shift of the rate-frequency curve; that
is, nicotine reduced the "dose" of stimulation needed to
sustain responding at a given level. Thus the effects of
nicotine summated with the rewarding effects of the brain
stimulation.

Ataxia was evident in animals receiving the high dose
of nicotine on the first two test days. This high dose
effect was associated with increased self-stimulation
thresholds and depressed asymptotic response rates.
Tolerance developed to this high dose sedative effect of
nicotine with subsequent treatments. From the third day
nicotine decreased thresholds and the magnitude of the
threshold lowering effect of nicotine did not change from
one test to the next; there was neither tolerance nor
sensitization to the reward potentiating effects of nicotine
from the third day onward.

The failure to observe sensitization to the threshold-
lowering effects of nicotine is at odds with a prediction of
the psychomotor stimulant theory of Wise and Bozarth (1987).
The psychomotor stimulant theory offers two relevant

postulates. The first is that habit-forming drugs have both
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locomotor-potentiating and reward-potentiating effects. The
second is that common brain circuitry subserves both the
locomotor activating and the reward potentiating effects of
habit-forming drugs (Wise, 1988; Wise & Bozarth, 1987).

The theory thus predicts that treatments known to
increase the locomotor-potentiating effects should also
increase the reward-potentiating effects. However, while
repeated injections of nicotine have been shown to sensitize
animals to the locomotor-activating effects of the drug
(Clarke & Kumar, 1983a; Clarke & Kumar, 1983b; Ksir, Hakan,
Hall, & Kellar, 1985), repeated injections of nicotine
caused no such sensitization to the reward-facilitating
effects of nicotine. One possible interpretation is that
the locomotor-activating a.id the reward-potentiating effects
of habit-forming drugs are mediated by separate systems
rather than by a homologous neural system. Separate
branches of the dopamine system could, for example, mediate
the two nicotine effects. While it is true that habit-
forming drugs potentiate bot}t locomotion and reward, the
mechanism by which sensitization emerges may involve the
neural circuitry mediating locomotion but not reward.

Part of the power of the rate-frequency variant of the
curve-shift paradigm is the fact that it offers a ratio
scale with which to quantify and compare the reward-
potentiating, and, if the present analysis is correct, the

rewarding effects of different drugs and different drug
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doses. It is much more difficult to quantify and compare
the rewarding effects of different drugs using either the
self-administration or the place-preference paradigms. A
comparison of the effects of nicotine obtained in the
present experiment with those of systemic amphetamine
obtained by other researchers illustrates the power of the
curve-shift rate-frequency paradigm.

The maximum parallel leftward shift with nicotine in
the present experiment was approximately 0.2 log units. The
highest dose of nicotine caused less than this maximal
shift. Systemic amphetamine trezatment produces maximal
parallel shifts of 0.3 log units at a dose of 1 mg/kg (while
higher doses shift the curve even further, the shifts become
non-parallel at this point: Colle & Wise, 1988; Gallistel &
Karras, 1987). A 0.3 log unit leftward shift represents a
doubling of the efficacy of the brain stimulation (see
Gallistel & Freyd, 1987). It appears therefore that
amphetamine can potentiate the rewarding effects of brain
stimulation to a greater degree than can nicotine.

The maximum threshold lowering effect of nicotine was
obtained with a 0.20 mg/kg s.c. dose. The threshold
lowering effect of nicotine was weaker in animals treated
with 0.40 mg/kg. Despite the weaker threshold lowering
effect of the 0.40 mg/kg dose, the shifts of the rate-
frequency curves in these animals were still parallel. 1In

contrast to this, animals treated systemically with high
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doses of amphetamine present a different type of curve-shift
profile if tested immediately following the drug injection.
Systemic amphetamine injections beyond a dose of 1 mg/kg
result in reduced response rates for high stimulation
frequencies and increased responding for low frequencies
(see Colle & Wise, 1988 for illustration; Gallistel &
Karras, 1984). The shift of the rate-frequency curves
obtained following high dose amphetamine are no longer
parallel. Under high dose amphetamine, animals fail to
cease responding even when the stimulation generator is
turned off such that continued responding goes unrewarded
(Gallistel & Freyd, 1987; Gallistel & Karras, 1984).

The high dose effects of systemic nicotine and
amphetamine on brain stimulation reward using the curve-
shift paradigm suggest that there are very different limits
to the reward potentiating effects of these drugs. This
suggestion is consistent with known differences in the
mechanisms by which nicotine and amphetamine influence the
dopamine system. Nicotine potentiates ventral tegmental
dopamine cell firing (Calabresi, Lacey, & North, 1989;
Grenhoff, Aston-Jones, & Svensson, 1986; Mereu, Yoon, Boi,
Gessa, Naes, & Westfall, 1987). 1In contrast, amphetamine
causes dopamine release (Carlsson, 1970; Heikkila, Orlansky,
& Cohen, 1975) and does so even if dopamine cell firing is
blocked with gamma butyrolactone. Interestingly, the extent

to which a cell can fire is limited by the intensity and
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duration of the depolarizing intracellular current applied
to the cell. While application of low constant depolarizing
current increases cell firing, at higher depolarizing
currents the same cell enters into a state of depolarization
inactivation (Grace & Bunney, 1986). The ability of
nicotine to cause dopamine release in the nucleus accumbens
is limited at least in part by the capacity of the ventral
tegmental area neurons to conduct neural impulses. This
factor may explain why in the present experiment the 0.20
mg/kg dose was more effective in lowering self-stimulation
thresholds than the 0.40 mg/kg dose. Data from measures of
extracellular dopamine release into the nucleus accumbens
using the technique of in vivo microdialysis demonstrate
that amphetamine (1 mg/kg, s.c.) produces a 1000% increase
in dopamine release while nicotine (0.6 mg/kg, s.c.)
produces only a 220% increase. While amphetamine "floods"
the dopamine synapse, nicotine's ability to do so appears
limited by its mechanism of action. The degree to which
nicotine and amphetamine potentiate dopamine release
predicts the degree to which each drug can potentiate the
rewarding impact of brain stimulation.

It has been demonstrated in the present experiment that
nicotine like a variety of other habit-forming drugs, has
the ability to potentiate the rewarding impact of brain
stimulation. Thase data support the hypothesis that

nicotine may be functionally involved in the maintenance of



the tobacco habit.
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