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ABSTRACT
] . K
NONSTANDARD ASPECTS OF ANALYSIS .

-

Erika Jennifer Farkas

'
o

THis thesis, has been written in support of the claim

that nonstandard proofs in analysis are simpler than
stan.dard proofs. We*’giye a careful description of the

P iag

nonstandard characterizations of .a variety of key con-
cepts from calculus, topology, \functioqal analysis and
& l" » s - o

integration theory and demonstrate the logical simpli-

fications achieved in nonstarndard proofs by presenting

Y

detailed comparisons of well-known proofs from these

1

areas of mathematics.

‘
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In this thesis we present a variety of nonstandard characterizations

e

of standard concepts of analysis and describe the conceptual and .computa-

tional simplifications of the proofs of several well-known theorems in .

A

terms of these characterizations. It is remarkable how higher order ad

hoc set-theoretical constructions in standard proofs cAn be replaced in

.

"‘a unique way by lower 1>evel cor;cepts ingpired by analogies with finitist
reasoning. An inspection of many of thesnonstandard proofs given below
shows that they are obtained by simply writing down what ought 'to be true
and- then verifying that it is true. In this way, nonstandard proofs are

|
usually direct and avoid arguments involving negations, contradictions,
] < g p ;
and quantification over iterated power set objects.

]

A good example of the uniform nature of nonstandard criteria is that
for convergent sequences. In the standard case, different sequences may

;
satisfy a given ¢ condition from different points of their domain on- \
s ;’ -

wards and to prove convergence, these points must bé identified. In the

-

nonstandard case, all convergent sequences are inspectgd on the same part

of their domain, viz., at their wvalues at the infinite integers.

" ~

A closer examination of the n6nstangiard phenomenon reveals that
much of the proof-theoretical burden of analysis has, in a global and

uniform way, been shifted to the model theory of analysis, where all

-
.
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higher order au:giliary notio‘né require‘é in ‘proofs have been incorporated

once and for all into the base structure. The fact that this is possible

strikes the writer as quite extraordinary. The existential richness of

t

the nonstandard world requires not unexpectedly a sophisticated description.

Thus the introduction of such a seemingly strange object like a non-princi-
i

pal ultrafilter on a giwven infinite set cannot be avoided, unless it is

\ X
replaced by something no less immediate. However, the properties required

for the nonstandard proofs of theorems in elementary calculus , for example,

can and have been isolated and an axiomatic description has been given

(cf. KEISLER [1976] and RICHTER [1981]). Except for the questions of con-
tent and consistency, the subject is therefore independent of its set-theo-
N pe

retical description. The result is a richer proof theory for elementary

analysis. A higher order syntax has also been developed in NELSON [1977].

The directness and simplicity of nonstandard proofs has led to, a g
variety of new, theorems in standargd functional analysis, differential

v,

equations, probability theory, physics, and economics. For details we

refer the readex to ANDERSON [1976-77], BERNSTEIN-WATTENBERG (1969},

r

BERNSTEIN [1973], PENSON [1972], LIGHTSTONE-ROBINSON .{1975] , LOEB
{1972, 1974, 1975, 19791, RICHTER ({19811, ROBINSON [1966] '\ among othexrs.
The first major example of a new standard theorem was the Bernstein-—

Robinson nonstandard proof of the fact that a polynomially compact

2 e .
operator on £ has a closed proper invariant subspace.
J
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In our presentation, we have emphasized the réle/of nonstagc;ard

analysis as a tool for the discovery and proof of theorems in standard ,

~

analysis. Our reason fo¥ this appr:'oaf:h is partly \histofical and partly

conceptual. When asked "What is analysis?", the standard analyst can
. y ‘ *
point to a unique (up to ‘isomorphism) second ‘order structure IR on

B * . ' .
which his subject is based. This gives a ,certain canonical *nature t

his subject. The nonstandard enrichments *JR of IR have no such

uniqueness property since they depend on the ultrafilters used in the

3

construction of the nonstandard world. Only extremely powerful set-

theoretical "saturation" assumptions induce a certain urn&\ueness on *IR.

N

Thus the subject matter of nonstandard analysis, as a field of study in '
\ .
its own right, is context dependent: On the other hand, the complacency’

of standard analysts about the definiteness of the world they 1live in

-

must surely be shaken by the proven inabiiity of set theory to settle

4

even the cardinality of their universe, and by the fact that this unique-;
ness depends crucially on such classical prineiples of p;’oposvhtional
‘logic as the law of .the excluded middle and the law of contraposition.

In the context of the weaker intg;'.tionistic logic, 4non-isomorphic re_al
nuplber’systems based on Dedekind cuts in one cas@, and on Cauchy sequences

x

in the other, have recently been constructed (cf. GOLDBLATT [1979]1). :

The thesis is essentially self-contained and is divided into four
chapters according to the set-theoretical complexity of the nonstandard

céncepts employed: The first chapter contains only proofs involving the



.

A.
- use of infinitely small and infinitely large numbers. The second chapter

#
is devoted to the particu%arly beautiful and geometrically appealing non-
-4 .
standard deécriptions of the topological separation properties and of

¢

compactness. We illustrate with a variety of applications how the replace-

ment of neighbourhoo} systems by canonical netighbourhoods leads to direct

-

N ) ' and straightforward proofs of sometimes fairly complicated mathematical t
R A Y

, e facts. The third chapter exploits the existence of global elements of

concurrent relations in the nonstandard universes to replace va/rious

limit arguments, i.e., the use of "approximations from below" by arguments

involving a single hyberfinite "approximation from above". The method yields

x

an extremely transparent proof of the spectral theorem for compact Hermitian

operators orrs-Hilbe'rt; spaces, for example. The fourth chapter deals with
the general us{a of elements of the nonstandard universe in several mathe-"-
matic.;al setti;lgs. We give an elementary nonstar;dard proof of the Arzela-
Ascoli Theo'rem and develop the elementary theory of Riemann and Lebesque
:‘.n‘:egratlion .

Throughout. the thesis we have attempteci" to juxtapose standard and
nons;:andard methods in order to contrast thf logical complexity of the

proof theory employed in each clse. It is‘particularlyhinstructive to survey

the comparisons of standard and nonstandard proofs given in each chapter

‘and tonote the quantificational simplification achieved by working over
existentially richer nox;xstandard universe. Much \of the metatheory

in this way become part of the base theory. In this way existential
asserti?ns' can often also be proved directly without the use of arguments

by (\c‘:ongradiction.
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Most of the notations used in this theéis are self-expanatory or
are defined explicitly in one of the Appendices. We have simplifieg’ -
the presentation by using the letter o .as a.metavariable for metrics.
This ambiguity makes many of our provofs more re_adable. Other similar .
simplifica?:ions have been made .and are clear from the context. We have

al[so included the general description of standaéd and nonstandard uni-

-~

verses in terms of "superstructures" and "ultraproducts/". Further details

may be found in DAVIS [1977]. The symbol [ denotes either .the end of

a proof or the end of a discussion. ‘ h
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Continuous functions

4 ' ’ ° - -
1.1. Definition (Standard). The function f is continuous at xg € X~ L\'

if and only if (VE>0)(36>0) (VXEX) (p(x,xg) < & =»p(f(x),E(xy)) <€) .

-~
.

1.2. Defg',nition (Nonstandard). The function f is continuous at xg € X

-~

if and only if (VXE€*X) (x ® xp = f(x) = £(xg))

-

1.3. Theorem (Characterization theorem).. Definitions (1.1l) and (1.2) are

i
1

equivalent. ' g
- \ P ]

Proof. Let £ be continuous in the sense of (1.1). Then for any <{R+
there exists a § € n\{...- suclh that

S Pk (VxEX) (p(x,xg) < & = p(£(x),E(xg)) <€) . : .
By the Transfer Principle we have that '

WP (V%K) (p (x,x0) < 6 = p(E(x),E(xg)) < €) .

If 'x™ xq , then p(x,x9) < 6 since § is standard, and so it fallows

' that p(f(x),£(xg)) < € . Since € was an arbitrary positive real number,

p(£(x),£(x9)) is less than any positive real and so must be infinitesimal,
i.e., E(x) = £(xg) .

Conversely, suppose that x ™ xg = f£(x) = f(xq) for x € *X. Let

€ € IR+ and let '§ be any positive infinitesimal. Then
Bk (38R ) (VxE) (o (x,x0) < § = p(£(x),E(xg)) < €) .

By the Transfer Principle, f satisfies Definition 1.1, O

V' d

1
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Uniformly continuous functions

-
.

| ) | .

\

1.4, Definition (Standard). The function f is wniformly continuous on

X if and only if (Ve>0)(36>0)(waf'ex)(p(x,x‘) <6 = p(f(x),f(x')) <€) .

' I
1.5. Definition *Nonstandard). The function £ is uniformly continuous

on X if and only if ‘(Vx,x'€*X) (x = x' = f(x) = f(x')) .

\
L

']
1.6. THeorem (Characterization theorem). Definitions (1.4) and (1.5) are

y

equivalent.

Proof., Let f be uniformly continuousﬂin the sense of (1.4). Then for.
e R
each real ¢ > 0° there exists a real § > 0 such that

S (vxEX) (Vx'€X) (p (x,%") < 6 = p(£(0),E(x")) <€)

By the ;ransfer Principle, we have that M
W F. (VXE*X) (VX'E*X) (p(x,x') < § = p(f(x) ,£(x")) < &)

Tﬁus :,c(z x' implies that p(f(x),£(x')) 1is less than‘any real € > 0,

so that f(x)y® £(x') .. ﬁ%

Conversely, suppose that f\ is uniformly continucus in the ’sense of
(1.5) and let e € Ig'. Then p(£(x),£(x")) < ¢ if 6 4is any positive
¥ ! '
infinitesimal and x,x' € $X and p(x,x') < § . Hence

7 B (36e*R") (VxE*X) (VX'EXX) (p(x,x') < & = p(£(x),E(x')) < €)

The result 7Hbrefore follows by an application of the Transfer Principle. [

Y
o
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. 'E‘quicontinuous families of functions .

-
v ~

1.7. Definition (Standard). The family F of functions is equicontinuous
~ - .
on X if and only if

(Ye30) (3650) (VEEF) (Vx,x'EX) (p (x,x'} < & = p(£(x),E(x")) < €) .

1.8. Definition (Nonstandard). The family F of functions is equicontin-

uous on X if and only if (VEE*F) (Vx,x'E*X) (x = x' = £(x) =~ £(x')) .

»

1.9. Theorem (Characterization theorem), Definitions (1.7) and (1.8) are
) .

equivalent.

e

Proof. Let F be-gquicontinuous in the sense of (1.7) and let ¢ be a

positive real number. Then there exists a real 6 > 0 such that
7
S F (VEEF) (vx,x'€X) (p.(x,x"') < § » p(£(x),£(x"')) <€) ..
4
By the Transfer Principle, we have that

,
~ \"
W P (VEE*F) (VX,x'€*X) (p(x,x") < 6 = p(f(x),£(x")) ¥ e)'
Since € .is arbitraryb)it follows that x = x' = £(x) = f(x')
[N
Conversely, let F be equicontinuous in the sense of (}.8) and let
N .
EER . tygn -

W (38E*RY (VEE*F) (Vx,x'E*X) (p (x,x') < § = p(£(x),£(x*)) <€) .

The result therefore follows by an:application of the Transfer Principle. g
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Q e Cauchy eequences .

K 1.10. Definitipn' (Standard). A sequence <'x > is a Cauchy sequence

nEN
. 7
if and only if (Ve>0) (Ing€N) (mn > ng = plx_,x ) <€) . ¢ .

1.11. Definition (Nonstandard). A sequence < x > is a Cailchy se-

3
quence if and only if (Vm,n€*N-N) (x ~x) .
Y < -

1.12. Theorem (Characterization theorem). Definitions (1.10) and (1.11)
" . .

are equivalent.

: Proof. Let < x >nEN be a Cauchy sequence in the sense of (1.10) and *
; let € .be a positive real number. Then there is some ng € N such that

3 :"‘ L d . e“ -

n - ' N <y . b

- > ' “

; 5§ I ("nmEN)(m,m> ng = plx »x ) <€) . /

. *

By the Transfer Principle, we have that

R

;  ® F (nmerN) (nm > ng = plx_,x) <€) .

A fortiori, ‘p(xn,xm) < g for all n,m € *N-N , and since & was

4

arbitrary it follows thggz x = X,
n N
Conversely, let X ~ X for all n,m € *N-N and suppose that :

s

e’ is a positive real number. By choosing for ng an infinite integer,

H .

’
we obtain that ,

[

W (3ng€*N) (Vn,mE*W) (n,d > ng = plx ,x) <€) .

The result follows by ‘the Transfer Principle. [

it

Q

o

I PR TP




SO g,

Convergent sequences of constm{té

3

1.13. Definition (Standard). TMW@ to x
n nEN

; if and only if (Ve>0) (SnOE]éT) (n > 70 - p(xn,x) <g) .

1.14. Definition (Nepstandard). The sequence < x > eonverges to

EN
’ x 1if and only if (V¥n E*Nﬂ-m)(p(xn,x) = 0) .

l 3
\ 1.15. Theorem (Characterization theorem). Definitions (1.13) and (1.14)
\ are equivalent.
n\ ! \ ’ \3‘%‘ A ‘
f//“, Proof. sSuppose that < X >nEN converges to x in the sense of (1.13).
¥ .
‘ ~ Then for all positive real numbers ¢ there exists a ng(g) € N such
\ o ' %
| . that \ ~
s l"_(‘v’nE]N)(n>no"’p(xan) <€) |
. L}
b By the Transfer Principle, we have, that
P . ‘ . °
<\ W F (Yn€*N)(n > ng = p(xn,x) < g)
\ .
\ -
‘ Since ng(e) is always finite it follows that p(xn,x) < € holds for
A .
4 \ all n € *N-N . This statement is true for all e > 0 . We therefore
¥ .
' \\ have p(xn,x) ~ (0 forall n€ *W-N . .
A ’ ‘
\ Conversely, let p(xn,x) % (0 for all n € *N- N and choose a
\ - -
y .
| positive real number ¢ . Then, a fortiori, p(x ,x) <e forall n€&
\ ) i
\ \‘, *N-N . In particular, if ng is some fixed infinite integer, we have
‘_, ‘ “(\) (x ,x) <e for all n > ng . Hence .
' 'wf \ ‘W ok (3ng€*N) (¥nE*W) (n > ng =+ p(x_,x) < ).
! Thé result follows by an application of the Transfer Principle. [
\\ -
, \
. \ ‘
% \ |
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) Convergent sequences of functions

' N

t

1.16. Definition (Standard). The sequence < fn> of functions

neN

eonverges to the function f£:X + R if and only if

(Ve>0)(VxE%?(3nQQ@l)(n > ng = p(fn(x),f(x)) < e) .

1.17. Definition (Nonstandard). The segﬁence < fn:ﬁue:n _of functions

v
#

convergeg to the funqﬁ@on £:X+ R if and only if .’

* (VXEX) (Vn € *N - W) (£_(0) % £0x)

el
PR

1.18. Theorem (Chaé&cterizatiCn theorem). Definitions (1.16) and (lfi?)

are equivalent.

'
\

Proof. ﬁet fn +f on X in the sense of (1.16) and let € be a
posit%ve real numbe«. Then there exists a ng € N ;uch that
§ b (€M) (n > ng = p(£ (x),£(0)) <5 . .
’ By the Transfer Principle, we have that

WP (YnE*N)(n > ng = p(f (x),E£(x) <e) .

A fortiori, p(fn(x),f(x)) < g holds for all € > O, ‘hence fn(x) ~ f(x)

" £6c all n > ng ,ﬁiq particular for all n € *N- N .
Conv;rsely, aéguhe that for all x € X and all n € *N- N it holds
that fn(x) & f(x) , and let € be any figed;posi?ive reé} number \ Then
W = (3ngE*N)(VNE*N)(n > ny = p“(fn(x)),f(x)) < €) '
The result follows by an application of tﬁe Tragséer Principlei 0 M
o] .
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Uniformly convergent sequenceg of functions
1.19. Definition (Standard). The sequence < fn'>nE N of functions

2

converges wniformly to the function £ :X + R 'if and only if

(Ve>0) (3n €W ) (VXEX)(n > ng = p(fn(x) L(x)) <€) .

1.20. Definition (Nonstandard). The sequence < fn > en - of functions

converges uniformly to the function £ :X » IR if and only if

(VXE*X) (Vn € *N - N) (f'n(x) ~ f(x)) .

1.21. Theorem (Characterization theorem). Definitions (1.19) and (1.20)

are equivalent.

-

Proof. Let the sequence < fn> converge uniformly to £ in the

nE N

sense of (1.19) and let ¢ be a positive real number. Then there exists
a ng € N such that

§ b (VnEW)(VxEX) (n > ng = p(£_(x),£(x)) <8
By the Transfez" Principle, we have that

Bk (VoE*I) (VXE*X) (n > ng = 0 (£_(x),E(x)) <€) .

-

Hence we have fn(x) ~ f(x) for all n € *N-N since for any € > 0

we always have a finite ng such that n > ng = p(f ¥x),£(x)) <€ .
-

Conversely, assume that for allr x € *X , and for all n € *N-N ,

fn(x) ~ f(x) , and let ¢ be any fixe@ positive real number. Then

S

W P (3ngE*W) (VnE*N ) (VXE*X) (n > ng = p(E (¥),£(x) <€) .
. , s |

The result follows by an application of the Transfer Principle. [

o



R R T

PR S 12

T IO A ko

o

’
Complete metric spaces

o -

1.22. Definition (Standard). The metric space X is complete if and

only 1f every Cauchy sequence in X converges.

1.23. Definition (Nonstandard). The metfic space X is complete if

°

and only if for every remote point p € *X there exists a rea umber

r > 0 such that p(p,q)-z r for all g € X . K

1.24., Theorem (Characterization theorem). Definition‘(l.ZZ) and (1.23)
are egldvalent.

-

Proof. Suppose that X is complete in the sense of (1.22) and that
the conclusion does not hold. Them® for some remote p € *X there is a

standard sequenéé < qntzie such that p(p,qd) <1l/n for n € N.

N

Therefore

pla iq )-3 p(qm.pY +plg,p) <1/n+ 1/m,

so that tbe sequence < qn> is a Cauchy sequence. By the complete-

A

nEN
ness of X we have that g € X . But then

p(p,q) = p(p,qn) + p(qn,q) < 1/n +'o(qn,q) P

for all n‘E N , so that p(p,q) ® 0 , which contradicts the remote-

o
negs of p .

4

Conversely, let < xn>

o

nEN be a Cauchy sequence and let Vv be

an infinite integer. By elementary properties of Cauchy sequences (cf.

DAVIS [1977]) it suffices to show that X, is near standard. Suppose

o

A <k B v bt~ n
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X, is remote. By hypothesis, there exists a real r > 0 such that

!/ .
‘ip (x\),q) 2r for all q € X . In particular, p(xv,xn) 2 r for all
Jjen .

- e

n € N. Since < xn >nE:N is a Cg‘tchy sequen‘ce. there is a.n € N,

such that , .
' /
S |" (Yn,mEN) (n,m > ng = p(xn,xm) <r) .

By the Transfer Principle, we have that

W }- (Vh,mE*WN ) (n,m > np = D(xn.xm) <1 .

Choosing m =n and n any natural number greater than ng , we get

a contradiction. [O°

R ' &
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Some standard theorems (A comparison of standard and nonstandard proofe)
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1.25. Theorem (Intermediate value theorem). Let f be a continuous !

™

real-valued function on {a,b] and let £f(a) < 0 € £(b) . Then ther\e

exists a c€ (a,b) such that £(c) = 0. »

Proof (Nonstandard). For each n € N , we define a sequence

»

o

< i) >
t(n,1) nE N
parts as follows:

a+—f;-a-i if nEN and 0 5.1 S n

of partit:‘;ons of the interval' [a,b] into n equal

»

(*) t(n,i) =
. 0 otherwise . Lo

This yields a.double seéquence t: N xIN + R with a star extension

*t ; *IN x *IN + *R whose values are defined by the terms *t[<n,i>
~ ©

)

for n,i € *N . By the Transfer Principle, (*) holds for all n,i € *\]N' .
+ Next we choo‘se‘a v E *IN-N and consider the set

L={i€*N | £(t(v,i)) >0, isv} ., .

N
\ vu

’ R S
By the Internal Subset Theorem, L is an internal subset of *N since it ™ ™,
a L

is defined by the formula (i € *WN) A (f[ (t[<v,i>)) > 0) . Furthermore,

L is nonempty since we have assumed that £(b) > 0 and therefore v €L.

By the Nonstandard Induction Principle, L has a 1easf ekement Jj. Iﬁ‘

follows that £(t(v,3j)) > 0 . By hypothesis, £(a) < 0, so that § #0 ,

é

and therefore f(t(v,j-1)) & O . Furthermore, ¢t(v,j) is finite since

ast(v,j) sb.
Let ¢ = st(t(v,3j)) , so that c =~ t(v,j) . By definition, the
difference between t(v,j) and t(v,j-1) is 255 ; i1.e., ir;finitesima;l,

and therefore t(V,3) = t(v,j-1) .
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By Theorem 1.3, we therefore have f£f(t(v,j)) ® £(c) and also

)

£(t(v,j~1)) = f(c) . Since f£f(c) is standard, we can therefore con-

. d}ude that f(e) = st(f(£(v,))) = st(£(t(v,3-1))) . By virtue of

the chosen inequalities ahd the Standard Part Theorem, it therefore

Ll

follows that- £(c) = st(£(t(v,j))) = st(£Tt(v,3-1))) . Hence we have

> 1

f(e) =0. 0O

Cb@parison with a standard proof (RUDIN ,[1976]).

»
4
i

Structural difference. *

Basic steps of the nonstandard proof-
. S .
(1) The construction of a sequence of partititons of [a,b] .

(2) The construction of an internal subset L of *N contain-

ing an infinite integer v .

(3) The verification that the standard part of the value of *f

B L

involving Vv is the required point c¢ .
= Basic steps of the stghdard proof.
‘ 7
L
- (1) The proof that [a,b] is connected.
(2) The prdéf that f(la,b]) is connected. X
B t
¥ (3) The proof that any point between two points of £f({a,bl)
- . belongs to £((a,b]l). - o
“ / ' )
Logical difference. o u

-

Principle and the Transfer Principle. The standard proof, on the other

The nonsetandard proof is direct, contains no negations, involves only

. the first order quantifier (3jJ€EWN), and uses the Nonstandard Induction °

ST ST RN DO
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i

B hand, involves three nested proafs by cox;xtradiction, and contains several
. ¢
negations of the second order quantifier (JUEpP(R)) . l /

' Mathematic&i di fference .

rs

4

The nongtandard proof uses the Internality and Standard Part Theorems,
whereas the gtandard proof uses the fact that the inversq image of an open
.

set under a continuous function is open. [
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1.26. Theorem (Maximum value theorem). Let £ be 'a continuous real-

valued function on [a,b] . Then f has a maximum value.

1

Proof (Nonstandard). Let t(n,i) be defined as in Theorem 1.25. Then .
' ®

"§ k (VnemW)(Ji€EN)® , where ® is the formula
(0 S isn)A(YIEN)((0 S j s n) = (£ (tl<n,i>) 2 £l (tl<n,3>)))
because the finite set { £(t(n,0)), ... , f£(t(n,n)) } of real numbers

has a maximum. ° ,

From the Transfer Principle it follows that for any v € *N-N ,
N .

.

there is a i, 0SS i s v, such that for all j , with 0sjsv,

f(e(v,1)) 2 £(t(v,3)).

Let ¢ = st(t(\),i)') , and let x be any standard element of [\a.,b] .

\By the Transfer Principle, there is a j < v such that t(v,j) s x =
t(v,j+1l) . Since P—;-E-@ EJ . it ffllows that X = st(t(v,j)) . By the
continuity of £ ,

f(c) = st{£(t(v,i))) 2 st(£(t(v,))) = £(x) .

Therefore, f(c) 1is a mum. []

Comparison with a standard proof (SPIVAK [196,’9/5 .

Structural difference.
%asiq steps of the nonstandard proof.

(1) The proof that a hypei:'finj.te set of finite hyperreal numbers

has a maximum.

.

(2) The verfication that the standard part of this maximum is the

required value. :

3 open e s W -

)
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Basic steps of the standard proof..
. * \
{1) The proof that the range of £ has a supremm&.
§. (2) The definition of a special continuous function g on [a,b] . -

(3) The proof that g is unbounded if the supremum of ' £ is not
avalue of £ ..
Logieal difference.

The nongtandard proof is direct, contains no negations, involves

* the first order quantifiers (Vn€MN) , (In€N) , (Yn€*N) , (In€E*W),

p
and (Vn€*N-N ) , and uses the Transfer Principle. The standard proof,

on thg other hand, contains the negative statements that the supremum of
f is not a functiorlxal value, that the‘function g 1is not bounded, and
involves both the first order quantifiers (Vx€mR) , (IXER) , and the )
second order: quantifier’ (IVEP(R)) (assertix';g the existence of a least
upper i)ound) . It uses both the law of the excluded middle and the contra-
positive law.
Mathematical difference.

The nonstandard proof uses the Intermediate \‘Ialﬁe' an§ the Standard
Part Theorems, whereas the standard proof uses the completeness property

of R , the fact that a continuous function on [a,b]' is bounded, to-

gether with the Intermediate Value Theorem. [
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1.27. Theorem (Uniform limit theorem). Let < £ 5> ey bea sequence

of continuous functions converging uniformly to the function f on X,

Then £ is continuous on X .

»

2. Y

Proof (Nonstandard). Let x' € X and x € *X , where 'x = x' . We
s °& ’ .
need to show that £(x) = £(x') . For n finite, each .fn is continuous,

so that the internal sequence < p(fn(x) ,‘fn(x')) > of hyperredl”

y nE*Nﬂ
numbers is infinitesimal for finite n . Hence by. the Infinitesimal Pro-

longation Theorem, there exists a v € *WN-N such that p(fn(x) ,fn(x'))
20 forall n<v . Let 4 € *N-N and u < v . Then fu(x) & fu(x') .

By hypothesis, £(x) = fu(x) and fu(x') ~ f(x') , hence f(x) = £(x") . 0O
Comparison with a standard proof (RUDIN (1976]) .
Structural difference.

Basic steps of the nomstandard proof. : -

N (1) The construction of an internal sequence of real numbers.

(2) 'I:he prciof that for all infinite integers, the values of this
sequence are infinitesimal. ' _ ¢
\(3) The'verification\of the nonstandard continui;;y criterion.
Basic s;:eps of the standard proof.
- (1) The construction of a convergent Cauchy sequence.
(2) The verification of an € estimate. i
(3) The introduction of a suitable neighbourhoc;d of a given.point

s
satisfying an ¢ condition.

(4) The verification that all points in this neighbourhood satis-




N

Mathematical difference.

24

&fy the required ¢ condition. . (/

Logical difference. P

Both proofs are direct and involve no negations. The nonstandard
proof. contains only the first order quantifiers (VnEN) , ’(SnEN) .

and (3n € *N- X ) , whereas the standard proof, in addition to con-

\

taining the first order quantifiers (Yn€MN) and (In€ W) , also

i

quantifies over the points of X in the form of (Vx€X ) and (VxEVEpP(X)) .

The nonstandard proof uses the Internal Function and Infinitesimal
Prolongation Theorems and the nonstandard criterion for continuity, where-

as the standard proof uses the fact that Cauchy sequences converge. [ '

N

\
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1.28, Theorem (Bolzano-Weierstrass theorem). Every sSequence in a compact

metric space has a convergent subsequence.

Proof (Nonstandard). Let < X >nGN* be'a sequence of points of a space
X . It is clearly sufficient to show that this sequence has a limit point
é.n X . For this purpose we let v be a infinite integer. By the compact-

ness of X , x, is near standard, i.e., X, ~x for some x £ X andr

so X 1is a limit point of the given sequence. [J
Comparison with a standard proof (RUDIN [1976]).

Structural difference.
Basic steps of the nonstandard proof.
(1) Tl@ proof that for any infinite intt::qer‘ v the values X, of
a given sequence are near standard. )
(2) The verification that the standard part of any such x, is a }
limit poiﬁt of the given sequent.:e.
Basic steps of the standard proo;". ' ' t
(1} The observation that a sequence with finite range mu;t have

a value that is repeated infinitely often.

(2) The verification that a sequence with infinite range has a

limit point.

(3) The construction of a subsequence converging to that limit

.

point.
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Logical difference.

The mnst&ndard proof ct;ntains no negations and the single first
.order quantifier (3Ix€ X) . The standard. proof, on the other hand,
involves four negations: (1) The denial of the exis‘tence of a limit

L)

point; (2) The denial that there exists'a finite subcover of some cover
of X : (3) The denial that neighbourhoods of limit points meet X infin-—‘
itely often; (4) The denial that a given point is a limit point. The Iproof
involves the following first, second, and third order quantifiers:
(EW) , (VYxXEX) , (3xEX), (FJUuEP(X)) , (IcEP(P(X))) and uses both
the law of the excluded middle and the law of contrapositiog,
Mathematical difference.

The nonstandard proof uses merely the nor}standaz"é criterion of
compactness, whereas the standaz’a% proof uses the additional facts that
any infinite subset of a compact set has a limit point in the set and
that every neighbourhood of a limit pointa,? of a sef contains infinitely

s

many points of that set{. 0
\
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1.29. Theorem (Dini's tHeorem). Let < fn > be a sequence of con-

i

nEN

. tinuous real-valued functions on a compact space X ,'let fn+l(p) s fn(p)
for all n&€ N and all p € X , and let fn(p) +- £(p) for all p € X,

with £ continuous on X . Then the sequence < fn >n converggs uni-

EN
formly to £ on X.

Proof (Nonstandard). Without loss of generality we may assume that £(p) = O .

By hypothesis, if p2m , with n,m&€ N , then O 3 fn(p) = fm(p) for

all pE€ X .let VE*™N-N and p € *X . It suffices to establish that

fv(p) ~ O . By the Transfer Printiple, we have that 0 S'fv(p) s fn(p) for.

all n€ W ., o :

Since X 1is compact, p*~ q for some q € X . Furthermore, since
each fn is continuous by hypothésis, it follows that fn(P) i fn(q) for
each n € N , and so, sinvce fn(q) € R , we have that fn(q)’= st(fn(p)).
Since fn(p) is finite, so is f\) (p) and hence near standard.','l‘;xerefore
0 S st(f (p) S st(£ (p)) = £,(q) forall n€N . Since \‘fn_(q) >0 ,

o~

we therefore have- that st(fv(p)) =90,+i.e., f'v(p) =0 ., 0O
-~

[

Comparigon with standard proofs (FULKS [1961], GOLDBERG [1964], ROYDEN

[1968]) .

\

\

Structural differences. : ) .
Basic steps of the nonstandard proof. ( -

(1) The observation that any point p€ *X is infinitely close to

[
"

'some point gq € X .
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*

(2) The proof that for any infinite v the values fv\:(p) are

finite for all pbints p € *X .

Q

(3) The verification that the standard part of £ v (p) is 0O .

Basic steps of the standard proof by Fulks. .
(1) The definition of a sequence of real numbers made up of the

expressions suplfn(x) - £(x) | (taken over ([a,b] ) .
(2) The extraction of a subsequence with a positive lower bound.

(3) The introduction of a sequence of points of [a,b] which
allows the expression of the terms 6f the sequence in () 1

in terms of the values of fn and £ .

(4) The verification that the sequence of pbints in (3) converges,

(5‘) The use of (2) and (4) to construct a sequence of real numbers
,'3
that does and does not converge to 0 . -

Basic steps of the standard proof by Goldberyg.

(1) The definition of the.functions g, = f - fh . o
’ ~

(2) The association with each. x € [a,b] of an index n € N

such that gn ‘satl:isfies an- € condition at X .
B (3) The association with each x € [a,bj of an open ball whose
123
elements‘satisfy an e condition.
(4) The sz/electism af a finite subcoyer of the cover constructed.
in (53) .

(5) The wverification of the abpropriate ¢ condition.
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'.For our purposes, these variations are inessential.

29

Basic steps of the standard proof by Royden.
(1) The construction of an open cover of X .
(2) The extraction of a finite subcover of the cover constructed
in (1). v
(3) The verification of an &£ condition.
We remark that in FULKS ([1961] and GOLDBERG [1964] + - the Theorem is
stated for functions defined on [a,b] in piace‘rof é compact metric

space X , and that in ROYDEN [1968] the Theorem is stated for upper

semi-continuous funcfioné defined on a countably compact space X .

’/

Logical differences. 1 !

The nongtandard proof involves no negatuions‘ and contains only
the first order quanti;:'iers (\ng N) , (vx€X) , and {Ix€X) and
uses the Transfer P;:inciple. The stanéard proof by Fulks is indirect
and involves three denials: (1) The denial that the given sequence
converges uniformly; (2) JThe denial that the sequence constructed in
Step (1) converges to O ; (3) The denial that the sequence constructed
in Step (5) converges to 0 . The proof contains the first order qua;xt—
ifiers (VMMEN) , (mEW) , and (¥x€X) , and the second .order
quantifiers (Is€pP(Nx N)) and (IsEP(WN x R)) . Ituses the law
of the excluded middle and the contrapositive law. The standard proof
by Goldberg is direct and involves no negations and only the first order

@

quantifiers (Vn€N) , (InEN) , (EX) , and. (3xE€X). The standard

proof by Royden is also direct. It involves no negations, but contains
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both first and third order guantifiers: (Yn€XN) , (In€EN) , (VxEX) ,
and (YCEpP(p(X))) - ' ‘ i

v .

The nonsgtandard proof uses the nonstandard criterion for compactness

Y
Mathematical differences.

and the Standard Part Theorem. The standard proof by Fulks uses the Max-

imum Value Theorem and the fact that a bounded sequence of real numbers

has a limit point and th:erefore a convergent subsequence'. The standard

proof by Goldberg uses the fact that open balls form a topological base

and the fact that the inverse images of open sets under a continuous,
function'are open. To make the-comparison with the standard proof by * - (;)
Royden complete we .require the additional fact that a metric space is i
compactvif and on}y if it is counfably compact, the fact that a function *

is continuous if and only if it is both upper and lowex semi—continuous“,

and the fact that the inverse images of open sets under a continuous

y
o

function are open. [ ' 3
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In this chapter, Q denotes, ambiguously,

the class of open sete of a given

ical space X , and Qp . denotes

netghbourhood system of the point
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Hausdorff spaces - )

2.1. Definition (Standard). A topological space is ‘Hausdorff if and only

if for any two distinct points p and g there exist open neighbourhoods

U(p) and V(q) such that U(p)NV(g) = @ .

2.2. Definition (Nonstandard). A topological space is Hausdorff if and

only if for any two distinct points p and q uip) Nulg) =@ .

2.3. Theorem (Characterization theorem), Definitions (2.1) and (2.2) are
/7

equivalent.

Proof. Suppc?,;e the space is Hausdorff in the sense of (2.1). Then the
giv:n points p and g have disjoint open neighbourhoods U and V . ‘
Thus @ = *g = *\(U‘ﬂ V) = *UN*V | Since u(p) € *U and u(q@) < *V , we ‘]
have u(p) ﬂu(%) = ;1 . ‘ J
Cénversg]?{;:,’ if  uip) Nuiq) - Iﬂ , then it follows from the Monadic
Neighbourho/od Theorem that "there exist i{l\ternal open sets U and V

3
such that p€U, g€V, and UNV =g " . Thus

~ W O NIUE*R) (VE*Q) (PEGAGEV A UNY = ) .

The result therefore follows by an application of the Transfer Pri}xciple. d

& ‘s
N ;

R L d
“ [
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Regular spaces
{

i >

2.4. Definition (Standard). A topoldgical space is regular if and only

if for any point p and any closed set S not containing p there

exists open neighbourhoods U(p) and V(S} such that U(p) '(\V(S) =g .

2.5. Definition (Nonstandard). A topological space is regular if and
only if for any point p and any closed set S not containing p/,/

wp) Nus) = g . '

2.6. Theorem (Characterization theorem). Definitions (2.4) and (2.5)

are egquivalent.

i

Proof. Suppose the space is regular in the sense of {2.4)". Then for . :}\"" .
any point' P and any closed set S not containing p there exist

disjoint open neighbourhoods U and Vv . Thus & = = 2 (UNV) = *UN*Y

%

Since S <V , it follows that *S C *V (cf. Appendé( 3, Property 7).

1]
By the definition of monads we have \

0\

wip) = N *U and u(s) = (O *vV ,-
- pEUCQP ScycQ ’

hence u(S)N*U =@ and the result follows. ..
Conversely, if u(p) Nu(s) = g , "there exist internal open sets U

and ‘O such that p&€ U, *s <V, and UNV = g " ., Thus

[

. W F (UE*)(WE)(pEU A *SCV A UNV = @)

The result therefore follows by an application of the Transfer Principle. [J
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Normal spaces .

v

2.7. Definition (Standard). .A topological space is normal if and only

.
:
7

) /‘9

if for any two disjoint closed sets S and T there exist open neigh-

. bourhoods U(S) and V(T) such that U(S)NV(T) =9 .

2.8. Definition (Nonstandard). A topological space is normal if and

o

enly if for any two disjoint closed sets S and T , u(S)Nu(T) =4 .

-

2.9. Theorem (Characterization theorem). Definitions (2.7) and (2.8)
-

W *
are equivalent.

.
! L4

Prpoof. Suppose the space is normal in the sense of (2.7). Then for
* the given disjoint closed sets S and T there exist open neighbour-

*(UNV) = *UN *V | Since

hoods U and V . Thus {@ = *g@

- - 0. ' - N
: JH(S) = et and W) = o oV
: -it follows that u(S) Nu(T) =@ . . . "

]

Conversgly, if u(s) Nu(m) @ , then "there exist inMYnal open i
sets U and V such that *Sc U, * cV, and UNV = g-" . Thus

W F (UE*R) (IVE*Q) (*SCU A *TSV A UNV = g) .

3
SRt A Tt e B A T T

a oy

The result therefore follows by an application of the Transfer Principle. [
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Compact spaces

°

’

2.10. Definition (Standard). A topological space is compact iff and only

if every open cover has a finite subcover. .

2.11. Definition (Nonstandard). A topological space X 1is compact if

and only if for every pE*X thePe exists a g € X such that p € ulqg).

5

2.12. Theorem (Characterization theorem). Dpefinitions (2.10) and (2.11)

are equivalent.

Proof. Suppose X is compact in the sense of (2.10) and let p € *X ,

but p € u(q) for any q € X', so that for each g€ X, p & SEQ*V .
1 . q )
It follows that for each g € X , there is some Vq € Qq such that
*V . Since ev X< U V_, and so by the compactness of
p £ q q q " gex Vg : Y p
X there exist q;, ..., 94, € X such that X c:Vq Uu...uv , il.e.,
1 ;

S F (vxEX)(x €V U ...UV )
q, a,

But p € *X , and by the Transfer Principle we therefore have that“

Wk (YE*)(x €E*v U ... U *v. ) ,
94 ‘ 4,

so that p belongs to one of the *v P oeee 1 *V , which is a contra-
o P

q

" diction. 2

Cdnversely, suppose that for every p’'€ *X , p € u(g) for some

g € X, but that X is not compact. Then there is an‘bpen cover G of
}(ﬂ;hich has no finite subcover. Let C ’
- r={<Ana>| A€EG, a€x,agarl.

The relation r is concurrent: For each A € G, there is a p € X

TP IR ST P

el A
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such that < A,p> € r , otherwise { A} would cover X . Hence the

domain of r is G . Let A

1o Am € G ., By hypothesis, the set

{a, ..., A } does not cover X , hence there is a p € X such that
pQAl ... U Am , i1.e., <A],p>‘, eve o < Am,p> €Er,so r is
concurrent. |

By applying the Concurrenge Theor.em, we have the existence of a
Furthermore, since

p € W such that for every AEG , < *A,p> €r .

7

*r C *Gx *X , it ‘follows that p € *X . Now'for each A €G,
S F (vaEx)(<A,a> €Er =» ag A) .
“By applying the Transfer Principle, we have that \/

By hypothesis,' there exists a g &€ X such that p € u(g) , and so

(Vae*X) (<*a,a> € *r = a & *A) ,

g €A for some A € G . Hence we have that p € u(q) € *a , since
H(q) is the intersection of all *A with A € Qq #ha therefore both

p€ *A and p & *A , which is a contradiction. [

b
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J
2.13. Theorem (Uniform continuity theorem). If £ is continuous on the

*

‘compact space X , then f is uniformly continuous on X .

o

Proof (Nonstan@ard). By Theorem 1.6, it suffices to show that f satis-
fies the nonstandard definition of continuity on *X . Let x,x' € *X
where x ~ x' . We have to show that £f(x) = £(x') . Since X 1is.compact,
x® t for some t &€ X, and hence x' ® t . Thus f£f(x) ® £(t) and

f(x') ® £(t) , since £ 1is continucus on X . Consequently, we have that |,

f(x) = £(x') .. [
Comparison with a standard proof (RUDIN [1976]). ’

Structural difference.
Basic steps of the nonstandard proof.
(1) The verification that every point of *X is near standard.
(2) The verification of the nonstandard criterion for uniform
continuity.
Basic steps of the standard proof.
(1Y The construction of a functiog $ : X -+ IR whose values satis-
i
(2) The construction of an opeA cover involving the function ¢ .
(3) The selection of a finite subcover.

N

Logical difference. . ) - '

(4) The verification of an ,e condition.

" Both proofs are direct and do not involve negation. The nonstandard

’proof contains the first order quantifiers (3x€X) and (VxE*X) and

o
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o

the standard proof contains the firﬁst order quantifiers (VnEN) ,
(Vx/E X) and  (3x€X). Thus the ext‘x:anleo;ts quantifier (Va€EN) in
thez standard proof is absorbed into the canonical nonstandard quan‘ti-
fier (VXE*X) in i;he ho\nstandard proof.
Mathematical di fference .

Whereas the nongtandard proof uses no additional mathematical

-properties, the gtandard proof relies on the fact that the minimum of

a finite set of positive numbers is positive. [
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2.14. Theorem (Equicontinuity theorem). If < £ > ey IS a sequence

of continuous functions on a compact space X and if f}éf) - £(x) €%
-y

for each x , then the sequence '§)fn>n converges uniformly té\‘{ /

EN

if and only if it is equicontinuous.

Proof (Nonstandard). Suppose the convergence is uniform. Then it follows

from the Uniform Limit Theorem that £ is continuocus on X . Further-

more, since X 1s compact, f and all fn are uniformly continuous on
X , and hence they satisfy the nonstandard definition of continuity on *X .

{cf. Theorem 1.3). Let v_§ *N-N . Then, if x,x' € *X and x = x' , we

3

have fv(X) ~ f(x) = £(x') = fv(x') . Therefore fn satisfies the non-

-

standard definition of continuity for n € *N- N . Since, by hypothesis,

this holds for all n € W , it follows that < fn> is equicontinuous.

nEN

Conversely, suppose that the sequence is equicontinuous. Then the
compactness of X guarantees that for any x' € *X there exists ; x € X
with x' ~ x , and by continuity, £ (x') ~ £ (x) for all n€ *NW .
Moreover, for v € *N-N , f\’(x) ~ f(x) . By the Transfer l?x;i;nciple,

f is (uniformly) continuous on X , so that £(x®) = £(x) . Thus we have

that £ (x') = £ (x) = f(x) = F(x') for all v € *N-N and so the con-

vergence is uniform. [J

a

i
Comparison with standard proofs (ROYDEN [1968), RUDIN [1976]).
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Structural difference.

Basic steps of the
(1) The prcof

(2) The proof

u(3) The proof

(4) The proof

(5) The proof

nonstandard proof.

that
that
that

that

£

f.

£

f
Y

is continuous on X .

and - fn‘ are uniformly continuous on X .

and

is continuous on

fn ‘are continuous on *X .

that every point of *X is near standard.

(6) The verification of an - infinitesimal estimate.

Basic 'steps of the standard proof. o

(1) The verification of an

[§

(2) The construction of an open cover satisfying an € condition.

e-8~-n estimate.

(3) The selection of a finite subcover.

¥X for vV E *N-N . -

(4) The'verification of an € condition invelving an n € WN.

L(S) The verification of an ¢

Logical difference.

condition involving the points of X .

Both proofs are direct and involve no neéations. The nonstandard

e

(VxE*X) , (3IxE*X)

, and -

(IxE€X)

. The proof uses the Transfer Principle.

The stagndard proof contains the first order .quantifiers (Vn §)M '

f(VX.EX) », (Ix€X) and the second order quantifiers (3UE€p(X)) and

(VkEUEpP(X)) . It also contains the third order quantifier

Mathematical difference.

2

o

(3cep(px))) .

The nonstandard proof uses the Uniform Limit and the Uniform Continuity

Theorems, and the nonstandard criteria for continuity, uniform'continuity,

proof contains only first order quantifiers. They are (Yn€N) , (Yn€*N-N) ,




.
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and compactness. The standard pboof uses the Uniform Continuity Theofem,

the fact that the inverse image of an open set under a continuous function

[

is open, the fact that the open balls form a basis for fhe metric topology,

and the fact that every point of an open set is an interior point. .[J

-
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ot

- 2.15. Theorem (Compact image theorem). If £ is continuous at each

poiht of a compact gpace X , then ~£[X] is compact.
LA
For the proof of Theorem 2.15, we use the following nonstandard

o

characterization of continucus functions:

2.16. Theorem {Nonstandard continuity theorem). Let £:X+ Y be a
function between topological spaces and let p € X. Then of is con-

tinuous at p if and only if q = p = *£(g) =~ £(p) .

v

?roof. Suppose that £ 1is continuous at p and G is any open
neighbourhood of £(p).,. Then there eoxis'gs an open neighbourhcod
H € Qp such nthat f[Hl € G and so *f[*§] < *G¢ (ef. Appendix 3,
Properties 7 and 9). Since pip) < *H , it is immediately cle:;!.r

that *f(u(p)] © *£[*H] © *G . Hence *flu(p)l < N *G ,

G € Qe
i.e., *E[u(p)] < u(E(p)) P :

Conversely, by the Monadic Neighbourhood Theorem thére exists
an internal set D such that D & *QP and D < u(p) . By hypothesis,
we have that q;E D implies *f(q) € u(f(p)) , so that if H is any
open neighbourhood of £(p) , then q € D implies *f(g) € *H . Hence
for any H € Qf

(p) '
Wk (30E*Q ) (VxED) (£ (x) € *H) .
By the :rransfer Principle, we have that
i § B (3me Q) (¥x€D) (£(x) € H) .
Thus we have an open neighbourhood D of p such that £[DJ < H ,

and so f 1is continuous at p . 0O

[

Titast e

A acionz i,
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) ‘ ¢
Proof of Theorem 2.15 (Nonstandard). Let gq € *(f[X]) . éy Broperty 9
of Appendix 3, *(£[X]) = *£f[*X] , so that g = *£(r) for some point
r € *{ . Since X is compact, r ® ryp for some 1rg € X , _and by the

Nonstandard Continuity Theorem we have q = *f(r) = f(r;) € £[X] , so

e

that £[X] is compact (cf. Theorem 2.12). (]

Comparigon of the proof of Theorem 2.16 with a standard proof (RUDIN [1976]).

Structural difference.
Basic steps of the nonstandard proof.
(1) The observation that the star of the range of £ 1is the

range of the star of f .

¢

(2) The observation that every point of *X is near standard. -
(3) The verification of an infinitesimal estimate.

Basic steps of the standard proof. ’ ° : %

3

(1) The construction of an open cover og X from an open cover
of Y . - '
(2) The selection of a finite subcover.

(3) The verification that £[X] is contained in the image of

that finite subcover.

Logical difference. 1
Cs L

L

Both proofs are direct and involve no negations. The nonstandard
proof contains only the first order quantifiers (3x€X) , (IxE€*X) , .
and (VxE*(£[X])) and uses the Transfer Principle. The standard proof

contains the’ first order quantifier (3i€1I) referring to an extraneous

index set. I . ) '

et




- "

' Mathematical difference. N

-

The nonstandard proof uses the Concurrence Theorem, the Mopadic °

Neighbourhood Theorem, éhe nonstandard criteria for coméactneés and °

> T iy R

continuity, and Properties 7 and 9 of Appendix 3.~ The.gtandard proof

V] ~
3 2 . N }
uses the fact that the inverse images of open sets under continuous
2 o) ! o
2 functions are open, that the open balls form a basis for the metric
' 3 o . ‘ R ‘B S~
topology, and that all points of the inverses of open sets under con-

: tinuous functions are interior. [I . Q
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* Basic steps of the gtandard proof. ‘ S
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v

2.17. Theorem (Tychonoff's thegrem);‘ The product space lTiEI xi of

"a set of compact spaces { X, | 1 €11} is compact.

0

Proof (Nonstandard). Let X = ﬂi and let f € *X . We have to

ex®s
show that g = f for some g € X .. Assume that f(v) 4is near standard
for all v € I . By the Axiom of Choice, there exists a g € X such

that , f(v) € u{g(v)) for all v €I . Let

u={gqg| gv) €U, i=1,...%k, 0, EQ(xvi) } \
be a basic open, set. Since f(vi) € u(g(vi)) for i=1,...,k , and o
since u(g(ui)) c:*Ui , we haqf by the Transfer Principle that g € *U,
N B

Since U was an arbitrary basic open set, this calculation holds for

all basic open sets containing ¢ and therefore f € u(g) . 0O -
o 4

~

Comparison with a standard proof (KELLEY [1955]).

r

Structural différenpen ’ - N '
Basic steps of the nonstandard proof.
(1) The selectipn of'a point g € X .
(2) The introduction of a basic open neighbourhood U 5; g .
(3) The proof that g € *U, o

(4) The verification that £ € u(g) .

(1) The construction of a set of basic oﬁen sets in the product

4 -

topology.

.

Xe

. (2) The selection of a subfamily which fails to cover

e e AT s vam

[ oay Tyt RO IE  R R



. v

(3) The formation of the set of components of the members of
the subfamily constructed in (2).

(4) The construction of a point of X which ;&s not belong

®  to the union of the family constructed in (2).

o

Logieal difference. { \

[

-

The nonstandard proof is direct and involves no negations. It -

-
‘. -

uses the Axiom of Choice and the Transfer Principle. It contains the
first order quantifiers (Vi€1I) , (3x€X), and (YXx€*X) . The ‘ °
. . -

it /
standard proof involves three negations: (1) The denial that the family
J
constructed in-Step 2 is a cover; (2) The denial that tl® point constructed’

\

in Step 4 belongs to the union of the family constructed in Step 23 and /

1 //
(3) the denial that tljzére exists a finite subcover. The proof uses

Tukey's Lemma, i.e., a variant,of the Axiom of Choice, and contains first,
second, and third order quantfifiers: (Vi€1I), (VxEUEpPE)) , and the
quantifier (3CEp(p(x))) . o S

Mathematical difference.
: ~ .
The nonstandard proof is based on the verification of the nonstandard
r ‘ «
criterion for compactness, whereas the standard proof uses Alexander's "

D

Theorem. [J ' ’ e

* 3 *
1
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~

2.18. Theorem (Heine-Borel theorem). Any closed and bounded subset of

n- .
R is compact.

-
o

Proof (Nonstandard). Let B be a closed and bounded subset of R" .

We have to show that for each p € *B there exists a q € B duch that

pEulgq) . Let p = <"pl, cve 4 pn3> . Then Theorem 4.3.1 of ROBINSON

,uy

(1966], for example, shows that p is finite since B 1is bounded: Hence
.

Pis «ee v pn are finite and g = < st(pl), e s st@iﬁ > exists. More-
2
over, p(p,q) = ( (p1 -st(pl)) + ... 4 (pn-st:(pn))2 )i ~ 0 ., Thus

p € u(q) and since’ B is.closed it follows that g € B . []

Comparison with 4 standard proof (KELLEY [1955]).

N
Stregpural difference.
Basic steps of the nonstandard proof. /’

(1) The pioof that each point in the star of a closed and bounded

w

'subset of IR is finite.

(2) The verification that each such point is near standard (with

respect to the given closed and bounded subset).

o
~

Basic steps of the standard proof.

(1) The embedding of-the given set, B in a product of closed and

1

bounded intefvals.

H

(2) The proof that the theorem holds for closed and bounded inter-

vals. : . :
(3) The proof that the product in (1) is compact.

(4) The observation that a closed subset of a compact set is compact.
b
S
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Logie.;al difference. .

The proof that p is finite-in the nonstandard proof is based ‘ '

-oﬁ Theorem 4.3.1 of ROBINSON [1966]. The proof of that theorem involved

‘the denial (hence a negation) that p is finite. It also eontains‘th;

quantifiers (3x€*R) , (VxER) , and (IXxER") . It uses the Trans- |
fer Principle, the law of the excluded middle, and the law of contra-
position. The gtandard proof involves an nonequality c¢ # b and the

second order qu:antifier (ACEp(P(R))
Mathematical difference. ’ - | ) ‘-

The nonstdndard proof uses the fact that a metric space X is
; A

bounded if and only if every point of *X is finite. The standard

proof . on the other hand, uses the following further facts: (1) The

fact that the product of compact sets is compact; (2) The fact that

closed s’ubsets\ of compact sets are compact; (3) The fact that projections

\
0

preserve bognéedness; and (4) the completeness of R

i
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Fxigtence theorem . /

Let raobe

with the property that

(1)
(2)

and let F

We require

(1)

(2)

(3)

(4)

(5)

(6)

A

. 4%
a concurrent relation in//?(;‘/g and I the set of all functjionms,

o

a " is defined on the set of concurrent relations r € § ;

For each such r » a(x) is a finite subset of dom(r) ;

" & ! N

be an ultrafilter on I .

-

the following facts and notations:

a<B if a,BEI and a(r) < B(r) for all concurrent
r€Ss ;

Yy=aVg if YéI and ¥Y(r) = a(r) UB(r) for all con-
current r € § ; ¢
I‘cl = {B€ET1 | a'< B} for each o« € I , with the gbvious
B:’-ravé for all a,B €I ;

F is an ulttafilter containing the sets 17‘(1 for all a ;

property that ?a nr

Let r €S, be a concurrent relation and f:I - S a

k

'function such that < a,f(a) > € r for each a € a(r) and

each o € I . Then an easy calculation shows that for each
a € dom(r) , < a,f(a) > €r a.e. (cE. DAVIS [1977]). By
the transitivity of S, - £(a) € 5, , and therefore f € Z.

Let b=fEW.
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3.1. Theorem (Concurrence theorem), If r is a concurrent relation in

.

§ ., then there exists an element b € W such that < *Q.,b> € *xr for

all a € dom (x) .

Proof. Let b = f as defined in (6) above, and let h{a) = < a,f(a) >
C - - B .
for all a €I . Then h=<a,f >=¢<*ab > (cf. Appendix 3, Pro-

)

perty 3), and by (5) above; h{a) € r.a.e. , so that h€r=*r (cf.

Appendix 3, Property 1). Hence < *a,b>€ *r , [J )
v o
¥
¢
N
~ ' - - '
) ¢ .,
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Some nonstandard applications of the Concurrence Theorem

~

3.2. Theorem (Infinite integer theorem). There exists an element b € *N

L T T L

with the propefty that n<b forall n €N .

AN

*r

Proof. Let L={<x,y>| x,y €N and ‘x<y}. The relation L

is clearly concurrent since dom(L) = N , and if aj; ... ,a €N and

b 'is the largest of Ayroeee an , then- < al,b>4 €L, ..., < an,b> E L .

T e 2 TSR, S e v g %

By the Concurrence theorem there is therefore an element b € W such that

°

<a,b> € *L, forall a € N (in this case, *a = a because a € N cS ).

Since LC N XN, we have that *LC*N x*N , and thus b € *N .
d

Is. b € N? If so, we can write *b =Db and conclude from
;A

)

i - Wk < *a,b> € =1,

for all a € W {by the Transfer Principle) that

4

5}'<a,b>EL:

Thus we have a <b for all aEN, i.e., if bEN , then b is a

q

largest integer. Since no such number exists, we conclude that K € *N-N .

Hence *:N-I:I#Q! . 03

;@@
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/
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.
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In the next theorem, we assume that D 1is an Archimedian order field,
that D<= ScS , and define F, I , and F/I as follows:

(1) Ff={x€p| Ixl<n forsome n€EN T ;

(2) I={x€ED| x=0 or 1/xED-F1};

(3 Fa={(x1|x€D}; .

4 K= {yep | x-yEI}.

3.3. Theorem (Dedekind's theorem). Let A, B be nonempty subsets of D
such that a €A and b € B _implies that a < b . Then there exists an

element ¢ € F/I such that for.all a€A and bEB, ascsb.

L] \
Proof. Let r= {<ab> |a€A ,b€ED, asb<c for,all t€B]} .

We shall show that r is a condurrent relation. Clearly, dom(r) =A

. w
since for any a € A, < a,a> €r . Let Ryv soe s anEA and let b be

Ehe largest of aps eee an . Then b €D and each ai S b . Moreover,
since b € 2 ','we have that b is less than any element of B . Hence

< a;b> €r for i=1, 2, ..., k , and so r is concurrent. By the

o

Concurrence Theorem there is an element t € W such that < a,t> € *r

°

for all a €1a.

Since r €A XxD , we have that *r € *Ax *D , and hence that t € *D !

By the definition of r we obtain

-

5 b (viER) (VYED) (< x,y>°€Ex = xS )

%

§. b (¥xE2) (VYED) (VuEB) (< X,y > €X = y <u) .

By applying the 'I:‘ransfer Principle, we the efc;re have

. ]

[
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W b (VXE*A) (YYE*D) (K X,y > € *r = x S y)

W F (VxE*n) (VYE*D) (VUE*B) (<'x,y> € *r = y < u) .

Thus a St < b for all a€ *A and b € *B, and since B # g ,

t is therefore finite. Hence, by the Standard Part Theorem,

we have that for ajE A and b E€EB, a st(a) S st{t) S st(b) =b .

The conclusion therefore follows, with ¢ = st(t)

. 0

B i a4 o 7 o
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3.4. Theorem (Monadic neighbourhood theorem). For each point p of a
topological space X there exists an internal set D € *Qp such that -

D < u(p)

Proof. Let r = {<x,vy> | x,y € Qp and y<x} . We shall show
that r is a concurrent relation. The domain of r is the set of
open neighbourhoods of p and the concurrence of r follows from the
fact that if Ul’ cee g Un are 6pen neighbourhoods of p , then the
set’ V = U; n...n Un is an open neighbourhood of p included in the
sets Ul' cee Un . Thus <Ui,v> €r for i=1, 2, ... , n.

Y

By the Concurrence Theorem, there exists a D € W such that for

all u € QP , < *U,D>°E *r ., We therefore have

-

5§ F Y, YEQ) (< x,y > Ex » yCx) . ‘

By applying the Transfer Principle, we have

o omae L

W "' (Vx,yE*Qp) (< *x,y> E *r =» y < *x) .

Thus D € *U and therefore D& (| *U = u(p) . O

UED T
p N




o T R G R R A a7 AP e T SR R TR L T

ERtY

~

The spectral theorem for compact Hermitian operators
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The spectral theorem for compact Hermitian operators

3.5. Theorem (Spectral theorem). If T:H +H is a compact Hermitian

operator on a Hilbert space H and has only finitely many distinct

eigenvalues rl1 g oo '"k . then

H= H0$H10...$Hk

;=“P +P + ...+ P

0 1 k

rthl+ oo +"kPk.

3
#

9

and if T has Znfinitely many distinct eigenvalues M veee PTG v enny

then

H= HOQHIQ ":\feﬂk

I= PO+PI+ ...+Pk

@ ...

+ ..

T(a) = rle](a) + .. F nkPk(a) + ..y

Where Hi is the eigenspace of n.

of H, ® ...; and P, :H > H, is
1 i i

;i Hy 1is the orthogonal complement

the usual projection operator.

Proof (Nonstandard). The proof involves five distinct steps:

(1) The construction of an o

and of- an operator T':

€ *N- N - dimensional space B

H -H ;
W

(2) The decomposition of Hc.) » T' , and of the identity operqﬁor

I :Hm - Hm into -

4

it o e Lol S A S i M D =
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(3)

(4)

(5)

The construction of T' tH =~ H . Let & be the set of all finitg-— h
sional “s;ubspaces of H and form r = { < x,S8> I x€scé&} .0 Sifice
for any x €H , we have < x,span(x)> € r-, it follows that the domain
of r is ‘H . Moreover, if, X ¢ X € H' , then it is c.‘{ear that

<x ,span(x, ... , x)> €r for i=1,2, ..., 0 . Hence the relation
r is concurrent. By the Concurrence Theorem there therefore exigts an E

such that < xE> € *r for all x € H , and by the Transfer Principle ,

60

by an application of the Transfer Principle to the Spectral B

Theorem for Hermitian operators on finite-dimensional unitary

-spaces ;

The proof that T is the standard part of , T' , that the

eigenvalues nj of T are the standard parts of the eigen-

values A, of T' , and that the eigenvectors s, correspond-
oy 3

ing to rtj are the standard parts of the eigenvectors 1:’j ;

corresponding to )‘j ;- .

——

The proof that at all infinite integers i s © , the eigenvalues

v, of T' are infinitesimal ; ’ ;

The distinction between the case of T havirg only finitely

PRI LI TR

many distinct eigenvalues and the case of T haviqg ‘infinitely f

many distinct eigenvalues.
A
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<
we have that E € *& , so that for each x € H, the point x is also )
~ in E , i.e.,'~H c E . Moreover, t.he din}ension f&nction dim : & ~ N
- has a unique extension *dim ; *& -~ *W withJ *din(E) = W € *N-N , since
the space H is infinite-dimensiopal. Hence we denote E by B, -
Next we use the star map and lift the operator T :H -~ H 'to an

operator ~*T : *H - *H , By composing *T with the projection P_:H - H

Hm .
we obtain an operator Puo*T : *H -~ H@ whose restriction to Hco yields a
©
compact Hermitian operator T' :Hm - Ho
The decomposition of H , T' ,and 1I' . By virtue of the Transfer
| 4 .

‘Principle, we can apply the finite-dimensional theory of eigenvalues of

h B
Hermitian operators to T' and assume the non-zero eigenvalues of T

I3

p e hv (permitting repetitions), ordered by their absolute

values in the form |)\]l 2 | )\2] 2 ...l A, | , with corresponding

to be X

'orthonormal eigenvectors Epreee n T By deleting repetitions, we can

s

réwrite the sequence Al,... e A astxb,...,ncu (u s v) , where

Vv ) .

. H

each A i‘ is equal to exactly one Kj . The eigenvectors of Kj will 3
be denoted by rlj t e 1 rnj . , . ) !
We now form Hj = gpan (:clj Peae s rnj ) which, by the Transfer j
Principle, is the eigenspace of <5 By the spectral theorem for finite- ,
. . . = 3

dimensional spaces and the Transfer Prinéi:ple ;) we obtain the desired

- ) ) . ;
decompositions, with Pi = PH . . .
e i o

. L4
The standard gart argument. For the routine calculations required to
L ’ o
establish these facts, we refer to ROBINSON [1966], pp. 186-189.
; R ‘ C . ’ N 4 ' el .
. ‘ LY oo

o
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. The infinitesimal eigenvalues of T' . We recall that the eigenvalues

Aoy eee 4 A of T' were arranged so that
1 v

+

and an easy calculation (¢cf. ROBINSON '[1966), p. 187) shows that if

any positive real number & is a lower bound for | Ak | , then it follows

that k € N, . so that the set
W= {j€*n | F is not infinitesimal }

is either N or a finite subset of it, where the numbers Ky are ob-

t , . ,
tained from the >‘j by deleting repetitions. It is therefore clear that
. . A

for any 'infinite integer 3 ', the eigenvalue K'j is.infinitesimal.

The decomposition of T if w= {1, 2, ... , k' } . We show that the

eigenvalues of T are O, Myseee s M (where rti = St(Ki) ) and

k

T=n Pl + ... + Pk . using the fact that on H , the operators T

1 M

and T' coincide. Let X E€H . _Then

#
ne
hME

T(x) = I K.P,
(x) p "; J(x),

KJP(X) +
jsu J J

P,
ICJ 3 (x)

1 Jj k+1 v .

Kij (x) .

2
[ v I

J ]

By taking standard part?, we get the decomposition of T . Moreover, &

~

for any x € Hd r we have T(x) = L anj (x) = 0O and therefore O

LN

'is an-eigenvalue of T . It remains to show that all eigenvalues of T

Sacrie. e

% g S0
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are among the nj . This follows by an easy ucélculation_u from the

uniqueness of direct sum «compositions. .
‘ {

The decomposition of T.if W= IN . We show that for all xEH ,

B )

e

S EDare ALY g, TR VTS o RGN ST

R R g, PR e NI R

mx) = I CTLP.(x) . It suffices to show that s * 0, where
j = | 1]
o n S
s =lmx) - L m.p (x| . - .
n j=‘ ]3]
Now for all n € N , we have that
n . n ,
L np,.(x) = £ k,pP . (x) ,
and since T(x) = T'(x) on H , we have that
H ,
T(x) = L k,P, (x)
I A
J F
so that
, K \
i (3)2z|| L K. P, (x) ll2
n J'= ntl
u a
= L “||<.n|2‘ll P, (x) 12
j = o+l J I,
o
o .
: 2, 2
s |’Kn+] I . E I Pj(x) f
+ =1
2 ) TN a2 ! ’j
= IoKn_H el x 17
sl ' ~ “'
Thys /s S L [l x (l’for all n€N . gut since lnjl lnjl {9‘,“

3

all j € *N- N, the result follows from Theorem 1.15. .

o,

-

3

°

<

o

o
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|

For the remaining routine calculations required to veiify the decomposition
equations for the space H and for-the identity operator I we refer to

ROBINSON (1966], pp. 191-194. []

Comparison with a standard proof (HELMBERG [1969]).

The basic steps of the nonstandard proof are described at the begin-
- 2 .
ning of the proof. The proof is direct and therefore contains no negations.

°

o

It involves the first and third order quantifiers (Vn€N) , (Vn€*N-N) ,

»‘(VxEH) , (3x€H) , (IXERxXR) , and (BEE *(p(pH))) , and uses the

. Transfer Principle, the Standard Part Theorem, and ‘the Spectral Theorem

' for Hermitian operators on finite-dimensional unitary spaces. The standard

D preof, .on the other hand, involves the idea of approximating the space by

families of mutually orﬁﬁogonal finite-dimensional spaces from below, and

the verificatidn that in the limit the spectral properties of Hermitian

o

operatérs on these spaces are stable. We omit the details of this proof since

the length and complexity of the largument makes it virtually impossible

to juxtapose the two -types of proof in .a meaningful way. A crucial existlence
paort of the standard argument is the proof that a compact Hermitian operator
v 4 h k t

'I;‘ on a Hilbert space H has an eigenvalue A with the property that

[al =l 1l . For details we refer to HEIMBERG [1969] . [J
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4.1. Theorem (Cauchy sequence theorem). Every Cauchy sequence is bounded.

Proof. Let < X > n€EN .be a Cauchy sequence and let v be an arbitrary

infinite integex. It suffices to show that X, . is finite. Let
= * W . l
{nENIWl"p(xv,xn)<1}
Then A ;s a definable subset of the internal set *IN and hence is

internal, and since < X, > is a.Cauchy sequence, we have that

nEN
*N~-NCA . Furthermore, ANN ¥ # since. *NW-~-N is external and A
is internal, so that there is a finite n such that W l" p(xv,xn) <1.
Hence X is finite., {J

4.2. Theorem (Convergence theorem for real sequences) If < X > nEN
is a sequence of real numbers and if X = X for all infinite n and

m , then X - X for some x € R

Proof. Suppose X is”fini’%e for all infinige n . Then X has a
standard part x ,.[a;;i si,n\ce xu = xv for all infinite ¥ and v ,

we hévé x = st(xu) for all u € *N-IN . By Theorem 1.15, it suffices
to show that X is finite for all n € *N-N . Thus let v be an
infinite integer. We want to show that xv ig finite. For this purpose,
we consider the set

={ne*m[|xn-x°[<1}

The set A is internal since A © *N and s:.nce A is defined by he

formula *absl*d[< *xl’n,*xl’v> < 1, with abs and d being the olute

value and difference functions, respectively (cf the Internal Subset The~

-t
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¥ Y !
orem) . For n € *N-N , we have x = x = and therefore | X =X, l.<1.

°

Thus *N-NCA . But since A is internal and *N-N is external,

oy e wm e

*N-N # A . Hence there is an element np € ANN . Thus we have that

= - - + - < + 1.
Ix‘)l Ixn (xﬁ xv)lslxnol lxno vl Ixnol 1

So xv is finite.

a

B R i L T R R TR

W et e —TYE

4.3, Theorem (Open set,theorem). A set G is open if and only if

u(p)‘ < *G for all p€G .

°

Proof. Let G be open and let p € G . Since G € Qp and since
uip) = 0wy . it follows that p(p) € *G. , :

Now’'let p € Gy be such that p.(p)‘,t: *G . Then there exists an

By the Transfer Principle, we have that .

yinpeg) . ‘

Thus we have an opé iﬁ&\ourhqod Up < G . Hence if u(p) < *¢ for
all p € G, there is an ope&g( neighbourhood UP ©G for each p€EG

and it follows that G = U U is open. [
. pEG P p \ ) o

p
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*% 4.5. Theorem (Infinitesimal prolongation theorem). If s = <

LRIt IR L e ek At il

Some nonstandard applications of intermality | -

.

[

4.4. Theorem (Bounded sequence “theorem) . If < X > is an internal

sequence of hyperreal numbers and if | X | SME*R for all n€ W ,

then there exists a Vv € *N-N such that | .xn |’§M for all n<wv .

~

’Rpoéf. Let A= {n€*N || x | >M} . Then A is defined by the
formula | X 4> M and hence internal, since any defi;mable subset of an
internal set is itself internal (by the Internal Subset Theorem).

If A .‘LS empty, then the theorem, holds for all infinite integers.
Suppose ‘therefore that the ‘set A is not,empty. By the Nonstandard
Induction érincip‘]‘.e, A has a least element v € *:Nr . Thus we have
for any n < v - that | x| SM . Since, by definition, A is dis-
joint from N , we have v E N D’

) x‘n >n E*N
;Lsan 'ing:zgé;nal sequence of hyperreal numbers and if xn ~ 0 fo;: all

n € N , then there éxists, a v E&*N-N such that xn & 0 for all

’
-

n<v,
#

Progf. From the sequence s = { < n,'xn>‘ | n € *N} we construct a new
. S - ’

Sequence .

1 4

d nE*N

t=<t > {<x,n-xn>|n€*1\1}.

By the Internal Function Theorem, this sequence is internal since s is
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’

internal and since tn = (n - (x[n)) is therefore a term of *L for_

o

each n . Since xn ~ 0 for all n€ N , it follows that tn =~ 0 for

all n € N , and by Theorem 4.4, there therefore exists a v € *N-N

with the property that | t | 1 for all n < v . Hence we have that

)

lxnlsltn/nl=1/n’=o for all n<v. 0
4.6. Theorem (e-é-continuity theorem). If 'f: *X » *r is internal
and if p =~ q = f(p) ® f(q) for all g € *X , then f is e-8-con-
tinuous in the sense that for all real ¢ > 0 there exists a real

. /
§ > 0 such that p(p,q) < & = p(f(p),£(q)) < € .

Proof. Let € be an positive real number and

A= {n€*N | ﬁ|‘ (YpE*X) (p(pP,q) .< 1/n = p(f(p),£flq)) <e)}.
The set: A 1is clearly a definable subset of *WN ) and is thgrefére
internal‘i By the continuity of 'f at g on *X , we have *N-NCA ,
and since A 1is internal and *N-N is external it follows that’
Aﬂ]-N #9 . Let § = 1/k for some k ,E AQN. Then for any p € *X ,
we h;ve that p(;,q) <5 = p(f(q),f(é)) <e .- 0
4.7, Theorem (Approximation theorex;l)u.. Let X be a compact space and
f a continuous internal function on *X and f£f(x) near standnard _for

all x € X , and let F be defined by F(x) = st(f£(x)) . Then F 1is

continuous on X and’ F(x) = f(x) for all x € *X .

Proof. Let x € X . Since f is contihuous and internal, f is

’
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g-8-continuous at x by Theorem 4.6. Thus for any real € > 0 there
exists a real &8 > 0 such that for all x' € *X s p(x',x) < § implies
p(£(x') ,£(x)) < /2 . So let x' € X be such that p(x',x) <& . éy
the definition of F , we have that f£(x') ® F(x') and f(x) = F(x)
Hence p(F(x'),F(x)) S p(F(x'),E(x")) + p(£(x'),£(x)) + p(£(x),F(x)) < e ..
Th'erefore F is continuous at x , and since x was an arbitrary point
of X , it follows that 'F is continuous on X .

Now let x € *X . Since X is compact, x = x' € X and by the
continuity of f£- we have that £(x) ® £(x') . By the definition of F ,

o

f(x') = F(x') and by continuity it therefore follows that F({x) ® F(x')

’
AN

so that F(x) ’*’féx) . Q0
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“F(p) = st(fv(p)) for any p € X ,-\ we can éonclude that fv(p) = F(ﬁ)‘
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The Arzela-Ascoli theorem

4

4.8. Theorem (Arzeld-Ascoli theorem). Any equicontinuous se&xence of

functions from a compact space X to a compact space T has a uniformly

convergent subsequence,

Proof (Nonstandard) . Let < fn> be an equicontinuous family of

n€E N

functions and let v be a fixed infinite integer. From the definition

of equicontinuity it follows that for any positive real number e there

a

exists a positive real number ¢ such that .

§ k (YnEN) (¥p,€X) (p (p,q) < & = (£ (p),£ (@) <e) ..

v

By an application of the Transfer Principle we tHerefore have that . )

Wb (Ve (Y, g€ (00, @) < 8+ p(E_(B)E (@) < e .

- )

Since ¢ ‘was arbitrary, it follows that p® g implies fn(p) = fn(q) .
Thus f\’ is continuous on *X and by the transitivity- of @ it is an

internal function. Thus Theorem 4.7 applies to fv ; i.e., if we let

for all p € *X.

E]

Thus for any fixed k,m € W , we have

® P (3gE*N) ((q > m) A (vxE*X) (P(Fix), £ (x)) < 1/KD)) :

A% B

By applying the Transfer Principle once again, we have that
B \ ° N .
§ P (ﬂqEN)((q>m)AKVxEX)(p(F(x);fq(x)) <Uk))) . oo ’

Hence there exist numbers nf =1 and Ry =as qi{n, ,i+l) deter-
. i

;

a

mining a uniformly convergent subsefuence < fn >len -
i o

|
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'Compazvison with a standard proof (MUNROE [1965]).

Structural difference.
Basic steps of the nonstandard proof.
(1) The proof that for any im".inite v the function -fv is"
continuous on *X . .
(2) The proof that fv (p) is finite for all p € X .
(3) The definition of {:he standard part function F .
(4) The verification that the convergence of fni to F is
uniform. ‘
Bagic steps of the gtandard proof.
(1) The introduction of a countably dense subset of - X .
(2) The construction of a Cauchy sequex;ce of fﬁnctions on X .
(3) The constyuction of a cover of open balls of X .
(4) The extraction of a finite subcover.
(5) The ;.rerificatiOn of an € estimate,

Logical difference.

Neither proof contains a negation. The nonstanaard proof uses the
Transfer Principle and contains the first ord;r quantifiers (Yn€N)
(InEN) , (Yn€E*N) , (ImE*N) , (VxER) , (AIxER) , (YXEX) ,
and (Vx€*X) . The standard proof, on the other hand, involves first,
second, and third order quantifiers: (Vn€N) , (3n€EN) , (VXER) ,

(YxEX), (WEP(X)), (ICEP(P(X)}), and (VEEFEP(P(P(X*xT)))) .

“t,

A
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| Mhthématical difference.

. - y
17 The nonstandard proof uses the trangitivity of W , the Standard

i
»

Part Theorem, and the nonstandard criterion for compactness, whereas

/

‘the standard proof uses the fact that compact metric spaces-are separable,
that bounded sequences of reals have convergent subsequences, and that

in the top&logy of uniform convergence a sequence converges if and only

2 o

if it converges uniformly. [
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Th§ Riemann-Lebesque integration theorem . . ' S
- ' A v . , N .

M

In this section, we compare the standard and ;égstAndard proofs
- of the fact that Riemann integrable functions are mea\hrable and that T

the Rigmann and Lebesque integrals of such functions coinside. For

‘t

-

‘ t . N\
this purpose we first present the rudiments of the standard and non-

- w

; standard Riemann and Lebesque integration theories and prove the re-

.quired characterization theorems.
| .

¢

" 4.9. Definition jStandard).

sequence < Xoyoooe 1 Xy >,

owhich a=x < “.<x =b.

mEN

0 n / P

. ‘ |
4.10. Definition (Nonstandard).

h s

‘ Q! < cea >
, is a\ sequence . xo, ,xn nE*N

. in which a = x_ < ... < xg =b and in which x = x

0

. -
., . 0%4isn1. - e

K M H
+ ' . v ‘
) Let f:

either a partition or a fine partition P° of-

/ n .
of points of the interval [a,b] in

‘ H] -
- of points of the interval

[a,b]

1

K’ partition of an interval fa,b] 1is_a.
5

LY

A fine partition of an interval [a,b]

for all i,
?

4

i+l

N e

la,b] ='[a,B] be a.gfﬁén‘functiqn and < X v oee s xn>
, B

and let the. -

\ oy séquence, < §O roees ,yn:> he either a partition or a fine partition @

of the intetval ‘{a,8] . Then we put

=
]

sup £(x) on " [x X, _ l,x ]

H
]

inf £(x) on [xi—i’xi]
13 E - . ]
| {x] Y5y S £x) <y

?

*(a,bf"

Mk ks T e T s
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! \
%‘«a,nd let . 2
¢ . \
n : ’ : ~ \
U(f,p) = E. M2 x =x, ,) :
i=1 . .
. _ n
v . L(f,P) = .E mi'(xijxi_l) ) . - .
, 1=1 ) A ,
D ‘ °
. n B
> U"(le) = L Y 'm(E ) <
i=l Iy ! ® .
n ; . L
p BEQ = By @ e

P and P’

‘that the val\;es m(Ei){

i

4.11. Definition (SCanHard) .

all partitions P of

4. 12. De finition (Nonstandard).
for any internal fine partition P of

exists. )

where m(E.) . Then it is easy to

denotes the Lebesque measure of E.
see that if P is ‘an, mtemal fine partition, the sums U}i,\?) and
L4

L(f,P) are finite and for any two distinct ‘imternal fine pa&;tlt:.ons

we have U(£,R) = U(E, ') "and L(£,B) ~ L(£,?") ?me ;

.sums U(f,Q) and L(£f,Q) have thé same proPerty and ma.ke set{:se prpvxded

13

exist. For deta:.ls, we" refer to ROBINSON.[1966].

¢
n

Finally, we write ,f fdx for the Riemann integral and J’ fdm - ¢

4

r the Lebesque integral of £ on [a, éﬂ
@

I;-fd:'c 2 infU(E,P) = Sup'L(E,P)
/ ‘ . L
{a,b) , whenever this valne exists. '

' 1
!

over

o

‘ R » '
2 rax = sE(UIE,R) = stL(£,P)) ,

{a,b] , whenever thié v.alue\




R

Rk

o ST s e

- .for any internal fine partition' Q of [a,B) , whenever this value

A ‘
.exists. ‘
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4,13. Theorem (Characterization theorem). Definitions (4.11) and (4.12)

are .equivalent. { ’ , .
- S J -
n Proof. Sgpposé that the standard Rigm;nn int?grél ,gfzfdx exiéfs, Then ‘gk'
fér‘ényupositive real number € there exists a positive"}eal‘number s
such that n ‘ ' _ .
.3 }-‘(VPEArt([a,b])‘)(IIPﬂ < 6w U(P) -L(EP) <€),
where_'fart([a,b]) denctes the set[pf'parﬁitions of [Q,B] and fipl -
ﬁénotés the le;gtb of the longest subinterv;l of [a,b) determined by ‘ %
P . B§ tﬂe Transfer Princ;ple, we have that ‘\ \

% b (vee *Papt(la,b]) )(IP ) < 6 = U(£,P) -L(E,P) <e).

Let P be any internal finé partition of [a bl . Then !lPll s 0< 6

for all 6 and ‘hence for all posmt;ve real € , i.e., U(f Py = L(f Py ,
and therefore st(U(f,P)) = st(L(f P)) . ‘ \
[

The proo% of the converse isg obtalned by revenging the steps 1n

o

men s

u " ‘ \

the prevzous argument. ,D

4. 14 Definition (Standard). j'bfd.m = inf (U(£,Q)) =. sup (L(£,0)) over.
‘ Vo
all partltlons Q of [a,b] ' whénever this value exists. ‘ /

s

4.15. Dafinition (Nonstandard). I:fdm = st(U(£,Q)) %= st(Li£,0) .

1

*

4.16. Theorem (Characterization theqtem)._‘Deﬁiniﬁioqg {(4:14) and (4.15) .

"

. Ty s 5 '
are equivalent. - Y .
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Proof. Analogous to that of Theor(emd4.l3. a

i

. 4.17 Theorem (Riemann-Lebesque integration theorem).  Let £ : [a,b] + [a,B]

. Lebesque measure zero, hence

be a Riemann integrable function. Then f is g:ontinhous except on a set of

measurable, and J’;Dfdx = J':’fd.m R !

Proof (Nonstandard). We require the fdllpwing data: L

a ! J) Vo <
i i it = > < ;
(l)’ An internal fine partition P < Xg e xw WE*IV of ~[a,b] ;
.(2)  An intermal fine partition Q=< u,, ..., u'u>ue wqy OF [/RD
refining the seqﬁéncés < Voreee s vv> and < Wo riee wn> ,

where v =8, and v, < v, <... <v ) -are the distinct infima

’ 0 l v=-1
m. of fo determined ‘by the partition P , and wh;ere Wy ="a ,
* and ‘wi < W, < ... < wn ar.:e the distintt supréma Ml ofu £

}ietermined by P ; . ) .
(3) LA { x| (V6>0; (3y) ( i‘x-yr < 6, =» | f(x).-é(y) > 1m} ‘,
(4) T={i€*N ‘.(EnEN)(iMi—milL>\dl/n] ;“" ’ . )
(5) %8 = { x | the functién’ £ is éjtscéntiriuous at x } ;o
u'(‘6) ’Th; funetion g : [a,b] - [aL,B] defined by\' g (x) =m, on [\xi-‘l”:i) ;
(7) The function h,:‘[a,b] + [a,p] defined by h(;s) = Mj‘_ or; (x —l'xi) -

-

We fjrst show that "L

. , ‘ ierT . .

and that tperefore m(E) = 0 , and that the function’ f is therefore measur=
i . . o s . .

[

(x. -x. .) ® 0 , that" therefore m(A ) = 0 ,
i-1 n

able.

If T is not empty,

A

there exists an m € N. such that . o

4 s

g ¢ .o
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B

1 1
DS = I (x,-x, )= L =e(x,-x, .)
"miET i. 1]‘. iETm i i-1
» \‘ult
7, IV
< I M -m)(x,-x, .) !
iET i ;LA i 111
4
w, |
-4 .Z (Mi-mi)(xi-xi_l) .
i=1

= Q , k

<

provided that { is Riemann integrable, and since m is finite, we
) =0 . If T is empty, the x;esult holds trivially.

have = L (x. - X,
> i-1 i
. Then it follows from the

ieT -~
Now let x € *A , with x, < x < x,
. . n ' i
* definition of A Dby an application of the Transfer Principle that
| £(x) - £(y) | > 1/n . Hence ,
o

] such that
Hence it is clear that

+1
\ f

there is a y € [xj.'xi+l
= xi or x = xi+lo
e m¥ we there%ore

iEeT,., Similarly for x =
] . For the Lebesque outer measur

e Uy [x..x
i€T, 177441
e | |

have )

Osm¥(A.) =m¥(*a ) sm( |J [x,,x, .]) =
o LB o0 -2 IS -

The set A is there- i

n i ?

’ ' i

: . £

H

i

i

. Hence mﬁ(An) = 0 since mﬁ'(An)‘ is standard.

fore measurable and has’ Lebesque measure zero.
is a countable union of sets off{measure zero,
\}5'

°

«

- Since E.= | A_
nEMN - c, J

"it itself has Lebesque measure zero.
It remains to show that £ is measurable, i.e., we must show that"n

se%: of [a,B] is a measurdble subset of

the inverse ~<§‘Revery open‘ K
[a,b] . But ;his follows at ohce from the fact that open sets are

v

measurable, that subsets of Lebesque measure' zero are Lebesque measurable

\ ki .

3
f <

*
RS N

R
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and the fact that for every open subinterval (y,y') of [«,B] ve

o

o

have 4 ' '

£ y,y" 1 = £ 0(g,y) 10 ([ab] =E) U £ X[ (y,y) 1 NE ", :

wi\;p f-l[(y,y')] open by the continuityu of £ .
\\ .
Lgyie complete the proof of the theorem by showing that the Riemann

and Lebesque integrals f coincide. It suffices to sfow that g v
b b b ‘ \ |
fgdm~ [“fdx~ [ hdm . |

since the inequality g S £ S h then entails that

‘ = »

b b b b b
N o
J’a fdx J'a gdn S Ia fdm s J'a hdhm .fa fd.xi.
Since the functions‘ g and h are clearly bounded and measurable,

their Lebesque “integrals exist and we have that

f: g dm = st (U(g,Q))

PR ORI Y

= st(L(g,Q))

f
*

~ L ui_l'm({ x | g S glx) < v, i3] /
1=1 .
o . o o8 ) : . {/4/ A
‘ .E uicm({ x {'ui-l S gix) < uy 1 /
SR 1= ,
n-1 , : |
- =2 2 owem(y { X x)iMo=w 1)
" k=0 k u i=1"74 ‘ : . k »
\ .
n-1 , .
= L weLl (x -x, .) . -
k=0 k iEI- 1l l"'l A
n_l * ‘ ) ' ‘;} '
= L L M (x, -%x, .) ’
. ‘ k=0 ijert + it
. ) L] m L bb
- s - R = 7
oM (x, =%, ) ™ st(UIER) = [ fax,,

T k!
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where I consists of all i {0 8 i S o with the property that
- <

: Mi =W and where it is assumed that £ is Riemann integrable. [}

~
Gy

Comparison with a standard proof (RUDIN (1976]) .

Structural difference. ’

1

Basic steps of the nomstandard proof.
(1) The choice of a fixed internal fine partition of [a,b] . . :

(2) The choice of a fixed internal fine partition of (a,B]

PR ’

(3) The definition of a subset of *N indexing the jumps of f .

afe b -

(4) The verification’that the sum of the lengths gf the subintervals
of *{a,b] :involving jumps of .f is infinitesimal,

(5) The definition of a sequence of sets of points of [a,b] at
wh:':ch £ wvioclates the conti‘nui‘t:.y criterion by more than 1l/n .

a

(6) The verification that the terms of this sequence have Lebesque

measure zero.
(7) The verification of the mea;urgbility ~conditiozl1 for £ .
(8) The c{efix;ition of hg{perfi:nj:tely pilecewise constant functions
g and h bounding £ . - .
(9) 'I‘heg \préof that the Lebesque integrals of g and h are
in“fim';tely ;lose torthe Riemann integral ?f £ .
Basic steps of the standard proof.
(1) The introduction of a séquence of re)fi?ing partitions, ’

(2) The proof that the lower and upper Riemann ;'.ntegral'éz of" £

are limits owver this sequence of vp\art:}g:ions.
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(3) The definition of aﬁ?toximating step funetions g d h
ahalogous to those in the nonstandard proof.

o = ‘
(4) The proof that the Lebesque integral of g equals the lower

nx.
Riemann integral of f and that the Lebesque‘ fotegral of h

equals the upper.Riemann integral of £, a -
(5) The verification that the Lebesque in‘tegrals of g and h
coincide if and only if g=h a.e. .

(6)°The proof that the equality of g and /h almost éverywher§

d ]

v

entails the measurability of f .
{

(7) The verification that the Riemann integrability ¢f £ entails

o

the continuity of , f almost everywhere.

Logical difference. . i

..

‘Both pzoofs\\‘are direct and contain no negations. The nonstandard’
) ' - ) - R \
proof uses the T:\:ansfer‘Principle and involwves the first order quanti-

C

fiers (3MEN) and (3xE€*R) . The standand proof, on the other

hand requires the second order quantifier (3f€ P( [a,bl]xR)) and the

third order quantifier (3JIs€p(N ) X‘b([a,b]) ).

Both proofs use the fact that' the countable union of setsg of measure
zero is a set of measure zero, The nongtandard proof also uses. the fact

that bounded measurable functions Uai'e'l'..eﬁesque: integrah}le and that sets

K

whose outer measure is zero have measure zero. The stdmdard proof -also

uses the effect of ‘refin:i:ng partitions on the ordering of upper and 1ov}er

!

Riemann sums and the Monotone Convergence Theorem.- [ : A

[N
£}

i
}
1
i
i
;
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| by the equation- T(f)(i) = *£(cp(i)) . Finally we let O(X,A] e the

N

The Loeb representation of integrals °

° T

.In this section we sketch a construction due to LOEB {1979] of the

integrals of bounded measurable functions with respect to finitely ad-

t
3

ditive bounded measures in terms of the standard parts of hyperfinitel;
sums. This approach generalizes the nonstandard approach to Riemann and
Lebesque integration described in the previous section., We omit all proofs
and refer the reader to LOEB [1979] and [1972]. .
G
L~
Let X be a fixed set, A a fixed o-algebra of subsets of X ,
with both X and A infinite. Let P denote the collection of all

\finite ‘A—partition‘s of X - and let Q9 , M, and MB denote the follow-
3

@

ing sets of functions:
Q={f ] f:x> =}

M= {f E€Q]|f is A-megsurable },

i ¢ . .\
and let E be the set of all internal functions f: I » *R . We invoke
. : : v

the Concurrence Theorem to construct a hyperfinite partition of *X ,

- based on the family P above, and assume as given a choice function
Cp: I+ *X , Using this function, we define-a’ function I3

T: M~ E

x

set of finitely additive bounded set functions u:A ~ R and define

Vi N

U:OA) ~E by O (i) = Wh) , vith A

i ‘belonging to the hyper-

.
S '
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» finite partition constructed above. Then we have the following' theorem:

4.18. Theorem (Loeb representation theore?. If p€E®X,A) , £ E M,

and B €A, then

o

IB £fdu = st( XL *ﬁ(cp(i) l'*u(Ai) )

»

with the sumhmation taken over the set I

=I{iEIlAiC*B} . In

B
particular we have that
! -3 »
[ Eau = T(E)oUW) ,
where ¢ denotes the standard inner producton E . [
N {
- : o -

bl Ak aonctioct £ b s Al Laee 0 S ke bty S T e h
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v

For any given siet S , we define a new inductive set 5 ’ callled
the standard uwniverse genexrated by S . The set S wvaries with the
conteazt in which we are working, It is usually the standard set of
real numbers, but it may also he the, set of wectors of the standard
Hilbert space 22 . or some other standard set whose standard proof

]

theory we wish to explore by nonstandard means.

‘With the help of the power set operator P we define the follow-

i
g chna S c s < ven [ S (=4 weo of SetS- '

S.=8 ; Sm_l = ?nUP(Sn) '

We call the elements of the generxating set S indiv‘z;duais and
refer to the elements of S —S as sets .. Among the basic propgrties
of § aré thg facts that @ € § ' thaf: S‘c s , that(,. § is trans-
itive , and ;he;t if x,yE€ S , then x,7 3 € § . From these facts
we can prove that 8 is closed under the formation of sgbsats, power '

sets, ordered pairs, cartesian products, functional application,\ and

- ,

function formation, and under infinitary unions and prociuct':’s ovexr

index sets bélonging— to § . ‘For details, we refer the reader to

DAVIS (19771

[}

P ———
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In this appendix, we construct the nonstandard wnlv'erses #
determined by the standard universes. S . For this purpose, we qlet
I be some fixed infinite index set and let F be a nonprincipal
u:ltrafil;:er on I . We say that a property of elements indeiced by.
I holds almost everywhere (a.e.) or holds for almost all < ,“if o . o

the set of indices for which the property holds belongs to the filter

F . The construction of W proceeds in tliree stages: Firsf we con-

struct a new set of individuals W , then we generate the standard

universe V‘L, and finally we single out the subset W oof W.

f 1

We begin by defining the following subset Z of the function

-

spae S I,

Zs U :zn ’
nEN .
where for each nEN, Zn = {f:I ~8§ | £(i) € sn a.e. } . .

EY

There is a natural embedding of the standard uniﬂvefse §  into

,the function space 2 : We identify the element x € S with the

constant function_‘ const (x) , so that const (x)(i) = x for all

i€zr.,
For each f € Z, » we let f={gE€ 20 | gw £} , where -
gmsf if and only if g(i) = £(i) a.e. ', so that Z_ is diyidéd :

)

0

into disjoint eq{;ival'énce classes f by the equivalence relation- = , .

-~

We now let W =_§,{ f [ f\E zo } and form the stapdard universe "W .

Y
~ '
e
- . M ¥




U U

\ . “ LY Y .
) - . N ! .
o~ \ ' - - - *
oo | ~ o
&’ r’J i o -
v We cohtinue By induction. With each £ € z we associate a
f \ - »

S
»

cérresponding element f € Wn and we then define éhe nons;andard

k' '/-r-'\
unlverse W determlned by the set S , the index ses\ I &nd the

nonprlnCLpal ultrafilter F by \

) ~
St x W= {E] £,€ 2}

. v -

. If £ € ZO , then the element f €W_ has already been defined.

0

Thus suppose that £ € 2 and thaéi f has not yet been defined.

n+l
— - &
Then we let £ = { g | g€z and g(i) € £(i) a.e. ] .
+ .

Y

F4 .
-
- ' . -

i

/

+

’,

The members of W will be called internal and those of W-W
will be called external? In particular, the elements of W-W will

° »

be called internal sets and, as in the standard case, the elements of

W will be called individuals.  This terminology is consistent with

the standard terminology of Appendix 1 since the standard universe
is faithfully embedded in the nonstandard’ universe W by the mapping
-3
x € 8§ + const (x) €W . .
A < \
The following properties of W _are basic: @ € W , WC W ’
] \

W is transitive , and if x,y €W , then {x,y} € W . Hence
. . ) .
W is cised under a vafiety of set-theoretical constructiens. For

_details, we refer to pavis "119771.

[

3

s

-

~




freqdengly required set-theoretical properties gf W :

e

v

For’tpe purgfses‘ of this thesis, the. fgllovging are the most

”
' -

(1)

i
m

(3) h=<%,3> if and only if h(i)

(2) E=g if.and only if £(d) = g(i) a.e.

(4) h = (£Efg) if and only if h(i) =

(5 If xX€yEW, then XxEW.

3

!

[} /) <x
Ld L Ad :
i
.
.
I
» \
.
hd -~
Py
.
u
-
¥
\
»
r
PS
8
P
’ -,
-
/ ¢
&
\
¥
.
b

. o

Al
*

g if and only if £(i) € g(i) a.e. ° L

4

=< £{1) ,g(i) > a.e.

(£lg)-a.e.

N
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eacheindividual x € 8 , each set A € S-5 , and the standard unjsverse S

Y . . :
By virtue of the existential richness of the languages L and *L ,
L3 .

-

itself, can be fa?.thfully embedded .in the nonstandard universe W . FPor,
[ ]

s

this purpose we appeal to model theory and call a set A €5-% definable

if there exists a monadic. forn}'ula a(x) € L with the property that the, )

set A= {Db €s I §i"a(b) }™. We note at once that every set A € §-8

N

is definéble since it suffices to take a(x) to be the formula (xE€A).

—Moreover, the standard universe is definable sincd we can take a(x) to

be the forgula (x =

Thus ®e put *x

. © *a={bEW| Wk *ab) ] a .

X)

.

| L

%« for all x'€s,

e

*(3) =W .

P ’
We note th for'any A€ S-S, ;

*A

)

, |
(Gew|wkaeil S
(ged|3erl i
i

-

For the purposes of this thesis, the following are tfxe most

frequently regquired properties of the star map | *.5 - W

(1) .If Ac S, then AC*A and #aN'S = A .

(2) For all x,y €8, x=y Aif and only if *x = *y .

L)

(3) For all x,y €S, x€y if and only if *x € *y .

(4) Por all x,yE§ , Mx,y> m <, Ry,

\

®

S




v

.

(5) For all x,yé§ y *xly) = (x[*y) ..

(6) For all definable subsets of S ,.
Al -

(a) *(AUB) = *AU *B , °

é (b) *(ANB) = *AN *B . -
(oc)l “(A-B) = *A- *B . *
(d) ‘*(AXB) = *Ax *B., o
(e) *g =0 .

(7 If A,BES -and ACB, then *AC *B .

(8) If BES and A€ W and A'c *B, then A€ *p(B? '

i

where p denotes the power set operator.

(9) If £ €5 is a function and A < dom (f)., then *(£[A])

’

v v
.
.
\
o< -
) &
a
p . h B -
- .
- »
\»
hd
.
. . ,
s o
R ~
3
< ~
-
.
.
~
Y
N 3
¢ %/ ¢ '
. > w
' , !
\ \ -
¢ . .
/ .
\ ’ ! v .
- Y - e _)
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*£[*A]
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Here we specify the language L corresponding to a given standard
», ‘ .

‘niverse § and the language

verse 'W -determined by S .

The language L consists of
sentences. We first describe the
(1) The basic symbols of L
(2) The varidbles of L are

* (3) The constants of L are

~
A4.1. Definittion. The terms of L are described inductively as follows:

(1) Every variable of L is a term.
(2) Every constant of L is ;a term. ‘ '
. .
(3) If s and t are termsy .then sois <s,t>. ‘
(4) 1If sh and t aré term§, then sois (s[t). |

Ad.2. Definition. The formulas of L are described inductively as follows:

(1) 1f s 'and t are texms of L, then (s =1t) is.a formula.

(2) If s ar"xd t ar;a terms of L, then (s € t) is a formula.

(3) If A is a formula, then -A is a formula. i '
| (4) If A «and B are formulas, then (AAB) is‘a formula.

(5) If ¢ i:s a; term of L not c’ogt:.}aining the variable x andeé A ‘ '

. is & formula of L, then

(
r——/ .

A4.3. Definition. A sentence p/f L is a formula of L containing no

free wvariable.

*], corresponding to the nonstandard uni-

st d oy e

.
9.

an alphabet, terms, formulas, and

alphabet of L.

¢

are =, €,,A,3,(,),<,>,and [.

X X, 7 see 1 X

1% AT {(countably many?.

-

the elements of S .

inEt)A is a formula. -

Ay
¢

4
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Ad4.4. Definition. A closed term of L is a term of L containing.no

variables. : "

For closed terms, we define the following semantics in the standard

universe 8 (¢calling the element Val (t) in 5 corresponding to the

-

closed term t of L its value in 8):

" " {ITval(b) = b forall b €5 .

]

(2) Val (Ks,t>) < val (s), val (t)> . . 0

W

(3y val {( (sTt))

{val (syval (£)) . ; .

v

X T . C
R4.5. Definition. We define the relation & | o by induction on the

. D
construction of sentences:

val (t) .

(1) SF (s =t) if and only if val (s)
(2) §F (s €t) if and'only if Val (s) € val (t).
(3) S f""A if and only if it is not the case that s i= A,

(4) Sk (aaB) if andoniy if §}=‘A and 8 FB.

, o

@ (5) §i=' (Ix Et)a(x) if and only if S l= a(c) for some constant c.
¢

5 "
The construction of the nonstandard language *L and the definitions
,\'_,—1 ~ ~ N

- \Av \d 'y .
of terms, formulas, sentences, closed terms, the valudtion function, and

C .
of the relation’ W F‘ a are analogous. The initidl difference between

the languages L and *L lies in the fact that in L the set of constants is

S , whereas in *L the set of constants is W . This changes the sets of

terms, formulas, and sentences in the ocbvious way.

A4.5. Definition. If t is a term of L, then *t 'i;’the term of *L obtained

by replacing every constant ¢ in t by the gonstant ¢ :

§

D e s —




"

APPENDIX -5
£ ) J

A

SOME BASIC NONSTANDARD RESULTS

o . :
——
[l
’
12 p
.
.
.
IR
P T )
<
L}
. -
I
i .
1
.
)
'
“
3
/
. .
~
'
<
, .
L]
.
. o
-




e

e g R ET

e s

wee ey

e e

e tees o s =

-

N

. A5.3. Theorem (Internality.theorem). If A is internal and - B is

v

R ‘ -t

. ' 113 - g ' '
A5.1. Theorem (Transfef principle).. If a is a sentence in the ‘standard
. e
language L an% *a its tramslation into the° nonstandard language *L , .

i
)

then Wh* ifandonlyif Sfka. O

N ' - 2

A5.2. Theorem (Nonstandard induction principle). If A is a nonempty
- . ’
intpsnal subset of *N , “then A has a least element. []
‘ §
]

-

L3

definable, then ANB is internal. [0

-

LS

A5.4. Corollary 4Internal subset theorem). If B is a'definable sub-

set of an internal set A , then B is internal. [ } -~

A5.5. Theorem (Internal product theorem)., If A and B are internal
: v e

sets, then their cartesian product AxB is internal. [J

0y

A5.6. Théorem (Irfternal function theorem). If A and B, are internal
sets, f£:A+B a function in W , and p(x) a monadic term of the

nonstandard language *L such that for each a € A , f(a) = Val (u(a)),

then f is intexnal. [J ‘

B5.7. Theorem (External set existence theorem)., The set N of standard

natural numbers is external. [] [

i +

A5.8. Theorem (Nonarchimedian order theorem). If n € N and v € *IWN-N,

¢ ¢

then n < v in the orderingof *WN . [
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A5.9. Theorem (Characterization th_eorem)'.

A hyperreal number
«

X € *R .

is infinitesinal if and only if |x | <I-l1 for all n € N. ‘O

" A5.10. Theorem (Finite drithmetic theoren).

)

-

(1) If x and y ‘are finite, then so are x+y and x-°y.
( I3

4

(2) I£f x is finite \and nonzero, then ;1-(

(3),If x and y are infinitesimal, then so ai;:e x+y and

. : x°y.‘

\

is finite.

3

'
v

(4) If  x is finite and y—is infinityesimal, then x+y is

infinitesimal.

(5 If x,x' ,y,y' are finite/and

then x4y ®x'+y' and

A5.11. Theorem (Standard part theorem)

(1) Tf x€ MR , then sE{x) = x .

4

(2) If x and vy are finite, then

]

’ {a) sti{x+y) st{x) + stiy)

(b) stix+y) st (x) * stl(y)

.
‘

(c) stix) € st{y) if andonly if xs y . D\

-
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X J
3 _in S or W if whenever < 3y 4 ooy > € dom (r) , there exists an
o element b such that. < ai,b > €er for afl i=1,2, ... ,n .
Yoo, 26.2. Deﬁnjﬁtion (Nonstandard). In any metric space < X,p >, a point
- N . y .
p € *X is finite if .p(p,q) € R fot some point q € X. ., \
’ ' .
;s A6.3." Definition (Nonstandard). In any topological space , < X,Q > ,
_the monad + u(p) , of a point 'p € X is [ UEQ, *y , where Qp denotes”
‘ \
p
. _ the-set-—o0f-all open sets containing p .
. . , ,
» v N . . S
’ A6.4. Definition (Nonstandard). Two points p and q are rllated by
3 ' -
p®gq Jif and only if p € ul{q) , in which case we say;that. p i8 in-
. finttely close to q .
- e s
. . e
A6.5. Definition (Nopstandard). In any topoldgical space ‘<x, 0>,

. - R LN
ab:int P € *X is near standard (with respect to X), if p~gq
for™some point g € X . “

36.6. Definition (Nonstandard). In any topological space a point. is
-0 remote (from ‘the space) if it is not a near standard peint of the space.
' ’ » .
, qj1\6.’7. Definition (Nonstandard). 1In any topological space the standard
< - ¢

A R o W O TR TSNS Sy

ot
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A6.1. Definition (General). A relation r 'in S or W is concurrent
~ ’

-

' part of a near standard point p is the unique point g such that
- &
& o N ’

p € ulg). — . l
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