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~ Thexfintgnded purpose of this research was to study the

bifurcation analysis of delay differential equations and to

°

develop a computer program to :compute the bifurcation

diagram of delay differential equations. In.this thesis, we
discuss: computation of stable and unstqblef stationary and

o

periodic solutions of delay’ differential equations;

detection of stationary bifurcation pdints, Hopf bifurcation

o

points, secondary periodic bifurcation points' including

o

r

pegiod . doudlimi\ebifurcation points; and techniques' of
switching aytomat i élly'onté branches of periodic— solutions

and tracing out such brancﬁés. Numerical results of a model

’ _/ w " ABSTRACT o L

e —— -

from physiology and other examples will be shown. - .
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: ' CHAPTER ONE S
. R B . p _ -
- LT . " Introduction «
S s . . , ‘
- P Differential = Eguations sarve as, , mathematical

- . . . .

) descriptions for many physical p oblems and phenomena.

Differential equations are eqyations involving ~ the

?. . derivative(s): of some unknow

Ay

function(s). Typical

_elementary examples have the form

' ’ (1.1.1) (e = E£(t, u(t))

' where u' is the derivative of. fhe unknowrn function u, and £

- =

is- a, given continuous fun tgoh. The goal is to find the

! ' unknown function. Differentjal equations -have contributed
- . . , . oo
: . immeasurably to the advancgment of physics and engineering.

They also have a significant role in mathematical biology,

[N

in’ mathematical ecology, in chemical reactions and nuclear

¢

reactions, in physiélogy nd in economics. A differential

equation of the form (1.1.1) is known as
. \

v ' Ordinary Differential Efuation, in which the rate of change
!

of the unknown funcii n u at time t depends Bn the function

o

value u at time t, Many . physical problems- cannot be

E

modelled by ordinary/differential quations'because the past

history of the system is essential go the present rate of

change of system. ifferential equétion modelling this kind

of physical problem | are Known as

’

. Retarded Functional Differential Equatidns. The equation
‘ ' )

(1.1.2) “ut{t) = E(t, ult), ult-v),
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where 1t 1is a' positive constant, is a special kind of

retarded -‘functional differential  equation, known as a

o

Delay’Differential Equation.

\
A\

N,
Usually, parameters _are present in models of physical
. " !

systems. As a ;arameter varies, ‘a famiiy of .solutions
arises and. branching of sclutions is possible. 1In 1981, a
computer brogram for the automatic bifufcation énalysis Jof
autonomous system of ordinary differen;ial equations without
delays was develoéed by Doedel[7]. * This progranm, n%med
AUfo; can trace out: branches of stable and dnstable,
§Eationary and periodic solutions; can détect .stationa;y

bifurcation points, Hopf bifurcation points, secondary

periodic bifurcation points including period doubling

'bi furcation "points; it can,also'Switch*automatically onto

branches of periodic solutions and trace out such branches.

(See definitions on page 18 and Figure 2.7).

In _this thesis the development of a computer program,
DLAY, for the automatic bifurcation analysis of delay
differential equations 1is Feported.' The program DLAY can

compute stable and unstable, stationary and periodic

éolution of differential equations of the form
(1.1.3) Ut (t) = £(u(t) ,ult=-t),)

wh;>a\z is a constant delay and 2 is a parameter;
As the parameter i varies, the program DLAY can detect

stationary bifurcation points and Hopf bifurcation pdints

while it is computing a branch of stationary solutions.



g

Taking a Hopf bifurcation point as a starting point of

’

periodic solution. branch, DLAY can,trace out such a branch

’

and in the meantime it can detect secondary  periodic
bifurcation points including period doubling bifurcations.
With an appropriate technique to switch branches at

. . . .
secondary periodic bifurcation points, DLAY can compute

.

‘cascading bifurcations of periodic branches.

In Chapter 2 of ¢this thesis, Keller's general pseudo
arclength continuation Féchnique for solution branches is
discussed. General  results from biéﬁrcation ‘theory
including‘the Crandall énd RabiAowitz Bifurcation Theorem

and the Hopf Bifurcatiorn' Theorem are also discussed.

I P

In Chapter 3, éefinitions, examples and basic theory of
rétarded fpnctignalldifferential equakions are given. In
the last section of Chapter 3, Hadeler's~techniqué\for
cymputing bifurcation diagram for delay différential

<
eghiations is discussed.

Chapter 4 and 5 are devoted to our method of computing
the bifurcation diagram for ’delay differential equations.

In Chapter 4, computation of steady state solution branches

is discussed. The detection of stationary bifurcation point

L} /

and a branch ‘switching technique for stationary solutions
are presented, In the last section of Chapter 4, we discuss

systems of delay differential equations.

o



1

LY

.

In Chaptetr 5, the:detectipn-of.ﬂopf bifurcation points

is discussed. Further .-we consider the detection of
secondary periodic bifurcation points including period

doubling bifurcations. A method for switching onto periodic

solution branches and tracing out such branches {s presented

.t

also. .

~

/

Numerical results analysed /by the program DLAY are

presented .in Chapter 6, /

J . . .

N
~
"
@



b
* . * " CHAPTER TWO-
Continuation of Solutions qnﬁ Bifurcation Theory ¢

-

i »

2.1 Continuation of solutiens

1

Consider .the operator equation
—

(2.1.1) G(u,)) = 9,

where A is a paraaeter and G is a nonlinear mapping from one
. 4 -

‘ Hilbert space infb another. As the parameter, A;-varies,

one expects branches of solutions. Usually these branches
cannot be continued at Furning points 1f A is treated as the

continuationﬂparametef. (see Figure 2.1).

RN

- Fig. 2.1 Continuation parameter i does not work
4 at turning points

t

’
£

’

Instead of using A, one can, us the arclength of the

splution dranch as the continuatygon parameter. In other
t e 3

words, instead of walking along the laxis, we walk along
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'

. . . - . ¢
the solution branch. To compute the actual arclength of the

v'solution .branch would be tedious. A’ pseudo arclength

t . ﬂv’ . . ." .."
;“bontlnuation tecanlqgue, Whﬂfh works'also at turning points,

:7'was suggested by [2@] and hqﬁ pbeen using by various authors

"(2,5,7,8,14,21,36]. . By pseudo arclength between two

~
F)

. " of the difference of the two solution vectors onto the
' tangential vector at the prior solution vector. (see Figure
‘2.2). - S .
. A

Fig. 2.2 {seudo arclength ss ‘

.

<

< +

. For the .continuation of a solution.branch, we fequire the

'L pseudo arclength between,the current solution on the branch

\ and the next one to equal a prespecified value, say, '6s. As

' »
.

at turning points, ’ .

A

- consecutive solutions on the branch, we mean the projection’
[ N ‘ v

can be seen in, Figure '2.3, this t2¥hniquexworks'equa11y well

t*
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2.3 Pseudo arcléngth ¢ontinu
E at turning poi

e
.

- }
!

;;ion works
ts ‘

-
L

To .show the existence of ae braqfh of solutxons, we first

recall the basxg features of tne geéneral procedure in

‘
A

e

ow

{20].

igt y=(u,k). If there ‘exists soﬁp paramftrized branch w(s)
. of solutions .to (2.%.1)'£hen undet épprbpriate smoothness
assumptions we have | ‘ > .
- * . i
. ““G:(w(s)) w' (s) N a. N ‘ ‘ .

'TH&% %he AeriyatiQe G’ always has a null space along the
branch: Assume now that we have a solution Wy of (2 l l),
i:e%\» Q(wg)ég, ‘and  that the ' nullspace of G'(wg) is.one
-diménsrbnél and spaﬁned by a vector &é, Let wé* be the
.adjoint element such. that yé*wé=i.c Then‘ the "inflated
ptoble -

LZ 1. %w4 |-G(W) ) ’ ’ .

(2.1.20) wy " (w-&é} csZg. ot

-

/

g

etk e e t—————— e o wimgone
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which we wri:j)pore compactly as

H(w,s) = @, )

1 'Y N . » .

fias the solution w=w_, when s=0. Further the derivative
- g .

)]

. V- r 3 . ' .
' l . . ] X
} . G‘ »(wﬁ) . ’
H t" !
i Hw(wzl@)lz .
A . x i
H R W ~—
} B |
i . L ‘ ° ;.
,3 is nonsingular since. Hw(wﬂ,e)g = g 'iff"G'(wﬂ)o'f-ﬂ and
; ' "k ' . o
i . we ¢ = #; but w94-¢ @, hence ¢ = 0.

% Now the implicit.mappihg theorém as stated below guarantees

8- the existencé of a branch of solutions w(s) for -small s,

3 ) . ¢ ’

Theorem: (2.1.1) ( Implicit Mapping Theorem )

.
- “s »

Let X and_Y be Banach spaces and let H be a contfnuously

differentiable transformation from an ;ﬁgn set D in X x ¥

s with values in X. Let (wﬂ,sg) be a point in D €for which

b

Howg,sg)=0 and for which Hw(wﬂ,g is non-singular. Then

ﬂ)
there is a neighbourhood N of Sa and a continuous function w

mapping - N into X such that w(sg)=W, and H(W(s),s)=0 for all

* ’ S in N.
., S —
* v
|

The pseudo arclength continuation technique described

. : above applies in a very general -setting. .In fact, the
v P ~ - . '

+ . continuation -of both stationary and periodic rsolutions to

- r

-

@g | . | . '/,
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J .
systeas of differential equations can-be treated in the same
fcamework. An applicatian of this techniqﬁe for systems of
L L] \
ordinary differential equations without delays—can be found

in. {71. In the later chapteré of this thesis, we implement

. \ .
this technique for delay diffeﬁQntial equations.

' L g 2- 2. The Crandall & Rabinowitz Bifurcation Theorem

%

~

-
22 -

’ " ’
Bifurcation theory, involves the study of equations whose
. wrt ' ‘ :

solutions branch, or bifurcate, as a parameter jin these

eguations varies. . This parameter is qsuallzrcalled the
bifurcation pa}amet%r. Such equations often occur in models
.used ' in mechanics, fluid dynamics, elasticity, population

dynamics, physiology and in many other areas. The

bifurcation of the solutions to these equations means, _

L4

physically, that the system is in & situation of change of,

state. For example, in the nonlinear equations modeling the

~

buckling of a rod 'that is subjected to incr'easi.gg~ pressure,
N .

the appTTed pressure is.théLbéfurca;ion parameter. When the

pressure reaches certain values, the solutions to these

model  equations bifurcate. The bifurcation points

Al

'correspond to critical pressures that can cause the rod to

buckle in.one way or the'obher,ddepending on which solution

°

branch is followed. | >

- T . . .
Since many models of physical events consist of
equations whose 'solutions bifurcate, bifurcation theory is

of considerable practical importance. Complicated .behaviour

J e



e T ——

.

" axial thrust:_

B . .
18 .

.
“
IS
- - “

can occur when branches of solutions split to form secondary

bifurcations.® The branches originating from secondary

bifurcation 'points may split to form tertiary bifurcations,
PR .

and this process. can sometimes continue indefinitely to form

a cascading bifurcation of solutions:with infinitely many

branches,

b
"

"For many problems of the form F(u;:) = 8, there is a

distinguished state, u, yhich is a solution for all values

of X and corresponds to a special configuration of the

I

physical system. It is called the basic solution. The

- >

choice of the basic . solution 1is wusually obvious from
physical considerations. Frequently, ?; can be obbﬁfned
. M'h | i

explicifly. For insfance, consider the mogellequaiions for

.the buckling of a uniform, thin, inextensible rod subject to

L.

v

Y

ﬁ, _x € [gllll

u" + A sin(u(x))

u'(x) =@ at x =9 and x = 1, -

*~

where u(x) is the angle made between the axis of the rod éﬁd‘

-

the téngential direction at'displacement x from an end point
of the rod, and i is the'bifurcatiqn parameter proportional’

to the applied thrust on the rod. A basic solution u(x) =0

. for all 1 is obtained easily from the model. Physically, it

wﬁ'; ?

means that the state of no buckling is always a solution to

the ‘model for any applied thrust. Obviously, beyond certain
o .

4

value of -the applied tﬁrust, no bucklihg is no longeria

~ . vt . ©

LR}

bl

-



~

physical or 'stable solution’ to the .model and at that

'

barticular‘value of applied thrust, bifurcation appears.'

5
0

Bifurcation points on the basic solution are referred to

as primary bifurcation;points,\and the branches of solutions

-

that bifurcate. from these points; other than the basic&

L)

solution are called primary states. Any solutions other

\

"than’ the basic solution which bifurcate from a primary state

g

are called  secondary -states, and the corresponding
bifurcation points are called secondary bifurcation points.

In Figure (2.4), a bifurcation diagram ‘of " solutions to a

hypothetical nonlinear equation, sF(u,\) g, is shown.

N
. el

\; " kl k! l .

Fig. 2.4 Bifurcation diagram for a hypdthgtical
, equation F(u,;) = @.

As a bifurcation parameter is varied, a solution can follow

a péth in thedscascading bifurcation or can jump from branch

!

"

’

to branch. How a solution jumps Basically depends on the

«

chanqe of stability of the solutions on. the branches and it

. ) . . - ' ’
is why bifurcation 1is closely related to the 1loss of

l
£n it a8 i 4 e S A




12

stability of the solution of the system.

. . l o : . o] .
To be more precise, we recall the basic bifurcation

theorém as given in [3]. Let W and Y be real Banach space’s,

L] "

Q an open subset';of Wand G : a'+ Y be a continugus map.
Suppose the%e is a simple arc- C in Q given by
© C = {w(t) : t €1}, where I ié\ an intervaf, such ;hat
., G(w) = 9 for w ¢ C. 1If there is a number ‘p e I such that

every neighborhood of w(p) contain zeros of G not lying'bn

" C, then w(p) is called a bifurcation point for the equation

G(w) = @ with respect to the curve C. (see Figure 2.5).

-

3

N

t

- Fig. 2i3 w(p) is a bifurcation point with regpect
' to the curve C. )

‘e

:7.,(‘

8 Rohghly" speaking, a bifurcation point jis the "interséction"

. point of twé solution branches. The

multiplicity .of a
bifurcation  point is m if .there re m+l simple arcs
. ' ! .

intersecting at the bifurcation point., A bifurcation point

of . multiplicity one is ‘called a,‘simple bifurcation. A

- 4

s
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general theorem for the existence of a simple bifurcation
has been given by Crandall' s Rabinowitz(3] . This theorem

is as follows .
¥ a T

3 -
e B

Theorem(2.2.1)

( The Crandall and Rabinowitz Bifurcation Theorem )

-

Let W,Y be Banach spades, @ an open subset of W and

G:a+Y be twice. continuously differentiable. Let

o

w:[-1,1]+a be a simple .continuously diﬁfeféntiable

arc {n 2 such that G(w(t)).“ 8 for |t|$1;f'Suppose
(a) w' (@) #'0 e '
(b) d.im N(G"(w(ﬁ))‘) =2, codim‘R(é'(w(q)))' = 1
(c) N!G'gw(@))) is spannéd by w'(8) and v, and
() G"(w(8)) (W' () ,v) # R(G' (w(f))) -

_ﬂThen w(g) is a bifurcation point of G(w) ='@ with
respect . to C = tW(t):te[—l,I]} and in some
neighbourhoqg ‘bf’ w(@) the totality of solutions of

. G(wf =~e'form - two q?ntinuous curves intersecting

oniyAat w(g). - . .

[
1

Here dim and codim are abbreviations for dimension and

codimension respectively( the codimension of a subspace 'Z of

Y ‘is the‘@imension of Y/i), and N(T), é(?l dgnété the null
space and the range of a linear operator T. G' and G" are
the firdt and second ﬁréchet’derQVatives of G. G'(.) is a
'Iinear operator from W into & and. G?l.) is a bilinear
openétor from W Q W into Y. Fog example G"(w(ﬂ))(w(ﬂ),?) is

-

the ,value of the bilinear ~ operator G"(w(@)) at

-

J—

Do = -
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e

N M : ' o . v -
co (wt(B),v) €W x W. =

e, i - . o oo L v
. An .example :is given below to shdw how this theorem can

be appliedl;b £ind a simple bifurcation point.

, e :

- 1

. -

Example: Let W = R%xR, Y = R%, G:WsY such that .
o —4uW '
! u{l-u}-uv-ir(l-e i) :
- TG(x) =N ‘ ‘
L' ! ’ ' PR . :‘ . [
.. : L\ -v+2uv ’
. ‘ . ‘ - md *
where x = (u,v;x)T e W. ; 2
, " Let w:[-1,1]+W be such that w(s) = (0,8;A(S)) ., A(S)
not constant. Then G(w(s)) = 6 for |si<l, and
4 ‘ .
b , ' " : ’..~ " - ' h i
* . " 1-2u-v-42e” Y -u e 44
, IE
i ) [ 2v 2u-1. g " . '

Y S ' )
. © " The second derivative of G, G"(x) is

. Ry ﬂ
o  |-2+160e74Y, 21, c4e7Y) (c1,0.00  (-4e7%Y,0,0)
, (8, 2, 8) (2,0,0), (9,0,0)

L o |1-ex 8 @

. .G (w(s)) =




s

o o 3
(2, -1, -4) (-1, 0, 0) (-4, @ 0)

G"(w(s)) =
(6, 2, 8) (2, 8, 8) (8, @,.0)
‘L ’ . b
1 T X T :

Let w(8) = (6, @; 6.25)" and w'(@) = (6,0;1) # 8.

o 0,0 ) ‘

~

G'(w(e)) = " . .

6 -1 @

has: a.two dimensional null space which is spanned by |

' ¢
W' (@) = (8,0,1)" and v = (1,8,0), and
)
. o o]
G (w(d)T = |8 -1 _ _. ;//“
g 0 oL
4
has a ong dimensional\null space.
Finally G* (w(8)) (w'(0) ,v) | \ :
e | (2,-1,-9) Y (-1, 6, @) (-4, 8, &) [o][1
. ' N 5
= ' _ ol o
:, (6, 2, 8) (2, 6, 8) (¢, 8, 0) 1|
-4 9 0
= ‘ 0




st Pcttrmen o = o

wanrm——— . .

= (-4 T

Cf R(G(W(0))) = (e, v Ty R

I *

Hence by the Crandall and Rabinowitz 'Bifurcation
. .
)

-

- «Theorem, w(@) = (8, #;0.25 is a simple bifurcation
\ -

of.\ETk)

”

w(s) = (@8, @; x(s))T.

2.3 The Hopf Bifurcatioh Theorenm

To deteﬁt Hopf bifurcation points, the érandall and
Rabinowitz Bifurcation thegrem does not apply directly. In
this section, the' Hopf .Bifuécatien Theorem for ordinary
differential equations without delays 1is diseussed. The
Hopf Bifurcation Theorem for retarded functional

differential equations will be discussed in Section 3.2.

Consider an autonomous system of differential equations

of the form
(2.3.1).  u'(t) = £(u(t),n, £28, uf& .-

Here 1 is the bifurcation parameter. Such systems arise in
many areas, especially in the study of chemical reactions,

in ‘population dynamigs and in mathematical bi /qu.

A function u(t) ¢ R, t > @8, is said to be a solution to-

~

@ with respect to the simple ar¢ -
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(2.3.1) if it satisfies (2.3.1) for some .

, * .
.8 .
A solution, u(t) =u, to (2.3.1) is  said to be a
steady statg,,,d}' stationary soluﬁion to (2.3.1) if
. ' [/} .
f(u, .= 8.

o

¢ - -
A stationary solu%ion u in R" i's said to be stable if for

every neigpbourhood U of u in R“ﬂ there is a neighbou}hqu
of u in R™ such that every solution u(t) with u(@) in Ul

1
is defined and in U for‘all=t>0. - |

.U

. N _ ¥ . -
BEn addition to the above properties, if u(t) » uas t » «

s

then u is said to be asymptotically stable.

A stationary solltion that is not stable is called unstable. -

‘Figure 2.6 illustrates the stability of a stationary

solution. R,

. W w 7 U
é-N\ U,

' Asymptotic L
(®) seability , (€) Instability

‘(a) stability

Fig. 2.6 Stability of a stationary solution.
» 1

A solution, u(t), to (2.3.1) 1is said to be a p-periodié




N

solution to (2:3.1) if u(t) is a solution to (2.3.1) and

u(t) = u(t+p) for all t.

-

' Generally one 1is interested 1in ‘both steady state and

periodic solutions to (é.3.1). As : the bifurcation

parameter, i, varies, one expects branches of both types of

solutions. '

f
¢

Ly o e . .

A steady:gtate bifurcation point is the bifurcation point of
o

two brancfies“of steady state solutions.

N

The bifurcation point of two branches of periodic solutions

is called a secondary periodic bifurcation point.

These two types of bifurcation points can be detected by
2 ' F ) : .
applying the Crandall and Rabinowitz Bifurcation Theorem

direcély.

o

A Hopf bifurcation point is the point where a branch of

| l

steady states and a branch of periodic solutions intersect.

(see Figure 2.7) N

‘The Hopf bifurcation refers to the .development of periodic
ofbits(“sélf—oscillations") from a equilibrium point, as the,
bifurcation parameter crosses a critical value. (see Figure

2.8). To detect a Hopf bifurcation alohg a branch of

o )

stationary solutions of a one-parameter family of Ordinary

Differential Equations , .

(2.3.2) u' (t) = f£(u(t),a) u,.f e R,



*S$.S. means stationary solutions
o pP.s. means periodic solutions
Fig. 2.7 § is a steady state bifurcation point
. . @ 1s a Hopf bifurcation point
1s a secondary periodic bifurcation point

’

parameter
increases

"‘\._—%

stable point .. ' appearance of .
. a closed orbit

-

Fig. 2.8 Hopf Bifurcation !

let (u,,2,) be a point on %‘stationary solution branch.

Look for small amplitude periodic solutions
(2.3.3): u(t) = u, + eo¢(t) e .

with ¢(t) = ¢{t+p) for all t, where o is the period of “the

f \\




Y

solution. _

‘Substitute (2.3.3) into (2.3.2) to obtain

o

(2.3.4) e¢' (t) = f(u,+eo(t),1,)

.Taylor expanding about u,, we have

.

(2:3.5) o' (L) = £(uy,),) + ef o(t) + 0(e?)
*

whererfu = fu(u*,x*).

For ¢ sSmall, ¢(t) approximately satisfies

(2.3.6)  o'(t) = £, e(t).

* ) .
Note that £ is an n by n matrix of constants. Thus a

necessary condition for (2.3.2) to have -small aniplitude
{

éeriodic sqlution fs that the linear constant coefficient
differential eduation (2.3.6) have a beriodic solution. In
1942, Hopf's pioneering paper [15] appeared giving the basic
results on tiﬁe periodic bifurcation, that is, existence and
uniqueness, ' symmetry 'properties, and ~stability ofu‘the
solutions.  The Hopf Bifurcation ‘Theorem is the simplest
regult which guarantees the bifurcation of a family of time
pe )odic solution of a system of differential equations,

-

a fahily of equilibrium solutions.

5
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[ 9
. eigenvalues z(1) and E(x) such that
3 o . ,d a— ’ . -
K (2.3.7). 37'(Re z(;ﬂ))#ﬁ, Re»z(xﬂ)iﬂ and- Im z(xe)#ﬂ.
Thén there are periodic orbits bifdrc%ﬁing from the
) staﬁiénary solution zuﬂ,xg) which has period close -
’ L 2 - _ , st
to Imz‘)\a). . . ”; e /‘ o
. o ‘ a . - C- :
A
- . . . 4

r

Theotem (2.3s.1): ( The Hopf Bifurcation Theorem )

C>

Consider .a . one-parameter ' fambly of Ordinary

-~ ¢ . N . ;‘ ’
. , o ; , N\
.

Differential Equations . . ‘ ‘

Cur(e) = £(u(t) N / . N eR,u R

)
¥ ~

éuppqse *that f(ug,i £ admits the

"
-
13
=
Q,

linearization

y'(t) = A{A)Y(t) :
‘3f - ' ’
_E. ! . - d )

% . . o
B

where A(}) =

-

Assume tﬁg% A(Ag) has a pair of complex cénjugate’,

‘fhe Rypothesis for the above thoréh; simply means that a
\ , 4 .
" pair of complex conjugate étganvalues z(}), z()) is crossing

]

the iméginagy axis at an acgte’angle. (seenFigure 2.9).

AR

« , b

* The Hopf Bifurcation Theorem _in infinite dimensional

3

\ i .
% gpaces, Wwas proved by Crand@ﬁl and Rabinowitz (4] in 1977.

* Another version of -the Hdpft\Bifuréation Theorem which

applieé to. Delay Differential. Equations was proved by
N ' , '
. ‘Hale[ll,12] and will be discussed in Chapter 3.

!

N ' 0 > ” M .
o ~ . - . - N
: 21 “

t
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CHAPTER THREE ~ - - .

lDelay‘Differential Equations,

3.1 Retarded Functional Differential .Equations.

-

Suppose r > @ is a given real number, R=(-«,«), R" is. an

’

n-dimensional 1linear vector space over the régls with norm

<
]

1.1, C([é,b],‘Rn) is ' the Banach dpace of continuous
functions mapping the interwval [a,bl into R". If

[a,b] = [~r,8], we let C = C([-r,0], Rn), and designate the
norm of an element ¢ in C-by [¢} = SUP-f§Q§91°(e)I' If o€eR, .,
Azd and xeC(Tc—r,&+A],Rn), then fqr any  telo,o+A], we let -
xteC be defined‘ by xt(e) = x(t+e); -t © <@. If D is a

subset of R x C,“ f: : D =+ _‘Rn’ is a given function ar_1d whyn

a

_répresents the right-hand derivative, we say that the

P

‘¥

[y

(3.1.1) x'(t) = f(t,xé). v 5 \ T

‘e : . N

i a Retarded Functional Differential équétiqn-on D.
v g ) T

v
\

Equation (3.1.1) is-a very general type of equation and

includes

ordinary differential equations {r=@) - | S ‘ ot

- ~

i x'(t) = £(t,x(t)), Lo h

+

differential difference equations - | P,

Wit



s

s

y
-

e

R'(E) = ECE,X(0) X (E=1](E)) . upx (BT (E)))

. Lo- N

with 8 < 15(8) € £, 3=1,2,...,p , B R T

.« delay ‘differential gguations
x'(t) = f(e,x(t) ,x(t-1))

with 1 constant in R, as well as

‘

’Entegro—differen{ial equations

v g
x'(t)i- I_,

«

g(t,e,x(t+e)) dg.

i We . say equation * (3.1.1) - ‘is 'linear CAf
' . -~ N ~ - v
g f£(t,e) = L(t,¢)+h{t), where L(t,s) is linear in . ¢;

.linear homogeneous if hz=z¢ and, linear nonhomogeneous if

t

h # @. We say equation (3.1.1) is autonomous if f(tf0)=g+¢)
' ' _—-—-—T_ <o .

-where g does not depend on t. BN \

3.2 Basic Theory ' C -

s

AY

l
o

For the existence and uniqueness. of solutions with
initial value of'equation (3.1.1), we have the Existence and
" " Uniqueness Theorems which can be found in {11], Here we

%?%te these two thebrkms without proof.

'

Theorem (3.2.1) (Existence)

5 Suppose ® is an open-subSeﬁ‘in R x C ang fec(a,RM) . If

(g,¢)eft, then there is a solution of equaéjon (3.1.1)

]

v

- . Ny

‘l‘
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passimg througn (o,9).

’
-

Definigiégb Let 2 is an open ,subset in R x C and FoC+R". IE

: A

¢ for some kK > 0
TE(e,e)-f(t, &) < kKlé - ol
whenever (t,9) and (t,. '®) ,in f, we fsay £ is

4 . N - . - .
Lipsciiitz continuous on 2 with Lipschitz constant k.

8 L . .
-*- -, . t

Theorem (3.2.2) (Uniqueness)’

“*suppose ® is an open subset in R x C, £eC(a,R") _and

f£(t,s) is LipschitZ continuous in ¢ in_each compact set in °

[l

2. If (0,6)e@, then there is a unique solution of “equation

+(3.1.1) through (o,¢). ‘ . - :

-

-

‘

Apart Erom Ehé‘ Existence and ququeness Theorems in

. Hale's book, the Hopf Bifutrcation Theorem ' for retarded
ﬁunctignél differential equati&ns is also présented.\vTﬁis

.theorem giveé'the condiLions for whjch noncongtant period;c
soiutiqns‘ of autonomous eguations can arise. In the

-foilawing the Hopf Bifurcation Theorem' is stated without

n )

proof. ‘Tne - detection of Hopf Bifurcations along a

A

étaﬁipnary solution branch of .delay differential equations

will be discussed in Section 5.1 in this thesis.

, . ) ) N
| : ofch )
y Consider a one parameter family of>retarded fpnctﬁonal,
. ) i .

differential ‘equations of the form
g ‘ . |

»




¢ : i‘25

-

o ) (3.2.1) X! (t) = Fx, /).

°

'

where F(¢,r) has continuous |[first and second derivatives in
. . N N
b . . e, ‘A for ¢¢C and ,r¢R, and F(d,1) = # for all x». Define

L Rx C~»R" by

T (3.2.2) 7 LA v o= F(B,0)y

' St wheré F,(8,%) is the derivative of F(¢,\) with respect to ¢
0 at ;b:@_
' o . Under the following two Hypotheses:
, (Hd1) The linearization (3.2.2) has a simple purely
. © "+ imaginary characteristic- root 'zﬂ = iy, # 8 and all
;_ - characteg;st1c roots’ zj # zﬂf z, satisfy zj,# mz, For
l .~ . .any integer m.
' * . .
R 1
e ' . (“HZ) .9 Re (3 ;4‘9 -

~.  we have .

Theorem (E.Z.B)_( The Hopf Bifurcation Theorem for Retarded

Functional Differential Equations)

[

3 : " Hypotheses (Hl) and ﬁHZ) imply there are nonconstant
- periodic solutions of equation (3.2.1) bifufcating from

{(B,2) which have period close to 2n/y0.
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3.3 Examples of Delay Differential Equations

\

As mentioned in section 3.1, ‘the eéquation (3.1.1) . is a
. I -
very general type of *equation which inc¢ludes ordinary

differential equations, differential -difference equations,
" delay differential equatibns'as well as integro-differential
equation. ' In this -“thesis, we are interested in delay
diﬁferentiai equaéions. inr this ‘section, ~we give some

examples of physical and’biologiqal systems .in which the

present rate of change of some unknown functio? depends, upon

3

past values of the same function. «

1 ' v

Mixing of Liquids

L d

ES

Consider a tank anéaining‘é litres of salt water brine.
Fresh water fiowirin.at the top of the tank at a rate of g
ligres per secohd. The brine in the taﬁk is continually
stirfed,_ and thg.mixed solutiop flows out through a hole at

Q. ~

the bottom, also at the rate of g litres per second.

\

Let x(t) be the amount(in kilograms). of salt in the
brine in the tank at time t. I1f we assume continual,
instantaneous, perfect mixing throhghdut the tank, then the
brine leaving the tank contains %(t)/B Kg of(salt per litre,

‘and hence

——

(3.3.1) x'(t) = -q x(t) / B

'

But, more realistically, mixing cannot occur

inStantaneously throughout the tank. Thus the concentration
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e,

hardai s
-
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v

. . . . . -
of the brdine leaving the tank at time t will -equal the

k] 1
averade concentration at some earlier instant, say t-1, + is
a posiitive constant.: The differential equation (3.3.1)~then

becomes 'a delay differential equation

-

v S (3.3.2) X'(t) = -q x(t-1) / B

of setting ¢=q/8, we have

e+ o s e e, =
-

’ (3.3.3) 0 x'(t) = -c x(t-1)

. o
1 ¢ a

-where t is the "delay" or 'timé,lag'.

.o+ .07 Population Growth o
. — : &

; ¢ ' -y
S L If N(t) 1is. the population at time t of an isolated

Eolony of-animals, the most naive model for the <gqgrowth of
. \

3

. ‘ the population is

[l ' A .
[ o (3.3.4) N'(t) = k N(t),
” where k 1is a positive constant. This implies.exponential
s - growth, N(t) = Ngekt where N, = N(0).
T A somewhat more realistic model is obtained if we allow
% the growth rate coefficient k not be constant buf to

diminish as N(t) grows, because of overcrowding and shortage

of food. This leads to the differential equation

t . ’

(3.3.5) ‘N'(t) = k [1=N(t)/P) N(t),

' ;/ “where k and P dté& both positive constants.

- K
1
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Now suppose that the biological self-regulatory reaction

modelled by the factor [1-N(t)/P1 in (3.3.5) Iis not

instantaneous, but responds only aﬁter some time lag =>0. °

Then instead of (3.3.5) we have the "delay differential

equation
,/ B - '
./'/ 1}
——3.3.6) N'(t) = k [L-N(t=x)/P] N(t).
By introducing x(s) = N(ts)/P - 1 and :c - ke, equation

r =
(3.3.6) can be rewritteny as follows: -

X'(s) = éN'(ts)[P
x'ks) = 1t k [1-N(t(s-1))/pP] N({s)/P
' x'(s) = v k [-x(s-1)] [1+x(s)]
(3.3.7)  x'(s) = =c x(s-1)[1+x(s)] 5

~

This ;,equation (3.3.7) has been studied extensively by Wright

[411,(42], Kakutani and Markus (17)., Jones [16], Kaplan and.,

Yorke [18], Hale[1ll), and others. .
I -

-

Predator-Prey Population Models

-

Let x(t) be the population at time * of some species of
animal {prey) and let y(t) be the populqtion of a predator
species which lives off thése prey. We assume— that x(t)
would increase at a rate proportional to x(t) if the prey

‘were left alone, that is, we would have «x'(t) = a, x(t),

1

where al>ﬂ. However the predators are hungry, and the rate

L4
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at which_each of theﬁ eats prey is 1limited only by his
ability to find prey. Thus we shall aseume that the
act1v1t1es of the predators reduce the growth rate of. x(t)
by. an amount proportional to the product x(t)y(t), that is,
k'(t) = alx(t) - b x{(t)y(t) , where b is another positive

-

t

‘Now let us also assume that the predators are completely
dependent on the prey as their food supply. " If there were

no prey, we assume y'(t) = -a, y(t),\where a., > @, that is,

2
the predator species would die out exponentially. However, -
given food the predators breed at a rate proportional to
their number and to the amount of food available to them.

Thus we consider the pair of equations

X' (t) a, x(t) = by, x(t) y(t)

1
(3.3.8) |
y'(t) = y(t) + by x(£) y(t),
where ajs ass bl and b2 are positive constants. - This well

known model was introduced and studied by Lotka[23,24] and

+

.Volterra(37,38].

Wangersky and Cunningham [4@] proposed to modify system
(3.3.8) so that the birth rate of prey has a further
limitation as in equatfdn (3.3.5), while the birth rate ef
predators responds to changes in the magnitudes of x and vy
only after a Qelay t>8. Thus they replaced system (3.3.8)

with
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x' (k) % a [1-x(t)/PIx(t) = b y(t)x(t)
\ '

.
K ~

(3.3.9)

y'(t) = Lazy(}) + box(t-1)y(t-1)

Note that (3.3.9)% is a nonlinear autonomous system of delay
differential equations which can be written as

u'(t) = f(u(t),u(t-1)) ¢t,t ¢ R,  u,feR?.

-

We have given some examples of physical and biological

- , ' s¥stems. In tﬁese examples, the present rate of change of
some uhknogn function depends both upon its preseﬁt and past

) values. This is how delay differential equations arise. As

can be seen in these examples, pérameterééappear daturally

in these equations. One is Sften interested in the change

of behaviour of ghe solutions as these parameters vary.' In

generai, a system of delay differential equations can be

expressed as ~

o

(3.3.10) u'(t) = E(u(t),u(t-1},A) u,feR

L

where 1 is a delay or time lag and A is a parameter.

’ ’ b

3.4 Hadeler's Technique for computing Bifurcation Diagram

As mentioned °in Chapter 2 in this thesis, as A varies,
bifurcations may occur. Numerical techniques to find the
solutions and bifurcation diagram of (3.3.19) have been

developed by (8,19,35].

kA e e 3 e oA AN bt 00 oA Pt




.that at 1 =-% a family of periodic solutions bifurcates from
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In Hadeler's paper (18], the equation
(3.4.1) u'(t) = - A E(u(t-1))  A,u,f € R, /

is considered. 1In a series of p;per, Nussb;uh[3;,32,33L has..
discussed Equation(3.4.1]) and has}»proved theorems on thé
existence of periodic solutions. For Equation (3.4.i), .we
require that £(u)u > @ for u#@, that f be differentiaglg,
f'(9) =1 and’that £(u) > -k for all u where k > 8 is some
c;nstént; Then for A D> %, Equation <(3.4.1) Bas"a

non-constant periodic solution. Nussbaum has also shown

1

the zero solution. Haséard[l3] and Wan([19] can errain this
bifurcation as a Hopf bifurcation. Walther[39] has shown
that if f£'(u) > 1 for u close to @, u # @, ;hen the
bifurcatfon aré starts at %, b;nds~backward with increasiﬁg
amplitudes, then bends again to the right and tends to .

* ~
From the behaviour of Hopf bifurcati-on in ordinary
differential equations one can conjecture that the solutions
on the backward branch are unstable, at least for small

amplitudes. On the other hand for larqs values of ) the

periodic solutions appear very, stable. At , the turning

point, there is a change of stability. The determination of
the unstable arc ~has been an extremely difficult task.
Hadeler, in ﬁis paper, presented a method to compute the
bifurcétion diagram for delay equations. 'His technique can

also ‘compute unstable .periodic solutions and backward
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. . . . -
.

bifurcagions. He wuses A “gf, the Eontinuation parameter
everywhere except at turning points. At turning points, the .
amplitude of the sofupion is used 1instead. To detect
secondary bifurcation points, ne keeps track of the rate of

3

convergence of his numerical method.

t

Let C[3,1] be the set of all continuous functions -
mappi?q‘the closed interval ([@,1] into R. For ¢eC[B,1], let

u(t,¢) be. the solution with initial datum ¢ at time t. Let

ut(¢) denote a segment of that solution, namely,

-

ut(¢) = u(t+s , ¢) 6 <s <1

s /

Then for every t>@, by ¢ =~ ut(¢) a differential mapping of
C[G:l] into itself is defined. Suppose Equation (3,4(1) has
a non-constant periodic solution. Given an approximate\\
segment ¢ € C[@,1] and an approximate period p, if u(.,¢) is

-periodic with period o then
Y3.4.2) uP(e) - ¢ = 0. .

Since a periodic solution can be fréély translated, to

achieve local uniqueness, Hadeler uses the condition

3.4.3) $(0) =0 ‘ v

Condition (3.4.3) can be used here because in the existence
proofs for periodic solutions of (3.4.1), Hadeler shows
that, for a» > 1, initial data with at most one sign change

lead to slowly oscillating solutions, that is, to solutions
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which have iﬁfiﬁitely many zeros converging towards infinity
such that tne distance of two successive zeros is greater
than one. This is also the reason why Hadeler can take a

quadratic polynomial as an initial guess for ¢. To

discretize the problem, a meshsize h = % is <chosen and
L3
¢ ¢ C[O,1] is teplaced by a vector of n+l wvalues

¢i = $((i-1)h), i=1,...,n+l. To compute the approximation
of up(¢), linear or cubiec interpolation was us$;y Given
initial data for A\, n, ¢ and p, -the system is»/ﬁolved by
Newton's method. Near turn}nq points, the amplitude of the

solution is chosen as continuation parameter while 1 is

.introduced as an unknown to be determined. Thus a condition

o

(3.4.4) 2 (1) - A =0 J

.

is added where A is the fixed amplitude.

[}

To detect second;ry“periodic bifurcatiéns, Hadeler keeps
track of the rate of convérgence.of tﬁe Newton's method.
Wheﬁlthe rate of convergence is getting slow, he. expects
khere 1is a secondary periodic bifurcation. To, switch
branches at secondary bifurcation point, he chooses an
appropriate inftial function ¢ by trials. In the paper, the

. - \ N
detection of period doubling bifurcations is not discussed.

”

In the following two chapters of this thesis, we present’

a' different numerical technique to compute the bifurcation

»
w»

dia@ram for'delay differential equation. Our‘technique can

.

-



L] N i ‘ * %j \ . =
, . . , : .-
© - - v . . : \ B -
F) \. v ¢ I‘ * //:"/\
2 - ‘, » '. . .
vy , LI ] »
- [ * | ‘41
. . : ! . . 3k ) - .
9 * N . . . :;’ " ,
) ‘ ' ' - [ o . o
also compute unstable solutions and backward bifurcatiom.
. By ‘using Keller's continuation technique, we can compd(g
~ . . . . ¥ - N
. solutions at turning points~uiLHLdt any modification of the
’ - ' , . . " y N
. system. In this respect our method ig.more .automatic, than
i ¢ « \ ;
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given
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. ¢ » _' - . - N
* = . | = : -
e ) wiqdow‘ﬁpr Lhe diagram, our implementation can trace out the
\ . ' ° 4 )
w?ole branch while 'stationary and Hopf bifurcdtion points
a . . - - N s A .

can be ° detected. Then the implementation can also switch
. - 3 4 “~ \ﬂ !

. 1 . » a .
from .gne branch to another without Jny intervention of the

-

. . e . . , i \ . .
user. Secondary  bifurcation pofn(s\ including period
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- 4.1 Contingion of a solution branch

: CHAPTER FOUR

5 ! ¢

Computatioﬁ of Steady State Solution Branches

¢

‘Consider a system of de€lay differential equations 7

(4.1.1) _Lut(t) = f(u(t) su(t-4,2 12 ¢ Ry uwf.f "

fhere . is the delay and ) is the parameter of the system.

"Steady state solutions or stationary solutions of equa&iqﬁ

(4.1.1) satisfy - ¢ -, !

wt) = £(u(ty,uft-o, = 8, for-all t,

or equivalently .

.

(4.1.2) g(w(t), - = £(u(t),u(t),y = @, fornall t.

1

¢ ~ 4
To compute a steady . state solution branch of (4.1.1) is
- % .7 :
equivalent to computing.-a solution branch of (4.1.2). To

! g

apply ' the " ps?udo arclepqth ‘continuation technique as

dis¢ussed in Section 2.1, let (u*,x*)<§e a point, but not a
N i I‘

singular point, on the branch. Let (u,,),) be a unit vector

. ‘ \ ,
which spans ;ﬁe null space of g'(u,, ). s Then .the inflated

problem (2.1.2) can be written as .

S

g(u ; ) =0
f f

(4y1.3) ’ } | a -
Ll . L)
T N N S

~ N ~
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To determine the 'initial direction vector (ugys Az) at the

v

\starting~point (Ug'Ag)r we compute the. null vector of

14
g'(ub,\ﬂ) by Gauss elimination with complete pivoting, ;;

necessary, and back substitution. An illustratiopn is given
»e . ' '

below: : , , —
— ‘ ‘ .
Example: To find the null vectdr of the matrix o

Y

Now, let (xX,Y.,2) 'be the null vector. 'Set z =-1; by back

‘substffﬁfion, from row 2, we have §A} -7. From row 1, we
. *~\"

have x = 1l. Thus (11,—7; 1) is the null vector desired.

¢
e v

The direction vector (9K'lk) at (ug,) for k>1 can be
approximated by

u, = (uk-uk_l)/ss o

»t
.

- - .
aﬂd . Xk = (xk_)\k_l)/ 650 : ) —’;

.

: - .
To solve the k-th solution step on the branch, we solve'

]

(4.1.3) by yewton's method using the following procedure:

i) . set j=g

: .
.
s - . . ,
i v
» ' ‘ ! \
~ . 1
- ~ .
. i
x
’



iii)

iv)

v)

‘vi)

’

~
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(3) = - o
\uk ;o= uk__l + és uk—l
(3) _ r
A Ak_x + 85 A, ¢ /

,Solve for &u, 8

4 . L) () W ; "
o g fa] |- o
(3) 3y |- | m(d
L " " - () \ " E
v.n > ® ‘
g 43 L2 s D (3) 38 _ °T
where 94 z 3%, 9, = —%, My =5 =u "
ng) z %% = ;, g(j) and M) are evaluated

at (uéj),xﬁj)) respectively. .
set j=j+1

a3 - ;éj—l) + su
xéj) = xﬁi"l) T

ié | sul and | 6x] are less than the prespecified
tolerance or j is greater than the maximum number of
iterations allowed then dtop; go to step (iii).

else go to step (iii). ' v
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N~ . .
4.2 Detection of a steady State Bifurcation point

N

A steady state bifurcation point ‘is an intersection

point of two steady state solution branches, A bifurcation

point is found if at such a point there are .two or more

a

¢ . .
which would lead to a steady state solution. In other

words, the n by n+l matrix

~ 9'(unad = (gu(us) () | g, (u(s),a(s)))
has at least a 2-dimensional null space. If we use the
inflated continuation method, the Jacoblan of the left hand

side of the equations (4.1.3)" '
Y . T N
gu(u(s),x(s) ngu(s),x(s))

J(u,x) ;

. »kMu(u(S),A(sv M, (u(s),r(s))
: /

evaluated at a bifurcation point must be singular. Thus
bifurcation points can be detected: by monitoring ' the
determinant ~.of J(u,1). When a sign change of the
determinant 'of  J(u,.) is detected; we can locate the

" bifurcation point accurately by an iterative method, say the

Secant method, as follows::
. . .

Let D, = det(J(ug,A.)) be the determinant of the n+l by n+l
Jacobian matrix . J(u,) evaluateé at (uk,xk).

Let és be the stepsize used to find the k+l-st solution

’ .
(Ugprrrke) ="

mutyally linearly independent direction vectors each of
! » &

v



Suppose Dy _, D, < @, then the bifurcation’ poiht lies

(.\. r . -
somewhere on the branch between the solution (U _qsrg_;) and

»

(U, A ). To locate the sSolution -(u,,A,) such that

P4

det (g'(us,r,)) = 4, we‘proﬁéed

(i)~ s, = Gsk—l Dy / (Dk-l - Dk)

(ii) With &s,, use Néwton's method as stated in
Section 4.1 to find a solution (u

the branch.

1

(iii) if 'Dk+1| is greater thén the user specified
tolerance, then set k=k+l; go to step (i), else

stop and’(uk+l, *k+1) is the bifurcation péint.

4.3 Branch Switching Technique for Stationary Solutions

Suppose we have located a bifurcation point, (u,,x,)
along a branch of steady state solufion. In order to switch
from one branch to another, we need to know the difec;ions
of the bifurcation branches. To simplify ﬂotation{ let

xX(s) = (u(s),xr(s)) and x(t)

1]

(u(t) ,a(t)) where s and t are
parameters such that for all s and t, x¢s) and x(t). are
steady state solutions of two different.branches. Let x'

and x be the derivative of x with respect to t and s

respectively. Thus . o //////////

g(x(s))=0 implies gx(x(s)) i(s) =g e

g(x(t))=0 implies g (x(t)) x!(t{/5/6l

7

-
N 7
L 7

k1! Mkadoron

~



,where g .=(g, | g9,).

4

In barticular, at the bifurcation point x, = (u*,x*)

|

* % '
gy ¥ = g and gy X' = 2.

<

So g; has at least a 2-D null space. Moreover,
g(x(t)) = @

Taking the derivative with respect to x, we have
gx(x(t)) x'(t) = @
Taking the second derivative with respect to x, we have

Iy (X(E)) X' (E) X' () + 9y (X(£)) x"(t)=0

or

* n * ' ]
Iy Xx T “Iex Xx X
Thus
* U U €’ *
gxx x* x* 'R(gx) ’
* ‘ ' * ’
where R(gx) denotes the range of 9y \

By elementary linear algebra, h(g:) = ng;T) .

Suppose. ¥ is a null vector of g;T. -

’ * |} "l.
Then Iyx %* X, v, or

T * ) '

(4.3.1) ¥ X, Xy = 0

1

for all null vectors v ofhg;T.

.
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Equation (4.3.1) is the Algebraic Bifurcation Equation.

-

* "
Note that. 9y is a n by n+l matrix,

’ .

dyx is a n by n+l by n+l bilinear form,

.

x; is a n+l by 1 vector; and
¥ is a n by 1 vector.
Suppose the dimension of the null space of g;
. * '
dim N(gx) = k, 2¢ k <n+1,
, kp.
then dim N(gx ) = k-1.
* *T ‘ ’ .
Let N(g,) = span{é,,..., ¢, }, N(g, ) = span{v,, ..., ¥, 11},

[ N N
then %, = cl¢l+...+ck¢k and from (4.3.1) we have

T *

x‘ - N \r‘,-"r
V19xx (Cpéptec tCpdy) (Coo +o.bcpdy) = 8 .

(4-302)\ ) “ . ) ) .,

T * L ~

To solve for x;, we have to solve for the éi's
i=l,...,k. 'Note that tHe system (4.3.2) 1is not a 1linear
system, it’ is a quadratic one rather. Let us consider the '
case when k=3. In this case we haQe the following 1system

fér ¢)r C, and c,.
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2 2 2
aj)C] * 85)€5 * 83)C3 *+ 3,70 Cy + 851CyC3 + a5,CC3 = 0
(4.3.3) . T
a c2 + a c2 + a c2 + é c,C, + a.,Cc,C, + a@,.AC,C, =@
1271 2272 3273 427172 527273 62°1°3
. . /
where aij i=1,..,%; j=1,2 are known constants.
We can add one more constraint,say
LY
. 2 2 2 _
(4.?.4) cT + c.2 + c3 = 1

to,(4.3.3) and try‘to solve it by some iterative method (say
. - e C.

Newton’s method). However (4.3.3) and (4.3.4) may havé more

than' k solutions or even infinitely many solutions and an_.
initial’ guess to start the iterative method is difficult to
choosSe systematically.

~

We have discussed the difficulties in computing the
bifurcating directions when dim N(g;)=k > 3. However if
k=2, we can compute the directions analytically. When k=2,

A\ ]

the algebraic bifurcation equatiods consists of only one:

equation
. T * . -
(4.3.5) Vidux (C19) + Coty) (Cy8) + Chey)=0.,
"
7 -, T i
*1 = (411004%) ny1)
T
42 = (#31:--%3 n4y)

* —-—
Ixx = (aijk) °
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where i=1,..,n; j=1,..,n+l; k=1,..,n+1 - . ~

' d ? \ -

Then (4.3.5) can be written as

2 2 n n+l n+l
(4.3.6) T 0L L L I W B s bii b iCL C; =@
. i=1 ksl s=1 j=1 p=1 ° SPJ "1J "kp "k "1
or Y -
A 2 ' L2 -
(4.3.7) A c1 + B clc2 + C c2 = @
where ' ‘.
n n+l n+1l
: A=1I I I . ,
\se1 pe1 e s Tspid 13 fip

N n n+l. n+l
B'= 2 & X L V. a
s=1 p=1 Jj=1

To solve for Cy/Cy from'(4k3.7) we investigate the values of
A,B and C. If A, B and C are nonzero, we check the

discriminant 6=Bz-4AC.

If 6<@ we do not have any real solutions.

_=B+v/38
.- If 6§20 we have ¢| = —x—c,.
= - - -B
If A=g and C#0 we have,c2 8 or c, _Ccl' .
-B

I1f C=p¢ and Afﬂ we have c, = 8 or ¢, = —xC,-
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If A=C=¢ and B#@ we set either <y or c =@ but not

2
both.
If A=B=C=@, we have a higher order singularity and

higher derivatives must be considered.

4.4 Stability of Stationary Solutions

It is shown in [11] that a stationary solution of
(4.1.1) 1is stable 1if the roots of the characteristic

equation of the linearized system of (4.1.1) at the

stationary solution, have negative real parts..

The linearized system of (4.1.1) at a stationary
solution u(t) ‘=z u, is

\
(4.4.1) u'(t) = A(X) u(t) + B(Xx) u(t-T)

where A(X) and B(x) are, %% and %5 réspectively,

v(t) = w(t-1). Both are n x n matrices, evaluated at u,.

The characteristic equation for a system of n
homogeneous ' linear delay . differential -equations with
conStant coefficients is obtained £ from the equation by

looking for nontrivial solutions u(t) of the form

eZtc, where c is nonzero constant in R". To derive

{thé\J characteristic equation of (4.4.1), substitute

u(t) = e%%c in (4.4.1). This gives

u(t)

A

L z I e“"c=A(r) e?t ¢ + B()) eZ(t-1) o

where I is the n x n identity matrix.
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Dividing both side by e?t and collecting terms, we have

( zI - A(A) - B(A) e 27 ) ¢ = g. e

since ¢ must be nonzero, we have
(4.4.2) det [zI - A(x) - B(A\)e 27] = ¢
A .

which is the characteristic equation of (4.4.1).
To find a roét, z, of the chqracteristic equation (4.4.2)A
let z=x+iy, x,y<R. Substituting z=x+iy into (4.4.2), we
have . |

\ det [(siy)I --A(A) - B(r)e *¥71%Y) - g,

'

Expressing the equation in its'real and imaginary parts, we
have
(4.4.3) det [(xI - A(x) - B(x)e” "¥cos ty) +

i(yI + B(x)e "®sin ty)] = @.

-

Conéider the case n=2, and let
4 '} ’ 9
"a A | P11 P12

A(r) = and B()\) =

a

. /

21 %22 ‘ L a1 P22

Substituting "‘A(rx), B(A) into (4.4.3), we have

¢
. A . -
(4.4.49) ' = 0

(c21jx) + i(le-y) Chp + { d22



- - _ -1X
where cij = X aij bije o4

e . —
’

-TX ‘
and d Yy + biie(

0

sﬁn 1y for i,j=1,2.

ij

It is difficult, as we can see, to find all the roots for x
and y of the system (4.4.4) nalytically or numerically.
These difficulties are present even more strongly for any n
Pl ‘ -

greater than 2. However, for the case n=1, the

characteristic equation of (4.1.1)|is

(4.4.5) t z.- A(N\) - B(}) e T =

where A(x) and B()) are respectively %% and %é-evaluated at

a2

a»statiénary solution u,.
with the help of the following|theorem which can be found in
the < appendix of Hale's boo [11], we can determine ghe

v

stability of a stationary solut?on easily: ‘ g

\

Theorem (4.4.1):

. \ NN
All roots of ghe equation (z%a)ez+b=ﬂ, where a and b are

' :
real, have negative real parts‘iq and only if

a > -1 °

a+b>o¢o | |
- ¢ . n /

b < X sin(x)-a cos(x)

where x is the root of x = -a tan(x)- .
6 <x<%if a#a,

L3 N
X = o if a = ﬂf

>



®

In order ’to' apply this theorem, we have-to scale’(4,l.if

such that-the delay term t is equal to one., - Scaling t to %
- » 5
we, have )
[ ]
¥ ' -
(4.4.6) u'(t) = t£(u(t),u(t=-1),r).

Hence the characteristic equation of (4.4.6) is

(4.4.7) .5, "z = T ALY - 1 B(A) e7F =g

or : . ' T
(4.4.8) (z - ta(n)) e - r B()) = 0.
To apply Theorem 4.4.1 for (4.4.8), take =-tA(1) and

b=-1B(1) . Aﬁy stationary solution of -(4.4.5), thus of
(4.1.1),  is-stable if and only .if -the cond}tions in Theorem

(4.4.1) are satisfied.

-

1

Due to the difficulties wé have discussed above for
\analyzing the™ charactéristic equation of the sSystem of n
) Felay differential eqﬁations for n>2, we have respricted
ourselves to a singlp delay differential equation (that is
‘h=1) in this thesis. However ,* apart from the analysis of

applicable to general systems of ° delay differential

the characteristic equation, the methods in this thesis are

. , B
., equations. | [,
‘ v
! |

The following is an example that ilustrates how Theorem

. [N e .

(4.4.1) can be applied to determine the stability of " a
. | ‘

stationary solution of a delay differential equation. The

equatioq considered will receive fyrthgr numerical énalysis

?
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Example: Consjder o .

- P

.

~

5
| j
*

d

'

M

\ u‘?t -1} ° _+_UJL__1_)__,

u't) =
C l+u(t-1)#

o

I :
S A= S

’ 0 -~

B(A)=A (v 64304

2

Note that ‘as u' (t)=ﬁ, we have 'two: stationary

s,

brqnches

o

5 ) ‘ . : -

u(t) = u(t-1) = 8 for all reR

and B
” .. y -*
A=0 for all ueR o
» )

-

first branch, we evaluate A(A) and B(\) at u(t)y=u(t-1)=0:

A(f)=ﬂ
TOB(AY==2

.-

Taking aéJA(x3=0 and b=-B(i)=1 in Theotgm 64.4.1),

that the solutions Bf ‘the first brahch are stablée if and’

»

only if 8 <1 < -3—#

ZS;milarly, for the second branch, we Fave

A(r)=0

. B(x)=80,

*

o

-

o

:

"o

-3v —l)/(1+v4) R .where yéﬁ(;—l)»

we

-

.oy u(t) and u(t-1) By A(1x) and B(1) “respectively, we have

" solutidn

find

tHerefore all solutions on the sécond branch are unstable.

. f -
N f '
.
1 a,
, - . N . N

4

. { - )
Denoting the derivatives of the right hand side with respect’

L4

To investigate the stability of the solutions along the
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CHAPTER \FIVE

Computatgon of Periodic Solution Branches

.
. . N
. b
[

5.1 Detection of Hopf Bifurcation points

2%

As mentioned in Section 2.3, the Hopf Bifurcation rgfers

! )
¢ . to the _ development of periodic orbit;T;rom a equilibrium

1

w " point.” To compute periodic solution branches, it is natur%la

~

. to start at a:Hqpf' Bifurcation point. To detect the Hopf

N, : )
‘Bifurcatioh point, we, can apply ‘phe hopf Bifurcation
N - '

\ﬁ\Tthrem. in Section 3.2, we have stated the Hopf
‘gykurcation’Theorem. fox retarded functi%nal differentiai»
equations. As we know from Section 3.1, a petarded
functional :differential eguation 1is a ‘gene:al type df

K equation which includes delay differential equations. To

apply the Hopf Bifurcation Theorem for Delay Differential

Equatiqns, consider " a one parameter family of, Delay
DifferentialyEquations of the form , . ’

' § ' ~ ' n
(5.1.1) u'{t) = E(d(t),u(t-1),1 A, t€R, E(.,.ys), u € R

P

. where f has continuous first and second derivatives in \ and

.- L}
.

‘u; and f(u,,u,,r,) = 8. The linearization of (5.1.1) is
: 6’0’ "o p (
. . - ~“ & &
(5.1.2) u'(e) = A(Mult) + B(Mv(t), v(E)=u(t-1) @
LY ? .
. . af af N
' where A(X) and B()) are respectively o I evaluated at
u;ug. : N
. . _ . b

-

e

s

1
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*

) & . '
Recall thHe two hypotheses (H1l) and (62) stated in-Section

e 3.2: . .
* . -

(H})-i\ The 1inearizgtion< (5.1.2) has a simple purely
l " -, imaginary - Eharacteristic root  z,=iy,#8  and all
chégacteriétig<roots zj#zg,/ig satisfy zj#m%a for any

inteéer m. | |

e, (H2) 37 Re z(A) #'0.

) . ‘ Haie[ll] \has shown thétkﬂypotheseé'(ﬁl) and (H2) imply
. l ’;here are nonconstant periodic solutions Qf:équation (5.1.¥)

“bjfurcating from (ud, Ae) which have periéd close - to 2ﬂ7y0.
In Section 4.4, t?e characteristic equation of Q5.1.2)

" -

has been derived as

~ -

(5.1.3) det [{I - g(x)'- B(x)g‘z‘] =g .

¢ ) , \E . . "'

where I, A(X) and B(A) are n X n matrix.
In the same section, we have discussed the difficulties to
'analyz%/ the chakacteristic equation for n>2. For n=1, the

characteristic equation of (5.1.2) is

(5.1.4) z - A(2) - BIne 2T =g .
. | ' ‘ [
where z=x+iy X,YER.

’

. To investigate the behaviour of the roots of (5.1.4) we
express (5.1.4) into real and imaginary parts

b



& i s

'

(5.1.5a)

(5.1.5b)

The following two lemma give conditions which imply the

Hypotheses (H1l) and (H2) resgfctivély.

52

X

X - A(X) - B(A) e Tcos(Ty) = @

y + B(Me X'sin(1y) = a. )

temma (5.1.1)‘

-

Suppese |B(A)| > [A(x) | and there. exists

satisfying
TA(N) o+ Bil)cosﬁry Q.G
" and ) t
Yy + B(Msin ty = 0.

v Then ';he‘ Hypothesis (H1l) is satisfied and

" the charaéte;istic root.

Proof:

’

(5.1.6a)

(5.1.6b)

Suppose there exist y # @ satisfying '

A(N) + %(Alcos(ry) =8

y + B(Msin(1y) = g.

y # 8-

[

z=iy is

Then by elementary trigonometry, from (5.1.6), we have

~

2 4+ a2(n) = 82(ncoslry B2 (Msinry = B2())
or
(5.1.7) yZ =820 - aZ(n.,
Since IB(A) ] > JA(N ] “
it follows that y € R and y # @. . wh

!

t

v
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i

Thus ﬁ{ , Y) is a soldtion of the -equations (5.1.5a) and
(5.1.5b). Hence 2 = @ + iy is a solution of (5.1.4) which

is the characteristic equation of (5.1,2).
’ \
Now it is sufficient to show that for any integer m with

Iml > 1, ~2, = +iy, = imy is not a root of (5.1.6) or

equivalently not a root of (5.1.7). Since’ N

v2 = n2Ltn - a2y # 821 - A%,

hence y, is not a root of (5.1.7). O

Lemma (5.1.2)
© Let z=x+iy, x=0, y#0 be a solution of (5.1.5).
If A'(A) + B'(A)cos(Ty) - T(A(MA'(A) =-.B'(MNB(N) # @

where A'"(\) and B' (1) are the derivatives of A()) and
B(M with respect to A,

then Hypothesis (H2) is satisfied.

Proof: '
Differentiate (5.1.5) with respect to 1, to get
(5.1.8a) x' - A'(A) - B' (Ve *lcos(ty) + 1y'B(Me X sin(ty)
+ B(X)cos(Ty)}x'e'xT=ﬂ

A

(5.1.8b) y' + B*(Me XTsin(ty) + ty'B(Me XTcos(ty)

" w'e *'B(Msin(ty)=0

Evaluating (5.1.8) at x=0, we have ‘

!

~ l ) »,
(5.1.9a) , (I-TA(XL)X' - wy' = A'(M + B'(}M)cos(1y)

t
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s

(5.1.9b) Ty x' + (l-cA(A))Y' = -B'(x)sin(zy)

Since y#@, we have

I3

1-zA(r) -ty : g

1'% 1-7A{x)

«

Hence, there is a:unique solution (x',y') of (5.1.9)’anq

A'(1)+B' (1) cos (1y) Tty ‘ :
-B'()) sin(1y) 1-1A(1) ,
Tx'= _.._.._____...___...........-...._......-___-___.:‘?_./--

1-tA(x) -ty -
! ~

, 194 1-:A())

- - ]
Now d Re z(y) = x° ;’G
dx . ‘o= -
iff : PR

(A'(1) + B'(x)cos(1y)) (1-tA(x)) - tyB'(x)sin(xy) # 0
iff { N
(5.1.18)
_A'()) + Bf(x)cos(tY)(j\?(A(x)A'(x) - B'(A)B(X)ﬂif n.0
With Lemma (5.1.1). and (5.1.2), we can estqblishia Hopf

"Bifurcation Theorem for a. single delay -.differential S\\

equation.



Theorem: (5I1.1)
- Cons’'ider a one parameter delay,diffefential equation

of the forn
(5.1.11) ©  u'(t) = £(u(t) ,ult=t),2) tersu,fER

where f has continuous first and second derivative in \» and

cu; and f(u@,hﬂ,xg)=ﬁ. ‘Define the linearization of (5.1.11)

as
(5.1.12) u'(t) = A(x)uft) + B(A)v(t) v(t)zu(t-1),
where A()) and B()) are respectively %% and %£ evaluated at

u=u0 and A=A g ) .
Define A'(x) and B'(y) as the derivative of A(x) and B(a)
- with respect to A

Suppose [B(x)!| > A and'there exists y#@, yeR such that

(5.1.133) A()) - B(x)cos ¢y = 8,

(5.1.13b) Yy + B(a)sin y = @

and ' .
(5.1.14) ‘

A'(x) + B'(aJcos(ry) = t(A(x}A'(A) - B'(X)B())) # @.

Then there are nonconstant periodic solutions of -equation
(5.1.11) bifurcating £from (uﬂ, Ag) which have period close

. to 2n/Y. Lo

IRV

Y
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Corollar

:W
" ¢l ’
e |
Instead of finding a y # 8, y e R to satisfy the
conditions (5.1.13) and (5.1.14),;it is equivalent to find a

pair (u@, Xg) which satisfies the sawme conditions where y is

replaced by /(Bz(x) - Az(x)). Moreover, 1if such a paif

(ug, xg) exists, then (ug, AG) is a Hopf bifurcation point.

Proof: It has already been shown in (5.1.7) that

v? = B2() - A% .0

Remark: The Hopf _ Bifurcation TheonT\Y?ives sufficient
ccu

conditions for a bifurcation to o . Other ~ Hopf

Bifurcation points not satisfying all these conditions, are '
called "degenérate”, (not generic, exceptional) and need

more effort to deal with. In this thesis, we only considet

+

the non~degenerate ones.

Example: Consider

(5.1.15) . u'(t) = —-xu(t-1)(1+u(t)).
If u'(t)=6 then

(i) u(t) =@, or
(ii) u(t) = ;1 or

(iii) a = 0.

Qﬁﬂus equation (5.1.15) has -three branches of staéionary

solutions. They are N

(i) u(t) = @ for all
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for all ) and

(ii\ T u(t) = -1
(i1l) » = @ -~ for all u.
. We have '
Ay = 3= e
_ af N

8(A) = v -2 (1+u(ty))
Aty = e
B'() = 22 = —(1+u(e))

To detect a Hopf Bifurcation along any one of the stationary
‘branches, we can apply the Hopf Bifurcation Theorem. Let
Ay, B,, A, and B, be A(\), B(x), A'(x) and B'(») evaluated
at a stationary solution, (u,,x,) espectively. Suppose we
are on the first branch, that is u(t)=8 for all x. Then,

for any », (8,\) is a stationary solution and
1]
{5.1.16) A, = 9, B, = =\ A, =0 and B, = -1.

sibstituting (5.1.16) into (5.1.6) .and (5.1.10)  where'

Y F./th(A) - Az(x)), we have

(5.1.17a) cos(x) = 0.
(5.1.17b) 1 - sin(y) = bj

. (5.1.17&) cos(n) -\ # 0

Solving {5.1.17a) and (5.1.17b) -Eor \, we find )=(4k+1)x/2
for anQ integer k and for such 1y, (5.1.17¢c) 1is satisfied.

Thus for any integer k, (@, (4k+1l)x/2) is a non-degenerate

PR N
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Hopf bifurcation point with period TRk T

To detect Hopf bifurcation along the other stationary
solution Dbranches, consider the second branch where u(t)=-1

t [}

for all x». We have A,=), B,=0, A,=-1 and B,=0. For the
b . ‘ v
third branch where 1z0 for all u, we have A,=0, B,=0, A,=0
I
and B,=0. Note that in both cases, the condition |B,|>|A,]|

is violated. Hence there 1is no non-degenerate Hopf

bifurcation on these two branches. -

"

5.2 Computation of periodic solution branches

This section is devoted to' the computation of branches

of periodic solutions of delay differential equations.

First the use of initial value techniques for solving delay

differential equations is discussed and we indicafe why the
initial value technique is not apprapriate for computing
branches of periodic solutions, especially not near Hopf
bifurcation points and for asymptotically Qnstable
solutions. Instead, we show how Keller's pseudo arclength
continuation can be used to compute branches of periodic

-

solutiQns of delay differential equations,

The initial condition. for a delay differential equation

of the form

(5.2.1) u'(t) = E(u{t),u(t-1),A)  tsrsE, ueR

*
’

is ‘a function h : (-t,0] « R such that

u{t) = h(t) t € [-v,0].
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o
1

‘We carf. use initial value techniques, like Euler's method,
c'Predictor—Corpector methods, Runge Kutta methods, etc. to

solve equation (5.2.1) for a given initial condition.

¥

t. for all j.

Let u. = u(t.); v, = u(tj—r)’and st = tj+1‘ 3

J ] J
‘Assume §t is taken such that t is an integral multiple .of

s§t. We have for example
{1) Euler's metnod:

Ujep = Uy + 6t f(uj,vj,})

(2). Ppredictor-Corrector method or Modified Euler's method:

o

uj+;‘= uj + 6t f(uj,vj,x)
st —
uj+l = uj A [f(ujrvjrx) + £( uj+1’vj+1'*)]

(3) 4th order Runge Kutta Method:

K

1

st f(ule'IX)

1 ]

K, =6t f(u,

1 1

S
]

1 1,

'

-~
il

1, 1
4 st f(uj+ 7K3' Vj+ §K3,X)
\_ 1 |

Tnere are two main reasons why these initial value
techniqués are not chosen 'to compute branches of periodic

solutions of delay differential equations. First, initial
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L} . : N

value techniques can only give us stable solutions. It is.

difficult to extract unstable solutions from results
computed by initial value technique. Second, initial wvalue
techniques have difficulties near Hopf bifurcation points.
In éractice, near the Hopf bifurcation, it takes more time
to segtle down to a stable periodic solution than away from
the Hopf bifurcation point. For these reasons, a framework
is established in which Keller's pseudo arclength
céntinuation technique can be used to compute branches of

periodic solutions.

To apply the pseudo arclength technique for periodic

solutions, it 1is convenient to scale the independent

variable, t, of (5.2.1) by the factor %E, where p is the

unknown period of the solution. This transforms  the

equation (5.2.1) into

ut(t) = &= £(u(t) ,u(t- 2Le) )

8

to which we now want to determine 2x periodic .solutions. 1In
ordinary differentiél equations, a given initial condition
u(ﬂ)=ug determines a unique solution and the requirement
ﬁ(ﬂ) =’u(2n) is enough to determine a periodic solution.
However, in delay differential equation, the initial

5

condition is a function in an interval of 1length <.

periodic solutions cannot be obtained by simply requiring

u(@) = u(2r). A counter example 1is _given in Figure 5.1

where a solution satisfying the condition u(g) = u(2s) is

)
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LY e ]
w(t) ‘[ .
\ .
- 1 .« -
1
y: ! .
' -
\ ' (. \
ry 3 ]
: ; — |
T ° Py ] e © \
. |
' L)

Fig. 5.1 u(@)=u(2y) does i | |
( not imply that u is 2.,-periodi
. solution to Delay Differential Equat;os. 1C

+
R
not a 2r-periodic solution of a delay differential equation.

”
I /
€
Our approximate solutions, that fare 2¢r periodic and
- - »
continuously differentiable, are chosen from the space of.

truncated trigonometric expansions. The discrete system is

obtained by collocation. More precisely, for fixed n, we

.

seek

0 X
a,sin(kt) + I b cos(kt)
4 ) k= k

o ! .

tn%t satisfies tnl~differentia1 equation (5.2.1) at 2n+l.

S . _ s ' - 2n \
equally spaced points tj = jst, 6t = hFT™ that is

.
d

1 .
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‘ v _»p . 2w
(5.2.3) Un(tj) = o7 f(un(tj‘)' U,nh(tj“ '—'D-T)l A) .

° j=b'1,---12n. ]

A periodic solytion ~can be translated freely in time;
that is, if u(t)=v(t) is a solution, tnen so is the $olution ,

u(t)&v(t+r)ﬁ?for any r. A remaining difficulty is therefore

a

the inherent non-uniquenéss of u. The solution u still must, s °

3

be "anchored". There are many possible choices for an,

additional e{uation to accomplish this. One is to simply

’

fix one -of the components of u at t=¢ ‘to some constant Uy, )
. * ;

where mifn u(t)<u,<max u(t). (This is in fact what quelef

0
uses [1@]). However it requires knowledge of the bdunds of

N .
the solution in advance. Far the proof of the existence of; ('k

" solutions, a better choice is the orthogonality condition e

(5.2.4) (u(B)-uy (8)) T €(uy(8) ,up(8) ,2) = 0

-

which ensures that u(#) on the orbit to be determined .
‘\; . ~ ' - 1 . . ' - N
occupies a similar position as ug(ﬂ) on the known orbit. * ‘

(see Figure 5.2). However, with the anchor equation

1

(5.2.4), as it is shown in [7], the peaks of the. solutions

move as we go aldng(the branch of periodic solutions. This

‘ |

motion becomes more pronounced as the front get steeper.

'

To derive an alternative for (5.2.4) that performs ‘
better on difficult problems, as suggested by [7], it is
natural to seek a solution that m}nimizes the distance

4 ' -

(5.2.5) 1 ;g“ (v(t+r)-uﬂ(t))2 S
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b s ’
‘ . =4 .
v ow(e)
3 ) . / . [}
Fig. 5.2-Two "ancNQred" solutidns with equation (5.2.4).
s -\ oW N ’
. #\7 am )
" gver T. Tnis would force peaks to remain approximately 1in
] 4 . . * - . *0 » N
the ‘;ame' place. The minimizing r- is obtained by setting
thre derivative of (5.2.5) with respect to r equal to zero.
Tha® is . -
. 2y * *
- & ,rg (v{t+r ~)-ug(t)) vi(t+r ) dt = @
f Vs
Ny . - ;
*
. Letting u(t) = v(t+r ), we have . . -
S i ;
"' 2' * ]
) . (?.2.6) PR (u(t)y—=u,(t)) ut(t)y dt = g.
N o . 0 . oy
d)) ! &« It is shown in the following 1lemma tjat with our
« discretjization setting, theé modified anchor equation (5.2.6)
i's equivalent <o

-

’ -211 . T
(5.;.7) . Iy (f(t)'”g(t)h ugjt)dtaa.

¥ & -
Note that (5:2.7)" is nothing but an intégrated version of

.. -

(5.2.4).

%

=
-
)
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Lemma (5.2d): ;.o ¢
. » : o ) . ' .
. Let p(tj) = ag + i— la,sin ktj + bkcos ktjﬁ .an
o, : =1 \
TS U PSS (1-1) s .
ug(tj) = 3 + i:l [ak sin ktj + bk‘ cos ktj]
Then :fé" (u(e)-ug(€)] u'(t) dt
. -
= 127 [u(td)-u_(t)] u.(t) dt - B
0 ' "] g g . )
o (£-1) (1-1)
=l k(a, b, - a.by ).
=1
Proof: = i . ' o\
Y
Claim: 12“ u(.t) u'(‘t) dt = fz' u (t){ u'(t)'dt = g, ';‘ ‘
Pl : o ‘o o't ‘
Proof: Using integration by parts(IBP), we have
- - fi' u(t) u¥(t) dt . N
@ LR’ 5
. = uz(t)|5' - ,rg' u(t)ut(t) dar C . -
--4 : ) ’ 44 .
Yn u(t) is 2xr—periodic it follows that uz(t:)lg1r = @,
- . ‘\ +
Hence f%' u(t) u'®t) dt = §. similarly, we have
' 2% ' W =
, fg' ug(t) up(e)at = o. _
' 1] ) N ~f ‘
. ’ . : - ‘ \
Now Ig' (u(t) - u{(t)) a'(t) a7 ‘ \
IS ' ‘ : ' : b
— 2' Y k ny l “‘2" . e ' .
= st ult) u'(t) dt - rg" ug(r) u(r) de ' . .
'L‘ * ! , ' ‘ ) * { ' . ) v,
- _ 2n - , 4 . .
== 15" uglt) u'(t) at
. ) o
b . Mg -
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1
= fgm u(t) ug(t) dt.s (using IBP again)
4 T 2 v
. o
And rg (u(t)-ug(e)) u,(t) de .
= f2" u(t) u'(t) dt - 12" y (t) u. dt
@ /] 4 0 @ 0
- 2n . “ E
f'fﬁ-.u(F) u, dt. ‘.
. Hence ;g" (u(E) = uy(E)) u' (t) dt
= 12 (u(t) - ug(t)) ul(e) de
8 . 0 R :
. L 2% ' / \
= fg u{t) uﬂ(t) dt. B \
P 2ur ¥ PN ' "‘
{(5.2.8) g u(t) ug(th dt ‘ ;
\ L
\

in kt + b, cos kt]}

(- l)cos g; ;'bét:liql;‘:t)fd;
k=1 . | * g - ,
;Sincg ‘ 2"sin mu sin nu du = ¢ form ¥ n i
5‘cos mu cos nu du = a'fér[h.gfq
\};'sin’mu co$nu du = @ f;r‘all integer m,ng
}:"sinzu du = ¢ and )
. g' c;séu du = = ) \ ’
I:ﬁéﬁ (5.2.8) eguals .
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3

n .
nr ok (a*"Hp, - anpit1)). 0
K

To ‘fully specify a sblutiod in Keller's general pseudo

~
-

arclehgth continuation , we require the pseudo arclength

_between two consecutive solutions to equal a prespeci-fied
[ R ‘. .
increment ' §s. Let w=(u(t),p,x) and wg=(uﬂ(t),pg,x0). In

the pseudo arclength equation(2.1.2b), we approximate Wg by

g
——
L]

g " §s
Then (2.1.2b) becomes

%

T .20
gw-wﬂ) (w—wg)—5§ =0
i.e. ’
L \ ) . ‘
2 =
.1|w—wg| j §s
i.e. ' N
2 2 2 .2
) 'u-ngl ’ + (p-pe) + (x-xg) = §Ss \
or i v
4 . . - : .
(5.2.9) 5% (u(t)-ug(e 2 dt + (o-b )% (Na ) ? = 682

-

Treating » as one of the unknowns as is done in (28] allows
- the computation to proceed past limit- points . in  the
'Bifurcation diagram. Indeed, this capability to compuﬁe

LI
both ‘'stable  and unstable solutions is difficult to achieve

L)

v



In view of the form of the approximate solution the
equations (5.2.3), \(5.2.6) and (5.2.9) can be expréssed in
terms of the Fourier cofficients a, and b, . Suppose we have
computed the (2-1)th solutibn, and want to compute the next
solution on the branch. Thus the system of 2n+3 nonlinear
algebraic equations that must be solved at the z;th/ptep for

the a, 's, bk‘s, p and A consists of the following t

(L) — /‘ 2 3 | \ r
Let u (tj) = a, + i:l [?k51n ktj + bkcos ktj] and
n .
’ﬁu(L'l)(t.) = al*-1) 4 Da(L-l)sin kt. + bi* cos k..
. j ] k=1 k - j k ) h)
_. ) ) . : ‘ &

Then from (5.2.3) we have

n .
(5.2.16{ ‘i=lk 4akgos(ktj) - bks;n(ktj) = ]

p n /
 fag + L

-

l(aksin(ktj) + bkcos(kti)),

-

a (asin(K(t; - E%T))'+ by cos (k(t4- 2.,

+
Q 0

P

=1

j=B,1,...,20
« From, (5.2.6) and lemma (5.2.1) we have .t

. n - - ~
(5.2.11) i= K (aé%Al) b, - a, bé‘ 1)y = g,

1



and from (5.2.9) we have

(5.2.12)
';a(z-l))z N

T
89 .k

n
2r (a I ((ak-alﬁl"”)2 + (bk-bﬁl'l))z)"

=]

boo-o PTIN 2w pa (it 2 482,

To solve (5.2.10),(5.2.11) and (5.2.12), we use the

Newton-Chord method. An accurate initial aproximation to
the next solution (u,p,\) is obtained by ex;tapolation from
the two preceeding solution points on the branch. (See

Figure 5.3.)

lul | - | .

t

Fig..5.3 ;nitiaﬁ guess by extrébolation. .

/ . . \
)

: . ".‘ 3
© 943 Branqﬂ Switching at a Hopf Bifurcation-point

The general technique, we discussed in Secfion 5.2, to
compute a branch of periodic solutions can be summarized as

!

' -



'pw

follows. First, the pseudo-arc 1length between a new
solution point and a previous solution point on the branch

is required to equal a certain increment §s. Second, ‘the

new solution and the previous solution should satisfy the

anchor equation, that'is, the peaks of the solutions should

\

line .up as close as possible.. Third, the new solution
should satisfy the differential  equations at every

collocation point.

’
1

To compute a periodic solution branch, we start from the

Hopf Bifurcation point, which is the intersection of a

steady state solution branch and a periodi¢ solution branch.
Note that the solution at the Hopf Bifurcation point 1is a
cons;ant function, u(t)=ae, for all t. In our sine-cosine
representation of such a solutién, ak=bk§a, for all k > 1.
Thus the left hand side of the anchor equation (5.2.11)
would be zero and this would make the Jacobian matrix of
(5.2.18), (5.2.11) and (5.2.12) singular. To get started at
the Hopf bifurcation op a' periodic solution branch, the
§enera1 proceduge can be aﬁplied without change, except for
the apchor' equation. The modificaqion is’ as follows.
Instead of taking the constant steady state solution as-the
reference ‘solution in the anchor equation we wuse -an
ésymptotic estimate of the non-constant perioéiC'solution

near the Hopf bifurcation point.

i
"

_ The asymptotic estimate for the périodic solution in a

neighbourhood of the Hopf bifurcation point follows from our

e e S CESEREL A M ks o
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" -iy, and . thus u(t)=e

70

discussion in Section 5.1 ‘for detecting Hopf bifurcation

points. We find a solution u(t)=elyt, where iy is a pure

imaginary eigenvalue-of the linearized system (5.1.2).' If

iy is' an eigenvalue of the system, then so is its conjugate,

:

1Yt s also a solution of the

linearized system. Note that, any linear éombination of two
solutions of the‘linearized system is also a solution of the
system, Hence sin(yt) and“cos(yt) are solutions éf the
system. By scaling the indeggﬁdent variable t by the factor
gl, where p is the‘period of the solution, we may determine
27 speriodic- solutions. Hence sin(t) and _ cos(t) are
solutions of'the linearized system after scaling.’ Thus the

asymptotic estimate for the periodic solution near the Hopf

bifurcation point takes the form

2

(5.3.1)  ul®h ey = ul® 4 e(eicos b+ &, sin £) + O

The freedom of phase shift.is still present in (5.3.1) and

allows omitting, sdy, the sine term. Thus near the

bifurcation point, the periodic solution can be represented

' asymptotically by

(5.3.2a) - u“X(t) = u(g) + ecos t +‘0(c2)

It is also known (4] that -

(5.3.2b) a6 = @)y o2y, \
and, |

(5.3.20) &) = {0V % o(c 2y,
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-

" Further, for compatibility with .the pseudo arclength

condition, that is, to satisfy equation (5.2.9), we have

IS“ (u(e)(t)—u(”)(t)12 at + (o (€) (002 4 ((€) ,(0)y2_ ;2

s

i.e. o2 cqs2 t dt = 652, -
= §S
l1.e. € 7"

Now we use this asymptotic estimate,

! . . s \

§s T S T T T T

T () = ul®) 4 $5c00e, -

-

to align the first solution point (u(l),p(l),x(l)). Note

that the Fourier representation of U{l)(t) has ag = b

=
il
=

for all k, except ag = u$?) ang bl =85 Thus, instead of

/"
E}
the general anchor equation, at the starting point, we use

(5-3.3)  s2 uiMe- giP ey wl(erae = 9

In terms of the Fourier coefficient, this simply becomes
! ~

(5-304) ' al = @g.

Note that this starting'pfocedufe does not require much
change in the general continuation procedure, thus keeping

down the overald programming effort.
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5.4 Detection of Secondary Periodic Bifurcation Points

So far we have discussed two types of bifurcation
points. On; is the steady state bifurcation point which is
an intersection of two steady gtate’solution branches. The
other one is the Hopf bifurcation point which 1is an
intersection of a steady state solution branch and a
periodic solution branch. 1In this section, a thitdktype of

bifurcation, secondary periodic bifurcation, 1is discussed.

A secondary periodic bifurcation point is an intersection of

- two periodic solution branches.— This - type- of -bifurcation

point 1is of as great importance as the others because it is
a state where periodic solutions change qualitatively and
quantitatively. A speciél case of secondary éeriodic
bifurcation 1is the period doubling bifurcation. In a
neighbourhood of the period doubling bifurcation point, the
period of the periodic solution on one branch is double the
one on the other. To be more precise, {see Figure 5.4), let
(U(S)ID(S)lK(S)) and ( U(s), p(s), x(s)) be solutions on

branch A and B respectively, where s is a parameterization

on the branches. Suppose o .

’ -d

( W(B), 5(8), X (@) = (u(8),p(8),1(8))

is a period doubling bifurcation point. Then as s + 0, we

\

have p(s) + p and p(s) =+ 20.‘

To detect ordinary secoddany periodic bifurcation and

period doubling bifurcation, we can .apply the Crandall and

S A T
)
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Fig. 5.4 . A period doubling bifurcation.

Rabinowitz Bifurcation Theorem.

Let G(w)=0 represents the system of equation (5.2.3),
(5.2.6) and (5.2.9) where w=(u(t),p,\) and wu(t) isl a
p—peribdic solution. Suppose theFe is a periodic solution
branch C, given by - |

' C = {w(s):w(s) = (u(t;s), p(S), 1(S)), seI}
where I' is an interval, such that G(w)=0 for weC. If e&ery'
neighbourhood of w(@) contains zergs“of G not lyiné on'c,
then w(Q)‘is called a secondary‘periodib bifurcation point
for the equation G(w)=8 with respect to the periodic

sdlution branch C,. <

. ] /
© If u(t) is p-periodic, then it is also kp-periodic, for

any integer k. If we define the above periodic solution
branch C by C={w(s): wis)=(u(2t;s) ,2p (s),x(5)), seI}, then

G(w)=8 for weC. In this setting, w(s) is said to be a

!
’
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. period doubling bifurcation point if there is a number sel
such that every neighbourhood of w(s) contain zeros of G not

lying on C.

With the Fourier expansion of the periodic solution,
computing solutions along a periodic solution branch is
equivalent to determining ak's, bk's, pand r» which satisfy
(5.2.19), (5.2.11) iand (5.2.12) . Let G(w) = @ denote the
system containing equations (5.2.14),(5.2.11) and (5.2.12)
where w=( @, b, o, 1), §=(a0,al,...,an), E=(bl,...;bn).

The Crandall and Rabinowitz Bifurcation Theorem can be used

to determine bifurcation pointg of G(w)=0. Note that every

solution =(3a, b, o, A) of G(w)=0 represents a p-pefiodic

solution on the branch of periodic solutions. A bifurcation
1

point of G(w)=0- 1s an ordinary secondary periodic

bifurcation of the equation (5.2.18),(5.,2.11) and (5.2.12).

To detect period doubling bifurcation points along a
periodic solution branch, éssen%ially the same technique can
be applied except for a slight modification. The

modification is as follows:

Suppose there is a p—pg?iQQiF solution for some ) on a
branch of periodic solution.(see Figure 5.5). If we take
the portion from @ to p and scale .it in the interval from 8-
to 2r and express it in trigonometric expansion, we have

(see Figure 5.6)

n
u(t) = ag + L . [aksin(kt) + bkcqs(kt)].
k=1



L4

u)
¢
’ " —+ > t - ]
. 0 P ap |
- | ! ?.’
Fig. 5.5 A ,-periodic solution.
9 ! ‘ &
we) } - "
’ . ¢ R o ]
Y .
- 9‘
& - g
o n t {
9 \
ig. 5.6 (u(t) s 54 ) ‘ -

’

-y

Then the triple (u(t),o,:) represents periodic solution on .

the branch. The same periodic solution can be represented . .

as follows: if we take the portion from 8 to 25, scale it

frorft?/rb to 2r (see Figure 5.7) "énd ‘prtess it in

-

*

'
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LY '
trigoﬁometric'expansion as . o
— — ‘m — ’ — '"
(5.4.1) u(t) = ag + 1L ,['aksin(kt) + bkcos(kt)].
rd ' k=1 “
L )

-
AR wik)

- Fig. 5.7 (B(t) ,2p0 4+ 1)

\\
the branch.. Note that u(t)=u(2t) for all t. Thus-we have

, » N
(5.4.2) u(2t) Cg%a + L {a,sin(2kt) + b, cos(2kt)]
S .k ~
4, 4 '
, * 2n - - o
- = a, + [ a,sin(kt), + b cos(kt)].
L. Ty K Y Pk A

~ -~ N L

where a, = bk = ? for k is odd, and ask = Ay and .bZk = bk'

! °

fOf k=l'..’"n.‘\/'\ 1 >_~" i

L3

v

By comparing coefficients of u(t) with.,u(t) in eqﬁagion
o

(5.4.1) and (5.4.2) we have m=2n; and ’5k=ak and Bkzbk r

- ’

-‘

s e ks me N R R

Then ( U(t), 20, 1) rebresents the same periodic solution on

Mo
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A
A - *
all k. N\ T§ detect peJ;od doubling bifurcation points, we

i apply the same procedur2 as for detecting ordinary secondary

4 »
3 oy 7

w» ‘ [T
pgi}odic\bifurcation wigh u(t) replaced by T(t), p B¥ 2o ahd
- ' . . * .

H

-

*

*

Drfficulties may arise in the detection of ordinary

¢secondary: bifurcation. These are due to the fact that the
-
ordinary segcondary periedic bifurcation® point is
structurally unstable. This means that after a slight
-~

perturbation 'of the system, the bifurcation normally changes

its structure (see Figure 5.8)-.

N

. ‘ A

“” N ,
1 A (l 8
"/\
ﬁ v '
i A A
O
Pig. 5.8 Fig. 5.9(4) Fig. 5.9(b)

Y

Theoreticdlly the bifdrcation is the intersection of the two

periodic solution branches i and II. .However, with a‘sliqht

-

perturbation, like dxscretleng the sys§7m, the structure of
the bifurcation is most likely to chanqe to one of the two

possibilities in Figure 5.9, yhere branches A and’B are
pa——

1 JU—— , - »
v
» ) T

s .
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composed of branches I:and II. In this case, we have the

P

¢ following two possibilities. We either follow branch A
¥

completely without detecting the periodic bifurcation point,
* ¥

or, we step from branch A to branch B and detect a candfdate
R .

secondary periodic bifurcation but fail to locate it

, accurately, since it does not exist 1in i?e discretized
. »

. system. The situation for period doubling b%ﬁurcétions is
'3
better. Once- a periodlc doubling bifurcation is .detected,

it can be located easily. Examples of both types of
» v ;Y

periodic bifurcations are presented in chapter six.’

he.Y ~

5.5 Branch Switching Technique at

.Secondary Perjodic Bifurcation Points

In order to switch branches at a secondary periodic

2

bifurcation point, we need to - know the bifurcaginq/

* /.’ -

directions. If we use the same notation as in Section 4.3

- for stationary solutions, then x(s) represents the triple
o [4

(u(s), p(s), A (g) and g(x(s)) represents the system of
equations (5.2.18) énd (5.2.11). To find hlhe bifurcation
direction, it is- in principle 'possible to apply the
Algebraic Bifurcation Equatign (4.3.19. This requires‘
computation of the second derithive of the system g. rfor

the case of secondary periodic bifurcation the computat1on

-5§¥ these derivatives of eéhathn (5.2.10) and (5 2 11) is

C Y - . ~X .
tedious.

L
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" An  alternative is to approximate the bifurcation
1

© dirkction by a vector which 1is orthogonal to the known

. direction of the given branch. (see Figure 5.18). (//
S o

Fig. 5.19 Hyper Plan method.

| Given‘gh;s dirgctibn, n, we determine the next solution on
‘the bifuécating branch such tA;t it Jies oﬁ the hyper plane

}\‘ . at a distant §s from the known dirgction wé. This technique
* has been intfoduéed in (20] and is called tHe Hyper Plane

4

methkod. . o ‘ B

]

’ The feméiping question is how to find the orthogonai
direction, . We ‘know that at. the secondary bifurcation .
point, the .Jacobian’ matrix of the? system of equatio‘§
(5.2.18), (5.2.11) and ‘(5.2.42) is singular. Let g(w(s))
repEeséntélequatioQ (5.2.18) énd (5.2.1}). As discu$sed in
Segtion,‘ 5.2, - the pseudo arqigndth equation (5.2.12)

_originates from

€

5 .
‘ L]
g -
.
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. 1

w'* (w - wa) - &§s =0

Now the Jacobian matrix of (5.2.18), (5.2.11) and (5.2.12),

-
o / ~
’ g, (w(s)),
) i ’
- ‘..
G, lw(s)) =
‘ . .
‘W .
]
( J:
4 -
is éihgular at the bifurcation point. Hence there exists a

N r
vector 'n such that

Gw(w(s)) n=0. -

_* This implies ’ o o >
9,(¥W(s)) n = 8 S ‘7
ahd - < a ' e

ksl

(]
w = -
gn =9

Note that J is a null vector of Gw(w(s)). Gw(w(s)y has been

evaluatsd‘in Newton's method for solving the system. of
. ; b, N
equations (5.2.10), (5.2.11) and (5.2.12).
. ¢ -
N .

.

Now,

v
z ' R ' ' .
9;(W(3)) n = 0 implies n ¢ spah{wF, wd]
where w, ig(}he'actuﬁg bifurcation direction, and
L o < e

-

4 v
Wg'n =8 implies Wagli ne

a
-
-
I -
. 0 °
. / ’ s
|}
’ " ' '
. ’
N 1
- M fl
v . r
*
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Hence g 1is the direction orthogonal to the known direction

r 4 7
)

] T
vector w,. To compute the null vector g of the singular”

matrix, Gw(w(S)). we can usé//aghss eliminatiogp andfback

substitution. An illustration has been given ‘'in Section

4.1.

' ~

¥
. . 4 .

Remark: the Hyper Plane method can also be used to syitch

«

' branches at steady state bifurcation points.
* ~ .

'

< -
~

e . -l




.  Chapter Six

-

A Model from Physiology and Other Examples

In order to demonstrate the accuracy of the method and
+to check the\ correctness of our implementation, we have
recomputed the example given in Hadeler's paper [10]. The .

equation is

L+u(t-1) 2
1+u(t-1) 2

b A

(6.1.1) u'(t) = -iu(t-1)
Py .

For A positive and along the zero stationary solution branch
(1) , our program sigﬁals Hopf bifur;ation points at A = /2,
5%/2, 9%/2, ... . The -bifurcation diagram is shown in
Figure A.1. 1In the diagram branch (1) represents the zero
stationary solution, while branches (i),(3) and (4) are the
primary branches of periodic solutions. A secondary
periodic bifurcation occurs along branch (2) at a=4.67. Thé
bifurcating branch of periodic solutions has been labelled
(5) in Figure §6.1. This secondary bifurcation is§ an
ordinary bifurcation and it is detected by our program DLAY
as the §&ign changes in the determinant of tﬁe“Jacobian of
Equations (5.2.18),(5.2.11),(5.2.12), which is a necessary
‘condition for a bifurcation to otcur in the Crandall and
Rabinowitz .Bifurcation Theorem as discussed in Section 2.2.
As 1is also ;oted\ in (18] and Section 5.4 in this thesis,
such an ordinary secondary bifurcation is not structurally

stable. Indeed, Eor,insqfficiently accurate discretization
- . ‘ .
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the usual perturbed bifurcation is observed. (For a general

discussion of the effect of discretization see [1,2,6].) For

this reason, our program DLAY fails to detect the
bifurcation point accurately. Instead, we obtain a
bifurcation direction by trials. In this example the

' bifurcation diagram can be computed with n=12 or less in
(5.2.18), (5.2.11) and (5.2.12). Near the secondary

bifurcation we hnave used n=20 as in order to deal with the
structural instability. Our program can handle Hobf
bifurcation, secondary bifurcation, branch switching,
backward bifurcation, turning points, etc. with little or no

intervention by the user.

It is known [34] that the equation (6.1.1)'has the
bropgrty that there is a periodic solution with period o = 4
for all i > %. ~This is rather unusual and allows us to
compare the numerically obtained period to the actual
period. Along the first bifurcatipg branch of periodic
solutions (2) the period remains eéual to 4. In the table
below we list the numerically obéerved period on this branch
at A=3.0 for various choices of n in (5.2.14), (5.2.11]) and.
(5.2.12). As is evident the convergence is indeed very
rapid. (Along branches (3) and (4) in Figure 6.1 the period

also remains constant and equals 4/5 and 4/9 respectively.)

s
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n b‘
-2 V4,724
.
VI 4.135
6 . 3.975 ‘
.8 3.9987 _
10 3.9985
.12 3.99984
16 '4.000000 .

P
! a
In this problem, the =zero stationary solution (1) is
stable wup to the. first IHopf bifurcation point. The
stability of stqtiopary solutions is determined by Theorem
(4.4.1). 'A procedure, based on the theorem} to determine
the stability 1is also implémented in our DLAY prégraT. To
determine the fstabilily properties of any particular
periodic solution on the branch, we can use an initial value
problem solver. If the solution resulting from the initial
value problem solver agrees with the one from our' DLAY
program for sufficiently long time, then we assum; that the
solution 1is stable.v In this way; we find "that periodic
branch (2) is ' able between the 1limit point and the’
seconéary peEi ic bifurcétioq. The upper portion of branch
+ (5) (past the limit point) "is also stable. All other
solutions indicated~ in thé bifurcation diagram are
asymptotically unstable. Thg actual solution u(t) at po'ints
.°31 and 51 on branches (3)' and (5) respectively is shown in

Figure 6.2. Thus solution 31 is unstable and 51 is stable.

3 *
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For both solution points A approximately ei:\iuals 8.8. To
illustrate the transitional behaviour of this equation we
have also Solved the differential equation, for a=8.0 t;s‘ing a
simple%*initial value problem solver. As initial data on the
time interval_ [-1,0] we have taken a sine function that
approximates the unstable solution 31. The dynamic respbnse
of the differential equation to this starting condition is
shown in Figure 6.3. 1Initially the solution oscifllates near
tne unstable solution 31 which has period ¢.8. Then a quick
transition takes place from the unstable oscillation t§ the
stable periodic solution 51 which has period approximately
equal to S.5. The period does not remain constant along the
secondary periodic branch (5).  On this periodic branch, the
period 3f the solutions is increasing from the secondary
bifurcation point along the upper branch while it is

decreasing along the lower branch. (see Table 6.1 dnd 6.2).

3

' > |

A 4.7653 5.5375 , 6.7581 8.0245

o 5.1184 5.2828 5.4014  5.5182
Table 6.1 Upper branch (5)

\

A, 4.7677 5.5683 6.7472 8.8580
P 3.9276 3.5627 3.3360 3.2223

Table 6.2 Lower branch'(S)
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v .
~ . .

Apart from Hadeler's paper (10] and our own ‘wort (81,
the only other reference that we are aware of for computing

bifurcation diagrams for delay equations is the recent

Doctoral Thesis of Saupe [35].

A Model from Physiology

Below, a simple model from physiology introduced in.[26]
is, conSidered. As we shall see, complicated behavior of the
solutions is possible, even though the model is quite,

simple. ' , o

Consider the ordinary differential equation

(6.1.2) %% = A -’Yx ‘ b

wﬁere x is a variable of interest, 1 is the production rate
fpr X, Yy 1is the destruction rate of x, ‘and t is the time.
For A and y constant, x + /vy in the limit t + &, However,
in many physiological systems A andry at t may depend on

x(t) and/or x(t-1) where t is a time delay.
' . ( ‘

A simple model for the control of peripheral blood” cell

numbers via a feedback mechanism ‘was studied by Glass and °

MacKey (9,26]. Let x(t) be the concentration of circulating
0 . N

cells (cells/kg) and assume that cells are randomly lost

from the circulation at a rate y/day proportional to their

concentration. To reproduce the effects of feedback control

from the circulating population of cells, the flux (2 in
Y4
¥

o
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/ A
cells/kg/day) 1into the <circulation from the system cell

compartment presumably depends on x at time t-t, and thus

the dynamics of x(t) is governed by

dx

(6.1.3) Je = AMx(t=-1)) - yx

A form of i(x)

™™

1 6Mx

o+ x"

(6.1.49) A(x) =

was suggested’ by Glass and Mackey, where n, 6(cells/kg) and
A (kg/day-cell) are parameters. Gréphs of (6.1.4) with A (x)
against x are given in Figure 6.4. As can be seen A (x) is a
sipngle hump function.’ The huﬁp gets bigger as [} increases;
and it gets sharper as n gets bigger. The sharper the hump,
the more sudden? the cﬂange of the production- rate.

v -

Combining equation (6.1.3) with equation ($.1.4), we have

dx _ A8"x(t-1)

(6.1.5) Jt Prx(tot) P - YX,

with free parameters eknd n. Eguation (6.1.4) is_flexible
enough to mo%ﬁl ma;y possibleAproduction rates A(x). The
qualitative behaviour of (6.1.5) in response to parameter
changes is of interest. To Millustrate this behéviour, Glass
ané Mackey assume that y=1, a1=2, 6=1 and =2. By using a
predictpr—corrector integration routine with a siep/size of

9.05 for wvarious values of n’, starting from an initial
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condition x(t) = 9.85, -t < t < @, they ob;er;ed that as n
is increased, oscillations occur and these underqo a
sequence of bifurcations. N. MacDonald [25] has summarized
the subsequent results iqg'he following table. t:ere 3, for

example, stands for a triple loop in the trajectory of

. . ~ ' . -
x(t-t) against «x(t). Such a sequence is analogous to the

y 2
e <

sequence of bifurcations observed in a class of

finite-difference equations in l1-dimension(.22,28,29,30].

-
~

. -
n 7 7.75 8.50 8.79 9.65 9.6575 9.76 10.90
‘ \ . \
A -
trajectory 1 42 2 4 chaos 3 6 chaos

1
[ 4

Table 6.3 Results of Glass and Mackey(1978) for solutions of

Ay

(6.1.5)

With the same set of parameter values, taking n as the

LY

bifurcation parameter, we have analyzed equatiorn (6.1.5)

with our DLAY program. We start at x=1,‘'n=1 which is a

steady state solution of equation (6.1.5) and we get a
branch of steady state solutions where x2l1 (see éigure 6.5) .
At n = 5.94, a Hopf bifurcation point is detected. Our DLAQ
program also shows that steady state solutions with x =1
and n < 5.84 are stable and that those with x =1 .a&d
n> 5.4 are unstable. Startiqg from the Hopf bifurcation )

point, a branch of periodic 'solucions, branch (2) ' is

»
Q

-~

~a
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computed. Tne period of the periodic solution at the Hopf

bifurcation point is 5.49. At the solution point 1labelled
21 the period i; 5.48939 and at the solution labelled 22, it
is 5.3683. At n=7.40587 on this branch, a period doubling
bifurcation point is detected. Starting from this period
doubling bifurcation, another branch of periodig solution;,
(branch  (3)), is computed. The periods at lutions
labelled 33 and 34 are respectively 11.731 and 11.8767.  The
period of solutjons on this branch is increasing with n. At

~

n=8.692 on this branch, another period doubling bifurcation
¢ L}

is detected. Starting again from the latter betiod doubling
- Y :

bifurcation point, periodic solution branch (4) is computéa\\

W

The period at solution labelled 45 is 22.86. At n=8.8473,

il

another period doubling bifurcation is detected. We }ﬁ%@

!

not traced out the corresponding bifurcation branch.

Solutions with Jlabels are ploﬁted in two fashigns in
Figures 6.6 to 6.18. One with x against time and the other
with x(t-<x) against x(t). In Figures 6.7b and 6.8b, one can

observe that a periqgd doubling bifurcation has occurred: the

number of loops in Figure 6.8b is twice of that in Figure

. L ] . “
6.7b. Similary, one can observe that the same phenomenon

oeccurs again in Figures 6.9b and 6.10b. f
, |

N\
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) s CHAPTER SEVEN

Conclusion

N .

In this thesis, we have discussed the wuse of Keller's

pseudo arclength technique. We use this technique for the

oo .
-

“ -
continuation of steady state and peridodic 'solution branches

v

of delay differential. equations. In the computation of .

. . . t
steady state solution branches we have developed techniques?

to detect and locate steady  state bifurcations and HopfE

'bifurcations.& In the <computation "~ of periodic solution

.
3 -

branches we have developed a method to detect and. locate

. secondary periodic bifurgations including period doubling

bifurcations. To , switch branches at a Hopf bifurcation

J

point, the bifurcation direction is obtained by making- use
" of the symmetry of the bifurcatiﬁq branches about the Hopf

bifurcation point. An asymptotic estimate near the Hopf

bifurcation point is used to anchor the next solution on the

branch. To switch branches at other bifurcations mentioned

in this thesis, we use the Hyper-plane method.

« '

Fur ther studies can\be done on the generalization of the
program DLAY to systems of differential equations with
multiple delays, or with distributed lag: Generalization of
the methods to delay differential equations with diffusion
(partial differential, equations) would be\ especia}ly
« . challenging. On the other lhand, as fé} as Numericay

'

- Analysis is :concerned, a complete convergence proof of our

L .

.

[ ad
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on other

~ ) a . *
,)t( method of computing is still lacking. Research
schemes of computing and comparison of the efficiency of

3

alterate Eomputational'schemes to that of our méthod would

: . r
be of interest. also. , \
“ !
- , O
}
v
\ I'4

) X

- . N |

!

o ’ .

- . |

1] J - te .‘
. 1 3
. |
, . J ~ . ~
\ | . .
\ . ’ l
1 N
3
.Y e
B L]
1]



- REFERENCES o

v

. N .
(1] Beyn, WsJ., On discreétization of bifurcation problenms
in: Bifurcation problems and their numerical
treatment, H.D. Mittelmann and H. Weber, eds.,
ISNM 54, Birkhauser Verlag, 1980. *

(2] Beyn, W.J. and Doedel, E.J., Stability and multiplicity
: K of solutions to discretizations of nonlinear
ordinary differential equations, SIAM J. Sci.

Stat. Comput. 2 no.l, 1981, 167-120.

»

[3] Crandall, M.G." And Rabgnowitz, P.H., 8ifurcation from

R simple eigenvalues, J. of Functional Analysis,

.8, 1971, 321-3480. ;

[4]) Crandall, M.G. ' And Rabindéwitz, P.H., The ™ Hopf
bifurcation theorem in infinite dimensions,
Archives for Rational Mechanics and Analysis,
-v.67 #2, 1977, 53-~72.

[5] Doedel,, E.J., Finite difference collocation methods for

nonlinear two-point boundary value problems, .

SIAM J. Numer. Anal. 16, 1979, 173-185.

(6] Doedel, E.J., On the existence of extraneous solutions
to discretization of boundary value problems,
Cong. Num., 27, 1980, 58-66®

(7] Doedel, _E.J., AUTO: A program for the automatic

bifurcation analysis of autonomous system, Cong.
. Num., 38, 1981, 255-284. )

(8] Doedel, E.J. and Leung, P.C., A dzmerical technique for
bifurcation problems in delay differential
equations, Cong. Num., 34, 1982, 225-237.

(9] Glass, L. and Mackey, M.C., Pathological conditions
resulting from instabilities -in physiological
control systems, Ann. New York Ac. Sc., 1979,
214-235. )

(10] Hadeler, K.P., Effective computation_of periodic orbits
and bifurcation diagrams in delay equations,
‘ Numer. Math., 34, 1988, 457-467.

(11] Hale, J., Theory of functional differential equations,
Springer verlag, 1977.

(12] Hale, J., Nonlinear oscillations 1in equations with
. delays, in: Nonlinear oscillations in biology,
F. Hoppensteadt, ed., AMS Letures 1in Appl.
Math., 17, 1979, '157-185.
,b,

i

&



+[13]

- [14)

[15]

(16]

(17]

(18]

[19]

[20]

[21]

Cr22b

(23]

[24)

102
ﬁ

Hassard, B. and Wan, Y.H., Bifurcation formulae derived
from center manifold theory, J. Math. Anal.
Appl. 63, 1978, 297-312. )

3

Heiheménn, R.F., Overholser, . K.A. and Reddien, G.W.,

Multiplicity and stability of premixed laminar.

flames: An application of bifurcation theory,
¢hem. Eng. -.Sci., 34, 1979, 833-84¢.

Hopf, E., Abzweigung einer periodischen Ldsung von
« einer stationaren Losung eines

" Differentialsystems, Ber. Math. Phys. ~ Kl.
Sachs. Akad. Wiss. Leipzig; 94, 1942, 3-22.
(English translation in [27]) ' .

Jones, G.S., The existence ‘of periodic solutions of
£' (®y=-af(x-1)[1+£(x)), J. Math. Anal. Appl.,
5, 1962, 435-459. >

Kakutani, S. and Markus, L., .On the non-linear
difference-differential . equation

vy (t)y=[A-By(t-t)ly(t), Contributions to the’

theory of nonlinear oscillations, 4, 1958, 1-18.

ﬁaplany J.L. and Yorke, J.A., On the stakility of a
periodic solution of & differential delay
equation, SIAM J. Math. Anal., &6, 1975,
268-282. ‘

Kazarinoff, N., van den Driessche, P. and Wwan, Y.H.,
Hopf bifurcation and stability of periodic
sclutions of differential-difference and
integro-differential equations, J. Inst. Math.
Appl., 21, .1978, 461-477.

Keller, H.B., Numerical solufion of bifurcation and
‘nonlinear eigenvalue problems, in: Applications
of bifurcation theory, P.H. Rabinowitz, ed.,

' Atademic press, 1977, 359-384.

Lentini, M. and Keller, H.B., The von Karman swirling
flows, SIAM J. Appl. Math., 38, 198@, 52-64.
J .
Li, T.¥Y. and Yorke, J.A., Period three implies chaos,
Am. Math. Mon., 82, 1975, 985-992.

Lotka, A.J., Analytical note on certain rhythmig

relations in organic systems, Proc. Nat. Acad.

, Sci. U.S.A., 6, 1928, 410-415. :

Lotka, A.J., Elements of mathematical biology, Dover
Publications, N.Y., 1956. (originally published
in 1925 as Elements of physical biology)

[P

[PPSR
N

e e e

>
[ USSP USAP S




LN

[25]

[26]

’[27]

(28]

(29]

(30]
[31]

[32]

| 133)

[34]

(35]

(36]

i\ w03 . - S

P

* N .

MacDohald; N., Time lags in biological models, S. ™
Levin, ed., Lecture notes in Biomathematics, 27,
Springer- Verlag, Berlln, Heidelberg, New York,

-~ ¥ 1978. N .

Mackey, "M.C. and Glass, L.} Oscillations and chaos in |

physiological control systems, Science, 197,
1977, 287_289Y

Marsden, J. E.'and McCracken, M., The Hopf bifurcation
and its applications, Springer Verlag, New York,
1976.

May, R.M., Biological populatiohé with nopoverlapping
generations, stable points, stable: cycles, and
chaos. Science 186, 1974, 645-647.

May, R.M., _Simple mathematical models with very
complicated dynamics, Nature 261, 1976, 459-457.

May, R.M. and Ostetr, G.F., Bifurcations and dynamic

complexity in simple ecologlcal models, Am.
Nat. 110, 1976, 573-599. ‘

Nussbaum, R., . Period}c solutions of some -nonlipear
autonomous functional differential equations, J.
Differential Equations 14, 1973, 368-394.

Nussbaum, R., Periodic solutions of Some nonlinqér
autonomous functional differential equations,
Ann. Math. Pura Appl. 1@, 1974, 263-3906.

Nussbaum, R., A global bifurcation theoren with

applications to functional differential
equations, J. - Functional Anal. 19, 1975,
319-339. N
. \ 4 N
Nussbaum, R., Periodic solutions of nonlinear

autonomous functional equatiofis, H.O. Peitgen
and H.O. Walter, eds., Functional differential
equations and approximation of fixed points.
Proceedings Bonn 1978, Lecture notes in
mathematics 738, Berlin Heidelberg, New York:
springer 1979. ’ , ‘

Saupe, D., Beschleunigte PL-Kontinuitatsmethoden und

' periodische Lésungen parametrisierter

Differential-gleichungen mit Zeitverzdgerung,
Dissertation, Universitit Bremen, Bremen 1982.

Szeto, R., The flow between rotating coaxial disks,.pPhD
' Thesis, Caltech, Pasadena, 1978. ..



4 . 4
°

VO;terré,° Vie g Lecons sur la Theorie Mathématique de la
* Lutte  Pour 1la. Vie, Gauthier-villars, Paris,
19301 . (49 :

Ce ) - .
Volterfa, V., Variations and fluctuations of the number
: of individuals.s in .animal species living:

L togethér,  in: Animal-Ecology, R.N... Chapman ef.

McGraw-Hill New York, 1931, 409-448.-

Wglther, H.0.,: A theorem on the amplitudgs of ’‘periodic
solutions , of differential delay equations with
application. to bifurcation. J. Diff. Egns.

. 39, 1978,1396-40¥.\ J . \

- L] .
Wangersky, P.J. and Cunningham, W.J., Time 1lag in
prey-predator population models, Ecology, 38,

1957, 136-139. .

- -, N
Wright, E.M., On a. sequence definkd by a non-linear
" recurrence formula, J. London’Math. Soc. 20,

‘1945, 68-73. . -~ A 3 :

wfiaht;_ E.M., A non-linear difference-differential
; " equation, J. Reine Angew.  Math. 194, 1955,

68"87Q ¥ - 1)
Y “a o » \
e - - N
\ \ \ ) . p
. B . - .
. f
] \
4
.. " \
-« ‘
— b - .
. g
) Y
~ “
- ¢
B »
'/ . 2 »
L] E o. o



N o APPENDI X

. ' ¢

User Guide for the DLAY PROGRAM®
[l i )

The DLAY program is a FORTRAN ﬁritten package for
» N [
comput%ng . the bifurcation diagram of a delay differential

eggatioﬁ of'the form

L]

- «

(*) u'(t) = E(u(t) ,ult-1) ,1)

where t is the delay and x is the free parameter. T
. /

. The» package can be used in two situations.' One 'is the
-

. first run ,0of a specfic problem starting from the very .

beginning. The other one is the restart of the program at a

certain labelled position' in the bifurcation diagram

. . . -
génerated from the previous run. A sample user program ' will A%

be given at the end of the apbendix, illusirating how this

package is applied. A flow chart of the package is .alsbﬂ

e

given thereafter. . - ‘ N

I. For the first run

- For the first ryn of a speéific probleﬁ, the user must
/
prepare the following:

l.. The main program_which  consists of only one call

|

. tq ] .t
statement to the program driver subroutine, DLAY.
’ }

t

2. A,subrouqine with defining statement

.

¥ -SUBROUTINE FUNC(U,V,ICP,PAR,IJAC)

-

£ -
Ty
a .

v
4 -
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and two common blocks - .
.. .

’ . 3
»

COMMON/BLFCN/F, DFDU, DFDV, DFDP

used to ' store the values of parameters in

< -
COMMDN/BLDDF/ﬁZDU«DZDUV,DZDV,IDFFLAG
N \ \'\"\._ »
‘where - \ T R Ve
~U, V  U=u(t) and ;Zﬁ(t—x). ' :

. ¢ - » ) >~ ' ) ’ .
‘ "Q;d . PAR is a l-dimensiohal array of size 16 which is -
N A =0 - ' : "

=Y

the delay differential equafion. Note that

PAR(2) is reserved for the condtant delay,

~ ' *, - ’ ~ 0 /

ICP ~ is the location of the free parameter in the

[l

parameter arrai PAR (ICP#2).

) IJAC is a flag Bassed .from the referencing .

routine to signify whether the derivatives

- @

are nee?ed or not. The *fdncti@g. value
~ f(u(t),u(t-x),x) must be lcomputed in ény
case,. ’If IJAC=1, the first derivative must
be combuted. "If IJAC=2 the second

derivative must be computed.

- ' ‘ .
-

F . is used to saore the function value of the

.
right hand side of the prablem (¥*).
. o ) [+ ¢ ‘ ‘ -

DFDU 1s the partial derivative of £ with respect

to u.
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DFDV is the partial derivative of f with respect.
"7 to u(t-1).
DFDP is the partial derivative of f with respects
to the free parameter . . .
D2DU is the second partial derivative of £ with

\ ~

respect to u.

D2DUV  “is the mixed second partial derivative of f

- with respect to u and u(t-t). .

%

D2DV, is the sécond paftial /d'erivati.\ie-\of/frwith
regbgct to u(t-1). ‘ |
, ’ \
-~ IDFFLAG is a flag, which when set to @ indicates
thgg the secotid partial de;iyqtiveé o} f are

provided. Otherw@se it is set to 1. (See

~

also, Section 4 below.) , o

-

In this' subroufine, the function‘itself and its first
¢

derivative have to be providéd. However the second .-

rderivative -5 optional: 1If it'is provided also, the steady .

. state bifurcation directions will be ‘computed exactly,

otnggwise a hyperplane method 1is used to approximate the

>

directions. . .

\

3. A subrdutine with the defining statement

+

SUBROUTINE STPNT(U,NPAR,ICP,PAR) .. .

. o
.
-
A .

’
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where U,ICP,PAR are as before. NPAR is the number of

\ parameters used in the Qroblem.
[

a In this sébroutipe,_ the‘ initial valuesl of the
parameters w{th‘a Eorrebpohdinq‘ steady sta;e solution
are to' _be ppoYided. Only the free parameter PAR(ICP)
varies during execution. The other parameters, remain
fixed, The steady state éolution provided should not be
a bifurcation point-or a 1limit point, otherwise the

!

program may abort with an appropriafe message.
) 2

4, A‘subxqutine with the defining statement

-

SUBROU}LNE INIT

-~

and common blocks

COMMON /PLOTU/ GT(203),VT(203).INPL,ITPLSC

‘", COMMON /BLCSS/NDIM,ITMX,NPAR,ICPqIID,NMX,IPS,ITS!MTHCdb
COMMON'/BLCPS/ NTST,NCOL,IANCH,NMXPS,IAD,NAD{NPR,NWTN

. COMMON /BLDLS/'QS,DSMINsDSMAX,IADS,NADS,DSG,DSI
"« ' COMMON /BLEPS/ BPSU,EPSL,EPSS,EPéR
COMMON /BLLIM/ RL@,RL1,A0,Al,PAR(10) \
COMMON )ELDDF/.D2DU,D2DUV,D2DV,IDFFLAG
COMMON /gLGE/'DETGE,DETPS,iPﬁﬁBL,DEIGElu

L]
COMMON /ORDER/ M N

%

o
0

Jds used to initialize the variables in the common
>‘ bloc&s. These variables can be divided into.two types:

(i) Problem bepeﬁdént Data, which describe the problem
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and should always' be provided; (ii) Control Variables,
which control the execution of the program, If any of
. . . ‘
the control values is not defined then a default value
‘ . *will be use%”_ L
" . o
o ' i. Ptgblem dependent data
{
" NPAR number of parameters i
' ICP location of the free parameter .
\ - ! .
’ ; " IDFFLAG =08 second derivative is provided
. ‘ o . =1 otherwise ' .
ii, Control variables ) . ¥
[ ~ E | ' \ g
4 " . /
‘ NAME DEFINITION .o . DEFAULT -
Z' B . s
‘ : M the number of sine and cosine terms 5,
! . ? I N i : e
o J - used in the truncated Fourier series
) to approximate the solution of the
\ .solution of the problem s
. : Cou(t) = a, + ¢ (a, sin kt + b, cos kt) .
s 2 _ k . K .
k=1 :
. where 1 < M- 104.
) "5 ~ - ’
- INPL the number of irterpplation potrits 20

for the solution between a pair of”

‘collocation points

1
‘ B

.~ . -EPSU ~ tolérance for the folution values 1.0E-4

Y - )




EPSL
- EPSS

EPSR

RL®

RL1

AD

Al

DS

IADS

NADS

ITMX
« : NMX

NMXPS

=,

, 110 -

3 e .
tolerance, for the free parameter
~ b N
tolerance for the step size
tolerance for the period of the

solution

by

Note that the tolerances above are relative.

lower bound 7f‘the’free'parameter - "=1.0E10

upper bound bf the free parameter

lower bound of the solution norm

L § .
upper bound of the solution norm .

’

initial step size

2

_-.=]1 step size is adaptive

-

=@ step size is fixed

if number of iterations >NADS, then

DS decreases, otherwise it increases.

DS is fixed only if IADS=0.

’

the maximum number of iteration allowed 18 .

-

for each step

-

'ﬁhe\maximgm number of stebS'qllowed

for a steady state solution branch

the maximum number of steps allowed

for a peroidic solution.b(énch

l1.0E1®

1%

t G-G - *

1.0E1D

g.0L

@

200

200

@

P e

— e
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P,
4

« . ) % .
‘ NPR the number of steps between two 4 40

labelled periodic solutions for which

P . L the complete orbit is written on unit 8.

MTHCOD the number of full Newton iterations 2
- ) ' . used before the Chord method starts
11D’ =) no debugging output on unit 9 2

v ’ : . =4 extensive debugging qutput is

. . written on unit 9

3

f S ;o . =9 information on the Newton-chord

iterations is written on unit 9

IPS . =@ only steady state. solutions are 1

computed

.

. ' o =1 both steady state and ‘periodic

solutions are computed :

. - . .
Y 1

IRS | =0 for the first run, C )

otherwise, restapt'ﬁhe program at the

labelled point IRS

IPRDBL =1 -.to compute period doubling ) 2

.

bifurcation
=0 do not compute peridd doubling

]

A ) .
At the termination of the program, there will be four

data files, namely, units 3, 7,-8 and 9. Unit 3 contains
.Y the restarting information for every labelled point in the

’ bifurcation diagram., ° unit 7 contains . the plottihg
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T, information for the bifurcation diagram. Unit 8 contains
the actual periodic solution+ with domain scaled to an

interval of \'ledgth 2r. Unit 9 contains debugging

a L2

1
information as requested.

N

II. To restart the program X &

AR

G -
)

¢ \

The program can be,restarted at any labelled solution

point in the bifurcation diagram generated in the previous
< -~ h . )

run, The restarting information of these labelled solutions

'
‘is stored in file(unit 3). 1In a restarting run, tﬁe user
sho&id provide this fiie(unit 3). The usér can retain the
four ‘roatines mentioned above without" change(except the
variable IRS. IRS must be.set to the label number where the

program is to restart. The control variables in Subroutine

»

INIT can be changed if desired. L C
P III. Example A T , .

‘bifurcation analysis of the delay differential equation

e

U (E) = =) u(t-t) (u(t) + 1) a

AY

‘using the DLAY program. In this example, u

@ is always a

!
*

1

"a starting point. - At the termination of the DLAY

program, there will be four data files as described in

sectiom (I) above. They are units 3, 7, 8 and 9. Also a

‘

PO

Aﬁ example is given bekow/to il}ustrate how to get a Af

-

steady state solution for any 1. We take u =0 and i = 1.0

terminal output, unit 6, will appéar. The terminal output

P




« o113 ’
e - \
| "

i
1

L

for this’_exampie is shown after this sample program.

‘ \ .
. v |
. - PROGRAM DLAYJH1
. . c | et - ————
C : S
- IMPLICIT DOUBLE PRECISION * (A-H,04%) ~ S
' C : i ‘\ ' '
. CALL DELAY | L -
'.‘5 : C o & : ‘ !
: STOP
f \_END
¢ L
o ' SUBROUTINE FUNC(U,V,ICP,PAR, IJAC)
C = o
. C ! 1
. IMPLICIT DOUBLE PRECISION' .  (A-H,0-2)
COMMON /BLFCN/ F,DFDU,DFDV,DFDP. -
, COMMON /BLDDF/, D2DU,D2DUV,D2DV, IDFFLAG LY
* ——— . DIMENSION PAR(18) : )
o \ .
RL=PAR(1) : -
. RT=RAR(2) :
C - ' o o
F(l) = ~RL*V*(1+U) , b Co - : -
B 4 C - . . o . ; ‘
g _ IF (IJAC.EQ.1) THEN
L c ! - v
) DFDU(1,1) = -RL*V |
§ | DFDV(1,1) = ~RL*(1+U) '
5 DFDP(1,1) = -V*(1+U) |
P c. - o ‘ |
I T S ELSEIF (IJAC.EQ.2) THEN ‘
0 ‘ -~
- «C THE SECOND DERIVATIVES OF F ARE DEFINED HERE IF PROVIDED
c o ) :
g ENDIF |
, C_ , '
3 RETURN .
- T END \ : _ * .
T SUBROUTINE STPNT (U, NPAR', ICP} PAR)
! e e —— ———— o .
IMPLICIT DOUBLE‘PRECISIQN " (A-H,0-2)
DIMENSION PAR(10) ‘
= ' ' PAR(1)=1.0
. PAR(2)=1.0
. C : ™
. ' U = G-g
c :




o 0o

114 _ o -0

RETURN
END 4 e

SUBROUTINE INIT . . -~

IMPLICIT DOUBLE PRECISION (A-H,0-2)

, s
COMMON /PLOTU/ UT(203) ,VT(283) ,INPL,ITPLSC
- COMMON /BLCSS/ NDIM, ITMX,NPAR,ICP,11D,NMX, IPS, IRS,MTHCOD
COMMON /BLCPS/ NTSTSNCOL,IANCH,NMXPS,IAD,NAD,NPR, NWTN
COMMON /BLDLS/ D$,DSMIN,DSMAX,IADS,NADS,DS@,DSI
COMMON /BLEPS/ EPSU,EPSL,EPSS,EPSR ~ ;
COMMON /BLLIM/ RL@,RL1,A@,Al,PAR(10) C
COMMON /BLDDF/ D2DU,D2DUV,D2DV, IDFFLAG
COMMON /BLGE/ DETGE,DETPS,IPRDBL,DETGEL
COMMON /ORDER/ M

. PROBLEM DEPENDENT DATA

v

NDIM=1 o | ‘
NPAR=2 - ‘ : _

1CP=1 .
"IDFFLAG=1 ' _ .

CONTROL VARIABLES

M= 10
"INPL = 18

RLA=-1.0
RL1=1Q5
A0=0.
Al=10.
DS=0.01
IADS=1

ITMX=8 .
NMX=100

NMXPS=108

NPR=20

MTHCOD=2

1I1D=9

IPS=1 -

IRS=0

RETURN S
VEND : ‘

RS

‘x-‘——.a. [ L
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The terminal output(unit 6) consists of two parts. The
first part 15 the information for the steady state

solutions. The second part 1is the information for the

- periodic solutions. In the listing below,

LAB= 1 RLDA= 1,000E+08 AMP= 0.000E+88 N= 1- EP
LAB= 2 RLDA= 1.571E+080 AMP= 0.000E+88 N= 57 HB
LAB= 3 RLDA= 2.001E+00 AMP= 0(.00Q0E+08 N= 164 EP

**% START WITH A HOPF BIF. 0.000E+00 4.000E+89 1.571E+00
LAB= 4 RLDA= 0.158E+dl ROE= @.401lE+@l1 AMP= @.179E+00
LAB= 5. RLDA= @é§64z+@1 ROE= 0.405E+01 AMP= @.415E+00
LAB= 6 RLDA= @V174E+0l ROE= (.413E+01 AMP= #.633E+00
LAB= 7 RLDA= @E}§75+01 ROE= @.425E+0l AMP= 0 .830E+00

N -

~
LAB is the label at that point. RLDA répresents the free
parameter. AMP is the norm of the solution, |u|l. N is the
step number on the branch. EP indicates that it is an end
point 6f,,the branéh and HB indicates it 1is a Hopf
bifurcation point. The fourth 1line indicates that the

following lines . are information on a periodic branch

- °

starting at a'Hopﬁ bifurcation point with |ul=0.00, p=4.00

and A=1.571. , Here ROE represents the period of the ~

solution, p. |,
t . 4
/'1 )
Figures Al and A2 are bifurcation diagram and solutions
plots of the example respectively. File unit 7 contributes
to the bifurcation diagram and file unit 8 contributes to

the solution pldts, S , ‘ )
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