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ABSTRACT

Numerical Modelling of Ice Cover Melting Under
Turbulent Flow Conditions

Raafat G. Saadé

Ice covers are formed on rivers in cold regions for most of the winter season.
This affects the usage of these rivers for transportation, power generation, water supply
and municipal and industrial waste water disposal. The discharge of waste heat into these
rivers result in rising the water temperature and in suppressing the ice cover from
growing.

The present thesis deals with the formulation and implementation of a
two-dimensional turbulence model which simulates the turbulent flow characteristics,
thermal distribution, and ice cover melting, of an ice covered river. The unsteady
depth-averaged continuity and St. Venant momentum equations that govern the flow
regime are used. Turbulent flow characteristics that effect the ice cover melting process
are evaluated, based on the depth-averaged (k-£) turbulence model, where k is the
local turbulent kinetic energy and € is the rate of its dissipation. Consequently, ice
cover melting is determined by establishing the heat budget at the water-ice and ice-air
interfaces.

An explicit finite difference method was used for the solution of the
hydrodynamic equations. The method is based on the Modified MacCormack scheme,
which involves the splitting of a two-dimensional calculation into sequences of two
one-dimensional operations. The upwind scheme is used for the descretization of the
temperature, k, and € equations.

Three series of tests have been performed using the turbulence model, for the
evaluation of its performance. The first series of tests dealt mainly with the verification of
the model capability in predicting hydrodynamic conditions, which is very important
since inaccurate hydrodynamic predictions result in inaccurate evaluations of ice cover
melting. The model compares well with other measured and computed hydrodynamic
results. Once that the hydrodynamic computations were verified, verification of ice cover
meiting predictions were performed by numerically reproducing 6 laboratory experiment.
The model predictions compares excellent with some of the experiments and satisfactory
with others. The primary reason would be due to the difficulty in experimenting with ice.
The third series of tests is concened with a field study done on the Mississippi river. A
comparison of hydrodynamic conditions, temperature distributions and ice free openings
were carried out, with good agreement in all counts.
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CHAPTER 1.0
INTRODUCTION

Background

Rivers in cold regions freeze for most of the winter season, resulting in
the formation of an ice cover that affects their use for transportation, power
generation, water supply and waste water disposal. Although the discharge of warm
water into rivers may conflict with environmental regulations, yet the resulting rise
in temperature can be effective in suppressing the ice cover formation. This heat can
be sufficient to keep major reaches of rivers ice free. Several investigators have
performed studies on the prediction of the ice-free lengths in river reaches after a
period of ice cover melting. The capability of predicting the magnetude and extent of
ice cover melting due to an addition of heated thermal effluents, is important for the
efficient use of rivers during the winter season. The maximum effectiveness of the
disposed heated water is obtained by suppressing the ice cover from forming,
thereby extending the navigation period in rivers during ice covered seasons,

thereby implying economical advantages.

The subject of ice cover melting due to warm water has been previously
approached by a number of researchers. Pruden, et al. (1954), studied the feasibility
of keeping much of the St. Lawrence river free from ice for parts of the winter.
Kreith (1958), considered the melting rate of an ice cover where the problem of heat
transfer from a moving liquid to the solid boundary was formulated as a boundary

value problem. Ashton (1971), performed a study on the patterns exhibited by an
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ice-water interface while freezing or melting, thus finding the existence of
wwo-dimensional wavy boundary whose crests are oriented transverse to the flow
direction. It was then hypothesised that the heat flux to the interface is sinusoidal and
that the mean heat flux is proportional to the ratio of amplitude and wavelength of the
ripples underneath the ice cover. Hsu (1973), extended the work of Ashton and
verified the quasi-steadiness of the heat conduction through the ice slab. Gallardo
(1974), measured the vertical temperature distribution of the flow, and the effects of
air and water characteristics on the vertical displacement of the ice-water interface
during the melting of an ice cover. Gallardo found that undcr laboratory conditions,
and air temperatures close to tre freezing mark, the effect of the heat transfer
coefficient at the ice-air interface was small compared with the other expressions.
However, for temperatures of the air lower than -109C the rate of heat transfer to the
air cannot be neglected. Hewlett (1976), investigated the rate of melting of an ice
cover due to a heat source. The investigation showed that the leading edge motion of
an ice cover under various air and water conditions is possible through the
application of the gencral heat balance equations if the heat transfer coefficient

distribution can be properly estimated.

Field studies were also conducted to evaluate the process of river ice cover
melting by a thermal effluent. Dingman et al. (1970), carried out a study on the North
Saskatchewan River at Edmonton, Alberta, while Ashton (1981), conducted a study
on the Mississippi River at Bettendorf, lowa. Field data on many aspects of ice
melting was collected during the study period. Also, Hayes and Ashton (1985),
collected data downstream of the power plants in the Pittsburgh and Pennsylvania

areas to further test their model.




3

Dingman et. al. (1967), presented a one-dimensional solution of the
steady-statc encrgy equation. The diffusion terms were neglected and the velocity
ficld assumed to be uniform. Paily et. al. (1974), solved the one-dimensional
unstcady cnergy equation including the longitudinal dispersion terms. A linearisation
of heat exchange relations were developed and used in the solution. Ashton (1979),
solved the one-dimensional quasi-steady energy equation. Heat transfer processes at
the ice cover interfaces were considered as well as varying meteorological conditions.
Shen and Chiang (1984), developed a one-dimensional model of the ice cover growth
and decay on the St. Lawrence River by using a uniform velocity field and including
a complete ice cover and open water heat transfer formulation. Al-Salah et. al.
(1987), performed an analytical solution of the one-dimensional energy equation,
including converging or diverging river flow using a linear heat transfer relation in the
solution. Plouffe (1987), used a two-dimensional constant viscosity model to predict

the local river ice cover melting due to a side-discharge thermal effluent.

The process of melting of an ice cover caused by the flow of warm water
from underncath the ice cover is greatly affected by the turbulent flow characteristics
undernecath the ice cover, and the heat ﬂuxés across the interfaces of the ice cover.
The turbulent flow under an ice cover presents different flow characteristics than
those of open water, such that the ice cover increases in the flow resistance, resulting
in a reduction of the average flow velocity and an increase in the normal depth.
Thcrefore, the simulation of turbulent flow conditions under an ice cover, for the

prediction of ice cover melting is of great importance.



Scope of Research

The present research aims at studying the melting of an ice cover due to
added heat under turbulent flow conditions. The study made use of a
two-dimensional turbulence model to determine the turbulent flow characteristics, and

the temperature distribution affecting the melting of the ice cover.

The model uses: the depth-averaged two-dimensional St. Venant
equations to solve for the velocity field; the two-dimensional heat transport equation
to solve for the temperature distribution; the k and € equations to evaluate the
turbulent kinetic energy and the rate of its dissipation; and ice equations to compute

the growth and melting of a floating ice cover.

The solution to the hydrodynamic equations was obtained through the
application of a Modified version of the MacCormack scheme. The solution to the
temperature, turbulent kinctic energy k, and the rate of dissipation of the turbulent
kinetic energy € equations were obtained by the use of the upwind finite difference
scheme. The model uses the inlet, outlet, initial and boundary conditions to start the
calculations procedure. The solution procedure for evaluating the flow
characteristics is described by the following computational steps: velocity field and
depth distribution; heat source term; temperature distribution; k and € distribution;

and ice cover melting.



The solution to the hydrodynamic, temperature, and turbulence equations
was verified against previous work done by McGuirk and Rodi. Also, the ice cover
melting predictions were compared to five laboratory experiments and a set of field
data. Results show an overall good performance of the model and excellent agreement

with both experimental and field data.



CHAPTER 2.0
GOVERNING EQUATIONS

2.1 Hydrodynamic Equations

The St. Venant shallow water equations are used to calculate the flow ficld.
These equations are obtained by inicgrating the equations of motion over the depth, using
the hydrostatic approximation. The symbol definition is presented in figure 2.1. The
unsteady depth-averaged continuity and momentum equations that govern the flow

regime for an open channel under ice cover conditions, are expressed as follows:

Continuity

—— ot — -—-—-0

ot oh dy

Conservation of momentum in x direction:

U JE dF 9 ,Tyx 0 g Tyy Tsx Thx arl
22 Gt )ty () v e

Conservation of momentum in y direction:

vV 4G o 49 T J ,T T T oIl
et b= e (L) 4 — (LY sy, by
[23] al+6x+6y é)x(p)il'ay(p)+ p p+ ox



[2.4] E = uZh
[2.5] F=uvh
[26] G= v2h
[2.7] [M=H+0906

where H=h+Zy, is the water surface elevation from the datum; h is the water depth; Ty, is
the bottom elevation froim datum; 6 is the thickness of the ice cover; Tgy, Tsy are surface
shear stresses; uh and vh are the unit discharges in the x and y directions respectively;
Thx» and Tyy are bottom shear stresses per unit mass in the x and y directions respectively

expressed as follows:

Tbx
(2.8] B2 = ghSy
P

T
by gh Sy

P
such that,

[2.9]

Sox and S, are the river bed slopes, and Sg, and Sg, are the friction slopes given by the

following equations:

_ nuq

(2.100 s, = e
nzvq

[2.11] Sy = 7



where

[214] q = @ + v}

h is replaced by R (hydraulic radius) in the friction slope terms, to account for the

presence of an ice cover. In other words,

R=h for open water case, wide river assumption.

R=1/2h for ice-covered flow case, wide river assumption

r

i
&

|
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=
=
+
N
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|
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Z o -
]'_/// ° ' ///
T m—

Figure 2.1: Symbol definition

Under ice cover conditions, where the flow is confined the Manning coefficient
found in the friction slope terms should relate to the river bed roughness and the
underside roughness of the ice cover. The resulting composite Manning coefficient is

(Wankiewicz 1984):



2/3

32 3/2
(243] n = (__2___

where ny is the bed Manning coefficient and n; is the ice underside Manning coefficient.

The ice cover also effects the hydrostatic pressure terms in the hydrodynamic
equations in which 92% of the ice cover thickness is added to the water depth . The

92% value represent the density ratio between ice and water.
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2.2 Shear Stress Computation

Computation of the shear stress terms present in the momentum equations is
based on the eddy viscosity concept. The latter is based on the assumption that the
turbulent stresses are proportional to the mean velocity gradient. The depth-averaged
turbulent stresses can then be represented by the following expression, using tensor

notations (McGuirk and Rodi 1978)

T. du. du.
[2.14] 2 =vh 3 e -Ekha.
p X; i)xi 3 1j

Sij: Kroneker symbol
ifi=j —->8ij =
ifiej—o Bij =0

or, in x, y coordinates,

[2.15] —-v (z.a-“h_)--kh
P dax
Tyy T duh dvh
[2.16) X~ ¥y (i 20
P ay ox
T
[217] Z=v ‘1‘;}’)-3 kh
P dy

where v, represents the turbulent or eddy viscosity as a function of the state of turbulence
at various points in the flow domain, k is the turbulent kinetic energy, and ¢ is the rate of

dissipation of k.
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The distribution of the turbulent eddy viscosity is approximated by assuming
that the turbulent viscosity is proportional to the characteristic velocity and the length
scale of turbulence (macroscale of turbulence, which is a measure of the size of the

energy containing eddics) and expressed as follows:

[2.18] v, ak'?]

where 1 is the length scale of turbulence and k is the turbulent kinetic energy.

The estimation of the rate of dissipation of energy € is obtained by assuming
that the input ratc of energy at the large scale of turbulence balances with the dissipation
rate at the small scale of turbulence (the amount of energy dissipation at the small scales
of turbulence equals the rate of supply at the large scales). Using the characteristic

velocity and the length scales (Tennekes and Lumsley 1974),

k3/2
219] ca —

Substituting equation [2.19] into equation [2.18] for the length scale | provides
an expression for the turbulent eddy viscosity in terms of the turbulence kinetic energy k,

and its rate of dissipation €.

220 v, =C,

K2

£
where C,, is an empirical constant given in Table 2.1, k is the turbulent kinetic energy and
€ is ils rate of dissipation. k and € are calculated from the relevant transport equations

(Rodi 1980) described in chapter 5.
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2.3 Temperature Equation

The temperature distribution of the flow field is calculated by solving the energy
transport equation. The latter is based on the principal of conservation of heat, convected
and diffused by the flow, and expressed as a function of the flow properties. An increase
in the river water temperature duc to an added heat that imposes the melting of an ice
cover is simulated by this equation. The distribution of the depth-averaged temperature is

given by the following equation:

dTh gu.h T 0 aT
22]] =—4—— = — |ILh— o
(221 ot 9x; a"i[T dx ] *

where T is the temperature; and i represent the two-dimensional vectorial sum.

The turbulent heat diffusion cocfficient I'r contained in the energy equation is

determined over the flow domain by the following relation:

[2.22] Typ=—-
Oy

where o is an empirical constant whose value is given in table 2.1, and v is the

turbulent viscosity. The source term in the energy equation [2.21] ®, takes into account

the solar radiation components and metcorological conditions that have an added cffect

on the calculation of the temperature. These components will be defined in chapter 3.0.

The heat source term is evaluated from the combination of the heat flux components as

follows:
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[223] @=_2

Cpp

In the case of ice covered river

[224] ¢= ¢sp - wi

and for open channels

[2.25] &= ¢5- dp- ¢c-dc - dwa

where ¢g is the solar radiation; ¢sp is the penetrating shortwave radiation; ¢y is the
longwave radiation; ¢ is the evapo-condensation heat flux; ¢ is the conductive heat
transfer; ¢y is the heat flux across the water-ice interface; and ¢y4 is the heat flux across

the water-air interface. (Ashton 1979)

The medel is also programmed to consider the constant viscosity concept in
which the dispersion constants are determined from the following equations [Ashton
1979} :

[226] T,=k,U*R
[227] Ty=k, V'R
wherc ky is the dispersion constant in the x-direction; ky is the dispersion constant in
the y-direction; U* and V* are the shear velocity in the longitudinal and transversal

directions respectively, given by :

(228) U*= [S_gR
(22 v*= [S gR

where Sgx and Sgy are previously defined.
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2.4 k and € Equations

The depth averaged k - € turbulence model adopted in this work is based
on the Boussinesq eddy viscosity concept, and presented by McGuirk and Rodi,
(1978). The depth-averaged turbulent stresses Ty, Txy» Tyx» and Tyy, contained in
the momentum equations, need to be determined over the flow domain through the
application of a turbulence model. The k-€ turbulence model chatacterizes the local
state of turbulence by the turbulent kinetic energy k that originates from the turbulent

flow, and the rate of its dissipation &.

The distribution of the depth-averaged turbulence propertics can be
represented by the following transport equations, where in conscrvative form are

expressed as follows, using tensor notations:

. v
[2.30] o%h ouhy _ g fr, + ®;
o 0% oy \' &

where y is a variable that can represent either the turbulent kinetic energy k or its rate
of dissipation ¢; j is also a variable being either k, or € & is a source term; and i

represents the two-dimensional vectorial sum.

for y=k; then j expresses the turbulent kinctic energy k as follows:

Vi
Ok

[2.31] Ik =
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and
[2.32) DOy =G +Pyy - ¢h
for y=¢; then j expresses the turbulent kinetic energy rate of dissipation €, as

follows:

[2.33] =L
g

and
. 2
[234 @, =C -G+ P, .C,ER
k k
where
v, duh 2 5 gvh 2 duh Lavh 2

represents the production of turbulent kinetic energy in the horizontal directions due
to interactions of turbulent stresses with horizontal mean velocity gradients; and o,
Og, Cy, and C; are empirical constants whose values are shown in table 2.1. These
empirical constants were determined by Launder and Spalding 1974, who
considered various types of flows such as thcse in pipes, channels, mixing layer,

jets and wakes.
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Table 2.1: Empirical Constants used in the k-€ model.

( Launder and Spalding 1974)

n Oy 08 Or Cl C 2

0.09 1.0 1.3 0.5 1.43 1.92

In addition to the turbulent production G, bed and ice bottom roughness
contributes significantly to vertical velocity gradicnts, which by interaction with large
turbulent shear stresses, produce turbulence energy in the vertical direction. This
vertical turbulence production of energy which is strongly dependent on the top and

bottom roughness is absorbed in the Py, and Pg, terms, which arc expressed as

follows:
C
[2.36] P,, = q*
c,c, ¢
[237] P =
£V 2
h
where

[2.38] q = v (u2+ v2)

The source term found in the temperature equation is a function of
meteorological conditions, solar radiation, and hydrothermal conditions. The
evaluation of this term will be discussed in detail in chapter 3.0. The numerical
scheme used for the solution to the hydrodynamics , temperature, turbulent kinetic
energy, and the rate of dissipation of the turbulent kinetic encrgy is based on the

Modified MacCormack scheme, and will be discussed in chapter 4.0.
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The numerical mode! used for the present work is primarily based on the
continuity, momentum, temperature, turbulent kinetic energy, dissipation rate of the
turbulent kinetic energy, and ice meliting equations. The turbulent kinetic energy and
the rate of its dissipation is evaluated through the k-€ equations which are based on
the mean velocity. The k and € are then used to evaluate the turbulent shear stress
components in the momentum equations, and the turbulent heat diffusion coefficient
found in the temperature balance equation. The velocity distribution is then
computed. The heat budget a function of the meteorological conditions, solar
radiation,and hydrothermal conditions is then evaluated, therefore estimating a value
to the source term in the temperature equation. The temperature is then calculated for
the whole flow domain from its corresponding heat balance equation. Finally, the ice

cover melting or thickening is then computed through the use of ice cover equations.



CHAPTER 3.0
ICE DECAY AND GROWTH

During the winter season, continuous sub-frzezing temperatures which are
considerably lower than the temperature of the river or lake, and weak solar radiation,
result in a significant amount of heat loss from the river to the atmospherc. These
conditions will consequently lead to the cooling of the river or lake and eventual formation
and thickening of an ice cover. The ice cover decreases the rate of cooling of the river due
to the insulating characteristics of the ice sheet. Afterwards, the water temperature will

then stabilise for the remaining part of the winter.

The loss of heat from a river which is not ice covered occur at the water-air
interface, while the growing and melting of an ice cover occurs due to the net heat
exchange at the water-ice and ice-air intcrfaces as shown in figure 3.1. The components
of the heat exchange at the interfaces are prescribed in terms of shortwave solar radiation,
longwave radiation, evapo-condensation heat flux, and convective heat transfer. These
components are in turn a function of the, cloud cover, air temperature, wind velocity, and

air vapour pressure.

The heat flux across the ice-air interface is usually unstcady and has a
transient behaviour due to the continuous fluctuation in the air temperature, such that the
ice cover is in a continuous melting or thickening process. However, the heat flux at the
water-ice interface is relatively steady and depends only on the river flow conditions.
Also, at the bottom surface of the ice cover, the water temperature is assumed to be

maintained at the freezing point 0°C.
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3.1 Heat Flux Components

The heat flux components that determine the amount of heat being transferred
across the interfaces can be best described through figure 3.2. These components which

are a function of the meteorological conditions are expressed as follows:

3.1.1 Shortwave Radiation

The amount of incident shortwave radiation ¢y is estimated as follows:
[3.1] ¢4= ¢ [0.35 +0.061 (10-C) ]

where C is the cloudiness expressed in tenths (i.e. C=0 is clear skies, and C=10 is
complete cloud cover ), and ¢y is the incoming shortwave radiation for cloudless skies in
cal m-2 day -1- The incoming shortwave radiation ¢y at the air-ice or air-water interface is

expressed by the following formula:

321 ¢, =[ab(@, - 50)](1 - 0.0065c>)

where a and b are constants that represent annual variations of the solar radiation intensity

under clear skies.

Since a portion of the shortwave radiation is reflected back into the
atmosphere, the difference between the incident shortwave radiation and the reflected
shortwave radiation will determine the ¢nergy that is actually absorbed. The zmount of
rcflected shortwave radiation ¢rg is expressed by the following formula as reported by

Dingman et al. 1967,
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[3.3] &5 =(0.108 dyj - 6.766*10-5 ¢y;2 )

Therefore the amount of energy absorbed by the water is calculated by

[34] dea = bl -Ors

and the net shortwave solar radiation can be written as

(351  ¢s=(1-0) ¢y

where a is the surface albedo conveying the mount of reflection or absorption by the

water surface, which is approximately equal to 0.1 for the water surface. For the ice
surface, the albedo depends on the ice cover material behaviour and for uneven surfaces,
the albedo varies with the solar latitude. Table 3.1 provides a set of reported albedo values

for various ice conditions.

Table 3.1: Albedo Values for the Great Lakes Ice (shen & chiang 1984)

Ice Identification Surface Albedo (% )
Clear lake ice (snow frec) 10
Refrozen pankace (snow frec) 31
Slush ice (snow free) 41
Brash ice (snow between blocks) 41
Snow ice (snow frec) 46
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The other part of the shortwave radiation that penetrates into the water

underneath the ice cover is expressed by the following formula:

[3:6] sp = Bj ¢s e-Ti0

where B; is the fraction of the absorbed solar radiation that penetrates through the
ice-water interface; and t; is the bulk extinction coefficient, which varies between 0.004
m-1 and 0.007 m-! . The penetration of shortwave radiation into the ice cover can be

considered as an internal heat source.
3.1.2 Long-wave Radiation

The net loss of heat by the exchange of long-wave radiation with the
atmosphere is the difference between the incoming longwave atmospheric radiation
received and the back radiation emitted by the water surface. The longwave radiation

emitted from the water surface or the ice cover is expressed by the following formula:
[3.7] ¢,=¢, @ va

where Ty, is the water temperature in 9K; o is the Stephan-Boltzman constant equal to
1.171*10-Ical. m'2 day-1 °K4; and ¢, is the emissivity of the water equal to 0.970 which

has been cstablished by Anderson (1954) for Lake Hefner.

The incoming longwave atmospheric radiation, ¢y, is not measured, but

can be related empirically to air temperature, vapour pressure and cloud conditions
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(Anderson 1954). Therefore, under clear skies the atmospheric radiation is determined by

a relation initially suggested by Brunt (Paily et al.):

B8]  ¢,=(C+d fe) ot

where T, is the air temperature in 9K, e, is the air vapour pressure in mb, C and d are
empirical constants such that Brunt uses 0.55 and 0.052, while Anderson uses 0.68 and

0.036 for the values of C and d respectively.

Under cloudy skies, a different expression for the atmospheric radiation
should be used due to the emittion of additional radiation from water and ice particles from
underneath the clouds. Therefore, using Boltz's formula, the atmospheric longwave

radiation is represented by :

39] ¢,=oT (c+d‘/-c:)(l+ch2)

where k; is an empirical constant equal to 0.0017. However, Dingman et al suggested a

different expression given as follows:
[3.10] ¢pa= (a+b =,) OT A

where

[3.11] a=0.74 + 0.025C exp[(-1.92)(104)H]
[3.12] b = (4.9)( 10-3)-(5.4) (10-4)C exp[(-1.97) (10-9)H]

and 500<=H<=infinity
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In the last expression, H is the cloud height, in m. If the clouds are below
500m in height, the cloud height is taken as a constant at 500 m as suggested by Anderson
(1954). Due to the 0.97 value of the emissivity of water, its longwave reflectivity is 0.03

such that

[3.13] ¢pr = 0.03 ¢p,

is the reflected longwave atmospheric radiation. Therefore, the net lost from the water

surface as longwave radiation, ¢y, (the effective back radiation) can then be calculated:

[3.14] ¢p= bDps+ Pur - dva

but from equation [3.21], the ~ffective back radiation becomes

[3.15] ¢b= ¢bs - 0.97¢p,

substituting in the previously given expression for ¢yg and ¢y, gives the following

formula for the net heat lost or the effective back radiation:

[3.16] ¢p= 1.1358*10°7[ T,? - (1+kC2(C+d(e,)!/2) T4 |

where ¢y, is in calories per cm?2 day.
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3.1.3 Evapo-condensation and Conductive Heat Flux

Two approaches have been attempted to calculate the evapo-condensation
heat flux. The first approach calculates the heat lost due to evaporation through a daily
evaporation rate formula given by the following expression:

[3.17] E = (0.525*10°2 + 1.007*10-2 Va) (cgw - €3)

where E is the evaporation rate in m per day; Va is the average wind velocity at 4m above
the water surface in meters per second; ey, is the saturation vapor pressure at the water
surface in mb; and e, is the vapor pressure of the air at a 2m level above the water surface

in mb. Saturation vapor pressure may be calculated by:

37316 373 16
[3.18] log e, =-7.90298 T +5.02808 log
373.16
-13816x 10> f 107 39“‘9( ) )

373.16
+8.1328 x 10” (103'39149 ( —- 1) . 1) + log (1013.246)
sk

The daily evaporation rate is multiplied by suitable constants thus allowing

the heat lost as a result of evaporation to be calculated as follows:

[3.19] ¢ = (3-135 + 6.011Va) (egy, - €5)

where ¢, is in cal per m2 day.
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With the calculation of ¢¢, the Bowen ratio is then used to calculate the

conductive heat transfer ¢.. The Bowen ratio is defined as follows:

[320] R=0c/ e

where R is calculated from

[3.21] R=(6.1*10"*) P (ﬂ—Tﬁ—)

Csw- €,

such that P is the atmospheric pressure in mb.

Assuming that for equation [3.21] 2m wind velocities are used and that

P=1000mb, its multiplication by the Bowen ratio gives:
[3.22] ¢¢c =(1.91 + 3.67 Va) (Ty, - Tp)

however, if a 4m level wind velocity is assumed, equations [3.25], [3.27] and [3.30] take

the following expressions:

[3.23] E = (0.525*10-2 + 1.229*102 Va) (esy - €3)
[3.24] ¢¢ =(3.135 + 7.33Va) (cgw - €5)

[3.25] ¢ =(1.91 + 4.47 Va) (Ty, - Tp)

(Dingman et al, 1967)

The second approach for determining the heat loss due to evaporation and

conduction is estimated by using the Rimsha and Donchenko (1957) equations:
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[3.26] ¢c = (Kn +3.9 Va) (Ty, - Ty)
[3.27] ¢e = (1.56Kn + 6.08 Va) (es - €5)

where

[3.28] Ky =8.0 + 0.35 (Ty, -Ty)

is a coefficient which represents the portion of heat transfer due to free convection, Va is

the wind velocity in meters per second at 2 m above water surface.

It is interesting to note that the wind coefficient in equation [3.27] is very
close to that found by Kohler (1954, €q.3.19) . Thus equation [3.19] is a special casc of
equation [3.35] which is appropriate for (Ty, -T3) < 1°C (Dingman et al, 1967). The
existence of an ice cover over a river tends to suppress evaporation, therefore the heat flux
from the ice surface will be a fraction (C¢,C¢) of that calculated before. The

evapo-condensation and conductive heat transfer become (Chen & Chiang 1984).

[3.29] ¢ = Ce(1.56Kn 1 6.08 Va) (s - €5)
[3.30] ¢c = Cc(Kn + 3.9 Va) (Tyy - Ta)

In this study, the evapocondensation heat flux was calculated through the usc of
the Rimsha Donchenko equations, because the principal difference in the two approaches
lies in the fact that the constant in the wind function was found by Rimsha and Donchenko

to vary with (Ty, -T3) (Dingman et al, 1967).
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3.2 Ice Cover Equations

An ice covered river consists of a relatively stable ice slab with a certain ice
thickness. The behaviour of the ice cover is characterised by the pattern at which it
changes in thickness through melting and growing. This behaviour is attributed to the heat
lost or gained to and from the atmosphere and the underside water body, across the ice-air
and the water-ice interfaces. At the ice-air interface, the heat exchange occurs with the

atmosphere, while at the water-ice interface, the heat exchange occurs with the river flow.

A snow cover over the ice slab is not included, however with the ice edge
washed free of snow due to the wave action. Also, the ice slab is assumed to be well

draincd such that there is no surface water during thawing season.

The melting and thickening is evaluated at the top and bottom of the ice
cover such that the onc-dimensional heat equation governs the heat transfer across the ice
cover, the temperature at the surface of the ice cover is calculated from the heat exchange
components and meteorological conditions, and the temperature at the bottom surface of

the ice cover is set to the freezing point temperature.

3.2.1 Top Surface Melting

The heat fluxes at the top surface of the ice cover are dependent on: the
prevailing meteorological conditions, namely the air temperature, and wind velocity; the
heat exchange components, basically the shortwave solar radiation, longwave radiation,
evapocondensation heat flux, and conductive heat transfer; and the top surface ice cover

which is evaluated by the heat transfer processes occurring at the ice-air interface.
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[3.26] K, a_. 2¢; = 0
0z

where

[3.27}  Z¢j= ¢s- dsp- ¢b-de - oc

is the net heat flux at the ice-air interface which includes the net solar radiation ( ¢ ), the
penetrating shortwave radiation ( ¢sp ), the longwave radiation ( ¢p ), the
evapo-condensation heat flux ( ¢¢ ), and the conductive heat transfer (¢¢ ); K;is the ice
thermal conductivity; z is the distance across the ice cover; and dT is the difference
between the freezing temperature imposed at the bottom surface of the ice cover and the
temperature at the (o} surface of the cover. Therefore the change in temperature across the
ice cover, between the two interfaces is linear and expressed as follows (Shen & Chiang

1984):

oT Tr - Ts
[3.28] — = ——
dz 0

Where Ty is the freezing point temperature which is 0°C for fresh water,
and Tj is the top surface temperature of the ice cover. Equations [3.27] is used to obtain
the heat balance at this interface for the calculation of the top surfacc melting or growing.
The top surface melting is computed only if the top surface temperature is calculated to be
above 0°C, which is the melting point of ice. Under that condition, the ice cover top
surface temperature is set to 0°C for the calculations. The heat balance equation is then
used for the calculation of the melting or growing of the ice cover top surface which is

expressed as follows:
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) Tf ‘Ts L do

[3.29] £¢, + K
where Z¢; is the sum of the heat exchange components ¢y, ¢¢, dc, ¢s, and ¢gp.
The heat exchange components represented in figure 3.1 are the net solar

radiation ( ¢g ), the penetrating shortwave radiation ( dsp ), the longwave radiation ( ¢p),

the evapo-condensation heat flux ( ¢ ), and the conductive heat transfer ( ¢c )

respectively.
incoming  reflected  incoming reflected longwave  evapo-condensation conductive
shortwave shortwave longwave  longwave  radiation heat flux heat transfer
radiation  radiation  radiation radiation  emitted from
surface
¢ri ¥s O Pbs %e O

VANV R R P

\

shortwave
radiation WATER FLOW sl
penelration

Figurc 3.1: Heat transfer processes over an ice cover
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3.2.2 Bottom Surface Melting

Melting at the bottom surface of the ice cover occurs due to the heat
transfer from the water body to the ice cover. The turbulent heat transfer from the water to
the ice cover depends on the heat transfer coefficient at the underside of the ice cover, the
water temperature and the freezing point temperature at the underside of the ice cover.
Figure 3.2 shows the heat tranfer processes occuring at the water-air interface for open

water conditions and at the water-ice and ice-air interfaces for ice covered channels.

These heat exchange processes, in addition to the meteorological
conditions, play important roles in determining the amount of heat the water body absorbs
or emits and the amount of ice that forms or melts at the bottom of the ice cover. The
melting and thickening at the bottom surface of the ice cover is governed by the energy

balance at this surface and cxpressed as follows:

[3.30] ¢ -0, = P L ==

where

(3.31] ¢ = K,

is the heat transfer across the ice cover, a function of the ice cover top surface temperaturc

Ty, the freezing point temperature T, and the ice cover thickness 8.

(3.32] Owi = hyi (Ty - T¢)

is the heat flux from the water to the ice cover, in which
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U0.8
[3.33] hy; = Cui Doz

is a heat transfer coefficient; U is the average water velocity in m s-1; D is the flow depth
in m; p; is the density of ice in Kg m-3; L; is the heat of fusion in j Kg-1; T, is the water
temperature; and AB/At is the rate of change of the thickness of the ice. C,; =1622

Ws0-8m-2.6 oC-1 is a coefficient obtained from the closed conduit turbulent heat transfer

correlations.(Ashton 1979)
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Figure 3.2. Heat flux at air-water, air-ice, and water-ice interfaces.



CHAPTER 4.0
NUMERICAL SCHEME

4.1 The MacCormack Scheme

The solution of the depth-averaged St. Venant equations is obtained by
applying an explicit finite difference method based on the modified MacCormack time
splitting scheme. The scheme is forward time, central space differencing, which
involves the splitting of a two-dimensional calculation into a sequence of two
one-dimensional operations such that, each operator is further split into a

predictor-corrector sequence.

The two-dimensional finite difference operator, L(At) is split into a

sequence of one-dimensional operators as follows.

[41] LAY = L(At,) Ly(Aty) Ly(Aty) Ly(Aty)

where L, and Ly are the one dimensional finite-difference operators and
Atx=Aty=1/2At is the time increment. The L, and Ly opcrators calculate the derivatives
in the x and y directions respectively. Both, the x and y derivatives are then split into
two half-time steps. Therefore, the solution at time (n + 1) At for the cell coordinates

(i, j) is obtained by applying the operator as follows:

[4.2] vi':j” = L ALy (Bty)Ly Aty )L (AL VS,
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w here V:' = V(iAx, jAy, (n+1) At)is the new value calculated from V values which are either

initially known or have been previously calculated.

Consequently, each operator executes a combination of backward and
forward differencing operations. Therefore, each operator, Ly and Ly, consist of a
predictor which discretizes the space derivatives using the backward differences and a

corrector which discretizes the space derivatives using the forward differences. As an

example, consider du/dt,

qu operator

Predictor-backward differencing

P Py
(43 Y "% _ (BB
Aty Ax

P.. P, At
[4.4) (u7")5= u -~ (E
X

ij i~ -1, j)

corrector - forward differencing

Cain  C
Ui;‘ - in Pn EPn
[4,5] —— = i+i,j i,j

.6 n+l C At l,n
[4 ] ( fZ) |+1] Ei,j)



L! operator

Predictor-backward differencing

PMIIZ Py Aly
[4.7] (ui.j )B= ui.j -—A-;-(Fi'j - Fi,j~] )

corrector - forward differencing

lerz Cn Aty Pn
[4.8] (up=u-—(E]

Pn
F i.j'Ay E.)

i,j+1 B i,j

The superscript P signifies the values calculated at the predictor stage while
the superscript C means that the values are obtained from the corrector stage. The
subscript B and F imply backward and forward differencing respectively. The

corrector sequence use the value of u obtained in the predictor step to calculate F(u).

In the Ly operator, the solution is advanced by a time step Ay, as if the
derivatives in the y-direction were absent, and then in the Ly operator by a time stcp
Aty, omitting the derivatives in the x-direction. Also, in both operators, backward
differences are used for the predictor and forward differences for the corrector. ( Garcia

et al, 1986)

However, the sequence of operators should be performed in the following

manners so that to eliminate any discontinuities (Garcia 1983):



35
First L operator Predictor: backward differencing

Corrector: forward differencing

Ly operator Predictor: backward differencing

Corrector: forward differencing

Second L'y operator Predictor: forward differencing

Corrector: backward differencing

L'y operator Predictor: forward differencing

Corrector: bacixward differencing

The step that follows the predictor-corrector sequence is the averaging of the
value of (u;;)"*1/2 obtained from the previous two steps and located in the corrector

sequence after the evaluation of (u;; )Crne+172,

LY Con2
wo) o Ui B
i.j 2

As a result, the decomposition of the partial differential equation is then

re-termed into the following sequence (Garcia 1983):

[4.10] [LyxLy Ly'Ly]
This sequence is not a standard one. Many combinations of Ly and Ly can be
and have been used before. An example is the treatment of compressible flow problems

using the



(411 [ LG L,@. L, (%)]

sequences.

It is obvious that with this sequence there exists a critical factor called
"preferred direction” in which the order of operator sequence used can affect the final

solution. For example [LxLyLx] and [Ly LxLy] were found to give slightly different

results for the same problem.

On the other hand, the sequence [LxLyL'yL'x] eliminates the "preferred
direction" concept and provides symmetrical solutions which in turn allows for second

order accuracy in space and time (Garcia 1983).

The stability of the finite difference scheme is very important. The stability
conditions are determined by the Courent-Freidrich-Levy criterion which states that the
maximum time step that can be used in the standard MacCormack scheme is the

minimum value of the following two terms:

[412] pAv<_B%
Ny
or
Ay

At s —F=
v+ Jgh ' %
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4.2 Discretization of The MacCormack Scheme

To show the discretized form of the continuity and momentum equations
using the MacCormack scheme, consider the continu'ty, x-momentum, y-momentum

equations.

Lx operator: calculation of derivatives in the x-direction.

- continuity
[4.13] -a-ll +-alh- =0
at ox

- momentum x-direction

T
(414 30,2 2no 9 S ) -gn L (H+098) - =
at ox ax p ox P

- momentum y-direction

[4.15]) dvh N duvh _E)_ ‘ty_x
at gx Jx P
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Discretization of the I.x operator:

Predictor Sequence : Backward Difference

a6l = L2 (0w )
i,j i,j Ax ij 1. -1y -l

2 2
[4.17] U§j=w.-& B )+

u. n. w.,. n ..
i) Ax i iy i-1,j i-l,j

At" Txx h B HY + 0.98,,)-(H’ +0.98. )
|i" P liig] - & Ax i i) (Hiyy B4

“(31)

At
P o] 0 X 0 o ,0 [} 0o o
(418 V., =V h- " (ui,j Vi M 7 Yy Vi hi-l.j)

X

At
P Y 7 ST
Ax p i) p i-1,j

Corrector Sequence Forward Differences :

[4.19] Hc = l'f: - ﬁ il;hﬁlj i j )
b v Ax "
c Aty

[4.20] Ui,j = U':J ) Ax “m h'*U Uiy )

At" xx h A% kyP 4 0.90 (H? + 098 )] -
le]— P I|J - g Ax |+l)+ nl])

(1)



[421] Vi, =v. H .-2%

1) 1,} 1,}
+ ét—" fl’i | .- .tY_"
Ax p lj p

and therefore,

[422] H), - 1 (H,C .

2 Ui

Ly operator: calculation of derivatives in the y-direction.

)

)

- continuity
(4231 9, 9vh _ 4
at ay
- momentum x-direction
424] 30, 2 pun-2 (v
ot dy ay p
- momentum y-dircction
l42s) ML Ph- 9
at dy

T
Sy ) - gn L (H+090) - 22
dy p dy P
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Discretization of Ly operator :

Predictor Sequence : Backward Difference

[426 H - K - ﬂx( P )

. -1 il

2 2
[4.27] vin =V’ . _A_ll (V(.). h?. P ho ) +
' Ay Jo

irj Vit Hijl

At At
—1 ] __Y_
Ay [ l,, 0 ,11] X}-’YB IJ+099 )(H|Jl+096|“)]

P o ;0 y o o ,0 o o o
28 Uf =0 - =2y vp - v hD )

Corrector Sequence : Forward Difference

c A‘ P P
[4'29] Hi.j = l.ll:] B -A_ 'J“ h13+1 ui.jhi,j )
2
c _ P
[4.30] Vi =V} ( o BE ey - ul, h?,,-)*
At T At
_._l Y A4 . il -(H? +0.906. )|-
[p Il,]+l > |i‘j] gh Ay EH #1700 96 o) (Hi,,+099.,,)]

5 (1)
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4.3 The Upwind Scheme

The upwind scheme is a numerical procedure that is applicd to the transport
of species equation, in which it takes into account the difficulties encountered by the use
of other schemes such as the central-differencing scheme and the hybrid scheme. Some
of the difficulties encountered in the other schemes is unrealistic results due to the
instability of the scheme used under specific cases and the introduction of numerical

round off errors in the discritization of the equation.

The upwind-difference scheme is used as a remedy to the difficultics and
weaknesses found in the formulation of the other numerical schemes. Instcad of
assuming that the convected property ¢, at the interface is the average of g and ¢p as
shown in figure 4.1, the upwind scheme states a diffcrent approach. The scheme used
for the solution of the diffusion terms in the transport cquations is left unchanged,
however the value of the convective property assumes the value of the same property of

the grid point on the upwind side of the face as follows (Patankar 1980):

be = ¢p if Ue>0
$e = OF if Ue<0
€
v e .
v Z
CONTROL VOLUME

Figure 4.1. Typical Control Volume Grid Cluster. (Patankar 1980)
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Therefore, in the present study, the scheme used for the solution of the
diffusion terms in the temperature, k, and € equations is left unchanged, however the
solution to the convective terms is obtained through the use of the upwind scheme, such
that the value of the temperature, turbulent kinetic energy, and the rate of its dissipation

assume the value of the same property of the grid point on the upwind side of the face.

The use of the upwind scheme may be visuallized by a set of stirred tanks
connecled in series by tubes, know as the "tank-and-tube" model. This scheme serves to
represent the finite difference cells used in the computational mesh. Heat is transferred
from the upstream tank to the next downstrcam tank through the tubes (convection) and
the tank walls (diffusion). Fluid flowing from onc tank to the next is at the temperature
that prevails in the tank on the upstream side. The fluid in the tube carries the flow

characteristics of the tank from which it has come.

In computational terms, the value of the temperature at an interface is
equal to the value of the temperature at the grid point on the upwind side of the face.
Therefore, the use of a central difference scheme is therefore appropriate for the
dispersion term (Patankar 1980). Also, the use of upwind scheme for the calculation of
the temperature field is acceptable when near steady conditions are dominant and no
strong cross flow gradients arc present. Therefore, with little variation in the flow
velocity and negligible cross flow gradients, the use of an upwind scheme can be

justified (Raithby 1976).



CHAPTER 5.0
BOUNDARY CONDITIONS

In Chapter 2.0 a closcd set of equations are presented, such that with known
values for the empirical constants and computed value for the source terms, thesc
equations can be solved for u, v, k, €, h, T, v,, and 8. However, boundary conditions
for the above mentioned parameters should be specified at solid surfaces, inlets and exits

of the channel.

At inflow boundaries, a transversal velocity distribution, and a constant
temperature is imposed. At outflow boundarics, the water depth is imposed, taking into
account for the case where an ice cover is present, and if so, the decrease and increasc in
the water depth due to the changes of the ice cover thickness. At solid boundarics, u, v,
k, &, h, T, and v, should be specificd, however special attention is required duc to the

nature of the problem that is involved.

The specification of the boundary conditions at solid surfaces such as the river
banks, require the specification of fictitious points outside of the computational grid
system, as shown in figure 5.1. The normal gradicnt of the velocity parallel to the solid
wall U is set to zero, and the velocity V normal to the wall is set equal to the magnctude

of the velocity of the inside cell, but opposite in direction, as shown in figure 5.2.

The temperature gradicnts are also zero since negligible heat transfer through
the wall is assumed in most hydraulic problems. The walls are assumed to be adiabatic
walls, where the heat and concentration flux are taken as zero. Thercfore, the
temperature at the fictitious ccll outside of the flow domain is st equal to the temperature

of the inside cell.
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Similarly, the normal gradient of the water level, ice cover thickness, bottom

elevation and hydraulic radius across the solid surfaces were set to zero.

..... o) -- ;---{:}_--_---

8
2
&
7]
%
o)
Q
=
£
w
3
Q)
5
71

V7272227

Solid surface

Figure 5.1: External fictitious points
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Figure 5.2: Solid Wall Boundary Conditions.
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The boundary conditions at solid surfaces for k, €, and v, used in the prescnt
calculations are a modified version of those used by Rastogi and Rodi 1978. Therfore,
in this chapter, the derivation of the boundary conditions at solid surfaces for k, €, and

vy is presented.

At a solid boundary the calculation of k, €, and v, for the cell nearest to the
wall require special attention, since the dissipation rate of the turbulent kinetic energy e at
the solid surface is finite, in contrast to the zero mean and fluctuating
velocities. Therefore, to determine the value of € for the cell nearest to the wall requires
the integration of the equations through the viscous sublayer. For practical purposcs,
this is undesirable since stecp gradicnts and viscous effects present in the viscous
sublayer, require the use of a very fine grid in the near-wall region to be able to obtain
reasonable resolution. Therefore, the cost of computer time increases drastically, and
this approach becomes impractical. However, empirical laws of acceptable gencrality can
be used to describe k, €, and v, for the cells nearest to solid boundarics and the

integration over the viscous sublayer becomes unnecessary.

Near a solid wall, the flow is greatly affccted by the kinematic viscosity. The
region in the vicinity of a solid wall where the viscous effects cannot be neglected, is
thin relative to the size of the turbulent flow ficld. Satisfying the correct boundary
conditions at solid surface is practically impossible. Therefore, a reasonable approach
for the treatment of boundary conditions for a computational cell nearest io a solid
surface originates from the concept of relating the flow behaviour in the ncar-wall

region with the local mean flow parameters.
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In regions close to solid walls, the Reynolds number is very small, and
viscous effects are predominant. Therefore for the flow in the near-wall region it is

assumed that (Rodi 1980)

1. convection and diffusion are negligible

2. the turbulence energy production and the kinetic energy dissipation
rate are in local equilibrium

3. the turbulent shear stress is nearly constant and equal to the wall
shear stress.

4. the law of the wall applies.

Under these conditions, k, and € in the near-wall region can be derived.
Consider for example, the two points W and P shown in figure 5.3. W is the point at the
solid surface and P is the point at a distance y,, from the wall. The longitudinal velocity
component near a solid boundary obeys the universal law of the wall described as

follows (Chapman 1982):

[5.1) Y__ 1,_Ay2
U, K Z,

where U is the velocity component parallel to the wall; Us is the resultant friction’
velocity; x is the von karman constant; Ay/2 is half the grid spacing; and Z; is the

channel roughness height.

Rearranging the terms, an expression describing the resultant friction velocity

can be obtained
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[5-2] U* = ——IL(—L]—
InBY/2_
Zo

Differentiating Eq. 5.1 with respect to y gives:

[5.3] U _ Ux

dy KYw

where yy, is the distance from the wall to the center of the nearest cell (half the grid

spacing).

From the assumption that energy production is in balance with energy
dissipation rate, and convection and diffusion is negligible in the near-wall region,

therefore,
2
[5.4] s=vn(—gU—- )
y

substituting Eqs. 2.22 and 5.3 into Eq. 5.4 yields

Using Eq. 2.16, and substituting for v, and du/dy, the following expression is obtaincd:

[5.6] -%- = )%k
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by definition

[5.7] ; = U?
therefore

and

(5l ( )“’ [Inm.}"c_;J

substituting equation [5.2] into equation [5.9] and solving for k, the value for ky, in the

near-wall region can be expressed as follows:

K o K2U2

[5.10] T
[nL=Tc;

also from equation [5.5] substituting for U, the boundary value for &, in the near-wall

region can be determined

U
[5.1]] £w= ](*
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In the present work, the turbulent kinetic energy k,, at the cell nearest to the
wall is calculated from its corressponding k-transport equation, however with the
expression given in Eq.5.12 to be used for the € term. Eq. 5.12 represents the finite
value of the dissipation rate of k at a solid surface. The velocity component U is
computed from the momentum equation, however using the derived wall shear stress
expression, Eq.5.9. The dissipation rate of the turbulent kinetic energy k is evaluated

from Eq.5.5.

3
[512] € = Y= In(Ay/Zo)
Ky

w

Modification to the e-term in the k-equation is to account for the large increasc
in dissipation rate in the near-wall region. The grid system used involves the alignement

of the cell faces rather than the cell centers along the solid boundaries.

Solid Surface

Figure 5.3: A Point Close to a Solid Surface(Launder and Spalding 1974)
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Following the definition of the toundary conditions specifications, initial
conditions should be imposed for U, V, k, €, h, T, v{, and 8. The water velocity
components are sct equal to the mean flow velocity components over the whole flow
domain. The inflow velocities are increased in a stepwise fashion untill their
corressponding steady state value is attained. The water surface elevation is initialized at
a specified close to bottom slope. Temperature at all points in the flow domain is set
equal to the inlet temperature of the channel. The ice cover thickness is set to the average
prevailing local thickness present over the reach for the computational mesh points that
lie in that same reach, such that for certain cases, if data is available, the ice cover could

vary in thicknesses.



CHAPTER 6.0
COMPUTATIONS RESULTS AND DISCUSSION

In order to predict ice cover melting characteristics a function of the
hydrodynamics, hydrothermal, and metcorological conditions, it is necessary to solve
the governing equations, and consequently the ice cover formulations. The numerical
model used in this study solves for the above mentioned conditions and evaluates the
ice cover melting pattern. The solution procedure and assumptions adopted in the
formulation of the numerical model are tested against previous similar work, laboratory

experiments, and a field case study.

Five sets of tests have been performed using the k-€ turbulence model, for
the investigation of the melting of an ice cover under variable meteorological and watcr
temperature conditions. The first set of tests is performed to verify the authenticity of
the simulation under open channel conditions and a comparison with previous
nodelling works done by McGuirk and Rodi 1977, as well as with experimental

investigations done by Carter 1969, and other by Michacl 1975, is carried out.

The sccond set of tests shows the effects of hydrodynamic and thermal
conditions on ice cover melting using a k-e model and accompanied with a constant
viscosity model. The third sct of tests presents a series of results showing the variation
in the melting pattern of an ice cover caused by varying metcorological and
hydrodynamic conditions. The fourth sct of tests is concerned with the reproduction of
three experiments performed by Hewlett, 1976, and other three experiments by Marco,
A.R. Gallardo, 1974. The final set of tests include a simulation of a real life situation

with comparison to collected ficld data.



6.1 Model Verification

Ice Free Conditions

The accurate prediction of the hydrodynamic conditions is essential for the
simulation of ice cover melting, since the hydrothermal characteristics of the flow
regime is governed by it. Therefore, in this set of tests, the performance of the model in
evaluating the hydrodynamic and hydrothermal characteristics of open channel flow

under various inflow conditions is investigated.

The configuration of a side discharge over the full water depth was used.
Figure 6.1.1 shows the channel configuraiion used for this set of computation tests.
The channel has a flat bed with a Manning roughness coefficient of 0.03, and a water
depth of 5.0 meters. The side-discharge is imposed in the near bank. A side-discharge
to channel width ratio is b/B ot 0.10. The flow field is fitted with a rectangular uniform
grid of 120 X 20 cells. The cell size is taken as 2.5 m by 2.5 m. The time step is set
according to the CFL stability criterion and taken as 0.05 seconds.When the ice cover
is imposed, the initial ice thickness was set to 0.1 meters with a Manning roughness of

0.02 at the underside of the ice cover.

Verification of Hydrodynamic and Hydrothermal Computations

The side discharge being at right angles to the mean channel flow direction, is
deflected by the channel cross flow, thus forcing the main flow to bend towards the far
bank. A recirculation region with a low pressure and a decreased surface elevation

develops just downstream of the jet. The parameters that influence the flow regime are:
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the discharge to channel width ratio (b/B); discharge to main channel velocity ratio (R):
and the channel bottom roughness. Buoyancy effccts are considered negligible and only

the longitudinal and transversal variations arc considered.

Hydrodynamic computations were performed for different side-discharge to
main channel flow velocity, in order to investigate the behaviour of the flow pattern, jet
trajectories of the warm water discharge, dilution of the warm water along the jet

trajectory, and reattachment length.

Fig. 6.1.2 shows the effect of the side-discharge on the main flow of the
channel, where three regions can be identificd. In the region upstream of the outfall, the
water surface level rises, due to the blockage effect of the side-discharge inflow. In the
downstream region, the disturbance of the flow field by the side cffluent can still be
felt, owing to the prevailing low pressure in the recirculation region below the outfall,
where the maximum change in surface clevation occurs. This low pressure in the
recirculation region provokes the bending and reattachment of the side-discharge. The
performance of the prescnt model compares favourably with previous works done

involving the use of thc k-¢ model.

The computed jet trajectories of warm water discharges shown in Fig.
6.1.3, 6.1.4, and 6.1.5, arc compared with predictions obtained by McGuirk and Rodi
(1978) for three velocity ratios R (= Vg /Up)of 2, 5 and 10 respectively, where Vg is
the velocity of the side-discharge and U, is thc main channel flow velocity. A jet
trajectory is dcfined as the locus of maximum jet temperature represented by the path it
follows downstream and, identificd by its location from the near bank. The calculated

jet trajectory agree with that obtained by McGuirk and Rodi for all three velocity ratios,
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as shown in figures 6.1.3 to 6.1.5. The present model calculations are slightly
overpredicted for R=2 and R=5, and underpredicted for R=10, however, in good
agreement with the experimental data, for all velocity ratios. The change in magnetude
of the jet trajectories with respect to the velocity ratio decreases, while the change in the
computed jet trajectory with respect to R for the values obtained by McGuirk and Rodi

remain constant.

When results from both, present and McGuirks model, are compared to
experimental data performed by Carter 1969, the present results show better agreement
for velocity ratio equal to 2 and 5, as shown in fig.6.1.3 and 6.1.4 respectively.
McGuirks prediction at the jet trajectorics are underestimated for R=2 and 5. However,
at a high velocity ratio (R=10), the present model underestimate the jet trajectory, while
McGuirks model overestimate the jet trajectory. The reason can be attributed to the
possible effect of the far bank wall which might not be far enough.The discrepancy in
the results can be related to the fact that Carter has used low densimetric Froude
number (defined as Vg /[ gh (p; - Pg )/ pr }1/2), thus resulting in some buoyancy
cffects in the experiments which the present and McGuirk and Rodis model cannot
account for. Conscquently, stratification might render temperature measurements which
may not be truly represcntative of the depth-averaged temperature predicted by the

model. (McGuirk and Rodi 1978)

In McGuirk and Rodi 1978, the increased jet trajectory penetration was
attributed to the effects of buoyancy. The latter tends to make the warm water surface
layer spread further away from the outfall due to buoyancy-induced pressure gradients
at which would be the strongest at low froude numbers. Turbulence production is thus

expected to incrcasc mixing and loss of momentum would result. Figs. 6.1.3 and 6.1.4
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show slightly overestimated jet trajectorics, while Fig. 6.1.5 reveals the effect of the
increased turbulence caused by buoyancy on the estimation of the present jet trajectory.
Keeping in mind the previous discussions, comparisons between the predicted and
measured data are of acceptable agrecment. However, the model correctly predicted the
increase in jet penetration with increasing velocity ratio, and the location of the

reattachment of the maximum temperature line to the near bank.

Figs. 6.1.6, and 6.1.7 present the computed isotherms for the velocity ratio
cases R=2, and 10 respectively, compared to the experimental findings of Carter
(1969), and McGuirk and Rodis' numeiical predictions. The general behaviour of the
isotherm pattern is analysed. At low velocity ratio, the warm water is carried far
downstrcam of the channel close to the ncar bank. However, at high velocity ratio, the
warm water is diluted much faster, and lower temperatures are observed downstream.
Therefore, the general behaviour of the isotherms and the extent of thermal dispersion

are predicted correctly in both transversal and longitudinal directions.

The dilution of warm water along the jet trajectory, described as the ratio of
the maximum temperature excess over the river temperature ( Tgy, - T¢ ) and discharge
temperature excess over the river temperature ( Ty - T, ), is compared in Figs. 6.1.8,
6.1.9 and 6.1.10 for vclocity ratios 2, §, and 10 respectively. These figures represent
the dilution of the warm water measured along the jet trajectory. Comparisons with
other k-e work performed by McGuirk and Rodi, is shown in figure 6.1.8 for a low
velocity ratio, R=2. Figs. 6.1.8 and 6.1.9 show that with an increase of velocity ratio
less dilution is predicted in the present model compared to McGuirk and Rodi's
investigations. A maximum diffcrence of 30% is observed. Figs. 6.1.8 t0 6.1.10 show

that an increase in velocity ratio results in a reduction of predicted dilution along the
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centre-line trajectory. Present computations indicate that the rate of dilution decreases
with the velocity ratio, contrary to the findings of McGuirk and Rodi 1978, where their
predictions indicate an incrcase in the rate of dilution with an increase of velocity ratio at

least in the far downstream region.

Although previous work indicate little influence of velocity ratio on the
dilution, the present study shows otherwise. An increase in velocity ratio results in an
incrcase in turbulent kinetic encrgy thus increasing the turbulent production and
consequently the mixing. Therefore, if smaller temperature gradients are present, less
dilution will result. The influence of the velocity ratio on dilution varies approximately
27% between R=2 and R=5 and 8% between R=5 and R=10. Consequently, as the

velocity ratio increasces, the change in the dilution decreases.

The reattachment length calculated by the present model compares well with
McGuirk and Rodis' 1978 predictions as shown in figure 6.1.11. The calculated values
are slightly higher than the values obtained by McGuirk and Rodi, such that a 5%
diffcrence exists at a low velocity ratio R=2. The difference increases gradually to 26%
with an increase in the velocity ratio to R=10. Fig. 6.1.11 also shows the results
obtained by Mickail ct al 1975. Both, present, and McGuirks and Rodis' calculations
undcrestimate the eddy length, with the present calculations showing better agreement

with the experimental results.

Comparison of Computations With Another Model

The effects of the hydrodynamic and hydrothermal conditions, computed by

the numerical model used in this work, on the melting characteristics of an ice cover,
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are evaluated by comparing the model with another constant viscosity model. An
analysis of centre-line trajectories obtained from the constant viscosity model indicate
45% less jet penetration into the channel , as shown in Figs. 6.1.12, 6.1.13, and
6.1.14. The largest difference between the two models in the penetration of the jet
trajectory occurs at the level of the side discharge and is reduced along the downstream
direction until a distance x/R = 16, where both model predictions agree to lcss than onc
percent difference. A further jet penetration into the channel, as given by the k-¢

turbulence model implies a larger ice frec opening in the transversal direction.

Isotherm patterns for velocity ratio R=2, is shown in figs. 6.1.15, and
6.1.16 for the eddy viscosity and constant viscosity models, respectively. Two regions
are identified where the isotherms pattern is different. In the near ficld region, higher
temperatures are injected in the transversal direction, and in the far ficld region, more
mixing is computed, by the k-e model. Also, More dispersion is predicted by the
present k- model, in thec downstream direction. This increase in dispersion and in the
heat entrainment causcs an increasc in the near ficld open water width and in the

transversal ice frec opening in the downstream direction.

The dilution along the centre-line trajectory is compared in Figs. 6.1.17,
6.1.18 and 6.1.19 with the constant viscosity model, for velocity ratio R=2,5 and 10
respectively. Less dilution is predicted by the constant viscosity model. Quarter way
downstream of the outfall, the dilution reaches a constant value which is attained for the
remaining part of the channel. On the other hand, the dilution calculated by the k-
model is larger by about 53% for R=2 and 27% for R=5. Thercfore, more melting is
expected to occur with the k- modcel as compared to a constant viscosity model. The

difference in the computced dilution along the centre-line trajectory between the two
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modecls is significantly influenced by the velocity ratio R, such that the difference

dccreases with increasing R.

The reattachment length is compared with the results obtained from the
constant viscosity model in fig. 6.1.20. The results are obtained for three velocity ratio
cascs with a constant outfall to main cha acl width ratio b/B=0.1. Fig. 6.1.20 shows
that the constant viscosity model predicts smaller eddy sizes by about 43%, and at low
velocity ratios there is practically no recirculation predicted in the downstream side of
the outfall. This underprediction of the recirculation length by the constant viscosity
model, decreases the temperature mixing extent in the transversal direction, thereby

reducing the extent of the ice cover melting,.

Simulation tests using different values for the turbulent viscosity coefficient
in the hydrodynamic cquations found in the constant viscosity model, were performed.
Doubling the value of the turbulent viscosity coefficient, under same conditions, caused
only a slight effect on the melting of tie icc cover(Plouffe 1987). However, the
turbulent viscosity calculated from the k-€ model was 100 to 3,000,000 times larger
than thc laminar viscosity v, depending on the velocity ratio and the position in the
flow domain. This certainly accentuates the melting of an ice cover. McGuirk and Rodi
1977, carried out a few runs in which a uniform v, over the whole flow domain was
assumed to be 200 times the laminar kinematic viscosity v. The constant value of the
turbulent viscosity v, gave very poor agreement with the experimental hydrodynamic
parametcrs, for low moment flux ratios, R2 b/B. This indicated that constant turbulent
viscosily is 0o crude an assumption to use in a general model for the near field of side

discharges.
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Investigation of Ice Cover Melting Under Turbulent Flow Conditions

The model has also been tested for a number of different hydrodynamic
situations under ice covered conditions, to illustrate the behaviour of the melting pattern
of an ice cover and the width of the near field ice free zone. Various thermal effluent
characteristics, combinations of side-discharge temperatures, side-discharge to main
flow velocity ratios R, and air temperatures were employed in these tests. Flow
characteristics and ice cover melting pattern were simulated and compared for the cases
of constant viscocity and k-€ eddy-viscosity models. For ice covered flow, the k-€
model parameters were adopted after an open channel heat dispersion model. In all
cases, similar initial conditions are assumed and the main channel flow rate was

maintained constant throughout the calculations.

Results obtained from a series of tests performed on a rectangular channel,
and adopted after McGuirk and Rodi 1978 are presented. These results illustrate the
behaviour of the melting pattern of an ice cover under combinations of different
meteorological conditions. These combinatiors were selected by holding two variables
constant while varying the third. An example test run could be holding a velocity ratio
R=2, an effluent temperature of 5°C and varying the air temperature from -200°C, to
-5°C. In this series of tests, the results were obtained by using the hydrodynamic
equations to establish the steady-state flow field. The k-€ model used to calculate the

turbulent shear stresses was then introduced.

Results of hydrodynamic computations indicated an increase in the flow
depth of the channel, in regions of ice melting. This increase in flow depth was roughly

equal to 92% of the decrease in ice cover thickness. A slight reduction in the ice cover
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thickness occurs upstream of the point of discharge. At the far bank, the ice cover
incrcases in thickness of about 10% of its original value. An increasing effluent
temperaturc or air temperature results in a wider opening in the ice cover. The
temperature gradient in the longitudinal direction is less than the temperature gradient in
the transverse direction, thereby implying a smaller rate of ice cover melting in the
longitudinal direction. Such a temperature distribution can describe the behaviour of the
melting of an ice cover due to a thermal discharge, such that the ice cover will melt first
in the transversal direction therefore creating a leading edge, then progress in the

downstream direction.

The incorporation of a k-¢ turbulence model, leads to a change in the
temperature distribution computed over the flow domain. Due to the turbulent diffusion
and the propagation of the side-discharge in the main channel, the water temperature

increased over a short distance upstream of the side-discharge along the near-wall.

The increasc in velocity ratio caused an increase in the length of the
transversal ice free reach as shown in Fig. 6.1.21. A non-linear relationship was found
to exist between the width of the ice free reach and the velocity ratio (R). Fig. 6.1.22
presents the ice free width at steady state conditions for R=2,5,10 at air temperature of
-200C. For an increase in velocity ratio, the ice edge location is expected to move
towards the far bank at a certain rate, however this rate reduces due to the reduced

turbulent heat concentrations dispersion.

Figure 6.1.23 shows a relationship between the air temperature in degrees
celsius and the icc free width. An effluent temperature of -20°C and an air temperature

of -5°C provoke approximately 46 meters in width of ice free waters in the vicinity of

.
+
.'t N
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the thermal effluent and 300 m downstream of the side-discharge.

Turbulent flow hydrodynamics and heat budget conditions are evaluated
using a k-¢ turbulencc model. The incorporation of a complete heat budget provided the
capability of studying the effect of different hydrothermal and meteorological conditions
on the melting pattern of an ice cover. An increasc in air temperaturc or in
side-discharge temperature, results in a non-linear increase in open water width as a

function of the velocity ratio R.
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6.2 Modelling of Ice Cover Melting

Modelling ice cover melting under turbulent flow conditions is the next
step in the verification process of the performance of the numerical model. In the
previous section the k-e model was verified for its capability in evaluating the turbulent
flow characteristics, under different inflow conditions. It is appropriate at this point to
test the model against laboratory experiments for its capability in predicting the melting

of an ice cover due to an added heat source.

Comparison With Hewletts' Experimenis

Experimental and Numerical Set-up

Hewlett 1976, performed a series of experiments where an ice cover was
artificially grown on the water surface in a laboratory flume located in a temperature
controlled room. After the ice cover attained & desired and acceptable uniform thickness,
the water temperature was increased slightly above 0°C to induce melting. Then the ice
cover thicknesses were measured at various points along the length of the cover and at
different times. The objective of this series of numerical tests is to examine the model

predictions against expeririental investigations.

Fig. 6.2.1 shows the geometrical configuration of the channcl and ice
cover considered in Hewlett's experiments. The channel consists of an upstrcam open
water portion, ice covered middle portion and another open water downstream portion.
The upstream water portion extends over 210 cm in length, the middie portion includes
820 cm of ice cover, and the downstrcam section extends 170 cm ice frece. Water flow

of 1t was considered. The channel is rectangular in shape having a width of 60 cm. The
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test flume shown in Fig. 6.2.1 has a 40-foot working section, and a variable slope. The
flow in the channel changes from free surface to ice covered edge and again to open water

conditions.

The inlet temperature is maintained at a value higher than 0°C. The air
temperature is set 0°C, a value which ensures that the net heat flux to the ice cover is
positive {upward). The ice cover thickness was not fully uniform because of flume wall
irregularities and the instability of the freezing process. The discharge per unit width was
kept roughly at a constant value of 2.23 mZ/min and the upstream water temperature at

1oC.

Out of seven experiments performed by Hewlett, only three experiments 1,
6, and 7 were successful. The other experiments were dropped because of equipment or
experiment malfunction.These experiments are all performed under similar
hydrodynamic, hydrothermal, and laboratory conditions. The only difference that exists
between tiem is the initial planar thicknesses of the ice cover which vary from from one
experiment to the other. This variation in the ice cover thicknesses is attributed to the

inaccuracy of the method used for growing the ice cover.

In the experimental set-up, the flow rate, water temperature, and air
temperature were first set to the desired level. Cool water was pumped into the flume at a
rate of 0.2 cfs, until a depth of 25 cm. The room temperature then was lowered to 5CF.
The ice cover was allowed to form to an average thickness of S5cm. The ice cover then
was cut at the inlet and outlet perpendicular to the flume, leaving an 820 cm long ice
cover. The room temperature was then raised to 0 ©C, and ice cover profiles and

thicknesses wcre measured afterwards at different time levels.



AEF

81

A duplication of the experimental procedure was made in setting up the
numerical model. The geometry of the channel was fitted into a uniform rectangular
grid system of 0.2m by 0.03 m cell size, and initial boundary conditions were
imposed~initial values of the parameters are not of major influence on the steady-state
solution, however care must be taken for the selection of these values to ensure the
proper convergence of the solution. Such care could be the proper choice of the
turbulent kinetic energy k and the rate of its dissipation €. The velocity field was set to
a constant value of 0.186 m sec'l and the temperaturc distribution over the entire

domain was initialised to 1°C.

The model was run until steady-state was achieved for the hydrodynamic
and temperature equations. The k-¢ turbulence model was then introduced and run
again until steady-state is reached. At this stage, the ice cover was imposed with exact
initial ice thicknesses as specified by the experimental studies. L1 order to account to
this sudden imposition of the ice cover, 92% of the average ice cover thickness was
added to the water depth in the cpen water portions. The program was then run

withcut ice melting until steady-state conditions were re-established again.

Ice cover profiles - Expts. 1, 6, & 7

Figs. 6.2.2 and 6.2.3 present a comparison between measured and
implemented temperature and discharge profiles as a function of time, respectively.
The atmospheric conditions required by the model for the calculation of ice cover
melting, such as, the cloud cover, air temperature, wind velocity and barometric
pressure have to be specified. The air temperature is clearly defined at 0°C; the wind

velocity was set to a value slightly above zero to account for the circulation produced
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by the cooling system; the cioud cover was set to nine tenths; and the barometric
pressure to 0.7547m of Hg. Table 6.2.1 summarises the experimental and the
corresponding numerical model parameters. Tables 6.2.2, and 6.2.3 show the
distribution of the probes over the length of the span and the comresponding ice cover

thicknesses measured in the laboratory and used in the numerical model respectively.

A list of the Figures representing comparisons between measured and
predicted ice cover thicknesses over the entire length of the flume together with their
corresponding times of measurement, for experiments 1, 6, and 7 is given in table
6.2.4. The time in all the Figs., represent the elapsed time after the beginning of the

melting process.

Figures 6.2.4, 6.2.5, and 6.2.6 present a comparison between computed
and measured ice cover thickness longitudinal profiles, for experiment 1, 6, and 7
respectively, and at 100, 200, and 300 minutes from the start of melting. The
difference between measured and computed ice cover melting pattern is investigated in
two regions in the ice field. The first region is loc?tcd near the ice cover leading edge,
while the second region extends over the rest of the downstream portion of the ice
cover. In the leading edge region, experiment 1 reveals that the predicted longitudinal
ice cover thickness profile, after 100 min of tl:e commencement of the melting process,
comparcs very favourably to the measured profile. However, beyond 100 min, the
difference between predicted and mcasured ice cover thicknesses increase, as shown
in Fig. 6.2.4 at 200 min and 300 min, where the predicted ice cover thickness was

less thar: the measured one.
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On the other hand, the difference between the measured and computed ice
cover thickness profiles for experiment 6 is quite small, as shown in Fig. 6.2.5. Also,
the meiting pattern of the ice cover is simulated accurately at the leading edge as well as
at the downstream region of the ice cover. Experiment 7, results in a relatively larger
difference between measured and computed ice cover thickness profiles, as shown in
Fig. 6.2.6. The extent of ice cover melting is underpredicted by the model over the
entire ice cover domain. Also, the behaviour in the melting characteristics of the ice
cover betwecn measured and computed, is different from that of experiment 1. In
experiment 1, the model underpredicts the melting of the ice cover at the leading edge
and slightly overpredicts it downstream of the leading edge, while in experiment 7, the

melting is underpredicted over the entire domain of the ice cover.

This change of behaviour between the measured and computed ice cover
thicknesses from one experiment to the other can be attributed to the difficulty in
duplicating laboratory experiments. The numerical model on the other hand, requires

little if no changes for performing repeatcdly similar experiments.

Fig. 6.2.2 depicts the inflow temperature fluctuations as recorded over
the time of experiment 1. In this Fig., the temperature input used in the numcrical
model approximate very closcly the actual water temperature recorded and therefore the
computed ice thickness profile shows very close reproduction of the experimental
findings. However, to allow for further verification of the model, the experimental
inlet temperature was approximated by an average valuc of 1°C. This renders the inlet
temperature imposed in the model to be about 0.1°C higher than the average measured
water temperature, which may explain the slight increase in melting predicted by the

computational model.



In the region of the leading edge, the melting process described by the
laboratory experiments is quite different from the one shown by the computations of
the k-€ model. The difference between measured and piedicted ice cover thicknesses as
a function of time, for the upstream end of the leading edge region, and the
downstream region, are shown in Fig. 6.2.7. The rate of melting of the ice cover in the
downstream region is found to be linear, while for the leading edge region, this rate
varies non-linearly in time. From a global point of view the difference between
measured and computed ice cover melting is at a maximum at the leading edge. From
that point on, this difference reduces gradually along the downstream end of the ice
cover, up to a certain point 'C' where the measured and computed ice cover
thicknesses coincide. Beyond that point the rate of change between the measured and
predicted ice cover thickness slightly increases until a constant value is maintained, but

with predicted ice cover thicknesses lower than the measured ones.

Temporal variations - Expt. 1

Figs. 6.2.8 t0 6.2.10, present the ice cover thicknesses for experiment 1,
at approximately 60 cm, 190 cm, 400 cm, and 800 cm from the leading edge as a
function of time. It is shown in Fig. 6.2.8 that at about 75 min after the commencement
of the melting process, the predicted ice cover thicknesses matches perfectly the
measured values. Beyond that time, the computational procedure underestimate the
measured values with, however a maximum percentage difference of less than 5%. The
measured and predicted ice cover melting rate at 190 cm and 400 cm downstream from
the leading edge, are approximately equal, with a maximum percentage difference of
less than 3%. At about 800 cm downstream from the leading edge, Fig. 6.2.10 shows
that more melting is reported by the numerical predictions than in the experimental

measurements.
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Additional simulations have been performed for experimient 1, to study
the effect of the bottom slope on the extent of melting of the ice cover subjected to the
same initial conditions. The results arc depicted in Figs. 6.2.11 t0 6.2.13. Fig. 6.2.11
presents measured and predicted longitudinal profiles of the ice cover thickness at 100
min, 200 min, and 300 min respectively, for the cases of a horizontal bed and a slope
of 0.601. The obtained results indicate that more melting had been predicted in the
sloped bed case than that of both the experiment and the horizontal bed case.

No appreciable difference between the~two numerical and experimental
cases, in the ice cover thickness profiles, is observed at the leading edge region
between the measured and computed runs, at 100 min. However, a slight difference in
ice  .er melting pattern in the leading region begins to take place at later stage in time,
o . .own in Figs. 6.2.11. At 200 minutes, the measured ice thicknesses were found
to be less than the predicted values for the sloped bed case at approximately 98 cm
from the leading edge and for the horizontal bed case at about 120 cm from the leading
edge. After these two points, predicted values of the ice thicknesses for both cases are
less, of about 4% for the sloped bed case than the horizontal case at 160 cm from the

leading edge and 1.5% at 800 cm.

At 300 minutes, Fig. 6.2.11 rcveals an increasing trend in the ratc of
change of the ice cover thickness profile in the leading edge region. There is an
approximately 165% incrcase in the difference of the rate of change of ice cover
thickness between the sloped channcl case predictions and the cxperimental
measurements, near the lcading edge region. However, ncar the cnd of the ice cc .cr,
the difference in the rate of change of the ice cover thickness is reduced by about 20%.

Also, comparing the sloped channcl and the horizontal channel predictions, the
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difference in the rate of change of ice cover thickness in the leading edge region
reaches a maximum reduction of 8.3%, and converges to the same values beyond 675

cm downstream from the leading edge.

Fig. 6.2.12 presents the measured and computed ice cover thickness
profiles as a function of time, for both horizontal and sioped bed runs, of experiment
1. These figures reinforce the results previously discussed. Further examination of
Fig. 6.2.12, shows that thc simulation of a channel with a sloped bottom compared to
a horizontal channel, produces better results in the leading edge region since more
melting is predicted. On the other hand, beyond the leading edge region, the model
overestimates the ice cover thicknesses for a channel with a sloped compared to a

horizontal bed channel.

The increasc in melting of the ice cover due to the sloping of the bottom
of the channel can be attributed to the effect of the bottom slope on the velocity field as
compared to a horizontal bottom. Longitudinal velocity profiles for both sloped and
horizontal channcls are presented in Fig. 6.2.13. In the sloped channel bottom case,
flow velocity increases in the upstrcam uncovered region and undemeath the ice cover.
An increase of 5.7% of velocity is computed in the upstream open water region, 10%
near the leading edge and 0.5 % at (he toe of the ice cover. The velocity in the
downstream uncovered scction was practically of the same magnetude for both cases.
This change in the longitudinal velocity distribution reduces the water level in the
upstrcam open water and ice covered regwn in a much of a similar order. The
hydrodynamic changes induced by the sloping of the channel bottom reduces the
temperaturc dispersion in the longitudinal direction, thercby increasing the rate of

meclting of the ice cover.
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Temporal variation - Expt. 6 & 7

Similar behaviour of ice cover melting is experienced in the simulation of
experiment 7, with small exception at the trailing cdge of the ice cover. Figs. 6.2.14
and 6.2.15, present comparisons between measured and predicted ice cover thickness
variation as a function of time, for experiment 7, at 60 cm, and 800 cm from the
leading edge. These Figs. show a acceptable difference between computed and
measured ice cover thicknesses with the predicted values almost always larger than the
measured one. The behaviour of the computed ice cover meiting rate in experiment 7
is almost always underestimated as opposed to the computed ice cover melting rate in
experiment 1. Fig. 6.2.16 shows this differcnce between the two experiments.

Simulation of expcriment 6, reconfirm the behaviour of the ice cover
melting computations, and prove the accuracy of the numerical model. Figs. 6.2.17
and 6.2.18 show the temporal variation of the ice cover thickness at 60 cm, and 800
cm respectively. The predicted ice cover thicknesses compare to the measured ice
covered thicknesscs, with an excclient agreement even in the leading edge region. This
close prediction of the rate of change of the ice cover thickness in the leading edge
region may be attributed to the maintain of inflow tempcraturc at a constant valuc
during the experimental investigations. In Figs. 6.2.17 and 6.2.18, the rate of change
of the measured ice cover thickness which is represented by the slope of the line, is
practically the same as the slope of the computed results. This indicates that the rate of
ice cover melting in experiment 6 was Icss than that in experiment 1. This reduction in
turn may be due to reduced temperature concentrations in the leading edge region for

experiment 6.
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Discussion to the results - Expis. 1, 6,& 7

In spite of the complex, unsteady hydrodynamic and thermal conditions
in the experimental setting near the leading edge, as well as the oscillatory behaviour of
the rate of ice cover melting in this region, it was found and confirmed numerically that
after a certain distance from the leading edge, the ice cover melting as a function of
time can be approximated by straight lines. The measured and predicted ice cover
thicknesses are compared as shown in Figs. 6.2.19 and 6.2.20 for experiment 1, in

Fig. 6.2.21 for experiment 7, and in Figs. 6.2.20 to 6.2.22 for experiment 6.

The curves which can be approximated by straight lines, reflect the
diffcrence between measured and predicted ice cover thicknesses. Scattered data
represent non-linear hehaviour, and lines with a steep slope indicate larger error
between measured and predicted data, such as the case in the leading edge region. A
positive slopc indicates the divergence of measured and predicted ice cover
thicknesses, while a negative slope represent the convergence of the measured and
predicted ice cover thicknesses. A curve below the zero level indicates that the
predicted rate of melting is larger than the measured rate of melting. Fig. 6.2.19,
prescnt the curves of the first six probes in experiment. The curves starting with probe
1 are characteriscd by a stcep positive slope and a large scatter of data. The slope is
then reduced in each consequent probe for both slope and scatter until the curve is

nearly horizontal at probe 6.

In the downstream region, the predicted rate of melting is larger than the
mcasurcd rate of melting and is shown in Fig. 6.2.20. The slope of the illustrated
curves is negative and extends below the zero level. In experiment 7, the same thing

has occurrcd, except that at no location on the ice cover had the predicted rate of
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melting exceed the measured rate of mclting as shown in Fig. 6.2.21. However, the
scatter of the data and the slope of the lines, show similar behaviour for experiment 1.
In experiment 6, a higher rate of melting was predicted as represented in Fig. 6.2.22.
In the leading edge region, the lines are nearly horizontal indicating accurate
predictions. however, along the downstream direction, the difference in the ratc of

melting increases in time as indicated by the slope of the lines.

From an overall point of view, the total amount of melting of the ice
cover is predicted with a good accuracy. The average melting of the ice cover is
represented in Figs. 6.2.23 to 6.2.25, for experiments 1, 6, and 7 respectively. The
predicted average ice cover thicknesses for experiments 1 and 6 are in very good
agreement with the measured ice cover thickness. However, for experiment 7, the
computed average icc cover thickness is greater than the measured one, duc to the

underprediction of the ice cover thicknesscs throughout the ice cover.

The predicted melting of the ice cover edge approximate sufficicntly well
the measured values for the first 150 min of computations. Thereafter, the numerical
prediction for the edge melting were undcrestimated compared to actual observations.
In fact, the theory of heat fransfer from water to icc applicd does not take into effect the
turbulent behaviour of water acceleration at the ice cover edge. A study was performed
by Weng, Y., Nov. 1989, to test three different methods of computing the heat
transfer at the water-ice interface. The heat transfer coefficient calculations used in
determining thc melting of the ice cover are based on a constant temperature at infinity,
variable temperature at infinity, laminar boundary layer, and turbulent flow. The effect
of a variable temperaturc assumption on the results were small and therefore

neglected.
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The constant temperature assumption yields a percentage difference with
cxperimental resuits of less than 0.5% at the downstream region and up to a point 'C'
from the leading edge, and 52% at the leading edge. In considering an overall
performance, the calculation of the heat transfer coefficient in a turbulent flow
assumption produced a maximum percentage difference of less than 4% in the
downstream region and 12% at the leading edge. Also in Marsh and Prowse 1986, a
comparison of four different techniques ( Dittus-Boelter equation, Colburn analogy,
and Petukhov-Popov equation ) for calculating the heat transfer coefficient at the
water-ice interface were investigated. Their finding were that the heat transfer
coefficients calculated from the Colburn analogy method were in closest agreement to
those using a temyperature decay approach. The Colburn analogy produced the best

results.
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Table 6.2.1: Comparisons Between Experimental and Numerical Set-up.

DESCRIPTION EXPERIMENTAL NUMERICAL
Length of Channel 12 meters 12 meters
Width of Channel 61 cm 60 cm
Ice-Cover Stretch 820 cm 820 cm
Upstream Uncovered Portion 210cm 210 cm
Downstream Uncovered Portion 170 cm 170 cm

Average Discharge per Unit Width
Average Upstream Temperature
Average Downstream Temperature
Average Ice Thickness

Water Depth, No Ice Cover

Water Depth , With Ice Cover
Cloud Cover

Air Temperature

Wind Velccity

2.23 sq. m. per min.
0.9804 Deg. Celcius
0.9346 Deg. Celcius
Scm

20cm

25cm

Inside the Lab

0 Deg. Celcius
Inside Lab

2.23 sq. m. per min.
1.0 Deg. Celcius
0.98 Deg. Celcius
Scm

20 cm

24.6cm

Nine Tenths

0 Deg. Celcius

"

5.56 nixper sec.

( Assumed Wind
Due to Cooling
System )
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Table 6.2.4: List of figures used for comparison with Hewletts' experiments

Figure Experiment # Description

From To

6.2.4 6.2.6 1 Ice Cover Thickness Profiles

6.2.8  6.2.10 1 Ice Cover Melting Variation in Time
60, 190, 400, and 800 cm from L.E.

6.2.11 6.2.11 1 Ice Cover Profile Comparisons Between
Horizontal and Sloped Channel

6.2.12 6.2.12 1 Ice Cover Thickness Variation in Time,
Slope V.S. no Slope at 60, and 800 cm
from L.E.

6.2.14 6.2.15 7 Ice Cover Thickness Variation in Time
for Experiment 7, at 60, and 800 cm
from the L.E.

6.2.17 6.2.18 6 Ice Cover Thickness Variation in Time
for Experiment 6 at 60, and 800 cm
from the L.E.

6.2.23 6.2.25 1,6,7 Average Ice Cover Thickness as a
Function of Time.
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Figure 6.2.4: Longitudinal ice cover thickness profiles for experiment 1
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Figure 6.2.6: Longitudinal ice cover thickness profiles for experiment 7
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Figure 6.2.24: Average ice cover thickness for experiment 6
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Comparison With Gallardos' Experiments

The experiments performed by Gallardo, 1974, were conducted in a flume
40 feet in length, 2 feet in width, and 1 foot in depth. Similar to the set-up used by
Hewlett 1976, the channel setting included an uncovered portion in the inlet region, an ice
covered portion in the middle of the channel, and another uncovered portion in the outlet
region, such that the water flow undergoes a 2 feet free surface conditions, 25 feet ice
covered conditions and a 1.5 foot free surface conditions respectively. The thickness of
the ice was measured at the centre of 10 sections located along the flume as shown in

figure 6.2.26.

The aim of Gallardo experiments, was to study the melting of an ice cover
in relation to warm water and air temperature. The hydrodynamic and air temperature
conditions for the experiments are shown in table 6.2.5. The water discharge was kept at
a constant value of 0.8 cfs for all experiments, the air temperature was varied from
0.55°C to -9.44°C, and the average water temperature was varied from 0.34 °C to

0.41°C.

The experimental set-up was numerically reproduced by fitting the channel
geometry and flow domain into a uniform rectangular grid system composed of 62 cells
in the longitudinal direction and 12 cells in the transversal direction. The size of the cell
was taken to be Ax=0.145 m and Ay=0.06 m. Measured air and water temperatures were
accuratcly imposed. A wind velocity of 0.0 ms-! was used for the numerical
computations, since the three laboratory experiments that Gallardo carried out were
performed without wind action. The cloud cover used was taken equal to nine tenth, ...

consideration for poor indoor lighting.
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During the experimental investigation, an effort was made to achicve
uniform distribution of temperature over the cross section, and in time. Uniform vertical
temperature conditions were observed with a slight non-uniform temperature distribution
over the whole cross section. This was due to the fact that the heat input was not well
distributed across the width of the flume. A two-dimensional model based on the
assumption of complete vertical mixing can therefore be justificd for the usc of
hydrodynamic and hydrothermal computations under ice covered conditions. A constant
temperature is thus imposed at the flumc inlet. The experiments were fully reproduced for

the flow, ice cover, and boundary conditions, and geometrical configuration.

The two-dimensional model was used to reproduce the laboratory
experiments performed by Gallardo to investigate the ice cover melting rate and extent as
a function of the water and air temperature. Figs. 6.2.27, 6.2.28, and 6.2.29 prescnt the
computed and measured ice cover thicknesses as a function of time at a typical probe, for
experiments 2, 4, and 5 respectively. Computed ice cover melting is found to be
repeatedly less than the measured values in all three experiments, and the difference
between the measured and computed ice cover thickness is shown to be a function of

time, water temperature and air temperature.

Fig. 6.2.27 (Tw=0.34°C, Ta=-1.11°C) show a maximum difference
between computed and measured ice cover thickness of approximately 7%, whilc in fig.
6.2.29 (Tw=0.34°C, Ta=-9.44°C), a maximum diffcrence of less than 2% is shown.
However, the greatest difference is shown in figure 6.2.28 where the air temperaturc was
-4.44°C and the water temperature was increased from 0.34°C to 0.41°C, where the

maximum difference between computed and measured ice cover thicknesses is 20%.
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Decreasing the air temperature from -1.11°C (fig.6.2.27) to -9.440C

(fig.6.2.29), but keeping the water temperature unchanged at 0.34°C, result in a more
accurate prediction of the ice cover melting. The maximum difference between computed
and measured ice cover thicknesses is reduced by approximately 50% from 4.5mm at
-1.110C to 2.2mm at -9.440C, after 25000s and 32000s from the commencement of the
ice cover melting. However, when water temperature is increased by 20% and the air
temperature set at -4.440C, the maximum difference between the measured and
computed ice cover meiting at approximately 26,500s of computational time, increases

by 20% or in the order of 10mm.

This behaviour is also shown in Figs. 6.2.30, 6.2.31, and 6.2.32 which
present the measured and computed longitudinal ice cover thickness profiles, at different
time steps, for experiments 2, 4 and 5 respectively. The difference between measured
and computed ice cover thickness profiles also shows to be increasing as a function of
time, and water temperature. Although the difference might increase as a function of time
and water temperature, the melting pattern of the computed ice cover thickness profiles

are shown to be consistent for the experimental cases.

The results from experiments 2 and 5 show that the magnitude of the heat
transfer at the ice-air interface to be significant at low water temperatures and high air
temperatures, thus being the dominant factor in the change in thickness of the ice cover
in time. However, at slightly higher water temperatures, the heat transfer at the water-ice
interface dominates. Excluding the effects of the air temperature, a 17% increase in the
water temperature results in a 3.8mm increase of the maximum difference between the
measured and computed ice cover thicknesses, while on the other hand, a lowering of
the air temperature by 750%, from -1.11°C to -9.44°C with no change in the water

temperature, results in a change in the maximum difference between measured and



computed ice cover thickness of 2.3mm.

Therefore, during winter periods where the water temperature is low and
the air temperature is at the subfreezing level, the dominant factor for the change in ice
cover thickness is the air temperature. The heat gained at the bottom surface of the ice
cover due to the water temperature is small compared to the heat lost to the atmosphere at
the top surface of the ice cover. Therefore, the decrease of the ice cover thickness at the
bottom surface of the ice cover is also small compared to the increase of the ice cover
thickness at the top suriace of the ice cover. Subject to such conditions, the rate of

melting of an ice cover as a function of air temperature can be approximated by a straight

line,

However, under different circumstances whe:e the water temperatures is
above an approximate value of 0.4°C, the heat flux at the top surface of the ice cover
becomes small compared the heat gained at the bottom surface. Therefore, the ice cover
melting occurs predominately at the water-ice interface. At air temperatures above the
freezing point, the melting of the ice cover at the top surface bchaves according to laws

which are beyond the scope of this study.

Due to density effects the freshly melted water at the bottom surface of the
ice cover should tend to remain in contact with the hottom surface, thereby forming a thin
layer of cold water. The computed valuc of heat transfer at the water-ice interface is
underpredicted due to the presence of the thin layer of melted water. which reduces the
dispersion of the water temperature, and increases the temperature gradient at the
interface. This increase in the temperature gradient, consequently increascs the heat
transfer across the interface. The difference between the computed and measured ice

cover thicknesses as a function of time can therefore be attributed to the heat flux rate
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from the water body to the ice cover, which is greater than the value computed using eq.

3.32.

The effect of the water temperature shown to be significant at values above
0.41°C. At water temperatures below that value, the air temperature comes into play to
dominate the change in ice cover ‘hickness as a function of time. On the hand, the
influence of a 17% increase in the water temperature, result in a 3.8mm change in
difference between measured and computed ice cover thicknesses. On the other hand, the:
influence of a 750% decrease in the air temperature, result in a 2.3mm change in
difference between measured and computed ice cover thicknesses. For comparison
purposes, a 10% increasc in water temperature results in a 2.235mm change in the
difference between measured and computed ice cover thicknesses, while a 10% decrease
in the air temperature resuit in 0.031mm change in the difference between measured and

computed ice cover thicknesses.

The computed ice cover thicknesses compare very good with measured ice
cover thicknesses, at low water and air temperatures. At higher values of water
temperatures, the computed ice cover thicknesses compare satisfactorily with the
measured results. This can be shown in figs. 6.2.33, 6.2.34, and 6.2.35 which present
the average ice cover thickness as a function of time. These figures show the overall
behaviour of the icc cover meliing in contrast to the typical behaviour at different
locations on the ice cover, shown in figures 6.2.27 to 6.2.29. From a global point of
view, the difference between the computed and measured average ice cover melting, is
approximately 15% at Tw=0.34°C, Ta=-1.11°C ({ig.6.2.34), 33% at Tw=0.41°C,
Ta=-4.449C (fig.6.2.35), and 7% at Tw=0.349C, Ta=-9.44%C (fig.6.2.36). Therefore,
in gener..  the ice cover melting is accurately computed at low air temperatures, however,

this accuracy is lost when the water temperature is abeve 0.4°C.,
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Table 6.2.5: Water and air temperature conditions for three experiments

OQV% AVERAGE WATER TEMPERATURE | AVERAGE AIR TEMPERATURE
RUN # Qs | (DEGREES CELCIUS) (DEGREES CELCIUS)
2 0.34 111
4 0.41 -4.44
5 0.34 -9.44
SECTION 1 2 3 4 5
< > > < - - > >
| | | |
SIDE 2 O I O 1 O 1 O | @
E __J___L__J___L__-E
| I | | o)
st | O 1 O 1 O O 1 O
] | | |
<« [ICE COVER ] >
(O  PROBES

Figure 6.2.26: Channel Configuration Used by Gallardo
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Figure 6.2.28: Ice Cover Thickness as a Function of Time for Experiment 4
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Figure 6.2.30: Longitudinal Ice Cover Thickness Profile for Experiment 2
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Figure 6.2.33: Average Ice Cover Thickness as a Function of Time for
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6.3 Case Study

From February 13 to 18, 1980, a team under the direction of George Ashton of
U.S.Army Cold Regions Research and Engincering Laboratory, Hanover, N.H.,
U.S.A,, conducted a field investigation on the suppression of an ice cover on the
Mississippi river, due to the discharge of warm water from the Riverside Power Plant
of IOWA, Illinois Gas & Electric Co. near Bettendorf, IOWA. Figure 6.3.1 presents
a plan view of the Mississippi River reach that was investigated, and table 6.3.1
identifies the locations at which the measurements were taken. An overall number of
16 locations where measurements were taken, spanning an approximate 9km
downstream of the power plant. The measurements taken consisted of: velocity;
temperature; and depth soundings together with aerial overflights to determine the

extent of open water.

Presented in table 6.3.2, the Mississippi River is approximately 1,000 meters in
width. Tle flow rate during the period of investigation was approximately 850 m3s-!.
The flow depth along the side where the effluent is discharged varied between 1.22
meters and 2.74 meters and the magnitude of the current along the length of the study
reach varied from 0.14 ms-! t0 0.34 ms-!. The water temperature varied from 7.670C

near the power plant discharge to 0.159C 9.0Km downstream of the power plant.

The river bathymetry was determined from river sounding charts obtained from
the Rock Island Corps of Engineers. Although air temperatures were measured during
the time of the field measurements, a more complete meteorological record of a three
hour observation if available from the Moline, Illinnis airport weather station.  Also,
cloud cover, wind speed, humidity and vapor pressure data were available. As shown
in table 6.3.2, which presents the metcorological conditions for the 14th and 17th of

February, the air temperature decreased from -2.13%C to -18.750C thereby reducing
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the length of the open water reach. Aerial photographs during the river overflights
provided the ice cover edge location. The initial ice cover thickness of 0.25m exiended
upstream of the power plant discharge over the complete width of the river, therefore

reducing the frazil ice deposition in the reach under study to negligible amounts.

The river bathymetry was fitted into a coordinate grid system with a Ax=62.5m
and a Ay=25.0m. A reach of 12 Km was considered, such that the flow enters the
study reach 3.0Km upstream of the power plant and exits approximately 9.0km
downstream of the power plant. A Manning n of 0.030 was used, since the river reach
under study consists of clay material with few rocks and relatively smooth transitions
in the bottom elevation. The inflow water temperature was set to 0.059C, since a
temperature of slightly above 09C was measured upstream of the power plant. A flow
rate of 850m3s-! was imposed at the entrance. The meteorological conditions were
used as indicated in table 6.3.2. A Manning coefficient of 0.020 for the underside of
the ice cover was used. The time step was set to 2.5 sec., which satisfies the CFL
criteria. A 6.27 ms™! effluent velocity, and an effluent temperature of 8.9°C were

obtained from available thermal discharge characteristics power plant records.

The velocity distribution in the Mississippi River in presented in Figs. 6.3.2,
6.3.3, and 6.3.4. Transversal profiles are given at 5 locations along the river, namely
at the entrance, cffluent, 4600m from the entrance, 7720m from the entrance, and at
the exit. The U-component, V-component, and resultant velocity transversal profiles

are given in Figs. 6.3 2, 6.3.3, and 6.3.4 respectively.

The velocity enters at an angle of 40° with the horizontal. Under an 850
m3s-1 flow rate, the velocity profile at the entrance of the river, assumes a typical
laminar velocity profile, since the flow at the entrance of the river is not yet fully

developed. This laminar transversal velocity profile at the entrance of the channel is
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experienced in other modelling test cases. The turbulent velocity is shown by the other
profiles, from the effluent to the outflow region. The maximum entrance resultant
velocity attains a value of 0.30 m s°1. At the effluent region, the U-velocity ccmponent
increases by about 10%, which is due to the effluent discharge velocity, the V-velocity
increases by 50%, since the velocity of the effluent is along the v-direction and the
channel orients more into the v-direction, and the resultant velocity increases by 30%.
At 4600m from the entrance, the channcl orients in the u-direction, thereby reducing
the V-velocity by 70%, and increasing the U-velocity by 10%. Thereafter, the velocity
maintains a constant value of 0.33ms"! for the U-veloci'y, 0.1ms-! for the V-velocity,
and 0.34 ms-1 for the resultant velocity. At the exit of the reach, the velocity attains a |
value of 0.26ms"1, 0.045ms-!, and 0.27ms"! for the U-velocity, V-velocity, and

resultant velocity, respectively.

Fig. 6.3.5 presents the water depth distribution presented in the same format as
Fig.6.3.2. This figure also provides a view on the bathymetry of the reach under
study. The maximum depth occurs about the centre of the channel. The river has well
defined over banks or flood plains. The transversal water depth profiles show that the
river goes through a sharp transition from the banks to approximately 60% of the
maximum depth. Around the centre of the channel, the depth increases again. The
water depth for the first half of the reach takes an average value of 4.0m. The average
depth becomes 5.0m and 7.5m at 7720m from the entrance and at the exit respectively.
Therefore, the flow conditions in the river reach under study undergo shallow wide

cross-section for 7km, then deep narrow cross-section for another Skm.

Fig. 6.3.6 shows the tempcrature distribution, presented in the same format as
Fig.6.3.2. The temperature in the inflow region maintains the imposed river
temperature by the modcl. At the effluent region, the temperature attains its maximum

value of approximateiy 9°C, at the effluent source, and reduces exponentially to the
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river temperature at the far bank. The temperature decreases gradually downstream of
the effluent, and the maximum temperature value always remains attached to the near
bank. Also, due to the meandering characteristics of the river reach, the temperature
mixes more effectively in the transversal direction, such that the temperature at the far
bank increase as well until the diffcrence in the temperature between the far and near

bank becomes in the order of 10%, as shown in Fig. 6.3.6.

Table 6.3.3 present a comparison between computed and measured range in
values of depths, temperature, and mean velocity. The predicted mean depth fall within
the measured range. The difference between the measured and computed maximum
temperature, is in the order of 6%.The difference between the measured and computed
maximum and minimum velocity, is 7% and 5% respectively. Therefore, the computed
range in mean velocity, water depth, and temperature compare very well with

measured value.

Figs. 6.3.7 to 6.3.9 present the computed and measured longitudinal
profiles for temperature, velocity, and depth, respectively. Indicated on the figures, is
the location of thc measured and computed data point in the code form that is defined
in Table 6.3.1. The computed temperature profile compares very well with the
measured profile, as shown in Fig. 6.3.7. However, the model predictions show more
dispersion in the transversal direction. This might be due to the buoyancy effects that
are not included in the model. The density gradient due to high temperature gradients,
imposes additional pressure on the fluid, thereby increasing the transport of
temperature and consequently reducing dispersion. This effect is felt only in the near
ficld region of the thermal effluent, which constitutes a distance of approximately

1.5km. Beyond that point, this effect is not felt.
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Comparisons between measured and computed longitudinal velocity profiles
are presented in Fig.6.3.8. The difference between the measured and computed
velocities along the river reach vary from 50% at BRM-0, to 0% at MLD-4, to 10% at
SLD-8. No special pattern is obvious, however the computed velocity fluctuates about
the measured mean. This variable difference between the measured and computed
velocities along the river length, can be attributed to the numerical discretization of the

river boundaries, which follow a stepwise geometry.

The computed water depths compare excellent with the measured depths as
shown in Fig.6.3.9, where the longitudinal depth profiles are presented. The
difference between compuied and measured water depths is negligible up to SLD-8.
After that point, the difference increases from 0% to 18% at IBRG-11. Actually, the
river narrows down, and increase in depth starting from SLD-8. Therefore, it is
obvious that as long as the river is wide and shallow, the model provides excellent
predictions of water depths, but when the river narrows and increase in depth,
differences between computed and measured water depths begin to show. However,
this is simply an observation, and need to be more investigated before definite

conclusions are taken.

Figure 6.3.10 presents the computed location of maximum temperature of the
thermal flume, and the measured midpoint of the ice free width from the near bank.
The computed values compare very well with the measured data with a maximum
percentage difference of approximately 15%. The maximum temperature location
provides the position of the centre-line /f the open water width since melting will
occur along this line first, and then progress transversally. Therefore, the open water
width and length can be well approximated through the prediction of the maximum
temperature location profile. Based on the latter hypotheses, figure 6.3.10 implies that

the ice free reach will be well predicted.



124

The ice free opening is investigated in the near field as shown in figure 6.3.11,
and far field region as shown in table 6.3.4. The computed open water width
presented in figure 6.3.11 for the near field ice free opening compares well with the
measured values, however the ice edge location is overestimated by approximately
12%. If the latter figure is compared to figure 6.3.10, where the midpoint position of
the ice edge and the location of the maximum temperature are presented, it is evident
that the location of the maximum temperature truly is representative of the midpoint of

the ice edge position.

Table 6.3.4 on the other hand, presents the computed and measured open water
reach extents for both Feb. 14 and 17. The computed ice free reach of 7200m,
underestimates the measured value of 8500m by approximately 15% for the Feb. 14
case, and 28% for the Feb. 17 case. In both cases, the difference between computed
and measured ice free reach is acceptable since the difference is usually in terms of

km's.

The computation of ice free openings under turbulent flow conditions and caused
by the warm water discharge of a power plant compares well with measured data, and
are in the same order of magnetude. The k- model provides reasonable predictions to
the melting of an ice cover due to a thermal effluent and its use for this type of

applications is therefore justifiable.
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Table 6.3.1. Locations where data were measured.

Location Description Distance from Origin (Km)

BB-B midpoint of the Brick Building -0.216
south of the Power Plant.

BRM -0 upstrear end of the BeRM of 0
Alcoa,

DBRM -1 one third Downstream of the 0.088
BeRM.

BH-2 the Block House at the end of the 0.097
berm.

PRN -3 Point where the River Narrows. 1.260

MLD -4 Midpoint between the three 1.889
Loading Docks.

TAT-5 The Tum Above the Texaco 2.572
loading dock.

TLD-6 Texaco Loading Dock. 3.017

PLD-7 Phillips 66 Loading Dock. 4.022

SLD-8 Shell Loading Dock. 4315

UCP-9 Upstream from the Case Plant 4914
along
the edge of the building.

CT-10 at the Case Tower, 5.346

IBRG - 11 At the I-74 BRidGe, (also the route 6.305
6 Memorial Brodge)

INDC - 12 INDECO Corporation, 7.348

ULP - 13 Upstream end of Lindsey Park. 8.453

BPB - 14 opposite the Brick Pill Box at the 8.794
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Table 6.3.2. Meteorological conditions for Mississippi River.

Variable February 14 February 17
Temgérmm -2.13%C -18.75°C
8?33 9.8 0.0
Vzglcciity 4.2ms’1 3.99ms"!
papour 2.1mb 1.05mb
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Table 6.3.3. Range in the hydraulic conditions.

PARAMETERS MEASURED RANGE PREDICTED RANGE
Depth near effluent 1.22m - 2.74m 1.0m-2.5m
Temperature 7.67°C-0.15¢C 7.19°c-0.20°C
Mean velocity 0.14ms -1- 0.34ms ! 0.13ms "~ 0.32ms !
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Figure 6.3.7: Longitudinal temperature profiles
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DATE MEASURED COMPUTED
Feb. 14 8500 7200
Feb. 17 4300 3100
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CHAPTER 7.0
CONCLUSION

The capability of predicting the magnitude and extent of ice cover melting
due to an addition of heated thermal effluents, is important for the efficicnt use of
rivers during the winter season. Therefore, predicting the melting of an ice cover duc
to added heat, under turbulent flow conditions is of interest to the present study. The
study made use of a two-dimensional turbulence model to determine thc turbulent
flow characteristics, and the temperature distribution affecting the melting of the ice

Cover.

The model uses the depth-averaged (wo-dimensional St. Venant equations
to solve for the hydrodynamic conditions, the two-dimensional heat equation to
compute the temperature transport, the k and € equations to evaluate the turbulent
flow components, and ice equations to determine the extent of growth or melting of a

floating ice cover.

The solution to the hydrodynamic equations was obtained through the
application of a Modified version of the MacCormack scheme. The solution to the
temperature, turbulent kinetic energy k, and the rate of dissipation of the turbulent
kinetic energy € equations were obtained by the use of the upwind finite difference

scheme.

The verification of the model capability in predicting hydrodynamic

conditions, was performed by comparing the model computations against other
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modelling and experimental work done for a similar case that is considered in this
study. The model compares 'well with other measured and computed hydrodynamic
results, and in many cases, shows closer results to experimental data than the

predictions of other works.

Once the hydrodynamic computations were verified, ice cover melting
characteristics were investigated by using the k-e model. This was performed by
numerically reproducing 6 laboratory experiment. The model predictions compares
excellent with four of the experiments and satisfactory with the remaining two. The
primary reason for the satisfactory results with two of the experiments would be due
to the dif'f iculties encountered during the actual laboratory experimentations and the
inadcquacies involved with the growing and maintaining of a stable ice cover during
the experiments. The latter series of tests, gave risc to the problem of melting in the
leading edge region, where an increased amount of melting occurs. Beyond a certain
distance from the leading edge region, the computed melting rate of the ice cover
compares well with measured values. Also, the prediction of melting of the ice cover
is more accuratc under low air temperatures, however, as soon as the water
temperature rises above 0.4°C, the computed melting of the ice cover diverges from
the actual value. This is due to the heat transfer coefficient at the water-ice interface

which should be more accurately evaluated.

The model was then used to validate its applicability by investigating the
ice cover melting of a river in comparison with a field case. The field study selected is
one that was done on the Mississippi river. Comparison with hydrodynamic
measurements show an overall agrecement in the range and mean values. The
computed temperature distribution and ice free openings compare very well with the

measurcd values.
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Therefore, from a general point of view, the results show a very good
performance of the model in predicting, the hydrodynamic, and hydrothermal

conditions, as well as the melting pattern and extent of an ice cover.

However, the accuracy of the predictions is a function of the air
temperature, water temperature, and the heat transfer coefficient, provided that the
hydrodynamic and hydrothermal distributions are well computed. With that in mind,
a few recommendation can be given to enhance the computations of ice cover melting

characteristics.

When relatively elevated water temperatures are involved, buoyancy
effects begin to play an important rolc in both the maximum jet entrainment and
consequently the dispersion of temperature. Furthermore, this might have an cffect in
the reduction of the ice free width in the near field region since an increasc in the
temperature dispersion will occur. However, the ice frec reach length in the

downstream region may not necessarily be affected.

Also, the heat transfer coefficient in the present work was shown to be
highly underestimated in the leading edge region. Therefore, the investigation of ice
cover melting in the leading edge region, using other methods, is of prime necessity

for better predicting the melting rate of the ice cover leading edge progression.

In meandering rivers, which is mostly the case, thc water surface
elevation in bends across a unique cross section may vary in the order of meters. This
two dimensional water surface variation has an effect of the hydrodynamics and

consequently on the temperature distribution in the river.



140

Last but not least the temperature at the ice surface is actually not the
temperature of the air, but rather a function of it. This is also another feature that can

be investigated to better predict the overall melting or thickening of the ice cover.
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