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ABSTRACT

Objective Measurement of Subjective Image Quality

Wajih Walid Bishtawi

The developiment of inage coders, has been traditionally obstructed by the lack
of a clear relation between designing procedures and the perceptual coder perform-
ance; this is due to unavailability of a reliable objective image quality technique that
can measure the error in compressed images as perceived by human observers. In
the past, there were many attempts to predict image quality based on the Human
Visual System (HVS). Most of these attempts used visual criteria such as the fre-
quency sensitivity and frequency masking properties of the eye. These attempts were
unable to predict two important image quality factors: type and location of error.
Suminaries of some of these attempts are presented. In this thesis, the Impairment
Detection Method (IDM) is introduced. It is a first step in developing an objective
measure of subjective image quality. It detects and measures certain types of image
artifacts that are common with block transform coding techniques: blocking, blur-
ring, and spatial edge noise (ringing). IDM is a relative measurement where both
original and reconstructed images are required. Simulation results show that IDM
isolates each type of artifact within its ¢ itext and produces three output primitives;
each primitive measures the amount of error that is introduced by a single type of
artifact. These primitives are monotonic; one decreases as the presence of blurring
artifact increases, and the others increase as the presence of blocking and ringing

artifact increase. Note that IDM is restricted only to the luminance part of images.
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Chapter 1

Introduction

1.1 Image Compression and Quality Measurement

One of the important benefits of digital waveform representation is the fact that
digital signals arc less sensitive than analog signals to transmission noise. Digital
signals have the advantages of being easy to: regenerate, store, error-protect, multi-
plex, packetize, and miz. Digitizing also permits the application of powerful digital
signal processing techniques [1]. Images are among the signals that can benefit from
digitizing. In this thesis, we are concerned with digital images.

An enormous amount of data is produced when a 2-D light intensity function
is sampled and quantized to create a digital image. In fact, the amount of data
generated may be so great that it results in impractical storage, processing, and
comiunication requirements. For example, assuming one byte per pixel, a 512x512
pixel monochrome image occupies 262,144 bytes of storage. This is equivalent to
about 87 pages of dense text at one byte pei character. Color images may require
as much as three times the storage amount required by monochrome images. This
massive storage and bandwidih requirements are a serious concern for many applic-
ations involving imagery. Image compression alleviates a solution to this problem

by reducing the number of bits or the range of frequencies needed. The amount of



reduction determines the loss in image quality. But, how much quality is sactiticed
for how much compression?

Numerous image compression techniques (2], {3], 1], [5], [6]) exist today with a
common goal of reducing the number of bits needed to store or transmit images. ‘The

efficiency of a compression algorithm is generally measured using three criteria [7):
1. resulting distortion
2. amount of compression, and
3. implementation complexity.

Amount of compression can be measured by calculating the compression ratio. Al
gorithmic complexity on the other hand, can be measured by considering the type
and the number of operations required. The main difficulty in evaluating lossy com-
pression techniques comes from the fact that there is no reliable objective measure
for determining the nature and the location of distortions resulting from the loss.
While objective measures utilize the computers, which make the evaluation easier,
faster, and cheaper, currently used objective measures such as Mean Square Error
(MSE) and Peak Signal to Noise Ratio (PSNR) do not compute the perceptual error
as detected by the human eye. Section 1.2 will discuss the weaknesses of such meas-
ures. The subject of this thesis is to attempt to develop a reliable objective measure
that is able to determine the nature and the location of distortions in reconstrucied
images.

Standard lossy digital image compression techniques such as block coding tech-
niques (JPEG (8], MPEG [9], H.261 [10] ... etc), resnlt in different types of impair-
ments in the reconstructed images. Among the common types of artifacts that such

compression techniques produce are:

e Blocking: A distortion of the image characterized by the appearance of an

underlying block encoding structure [11].



e Blurring: A global distortion over the entire image, characterized by reduced

sharpness of edges and spatial details [11].

o Spatial Fdge Noisc (Ringing): A form of busyness characterized by spatially

varying distortion in close proximity to the edge of objects [11].

Figures 1.1, 1.2 show examples of blocking and ringing artifacts respectively, while
Figures 1.3, 1.4 show an example of blurring artifact. The detection and measure-

ment techniques of these types of artifacts will be discussed in Chapters 2 and 3.

Although the objective assessment methods utilize the computers to predict
image quality, the subjective assessment methods utilize human observers to view
and rate image quality. Subjective assessment methods are the only satisfactory
methods for assessing coding quality as perceived by the human observers [12], they
have the disadvantage of being costly and time consuming. Objective measures,
which are repeatable and do not depend on the viewing conditions or the mood of
the viewer, nced to be developed. Such measures are not only needed for comparing
images produces by different compression techniques, but they are also important
in designing image compression algorithms.

Because the human eye is the final arbiter of image quality, it is essential to
understand the Human Visual System (HVS) in order to understand the ingredients
of image quality. HVS-weighted measurements result in a strong correlation with
subjective evaluation [13, 14]. The HVS gives unequal weighting to different types
of impairments [15, 16, 17]. For example, subjective studies showed that blocking
distortion is ten times more objectionable than equal energy white noise [18]. In ad-
dition, humans tend to realize degradation in flat areas more than detailed areas [19].
In other words human observers are sensitive to the structure of the noise and not
just the noise energy [18]. Therefore, it is necessary to develop a quality measure

that is capable of determining:
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I. the arca of degradation,
2. the type of degradation, and
3. the amount of degradation.

in reconstructed images.

1.2 Weaknesses of MSE

Today, Mcan Square Error (MSE) is widely used by researchers as an objective qual-
ity measure, but it is equally widely criticized [6]. In previous work, Marmolin {20}
conducted a test of the applicability of MSE as a measure of perceived similarity
between the original and the degraded images. His results showed that MSE is an
unsatisfactory measure. Eskicioglu, Fisher, and Chen [21] tested the performance of
MSE and reached the same results as Marmolin.

The fact that the properties of the HVS are not taken into account in calculating
MSE [22] makes MSE produces outputs that are badly correlated with subjective

quality measures. MSE suffers from several significant weaknesses [23]:

1. An arbitrary increase in the MSE does not always lead to a decrease in image

quality.

2. Equal values of MSE for two degraded images do not imply similar visual

quality.
3. MSE does not specify the types of artifacts.
4. MSE is not capable of specifying the locations of the artifacts.

As a solution for the first weakness, Eskicioglu and Fisher [24] tried to replace MSE
by the variance of the error, but their method did not solve the other weaknesses

of MSE. These weaknesse. of MSE are not surprising; it is a fact that the human

7



observers do not sum the error over the entire picture but process it in much more
complicated way [3, 17, 20, 22]. MSE is given by:

M N
MSE = -A—Il—N 3N ligm, n) = i(m,n))? (1.0

m=1n=1

while Peak Signal to Noise Ratio (PSNR) is given by:

49
PSNR = 10 * log (,‘2;;,3) (1.2)

where M and N are the number of rows and columns of an image respectively, t(m, n)
and i(m, n) are original image pixels and reconstructed image pixels located at (1, n)
respectively.

An example is given in Table 1.1 and Figures 1.4, 1.5 to show one of the
weaknesses of MSE. Figure 1.4 is the third generation of low-pass filtered Lena, and
Figure 1.5 is the reconstructed Lena after using PVRG-JPEG CODEC [25] with the
Q-Factor option (-q) set to 300 (compression ratio of 42:1). Where JPEG refers to
a definition of a still-image compression algorithm established by the Joint Photo-
graphic Experts Group committee, and the Q-Factor option specifies a multiplicative
factor for the quantization: each quantization coeflicient of the default quantization
matrix is scaled by (Q-Factor/50) [25]. From Table 1.1 it can he scen that hoth
images of Figure 1.4 and Figure 1.5 almost have the same MSE value and PSNR
value, while by looking at Figure 1.4 and Figure 1.5 one can sec that both images do
not have the same visual quality. It can be seen that the artifacts presented in one
of the images are more annoying than the artifacts of the other image. That makes
their visual quality unequal. This example shows that equal values of MSE for two

images does not imply similar visual guality.

Lena Image MSE | PSNR.
Blurred 83.55 28.91
PVRG-JPEG -q 300 83.88 28.89

Table 1.1: MSE and PSNR for Different Types of Artifacts in Lena
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1.3 Problem Statement

As mentioned earlier, the only reliable measures of perceived image quality are the
subjective assessment methods. These methods are expensive and time consum-
ing. Current objective image quality assessment methods such as MSE are casy to
compute but do not measure well the perceptual distortions of images. The devel

opment of an objective technique that combines the best of subjective and objective
measures, by being easy to compute and sensitive to the properties of the VS, is
needed for comparing images produces by different compression techniques and is
also important in designing image compression algorithms.

There are different typesof artifacts that are associated with different compres-
sion techniques. This thesis is concerned with block transform coding techniques of
gray scale images, where there are three common types of artifacts, namely: Block-
ing Distortion, Blurring, and Spatial Edge Noise (Ringing). This ithesisis restricted

only to the subset of these three types of artifacts.

1.3.1 Solving Mechanism

The problem of objectively evaluating the quality of compressed images can be

handled in two steps:
1. by measuring number of primitives for each type of artifact.

2. by putting the measured primitives in an equation that emulate the MOS of

subjective evaluation tests.

A's mentioned in section 1.1 the HV'S gives unequal weighting to different types
of impairments. For example, subjective studies showed that blocking distortion is
ten times more objectionable than equal energy white noise [18]. So in the first step,
the developed method should isolate different types of artifacts from cach other so

they can be weighted differently in the second solution step.
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In addition to the type of error, the context of error is a very important image
quality factor: humans tend to realize degradations in flat areas (low frequency areas)
more than in detailed areas (high frequency areas) [19]. So, the developed method
should also check the context of each type of artifact.

Keeping in mind what will happen in the second problem solving step, sufficient
data should be available by computing number of primitives that measure each type
of artifact in in each artifact context. The output of this step is required to carry
out the second step.

In the second problem solving step, all the necessary computed primitives for
cach type of artifact can be given different weights, depending on the weighting
scheme of the HVS, then they should be put together in an equation that emulate.
the MOS, where a single number is produced as an output that represent the quality
of an image. This can be achieved by using statistical analysis techniques such as
regression analysis.

In this thesis, only the first solving step is handled, while the second solving

step is a big problem and beyond the subject of this thesis.

1.3.2 Ewvaluation

The results of the first problem solving step mentioned in section 1.3.1 can be eval-

uated and said to be good if:

1. they indicate that each type of artifact is isolated from the other types. Where
the presence or the disappearance of a single artifact should not affect any

primitive except its own.

2. by looking at the output of the context isolation process, the artifact’s contexts

should be seen to be separated.

3. the primitives of each type of artifact are monotonic with the compression

ratio of its context. And the primitives should have one to one relation with
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the perceptual presence of their corresponding type of artifact.

1.4 Thesis Summary

Objective assessment methods will eliminate the difficultics of the subjective assess-
ment methods and will expand the field of image coding by leading to more systematic
design of image coders. The development of an objective assessment method, that
combines computational simplicity, and sensitivity to the properties of the human
visual system, would be an important tool in the development of compression tech-
niques.

In the past, there have been many attempts to predict image quality based on
HVS. Chapter 2 summarizes some of these previous attempts in addition it summar-
izes the techniques used in subjective measurements.

Coded images usually have common types of artifacts such as blocking, blur-
ring, and spatial edge noise. The detection and measurement of these artifacts are
addressed by the Impairment Detection Method (IDM) in Chapter 3. Note that
Chapter 3 represents our work.

Finally, Conclusions and further research arc discussed in Chapter 4.
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Chapter 2

Quality Measurement Techniques

2.1 Introduction

Although there is no standard objective image quality measure availal,le, most re-
scarchers frequently use Mean Square Error (MSE) and Peak Signal to Noise Ratio
(PSNR) because of their computational simplicity. From the literature [3, 7, 20, 22]
and as it can be seen in section 1.2, MSE and PSNR do not correlate reasonably
well with the subjective quality measurements.

The determination of a good objective quality scale for image coding is a dif-
ficult problem. In this chapter, subjective measurement techniques and some of the
promising objective measures are illustrated briefly.

Subjective assessment methods are widely used to evaluate the picture quality
of coded images [26]. As mentioned earlier, subjective methods depend on human
observers to view and rate the quality of coded images. However, the subjective
results fluctuate depending on the test conditions, and the assessment tests take
considerable amount of time and money. Section 2.2 will discuss the subjective
techniques.

Since human observers are the end users of images, an objective image quality

measurement that is based on the human visual perception is more appropriate in
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predicting and measuring images visual quality. Although the HVS is too complex,
a number of experiments {13, 14, 19, 27, 28] with simplifiecd HVS models showed that
the inclusion of a model of the HVS generally produces results that are in better cor-
relation with the perceived image quality. These trial models took into consideration
various recognized characteristics of the HVS. They are however limited in validity
and scope [7]. Ahumada, Null, and Hearty [29, 30] pointed out that the visual quality
may have more than a single dimension. Taking that into consideration in designing
a better HVS model will lead to a better quality measurement.

Graphical measures are multi-dimensional measures. Their final outputs are
presented as graphical maps, histograms, plots, or charts. The interpretation of these
graphical outputs determines type, location and amount of degradations. Section 2.3
will present the graphical quality measurement techniques.

On the other hand, numerical measures most of the time end up with a single
number as their final output. Some of the numerical measures will be presented
in this chapter, these measures are the work of Comes [31, 32], Algazi [15, 33, 4],
and Wolf [35, 36, 37]. In all of them distortion factors are extracted based on the
properties of the HVS. These factors are used later on in equations that simulate the
Mean Opinion Score (MOS) of subjective measurements.

In Section 2.4, a quality measure based on a multiple channel HVS model will
be illustrated, where Comes masked the invisible noise then used a weighted MSE
of the visible noise to compute image quality.

Algazi, Kato, Miyahara, and Kotani introduced the Picture Quality Scale
(PQS). In their method, they identified five different distortion factors. The first
two factors refer to random errors with different weighting, the third factor refers to
the end of block disturbances, and the last two factors measure the structured errors,
such as spatial edge noise. The PQS will be illustrated in Section 2.5.

Section 2.6 will discuss the Impairment Quality Rating (IQR). The IQR is a
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video quality assessment technique. Its formulation is based on a functional com-
bination of distortion measures. These distortion measures combine two temporal
measures and a spatial measure. The spatial distortion measure is based on the
Sohel filter [5]. Since this thesis is limited to still images, only the spatial distor-
tion measure and its enhancement will be discussed in Section 2.6. This measure
represent the base of our work that will be presented in Chapter 3.

Finall ;, the conclusions will be discussed in Section 2.7.

2.2 Subjective Measurements

As the end user of images are humans, the most reliable image quality measure is
the subjective rating by human observers {7]. Generally in subjective rating experi-
ments, images and their perceptual errors are checked and rated by humans then the
observers MOS is statistically calculated.

In such experiments, both expert and non-expert observers are used; non-
experts represent the average viewer while experts give better assessments of image
quality since they are familiar with images and their distortions. There are a cer-
tain viewing conditions that should be set before the evaluation is taking place [38].
Among them, viewing distance, viewing angle, monitor size, peak luminance of the
screen, room lighting, and number of assessors. There are different evaluation tech-

niques:

e The absolute evaluation: The observers view an image and assess its quality

by assigning to it category in a given rating scale.

o The comparative evaluation: A set of images are ranked from best to worst by

the observers.

e Bubble sort evaluation: The observer compares two images A and B from a

group of images and determine their order. Assuming that the order is AB, the
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observer takes a third image and compares it with B to establish the order ABC
or ACB. If the order is ACB, then another comparison is made to determine
the new order. The procedure continues until all the images have been used,

allowing the best pictures to bubble to the top if no ties are accepted [3, 13].

The most commonly used technique is the first one. It uses the rating scale that has
been accepted by the CCIR in recommendation 500 [26] and appeared in the relevant
literature [3, 31, 33, 35]. Table 2.1 list this rating scale. The mean rating of a group

of observers who join the evaluation is usually computed by [21]:

()
(=)

where s;=the score corresponding to the k** rating, ny=the number of observers with

R= (2.1)

that rating, and n=the number of grades in the scale.
It is important to note that the results of subjective rating are affected by a

number of factors including
o type of images,
o level of expertise of the observers, and

o experimental conditions.

Note | Impairments Qualily 1
5 Imperceptible Excellent
4 Perceptible, but not annoying | Good
3 Slightly annoying Fair
2 | Annoying Poor
1 | Very annoying | Bad

Table 2.1: Rating Scale Recommended by CCIR-500 for Subjective Evaluation
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2.3 Graphical Measurement

iskicioglu [39] claimed that scalar image quality ineasures are not able to describe
either the degradation type or the local error in a compressed image. Graphical image
quality measurement techniques are multi-dimensional measures. Unlike most image
quality metrics, graphical techniques do not represent their outputs in numerical
format. Instead, their outputs are presented in a graphical format such as maps,
histograms, plots, or charts. Features showing type of impairments, location of
impairments, or both are computed then plotted. The plots identifies type, location,
and amount of errors.

The graphical measures that have general applicability in the field of image

compression are [7):
1. Visible Differences Predictor (VDP)
2. Histogram of the compression crror
3. Hosaka plots
4. Eskicioglu charts

These measures are described briefly as follow:

e The Visible Differences Predictor {(VDP) [40] consists of components for calib-
ration of the input images, a HVS model, and a method for displaying the HVS
predictions of the detectable differences as shown in Figure 2.1. The input of
the algorithm includes two images (original and degraded), and parameters
for viewing conditions and calibration such as viewing distance and physical
pixel spacings. Input images are passed through a display model that should
be supplied by the user. The HVS model used in the VDP has three main
components that measures the variations in visual sensitivity as a function of

light level, spatial frequency, and signal content. The output of VDP is a map
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Figure 2.1: Block Diagram of the Visible Differences Predictor

of the probability of detecting the differences between the two images as a func-
tion of their location in images. The map indicates the shape and location of
the predicted visual differences. Daly [40] claims that VDP can be used for all
types of image distortions. A drawback to the VDP is that it is a very complex
algorithm. Another drawback is that there are many experiments for an image

with distortions, since there is essentially an experiment for each local artifact.

o A histogram of the compression error is constructed by plotting the number
of times a specific value occurs in the difference image versus the value itself.
Typically the histogram look like a Gaussian curve [7]; the more it resembles
a spike at x = 0, the better the quality of the degraded image. Eskicioglu,
Fisher, and Chen [21] found that histograms clearly represent the amount of
degradation, but still they cannot express the type or the location of degrada-

tion.

¢ Hosaka started with the quadtree decomposition {3, 41] to segment the original
image into certain activity regions. Five classes of blocks are formed with this

decomposition; a smaller block size denotes a higher frequency region of the
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image. There are two features computed for each class:

1. the average standard deviation of the blocks

2. the average mean of the blocks less the average mean of the classes

With the same segmentation, these features are also computed for the degraded
image. The Hosaka plot [18] is constructed in polar coordinates after obtaining
the absolute error for each class in the corresponding features. The absolute
errors of the first feature are plotted in the left half plane while the absolute
errors of the second feature are plotted in the right half plane, all equally
spaced. These plots represent the error in its size and the type of distortion
in its pattern. However, the use of these plots in specifying the major type
of impairment is limited [42]. They can not properly describe the type of
loss, i.e. the nature of error. They clearly display blocking artifact but not
equally successful in showing blurring artifact when both of them are present
in the same image [21]. Another drawback is that the selection of two critical
parameters for the block size and the variance threshold is not trivial and
depends on the compression ratio, compression technique, and the frequency

contents of the impaired image [39].

Eskicioglu [39] as in the case of Hosaka plots, divided the original and the
degraded images into areas with certain activity levels using the quadtree de-
composition [3, 41]. He used in his decompostition 4 classes of blocks, where
the largest and the smallest block sizes are 16 and 2, respectively. Class ¢ rep-
resents the collection of ixi blocks; a higher value if ¢ denotes a lower frequency
area of the image. After obtaining the quadtree decomposition of the image
for a specified value of the variance threshold(20), three normalized values for

each class @ (i=2, 4, 8, 16), are computed:

1. The number of pixels / the number of pixels of the entire image.

19



2. The number of distinct pixel values / the number of possible pixel val-

ues(256).

3. The average of the standard deviations in the blocks / a preset maximum

standard deviation(8).

Then the essential characteristics of the original and the degraded images are
graphed in the normalized bar charts. An evaluation of the type and amount of
distortion that is affecting a degraded image can be made through a comparison
between the bar chart of the original image and the degraded one. Eskicioglu
claims that Eskicioglu charts specify and measure the blocking artifact since
blockiness leads to a drastic change in average standard deviations, the number
of distinct pixel values, and the number of pixels in the classes. A drawback is
that this technique can not distinguish between blurriness or blockiness since
both blockiness and blurriness leads to a change in average standard deviations,

the number of distinct pixel values, and the number of pixels in the classes.

In a recent paper by Eskicioglu [23], he added one more dimension to the
Eskicioglu charts. The fourth dimension is associated with the end of block
disturbances, these are discontinuities at block borders. The disturbance of a

block of size MxN is measured by £OBD [23],

BOBD = {E[Af(m, N)] + E[A[(M,n)]}'/? (2:2)

with
Af(m, N) = [f(m$ N) - f('na N + 1)12 (23)

and
Af(M,n) =[f(M,n) - f(M +1,n))? (2.4)

where f(m,n) denotes a pixel value and E[ ] is the expectation operator. This
definition is modified for the blocks located along the bottom or right side of an

image by omission of an expectation term. EOBD is not defined for the bottom
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right side corner block. The fourth feature for each class is then given by the
average of the end of block disturbances normalized by a preset maximum
disturbance. A drawback to this fourth dimension of Eskicioglu charts is that
it is affected by both blocking and blurring artifacts. i.e. for a degraded
image that is affected by blockiness and blurriness, the fourth dimension of
Eskicioglu charts will measure both artifact together and can not distinguish

between them.

2.4 Measurements Based on a Multiple Channel
HVS model

According to the psychovisual model of tuned channels the visual information is
received inside the human eye through perceptual channels which perform a decom-
position with respect to the location in the visual field, the orientation and the spatial
frequency of the stimuli [32]. Each perceptual channel is characterized by its own
visibility threshold. For a perceptual channel, the threshold depends on the contents
of the background image in the corresponding tuned channel. This phenomenon is
called masking. The visibility of a noise pattern that has been generated by a coding
technique depends on the type of the background (i.e if it is uniform or texture).

The psychovisual model of tuned channels has been used previously in many
image quality techniques (31, 43, 44]. Comes, Bruydonckx, and Macq [32] used the
masking phenomenon to develop an image quality criterion that utilizes the unmasked
MSE in an equation that simulates the CCIR-500 [26] five-grade quality scale shown
in Table 2.1.

The contrast is defined as a representation to the dynamic range of luminance

in a region of an image. The definition of the contrast C that will be used is [31]:

Lma:: - Lmin

¢= 2Lmoy

(2.5)
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where Lmqz, Linin, and Ly, are respectively the maximum, the minimum, and the
mean luminance values in an area. The visibility threshold Cr is the contrast value
corresponds to the limit of visibility. Comes, Bruydonckx, and Macq [32] assumed a
logarithmic relationship between the visibility threshold C and the contrast value
of the background Cjs for a given perceptual channel, as shown in Figure 2.2 where
Cro is the visibility threshold without masking. The shaded area in the figure is
below the visibility threshold and represents the invisible er.or. When Cyy = 0 (e
there is no background) in the channel, the visibility is determined by the band-pass
filtering effect of the eye. As the background contrast C'ys increases, the detection
threshold C'r increases following a slope e.

(log)

Visibility Threshold (Ct)

C]‘O (log)
Background Contrast (G )

Figure 2.2: Masking Model: logarithmic relation between the visibility threshold C'y
and the background contrast Cys

Comes, Bruydonckx, and Macq [32] evaluated the parameters of the masking
model assuming that the slope ¢ is equal for all perceptual channels and the detection

threshold without masking Cro only depends on the spatial frequency.

2.4.1 Image Quality Criterion

In order to evaluate the quality of a noisy image a knowledge of the noise level

is necessary. From the previous subsection, only part of that noise is visible thus
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affecting the visual quality of the image. This criterion evaluates image quality
after the cancellation of the masked noise defined as invisible noise. A perceptual
component is defined as each pixel in the image. The masked noise is a set of noise
perceptual components whom contrast belongs to the shaded area of Figure 2.2.
The noise and the original image are split up into several perceptual channels
by means of multi-resolution filters bank performing a polar decomposition with
perfect reconstruction. In each perceptual channel, each noise perceptual component
is compared to both the contrast of the corresponding perceptual component in the
original image and the visibility threshold without masking. The visibility threshold
without masking is considered as a constant in a given perceptual channel. The
noise perceptual component for a given channel is removed if its contrast belongs to
the shaded area of Figure 2.2. Then the unmasked noise is reconstructed with the
remaining perceptual channels. The mean square error Pg of the remaining noise is

given by [32]:
1 M N
Pg = TN Z_: Zl B?*(m,n) (2.6)

where B(m,n) represents the value of the unmasked noise at the location (m,n) of
the MxN image.

Two approaches have to be followed to estimate the image quality using Pp:

e First: measuring the PSNR considering Pp as the power of the noise. The
Masked-PSNR (MPSNR) is defined as {32]:

(255)*

MP =
SNR Ps

(2.7)

o Second: The quality factor @ is a measure on the five-grade quality scale

recommended by the CCIR 500 [26] and shown in Table 2.1. Q is given by [32]:

5

¥ KFs @8)

Q=
where K is a normalization factor to have @} between 1 and 5.
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This method is adequate only when used to compare two noisy versions of
an image but not as an absolute criterion. A drawback for this criterion is that
the determination of € is experimental and difficult. Another drawback is that this

method is not capable of determining the nature of errors.

2.5 Picture Quality Scale Method

Arguing that subjective quality evaluations are based on a number of impairments
that can be observed in a degraded image, several years ago Miyahara [45] drew an
outline for an objective quality measure called Picture Quality Scale (PQS). Later
on Algazi, Kato, Miyahara, and Kotani {15, 33] developed the Picture Quality Scale.
PQS is an objective approximation of the MOS. It consists of a linear combination
of measurable distortion factors F,, i=1,...,5 that are objectively quantified. These
distortion factors which are perceptually weighted measures of image impairments,
are function of e(m,n), where e(m,n) is the coding error or the difference between an
original and a degraded images.

To provide a more uniform perceptual scale for e(m,n), an original mnage

P(m,n) is transformed by a logarithmic transformation so that [33]

z(m,n) = klog ﬂ'g-’—"—) (2.9)
where k and k, are constants, and [33]
e(m,n) = z(m,n) — (m,n) (2.10)

where %(m,n) is a degraded version of x(m,n). A spatial frequency response is

modeled approximately by [15]:

R(ua v) = S(f)O(O, f) (2] l)

where S(f) is the spatial frequency response and O(6,f) accounts for the anisotropy
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of vision [15, 46]. S(f) is approximated by [15]:

92
S(f) =1.5exp (——?22—10-)- — exp(—2c%w?) (2.12)
7=2% w= %f f=(uf+0})7 (2.13)

where u = fcos0,v = fsinf are horizontal and vertical spatial frequency respect-
ively and o? is the variance of the Gaussian function.

The distortion factors F; are defined as numerical functions of e, (m,n), where
ew(m,n) is the frequency weighted error. e,(m,n) is obtained by transforming e(m,n)
to the spatial frequency domain using the Fast Fourier Transform, then weighting
the output of the transform by visual spatial frequency characteristics, at last, the
weighted output is transformed to the spatial domain using the inverse Fourier Trans-

form [46]. e,(m,n) is given by [45):
culm,n) = F~ [F{e(m, n)}R(u,v)] (214)

where F and F~! are the Fourier Transform and its inverse respectively. The
frequency weighted error e,(m,n) is evaluated at each pixel using equation 2.14.

Miyahara, Kotani, and Algazi [33] defined five factors as follow:

e F, is the weighted mean square error. It represents the random error and is

given by:

222 les(m,n))?
B ZE[P(m,n)P

where e,(m,n) is weighted by the common television noise weighting [15].

Ry

(2.15)

e [, is a modified version of Fy. It takes into account the threshold of perception

of disturbances and is given by:
35 lew(m,n))*T
F2 — m n
> X [P(m,n)]?

where T is a zero-one indicator function for a perceptual threshold of visibility.

(2.16)
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e F3 represents the end of block disturbances which appear in block coders such
as transform coder and vector quantization coder. These disturbances are a

function of the error discontinuities.

Fs = {E[Aew(n, N)] + E[Aeu(M, )]} (2.17)

with
Aey(n, N) £ [Aey(m, N) — Aey,(m, N + 1)]? (2.18)
Aey(M,n) & [Aey(M,n) — Aey,(M + 1,n)]? (2.19)

where M and N are the height and the width of the block respectively and K]

is the expectation operator.
e F4 represents the general correlation errors. It is given by:
— (R? 2\1/2 9
Fi=(R:+ RY) (2.20)

where R, and R, measure the correlation of errors horizontally and vertically.

F4 is zero if errors are uncorrelated.

e Fs5 represents the random error in the vicinity of high contrast image distor-

tions. This factor takes into account the masking effect and is given by:

Fs & (2 + €})'/? (2.21)
with
P Q 1
=33 > lewlp, g - 5)Ma(pra— 7)) (2.22)
r 9 =1
and
P Q |
ey =5 > leulp,q = )My(p,a— j)| (2.23)
r 9 =1

where M;(r,s) and M,(r,s) are the horizontal and vertical masking functions,
taken to be exponential functions of the first differences of the pixels vaiues,
that are a measure of image activity. The summation is carried out locally over

2 | pixels and that depends on the viewing distance.
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Then Miyabara, Kotani, and Algazi [33] carried out a principal component ana-
lysis {45] to quantify the correlation between Fi,..., Fs. The largest three eigen-
values of the resulting covariance matrix, which account for 98% of the total error
energy, provide a first transformation of the F, into an effective principal component
representative(Zy,72,23).

Finally, The Picture Quality Scale is a lincar combination of the principal

components {Z,} so that [33]

3
PQS=b,+)Y_b,7, (2.24)

s=1
where b, are the partial regression coefficients that should be obtained by multiple
regression analysis between Equation(2.24) and the MOS.

In a recent paper [34], Algazi, Ohira, Kotani, and Miyahara found that for a
high quality image with MOS > 4, only FF4 and Fs distortion factors are contributing
significantly to PQS. So, F}, F;, and F3 can be neglected and PQS can be computed
as follow [34):

PQS = 5.435 — 0.654 Fy — 0.0985 F (2.25)

where the equation can not hold as the error and distortion factors reach zero.
However, they found that the regression formula may be usable up to PQS = 4.5,
level at which distortions are no longer perceptible.

A drawback to PQS is that the evaluation of the frequency weighted error
which is a very basic function in this method, is a very complex process. The main
complexity comes from the evaluation of the anisotropy of vision O(f, f) where it is

not trivial.

2.6 Impairment Quality Rating

The Impairment Quality Rating (IQR) predicts the subjective quality ratings for

pairs of degraded versus original real-video sequences. This method produces a
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rating on the CCIR-500 [26] five-grade impairment scale shown in Table 2.1, A
feature is defined as a quantity of information associated with a specified image.
IQR is a linear combination of three features. The first feature measures the spatial
distortion while the other two features measure the temporal distortion. Only the
first feature and its enhancement are discussed in this section since the subject of
this thesis is limited to still images. The output of IQR is a single number that
simulates the MOS of subjective tests.

In early work done by Wolf, Pison, Jones, and Webster [36] and work done
by Webster, Jones, Pison, Voran, Wolf [35], Sobel filters [5] are used to generate
Spatial Features (SF). The sobel filter is a common edge detection FIR filter. It
has two 3x3 operators Sy(z,y) and S,(x,y) shown in Table 2.2. The output of the
horizontal filter for a pixel P(z,y), denoted by Si(x,y), is obtained by centering
the 3x 3 horizontal filter over the pixel P(z,y), multiplying the filter coellicients by
the neighboring pixel values, and adding the nine values together. This is eypressed

mathematically as

Si(z,y) = Plzx—1l,y+1)-Plz-l,y—1)+2%Plz,y+1)-2x Ple,y — 1)+
Plz+l,y+1)-P(z+1,y—1)

Similarly the output of the vertical filter for a pixel P(z,y), denoted by S, (i, y), is

calculated as

Sz,y) = Ple+1l,y—1)=Pz—lLy—1)+2* Ple+1,y) =2 Pz~ 1,y) +
Plz+1l,y+1)-Plz-1,y+1)

The magnitude of the sobel filter for pixel P(z,y), denoted by Sn.(x,y), is defined

as the square root of the sum of the squares of the horizontal and vertical sobel filter

operators outputs for that pixel, i.e.

Sm(z,y) = \/[Su(z, 9)]2 + [Sul=,y))? (2.26)
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1 2 1 -1 0 1

Table 2.2: Sobel Operators Sy(z,y) and S,(z,y)

If Y, and Y; are the luminance of the original and the degraded images respectively.
SF is given by [35]:
SF, = ST Dypace{Sm[Yo)} (2.27)

and

SFy = STD,pace{Sm[Yal} (2.28)

where SF, and SF; are the Spatial Features of the original and degraded image
respectively, ST Dpqce is the standard deviation operator over the horizontal and
vertical spatial dimensions of an image.

A parameter is defined as the result of comparison between two features. SF’
is used to calculate a single parameter P; that measures both blurring and blocking
artifacts [35]. This parameter is defined as [35]:

_ SF,-SFy

& SF,

(2.29)

If P; is positive, there is less spatial information in the degraded than the original
image. This condition results from impairments such as blurring. While if P; is
negative, there is more spatial information in the degraded than the original image.
This condition results from impairments such as blocking.

In IQR [36], P; is used as a measure of the spatial distortion where it is com-

bined with another two temporal impairment features TF; and T F5;. The equation
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of IQR is of the form [35]:
IQR ~ ¢y — ¢y X [RM Syme (5.81|Py|)] — c2 x TFy — 3 x TF, (2.30)

where RM S denotes the root mean square time-collapsing function, and ¢, are
weighting coefficients that should be determined to give the best fit to subjective
test results using a least squares error criterion. A drawback to the spatial feature
of IQR is that it can not determine the nature of error if both blocking and blurring
artifacts are present in a degraded image.

The Melcher and Wolf’s Method [37] specifically detects the “blocking” artifact,
produced by digital coding systems. It is an extension to the spatial feature of QR
to overcome the weakness of inability to distinguish between blocking and blurring
artifacts when both are present in a degraded image. Melcher and Wolf used features
based on the sobel filtered image for measuring spatial distortions. If fis an image,
S1I; and ST, are the outputs of the horizontal and the vertical sobel filter respectively.
For a function flocated at (k,v), the sobel filtering is done by finding the gradient,

vector:
S = S, _ af|oh (2.31)
Si, af|ov
Where h and vare the horizontal and vertical directions, respectively. An approxim-
ation of the magnitude of the gradient vector is used to characterize the edge content

of an image:
V = |SI+|S1| (2.32)
The direction of the gradient vector is also an important quantity. The direction of

the gradient vector fat (h,v) is given by:

6(h,v) = arclan (9—,11) (2.33)
Sy

A feature that takes advantage of the angle information that is present in the gradient

image is used in order to detect blocking artifact.
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2.6.1 Gradient Magnitude and Angle Histogram

A 2-dimensional histogram can be accumulated while computing the gradient image.
A bin is defined as a histogram pixel. Each bin in the histogram is identified by an h
and v coordinate. For a pixel P(h,v) in an image, the two components (S5I;,51,) of
the gradient are computed. Then S/, and S1, are used as coordinates to identify a
bin in the histogram. The bin at (S1,,51,) is incremented. This process is repeated
for all the pixels of an image. The histogram can be displayed as a normal X-Y
plot. By assigning a diflerent level of intensity for each range of bin values in the
histograms, Figures 2.3, 2.4 show an example image and its gradient magnitude and
angle histogram respectively. Lighter pixels in the histograms show bins with higher
values.

Melcher and Wolf [37] defined a function SIH(r,0) as the number of pixels in
the gradient image whose gradient radius and angle are r and 0 respectively, where
in all equations, @ is assumed to be between 0 and 27w. Features that detect the
presence of the blocking and blurring artifacts are extracted from SIH(7,0) as will

be illustrated in section 2.6.2.

2.6.2 Features Extracted from SIH(r,0)

Blocking distortion tends to increase the value of SIH(r,0) when @ lies along one
of the principal axes (e.g. where 8 = kr/2,k =0,1,2,3). Melcher and Wolf [37]
found that blocking produces a “plus-like” shape in the computed histogram, which
shows that more points are gathered at the principal axes. An example is shown by
introducing the blocking artifact to the image of Figure 2.3 as shown in Figure 2.5,
then plotting their gradient magnitude and angle histograms as shown in Figures 2.4
and 2.6. This observation is very important for the development of the features
below.

A feature whose value increases as the sharpness of horizontal and vertical
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Figure 2.4: SIH(r,0) of Original Pepper
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Figure 2.6: SIH(r,8) of the Degraded Pepper
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edges increase is given as [37):

Ghe =

-Y.>  SIH(r, 0)- (2.34)
0

r

“dl'—‘

0<csr<co 0=4%(k=0,1,23)

where r and 0 are as defined previously, ¢, and ¢, are clipping limits, and p is the
number of pixels in the image. This feature is a weighted sum of the bins that
accumulate horizontal and vertical edges in the gradient image.The lower clipping
limit is used to restrict the computation to an area where the approximations of
angle are more accurate. The higher clipping limit is used to include only the edges
of a desired intensity to the measurement.

Melcher and Wolf [37] mentioned that practically, it is useful to include a small
wedge of a few degrees around the SIH(7,0) horizontal and vertical axes. This will
be discussed later on in Chapter 3.

The g;, feature characterizes all of the horizontal and vertical edges in an image,
natural as well as those produced by blocking artifact. This feature is affected by
blurring and blocking, its value decreases when the image get blurred and increases
when the image suffers from blocking,

Another feature g, is given as [37]:

glwl =

D" 8HH(r, 0)- (2.35)
[

r

'Ul'-‘

I<csr<a 0#%(k=0123)

where r, 0, ¢,, ¢p, and p are as defined previously. gny characterizes all edges except.
the horizontal and vertical ones. This gives it the ability to separate blurring from
blocking. In the next section, the extracted features are combined into parameters

that measure the amount of distortion.
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2.6.3 Combining the Features into Parameters

Two basic features have been described that can be used to characterize the hori-
zontal and vertical edge content of an image (gn. ) and the non-horizontal and vertical
cdge content (g, ). Melcher and Wolf [37] claimed that these features alone cun not
be used to measure the amount of blocking in an image. The features must be com-
puted for an original and its degraded images then compared in order to detect the
presence of blocking in the degraded image.

In order to compare the original and the degraded images, the features are

combined into a parameter using the form:

. d—o

(2.36)

Where o denotes the feature computed from the original image, and d is the feature
computed from the degraded image. The resulting value is called a parameter. In
this case the parameter measures the fractional difference between the original and
the degraded features.

Two parameters are used for detecting blocking and blurring artifacts. These

parameters can be computed from the above defined features [37]:

hvd — Ghvo hv'd — Ghv’
th2 = z 7 Ph'u2' = g_' _—_g 2 (2.37)
Ghvo Ghy'o

These two parameters separately measure the fractional change in horizontal and
vertical edges and non-horizontal and vertical edges, respectively. If an image is
blurred and no extra edges are added to it, the values of these parameters will
decrease by roughly the same fraction, showing a global reduction in the edge contents
of the degraded image. However, if an image is blurred and has extra horizontal and
vertical edges added in the form of blocking, P,y will not be affected by the added
horizontal and vertical edges and will remain the same as in the first case, while P,
will increase by some amount that is proportional to the amount of the edge energy

added by the blocking artifact.
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Another parameter Pi,4 can be calculated, which represent the difference

between Pi,2 and Phyo parameters [37]:
Phu4 = Phu2 - Phu'Z' (2'33)

This parameter detects the relative change in horizontal and vertical edges vs. non-
horizontal and vertical edges. The idea is that if some global degradation has affected
the image, Ph,2 and Py, parameters will track and will change by the same fraction
resulting in P4 taking on a value close to zero.

However, if the non-horizontal and vertical edge parameter (Fh,y) stays con-
stant, and the horizontal and vertical edge parameter (P,,;) increases due to the
addition of some extra horizontal and vertical edges to the degraded image in a form
of blocking. Hence, P4 tends to increase as the amount of blocking increases in
the degraded image. A drawback to the added extension of IQR is that it does not
locate the errors in degraded images. Another drawback is that while the spatial
edge noise contributes to both g, and gun,, IQR analyzes the spatial edge noise

contributions as a part of the blocking and blurring artifact measurements.

2.7 Conclusions

In this chapter, some image quality measurement techniques are presented. First,
the subjective measurement techniques are presented. These techniques are done by
humans. Although they are the most reliable quality mecasures, they are costly, time
consuming, and depend on the test conditions. Second, some of the promising object-
ive measures are presented; graphical measures, and numerical measures. Graphical
measures presents their outputs in graphical formats such as maps, histograms, plots,
or charts. On the other hand, most of the time numerical measures presents their
outputs as a single number. The numerical measures that are presented in this
chapter are: Measurement based on a multiple channel HVS model, Picture Quality

Scale, and Impairment Quality Rating. These numerical measures compute different
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distortion factors, but similarly all of them ut‘iize these factors in equations that sim-

ulates the MOS of subjective tests. Tables 2.3 and 2.4 summarizes the performance

of all the image quality measures introduced in this chapter.

Impairment Quality Rating represents the base of our newly developed Impair-

ments Detection Method which will be illustrated in Chapter 3.

Quality Capability of Determining Degradations
Measures Type |  Area | Amount
Subjective All Yes Yes

VDP All Yes Yes
Error Histograms No No Yes
Hosaka Plots Blocking Yes Yes
Eskicioglu Charts Blocking Yes Yes
IQ Criterion No No Yes
PQS e Blocking No Yes

e Blurring
IQR e Blocking No Yes

e Blurring

Table 2.3: Summary of the Capabilities of the Introduced Image Quality Measures

Quality Measures ” Output Format l Measurement Type

Subjective Numerical e Absolute

o Relative
VDP Graphical Relative
Error Histograms Graphical Relative
Hosaka Plots Graphical Relative
Eskicioglu Charts Graphical Relative
1Q Criterion Numerical Relative
PQS Numerical Relative
IQR Numerical Relative

Table 2.4: Summary of the Output Format and the Measurement Type of the Intro-

duced Image Quality Measures
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Chapter 3

Impairments Detection Method

3.1 Imntroduction

This thesis is dealing with digital images. As discussed in Chapter 1, image compres-
sion techniques are used to minimize the cost of storage and transmission of digital
images. Unfortunately, such techniques result in impaired reconstructed images. The
detcrmination of a good objective quality scale that measures the perceptual impair-
ments in reconstructed images is a difficult problem. In Chapter 2, some promising
objective quality measurement methods described in the literature are presented. All
of those methods were based on properties of the HVS. In this chapter, the Impair-
ments Detection Method (IDM) is introduced. It is a new objective image quality
measure that detects, locates, and nieasures three common perceptual impairments
in reconstructed images based on properties of the HVS.

The HVS is more sensitive to low spatial frequencies [46]. Human observers
tend to notice degradation in flat areas (low frequency areas) more than degradation
in detailed areas (high frequency areas). In addition, each type of impairment oc-
curs in an a priori known location in a reconstructed image. For example, blocking
artifact occurs near block boundaries and ringing artifact occurs near sharp edges.

To take advantage of the sensitivity of the HVS to low frequencies and the a priori
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known locations of impairments, it is felt that an image should be classified into dif-
ferent regions; flat region, texture region, and sharp edge region. These classification
regions are chosen based on the location of occurrence of each type of impairment
and based on the location where an impairment is most perceivable by the human
ohservers. For example, the blocking artifact is most perceivable by the human eye
in flat regions where there is no activities in the background, and can be hidden in
teyture region because of the background activities. Another example is the ringing
artifact where it can be seen near sharp edges with flat background and it is hidden
in texture regions, while the blurring artifact can be seen in sharp edges and texture
regions and only for the severe case it can be seen in flat region.

From previous chapter, Melcher and Wolf [37] proposed a new technique for
detecting the blecking artifact. In their technique, every pixel in the image is analyzed
for measuring blocking and blurring artifacts.

The IDM introduced here is a relative objective measure where original and
degraded images are required. It is a modified and extended version of Melcher
and Wolf’s blocking artifact detection technique [37]. While Melcher and Wolf’s
technique addresses the problem of detecting blocking artifact, IDM addresses the
problem of detecting and measuring three types of impairments that are associated
with block transforin coding techniques; Blocking, Blurring, and Spatial Edge
Noise (Ringing). Figure 3.1 shows a block diagram of IDM. The concept behind
IDM is centered around the idea of classifying the image into different areas: Flat

Region, Texture Region, and Sharp Edge Region.

e First: Since this thesis is dealing with block transform coding techniques where
an image is divided into 8 x8 blocks, an original image is divided by IDM into

8x8 blocks. Then these blocks are classified into three categories:

1. Flat Blocks, where Blocking artifact and severe Blurring are more visible.

2. Sharp Edge Blocks, where Blurring, and Spatial Edge Noise artifacts can
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be detected.

3. Texture Blocks, where Blurring artifact can be detected.

where the locations of the blocks of ecach category are used to categorize the
blocks of a degraded image. In scction 3.2, the five steps involved in the 8x8
block classification process are illustrated; edge block detector, edge connectiv-
ity test, edge contour measurement, edge continuity test, and edge extraction.
Edge extraction facilitates the detection of ringing artifact by classifying the

sharp edge blocks pixels into background pixels and sharp edge pixels.

o Second: Cue to the fact that the blocking artifact occurs only at block bound-

aries, each block is divided into:

1. Block Frame, where blocking artifact can be detected.

2. Block Interior, where blurring, and spatial edge noise artifacts can bhe

detected.

In section 3.3, the amount of horizontal and vertical edges (gn,) and the amount
of non-horizontal and vertical edges (gniy) of each category are computed using
histograms of the magnitude and angle of image gradient. The construction of these
histograms are illustrated in the same section.

Jhy and gup, of each class are used in parameters that detect and measure the
presence of artifacts of interest. Section 3.4 illustrates how cach type of impairment
atilizes certain class parameters for its measurement.

Finally, Lena and PVRG-JPEG CODEC [25] are used in the simulation of
IDM. The simulation resul*s are shown and discussed in Section 3.5 and conclusions

are presented in Section 3.6.
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IDM Block Diagram
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3.2 Block Classification

According to psychophysics of vision [46], an impairment is weighted distinctly by
human observers depending on its place of occurrence within the same image. An
example is shown in Figure 3.2 where the original Lena of Figure 1.3 is compressed
using PVRG-JPEG CODEC [25] with -q = 100 (compression ratio of 18:1), where -q
is defined previously in section 1.2. Although the whole image suffers from blocking
artifact, it can be seen only across the low frequency area of the image. Figure 3.3
shows another example where the original Lena of Figure 1.3 is passed through 3x3
neighborhood averaging low pass filter [5] shown in table 3.1. In Figure 3.3, blurring
can be noticed by looking at the high frequency area (i.c sharp edges and texture).
Therefore, an image should be pre-classified into different regions before any analysis
is done.

In the block classification process, the 8x8 blocks of an image are classified
into three main categories: Flat Blocks, Texture Blocks, and Sharp Edge Blocks
based on the gradient image.

The gradient image is constructed by computing Si(z,y) and Sy(z,y) which
are defined in Section 2.6, for each pixel P(z,y) of an original image using the two
Sobel filter operators shown in Table 2.2. Figure 3.4 shows the magnitude of the

sobel filtered Lena of Figure 1.3.

O

Table 3.1: 3x3 Neighborhood Averaging Low Pass Filter
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Figure 3.4: The Magnitude of the Sobel Filtered Lena
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By taking a certain luminance threshold 7} over the sobel filtered image (17 = 80

in this case), the 8x8 blocks of an image can be classified into two categories:
o First: Flat Blocks (low frequency blocks).
e Second: High Frequency Blocks.

Figures 3.5 and 3.6 show the result of the first stage of classification.
Using the Edge Block Detection Technique of Section 3.2.1, High Irequency

Blocks are reclassified into two categories:
1. Sharp Edge Blocks.

2. Texture Blocks.

3.2.1 Edge Block Detector

Lynch’s method [47] is used with some modifications. In an image, the edge block
detector separates the low variation region from the high variation one (i.c. smooth
regions from sharp edges). Sk(z,y) and S,(z,y) are calculated for each pixel P(z,y)
in the high frequency blocks of an original image. Then each pixel is labeled as an

edge or a non-edge according to the following equation:

VISu(@, 9)2 + [Sulz, )2 2 T, (3.1)

where T, is a sharp edge threshold. If a pixel does not satisfy equation 3.1, it is
labeled as a non-edge pixel. Figure 3.7 illustrates the mapping of the two sobel
operators to the Sharp Edge Region. Shaded region describes the two dimensional
Sobel mask of non-edge pixels, while unshaded region describes the two dimensional
Sobel mask of edge pixels. In this case, the sharp edge threshold 7, is chosen to
be equal to 200 (i.e. T, = 200) while in Lynch’s method [47], T, is a variable and

its value depends on the eight surrounding blocks with minimum value of 200. In
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Figure 3.7: Mapping of Two Sobel Operators to the Sharp Edge Region

addition Lynch uses a square mapping of the two sobel operators to the Sharp Edge
Region.

After categorizing each pixel in the sobel filtered high frequency blocks of
an original image as an edge or a non-edge pixel, each 8x8 block is examined to
determine how many connected regions are inside it. There are two acceptable

situations to classify a block as a sharp edge block:
1. If a block has one edge area and two non-edge areas
2. If a block has one edge area and one non-edge area

Figure 3.8 illustrates these situations, where the shaded area represents sharp edge
pixels. If any of these conditions is not met then the block is classified as a texture
block. To decrease the classification error, any edge area of a size less than two
pixels is considered as a non-edge area. This consideration is not allowed in Lynch’s
method [47]. Figure 3.9 and Figure 3.10 show the output of the edge block detector
when original Lena of Figure 1.3 is used as an input.

Errors still can happen, for example: some texture blocks may fall within one
of the two acceptable situations of sharp edge blocks and are classified as sharp edge
blocks as in Figure 3.9, Or some sharp edge blocks may not fall within any of the two

acceptable situations such as if a block has two edge area and three non-edge area
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Figure 3.8: Sharp Edge Block Acceptable Situations

as in the case of a Y shape edge or if the block has one edge area and one non-edge
area where the size of the edge area is one pixel, these blocks are classified as a part
of the texture blocks as shown in Figure 3.10.

In order to minimize such errors, and to put back the wrongly classificd blocks
into their proper categories, the connectivity and the length of the sharp edges should

be checked. This will be discussed in the next section.

3.2.2 Edge Connectivity

There are some problems that are associated with the Edge Block Detection tech-
nique, one of them is that some texture blocks may fall within any of the acceptable
situations of the sharp edge blocs and will be wrongly classified as sharp edge blocks.
With a view of eliminating the block of short edges (which belong to texture blocks)
from sharp edge blocks, edges connectivity within sharp edge blocks are checked,
followed by edge contours construction. Finally, an edge length threshold is used to
reclassify the edges.

For a pixel P(z,y), the 8-neighbors which are defined in Figure 3.11, have the
following coordinates
(z—Ly)h(e-Ly-1)(z—-1Ly+1),(z,y+1),

(z+1Ly),(z+Ly+1),(z+1,y—1),(z,y — 1)

To distinguish between the edges in the sharp edge blocks, each sharp edge (defined
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Figure 3.9: Output of the Edge Block Detector (Sharp Edge Blocks)
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Figure 3.10: Output of the Edge Block Detector (Texture Blocks)
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in section 3.2.1) is labeled by a unique edge identification number. Then, the con-
nectivity between each pixel P(z,y) and its 8-neighbors is checked in a pixel by pixel
bases for all pixels of the sharp edge blocks. If any two edge pixels are connected,
they are Jabeled by the same edge identification number.

Two pixels are said to be connected [5] if they are:
| 1. Adjacent (say, if they are 8-ncignbors).
2. Sharp edge pixels.

To measure the length of each sharp edge in the sharp edge blocks, a contour

is constructed for each sharp edge as will be illustrated in the next section.

3.2.3 Edge Cortour

A contour is defined as the boundary between a sharp edge and its background. For
a sharp edge pixel, if any of its 4-neighboring pixels which are defined in Figure 3.11,
is a background pixel, it is considered as a contour pixel. This check is done for all
pixcls of the sharp edge blocks on a pixel by pixel bases. The 4-neighbors are the
horizontal and vertical neighbors [5] which are defined in Figure 3.11 and whose

coordinates are given by:

(:C+ 11')7($_1ay)v($vy+1))(3:’3/— 1)

The length of an edge can be determined by:

® o @ ® ® @
|

® — ® ® — ®
P(x,y) P(x,y)
N\

o o ® ® ® ®

Figure 3.11: 8-Neighbors and 4-Neighbors of the Center Pixel
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e First: Constructing a contour around that edge.
® Second: Measuring the length of the constructed contour.

Figure 3.12 shows an example of two cdge regions with their edge identification

numbers and their constructed contours.
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Figure 3.12: (a) Two Edge Regions (b) Their Edge Identification Numbers
(c) Their Edge Contours (d) The Edge Identification Numbers of The Contours

Using a contour length threshold T, short edges which are found in the output
image of the edge connectivity test (which are normally texture), can be separated

from long sharp edges. If any only block has short edges inside it, the block is
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recategorized as a texture block. (in this case T, = 30). Figure 3.13 shows the sobel

filtered sharp edge blocks after having the edge length measurement done.

3.2.4 Edge Continuity

Despite the presence of sharp edge pixels inside some blocks, if these blocks do not
fall within one of the two sharp edge block’s acceptable situations, these blocks will
not be classified as sharp edge blocks. For example: if all the pixels inside a block
are sharp edge pixels, or as in most of the cases, if a block has a combination of
sharp edge pixels and texture pixels, these blocks will be classified as texture blocks
by the Edge Block Detector. Such blocks are needed to be recategorized and put
back to their right, category. To do so, the continuity of any edge inside a sharp edge
block is checked with its 8-neighboring texture blocks. This che.k is done in a block
by block bases. If a sharp edge block share a continuous edge with a texture block,
then the texture block is recategorized as a sharp edge block.

First, each 8 x8 block in the sharp edge blocks and texture blocks is divided
into a block frame and a 6x6 “block interior” as shown in Figure 3.14. Then, an
edge is said to be continuous between two neighboring sharp edge blocks if any of
its pixels that are in the block frame area has at least one edge neighboring pixel in
the block frame area of the other block.

All sharp edge blocks should be checked for edge continuity. Figure 3.15 and
Figure 3.16 show the sobel masked images of the sharp edge blocks and the texture

blocks respectively after having the edge continuity test done.

3.2.5 Edge Extraction

Further categorization is done in the sharp edge blocks. Specifically, sharp edges
are extracted from the background of the blocks. This is useful for measuring the

ringing artifact.
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Figure 3.13: The Sharp Edge Region after the Edge Length Test
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Block Frame

6x6 Block
Interior

Figure 3.14: 8x8 Block Division into Frame and Interior

Using the same sharp edge threshold T, that is used in Edge Block Detector
(i.e. Ty = 200), pixels of values greater than or equal to the threshold are labeled

as Sharp Edge Pizels while the rest of the pixels are labeled as Background Pizels.

Figure 3.17 shows the sharp edge pixels of the sharp edge blocks of Figure 3.15.

The block categorization process categorizes an image blocks into three classes:

(Flat Blocks, Sharp Edge Blocks, and Texture Blocks). Table 3.2 shows these classes

and summaries their categorization conditions.

Block Class

Conditions of Acceptance

Flat Blocks

e The sobel magnitude of each pixel in a block is < T;

Sharp Edge
Blocks

e a) A block fall within one of the two acceptable situations:
1) It has one edge area and two non-edge areas
2) It has one edge area and one non-edge area
and
b) The sharp edge inside the block has a contour length > T,
or
e The edge inside a block is a continuity to an edge inside a
neighboring sharp edge block

Texture Area

e All the blocks that do not belong to the Flat Blocks or the
Sharp Edge Blocks

or

e Sharp Edge Block with a sharp edge of contour length < T,

Table 3.2: Blocks Classes and Their Classification Conditions




Figure 3.15: Sobel Masked Image of the Sharp Edge Blocks after the Continuity Test
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Figure 3.16: Sobel Masked Image of the Texture Blocks after the Continuity Test
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Figure 3.17: Sharp Edge Pixels
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3.3 Image Analysis

The blocking artifact is one of the common types of artifacts that block transform
coding produce. It only affects the pixels that lie at the frame of a block which is
defined in Figure 3.14, so it is found reasonable to analyze only the block frame
pixels in order to detect and measure the blocking artifact.

Spatial Information Histograms are plotted for the block frame and the block
interior of each block category of an image as will be illustrated in section 3.3.1. Then
the computation of the amount of horizontal and vertical edges and non-horizontal

and vertical edges will be discussed in section 3.3.2.

3.3.1 Spatial Information Histogram

A 2-dimensional Spatial Information Histogram shows the distributions of intens-
ity and direction of the edges in an image[37). SIHs are discussed previously in
section 2.6.1.

For each block category of an image, two Spatial Information Histograms
SIH(r,0) are plotted. Here r and 6 are the magnitude and the angle of the gradient
respectively. One of the STH(r,8) is plotted for the block frame pixels, while the other
one is for the block interior pixels.

Figure 3.18 shows an example of the construction of a SIH(7,8), where the
horizontal and vertical sobel operators (S,) and (S,) which are discussed in sec-
tion 2.6, are computed for an image pixel P(z,y) (say the results were S, = +m
and S, = —n). Then the bin of the SIH(#,8) which is located at (S4,S,) (in this
case the bin at (+m,-n)) is incremented. In constructing each SIH(r,8), this process
is repeated for all the pixels of the block frame or the block interior that belong to

the block category under analysis.
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Figure 3.18: An Example of a SIH(r,0) Construction
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3.3.2 Edge Measurements

The blocking artifact affects the amount of horizontal and vertical edges of an im-
age while blurring and ringing artifacts affect the amounts of horizontal and vertical
edges as well as non-horizontal and vertical edges of an image. So, the amounts of
horizontal and vertical edges and non-horizontal and vertical edges are very import-
ant.

As previously defined in section 2.6 a feature is a quantity of information
associated with a specified image. The amount of horizontal and vertical edges are

computed using the following feature:

Oho = % S S SIH(r,6) - (3.2)
]

0<eca<r<e 0=%5(k=0,1,23)

where ¢, and ¢, are clipping limits, and p is the number of pixels of the area un-
der analysis. Some times the light presence of the blocking artifact in moderately
compressed images is affected by a non-purely horizontal and vertical edges, where
one of the two sobel operator outputs Sy(z,y) or Sy(z,y) of a pixel P(z,y) is dom-
inating the other (i.e. one has a value away higher than the other). It is thought
to be useful to include an area of a small angle @ around the horizontal and ver-
tical axes of SIH(7,0), so that such pixels which contribute to the blocking artifact
will be considered as a horizontal and vertical edge and will completely isolate the
non-horizontal and vertical edge measurements from being affected by the blocking
artifact. Figure 3.19 shows a graphical representation of the location of the horizontal
and vertical feature (shaded area) in a spatial information histogram.

The amount of non-horizontal and vertical edges are computed using the fol-

lowing feature:
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Onhv =

ST SHH(,0) - r (3.3)
ro@

|-

0<c<r<e 0#%(k=0123)

where ¢,, ¢, and p have the same definition as for equation 3.2.

SI,

2AaI ; SI,

2 Ao

Figure 3.19: Graphical Representation of the Area of the Horizontal and Vertical
Feature (shaded area)

3.4 Impairments Measurements

The Impairment Detection Method requires both original and degraded images for
detecting and measuring impairments. As previously defined in section 2.6, a para-
meter is defined as the result of comparison between two features. Two parameters
are used for detecting blocking, blurring, and spatial edge noise artifacts. These
parameters can be computed by computing the difference between the horizontal and
vertical edges of an original and a degraded images or between the non-horizontal

and vertical edges of an original and a degraded images.

Ghvd — Ghuo Gnhvd — Gnhvo
P hy = —/——— P, nhy = ———
Ghvo Gnhvo
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where o and d are for original and degraded images respectively.
After categorizing the blocks of the image into three categories as described

previously, each category is analyzed for certain type of artifacts. It is expected that

IDM will provide:

e A parameter that will increase in value as the appearance of the blocking

artifact increases in a degraded image,

e A parameter that will increase in value as the appearance of the spatial edge

noise artifact increases in a degraded image, and

e A parameter that will decrease in value as the appearance of the blurring

artifact increases in a degraded image.

3.4.1 Blurring Artifact

This type of impairment can be perceptually noticed in the sharp edge blocks and
the texture blocks of an image as a loss in edge sharpness if an image is moderately
or highly compressed or in the flat blocks when spatial details are lost if an image is

highly compressed. Blurring artifact is measured by checking:
1. P, of block interior of texture blocks.
2. Py of sharp edges in block interior of sharp Edge blocks.

3. Puhy of block interior and block frame of flat blocks (in the case of severe

blurring).

Note that in all of the above chosen locations of measurement only the blurring
artifact contributes to the amount of non-herizontal and vertical edges measured by
Punv. As the blurriness increases in un image more non-horizontal and vertical edge

information are lost from a degraded image yielding an increase in the negativeness

Of Pnhu-
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3.4.2 Blocking Artifact

The blocking artifact is affecting only the block frame areas where it is represented
by purely horizontal and vertical edges. To detect and measure the blocking artifact,
all block frame areas of the three block categories of an image are checked. Py, of the
block frame area determines the amount of blocking that has affected the degraded
image. Since the human visual system is more sensitive to low frequencies [16], a
higher weight can be given to P,, of flat blocks when all of these parameters are put.
together in an equation that simulates the MOS of the subjective tests. Note that
blocking increases the amount of horizontal and vertical edges in the block frame

area of an image yielding an increase in the positiveness of Pj,,.

3.4.3 Spatlial Edge Noise Artifact (Ringing)

Ringing artifact affect the area close to any sharp edge where it contributes to both
horizontal and vertical edges and non-horizontal and vertical edges. For detecting
and measuring the ringing artifact, the background pixels of the sharp edge blocks
are checked. P, of the background pixels of the block interior area determines the
amount of noise that has affected the background of the sharp edge blocks in a de-
graded image. When the effect of ringing artifact increases in a degraded image,
more pixels contribute to the horizontal and vertical edges which increases the pos-
itiveness of Py,. Note that P, can not detect the presence of the ringing artifact
when an image suffers from severe blurring where in that case the spatial information
loss in the non-horizontal and vertical edges of a degraded image is much higher than

the non-horizontal and vertical edges gain caused by the ringing artifact.
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A summary of the required parameters for detecting and measuring blocking,
blurring, and spatial edge noise artifacts as well as the measurement locations for
cach type of artifact are shows in Table 3.3 where f} and { represent an increase and

a decrease in the amount of a parameter respectively.

B [ Blurring | Blocking | Ringing
B Block Py 1
Flat Frame Prpy
Blocks Block P, N
Interior Py i
Block Py, 1
Frame Py
Sharp Edge Sharp P,
Blocks Edges Py 4
Background § F, il
_Pnhu
Block Py, fr
Texture Frame Py
Blocks Block P,
Interior Popo !

Table 3.3: Summary of the IDM’s Measurement Locations for Each Type of Artifact

3.5 Simulation Results

Original Lena of Figure 1.3 is used as a source image. PVRG-JPEG CODEC
vl.1 [25] is used to generate the degraded images by adjusting the Q-Factor option.
The Q-Factor and its corresponding compression ratios are d-fined in Appendix A.
For earh image, three type of artifacts are isolated namely* biocking, blurring, and
spatial edge noise (ringing). Also the context of each type of artifact is separated
from each other. Then primitives are computed for each type of artifact in each
artifact’s context and location. Two simulations are done, one for a wedge angle
of a = 5° and the other one when there is no wedge angle i.e. when a = 0°. A

comparison between the two simulation results will present the benefits of inclusion
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of a such small wedge angle around the SIH two principle axes. For both simulations,
Piy and Pyh, are computed using gi, and gup, of equations 3.2 and 3.3 respectively,
where the clipping limits of ¢, = 0 and ¢; = 1 are used. Through this section, all of
the simulation results are plotted in line graphs while the result tables are presented
in Appendix A.

In Section 3.5.1, a discussion on how to evaluate IDM’s results, will be presen-
ted. While Sections 3.5.2, 3.5.3, and 3.5.4 will explain the simmlat,on results of low
frequency blocks, texture blocks, and sharp edge blocks respectively. In cach section,
a discussion of the behavior of its curves, and a comparison between the results of
the two simulations are presented. Figure 3.20 will be used in all of these sections
to illustrate some examples where the arcas of interest are magnified and presented

in Figures 3.27, 3.22, and 3.23. Finally, in Section 3.5.5 a comparison between the

IDM and the IQR will be presented.

3.5.1 Discussion

As the compression ratio is increased for an image, the presence of artifacts in the

reconstructed image wiil increase. So IDM’s results can be evaluated by:

e looking at the reconstructed images and reading the artifacts primitives values.
If the perceptual presence of an artifact increases in a reconstructed image as
the compression ratio increases, then all of its primitives should be monotonic
and should have one to one relation with the perceptual presence of its artifact,
(i.e. the primitive value should reflect any increase or decrease in the perceptual

presence of the artifact that is associated with it).

e having an indication that cach type of artifact is isolated from the rest of
artifacts. Where the presence or the disappearance of a single artifact should

not affect any primitive except its own.
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o being able to measure the primitives of each type of artifacts in different con-

texts.

The context of artifact is a very important image quality factor. It is going
to be used in the second p:oblem solving step discussed in section 1.3.1. As shown
in Table 3.3, IDM separates different types of artifacts into different contexts where
primitives for cach type of artifact are measured. Not necessarily all of these prim-
itives should be used in the second problem solving step. Only the those who isolate
the artifacts and contribute to the amount of perceptual distortion in the context
where sach distortion ic most disturbing to the human observers are going to be

used.
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3.5.2 Low Frequency Blocks Results

Since there are no activity in the blocks of this category, any type of distortion
will be easily perceived by the human eye. As mentioned ecarlier, Blocking and
severe blurring artifact are expected to be detected and measured in this category.
Figure 3.24 shows line graph of the percentage cb .nge of the horizontal and vertical
edges and the non-horizontal and vertical edges oetween the original lena and its
degraded images as the ¢ factor has changed.

As expected, due to the increase of the g factor, there was an increase in the
negativeness of Py, of the block frame and the block interior. As the g factor was
increasing, the degree of blurriness that affected the image was increasing too. As
a result, more non-horizontal and vertical edges were lost in the degraded image
due to blurriness. g,, measured the amount of non-horizontal and vertical edges in
both the original and the degraded images, while Py, detected the loss of the spatial
information. An example is given by looking at the flat blocks of Figure 1.3 and 3.25.
As it is shown, the spatial details were lost in the flat blocks of Figure 3.25. As
shown by the simulation results of Table A.3, the original Lena has a non-horizontal
and vertical edge value of g,,,=15.96 while afier compressing the image with a
compression ratio of 65:1 as in the case of Figure 3.25, the non-horizontal and vertical
edge value has dropped to g,4,=0.00. As shown by this example and from Table A3,
when the image blurriness increased, the amount of non-horizontal and vertical edges
decreased monotonically showing that there were less details in the flat blocks of the
degraded image than of the original image.

Blocking artifact produces pure horizontal and vertical edges, as the blockiness
increases in an image the strength of the pure horizontal and vertical edges increases.
In the simulation, the degree of blockiness increased as the ¢ factor was increasing.
The amount of horizontal and vertical edges are measured by gu,. P, detects the
degree of blockiness that affect the image by measuring the percentage change of

ghv between the original and degraded Lena. An example is given by looking at the
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flat blocks of Figure 3.2 and 3.25. It is shown that the blockiness in Figure 3.25 is
more noticeable due to a higher strength of horizontal and vertical edges. From the
simulation results of Table A.2 it shown that the amount of horizontal and vertical
edges in the block frame of flat blocks of Figure 3.2 was g1,,=5.92 while for Figure 3.25
ny=15.40 which indicates that the strength of the horizontal and vertical edges has
increased showing that the blocking artifact was more noticeable. As shown by this
example and from Table A.2, when the blocking artifact increased in an image the
amount of the horizontal and vertical edges has increased monotonically showing
that the blocking artifact was more noticeable in the flat blocks of the desraded

image.

Discussion

From Figure 3.24, the horizontal and vertical edges of the block interior gained some
value until ¢ = 150. This is due to the presence of horizontal or vertical stripes in
the horizontal or vertical sobel filtered block respectively, which can be explained
by looking at the block in the frequency domain where the presence of coefficients
only at the first column or first row of the DCT block explain the presence of these
stripes. As shown, the amount of horizontal and vertical edges started to decrease
for ¢ < 150. That is because of the horizontal and vertical stripes started to get
blurred and started to loose their edge contents that they have already generated.
An illustrative example is shown in Figure 3.28 where it shows the horizontal
and vertical sobel filter output of a flat area block located at (8,112) of the original
Lena and the degraded Lena of ¢ = 100. The formation of vertical stripes can be
seen in the vertical sobel filter output of the degraded images block at the same
location. This Block is located inside Box 1 of Figure 3.20, where Figure 3.21 shows
the blocks of Box 1. As shown in Figure 3.27, the frequency analysis emphasize the
presence of these vertical stripes, since there is only AC coefficients at the first row

of the DCT block of the degraded image. The DCT coefficients of the original block
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also are shown in Figure 3.27.

By comjaring the results when a = 5° and the results when & = 0° and by
comparing Figure 3.24 and Figure 3.26, it can be seen that an angle of 5 degrees
around the two principal axes of SIH(r,8) did not have any effect on the character-

istics of the curves. All the above discussion is still applied to the simulation results

of a« = 0°.

-312.12 -19.56 —2.86 1.41 -=2.13 241 -0.03 -1.56
5.17 3.43 -2.16 -233 —6.48 7.70 -1.23 -0.06
-1.24  -4.29 3.21 -3.75 —4.06 2.70 1.04 -0.01
-7.47 4.91 0.92 4.41 3.33 242 -3.08 0.37
2,12 -3.45 094 -225 -0.88 —-0.82 —4.58 0.26
3.67 0.3 -0.04 -0.05 3.88 —-3.23 -149 -2.20
-0.70 755 —-1.21 -0.44 425 -1.03 -121 -1.16
2.61 3.47 0.714 -2.08 0.11 -0.13 -1.26 -—2.61

—320.00 --21.8% 0.00 -0.63 0.00 -—1.42 0.00 0.58
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Figure 3.27: DCT Coefficients of the Block Located at (8,112) of the Original Lena
(Left) and the Degraded Lena at -¢ = 100 (Right)
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Figure 3.28: Lor the Block located at (8,112): (a),(c) Horizontal Sobel Filter of the
Original and the Degraded Lena at -¢ = 100 respectively (b),(d) Vertical Sohel Filter
of the Original and the Degraded Lena at -g¢ = 100 Respectively
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3.5.3 Texture Blocks Results

In this category, blurring artifact is expected to be detected and measured, where
blocking and ringing artifact can be casily hidden in this block category for slightly
and moderately compressed images due to the activities of the pixels. From Fig-
ure 3.29, it is shown that as the ¢ factor was increasing, the blurriness of the texture
blocks of the image were increasing too, so the non-horizontal and vertical edges of
the block interior were loosing their edge contents resulting in an increase in the
negativeness of P, of the block interior which represent the fractional change of the
non-horizontal and vertical edges between the original and the degraded images. An
example is given by comparing the feather in Figure 1.3 and 3.30. It is shown that
the sharpness of the edges of the feather was reduced in Figure 3.30. From the simu-
lation results of Table A.5 it is shown that the original Lena has a non-horizontal and
vertical edge value of gnp,=61.90 while after compressing the image with a compres-
sion ratio of 25:1 as in the case of Figure 3.30, the non-horizontal and vertical edge
value has dropped to gnin,=51.21 (i.e. the degraded image lost %17 of its original
value). As shown by this example and from Table A.5, when the image blurriness
increased the amount of non-horizontal and vertical edges decreased monotonically
showing that there were less details in the texture blocks +f the degraded image than

of the original image.

Discussion

Although blocking artifact can be hidden in this category for slightly and moderately
corapressed images, blocking artifact can still be detected and measured in this
category. This doesn’t mean the contribution of blocking artifact primitive of this
category should be taken into consideration. As the ¢ factor increases, stronger
horizontal and vertical edges appear at the block frame of the blocks resulting in an
increase in the degree of blockiness that is aflecting the texture blocks. This was

detected by the continuous increase of the positiveness of Py, of the block frame.
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The amount of horizontal and vertical edges of the block interior in this case
was increasing as the q factor was increasing. This is due to the presence of horizontal
or vertical stripes in the horizontal or vertical sobel filtered block respectively, which
can be explained by looking at the blocks in the frequency domain where the presence
of coefficierts only at the first column or first row of the DCT blocks explain the
presence of these stripes. These stripes are purely horizontal or vertical edges and
it contribute direct'y t¢ gn,. An example that explains what is going on is given
by looking at the texture block located at (11.,168). Box 2 in Figure 3.20 shows
the area of the block of interest, where Figure 3.22 shows the blocks of Box 2. By
looking at the sobel filter output of this block as shown in Figure 3.32, the formation
of vertical stripes can be scen.

As shown in Figure 3.33, the Frequency analysis emphasize the presence of
these vertical stripes, since there is only AC coeflicients at the first row of the DCT
block. The DCT coefficients of the original block also is shown in Figure 3.33.

By comparing the results when @ = 5° and the results when « = 0° and by
comparing Figure 3.29 and Figure 3.31, it can be scen that an angle of 5 degrees
around the two principal axes of STH(r,0) did not have any effect on the character-
istics of the curves. All the above discussion is still applied to the simulation results

of a = 0°.

82



00

(1ous1u) 320|g) AYUdms (JOU3JU] %4008} AUd =
(awesd %20ig) AYudms (3weld %20|g) AU mm

loyped b 5adr

00§ 1174 ooy 0S¢ 00t 0sz 00Z 0st 00l 0s

Ayug Ayd

.. FO
)

Results of Texture Blocks, a

ion

Simulati

.o

Figure 3.29

83



I iovne 330 (\-HI]'I'\‘M{ Lena bsine PYRGIPTGOODEC @ q 150« ITTTARIEN

Pl e o _'-I'I '



(40ua3u) ¥20|g) AYudme (Joualul %20I8) AUd=:
(awesd 320|g) AYudss (dWel4 ¥20[g) AYdm

103084 b n3age

00s 0svy ocY 0s¢ 00¢ 0s¢ 00¢C oSt oot 0s
00

004
0'St
Q2 o o . L - ~ ) °.°N

0's¢

3. 0'0¢
AYuH Md

85

Figure 3.31: Simulation Results of Texture Blocks, a = ®



11 29 12 —4 -5 18 51 59

52 0 —-45 =26 26 27 1 -10

—20) —6 26 47 32 1 -6 0

(a) --10 35 46 20 14 ) 49 50
26 5 ~—15 =35 =21 14 6 -15

7 =29 13 20 32 € -36 -39

-8 -5 6 16 2 =29 =25 —4

28 3 =25 =34 =17 5 23 17

30 37 24 —12 -5 =10 ) a7

32 -2 1 14 20 11 13 46

10 —18 4 51 20 —41 10 44
(b) 40 11 18 32 —10 -23 29 32
62 13 7 -3 5 16 26 15

19 -1 17 0 28 2 =10 27
—16 1 12 18 8§ =35 -1l 46
—-28 -9 35 26 3 -39 15 35

0 12 22 28 28 2 10 5

0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 4

(c) 0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 3

~9 -18 -12 —4 4 12 18 —12

30 2 4 10 14 14 12 -1

36 8 g8 12 12 8 8 1

36 8 8 12 12 8 8 8

d) 36 8 8 12 12 8 8 16
36 8 g8 12 12 8 8 24

36 8 8 12 12 8 8 32

36 8 8 12 12 8 8 39

25 10 12 16 16 12 10 10

Figure 3.32: For the Block located at (112,168): (a),(c) Horizontal Sobel Filter of
the Original and the Degraded Lena at -¢ = 100 respectively (b),(d) Vertical Sobel
Filter of the Original and the Degraded Lena at -¢ = 100 respectively
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Figure 3.33: DCT Coefficients of the Block Located at (112,168) of the Original Lena
(Left) and the Degraded Lena at -¢ = 100 (Right)

3.5.4 Sharp Edge Blocks Results

In this category blurring is expected to be seen at the sharp edges while ringing,
is expected to be seen at the background pixels. As expected, when the ¢ factor
increased, the strength of the non-horizontal and vertical edges of e sharp edges
was affected by the blurriness and decreased in value. Figure 3.34 shows that the
negativeness of P, of the sharp edges was increasing for the same reason.  An
example is given by looking at the sharp edge blocks of Figure 1.3 and 1.5, As it is
shown in Figure 1.5, the sharpness of the edges of Lena was reduced (e.g. the edge of
Lena’s right shoulder). From the simulation results of Table A.7 it is shown that the
original Lena has a non-horizontal and vertical edge value of g, =124.99 while after
compressing the image with a compression ratio of 42:1 as in the case of Figure 1.5,

the non-horizontal and vertical edge value has dropped to ., =111.30 (i.c. the
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degraded fiage lost %11 of its original value). As shown by this example and from
Table A.7, when the image blurriness increased the amount of non-horizontal and
vertical edges decreased monotonically showing less sharpness and less strength for
the sharp edges of the sharp edge blocks in the degraded image than in the original
image.

Ringing artifact can be checked by comparing the background pixels of the ori-
ginal blocks to the background pixels of the degraded blocks, as shown in Figure 3.34
the horizontal and vertical edges gy, and the non-horizontal and vertical edges gni.
have gained some value until a certain g factor level (in this case ¢ = 150). This
shows that the spatial edge noise was affecting the background. When the ¢ factor
increased, g, was increasing too, resulting in an increase in the positiveness of P, of
the background, and showing an increase in the degree of the spatial edge noise. At
the same time, gni, was affected by the blurriness and kept loosing its edge contents,
resulting in a decrease of Py, of the background. An example is given by looking
at the sharp edge blocks of Figure 1.3 and 1.5. The ringing artifact can be noticed
near the edge of Lena’s right shoulder in Figure 1.5. From the simulation results
of Table A.8 it is shown that the original Lena has a horizontal and vertical edge
value of g, =4.07 while after compressing the image with a compression ratio of 42:1
as in the case of Figure 1.5, the horizontal and vertical edge value has increased to
gv=10.82 (i.e. the degraded image has gained %166 of its original value showing
more activity). As shown by this example and from Table A.8, when the image com-
pression increased the amount of horizontal and vertical edges of the background
pixels increased monotonically showing more and stronger horizontal and vertical
edges were gained by the background pixels of the sharp edge blocks in the degraded
image than in the original image which indicates stronger presence of the ringing

artifact.
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Discussion

As the blurriness increases, the horizontal and vertical edge contponents of the pisels
will decrease. Some pixels will loose one of their two edge components before the
other one, which will make these pivels contribute to the amount of the horizontal
and vertical edges gn, and increase it. This was the case for Py, of the sharp edges
in Figure 3.34 where its value increased as the ¢ factor was inereasing.

Blocking is less perceivable in this category than in flat blocks category, hat it
is still can be detected and measure in this category. Again, the degree of blockiness
increased as the quantization level of the CODEC was increasing. I'rom the table ALG,
the strength of the horizontal and vertical edges of the blocks frame increased showing,
more blockiness and resulting in an increase in the positiveness of Py, of the block
frame. In this case, g,1, of the block frame wasn’t affected by the blurriness and had
a small increase which made it contribute to the degree of blockiness.

Box 3 of Figure 3.20 shows an example of the sharp edge area blocks. Fig-
ure 3.23 shows the block which is located at (40,224), this block will be used as an
example to show what is going on in the sharp edge area blocks. By looking at the
sobel filter output of the original block shown in Figure 3.36 and of the degrade block
at -¢ = 100 shown in Figure 3.37 (a) and (c), one can see thal the non-horizontal
and vertical pixels of the block interior formed a horizontal and vertical stripes in
the horizontal and vertical sobel uperators outputs respectively. The spatial edge
noise that can be seen in this block is a result of the existence of these stripes. From
Figure 3.37 (b) and (d), the block has lost all of its vertical edge component in the
block interior and most of it in the block frame as a result of the increase in the ¢
factor which introduced more blurriness to the image. That cansed an increase in gy,
and Py, of the block interior and the block frame as can be seen in Figure 3.34. An
explanation to what happened is that by looking at Figure 3.38 (c) the cocfficients
are only at the first column of the DCT block of the degraded image of ¢ = 400.

By comparing the results when a = 5° and the results when a = 0° and by
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Figure 3.36: For the Block Located at (40,224): (a) Horizontal Sobel Filter of the
Original Lena (b) Vertical Sobel Filter of the Original Lena
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Figure 3.37: For the Block Located at (40,224): (a),(c) Horizontal Sobel Filter of
the Degraded Lena at -g = 100 and 400 respectively (b),(d) Vertical Sobhel Filter of
the the Degraded Lena at -q¢ = 100 and 400 respectively
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comparing [igure 3.31 and Figure 3.35, it can be scen that an angle of & degrees
around the two principal axes of S7H(r,0) did not have any etfect on the chatacte

istics of the curves. All the above discussion is still applied to the simulation results

of a = Q°,

3.5.5 IDM vs. IQR

In the following sections, the compression ratio of cach block category is inereased,
one block category at a time, and the rest of the image blocks are left without com
pression. Then IDM and IQR simulations are carried out to illustrate the superiority
of IDM over IQR. Such type of compression is practically done by the compresson
where it coinpress certain parts of the image more coarsely than the other parts,
based on a decision the compressor takes about the importance of cach part to the

user.

Compressing the Texture Blocks

In original Lena, the feather blocks of Lena’s hat were compressed coarsely Fig

ure 3.39) where blocking artifact is introduced by compressing the feather blocks
using PVRG-JPEG CODEC with -q = 200. In this simulation, the amount of com

pression is increased step by step where for each step the primitives of 1DM and
the parameters of IQR are computed. IFrom the masking phenomenon of vision, it
is known that texture blocks will mask most of the degradation, i.e. the degradation
will not be noticeable unless it is severe. But from Figure 3.40, the IQR indicated
that the whole image suffers from blocking artifact (which is not true), while from
the same figure one can notice that IDM indicated that only the texture blocks of
the reconstructed image suffer from blocking artifact. For example, the fractional
change of horizontal and vertical edges between the original Lena and the image of
Figure 3.39 computed by Melcher and Wolf method is P, =1.26 indicating global
blocking. While the IDM show that the fractional change of horizontal and vertical
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edges in the block frame of the texture blocks between original Lena and the image of
Figure 3.39 is ,,=1.27 while for flat blocks /%,=0.00 showing that blocking artifact
affected only the texture blocks of the degraded image.

Since the flat blocks of the reconstructed 1.nage do not indicate that they suffer
from blocking artifact as it can be seen from Figure .40, so IDM do not indicate that
the reconstructed image suffers from blocking. As it can be seen in this case, IQR
gave a false detection for blocking artifact and it couldn’t determine the context
nor the location of error, while IDM determined the context and the location of
degradation and gave the user a chance to decide if this type of degradation in that

context and location should be taken into account or not.

Compressing the Sharp Edge Blocks

In this example, ringing and blocking artifacts are introduced to the sharp edge blocks
of Lena as in Figure 3.41 where the sharp edge blocks are compressed using PVRG-
JPEG CODEC with -q = 300. In this simulation, the amount of compression is
increased step by step where for each step the primitives of IDM and the parameters
of IQR are computed. From Figure 3.42, it can be seen that QR indicated that the
whole image of Figure 3.41 suffers from light blocking artifact, while IDM indicated
that only the sharp edge blocks of Figure 3.41 suffer from blocking artifact and
ringing artifact which are presented by Py, of the block frame and the background
pixels respectively. For Figure 3.41 the fractional change of horizontal and vertical
edges between the original Lena and the degraded image computed by Melcher and
Wolf method is P,,=0.11 indicating light global blocking. While the IDM show that
the fractional change of horizontal and vertical edges in the block frame of the sharp
edge blocks between original Lena and the degraded image is Py, =0.36 indicating
that blocking artifact is affecting the sharp edge blocks. While the fractional change
of horizontal and vertical edges in the background pixels of the sharp edge blocks

between original Lena and the degraded image is Pi,=1.17 indicating that ringing
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artifact is affecting the sharp edge blocks.

As it can be seen in this case, IQR gave a false detection for blocking artifact
and it couldn’t determine the context nor the location of error, in addition 1QR
couldn’t detect or measure the ringing artitact. While IDM determined the context
and the location of degradation in addition to the type of degradation since it detected
blocking and ringing artifact and showed that these artifacts are present in the sharp

edge blocks of the reconstructed image.

Compressing the Flat Blocks

In this example, the flat blocks of lena are compressed coarsely. As a result, the flat
blocks suffered from blocking and blurring artifacts. Figures 3.43 and 3.44 shows
Lena where the flat blocks arc compressed using PVRG-JPEG CODEC with -q =
250 and 450 respectively. In this simulation, the amount of compression is increased
step by step where for each step the primitives of IDM and the parameter of IQR
are computed. From Figure 3.45, it can be seen that IQR indicated that the whole
image suffers from blocking and slight blurring. While from the same Figure, IDM
indicated that the flat blocks of lena suffer from blocking artifact and from severe
blurring artifact where as in the case of Figure 3.44, the whole spatial details of the flat
blocks were wiped out. For example, the fractional change of horizontal and vertical
edges between the original Lena and the images of Figures 3.43 and 3.44 computed
by Melcher and Wolf method are P,,=0.25 for both indicating that there no change in
the degree of blockiness (which can be seen that it is not true). Again Pyp,=-0.11 for
both images indicating hat there no change in the degree of blurriness (also it can be
seen that it is not true). While the IDM showed that P,,=3.45 for Figures 3.43 and
P,,=4.67 for Figures 3.44 which shows that the degree of blockiness has increased.
For blurriness Py4,=-1.00 for both images indicating that all the spatial information
in the flat blocks were wiped out. It can be seen that although there were no spatial

detail left in the flat blocks, the IQR could not show that, instead it showed a light
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blurriness affecting the degraded images.

It can be seen that although the blocking and blurring were severe in some
of the images, the IQR couldn’t present it and couldn’t determine the location of
degradation. Again in this case, IDM shows superiority over IQR in producing
monotonic primitives that measure the amount of the degradation and determine the

context and the location of degradation.

3.5.6 Results of Other Images

Different ir..ages are used in IDM’s simulation namely: Lena, Pepper, Bank, Girl,
and House images shown in Figures 1.3, 2.3, 3.46, 3.47, and 3.48 respectively. All
of input images produced similar successful output results. Note that the simulation

results for different type of images are shown in Appendix A.
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3.6 Conclusions

From the simulation results, it can be concluded that the Impairment Detection
Method succeeded in isolating three types of impairments, namely: Blocking, Blur-
ring, and Spatial edge noise (Ringing). Also, it succeeded in isolating the context
and the locations of the artifacts. In addition, the IDM primitives are good meas-
ures since they showed that they are monotonic and have one to one relation with
the perceived distortions.

The goals set in the problem solving mechanism were achieved. From all
the above, the Impairment Detection Method showed superiority over its original
method (the Impairment Quality Rating). When only a certain part of an image
is compressed, IQR appeared to be mainly dealing with the artifacts vi the texture
blocks of that image.

Finally, the extension of the horizontal and vertical edges measurement region
in the spatial information histogram SIH(r,0) by a wedge angle a around the two

principal axes does not provide any help.
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Chapter 4

Conclusions and Further Research

4.1 Conclusions

The main work in this thesis is a first step toward sol ving the problem of objectively
evaluating the subjective goodness of transform coding compressed images. From
experimental results presented earlier and in Appendix A, the first problem tackling
step mentioned in section 1.3.1 was successfully addressed by the DM,

The measurement of three types of artifacts that are common with transform

coding techniques were successfully isolated from each other:
1. Blocking Distortion.
2. Blurring.
3. Spatial Edge Noise (ringing).

and the masking phenomenon of vision was taken into consideration by successfully
determining and isolating the context of artifacts. Also from the simulation results,
the measured primitives for each type of artifact of different images were monaotonic
and had one to one relation with the perceived distortions. So it can be concluded

that the goals set in the probiem tackling mechanism of section 1.3.1 were achieved.
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When only certain part of an image was compressed, the Impairment Quality
Rating appeared to be mainly dealing with the artifacts that were affecting the texture
area of that image and it didn’t give a correct detection and measurement of these
artifacts. In addition, IQR was not able to detect the spatial edge noise artifact.

Using the evaluation criterion set carlier in section 1.3.2, it can be shown that
the primitives produced by the IDM are good measures. And from all the above, the
IDM showed superiority over its original method (the lmpairment Quality Rating).

The DM is similar to the objective measures that are introduced earlier in
Chapter 2 by the means of utilizing the properties of the Human Visual System.
Although, the IDM is similar to the PQS, Hosaka plots, and Eskicioglu charts in
computing different error factors, it does not combine these factors in an equation
that simulates the Mean Opinion Score of subjective evaluations yet as in the case of
the PQS, and it is different than Hosaka plots, and Eskicioglu charts by producing
numerical primitives output that will be combined in the future in an equation that
simulates the MOS, where each primitive can be given different weighting depending

on how each type of artifact is weighted by the HVS.
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4.2 Further Research

In order to achieve better impairments detection and measurement, and to reach
an image quality rating that produces a single number that is highly correlate with

subjective measurements results, the following tasks are recommended in the future:

MOS Emulation

All the developed artifacts primitives should be integrated into an equation that
correlates well with subjective results and should emulates the Mean Opinion Score
(MOS) of the subjective evaluations. This can be achieved through the utilization of
joint statistical analysis (regression analysis) of the subjective and objective data sets.
This step identifies a subset of the candidate objective measurements that provide
useful image quality information. Then the best measurement will be selected by
exhaustive search.

Subjective evaluation results are needed in order to be able to use statistical
analysis to put the developed artifacts primitives together in a single equation that
reflects the MOS. Such results are not commonly available, so subjective evaluation
tests need to be carried out properly despite the fact that such tests are expensive
and time consuming. These test can be conducted by setting certain fest conditions
such as the test room size, the size of the display, the viewing distance, the viewing
angle, number of assessors, and the testing images.

The human eye weights image impairments in a non lincar and a complex
way based on their type and their location in an image. For example, subjective
studies showed that blocking distortion is ten times more objectionable than eqnal
energy white noise [18] and blocking artifact is more noticeable and objectionable
in flat areas than in detailed areas. Such non linearity can be tackled by non-
linear regression analysis where different weights are assigned to the primitives of

an artifact based on the artifact context and location, and by assigning different
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weights for different primitives that are associated with different types of artifacts.

Investigation on weighting the developed artifacts primitives should be done.

Inclusion of More Types of Artifacts

Sensitivity to other types of artifacts such as edge discontinuity and coior errors
should be studied. Adding more primitives to the IDM to cover more types of
impairments would make the IDM produce more precise output that is in higher
correlation with subjective evaluation results. Edge discontinuity should be checked
at the block frame of two adjacent blocks where if an edge is continuous through
certain pixels at the block frame of two adjacent blocks in an original image they
should remain continuous through the same pixels location at the block frame of the
corresponding two adjacent blocks of a reconstructed image.

There are certain types of color artifacts that are associated with transform
coding techniques such as color bleeding which occurs near at sharp edges and color
fading which is a global error that covers the whole image. Color bleeding artifact can
be checked my measuring the the gain in the chrominance energy at the corresponding
location of sharp edges in the chrominance part of a reconstructed image. While color
fading artifact can be measured by computing the amount of loss in the chrominance
energy of the whole reconstructed image.

In order to extend the use of IDM to moving pictures, temporal artifacts such
as mosquito noise [11] and jerkiness [11] should be studied. The presence of ringing
artifact in some consecutive frames of a sequence of images, would develop the
mosquito noise artifact, so by measuring the change in ringing artifacts in each
frame, the mosquito noise artifact can be measured. Jerkiness artifact are perceived
by an observer when a an originally smooth and continuous motion is perceived as
a series of distinct snapshots. Such artifact can be measured by checking the frame

repetition.

112



Practical Problems and Refining

Some CODECs result in a spatially shifted reconstructed images. So the addition of
a technique that check and correct the spatial coordination of reconstructed images
with respect to original images prior to categorization of image blocks should be
investigated. A spatial coordination correction can be achieved by choosing a block
of certain size in an original image, then trying to find the its corresponding matching
block in the reconstructed image. By checking the coordination of the block in the
original image and the constructed image, the amount of horizontal and vertical shifts
can be determined.

The use of adaptive techniques to determine the required IDM threshold values
such as: sharp edge threshold (7,) and contour length threshold (7.) should be
investigated. Adaptive techniques that adjust threshold values lead to a better and
more precise results. For the sharp edge threshold it can be determined in a block
by block basis by checking the maximum and the minimum gray level of the cight
surrounding blocks of the sobel image. Contour length threshold can be determined
by checking the width and the length of the image, the maximuin, and the minimum
lengths of the contours of the sharp edges in sharp edge blocks output of the edge

block detector.
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Appendix A

IDM and IQR Simulation Results

This appendix contains the simulation results of the IDM and of Melcher and Wolf’s
Method. T'wo sets of tables are presented, one for the simulation results when o = 5°
and the other for the simulation results when e = 0°. In addition, the simulation res-
ults of IDM when Bank, Girl, House, and Pepper are used as input images and when
a = 0° are presented. PVRG-JPEG CODEC vl.1 is used to generate the degraded
images required for the simulation, where the output compression ratio is adjusted
by adjusting the (-q) option. The Q-Factor option (-q) specifies a multiplicative
factor for the quantization: each quantization coefficient of the default quantization
matrix is scaled by (-q/50). Table A.1 shows the compression ratios achieved for

different -q factors.

120



[ Degradation " Compression Ratio "
PVRG-JPEG -q 50 11:1
PVRG-JPEG -q 100 18:1
PVRG-JPEG -q 150 25:1
PVRG-JPEG -q 200 31:1
PVRG-JPEG -q 250 36:1
PVRG-JPEG -q 300 42:1
PVRG-JPEG -q 350 49:1
PVRG-JPEG -q 400 53:1
PVRG-JPEG -q 450 59:1
PVRG-JPEG -q 500 65:1

Table A.1: Image Compression Ratios of the Used Q-Factor (—¢)
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Degradation

Block Frame

Ghv Gnhv Pry Pg_hv

NULL 2.36 15.93 N/A N/A
PVRG-JPEG -q 50 2.63 13.13 0.11 -0.17
PVRG-JPEG -q 100 5.92 8.56 1.42 -0.46
PVRG-JPEG -q 150 8.37 6.13 2.55 -0.61
PVRG-JPEG -q 200 9.83 4.82 3.17 -0.69
PVRG-JPEG -q 250 12.51 3.63 4.30 -0.77
PVRG-JPEG -q 300 12.87 2.96 4.45 -0.81
PVRG-JPEG -q 350 15.14 2.34 5.42 -0.85
PVRG-JPEG -q 400 15.14 2.05 5.42 -0.87
PVRG-JPEG -q 450 15.54 1.72 5.58 -0.89
PVRG-JPEG -q 500 15.40 1.40 5.53 -0.91

Table A.2: Lena, Low Frequency Blocks (Block Frame), a = 5°

Degradation

Block Interior

Ghv Gnhv 7Jhu Pnjw

NULL 2.37 15.96 N/A N/A
PVRG-JPEG -q 50 3.63 10.27 0.53 -0.35
PVRG-JPEG -q 100 5.46 3.22 1.30 -0.80
PVRG-JPEG -q 150 5.33 1.15 1.25 -0.93
PVRG-JPEG -q 200 4.91 0.49 1.07 -0.97
PVRG-JPEG -q 250 3.59 0.13 0.51 -0.99
PVRG-JPEG -q 300 2.95 0.05 0.24 -1.00
PVRG-JPEG -q 350 2.20 0.03 -0.07 -1.00
PVRG-JPEG -q 400 1.62 0.04 -0.32 -1.00
PVRG-JPEG -q 450 1.36 0.00 -0.43 -1.00
PVRG-JPEG -q 500 1.29 0.00 -0.46 -1.00

Table A.3: Lena, Low Frequency Blocks (Block Interior), a = 5°
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Degradation

Block Frame

Ghy Gnhv Dy Pune
NULL 9.26 60.69 N/A N/A
PVRG-JPEG -q 50 10.03 59.93 0.08 -0.01
PVRG-JPEG -q 100 11.13 58.23 0.20 -0.04
PVRG-JPEG -q 150 12.75 57.06 0.38 -0.06
PVRG-JPEG -q 200 14.66 56.04 0.58 -0.08
PVRG-JPEG -q 250 16.86 54.34 0.82 -0.10
PVRG-JPEG -q 300 19.21 52.82 1.07 -0.13
PVRG-JPEG -q 350 20.81 51.37 1.25 -0.15
PVRG-JPEG -q 400 23.19 49.90 1.50 -0.18
PVRG-JPEG -q 450 24.02 48.90 1.59 -0.19
PVRG-JPEG -q 500 25.49 46.29 .75 -0.24
Table A.4: Lena, Texture Blocks (Block Frame), o = 5°
Degradation Block Interior
Ghv Gnhv Phu Pn.hu
NULL 9.30 61.90 N/A N/A
PVRG-JPEG -q 50 10.73 60.93 0.15 -0.02
PVRG-JPEG -q 100 13.20 56.25 0.42 -0.09
PVRG-JPEG -q 150 15.59 51.21 0.68 -0.17
PVRG-JPEG -q 200 17.62 47.02 0.89 -0.24
PVRG-JPEG -q 250 19.20 42.74 1.06 -0.31
PVRG-JPEG -q 300 20.15 40.21 1.17 -0.35
PVRG-JPEG -q 350 21.28 36.74 1.29 -0.41
PVRG-JPEG -q 400 22.24 33.72 1.39 -0.46
PVRG-JPEG -q 450 22.22 30.80 1.39 -0.50
PVRG-JPEG -q 500 22.38 27.98 1.41 -0.59

Table A.5: Lena, Texture Blocks (Block Interior), a = 5°
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Degradation

Block Frame

Ghv Gnhv Dhy Dby

NULL 10.18 83.55 N/A N/A
PVRG-JPEG -q 50 11.34 84.55 0.11 0.01
PVRG-JPEG -q 100 12.44 86.05 0.22 0.03
PVRG-JPEG -q 150 12.86 87.92 G.26 0.05
PVRG-JPEG -q 200 14.15 89.10 0.39 0.07
PVRG-JPEG -q 250 16.82 §8.59 0.65 0.06
PVRG-JPEG -q 300 18.27 89.41 0.79 0.07
PVRG-JPEG -q 350 20.32 88.90 1.00 0.06
PVRG-JPEU -q 400 20.89 90.74 1.05 0.09
PVRG-JPEG -q 450 22.60 90.81 1.22 0.09
PVRG-JPEG -q 500 24.31 90.97 1.39 0.09

Table A.6: Lena, Sharp Edge Blocks (Block Frame), a = 5°
Block Interior
Degradation (Sharp Edge Pixels)

Ghv Gnhv P, Pulw

NULL 9.54 124.99 N/A N/A
PVRG-JPEG -q 50 9.46 125.61 -0.01 0.01
PVRG-JPEG -q 100 11.19 122.63 0.17 -0.02
PVRG-JPEG -q 150 12.18 119.55 0.28 -0.04
PVRG-JPEG -q 200 12.11 118.20 0.27 -0.05
PVRG-JPEG -q 250 13.89 113.12 0.46 -0.09
PVRG-JPEG -q 300 14.64 111.30 0.53 -0.11
PVRG-JPEG -q 350 18.06 105.12 0.89 -0.16
PVRG-JPEG -q 400 18.74 103.44 0.96 -0.17
PVRG-JPEG -q 450 22.69 97.69 1.38 -0.22
PVRG-JPEG -q 500 25.13 94.59 1.63 -0.24

Table A.7: Lena, Sharp Edge Blocks (Sharp Edge pixels), a = 5°
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Degradation

Block Interior
(Background Pixels)

Ghv Inhv P.hu Pnlm

NULL 4.07 24.90 N/A N/A
PVRG-JPEG -q 50 4.70 27.04 0.15 0.09
PVRG-JPEG -q 100 5.49 27.65 0.35 0.11
PVRG-JPEG -q 150 6.73 27.71 0.65 0.11
PVRG-JPEG -q 200 8.20 26.83 1.01 0.08
PVRG-JPEG -q 250 9.90 25.46 1.43 0.02
PVRG-JPEG -q 300 10.82 24.87 1.66 0.00
PVRG-JPEG -q 350 11.50 24.06 1.83 -0.03
PVRG-JPEG -q 400 12.03 23.71 1.96 -0.05
PVRG-JPEG -q 450 12.72 23.12 213 -0.07
PVRG-JPEG -q 500 12.96 92.08 5.18 011

Table A.8: Lena, Sharp Edge Blocks (Background pixels), a = 5°

Degradation Jhv Inhv Phy Fony
NULL 6.66 46.13 N/A N/A
PVRG-JPEG -q 50 7.61 44.38 0.14 -0.04
PVRG-JPEG -q 100 9.54 40.66 0.43 -0.12
PVRG-JPEG -q 150 11.05 38.37 0.66 -0.17
PVRG-JPEG -q 200 12.27 36.77 0.84 -0.20
PVRG-JPEG -q 250 13.63 34.83 1.05 -0.25
PVRG-JPEG -q 300 14.43 33.76 1.17 -0.27
PVRG-JPEG -q 350 15.50 32.29 1.33 -0.30
PVRG-JPEG -q 400 16.27 31.17 1.44 -0.32
PVRG-JPEG -q 450 16.68 30.01 1.5] -0.35
PVRG-JPEG -q 500 17.13 28.53 1.57 -0.38

Table A.9: Lena, Simulation Results of IQR, o = 5°
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Degradation

Block Frame

Ghv Gnhv th P’L’i

NULL 0.78 17.31 N/A N/A
PVRG-JPEG -q 50 1.08 14.68 0.38 -0.15
PVRG-JPEG -q 100 4.52 9.77 4.80 -0.44
PVRG-JPEG -q 150 7.54 6.96 8.67 -0.60
PVRG-JPEG -q 200 9.09 5.55 10.70 -0.68
PVRG-JPEG -q 250 11.91 4.23 14.30 -0.76
PVRG-JPEG -q 300 12.33 3.50 14.80 -0.80
PVRG-JPEG -q 350 14.68 2.81 17.80 -0.84
PVRG-JPEG -q 400 14.74 2.4 17.90 -0.86
PVRG-JPEG -q 450 15.22 2.03 18.50 -0.88
PVRG-JPEG -q 500 14.96 1.83 18.20 -0.89

Table A.10: Lena, Low Frequency Blocks (Block Frame), a = 0°

Degradation

Block Interior

hv Gnhy Py Fohy

NULL 0.90 17.24 N/A N/A
PVRG-JPEG -q 50 2.72 11.18 2.00 -0.35
PVRG-JPEG -q 100 5.31 3.37 4.90 -0.80
PVRG-JPEG -q 150 5.31 1.18 4.90 -0.93
PVRG-JPEG -q 200 4.90 0.50 4.40 -0.97
PVRG-JPEG -q 250 3.59 0.14 3.00 -0.99
PVRG-JPEG -q 300 2.95 0.05 2.30 -1.00
PVRG-JPEG -q 350 2.20 0.03 1.40 -1.00
PVRG-JPEG -q 400 1.62 0.04 0.80 -1.00
PVRG-JPEG -q 450 1.36 0.00 0.50 -1.00
PVRG-JPEG -q 500 1.29 0.00 0.40 -1.00

Table A.11: Lena, Low Frequency Blocks (Block Interior), a = 0°
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Degradation

Block Frame

Ghv nhv Py, Pny

NULL 0.78 69.18 N/A N/A
PVRG-JPEG -q 50 1.00 69.01 0.28 0.00
PVRG-JPEG -q 100 2.80 66.56 2.59 -0.041
PVRG-JPEG -q 150 4.83 64.98 5.19 -0.06
PVRG-JPEG -q 200 7.09 63.60 8.10 -0.08
PVRG-JPEG -q 250 9.64 61.56 11.40 -0.11
PVRG-JPEG -q 300 11.99 60.04 14.40 -0.13
PVRG-JPEG -q 350 14.24 57.94 17.26 -0.16
PVRG-JPEG -q 400 16.84 56.25 20.60 -0.19
PVRG-JPEG -q 450 18.27 54.65 22.40 -0.21
PVRG-JPEG -q 500 19.78 52.00 24.36 -0.25

Table A.12: Lena, Texture Blocks (Block Frame), o = 0°
Degradation Block Interior

Ghy Gnhy Ph.u Pnlm

NULL 0.80 70.40 N/A N/A
PVRG-JPEG -q 50 1.81 69.86 1.26 -0.01
PVRG-JPEG -q 100 6.01 63.44 6.51 -0.10
PVRG-JPEG -q 150 9.27 57.53 10.59 -0.18
PVRG-JPEG -q 200 12.34 52.30 14.40 -0.26
PVRG-JPEG -q 250 14.81 47.12 17.50 -0.33
PVRG-JPEG -q 300 16.27 44.08 19.34 -0.37
PVRG-JPEG -q 350 17.60 40.42 21.00 -0.43
PVRG-JPEG -q 400 19.33 36.63 23.16 -0.48
PVRG-JPEG -q 450 19.64 33.38 23.55 -0.53
PVRG-JPEG -q 500 20.16 30.20 24.20 -0.57

Table A.13: Lena, Texture Blocks (Block Interior), o = 0°
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Degradation

Block Frame

Ihv Gnhv By, Fahy

NULL 0.95 92.78 N/A N/A
PVRG-JPEG -q 50 0.71 95.18 -0.25 0.03
PVRG-JPEG -q 100 0.88 97.61 -0.07 0.05
PVRG-JPEG -q 150 1.70 99.08 0.79 0.07
PVRG-JPEG -q 200 4.25 99.01 3.47 0.07
PVRG-JPEG -q 250 6.48 98.94 5.80 0.07
PVRG-JPEG -q 300 8.69 98.98 8.15 0.07
PVRG-JPEG -q 350 10.79 98.43 10.36 0.06
PVRG-JPEG -q 400 12.34 99.29 12.00 0.07
PVRG-JPEG -q 450 14.04 99.37 13.78 0.07
PVRG-JPEG -q 500 16.02 99.26 1586 || 0.07

Table A.14: Lena, Sharp Edge Blocks (Block Frame), a = 0°
Block Interior
Degradation (Sharp Edge Pixels)

Ghv nhv Pb._u 7571:.’111

NULL 0.38 134.14 N/A N/A
PVRG-JPEG -q 50 0.31 134.76 -0.18 0.00
PVRG-JPEG -q 100 1.75 132.07 3.61 -0.02
PVRG-JPEG -q 150 4.25 127.47 10.18 -0.05
PVRG-JPEG -q 200 5.48 124.84 13.42 -0.07
PVRG-JPEG -q 250 7.35 119.66 18.34 -0.11
PVRG-JPEG -q 300 10.06 115.88 25.47 -0.14
PVRG-JPEG -q 350 14.32 108.86 36.68 -0.19
PVRG-JPEG -q 400 15.16 107.01 38.90 -0.20
PVRG-JPEG -q 450 19.98 100.41 51.57 -0.25
PVRG-JPEG -q 500 22.43 97.29 58.03 -0.27

Table A.15: Lena, Sharp Edge Blocks (Sharp Edge pixels), a = 0°
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Degradation

Block Interior
(Background Pixels)

Ghv nhv Phu Puhu

NULL 0.60 28.37 N/A N/A
PVRG-JPEG -q 50 0.48 31.26 -0.20 0.10
PVRG-JPEG -q 100 1.18 31.96 0.97 0.13
PVRG-JPEG -q 150 2.84 31.59 10.18 0.11
PVRG-JPEG -q 200 4.57 30.46 6.62 0.07
PVRG-JPEG -q 250 6.53 28.82 9.88 0.02
PVRG-JPEG -q 300 7.96 27.73 12.27 -0.02
PVRG-JPEG -q 350 8.87 26.69 13.77 -0.06
PVRG-JPEG -q 400 9.75 25.99 15.25 -0.08
PVRG-JPEG -q 450 10.62 25.21 16.70 -0.11
PVRG-JPEG -q 500 10.99 24.05 17.32 -0.15

Table A.16: Lena, Sharp Edge Blocks (Background pixels), o = (°

Degradation Ghv Gnhv Py, Pupy
NULL 0.82 51.97 N/A N/A
PVRG-JPEG -q 50 1.57 50.42 0.91 -0.03
PVRG-JPEG -q 100 4.27 45.93 4.20 -0.12
PVRG-JPEG -q 150 6.29 43.13 6.67 -0.17
PVRG-JPEG -q 200 8.06 40.98 8.83 -0.21
PVRG-JPEG -q 250 9.75 38.71 10.89 -0.26
PVRG-JPEG -q 300 10.83 37.37 12.21 -0.28
PVRG-JPEG -q 350 12.14 35.65 13.80 -0.31
PVRG-JPEG -q 400 13.22 34.22 15.12 -0.34
PVRG-JPEG -q 450 13.90 32.79 15.95 -0.37
PVRG-JPEG -q 500 14.47 31.19 16.65 -0.40

Table A.17: Lena, Simulation Results of IQR, a = 0°
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Degradation Block Frame

th ﬁt‘hu
PVRG-JPEG -q 50 1.77 -0.23
PVRG-JPEG -q 100 6.00 -0.48
PVRG-JPEG -q 150 8.27 -0.61
PVRG-JPEG -q 200 10.00 -0.68
PVRG-JPEG -q 250 11.46 -0.74
PVRG-JPEG -q 300 11.87 -0.78
PVRG-JPEG -q 350 12.31 -0.80
PVRG-JPEG -q 400 13.00 -0.81
PVRG-JPEG -q 450 13.06 -0.82
PVRG-JPEG -q 500 13.30 -0.82

Table A.18: Bank, Low Frequency Blocks (Block Frame), a = 0°

Degradation Block Interior
th ﬁjnhu
PVRG-JPEG -q 50 3.25 -0.52
PVRG-JPEG -q 100 3.75 -0.87
PVRG-JPEG -q 150 2.55 -0.96
PVRG-JPEG -q 200 1.10 -0.99
PVRG-JPEG -q 250 0.27 -1.00
PVRG-JPEG -q 300 -0.31 -1.00 H
PVRG-JPEG -q 350 -0.55 -1.00
PVRG-JPEG -q 400 -0.73 -1.00
PVRG-JPEG -q 450 -0.82 -1.00
PVRG-JPEG -q 500 -0.96 -1.00

Table A.19: Bank, Low Frequency Blocks (Block Interior), a = 0°
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Degradation Block Frame

PIw Pnhu
PVRG-JPEG -q 50 0.18 0.05
PVRG-JPEG -q 100 2.11 0.05
PVRG-JPEG -q 150 4.58 0.01
PVRG-JPEG -q 200 6.75 -0.01
PVRG-JPEG -q 250 8.58 -0.04
PVRG-JPEG -q 300 10.15 -0.07
PVRG-JPEG -q 350 11.89 -0.11
PVRG-JPEG -q 400 14.26 -0.13
PVRG-JPEG -q 450 14.75 -0.14
PVRG-JPEG -q 500 16.06 -0.18

Table A.20: Bank, Texture Blocks { Block Frame), o« = 0°

Degradation Block Interior

PhT Pnhu
PVRG-JPEG -q 50 1.58 0.03
PVRG-JPEG -q 100 7.13 -0.06
PVRG-JPEG -q 150 11.83 -0.16
PVRG-JPEG -q 200 14.24 -0.22
PVRG-JPEG -q 250 15.44 -0.28
PVRG-JPEG -q 300 16.77 -0.33
PVRG-JPEG -q 350 17.22 -0.38
PVRG-JPEG -q 400 17.59 -0.41
PVRG-JPEG -q 450 18.13 -0.44
PVRG-JPEG -q 500 18.63 -0.47

Table A.21: Bank, Texture Blocks (Block Interior), a = 0°
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Degradation Block Frame

th Pr;hu
PVRG-JPEG -q 50 0.01 0.06
PVRG-JPEG -q 100 1.58 0.08
PVRG-JPEG -q 150 3.46 0.09
PVRG-JPEG -q 200 4.72 0.11
PVRG-JPEG -q 250 7.20 0.09
PVRG-JPEG -q 300 9.28 0.09
PVRG-JPEG -q 350 11.06 0.08
PVRG-JPEG -q 400 11.91 0.08
PVRG-JPEG -q 450 13.88 0.07
PVRG-JPEG -q 500 15.96 0.05

‘able A.22: Bank, Sharp Edge Blocks (Block Frame), a = 0°

Degradation Sharp Edge Pixels
Phy IMV |

PVRG-JPEG -q 50 1.10 -0.01
PVRG-JPEG -q 100 6.34 -0.08
PVRG-JPEG -q 150 10.15 -0.13
PVRG-JPEG -q 200 13.80 -0.18
PVRG-JPEG -q 250 19.27 -0.25
PVRG-JPEG -q 300 22.26 -0.28
PVRG-JPEG -q 350 24.85 -0.33
PVRG-JPEG -q 400 26.01 -0.35
PVRG-JPEG -q 450 27.68 -0.38
PVRG-JPEG -q 500 30.01 -0.41

Table A.23: Bank, Sharp Edge Blocks (Sharp Edge Pixels), a = 0°
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Degradation Background pixels

th Ij-nhv

PVRG-JPEG -q 50 1.19 0.19
PVRG-JPEG -q 100 5.03 0.22
PVRGJPEG -q 150 8.30 0.24
PVRG-JPEG -q 200 11.08 0.25
PVRG-JPEG -q 250 14.27 0.21
PVRG-JPEG -q 300 17.16 0.17
PVRG-JPEG -q 350 18.95 0.13
PVRG-JPEG -q 400 20.00 0.12
PVRG-JPEG -q 450 22.00 0.08
PVRG-JPEG -q 500 23.95 0.03

Table A.24: Bank, Sharp Edge Blocks (Background pixels), « = 0°
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Degradation Block Frame

Pku Pn._hu
PVRG-JPEG -q 50 3.38 -0.28
PVRG-JPEG -q 100 6.75 -0.43
PVRG-JPEG -q 150 9.51 -0.55
PVRG-JPEG -q 200 12.31 -0.59
PVRG-JPEG -q 250 13.75 -0.69
PVRG-JPEG -q 300 14.90 -0.70
PVRG-JPEG -q 350 16.69 -0.79
PVRG-JPEG -q 400 18.84 -0.82
PVRG-JPEG -q 450 19.00 -0.86
PVRG-JPEG -q 500 19.36 -0.88

Table A.25: Girl, Low Frequency Blocks (Block Frame), a = 0°

Degradation Block Interior

b, FPony
PVRG-JPEG -q 50 4.18 -0.51
PVRG-JPEG -q 100 5.94 -0.80
PVRG-JPEG -q 150 6.44 -0.91
PVRG-JPEG -q 200 4.90 -0.95
PVRG-JPEG -q 250 3.64 -0.99
PVRG-JPEG -q 300 2.65 -1.00
PVRG-JPEG -q 350 0.56 -1.00
PVRG-JPEG -q 400 0.32 -1.00
PVRG-JPEG -q 450 0.21 -1.00
PVRG-JPEG -q 500 0.03 -1.00

Table A.26: Girl, Low Frequency Blocks (Block Interior), o = 0°
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Degradation Block Frame

th Pq_ltv
PVRG-JPEG -q 50 0.23 0.01
PVRG-JPEG -q 100 0.38 0.01
PVRG-JPEG -q 150 1.37 0.01
PVRG-JPEG -q 200 3.97 -0.02
PVRG-JPEG -q 250 7.00 -0.06
PVRG-JPEG -q 300 8.87 -0.08
PVRG-JPEG -q 350 12.64 -0.09
PVRG-JPEG -q 400 15.62 -0.12
PVRG-JPEG -q 450 18.09 -0.14
PVRG-JPEG -q 500 23.22 -0.20

Table A.27: Girl, Texture Blocks (Block [rame), a = 0°

Degradation Block Interior

le 7Dnhu
PVRG-JPEG -q 50 0.67 0.01
PVRG-JPEG -q 100 3.81 -0.05
PVRG-JPEG -q 150 8.08 -0.13
PVRG-JPEG -q 200 14.18 -0.23
PVRG-JPEG -q 250 17.74 -0.31
PVRG-JPEG -q 300 20.78 -0.38
PVRG-JPEG -q 350 21.94 -0.42
PVRG-JPEG -q 400 26.35 -0.49
PVRG-JPEG -q 450 28.85 -0.55
PVRG-JPEG -q 500 30.57 -0.61

Table A.28: Girl, Texture Blocks (Block Interior), a = 0°
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Degradation Block Frame

Phu Pnhv
PVRG-JPEG -q 50 0.30 0.05
PVRG-JPEG -q 100 0.89 0.06
PVRG-JPEG -q 150 1.06 0.10
PVRG-JPEG -q 200 1.32 0.10
PVRG-JPEG -q 250 1.48 0.11
PVRG-JPEG -q 300 3.22 0.11
PVRG-JPEG -q 350 5.86 0.12
PVRG-JPEG -q 400 7.00 0.12
PVRG-JPEG -q 450 7.90 0.13
PVRG-JPEG -q 500 8.37 0.16

Table A.29: Girl, Sharp Edge Blocks (Block Frame), a = 0°

Degradation Sharp Edge Pixels
Irhu Pnhu

PVRG-JPEG -q 50 0.09 -0.01
PVRG-JPEG -q 100 0.1 -0.01
PVRG-JPEG -q 150 0.21 -0.04
PVRG-JPEG -q 200 0.32 -0.05
PVRG-JPEG -q 250 0.43 -0.05
PVRG-JPEG -q 300 0.48 -0.05
PVRG-JPEG -q 350 0.57 -0.10
PVRG-JPEG -q 400 2.74 -0.13
PVRG-JPEG -q 450 6.04 -0.18
PVRG-JPEG -q 500 9.30 -0.24

Table A.30: Girl, Sharp Edge Blocks (Sharp Edge Pixels), a = 0°
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Degradation Background pixels

th Pnhu
PVRG-JPEG -q 50 0.01 0.18
PVRG-JPEG -q 100 0.08 0.28
PVRG-JPEG -q 150 0.71 0.33
PVRG-JPEG -q 200 2.33 0.36
PVRG-JPEG -q 250 3.29 0.40
PVRG-JPEG -q 300 4.00 0.41
PVRG-JPEG -q 350 5.82 0.42
PVRG-JPEG -q 400 6.55 0.35
PVRG-JPEG -q 450 8.53 0.37
PVRG-JPEG -q 500 13.63 0.27

Table A.31: Girl, Sharp Edge Blocks (Background pixels), c = 0°
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Degradation Block Frame

PE Pnhu
PVRG-JPEG -q 50 1.67 -0.30
PVRG-IPEG -q 100 3.73 -0.50
PVRG-JPEG -q 150 8.39 -0.70
PVRG-JPEG -q 200 8.00 -0.77
PVRG-JPEG -q 250 4.92 -0.79
PVRG-JPEG -q 300 6.17 -0.83
PVRG-JPEG -q 350 10.20 -0.86
PVRG-JPEG -q 400 13.53 -0.86
PVRG-JPEG -q 450 15.48 -0.87
PVRG-JPEG -q 500 19.33 -0.87

Table A.32: House, Low Frequency Blocks (Block Frame), a = 0°

Degradation Block Interior

th Pnhv
PVRG-JPEG -q 50 1.11 -0.47
PVRG-JPEG -q 100 2.74 -0.85
PVRG-JPEG -q 150 1.48 -0.97
PVRG-JPEG -q 200 0.68 -0.9
PVRG-JPEG -q 250 0.23 -1.00
PVRG-JPEG -q 300 -0.06 -1.00
PVRG-JPEG -q 350 -0.46 -1.00
PVRG-JPEG -q 400 -0.38 -1.00
PVRG-JPEG -q 450 -0.65 -1.00
PVRG-JPEG -q 500 -0.80 -1.00

Table A.33: ilouse, Low Frequency Blocks (:3lock Interior), a = 0°
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Degradation Block Frame
D, ~ Poe |
PVRG-JPEG -q 50 0.05 0.01
PVRG-JPEG -q 100 0.79 -0.01
PVRG-JPEG -q 150 3.75 -0.06
PVRG-JPEG -q 200 6.67 -0.11
PVRG-JPEG -q 250 8.52 -0.14
PVRG-JPEG -q 300 12.15 -0.18
PVRG-JPEG -q 350 16.43 -0.19
PVRG-JPEG -q 400 17.60 -0.24
PVRG-JPEG -q 450 18.07 -0.28
PVRG-JPEG -q 500 19.99 -0.29

Table A.34: House, Texture Blocks (Block Frame), o = (°

Degradation Block Interior

th BL’W ]
PVRG-JPEG -q 50 0.42 0.01
PVRG-JPEG -q 100 2.50 -0.08
PVRG-JPEG -q 130 %90 -0.20
PVRG-JPEG -q 200 11.82 -0.28
PVRG-JPEG -q 250 17.82 -0.37
PVRG-JPEG -q 300 21.32 -0.11
PVRG-JPEG -q 350 25.51 -0.47
PVRG-JPEG -q 400 28.53 052 |
PVRG-JPEG -q 450 30.57 -0.58
PVRG-JPEG -q 500 31.21 -0.58

Table A.35: House, Texture Blocks (Block Interior), o = 0°
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Degradation Block Frame

th Pnhv

PVRG-JPEG -q 50 2.49 0.01
PVRG-JPEG -q 100 4.84 0.04
PVRG-JPEG -q 150 13.29 -0.02
PVRG-JPEG -q 200 15.25 -0.02
PVRG-JPEG -q 250 16.39 -0.02
PVRG-JPEG -q 300 19.13 -0.03
PVRG-JPEG -q 350 24.31 -0.09
PVRG-JPEG -q 400 27.23 -0.09
" PVRG-JPEG —q 450 29.01 -0.10
PVRG-JPEG -q 500 38.14 -0.12

Table A.36: House, Sharp Edge Blocks (Block Frame), a = 0°

Degradation Sharp Edge Pixels
] hy Pn]w

PVRG-JPEG -q 50 8.67 -0.12
PVRG-JPEG -q 100 12.97 -0.19
PVRG-JPEG -q 150 15.13 -0.23
PVRG-JPEG -q 200 16.83 -0.27
PVRG-JPEG -q 250 17.87 -0.29
PVRG-JPEG -q 300 18.79 -0.31
PVRG-JPEG -q 350 23.03 -0.39
PVRG-JPEG -q 400 25.32 -0.45
PVRG-JPEG -q 450 28.57 -0.51
PVRG-JPEG -q 500 32.15 -0.56

Table A.37: House, Sharp Edge Blocks (Sharp Edge Pixels), a = 0°
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Degradation Background pixels
le Pnhu
PVRG-JPEG -q 50 2.03 0.07
PVRG-JPEG -q 100 8.86 0.02
PVRG-JPEG -q 150 13.32 0.02
PVRG-JPEG -q 200 19.77 0.01
PVRG-JPEG -q 250 22.57 0.01
PVRG-JPEG -q 300 23.06 0.00
PVRG-JPEG -q 350 27.92 -0.09
PVRG-JPEG -q 400 30.71 -0.18
PVRG-JPEG -q 450 34.11 -0.24
PVRG-JPEG -q 500 40.52 -0.3

Table A.38: House, Sharp Edge Blocks (Background pixels), o = (°
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Degradation Block Frame

[ P, Py
PVRG-JPEG -q 50 0.45 -0.14
PVRG-JPEG -q 100 4.31 -0.38
PVRG-JPEG -q 150 7.57 -0.55
PVRG-JPEG -q 200 10.37 -0.62
PVRG-JPEG -q 250 14.04 -0.70
PVRG-JPEG -q 300 17.24 -0.75
PVRG-JPEG -q 350 17.28 -0.79
PVRG-JPEG -q 400 17.94 -0.82
PVRG-JPEG -q 450 19.19 -0.83
PVRG-JPEG -q 500 19.20 -0.86

Table A.39: Pepper, Low Frequency Blocks (Block Frame), o = 0°

Degradation Block Interior
phL Pnhu
PVRG-JPEG -q 50 2.17 -0.32
PVRG-JPEG -q 100 5.98 -0.78
PVRG-JPEG -q 150 5.85 -0.92
PVRG-JPEG -q 200 5.33 -0.97
PVRG-JPEG -q 250 3.50 -0.99
PVRG-JPEG -q 300 2.36 -1.00 |
PVRG-JPEG -q 350 1.27 -1.00
PVRG-JPEG -q 400 0.47 -1.00
PVRG-JPEG -q 450 0.14 -1.00
PVRG-JPEG -q 500 -0.39 -1.00

Table A.40: Pepper, Low Frequency Blocks (Block Interior), & = 0°
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Degradation Block Frame

Ppy Funy
PVRG-JPEG -q 50 0.07 0.00
PVRG-JPEG -q 100 0.85 -0.02
PVRG-JPEG -q 150 2.88 -0.0
PVRG-JPEG -q 200 5.95 -0.05
PVRG-JPEG -q 250 10.45 -0.08
PVRG-JPEG -q 300 13.80 -0.10
PVRG-JPEG -q 350 17.75 -0.11
PVRG-JPEG -q 400 22.93 -0.14
PVRG-JPEG -q 450 26.75 -0.16
PVRG-JPEG -q 500 29.23 -0.19

Table A.41: Pepper, Texture Blocks (Block Frame), o = ()°

Degradation Block Interior

th Pnlw
PVRG-JPEG -q 50 0.24 0.00
PVRG-JPEG -q 100 3.18 -0.08
PVRG-JPEG -q 150 7.43 -0.17
PVRG-JPEG -q 200 11.43 -0.24
PVRG-JPEG -q 250 14.61 -0.31
PVRG-JPEG -q 300 17.35 -0.36
PVRG-JPEG -q 350 19.17 -0.41
PVRG-JPEG -q 400 20.64 -0.46
PVRG-JPEG -q 450 21.93 -0.49
PVRG-JPEG -q 500 22.22 -0.53

Table A.42: Pepper, Texture Blocks (Block Interior), o = 0°
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Degradation Block Frame

Pr,, Py
PVRG-JPEG -q 50 0.03 0.03
PVRG-JPEG -q 100 0.26 0.06
PVRG-JPEG -q 150 1.87 0.07
PVRG-JPEG -q 200 3.31 0.09
PVRG-JPEG -q 250 4.66 0.11
PVRG-JPEG -q 300 7.26 0.12
PVRG-JPEG -q 350 8.87 0.13
PVRG-JPEG -q 400 11.61 0.12
PVRG-JPEG -q 450 14.64 0.12
PVRG-JPEG -q 500 19.46 0.10

Table A.43: Pepper, Sharp Edge Blocks (Block Frame), a = 0°

Degradation Sharp Edge Pixels
Dy Pohy

PVRG-JPEG -q 50 4.91 0.00
PVRG-JPEG -q 100 7.91 -0.01
PVRG-JPEG -q 150 30.45 -0.04
PVRG-JPEG -q 200 51.73 -0.06
PVRG-JPEG -q 250 82.09 -0.09
PVRG-JPEG -q 300 112.82 -0.13
PVRG-JPEG -q 350 137.45 -0.16
PVRG-JPEG -q 400 153.55 -0.19
PVRG-JPEG -q 450 195.00 -0.23
PVRG-JPEG -q 500 234.82 -0.28

Table A.44: Pepper, Sharp Edge Blocks (Sharp Edge Pixels), a = 0°
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Degradation Background pixels

P,y Py

PVRG-JPEG -q 50 0.33 0.09
PVRG-JPEG -q 100 1.91 0.13
PVRG-JPEG -q 150 4.16 0.15
PVRG-JPEG -q 200 6.88 0.18
PVRG-JPEG -q 250 10.40 0.17
PVRG-JPEG -q 300 13.70 0.14
PVRG-JPEG -q 350 15.42 0.14
PVRG-JPEG -q 400 17.81 0.10
PVRG-JPEG -q 450 22.02 0.06
PVRG-JPEG -q 500 24.86 -0.01

Table A.45: Pepper, Sharp Edge Blocks (Background pixels), « = 0°
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