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. 1.
. ) CHAPTER I
;s \ INTRODUCTION
& 1.1 GENERAL
- ) , . "
~ The birth ofﬁelternatlng.cunrent power transmission

can be ‘traced back‘to the winter gf 1885-1886, when William

Stanley supplied electric energy to 150 "lamps in the town of

' ’ (300 . :
Barrington, Massachusetts . .

’

& . * From 1920 onwards, tne installed generating capacity
) - -fnd energy production has doubled every ten yeare, so that,
by' 1970, the total annual production figure for‘the Un&ted -
r States was two trillion killowatt houts, and 'total plant and

equipment investment was ninety billion dollars, thus making

Y

it the single largest industry in the world.

< .
. : The North.,American electric energy generation and

i
N distribution facilities have tended‘to be under the control of

the private sector. For example, in the Uniéed States, seventy-
' ¥

v six percent 4f the industry is privately owned. While the

3

situation is" somewhat different in Canada because of pravinc

. ownershlp of the utilities , these public¢ utilities have

.

nevertheless followed the operational philosophy of the private
%

~  sector. v

.3

s Bein§ edther privately owned or under grovincial
P . authorigy;‘the American end Canadian power system structures
P .g L have moved towards total reglonal control and selfysufficiency

and .this has resulted in a contxnent—w1de network with very

)
.
r - .

e
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"in network locad structure will not be studied.

‘to’ reach the new operating point is called " transient period ",

Lo C 2,

weak interconnections and hence one Ahich opeérates with less
~ e
than maximum national efficiency,economy and safe;y(g).

The bontihued ‘growth and complexification of ‘the electric

power industry has made the twin problems of efficiency and

stability 'of paramount importance and this in turn has given

rise to a cofresponding growth in the research effort and\\

number of publications devoted to solutions of these two
(28)

14
questions .

»y .

1.2 PQOWER SYSTEM STABILITY PROBLEM

In non-mathematical terms, the stability problem is

concerned with the behaviour of a system of interconnected
+ :

synchogous generators after some disturbance. A complex power
q

system can sustain flany types of perturbatlons ranging from
the pathologlcal three phase short circuit to ground through

to mild fluctuations in generation power output demand or
- . . N

control variable. For the purpose of this thesis, only stability
. ¢

problems arising from variations in generator demand or contFol

-~

values will be considered, and unstable operation due to .changes
s
- +

The first stablllty proBlem of interest lS one where

a power system with a constant 1oad is mildly perturbed from

its steady state operating condxtlon, causigg the readjustment

of all machine voltage angles. If the period of timé reguired

then the desired stable behav1our is that the generators main=-

4
tainrsyncﬁronism throughout the transient perlod( ).. Durlng . H

-~ oA .

: N E
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*

H .
the transient period the power network undergoes what is

\
réferred to as " dynamic system performance ". o

The second area of concern is the tie line stability

-

problem. Tie lines interconnect groups of machines, whose
& .

angles are in continuous oscillation with respect to each other

becauée of minor operational chanéesJ and these angular varia~-
tions- give rise to power floy fluctuations over the tie lines.
In a stable system the power swings will eventually become
aamped out -and a new stable operating point attained. However,
if the oscillaéions are too largeu the tie line protectign‘
ctiuitry will trip, thereby disconnecting one machine groﬁp

"fro other. The-effect of such an aktion on overall system

. stability is referred to as the " tie line-stability problem "

€
"
f

Due to the structure of the North American power

system, that is, a large power network consisting of many
) . ) .
machine groups with relatively weak interconmnection, transient

periods following a distrubance tend to be large and tie line

oscillations underdémped. This in turn can lead to a chain
LI "f ’ N .

| reactign in which perturbations, propagating from group to
grou§ with ever increading magnitude, trip tie line protection

circuitry, and result, evéntually,'ih total gystem shutdown(z).

1.3 SOME METHODS 'FOR POWER SYSTEM STAEILIZATION
. ~ g :

" With the increased size of power systems, the neefl

has arisen %or a greater degree of control in order to enspre

"stable and uninterrupted operation. Three different methods

“
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for stabilization will be considered and are as follows

1) Adaptive Control -

2) Proportional Feedbac;S

3) Linearized Pole Placement Design.

A detailed analysis of each will not be carried out ,
rather the techniques will merely be outlined in the following

sections and gpme drawbacks of each method will be presented.

1.3.1 Stabilization By Adaptive Control

Af adaptive control scheme for generators is proposed

(13-14)

by Irving et al . The basic parallel reference model

©
adaptive control is ‘shown in Fig. 1.1 and consists of ;

1) A reference model which embodies the desired
— closed-loop system behaviour. ° .

2) A controlled system.

"3) An adaptation mechanism which can adjust the

regulator characteristics. '
' .

4) An'adjustable regulator.
4

While in general,oadaptation techniques are condi-

(20), using hypeﬂ!tability concepts, has

tionally stable, Landau
demonsrated the possibility of designing gnconditionally stable’

adaptive controllers. The requirements of such a design pro-

?

. cedure are : . g ¢

&

'12A\;} lf' Linearized or linear model of the controlled¢ :

system. [ - S

'

2)° All state vgriables of the model must be available

at the output.
s . \

R

. iR
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4.1

.

If the power system is described by a nonlinear

o, , - .
set of differential equations or if .not all the state variables

-
are directly measurabIeK then the known adaptive control

methodology cannot be . implemented. ’

1.3.2 Stabilization Thrpugh Proportiocnal Feedback

' ' ?he method is proposed by Dube (7

.

i

in order to f
) i
improve the dynamic system performance of the Hydro Quebec {
electric power network ( Figure 1.2 ). Y N
This diagram represents the inter-installation pro-

portional feedback technique for a two machine system feeding

an infinite bus. Mathematically the regulator input voltages ;

can be written as s

.

By 7 kg gl Vyomvyd v kd ey T VU H Y :
2 4 ‘ L {
’ i ( 1.1a ) .
‘ By = kg al2]-~["2o Vol * —g- 2 V17V #Y57Vo 1,
where k4, al,,a2 are constant gains and Vlo} VZO are fixg%

reference voltages. The coefficients al and a, are welghtlng

factqn§ Wthh determine the degree of 1nfluence each generator

1

has uan the system as a whole. It is apparent from Egquations

(l.l) that any deviation from the nominal vaiues;Vlogapd Voo -

. ‘

will produce efror signals which will tend eventually %o 'E.

dlsappear. However since no stability analysis wHatsoever,

1

is Qresented for thls type of eontroller, its usefulness fok” -

the power system engineer is only marginal at best,
N ! . . N
\ -

1}

(3]
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1.3.3

Stabilization with the aid of gquasi-linearization

and pole shifting v- I

For the classical model of an n’'generator network the

machine equations are of form

n,
ZHi do, + D,w, =P .—‘[E? G,, + LE
i i1 mi i 7ii i j i3
T j=1 - -
“r at =
Cos (Bi. - Si +§j)] (1.2a)

dé, - =

i=ow, - w i=1,2 ....n (1.2Db)
¢ + R , .

where w,, §. H, and D, are the speed, voltage angle, time

i* Ui, i )
constant and damping coefficient values respectively for gehera-

From Equation(l,2) it appears that 2n differential
eugations are needed in order to describe the complete system.

It is also apparent that the eguations arenonlinear and there-

(2,28)

fore stapdard techniques can be applied to obtain a

quasi-linear state space system of equations of the type

o '_Aa.‘JFOA' bw | L1 F Java B Ap:;l(l.3)
‘ led] - l1o A B 0 o] "

If feedback of thé.form

' 1 F lave Bloap ™19 | b L (1.4)

0] o] 0 -k2 A S .
- - v

is applied to the system described by (l 3) the resultlng model
becomeg :

Aw r~kl A §OAw
A8 = }.1 -k, A8 .

- .
. ?

(105)'
. Pl
and as can ea51ly be verified, its poles may be posxtioned .

in the left half plane by<su1tab1e choice of the gain vectors

P3 ‘
.

. ,_,ms_.mwmmw4 ;,@)
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'lizing control based on a third order linearization. It is

ments. The observer described i%

k and k

]

P
-

While this design technique is valid, the mode&%ﬂg
representation, eSpecia}ly for a faul£ located close to a

generator i tends to be inaccurate(z).
(25)

In order to circumvent

this difficulty Okongwu et al design a feedback 'stabi-

assumed, however, that some states are unavailable for direct

feedback and therefore must be reconstructed»by a Lﬁgnberger
(3)

observer .

. In an alternative approach ‘taken by Takata et al
(31 32,37- 38), the states of a nonlinear electric power system
&
are estimated from a discretized set of previous output measure-

(37), is constructed by
3
expanding and linearizing a five state variable network in a 1

second order Taylor series. -

1.4 SHORTCOMINGS. OF CLASSICAL MODEL . ~

. The classical model given by egquation(l.2) tacitly

assumes a constant generator main field-winding flux linkage.
* . B N \ ’ . P

However, with relatively weak interconneatlons, the power net-

work inertias and transxent perlods have increased from under

one second to at least five or six. secadﬁs(z). For short trans-

sient periods the classlcal model is adequate, but for longer B

time intervals the change in field w1nd1ng flux llnkaqe must be

accounted for. 1In addition the dev;ces used for field voltage S )

excitation control are fast acting and influence the field

s LS
N

' . B T - . o e VR e et mh e s 1 ee————— g ' J v
» "
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winding flux as well as output pawer.

i
~—

Therefore in a subsequent chapter, the seventh

order differential equation representation of the synchronous

5)

machine, based on the work of Concordia( will be developed.

.1.5 VALIDI&Y OF THE HIGH ORDER SYSTEM

In order to better understand the qualitative
behaviour of bower networks from the control engineering
point of view, the usual approach, that is,‘simulation of a
power éystem either by a set of second order models or a single
seventh order genera connected to an infinite bus, is aban-
doned. . The classic;l model, although accurate in representing
machines far removed from an impact centre, fails to faithfully
reproduce the tran;ient behaviour of ‘a real generating system
at the diséurbance point. The isolated seventh order modg%{ on
the other hand, is accurate in characterising-synchrono&s T)
machiﬁé transienﬁ behaviour following disturbagces, but cannhot
provide aﬁy realisticvpicture of the system as a whole. There-
fore the approach taken is to describe the power system ( in
the form of two seventh order generators with interconnections )
as a thirteenth order set of nonlinear differential equations.
This type ofamodei is sufficiently ré&ﬂistic in its reprcduction
of transients at a'point of imbact, as Qell as in its provision

. , 0, '
of 'a good overview of system behaviour. . '

L]

N
i
¢
é
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.
"l.6 OBJECTIVES OF THE THESIS , 7
v ‘ The objectives of the thesis can be summarized
as follows : ) . . ~

1) To show that, under certain conditions, the.
_state vériagﬁes éf an observer for a nonlinear
syStem cidn be used to stabiiize the giyen\system.
sy .

) 2) Develop the nonlinear state space model of a Ewo‘

synchronoué machiffe interconnected power system.. !
3) Design apd implement: in software a nonlinear

observer for the aforementiocned sys , prove
its convergence analyticalfy as well as compﬁta—
tidnall§. ’ - \\

, . + 4) Discuss drawbacks and limitations of thé observer

‘
4 B

~ o<

design anq‘point out areas for further invesﬁigation.

1.7 SCOPE OF THE THESIS ‘

.

2

This thesis is concerned with the design and §off«

.

'
ar

ware implementation of.an observer for.a two generator .inter-

p connected power system inghich each machine is described by

-

L seven first order nonlinear differential equations.

.- L)

T R R W2 e B B

Amodel of the synchronous machine under investigation

_‘ is developed in chapter 2. Since the state variables are
. N

currents, it is tacitly assumed that no saturation effects are

1

DI T e

-‘preéentL Although this somewhat detracts from the accuracy of N

4 E the representation, it is felf that since the objective of the

- thesis is the impleméntation of a nonlinear observer, the

o - . S . -
"‘.t”.'wa‘—; & b ey i, i _ . i A




e
s 7
-

thesis to deviate from the stated aims. -

12.

the exclusion of saturation effeqts does not cause the

) ' |

In Chapter 3 the interconnection equations are

dev;Ippgd and the completé power system is'presented.

f,ﬂP"
%

-

Relevifit definitions and theorems from Lyapunov

stability theory are presented in Chéptgr 4. ‘The nonlinear

Observer design method is demonstrated and convergence of the
3

observer 'states to thensys;ém states is proved analytically.

r

Resuslts of a computer simulation’ of both the system and o

+ observer are tabulated and plots of the state variable

under certain conditions, a system can be 9¢§bilizejﬂaith

» obseryer state feedback.

P . o

trajectories given,

/ o for further research.
L)
;N
§ -
LY ”~ :
.
Iﬁ
LR
T me————n e . ‘ TTrmeAe—

In addition, it is demonstrated that, ‘ t

The final chapter contains conclusions and areas

- -
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amortisseur or damper windings D and Q, all o

s B e g

¢

CHAPTER 2 v

re SYNCHRONOUS MACHINE EQUATIO&S

.3.1 INTRODUCTION

The synchronous- generator cohstitutes oneé of the
basic components of an electric energy system and a detailed

understanding of its dynamic behaviour is essential for the

specialist or engineer involved in power system design(g).

“hile there are several excellent texts, each of which provide
detailed mathematical models of the synchronous machine,(l’j'l7)
»

the development followed in this thesis is essentially due to#

r
Anderson and Fouad(zz Meisel(232 and’Dube(B).

The synchronous machine under consideration i%s-a
three-phase, two-pole device with three stator windings a,B,c,

-]
each located 120 £from the other,one field winding F and two
HX\ which are

magnetically coupled. Note ‘that the F,D and Q coils are con
the rotor. A cross sectional representation of this machine
. e

is given in Figure 2.1. »

2.2 MACHINE INDUCTANCES
.5

-

A co‘ﬁrdinaté system can be introduced in Fig.2.1l
by defining the d-axis of the rotor, at some instant of time,
to be at an angle & with respect to a fixed reference position,
which, for the sake'of convenience, can be the a- winding
axis. Electrically the generator can befregarded as~a'network

t ] ' 1
consisting of six mutually coupTed coils a-a yb-b ,c~c- ,F-F ,

Fp
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ot
D-p and Q-Q.. The flux linkage equations describing these

BiX circuits are written as

I B X ‘7 F 7
. Aa . Laa Lab Lac LaF LaD L Q ia i
“ Py {pa "pb_ Ibe Lor” oo ol b '
’ Al ‘Lca Lep Lee Tor Lep Ldo te A
el |Lra Lep . re JYrr Lpp LFQG tp (2:1)
'o| 'a Top oe Ior pp Ipo|| ip
' AQJ Loa Lob Lge Tgr Top Loo| | g )

8

where Luu indicate self and Luv mitual inductance parameters.

The actual values will be determined according to the method
. ,l;:

oF Thaler 133, ' o ' P
, " .
2.2.1. Rotor Inﬁuctances
» - . . —

1f slot’éffects and saturation are neqglected, the

rotor self-inductances can be shown

The

induc;ance équation of an N - turn ¢ ' of the form(;g)
* N2 uoﬁg" .
L = (2.2)°
d ~
whe;e i = coil inductance ‘ E u\
‘ N = nu@ger of coil turns ‘ A
d = length of path through which magnetic flux
R . ¥ traverses ‘ ' '
u£ - _relative perQ;ability of material médium in
. flux path S,
L | ey = gbsoldfeiperme;bility of free space

\\\ ©
. “ ,
v - '

R I L N ERVNCI 3

. e A
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! 16~

A = effective cross sectional area through which

V4

flux passes.

~ 9
, .

From Figure 2.1 it is apparent that the flux produced by coil
1

3 Y
F-F traverses through both the iron rotor as well as the air
4

gap. The field winding self inductance is then deduced from

Equation (2.2) to be

N b 2
. _ FF N NFF uo A
FF (2.3)
% 2940 :
+ ’da nga
uo“rA~ "o A ‘
¥ y . .
where Lep = Field coil self inductance
¢
Npp . = number of turns of field .winding
"A = effective cross éectional area in flux
direction. ¢ -
2gda = effective flux péth length through air gap

and where note is taken of the fact that hr >> U

1]

A similar set of equations'can be derived for the

is

coils.viz. /
2 . :
. i} NDD Ho A ( 2.4a)
DD
2gda
2
N u_. A'
. QQ "o @
L = 2.4b
Q0 s ( - )
”nga 1

|
A
where subscripts D and Q apply to the D and Q coils respective-

‘ly and qua is the air gap length along the direction aof the -

g - axis in Figure 2.1. "

1 : . . "‘\. ’J‘ .'\'“’\ ‘ [

oL

e
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17, j
) From inspection.of Figure 2,1 and with the aid %
14 ) - ' A cf .
. of Equation (2.2), the rotor mutual inductances are seen to be i
) of the form ; 3
¥ . AJ |
LDQ = LQD = (0] ) . ( 2.%a ) ’
, LFQ = LQF i o} ' - ( 2.5b ) '
' N N_ u_ A
. DD FF "o
\ . | LDF = LFD 2;3\ ( 2.5¢c )
> da | -
. . where\subscripté r!ker to tle appropriate windings.
2.2.1 Stator Inductancgs’{@" .
T - T}'\: IE
A 2
* s
Stator self and mutual inductances, on the other hand, i
' are dependent on rotor angle 8. The flux generated by -current i
i flowing in .an N - turn coil is given by ; ;
. Ny
N, u.ug A . :
6 - i ’r o) t ( 2.6 ) b
d -
@ v , J
%, where A = effective cross sectional area of flux path !
v ' ’ 1
-~ d = effective path length ghat flux traverses
hr = relative permeability of medium 31029 flux
path ‘
“+ M, = absolute permeability of free space.
- Therefore the d, and q components of ¢, produced by
. ') v « . '
, a ‘current i flowing through the Né‘ turn stator winding a-a', A
" are calculated regpectimely as
A ’ —
' Coom
- .‘- .
N 1
. ' 4
Ly ST et i e
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Nal o “o A Cosst Nal uo A Cos6t

- ¢ . = = (2¢7a)
ad
¢ lda * 2gda Mr nga
A "Niu_ M. Asiné_ Niu_ A sing
Cqa * 2gqa Hr ?gqa
where lda = effective flux path length along the d-axis

through the rotor

Rqa = effective flux path length along the g-axis
.. through the rotor
////\\\’" 2gda = effective air gap flux path length along the
' d-axis
| qua = effective air gap flux pafh length along the
g-axis. o s

Equation (2.7) is consistent with the observation
that flux in a magnetic circuit cbnsisting of an iron medium

; | . .
and an air-gap appears mostly in the gap region. Since the

inductance of the statdr coil a-a' is desired, the total flux

impinging on this winding is given by A{p}
¢a = ¢ad Cosf’ + ¢aq sin 6 { 2.8 ) Hy]
. . ’ %
» [

The general induc

‘e equation ~(2.2) can be ' ’ ;

. rewritten in the form

: L o= N (2.9 ).
- ‘ L ;
Then Laa can be computeé from (2.8) a
4 . 2 ) i
L - N2 v A Cos ™8 + S8in 8 ( 2.10 )
aa N a ,o 2g . zg ‘
da ga

P
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However, substituting the trigonometric jidentiti

2, _ Cos .20 + 1

Cos?9 = {2.11a)

2 [
sin%g = L= cosb (2.11b)

2

into Equation (2.10))» the a-3 winding self-inductance then

becomes
L = L + L Cos 26 (2.12) T
aa s m
- , -5
N2y A 1 ' )
where LA ato fl :
s =, + t
2 _?gq? nga J
2
NT u_ A 1, 1
L 4 a’'o .
2 29,4, qua
. -

L]

. * - o
Since coil b-b' ( c-c' ) is displaced by -120
o ' {
(+120 Y from winding a-a', its self inductance can be calculated

by simgly’replacinq,e in‘(2.12) with 8- 21 ( é‘+ 2r ). The
N » T T

values for Lbb ar;d«Lcc can then be written as
. \ -

(

L +L cos 2 (8= 21 )  (2.13a)
s Tm T T

il

Lob

LCC

L 4L cos 2 (6 + 21 ) (2.13b)
=3 m < 3-
¥

" where L and %m have been previously defined,

The mutual inductance between windings a-a' and b-b'

can be ca%sulated as follows ;

1) compute ﬁhe components of flux due to current

H in coil a-a' aléng the d and é axistfespectively

S e b s Mty eanode
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2) project the two flux components onto ‘the

b<b' coil and form the vector sum.
o v ’ , |
After implementing the above procedure and assuming

P

equal turns for each winding, the resulting equation is of the

fotm X ,

a .

Lab = —Ms’- Lm cos 2 (§+ % ) (2.1l4a)

where M
s

[[=g

L cos T -
[] .

The remaining stator mutual,inductances, which are

’

derived by the aforementioned procefure, can be written as ;

L = - Ms-Lmcos 2 (8% 51 ) (2.14b)
ac -,
6
. @ Tr—
, Lbc = - Ms~- Lmcos 2 (8 ~ % ) . L(2.l4c)

where M_ and L have been prevjously defined.

2:2.3 ROTOR - STATOR MUTUAL INDUCTANCES -

LY

-~

The stator-rotor mutual inductances are.easily

calculated with the aid of eqguations of the form of (2.2) and

.@ . 7 - .
and (2.7), that is , t L
NNy A cosb ) (2.15a) - o
, Lar' = lpa- 2 FO
. 4 2 . ) ! ]
L - A Yaa (2.15b) ‘
or aF = Mp cos
NN A .
where M 2Fo : ;s

>
|

F
nga

Mutual inductances between field ‘coil and phase b(c) '
can be caIé&lated by substituting 8- §1~(9+ §1) in place of §

in Equation (2.15). The damper-stator inductances are similar

i 2
3
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L3
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in form to the field-stator quantities. Table 2.1 contains ’

the thirty six self and mutual inductances of the synchronous

machine. The constants in Table 2.1 are defined below : N
R A >
1y bs L 2o f - *
2 bzgqa nga_‘ _
’ 1
‘Ni M, A , 1 1
2) Lm 2 - -
2 qua nga '
) = ;v
3) MS é LS cos m
= 3
N N__.u A
DD FF"o §
4 M o 4
2gda ~
NN _u A [
5) MD é a DD o %
’~ 2gda '
"N.N__u A §
6) M A a Q0 o }
Q. = :
= 2g :
ga :
i
7 M, A Yalreto® g
F = 29 )
da . .
d ~ ° |
A 1,
— L/‘.
N
3 /l" -

A




R F R e U

1
“

T g

§90UP3IONPUI QUIYDRK SNOUOIYDUAS 1°7 OIqel .-

£ W
(1z+9) gsoo I+
' s o) o) oe BD o) o b} o) o3 30
T = ooq (nuun 1 I= 1 uuuo I aqwm I mq-m i [¥20-2
by
z W -£ W
(-8)zsodo 1= |[(ug-g)zsod q+ - : .
.mz.u oq,. s; . 99 qe__ed,_ qd__0q aq_a9%, nmqmmnq 1105-q
& E W g s094 .
(5 +¢vmmou 1- (u+g)Zso0 1~ omoozq+ 1 W
e k>4
Su- = % Sp- =T%q = %% moqﬂv T mna+qu‘ = 9%, 1100-e
: mvmm - u
R :
(o0zT+8) ursOw Aoomﬁsmv:ﬂmoz o:ﬂmoz 4o;wz *
D . e
= oq = noq = oq ouuuoq 1T02-0
) !Mmmml I3 e
o_ada
2l
( oma+ovmoooz A oma mvmoo W mmooaz ¥ Nz .
o o a eq
= P4 = qw = %Y =90, =40, 1100-q
. mﬁule !
( ozT+e) sooly A 0zT-0) s0o W psoo Iy 40nmwz
o) ) ) .
= 2y = Mg = ®dq U0y dr = 49| 1100 preva
- —%
; 1100-D 1Too-gq T100-® 1100~ TTo0-q | T1TOD paTg | @dA3 bBurpuim




2.3 PARKIS TRANSFQﬁMATION OF MACHINE INDUCTANCES
. ; 13

E4

7

From Table 2.1 it is appérent that the stator
- .

rotor and stator-stator inductances ( self and mutbal ),

=

are time dependent functions of rotor angle 8. In order :
I\ 4

to simplify the equations.and render the inductors time

8

independent ,a co-ordinate transfprmationi matrix P,usually

referred- to as Park's Transformatioh,is applied to(2.1).
' ‘ (2)

.

Among the unique features of the particular P matrix
to be used, as opposed to earlier ones’commonly,fdund(26-27),'

[ 4

are the following:

4

- (1) Orthogdnality;this implies that .

15-120 pT

BT et

(2) Power .invariance for voltage, current i
’ T oy ! »
and flux tranformations from one refe-

(24)

PR )

’ rence frame to another

-

PR
nt

The P matrix projects a, b and c phase currents,
voltages or flux along three new directions, d, g and o

which are the rotor d and g axis as shown in Figure 2.1

- .

and a fictitious stationary axis labelled o. .

2.3.1 Flux'Equétion Transformation

‘
My

L ]
The P matrix is of’the form

- o - ‘
1 1 1
VY2 v2 Y2 ) . ¢
\ P= /7 Cosg cos(g120°) cos(eg+l20°) (2.16)
3 i |
sing sin(6-120°) sin(§+120°) ®
- v .
o R b . et e ren R aa e e
e




For ease of analysis, EZquation (2.1) can be written as

‘ 3
Aabc‘ 3 LSS I'SF( iabc . ‘
= T(2.17)
*epo| Lrs  Lrr
A&
where Aabc é [Aav )\b '
Yabe 2 [lq *p
‘epg . & [_*F p
lrpg a in i, v R
where [-]/ denotes the transpose of [.] ng
N i
( S ,
ana where LSS‘= stator self and mutual induc}ances
= = - ) i
LSR LRS tor-rotor mutual inductances '
-) LRR = rotor self lndu?tances W
Since LRR 1s,independegt og time, only LSs and LSR’ LRs need
to be modified. Accordingl? the transformation used is of
the type - - “
\
.-l - —
P 0% apel |B ©1|Lss Fsr PProllp ol i
\ \ = ' (2.18)
0 I3 FDQ 0 I3 LRS LRR o I3 0 I3 irpg p
where I3 = 3 .x 3 identity matrix \
Pdl= matrix inverse of P

. A Ao
FPlux 11nkage\ka, xb',xc are then transformed to of Ma' Mg

while currents ié Dib' ic undergo a similar change, so that
’ .

"Equation (2.18) can be simplified and rewritten as

‘.

ot e s
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*k;\ P

mgﬁ o

where k‘ Q /2_3 . - <
Follewing a similar procedure the matrix PLSSP-J’ hecomes
&
LO 0 ]
PL p'l =40 I 0
ss® T . fa
0 0 L ,
. ' q
where L0 = LS - ZMS
\ L, & L. o+ M+ 3201
d S S M
4 -
Lq =, byt Mg 3/2 Ly
In summary, (2.19) can now be written as
r~ 1 - - \ . -
A L © 0 0 0 0 i
o o t o)
Ay O Lg O kMpki,y O ig
. k
A f_lo0o O =k O o kM i .
ql|= , g e e (2.3
)\F O kM LF MR 0 1F
-
AD O kMD% 0 LD 0] lD
S
. M i
L.AQ_ L..O 0 kQO 0\ LQ_ | g

—— o

- -

A bty v s o e

B
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P ' 2.4 GENERATOR VOLTAGE EQUATIONS
. . ]
cally in Figure 2.2. JThe voltage equation for a single @

: ¥ . ' . }
phase can be obtained from Kirchoff's voltage and current foos
laws as .

. . *
] Va = rla Ayt v (2.24)
A .. !
s - i +i +i ) - i +i, +i :
where v, o= r ( 1M+ ] zn[ la+lb+lc].
(and n defines a netural phase. For the total set of machine ’
ﬁindings the voltage are of the form .
Vabe - - Rabe © | [fabe - *abe + n (2.25)
i A ’ .
VFDQ 0 ) RFDQ FDQ FDQ | o1. ;
where the subscripts refer to thé‘appropriate phase or f
~ ‘ L
winding values and where Vn is defined as . 4
L ) J.
- ": b I -r = . i
23 1 1 1 i, 1,11 i, *l
V. 8- T, 1 1 1 Ll - 1 1 i
’ .
1 1 1} |i 1 1 1) |4 ’
c c .
b J ke - b - - -
or equivalently e = o
’ - [l 7
: . - e . L .n:
Vn J "Ry tabe - Iy 1_abc . ‘

. . . ,
2.4.1 Park's Transformation of Voltage Eguations Z

B .-
From (2.25) ;t can be ascertained that the.threen-

. Phase voltages are dependent on totor angle 6. Therefore,

[ . ORI USRI SIS 50 3 o i
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as in Section-2.3, a co-ordinate transformation is applied

% 1
in order: to convert voltages, currents, flukes and their' ’
. derivatives with respect to time, into constant gquantities.
) By appiying the previously defined P .patrix £3 EquatLﬁn {2.25)
the Tesulting prbdugt is of the form
P [ P Of[R -1 ~
O il Vabe - Rabe © ProOQlP 0 Miape
0 13 LVFDQ 0] I3 0 RFDQ 0 13 0 13 l\FDQ
' ! ol -~ P .
. x
PO R P O v i/yl(
- + n (2.26%
0o 1 ol lo 1 0
. |7 73 LFDe 3
- B T T 7] ] , "
/
wheze . J'Yodq ? ° Vabc v ’
o ‘v : o.z1.l.lv L
) CpFpg [Ty Tena) -
' (\ ’ ' ‘r - r{ -~ - “ '
i . ol }i -
" . lodq tabe : !
» . . 't A . " Y
Tt - i =l .
' o .o . . _ | FDQ 0, I3 lippg
' ’ . - L- . P~ e '- R - w
. . . g&f‘., g .
v Since the fN¥x vector, }odq’ is given by . ' CoN
. A ' ’ '
odg %, P Aabc '
[ J L .
L} ) "
- it can easily be demonstrated that ) g
- ) 3 = X \ ﬁPT )\_
v abc = “odq © “odg . (2.27) .
] . ] . . e 'A . . -
! ) v , . B ' , s & . - !
- . - where_ x represents the time derivative of the variable x.
: ‘Expansion of P V_ yields _ . . ‘
L& . -1y Ly
Lo ° - - P 2.28
% - | - RV, = -PRP i - PL iOd{i ( )
b. / ]
— "'\ . [’”""‘”‘:T“"""' e el -“"‘"&‘#l- :

LR

o e e




. -
? ) 30.
r —
) 3r 0 O
yig -1 A n 4
)4
where P%‘ 0 0 o .
N i -
|l 0 0 o - .
‘/ ' .
e Tiioq
- n -
PL_P 1 41 6 0 o .
. - £ 0 0 j
t - - P »
. In addition PPT is represented as ¢’
v , : ' ]
. . . [ ] |
- O 0 o
- ppT - o o0 -1 ?;.29) -
4 0 1l ©
L | i
where 0 & ] 5
lt )
A <

-

Taking'thé'derivatives with respect to time, of currents and

fluxes in Equation (2.23), tﬁ? resulting vector is of the form

~»

[~ — r—L — r. -
. L, 0 -0 0 o .o iy
. : .
R N R AR
T A® o} o) L o) 0 kM i
~ q q Q q
. = g = (2-30)
A : - ¢ )
1 s ] kMF o LF MR 0 lF
¢ 4
. \
AL o . kMy O 0 Ly 0 iy
: a0l - 1o 0 kM.' O 0 { o \°
. i QJ . Q LQ ' ¥Q -
/ . . B
; %

»\{» 0

2 = - et S
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and (2.30) into (2.20), the rejuired set of voltages is

obtained, viz.

1

= - oi 1r 1

’ %
, VO I‘+3]:'n o 0 0 (0] 0 lO
V3 0 r qu 9 0 mKMQ ld
Wl o e XM KM_ O '
q W | xr (] ‘F QY D . .’Lq
r .
Vg 0 C o) . 0 0 in
L Y
0 R i
0 0 0 0 Iy o) iy
() o) 0 0 o) o} r i
. : a || "o
o
. (L +32 O o o0 . 0 o T[T i 7
~ 0 . "n = ,;\ , e}
0 Ly © kM, KMy 0 ig
. 1o o} L 0 © 0 kM i
2 q Q 9
- o , : ‘ C ] (2.3
0 kM, O Ly My o) ip
o) kM bc) M L o) u
a p R ) *D
. i
0 0 kMy 9 0 Lo o s 2
iy - — . e
,
) L]
( -
. N )

-
g o A )| et L

-~
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2.5 VOLTAGE NORMALIZATION

!

Since stator voltage magniiudes’are of the order
of several hundred Fhoqsandé, while corresponding field
quanéities are much smaller, the matrix equation (2.31)
tends to be numerically ill-conditioned. It is thereforé

of some convenience, computationally, to normalize all

gener%tor currents and voltages.

Severdl authors hawve considered this problem in

detail (11'21’29)

and the technique employed here is essen-
(21) ' :

-

tially due to Lewis

Per unit normalization consists ih choosing base

quantitieg that together involve all the Mdependent

system. For exampl®, in any given circuit
the independent dimensions can be volts, amperes and time,

so that the base quantities are the following

l)'SB é stator rated VA / phase -
2) vy é stator rated line-neutral voltage ]
3) 9h é generator rated speed.

In order to scale any quantity, it is sipp%y divided

by the base value of the same dimension, that is for current i,

‘ . A i .
i, = — .
I
° B
where i is the per unit current




g g T e e,

B

A B . s

Th%i?ther base entities are given as

4) Dbase flux, AB = VB tB = LBIB
5) base'time, ¢ 2 1
B ®
B
6) Dbase resistance‘,vRB é Yg
IB.

L]

2.9.1 Per Unit Voltages

’

a

unit basis, for example, V' is'of the following form

~

A
where . v is the given voltage -

5

I_ is the base currentJ;nd is definad to be

V. is the corresponding per unit qua

u

Vg is the base voltage.
) 14

‘\\‘{' Therefore it is possible

equations (2.31) as

¢

e L0

33,

-Any voltage vy or current i may be expressed on a per

0 expyess the dynamicail

R W, il

o~

N
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{ 34.»
T, v g3 o) 7 E 7
du 'B qu 0 wkMQ i idu IB
v v -oL, T -wkM_ -wkM (0] I
qu B d . F o |quB |
- = - )
Veu VER 0 0 rp 0 0 oy T
. F8
1
0 0 O 0 I o , i, Ing
0 0 0 0 0 r i I
.
L- - L- Q - —Qu Q l
r D F -1
Ld 0 kMF KMD 0 ld IB
0 L o 0 " kM i1 \
9 D g B\
- kM 0 Ly M 0 ip-Ipg (2.32)
L N .
kMD 0 MR LD ‘ 0 lD IDB
o) kM. © 0 L i ‘
g Q o | | fes]

%

where voltage Vo and current io are deleted since, under
balanced three phase conditions, they are zero. Because

iB is much larger than the rotor values, the base quanti-
. 4

ties for rotor currents and voltaggs ‘are .chosen to be IFB’

I .,V respectively. Similarly o is

DB’ "QB’ 'FB QB
defined, on a per unit basis, to be

P VDB,and v

oA
w = W,

B Tu.

7

‘ \
If both sides of (2.32) are divided through by the appro-’

priate base voltages, the resulting terms are of the form




PR T e b - gl e e

-
2135,
L F‘ O — -y o -
ru uu qu 0 wukMQu ldu
- L ‘ - :
“a“au Tu wqRMFu‘ u’ukMDu ° J'qu\
. ¥ g
= |0 0 Yoy 0 0 lFu
0 0 ’
O rDu o lDu |
0 0 0 i %
0 rQu lQu
J L I
ks
—L Q kMF o} ) r ]
du u Du J'du ]
mB mB wB -+ w
1
0] L 0 0] ’ kM i
qu Qu qu F
Ky o Lpa MRu 0 ru i
W ) w
B B B
‘ _ i
Ky 0 Mou .LDlu -0 *bu y
“g . “p. “B :
o) kM 0 o L i ,
Qu “Qu QuJ |
= Wy wg 4L :
(2.34) '3
the per unit quantities are defined as follows
r S A
—l - =
' A
Ly &
M A




‘Substituting the normalized

j .
36,
_ du Vg Ly
5). Mpy O Meleps - M
: Vg B
6y w4 M"plpg¥s . M
. Du = M |4
B DB -
7 g A Trlpp ‘ ‘
Fu 7 v
FB
o
8) w. & ripe“s
Ru =, VFB
9) 1y, & lrre“s .
v
9 FB
Du “pg -
11) 7 L 4 QQBB ~
Qu = ng

In order to eliminate terms with l/wB, the time t may be
scaled according to the formula
T = ot .

1 a a(.)
oy -5t (.) become I

so that derivative terms
time into the voltage matrix

'

and dropping the subsezipt u, (2.34) can represented in

' N

the form of (2.31) ‘with the first row and column deleted.

\ '
b N ' '
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2:6 v%ER UNIT TORQUE AND ANGLE EQUATIONS
o

In order to complete the physical de§br1ptlon of
the synchronous machlne, normalized torgque equations,
describing the generators' mechanical behaviour, must be

added. The usual torque model is»of.the form

5 2t Ty - Ted)u - Py (2.135)
T. 31, T, '
J J J
i l
where I‘\lis the pér unit mechanical torque
o T 'j' '
v, &Y s the per unit electrical torque
. Dmu is the per unit dampind toique
Tj is the machine time constant

A} 1
~

If the time and angular velocity, t,w, are scaled as in

Section 2.5.1, (2.353) becomes, after dropping the u

. . )
subscripts, . ) :

, T .
iﬁ =_0 _ Te¢ - Eﬁ (2.36) L
dt T, 31; T, . ) .
J J J

2.6.1 Electrical Térque

The per unit electrical torque equation for a

magnettfaily coupled system is defined to be,(33)

P

- 5 £2d
. Te¢ R T

where Pfld.is,the power sﬁored in the magnetic, field. 1In

- - . . :




[

a synchronous machine Pfl
&uivalent and furthermore P

transformation of co-ordinates.

L]

d

and output power P

torque can then be rewritten as

d, q

che d and q voltages are ;elated to currents

- ( r

- | Ld1d+ kM

d

3
Fe at tatVqlq)

(2.

i+ kM_ i

FF DD
w (Ld a + kM lF + qulD)
"\‘l i + i + M_i
&1q quq k ato )

37)

i+ wf quq + kMQlQ] )

y

0
o remains invariant under a

i_ have been previously defined.

e AR ST W RN VIR R 7

are

llowever

(2.38a)

(2.38b)

Electrical torque can then be reformulated as

Q
Teg =
where Vd'V
from (2.34),
by '
va'=
v =
. q
TNa .
\
. ‘ ) -

ed

e IR

N
» S

{

ey ARy S

- (L 1 + kM_ i) i

~+4 (L

d d

torque equation becomes

+

QQ

kMg ip

d

+

kM

p ip)

i

- g

(2.39)/‘

By combining Equatiohs (2.36) and (2.39), the per unit

38.

The formula for eiectrical



gl ;
i
q *
é ) En . -Ld{g qud —kMFJ.q --kMDlq hMQld fD X ‘
T. 31, 3T 3T, 3T, 3t. 31, i
J 3 ] 3 3 J 3 D .
_ "o
< W
. ‘
)ﬂ ‘ (2.40)
2.6.2 Synchronous Torque Angle Equations ' !
At time t=0, the angular displacement between
% . »
the a-phase axes and q axes is, from Figure 2,3, 3. §
Similarly the angle between a and d axes is seen to be §
6+% radians. At time t>0, 4 and g axes have rotated an ' 3

additional th and the resultant-displacement, 8, between

the direct axis and a-winding is given by

@
it

il
(A)Bt+5+§‘.\

! !

. Angular speed is therefore of the Form

-

ie- = mB+i§- o
dt “ dt . ,

e _ ds
“p &7 wpt ®p 3¢ - .
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After diwiding by Op and rearrénging, the angulaxr
velocity equations can be written as
A e
§ = w -1 (2.41)
. - ™~
where both w and § are expressed in per unit guantities. ,
2.7 §I‘ATE SPACE ' GENERATOR MODEL /
The generator voltage equation (2.34) can be
written symbolically as
| 3 :
V=Ri - Al . ' A(2.42)
. A w
To obtain the desired state space formulation, (2.42) is.
£
permultiplied by A"! and rewritten in the form "
i = A"iRi - a7y (2.43) , A
. " . )‘,_ . b
Frbm linear algebra (24)i§ is well known that the inverse .
of a.matrii'A is defined to be
_A -A A -A A ] o
. 11 21 31 41 51}
: ' ZA a," -A A -A |
= o 12 . 22 32 42 52
-7AadjAa A 1 | - o
A= TRl STAT | Ag TAz3 P33 TRy Bsal 2. S
- A1y Bagt Ry Pagt TRsg)
[ [ - - 7
. | P15 A2\5 B35 "Bys  Bss] G

where ‘ Aij is the determinant of A with the ith row and

»

[
jth column deleted:
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" - “ / -
Therefore, for A’as given by Equation (2.34), A"t s

-~ clearly of the form

S - A 9 Ar R o ] _
- o A, O o -a,
" a~t =1%(1’,' Ay O Ay, <Ay, 0 (2.45)
S e e VY © '-
. | © Ay O 0 Bss| - \

Finally, by usindﬁfhis expansion, and adding the variables
. ° ® and § as previously defined, the state variable generator

description turns out to be :

v
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73 per unit normalization scheme used both by Lewis

EN 44,
N {
A, © “Ay, A, O 0 0 Vy
). N
o‘ Byg\ O ¢ 0 A} 0 0 vy
\ - ‘;“x/// ‘
-A;T 0 -Ays A, O 0 0 Vi
1

o A, O g, Ay, O 0 0 o)
: 0 LV ? 0 -Agg O 0 0
0 0 0 .0 0 a1 o . Tu

: * T.

) o o - 0 0 0 1Al -/%
L 4 L

(2.46)

2.8 CONCLUSIONS '
S

[y

+In this chapter the synchronous generator
differential'e%pa;ions are developed. The analysis begins

with a derivation-of the machine rotor and stator inductan-

- (33) r (8)

ces in a manner similar to that of Thaler and Dube

(2)

but not found in Anderson Park's transformatiqn, p,

\

is applied to the generator inductan¢es and the resulting
simplified machine inductances represented by (2.23).

Since' the differential model is derived from‘the product

PV, where V represents generator voltages, some of the
details of the matrix multiplication not shown in Anderson's

derivation(z) are included for the sake of clarity. The

(21) ang

(2)

Anderson is explained, the appropriate p.u. constants

defined and equations stateeh as in {2.34). Finally the

‘G ‘l

-~

G e e etk e 4e

by
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« ‘ !
model is presented by Anderson {in the form

"V = Ri -~ Al . ’
whereas, in this thesis, the set of generator differential
equations is written as , !

: -1.. -1 ' ' .
i=A"Ri~-A"V
ARt 4 : -
with the specifix matrix entries shown in (2.4s6).
~ - )
) ’
+ ’ s
4

w L

s

1
. -
v
€
. o
L3
A i °
B .;4 . .
, ;
.
- ' .
v
0 N . ~
A / -
AN R R "‘r
. -
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CHAPTER 3

v

. INTERCONNECTED POWER SYSTEM EQUATIONS

3.1 INTRODUCTION

!

The previo%f/fhapter contains Ythe develdpment of
a seventh order&single generator model. By extension from
'Chapter 2, an n machine system can be described by a set of
. 7 n differential equations. However, careful examination
'6f machine formulae reveals that there are an addit;onal two
unknowns, v ana vq . Por a multimachine system, this would

d
result in 9 p unknowns, thereby requiring ‘2 n extra equa-

@

\
* objective, therefore, is to derive a relationship between

the generator volpageé v,, v, and corresponding currents

d g

id’ iq. Once that is done, the voltages in Equation (2.46)
¥ , may be replaced bykthe currents and the state variable

- descxibtibn appropriately modified(39).

\
It is apparent that there exists yef another tech-

nique for solving the unknowns vy and vq Currents id’ iq

can be deduced by applying any nimber of differential eqgua-

d
arbitrary level. Values of id and\iq so obtained can then

tion solution methods to (2.46) with v_, vq fixed at some

PN T,

" " be used to algebrically solve for voltages Var Vg The
solution procedurg al;ernaies betweén these two phases until
some desired time t is reached. However, thig mgthod tends
to be highly inaccurétg iﬁ simulating a power system, and is

therefore not’used in this thesis. The one advantage

tions in order to completely specify the power network. The -

1

FORSCE VRSP
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)

of the two stage solution procedure is its abiliti’ig

fo easily incorporate any change ;h\the loads, while the

state space formulation must underge a chéngé in model

structure to adequately account for any load variations.
<Tf the system loads are assumed constant, however, £he

le model is valid.

ansient Conditions

3.1.1 Network under

From Equations (2.27) and (2.29) it can be

shown that Park's transformation of' i is-given by

ab¢

e

o

eagm @ |ig (3.1)

/ 'a

e generator is assumed ; then, for any branch k,

d
.—l-
[}

k'’ k
branch voltage can be written as

A

with resistapce T inductance %, and current iy the

it
=
[N
+
™

. r‘ s .
Yk k Tk k 'k (3.2)

Froq§(3.l), the branch voltage for three phase Ea;anced

Y

S g«

conditions is then of the form . —
Vak
Vék
, e A
where . ,.de =
| v A
Y qk —
3 . .
o - P
g WA “:.,a,w.:m A o - ol
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The following assumptions are made in order to simplify

the analysis

1) o = Wg

2) lk i <« wzk i

A
Taking the two assumptions’ingo account and letting Wy ,

be represented as x {3.3) becomes

k'

dk dk gk
= T . +x . (3.4)
\'4 k lqk k ldk
1f V. and i, are definéd as
,"';I k k '
s
, v, A ¢ + -ﬁ vy
k = {qu’.' . dk
A ', aof )
he gt T tax

where | _ :j'- {,g‘*:i/"¥

then, in terms of v and i, , (3.4Y\is of the form

k i L )
ij =,? ;gtjxk ) (1 + 31 (?.Sa)

qk dk)

. V ) t:_*“ Z k’: ik ( " ' ’ (3 - Sb)

X

3.1.2 Converting to a Common Reference Fréme

[}

Figure 3.1 represents a voltage Vi embed@ed
within two different co-ordinate: systems, ohe of which
( the D-Q axis ) is moving at synchronous speed.. Voltage

Vk is theyefdre expressable in both reference frames as

1

-

.
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» ?
e - .
Vk . = qu + Jde - (3 . Gb)

Prom Figure 3.1 the relationship betwegltfﬁéjaifferent

voltages can be obtained, that is

sin § (3.7a)

C Yok T Vgk 998 8 7 vy
* ‘VDK = 'qu sin § + vgk ©OS £ (3.7Db)
b
If the complex number Yok + 3 Vpk is written symbolically
A +

as Vi then

A

Ve =V e3s (3.8)

S

. A .
Since vk'is known from .(3.5) and i, .is of the same form

k
as vy, it follows that

49.

A 4 ) 3.9
T (3.9)
A A ‘ )
Letting Vb’ i, represent the vectors of all branch voltages
and currents and z, the matrix of all branch impedances,
(3.9) can be rewritten for the whole 'network as
A ¥ A ' ' L /‘r
Y = 'zb i ‘ (3.10)
> 3

. Alternatively, the node voltage relationship may be
t

derived from branch values ‘18] by, the use of a godal

incidence matrix u aﬁd the desired equatioch expresseé as

(e
-3

A
A v (3.11) !

Ay

= - u’ygu

e

L e

T e A




.

3

pe——

R N T

T RS




T agar

R e T

by e

where u
J
Yy
7
'Y

e

ne>

He

Y

\ /
pq) = 1 if currznt in branchp
enters node g
= -1 if current.in branch p
leaves node q
= 0 if node g ‘ is‘not connected
to branch p’
t
-l .
3811 v, 6312y, &3%1n |
11 12 : %n
E IONL cerrereerremimemaeeerennen gy 3000
nle . , ' ¥nn e i

for an n - node network.

]

3.1.3, Relations Governing machine currents and Voltages

&4—(.\‘

n node system is converted to v

A voltage Vé

bei @t node i of an n machine and
by the application of
gy ¥ pRoTEATIOn

51.

Park's transformation.'.Jf-voltage and current vectors for

Vg,

all nodes are defined as = - R

‘where v_
q .

Ac

e

A

=

Vq + J Vd

i+ i

q j d }
qu~ h.qlT
v JooA | i
2 i = 2

1 a | '

Lvél’l . iénJ )
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then, with respect to common reference frames, the voltages

can be written as

. 361 .
Voo T %1 e . 0O Yau 1 Va1
.1l O jén i
in +. Vpn € vqn + NVan
(3.12)

Equation (3.12) is stated symbolically in the form

-

¥ = 1% | ' (3.13a)

A similar relationship can be shown to exist for currents,

so that

Y = 71 (3.13b)

¢
Since 3 is assumed to be a yecfox of nodal voltages then

the formula i .

-
IX = Yv
is seen to be valid. Therefore 1 can be obtained directly .
. N . s y
in terms of v as
- I = Y orlyys r7ricg e

Equation (3.14) canibe written in the form

v




¥ 53.
- 1r ’ ‘ ; - - .
TR I A SRR A PR PLENEE R S e LU | R
q1™Itay | 11 12 » Yq17Ival1 ,
; laatitgg 7 oo vg2Ivaz
) (8 =6_1) §
. I901%%n1 P jenn !
lqn+3 ldn Ynle .............. Ynne an+Jvdn
L - - - L - b
(3.15)
N A . é v
e where ij = Sjﬂ’ dk

It is appafent that the voltages and currents form the
desired set of 2n additional equations which can be used:

to solve for unknowns in the dynamical system.

3.1.4 Voltage-current Eguations for Two machine system

‘.
' For the two machine power system model the
. following assumptions are made
; ‘ 1) the full system with n+r nodes is reduced
1 ' .
: , to an n-node equivalent system by circuit
. reduction techniques‘?) . "
- : .
2) loads consist only of constant impedance
types
| S 3) all parameters are identical for both
machines

the number of differential equations may be




R

' reduced from 14 to 13 by noting that

Glzwl—l ' 62=m

§,-¢, is defined to be a state variable.

2—1 . 61—62 = ml-mz , and

(

54.

Equation (3.15), speciél“ized to the two machine case, may

be rewritten. as

[~ ' “ — . - I -1
, 0 500, .,-68..)
L 11 127812 .
~ fq1+31d1 ¥11® P va1+3val
1 .
© 3 (6,,-8,.) 36
. 217%21 22 .
12" %, | [T22€ Y22 Vg2"3Va,
| - - . ' -l -
(3.16)
\ A ’
where 6kj L Gk 53

I

and volﬁage or current subscripts represent

the corresponding synchronous macltines.
- Lot _

However, since the currents are /dé,fined as state variables,

the voltages can be expressed in the form

A

- 1 . .I’ v "
. 3822 AL PRUITY |
Vql+]vdl 'Yzze A lee iqﬂl‘,il
= - 3(8,9=8,7) .36
44 PN | B 21 "21 11 . .
Vg *ivg, | Ip*| Y2le . Ylle | lq2+jld-
’ EENER L)
A J(8. +0,.) j (8.53+8
o 4 1170227 317¥12)
where [D'] - = Y Yy, Y, ¥ e

After trigonometric expansion and algebraic manipulat

(3.17) may be rewritten as

ion,

P
-
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' \
Any. further detailed expansion is not attempted , rather

the model is given in terms of machine parameters in the

following sectéon.

3.2 SYSTEM MODEL FROM MACHINE PARAMETERS

«

In ordég\to simulate the'two machine system and
interconnections, it is necessary to assign typical values
to the inductances, damping coefficents and resistances.

Without loss of generality, it is assumed that both gene-

(2)

rators have the same per unit parameters listed below.

-

1) Ly =1.70 - _
2) L, = 1.65 , i ) ;
-3) L, =1.605
4) L. = 1.64

v q . ‘ —
= - N ¢ ! .
5) LQI 1.526 ‘
6) - KMy = kMF?\MR = 1.55

’z) ] kM) = 1.44 \\\Y
8) r = 0.00109"

' 9) rp = 0.00742 | -

10) . r 0.0131 _
11) r. = 0.054"
a Q-‘ - /‘
12) = /3 .
~ FT T : ; %
13) T, ,'= 1786.94

. j’i )

174) . D = 2.0 L ,\ , .
15) A 811 = 822 =30 ;

16) - 8., = -8, =60 .




Ay s v

ma e e e AT e S g M W AT

f 4 =
17) Y2, 5= 1 .
18) | Yll = Y22=~/7-
= |
The state variables. are stined td be : - ¥
. o N ‘
A N
1 = ‘a1 ‘ .
A .
X, o lql
A
X3 = Ipy
A
X = Ip1
A, ’ .
X5 = 1
T
¥6¢ = taz . : "
3 A .
o A lq2
A
8 = 'r2 .
. A g N , 1
¥ = p2 ~
A .
xlo - 1.02 ’
: o
: X311 = ©1
: A ,
\,// ¥12 = B
.. b & -
*13 = 1 2"

(A

- N : ¢

{
For the given machine parameters, the-two generator system

takes the form

]

x = V(x) x + Bu (3.20)

where V(x), obtained from expansion of (3.19), contains

-

elements which are functiéns of the state variables, and

B is a conséﬁnt matrix. The entries of V(x) as well as
B and u are listed as follows : o R

]

~




. a5, RT

A
V(i(x) = %6ij(x)
A
B 2 [\bij ]
= -6.63300
= 3,82614-8.87401 x
= 0.61383
= 0.04486
= -8.06237 x;;
= 3.81908+9.18107x,
= -6.62977
= 8.37155 x,
= 8.37155 x
= 0.28477
= 2.28604
= -1.31866+3.05839x,
= -0.0529)
= 0.06662
= 2.77866 x,,
= 4.19800
= -2.42155+5.61633x,
= 0.03773
= -0.11583

i

= 5. 10263 xll

3.72899- 8 96510x

11

e

6. 46458

1

=\ -8.17406 x 10
f . \

AT imems eur el e am W f e

T T e Nk o et e

59.
] -
(
vig= 2.70549 co§x13+ 4. 686055inx15
11 v17= 4- 68605cosx 4 2. 70549s1nxl3'
vig= V111 = O
V1™ V112 = 0
V110~ V113 T ©
1. Vag~ -4. 67704cosxl +2. 7005051nx13
Vo= 2.70050cosx13+4.6774051nxl3
Vog=vy1y = 0 -
Va9=Va12 = 0
V210=va13 = © |
Vg™ —0.93244cosx13—l.6l50351nxl3
1 ; =-1. 61503cosx13+0 9324451nx13
‘ vag~ v31~ 0
V39~ vy~ 0. -
V310~ v313© O
v4g=fl.7l229cosx13-2.965785hnx13
L V4o —2:955i8c6éx13+1.71229cosx13
Vag™ V411= 0 o
\‘.’49= V412 O ‘
V40T Vasm 0
Vg™ 4"56706cosx13 -2, 6367951nx13 \
Vo= —2 63679cosx, 13 -4. 5670651nxl3 a
Vsg™ vs11= .0 -




.
b e e - e R n

Vo = -3.1731053:1l
vgs =-0.31344
- Vbi - 2.70549cosk, J+4. 68605sinx, 5
- Vey = 2.70549sinx13-4.68605005xl3‘
\ 63 “Ve11 = 0
fé4 “Ve12 i
Ves ~Ve13 = O
V11 = 4.6774%cosxl3-2.70b508inxl3A
N 2.70050cosxl3+4.6774;sinx13
Y73 TV T O t
Vig = V912 = 0
Vs = V713 = O
e V,Bl =-‘-0.932«'1'4cosx13-1.6150‘3sinx15§m'l
Vg5 = 1x61503cosx, ;-0.93244sinx, 4 .
( g3 T Va1l = 0
Vg = Vg12 = 0
Vgg = Vgy3 = 0. .
v91 = --1.71229cos>‘:13—2.96579sinx13
v92 =--2.96578cosxl3+l:71229sihx13
Vo3 = Voi1 T 0 - o
. Vo4 = Vo127 0
. . Vg5 = V33 = 0
E V101= -4.56706cosx, 1+2.63679sinx, ;
V102= ~2.63679c0sx, ,-4.567068inx,
- Vier Yrar T
104~ Y1012 = © N
. b

60.
Vg = V512 = O
Vs1p” Vs13 = O
Vg = ~6-63300 |
vgy = —i.§£§g4-e.a74oyx12
Vg = 0.01384
gy = 0.04486
Ve10 = —8.062;7x12
v;g = 3.8190949.18171x ,
ve; = *6.62077
Vg = 8.37156x12 r
V9g = 8.37156;{12
V710 = 0.23477
vge = 2-28604 ,
‘vgy = 1.31867+3.05839x,
'vgg = -0-05291
vgs =(Of06663
vao * 2-77866x,,
veg = 4-13800 |
vgy = 5-61633x,,+2.42155
vgg = 0-03774
vgg =-0-11583
vg1o = 5-10264x,,
Vigs = -3.72399-3.95510215
vgy = 646458
V108. = -8}{.\17406;:12 : :
Vipg = -8.].7406}:12 :

]
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. o o

" byg = balog\o

Vios “Vip13 = O
vyqy = -0-00317 x,
w115 = 0-00031 x;
viyy = =0.00029 x,
Va4 =‘0.00028 X5

vy q1=0-00037
vy~ !

Vit = Viz1 = O

117 T V122 T

vi1g = V123 = 0

B9 = V324 =0
V1110° Vg5 = O

bjy = Bgg = =5-41098
by =Dbgy =0

by = by = 1y86488
b, = bgg = 3.42459
b1g § Pe10™ ©

by, = bgc = 1.86488
b3y =Dbgy =0

b =b__ = =7.13137

o
]
o
it

\

e e e v

V1010

, Y126
127

128

129
V1210

o A AP SO TR

61.

~0.31344

=0.00317 X,

0.0031 x,

-0.00029 k7

0.00028 x7 .

= -0.00029 x

Vi212 <

V1312
131
V132
133
134
135

21
22
23
24
25
a1
a2
43
a4

45

il

« 7 ‘
-0.00037
-1
V136 = 0

Vigyp = O

Vigg = O

A
(=]

V139 T

V1310%V1313 = 0

L

b76- 0

A

b77 = -5.40101

518

¥

K
(=]

b,g =0 .
410

)

5.27359

-*

bye = 3.42459
By =0

b98 = 5.0BGOi

b ~8.84203

1]

99
b = 0
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A——erach et

bsy = Proe = ° P11z =1
bsy = Pygy = 3-27339 Pra13 =1 ,
'b53 = b108~= 0 all remaining elements
b54 = b109 =0 are'zer;v
beg = byg1g = 55.89449 By = U, = u=u, =0 .
Ug = Uy = U= U= 0 Uy = <vpys Ug T Vpy
uy t ML ug, = 333 , Y13 =
i

From the aﬁgries in V(x), it is apparent that the

matrix can be separated into a linear and nonlinear part.

-

Then (3.20) bécomes

1

x = D(x) x+ Ex + Bu. (3.21)

‘where D(x) is a .nanlinear matrix

E is a‘qggftané matrix.
’ ‘ ' :
In order to complete the system descripfion, the

outputs must be specified. .

A

‘Outputs of a power network are defined to be :

e L e UL L,
2) dpy =%y /

3 iy * g =%+ Ixg ,

“4) in = Xg B )




e ) -
ﬁ o ‘ ‘ 63.
¢ 5) w, = xll °
gé"' B
. 6) wy = Xy, ,
; 7) 61- 62 = X4 ]
i . . .
i . : In vector foim, the outputs can be restated as Y = cx, or
f - - r~ E co. S T SRR
x, + ‘sz 1 § o 0.0 0 0 0 0 O 4\0 0 o X,
i ' ‘
X3 . 0o 01 0 0 0 0 0 0.0 0 0 O X,
)
xg +dx,| J0O 00 0 0 1 3 0 0 0 0,0 0} x5 /
. X3 0o o 0o 0 06 0 01 0 0O 0 0 O X,
’ N \ l.
i Xy, 0o 0 0 0 0 0 00 0 0 1 0 O Xg
X;5 o 0 0 0 0 0 0 0 O 0 0 1°0 Xe .
'S ) X3 0o 0 0o 06 0 0 000G O O 0,0 1 X (3.22)
b - L I = !
‘Xg
A x9
“ | x10
| x
11
y *12
x x~
R = |
- 'However it is undesirable to have complex quantities in
. the c matrix, therefore, in accordance with accepted
; pracvtice(s) , the available outputs are assumed to be
. , i ' ’
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B I TR PRSP RR epD S S -

. 64
s
R T

1) ipyt T %y

2) ipy, + = Xg |

3) = X \
. ) “1 11

S T S P

5) 61_62 = x13

w

The ¢ matrix is then of the form

— - ) . ' . -

| . o o 1 0 0 0 0 0 0 0 0 0 O
| ‘ o o o o .0,0 0 1 0 0 0 0 o

o 0o o o0 0 0 0 0 0 0 1 0 o0

0 0o o0 0 0 6 0 0 0 0 0 1 0

R ¢ o o o o o 0o 0 0 0 O 0 1

Syﬁbolically, the c¢omplete two machine system can be
% .

represented as ' ) .

~

* x ,2= EX + D{(x)x+ .Bu ) (3.23)

Yy =, Cx

- -
where all matrix and vectors havé‘béen‘previously defined.

o e Mook e e
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State variable currents 1

3,3 CONCLUSIONS

# ) .
Chapter 3 begins with the study of an inter-

connected generator system subjected to some pertﬁrbatiqn

in the 3 - phase currents. After suitable transformation

to a common reference frame the state variable currents

are shown to be related to unknown system voltages in the

form of Equation (3.15). The mathematical treatment

(2) (39)‘

follows closely that of Anderson'“’and Undrill

However for the two machine case the efﬁations relating

°

‘complex voltages”v§ + jjd to currents iq + jid are reﬁlaced

by the real and imaginary components VﬁfV ' iq. id and

the result written as in (3.18). This allows unknown
voltages Vv, vé' to .be expressed directly in terms of the
i
d', ’
i3 » ] q L3 ‘
description of the two machine interconnected system.

thereby completing thé

g ) .
Finally, after the assignment of typical machine parameters
to Equation (3.19), the system is represented‘by the values
- .

V(x) and B of (3.20). One detail, absent in both

(2) (39).

Anderson '*’ and Undrill , is the specification of

suitable machine outputs y = Cx. The C matrix used,
is shown in detail following (3.22),°and is in agreement

with that of Davison(®) o

~
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CHAPTER 4

OBSERVER DESIGN FOR POWER SYSTEMS

il

4.1 INTRODUCTION

One method frequently used(40)to stabilize

nonlinear autonomous systems described by
x = f (x,u) N ’ (4.1)

is to provi&e an appropriate linear feedback control law

of the form

u =~kx
9

xn e ®®, £ e RY % R® » RD.

Iﬁ,addition, nonlinear feedback control of the type

= kx + u
4 p

where u= 1 , if g<|] x]| <= ‘
u = 0 if || x| 2« or ||x || sB
‘and where || .|| denotes the Euclidian norm, is applied
N v
to increase the region of stability of nonlinear, autono-
| (4,12) '

mous biped motional systems modelled by (4.1).

Ih the aforementioned design proqedurgs) it isj
tadiflybassumed that all the states are available at thé
output. As is apparent, however; from Chapter 3, it is
not always.possible to measure the full stéte vector.

N

4




3

To overcome this problem for the linear case,

(22) . .

a Luenberger observer can be formulated to reconstruct

"

‘ ’the unavallable state variables of .the desired system, if

f the system is observable.

AR For the nonlinear autonomous. case, it is feasible,’

(18,34)

as well, to design observers , although additional

constraints are imposed.

¢

' One final method, frequently used by control
R , 4 4
engineers, is to linearize a nonlihear system around an

operating point Xyt uo so that a system of the form (4.1)

co becomes

Y
..

X = Ax + Bu ’ ‘ ) (4.2) -

?

where A 2.Jacobian matrix of £ (x,u) with respect to. \ .oe

. u
. X@Xov o -

»

s Jacobian matrix of f(x,u) with respect to

o
]

: u X u ¢ ' ’ ‘
. e o' "o

’ R ot

and then design a standar&‘Luenbquer observer for this

— . ‘ L

linearization.

<

~

‘ ﬂ The approach taken in this” thesxs 1s to design .
a nonlinear o‘ferver\accordlng to the. method of Thau(34) .
aﬁd compare its _convergence propertles to that of the Lo
linearized power System Luenberger observer. ’

»

R Y T
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4.2 Lyapunov Stability Theorems

» ©

Since Lyapuhov stability theory is‘the anaiytical
tool used in'proving thé convergence of the nonl%near <'

A ' .
observers' states to those of the system, it is necessary

to provide a theoretical framework within which the

e

. observer design can be understoed. "

4
There are three basic types of stability, commonly

used by power system engineers(lo) : s

. [ / R
. 1) bounded input-bounded output stability
g’ ‘ 2) Lagrange staéi%%ty
. ) 3) stability in_the sense of Lyapunov.
’ . TP (15,40) .
The de{gnltlon of Lyapunov stability is as follows -
The equilibrium point O at time t, for a éystem
- N e Lo .
X = ﬁ(x), is sgable at time to if, for each €2 thexe ¢
t exists a § (to,e)>o such that . e - ’ .
T) u o }Ix(to)ij<5 (t re)=s [lx(t) |] <e we2 ty : -
. , -
xi' -~ . I . ) . .
E where || .| denotes euclidean norm ' o . .

The intent of the definition cph be:%een‘ffom
o Figure 4.1. If the norm [lx(t)|] is met to exceed a S

° . ‘ R LY o / . ) B

' pre-specified eand it is possible to find a hound é(to,e)

- . L] ' .
on the norm \lx(td)llof the initial conditions such that

- any solution trajectory starting with llx(t°)|['<6 always
€ d -~ o
. , 5

2
.
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. x4 Y in observer design(®? is qi .

——r———e 4 v . R . 1

.y T i v e e s . o me it R (e a1 A% gt - it U Tl o - " - w

s : / \ , ‘ wo.*
remains within ||x(t)}|] <%}, then the éqdilibrium pt.o is
Lyap&nov stable. A;J;quilibrium point O at time o s
asymptotically stable if
1) it is stable at time tgq and

~8) there exists a number Gi(to) such that

- x(to)}]<51ﬁto);> | [x(t)]] »oas t> » .

» . v e

4.2.1 Stability of Linear Autonomous-Systent .
0 { X o
/

W The fundamental theorem of Lyapunov's direct

e (40 p.148)

/
method is stated as,foilows : -

. .', " . .\%
L4 4 Carkr, .
Yo

+ Theorem 4.1 The equilibrium peint O of x = f(X) is stable _ A

'EXIStS a contlnuously differentkable locally

definite function V such thgi s( N

V(x)so ¥ x  eBy - - p

. whére Br“=,4 x eR% | |x]] <r}:

L ‘ ' ”

-

' One type of dynamical system coﬁmonly used

in observer design is given as

v . B e 3
s - » >

. -— v v

z = ( A-Kc) 2z Az o f ;oL (43

L . 2 - t ' ' ’
. \«1/ , ’
\ and inch is, by inspection, both linear and autonomous.
. ‘ N ) . 3 ‘
. ,For autonomous differential quatiéns the appropriate ' ,1
. : ) N ? )
' thearéms aré stated in the form (40 PP-171 and 173), ‘

v . 3

tn

- Theorem 4.2 The equlllbrlum p01nt O of z AJ is ,

. asymptotically stable if and only 1f all eigenvalues of

TR NI TIEN moaar s+ vrbrag vun B CRTE AR MR




' /
1]
' A have negative real parts . _ N

Pl

Theorem 4.3 Given a matrix A sRnxn,'the following three

o

% statements are equivalent : _ ' “ v(//d’“\;
E ° q‘ f - . /‘ " ’_’ »"
% i ‘ (i) All eighValues} of A have neggtive real D '
i : ) .
' parts , 4
) | .
‘ ‘ (i1} There exists some positive definite matrix ' ;
’ ¥ - Qe R™® guch that A'T p + PA = -Q Has a unique

‘solution for P, and this solution is -

_ positive definite. _

¥ \l ‘ ) -,
s s . > nxn ‘ 3

Foy every positive definite matrix QeR ’

| , R ATp o PA = -Q has a unique_solution\?or

i8S

1\ o ) ) L4 l\ A s » o ( . L] * 5’\
L o 4 P and this solution is positive definite.
} ’ & J L A e ?

4.2.2 Lyapun®'s Indirect mthod < A . }‘

bili;f\oﬁfa_

P i .

( - ‘g ‘. Under cértain condi;iqns,~theas
|

behaviour-of an assoeciated linear system. . F¥r autonomous

N differential equat{oﬁs of the form o R A (’-;

.
L

P L x= £ L . (4.4)

'the theorem Gf interest is (ﬁanP-1?9’ given as follows : -

. .
- ’ 3 L A e - . ]
R 5 ]

- a
Theorem 4.4 Consider (4.4). Suppose that f(o) = o ' o

- : e , : o
and that f is continuously diffeyentiable. Define <0
A= ;% x=0 , where A is the Jacobian matrix of £ with —

- {’ . r.

*
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-

-

;espeé%‘fBFx.

———r—— e e

Under these conditions, the

72,

equilibriunt

point O of (4.4) is asymptotically stable if all eigen-

"values of A have negative real parts, ’

b

Structure

4.3 Nonlinear Observer

9

If the given power network is modeled as

=. Ex-+ D (x)

Yy = cx

¥

where F (x)

LT

X + Bu =

i

}

Ex + F(x) + Bu

=z D(x) x and where F(x) contains enly terms

(4.5)

ot second, order or higher, tiien it is ‘possible to construct -

J aneqpsé;vé; of the type

.

4 =

-

[ '"E=Kc ] z+F {2)

(34)

%

-

' . . , . nxm
where K ﬁf a gain matrix, in R '

all eigenvélues of E-Kc

~ i
- However if F(x) in (4.5) contains first order . .. v :
” ) . ‘ '
nonlinearities, the design procedure must be modified in )
4
order to satisfy the requirements\of,Theorqn 4.4.
) ":\‘\ . v
’ . . ] -
. It is apparent that F(x) caéfbe rewrjtten in
the form ) : o
A P ‘i ) . 2
) ' : <
F(x) = Gx +'§(x) (4.6b) .
» ' - ~ 1
- aF ' . l
“Fe‘e G= 3Fx X=X 1 ,.
. r 9 . b . w

¢ 7w _
T \‘. . ) - by -
v N . AN

w ' * - ¥ %.——‘- e * Y

o "I .1 : ? '»C: T ek I PRV :;‘nnz*@h—ﬁ“ﬂ"ﬂi-ﬂﬁﬂmmm:wr' -v‘»-v-a‘-*avv'-»?b‘- RET T T, " e e e e o
s " “&l ..... » S b o AT A A oy i p—— o .

4

+ KCX + By

L i

(4.6a)

chpsen to ensure that

L hal

haVe negative teal parts.




”
b ]
-

and R(x) contains only second and higher order terms.

Then the system descriggd by (4.5) must Be reformulated

aS.~ +
. x = (E+G) x + R(x) + Bu ) (4.7).
. .'L.
Yy = Cx . noeT
\ DL
- and the qorfesponding nonlinear~stat;7reconstructor
: - \
* ,therefore becomes 8 ' :
’ 4 L - . v
= (E+G -Kc) z + Kcx + R(z) +Bu (4.8)

.

where K is chosen to make E+G-Kc a stable matrix.
- e - ) .
: 4.3.1 Analjtical Convergence of Observer .§fates

)
i .

The system and observer equations are respec -

tively‘ ; . *
. - \ )
. x = (E+G) % + R(x) + Bu’ . .

. ¢ 5

> Yy = cx . ‘ .
i . : ‘
1 z = Hz + R(z) + Kecx + Bu
L - .

A

where x "is the equilibrium point of the system and

- o
" where H. é

E+G~Kc.

<

* If the matrix H has all its.ZEgenvalues negative real,

then it is clear froh Theorem 4.3 that a matrix P'cih

be found suéﬂ that h ¢ . . o
. * o . .

v
%

\ ng~+ PH =-I f'ﬂ S L (409)
. . : . ) ,
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1 N ’

where in is the identity matr% . : ‘

N

Since an observer must reproduce: the sta;és of
the original system, it is sufficient to study the

convergence of the vector e, defined as

(

_.e z - X : (4.10a)

‘and . e = z - X ‘ 4 ’ (4.10b)

2 W

After combining (4.86) and 14.%3), the resulting aynamiCa;

w

system is of the forﬁ

\ <

e = He+ F(z)- F(x) + Gx ~ Gz (4.11)
: [}

2
® -

One possible Lyapunov function qépdidate V is written as -
pe :

T

V=e Pe {4.12)
’ | y
where P 'is the solution/gatfix of (4.9).
, | o - *
. 3
The time derivative of V then becémeé'
. 7 - . ) . -
vV=-=e'l_ e+ 2" P [F(z)-F(x) +Gx -6z 1 ___ .
. , i
i {4.13)
Is is obvious that '
: . ’
-eTIn e = - |le|12 {§.14a)
and therefore any o, < 1 results in an inequality of the
foim . o ' Tt

»
.

© (4.14b)

a2
< lellF s e lle IR

4

TN

4
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Since the system being modelled is a power network, )
. 4
it is reasonable to assume that (4.5) has a unique
solution around the equilibirum point xo,and that a
constant k can be found such that
[lF(z) - rx) || <k || el (4.14c)
B a j}
where ||.|| denotes the euclidean norm.
9 .
From the trianular inequality, it is apparent phat
| |F(z)-F (x)+ Gx~Gz]||< [|F(2)~F(x) ||+ ||Gx-Gz]|]|. "
S (4.15)
C' >
But from (4.14) and the fact that (40,p.65) \
. R r
Hex] < [le |1y x|
where || GHi represents the induced matrix norm,
Equation (4.15) can be'rewritten as "
s B . ‘ o . »
| |F(z)-F (x)+6x-Gz||< k [le || +[|c [|; [le ||
o (4.16) . ’
]
cémbining (4.14) and (4.16) and evaluating the norms
on the right side of (4.13), v can be. bounded via an.
%nequality\of the form - . -
Vk‘ (, J 2 2 - ‘
v sllell tmegrarizlly +2(l 7 11 llell; 1.
. . . '
oo - (4.17)
. ~» \ 5 ° N
VAN - - 2
Y ;‘
kY N *
. ’ ‘K
‘. ) ‘\,1 . f -
P .
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i ' Therefore V is negative definite if

fle |].1 (4.18)

L co > [ 2k IRl g+2 [[® |1, :

“\\

1

' ' If the above inequaliﬂ@ is valid, then e=o is a stable

, equilibrium point since V satisfies the conditions of
<

JTheorem 4.l1. Ih addition, if (4.11) is rewritten as

a
a

/ “ e = He + R(z) - R(x) : B
' then from Theorem 4.4,it is apparent that e = o is an

» -

—

asymppo;ica}ly stable équilibrium-po;nt. Kou et‘Sl‘lS)
ct an exponentially stable |

prove that e=o is in

equilibrium boiﬁt,.t“ t is, that

[le(t) || < Ky Ile(o)i}-exp[vxzt], for some

.

constants Kl’ 2" .

\ 4.3.2 “Linearized .Observer . _ .

f' ‘K L . Th inearized observer is described by the

equation v , ’ e K

S \
. 2z = ( B+G-Kc ) z + Kex + Bu ’ }4.l§)
S ~ o - -

‘where -G is a Jacobian matrix defined previeusly. A

comparison of (4.8) and (4.12) reveals that the term -

? » . P -
. R(z) is excluded from the linearized observer model. :

Intuitively, therefore, it is cleat that the nonlinear"

‘ - - ‘.observer is expected to have better convergence pgoperﬁies

* ' than its linearized counterpart.

-
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B

-

A

4.3.3 Comparison of Linearized and

e e

e

o

Nonlinear Observers

\l

4

modeled in the form of (3.23) is solved by a fourth order

A

Runge Kutta technique on a 64

/ its nonlinear .observer of the

. 2 =

n

(E+G-Kc) 2.+ Kex +

The equilibrium point chosén,

-

~ X0
%20

%30

ne

bit CDC computer along with

type

R%i) + Bu.

s
is: given by
\

v
F10

~VF20
-Tm

-1

T.

i

i

A two generator power system and interconnections,

3

77'

z

. ' Y

» 0O 0-p O 0 0 0 0 0 O T o
i

- . and ipitial conditions of the system and observer are

s, respeetively | 1
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78.

Xl = 0, Zi = O y Vi¢= l' ] . . (7
Xg = 1, 28 = 0
’ﬁ“ ]
X137 %3 =1 -
-xi = O ’ zl = Q "v = 9’ . 12 *

¥

The power network and its linearized observer of the

14
form

2= (E + G- Kc ) z + KCX + Bu

are then simulated with the same initial conditions and

<

dround the some equilibrium point. Plots of the state

variable trajectories X] r Xq and x are given in

13
, Figures 4.2 to 4.4 to illustrate the behaviour of the
LA T - T

two observers.

t
I

/ .
‘ ~—_The new design methodology should allow the

observer to faithfully reproduce the system states over

[

an, extended region around the operating point xo‘and:

should therefore be more ef?gctive than itS‘iinearized

1

J.count%rpari. " The simu%@tiéﬁ results of Figures 4.2, _
and 4.3 show that the performance of the,noglineaf is
better than that of the linedrized observer.: States éf
the system and two observeré at time‘f = 3 are tabulated
in Table 4.1 and it is clea®, from t?e table as well as

~ Pigures 4.2,'?\3,'that‘both‘estimators reprédhqg,thé system
lsfates'with approiimgtely equal magnitud;, whiié the

° .

nonlinear observer provides the correct-sign for twelve’
‘ z . .

W/
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CHAPTER 5

CONCLUSIONS

»

5.1 SUMMARY

The probiem of power system stability and

*
-

stabilizat}on mentioned in the first chapter, is the

uhifying/éheme of this thesis. In order to study
stabilization methods in as realistic a Qay as possible,.

hontrivial«djnamic models must be available. This is
the ihtent.df Chapter 2 and 3. The second chapter
contains the complete de&elopment of a single generator
model "beginning with the derivation,of machine Anducténces
and ending with the per unit torque and anqular diffe~
rential equations. Cha§£ert 3proviées d;tails ébout the
interconnections and the relation between direct and
quadrature axis‘vblgages to_curreits.' The full two
éengrator ihteréonnected power model with machine para-
meters assigned, is présented in this chaéter and the
preparatory worg for a sysiem siwylation is completed.
In Chapter 4 the nonlin%af\and'linearized observers are
designed, £h§iiﬁpefformance Egmpared by simulatien on a
64 bit computer where-the nbnlingar observérs is shown
to be better than that of its linéarized‘gounterpart.
Analytdical proofs:for the convergence of the noniinear~
05:érvers state to tﬂat of ;he‘obserééd system’ are

provided and it is indicated that an unstable nonliner

system with state feedback obtained via the nonlinear
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; observer,. can be stablized The main aims and ohjectlves'

of the theszs, as stated in the first Chapter, are

thé?%fore met. _ s

Tt should bel noted that, ' in the design procedure
for'the noﬁlineer observer, ,the nonlinear dynamical ‘
equetions.ere linearized around}some equilibriumg point
X, - hltheugh this method might be viewed as being overly
restrictive, it is not howeveg so-Eince, any power system

functioning under steady’/state conditions, operates at .
. &

an equilibrium point. ,When a distrubance hits the system

it pushes the state variables into a region around this

I
peint and it is the behaviour of these variables,
‘perturbed from thelr quxescent state, which ult1ma€ély

determxnes system stablllty

5.2 AREAS FOR FURTHER RESEARCH .

’

There are several areas into which the existing
O d

.

work can be extended. Txe first modification would be

' the simulation of the twa machlne system given different

parameters for each generator. A further extension mlght ?
: Ee the design of the nonlinear observer and its inclusion . ,
.inp a real on—line powerinefwork composed of interconnected ) ;
micro-alternators. .
&';' o Othet problems, of a tﬁéoretical natufe which | (~J<

must be solved, are the selectlon of good exgnvalues(zz)

and the provision of a reasonable gain matrix K for the . ~ i
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degired pole locations, ) ..
Wwhen the loads change, the mod&} cannot .

-adequately handle these variations. ' It is therefore

reasonable to use the developed differential system -
! . ‘ \ | : . |
over a short time'frame ( on.the-order of several minutes ]
d ¥ * . -

however, the model would be inaccurate if used for a

longer period of time. Therefore adaptive ‘identification

)

. ' . ' .
of the nonlinear system with changing loads would seem T

4 .

to be a useful and interesting area 'in which tchoncentrate
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