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This digsertatinn/discusses different observer” schemes to
reconstruct the states of the time invariant linear systems necessary

. for control. In some cases where the pérémeters of the system are

_unknown, édﬁ'tiye observers are used, and adaptive laws are deQe]oped.
' The effect of theegbservers on the overall system stability is dis~

, T — . [l
cussed, and it is shown that the observer~does not change the pole loca- =

" tion of the system, but it adds its own poles to the system. The rate

“of conyergence, and the effects of observation noise have been discussed.

v

P

kbl A s £ 270




o e S

ACKNOWLEDGEMENTS

The author is deepiy indebted to Dr. M. Vidyasagar, Professor

" of Electrical Ermqineering, Concordia University, for shgge;ting,many

projects-and ideas from which I chose this work. He has been a.con-

1 »

stant source of encouragement and advice during the course work and

duriné the preparation of %hjs‘dissertation, for which 1 express myg

. \
gratitude. . C
.
A '
v 0 -
. . .
N .
Al 13 8 o
_— ) o
4
3 1 ! ‘
14 -
.
) »
. 4 ~+ 1 4
» ’ . ]
7 ] L
v ¢ : “ ’ ‘ ‘ ¢
,
j ’
' ]
) '
4
) . -
A
* 1 . b
v ® e
. . .
' "o
- ’ eA
» . : 3 - i
f i
€
A . . ,
iv '
Al
Y
. .
Pl .
- ’ A




i ~¥ v
' ¢
, ‘ .
' TABLE OF CONTENTS.

. ‘ Page
ABSTRACT .o oee e R TR fl; ..... i
ACKNOWLEDGEMENTS .. v vvvnen. .. IO e e IS

N z . . .
LIST OF FAGURES ............. ADURITURRTTI STURTRURRRR U 2
" CHAPTER | , _
1 INTRODUCTION e, N
: 2 AN INTRODUCTION TO OBSERVERS ....... ST e
3 OBSERVERS FOR MULTIVARIABLE SYSTENS ....... '...;..:.;..‘ 20
"4 - STABLE ADAPTIVE OBSERVERS .......... SUTTTUURTRNTOOIS 38
"5 ' AN ADAPTIVE OBSERVER AND IDENTIFIER FOR LINEAR 3
. SYSTEMS .ovvniiiiiiii il 55

6 - ADAPTIVE OBSERVERS WITH EXPONENTIAL RATE OF CONVER- -

s i

N Lo e o
7. CONCLUSIONS .....ive.veee... e ieeeas et eree et 79
REFERENCES ...... T S .. 81
\
. ' \
i y . -
. o
, | N
i L
g ' ) A
. ! '
. o B i —
. . ~ o ' S

S ———




o

" Figure

2.1
2.2
2.3

© 2.4
2.5

3.1

3.2

3.3

4.3

4.4

" Nonminimal. Realization of a Single Input-Output Plant. ..

LIST OF FIGURES

A Siﬁﬁ]e 6bser§er ..... C e e e e e e e e e
Examp]e:SéCond Order System . . . « v « v v v « & L
Structure of Redhged Order Observer . . . .- . . . ...
Reduced Order Observer . . . . . . . e e e e
Reduced Order Observer for Example Fig. 2.2 . . .. . . .

° \

Fourth Order System Example . . . . . . . ..

Canonical Form of Multiple Output System . . .

KEh'Subsystem of Canonical Form . . . . . .. e e

. a

_ Observer for Fourth Order System . . . ... .. .. R

-{0b§erving a Single Linear Functional . . . . . . . . ...

L

L] 4

Reduced Observer For A Single Linear Functional . . . . .

[

First-Order Observer Example . . . . . . . . .. .. .

”

Gain-Matrix Followed by Stable System (A1l State
Var1ab1es Access1b1e) .................

Identification of Parameters From Input- Output Data -
(Multivariable Casg)-.\v/ S A

The Adapt1Ve~0bserver. e e e e e e e e e e e e e e

vi

10 -

13

17
18

22

24
26

28

0

K}

34

42

- 44

48

50




’ 'y )
Figure : IR o ' ~ Page

4.5 Observer Structure . . e )

5.1 Block Diagram for an Adaptive Observer and Identifica-

tion Scheme . ... . . . . .0 0 L0 000 .. .. B2
5.2 Implementation|of a Second-Order Observer and Identi-
fication Scheme . . . . . . . . .. .. v .. .. 63
6.1 Structure of the Parametrized Observer . . . .. . ... 74
¢ ' |
[#
. ™
. 2 \
'( .
, f
jv ~
- 4
N L)
( /
g 14
\ Y . v .
vii ' .
;

-
-




W

b

CHAPTER 1

INTRODUCT 10N

In a contro1(system, if the input or the co;handing signal is

predetermiqed, and will not change no matter what the ggtdome of the
control is, the system is said to be an open loop contral system. If a

proper change in the control signal is required to bring\the-response of

- . the system to a desired one, such a system whose input -signal depends on .

i
the outgome of the control 1is called 'feedback control system'. 1If a

dynamical-equation description of a system is-available, it is reasonable

"to select the input based on the value of the state, the reference input,

and possibly on t,becguse the state and the input determine comp]eté]y‘

the future behavior of the system. So we can write the con {01 signal" ~
’ \

"y

as:-

“u(t) = f(r(t), X(t), t)

1}

where r(t) -= reference input
X(t)

t

"

state of the syétem

*

"

time.

This relation is!called a control law. Mrlinear, time.variant systems, we

+

can write the contro) law as follows: “ - .

' u(t) = r(t) + KX(t)

where K 1s real constant called 'feedback éain matrix'.

K o
- - ] -
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No&, in cése of state feedback cohtro1 systems, where(%he state
X is fed back into the input, we assume that the state variables are avail-
able as outputs, so that the control input u{t) can be determined. Also,
the study of the system behaviour dépends on its parameters,‘such as con-
trollability and observability of £hg system. |
| In practical situations where the state variables of the\;ystem
are not known, and some part of the paraﬁeters or all the parameters are not 7
known, the observer and adaptive observer are used to d!ger;;he the state |
and parameters of the system. This dissertation discusses the various
methods and techniques used fn order to observe the states of the time
1nvariaﬁt linear systems, and also to identify the parameters of these
‘systems (ddaptive observeer In Chap?er 2; observers which reconstruct
missing state-variable information necessa;y for control are presented.
The special topics of the 1deq§jty observer, a reduced order observer,
and stability properties are discussed. In'Chapter 3, it is shown that
»the design of an observer for a system with m outputs can be reduced to
the design of m separate observers for single output subsystems. Also,
the app]icat{ah of observgrs to control design is investigated. It is ~
shown that an observer's estimate of the system state vector can be used
in place of the actual state vector in linear feedback designs without:
loss of staptlity. 'In Chapter 4, the identification problem is defined,
using a model reference approach. Methods for determining the adaptive
laws for"adjust{ng unknown parameters which result in an asymptotically
stable overall systém ?re considered. Chapter 5 deals with an adaptive
:cheme which observes the state and simultaneously identifies all the
parameters qf single input-single output nth-order Tinear systems. The’

adaptive scheme is proved to be globaﬁ]y asymptatically stable. In Chap-

- e~ e
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ter 6, the so ea]JeH pargmetrized oosepver is discussedZ In thisldbserver,

it is shown that the state estimate is a linear function of its'

' parameters. Three such schemes are presented. Chapter 7 is the conclu-

s

sion which shows the advantages and disadvantages of the different obser-

vers presented in this diss%ﬁtqtion, and the areas of future work. 5
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v . CHaPTER 2
, AN INTRODUCTION TO OBSERVERS ‘
. , N e i
-2,1 INTRODUCTION - |
4t is often convenient when designing feedback control §ystehs ‘ \i

to assume initially that the entire state vector of the system to be

controlled is available through measurements. Thus for the linear time-

11

invariant.system governed by: : ‘ .
| . e
X(t) = A X (t) + BU(t) e e e (2
where X denotes n x 1 state vector
' U " r x 1  imput vector . .
A " nxn system matrix - ., | ’ .

. 8 " n X ¢ distribution matrix.
. S o : .
One might design a feedback law of the form u(t) & p(x(t),t) ‘
which could be implemented 3f X(t)‘« were avaﬂaﬂe: If the entire state o
| vector cagnot be meaéu?ed, as is typical in ﬁbst complex systems, thé
. control law deduced in the form U(t) = ¢(X(t),t) cannot bé imp]éhented.
So an approximate state vector wi11 be substituted for the unaVai1?b1e "

state. Th1s is done- by an observer The observer 1s a dynamic system - !

~ whosé character1st1cs are somewhat free to be determined by the designer. ° |

» i

-4 -
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2.2 Basic THEORY

Initially, consider the problem of observing a free system S1y
i.e., a system with zero input. If tﬁe available outputs of this system

are used as inputs to drive another system S, the second system will

~almost always serve as an observer of the first system in that its state .

wi]] tend to track & linear transformation of the state of the first sys-

tem, see Fig. 2.1.

2.2.1 THEOREM‘I(Observation of a Free System)

Let S; be a free system i(t) = A X {t), which drives ¢
S, Z(t) = FZ(t) + H X (t). Suppose there is a transformation T. satisfy-
ing TA - FT = H. If Z(0) = Tx(0), then Z(t) =T X (t) for all't >0, or

more génera11y: : :
2() = TH(E) + € TLZ(O) - T X (O] ... ... (2.2) 1

Proof: Well proved in [23]. < f
It should be noted that the two éystems 'Sy and Sz need not have
the same dimension. Also,-if A and F have no common eigen values, Eherg

is a unique solution T to the equation TA - FT = H. ) , ' R

Proof: Suppose that the transformation T exists, i.e. suppose that

for all t: N .
Z(t) = T x (t)
A" ' )
- v
X = AX (1) ye
2 = FI+ HX (2) g




'by_using the relation Z+= TX

T = TAX

&
.
n
s it o

X

L

FTX + HX (3)
' ' 0

Since the Teft'side coincides, so must the right side of
equation (3).

TA - FT = H. - o .

Since A and F have no common eigen va]ues.,‘ (84) will have a
0 unique solution T.
Thus any system S, having differdnt eilgen values from A is an .
observer for S, in the sense of Theorem 1. e result of Theorem 1 for
a free syste\ri/cgn be easily extended to a for:ced system by including I ‘ -
the input in the observer as well as the original system.. Thus, if S; is .

governed by:

X(t) = A X (t)+ BU(t) C c.L(2.3)

=~

Sz governed by:
Z(t) = FZ(t) + HX(t) +TBU(E) .. .. ...... (2.4)
 will satisfy (2.2).
Thus, an observer for a system can be designed by first assuming

the system is ?ree, and then incorporating the inputs.as in (2.4).




- .

2,3 IDENTITY DBSERVER g .

N
An obviolusly convenient observer would be one in which the trans-

formation T relating the state of the observer to the state of the
original system is the 1&Entity transformation. This requiers that the
observervsz be of the same dynamic order as the original system S (full
order observer), and that (with T = 1) F = A-H. Specificatioﬁ of such
an observer rests, therefore, on specification of thé matrix H. The
matrix, H js determined partly by the fixed output structure of the

original system and partly by the input structure of the observer. ‘4

If §; with m dimensional output vector, y 1is governed by:

x(t) = Ax{t) oo (2.5a)

y(t) = Cx(t) e (2.5b)
and S;, the observer, is governed By:

Z(t) = FZ(t) + Gy(t) e e e e e e (2.6)

then H = GC. In designing the observer the m x n matrix C is fixed
and the n x m matrix G is arbitrary. Thus, an identity observer is deter-

mined uniquely by selection of G and takes the form:

4 0

Z(t) = (A - 60)Z(E) + Gy(t) . « v o o o e (2.7)

Any G leads to an identity observer, but ‘the dynamic response of the
obsérving process is according to Theorem *1, determined by the matrix

A - GC.

»~
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LEMMAT ‘

Corresponding to the real matrices C and A, the set of eigen-
values of (A-GC) can be made to correspond to the set of eigenvalues of
/
any n x n real matrix by suitable choice of the real matrix C if and

only if (C,A) is comp]ete]y/observable.,

Proof: Well proved in [ 6],

THEOREM 2
An fdentity observer havind arbitrary dynamics can be designed
for a linear time invariant system if and oﬁ]y if the system is completely

observable.

Proof: Proved in [23]:

!

In practice, the real parts of the eigenvalues of the observer
are selected to be negative, so that the state of the observer will con-
verge to}the state of the observed system, and they are chosen to be
sqmewhat more negative than the eigenvalues of the observed system so
that convergence is faﬁyer than other system effects. Theoretically, the
eigenvalues can be moved arbitrarily toward minus infinity, yielding
extremely rapid convetgence. This ténds to make the observer act like

a differentiator and thereby become highly sensitive to moise."

EXAMPLE: Consider the system shown in Fig. 2.2. This has

state-variable representation:
. t \:“;
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X, -2 11 | X
= ) ) . + U . b . (2.83),
X, n -1 X, %1 ‘ .
. / ’
B t"' ~ !
X1 4
y = oo vy e . (2.8b)
C. v X2 o . .

.

An identity observer is determined by éﬁecifying the observer input vector:
r: & A

.e= |
g2
¢ . . _2 -gi ’] ¢

which has the corresponding characteristic equation:
A H @A 2+ g 4G =0 L. L. (2.@0).

Suppbsg we decide to make the observer have two eigenvalues equal to -3.
This would give the characteristic.eauation (A + 3)}2 = A2 + ) + 9,
Matching coefficient& from (2.10), yields g1 = 3, g2 = 4. The observer

is thus governed by:

7, -5 af 7, 3 0 )

= . Yy + u
1, -4 -] 2 4 1

\' .
" , ’ !
® ) 4
RV ' -
‘r.” PR A TN

b

AU,

b,
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" 2.4 Repucep DiMension OBSERVER

' t . ' i
The identity observer possesses a certain degree of redundancy. |

The redundancy stems from tﬁg fact that while the observer constructs an
estimae of the entire state, \part of the state as given by the system
outputs is a1ready available ! dﬁrect measurement. Th1s redundancy cén be
e11m1nated and an observer of 1ower dimension but still of arbitrary '
dynam1cs>can be constructed. Tﬁy basic construction of reduced order
observer is shown in F1g 2.3. ff y(t) is of dimensibn m, an observer
or order f-m is constructed with state Z(t) that approximates TX(t) for
some m x n matrix T, as in Theorem 1. Then an estimate X(t) can be

[ \

determined through: |

]

A -1 N . ’
X(t) = [%] | [528]\ IEEEEEE (201

" provided that the indicated partitioned\mqtrix is invertible. -

Agéin consider the éystem:

A

il

() = AX(t) + BU(t) Lo, e . (2122)

y(t) = CX (t) \ e e e e (2.12b)

4

And- assume that without Toss of generality thaé\\m outputs of the System
are linearly indepenent or C has rank m. A]so C can take the form
[I '0], i.e., Cis part1t1oned into an” m x m\\ldentvty matrix and
‘x~4//m zero matrix. An approprwate change of cgordinates is obtained

by selecting an (n-m) x n matﬁix D such that:

. - g‘
e [B]

is nonsingular and using the variable X = MX. Tt is conyenient to partition
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the state vector as:

_and accordingly write the system in the form:

e e e e

) = Ay (t) + AroM(t) + ByU(t) e i e e e (2.130)

w(t)

u

Aoay(t) + Aaal(t) + BaU(E) = L (2.13b)

The idea of the construction is then as follows: the vector y(t)
is available for measurement and if we differentiate %t, so is y(t). LSince
U(t) is also measureable (2.13a) provides the measurement A.W(t) for the
§¥stgm (2113b) which has the state vector W(t) and input A,,y(t) +'sz(t).
An identity observer of order (n-m) is constructed\foﬁ (2.13b) using this
measurement. The justification of the construction is based on the

following Lemma:

LEMMA 2:
If (C,A) is_ébmp]etely observable, then so is (A12, Az2).

Proof: Well explained in [8].
To construct the observer, initially define it in the form:
A C A .
W(E) = (A2z - LA )H(L) + Anpy(t) + BoU(t) + LIy(t) - Any(t)]

- Lélu(t) . L. (2.18)

In view of Lemmas 1 and 2, L can be selected so that Ap,- LAz has arbitrary

eigenvalues, or:

e




- 15 -

Z(t) = (R2z - LAr2)Z(t) + (Azp - LAlz)Ly‘(t‘) + (A21 - LAn)y(t)‘ ,
L + (B - LBy)u(t) o e e e (2.15)
with 2(6) = H(t) - Ly(e) , e (2.18)

For this'observer T = [-L ! I] as shown in Fig. -2.4 . This construction

_enables us to state the following theorem. -
w

THEOREM 3 . -

Corresponding to an nth

order completely controllable linear
- 1
time invariant system having m linearly indepéﬁdent outputs a state

observer of order (n-m) can be constructed having arbitrary eigenvalues.

Example: Consider the 2nd order system shown in Fig. 2.2.
This system has single output so a first order observer with an arbitr&fy
eigénva]ue can be constructed. The C matrix élready has the required,
form C = [1 0]. In this case, A22-GAy2 = -1 - G, which gives the
eigenvalue of the observer, Let us ée]ect G = 2 so0 t%at the observer will
have its eigenvalues equgl to'—3. The resulting observer is as shown in

Fig. 2.5.

2,5 . CrLosep-lLoop PROPERTIES

It would be undesirable if stable control design became unstable
.when it was realized by introduction of an observer. 1In this section,
it will be shown that if a linear time invafiant control law is realized
with an observer, the resulting eigenvalues of the system ére those of
the observer itself and those that would be obtained if the control law

4

could be directly implemented. Thus, an observer does not change the

y
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closed loup eigenvalues of a design but merely adjoins its own eigehvalues.

i

Suppose we have the system: ) S
K(t) = AX (t)+8U(t) e "L (2.17a)
y(t) = cx () (2.17b)

and the Central law

u(t) =K X(t) .. (2.18)

[f it were possible to realize this control law by use of avail-
able measurements (which would be possible if K = RC for some R), then

. )
the closed loop system would be governed by:

X(t) = (A+BK) X(t) ... (2jw

and hence its eigenvalues would be the eigenvalues of A+ BK. Now if

the central can not be realized directly, ah obsérver of the form:

Z(t) = Fz(t) + Gy(t) + TBU(t) C. Ce e et (2;20a)

u(t) = Kﬁ(l) = EZ(t) + Dy(£) L (2.20)

where  TA - FT = 6 - R (2.21a)
K= ET + DC ' ? e e e (2.21b)

can be constructed.
. ] .Q

From the previous theory (C,A) completely observable is suffi-
cient for there to be G, £, D, F, T satisfying (2.21) with F having
arbitrary eigenvalues. Setting U(t) = KX(t) leads to the composite sys-

.

tem:
X A + BDC BE X

z | ‘iC + TBDC  F + TBE Z

~

et e = B

e

b i P i
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" This whole structure can be. simp1ified—by introducing ¥ = Z - TX, and

’ hsjng X and ¥ as coordinates. Then (2.22) becomes: (”J
. ]
X A+ BK BE X :
1% 0 F P

Thus, the ejgenva]ues pf thefcomposite'system are those of
A+ BKand F. In view of Lemma 1, if the system (2.]

o
controllable it is possib{e to sel

vqjues arbitrary If thws contro] law\is not realiazable but™he system

is completely observable, an obseRver can be construc%ed SO th@t the

control law can be estimated. Since the
»
are also arbitrary the eigenvalues of the domplete composite system may

f the observer

be selected arbitrarily. The following theory results:
. .

THEOREM 4 - o "

' th

-

~

Lorresponding tQ*an n" order coék]ete]y céntro]]ab]é ard com-
pletely observalbe system (2.17) having m 1inear1y’independeg outpyts,
a dynamic'feedbaék system of order (n-m) can be constructed such that the
(zn-m)ueigenva1ues of the composite system take any preassigned va]ues.

So as seen’ from the above, the stab111ty of a 11near time

1nvar1ant system is not affected by an unstab]e observer. ' el

¢

v
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CHAPTER 3

OBSERVERS FOR MULTIVARIABLE SYSTEMS -
— , . , y
3.1 InTrODUCTION c
\ In this chapter, a new procedure for designing observers for

systems which have several outputs is explained. The problem is‘reduceh
to 2 series of dbserver designs for single output systems. The new pro-
cedire based on a special canonical form for'multip]e-outpué systems
leads to simpler observer designs. Also, the problem of ﬁ%constructing,

a single Tinear functiona] of the state ratﬁer than the entire¥Mate
vector is considered. It is shown that considerable reduction in observer
'coﬁp1exity is then possible. Finally, it will be shewn that observers may
.be used to rea]ize'b'oth Tinear anid‘nonlinear control 1aws4without Toss of

0

stability.

3,2 PROBLEM STATEMENT

In this section théﬁﬁekign of an observer for a system with M
outputs can be reduced to the design of m separate obserQers for single
outpuf subsystem. The gene?a] theory developed in Chapter 2 applies to
multiple output system as well as single oufpat systéms. As with the

single output sifuation, an essential assumption is that .of complete [ B

A - -2
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» ‘ o -
observdbility with respect to the outputs. .

Lo ' . -

LA system x = AX ] e e e e e e . (5.1a)

-

y = Hx ‘ e (3.1b)

is completely observable if the nx(nm) matrix [H, ATH, Co (AT)n_]H] &
has rank n. The observability index vof the system((3.1) is defiﬁed

a }the least posit{ve.inteqer for which the matrix [H, ATH, .. .~(AT)v']H]
has rank n. For some systems the extension'to the multiple-output case

is elementary. For example: consider the fourth order system shown in

Fig. 3.1. It is assumed that the two variables X1 and X3 are available

1

~

for direct measurements.

This system may be regarded as‘two codb?ed 2nd order subsystems
as inditated by the dashed-1ine boxes in_Fig. 3.1. The output of the
first box is the measureable variable X1 and the input is the measureable
variable X3. Therefore, since it is pOSf'ble to measure the input and
output of this second-order subsystem, a first oéa;;“observer may be con-
structed for this subsystem. Sﬁmi]ar considerations apg1y to the second
box, so it is seen that an observer for the total system can be built uﬁ
from two separate gbservers, each observing a single outﬁut subsystem. In
fact, all multiple output obéerving problems can be reduced to the obser-
;ation of single output sﬁﬁsystems. This is a result of the fd]]owing

Theorem:

3.2.1 THEOREM 1 (Canonical Representation of Multiple Output
: ) Systems).

h

Suppose that the nt order system y = AX with associated output

vector y = HTX is comp]etely observable with observability index v.




- 2?7 -

— — - - S = am mm A e s e e
‘




-2

’
s P AN

Suppose further that y consists of . independent componenqsf Then.

there is a non-singular linear coordinate transformation such that in

terms of the new coordinates the system has the representation Shown in
Fig. 3.2.. In this form, the system consists of m component subsystems,
each with one observable output which is a linear combination of«<the

“components of y. The @rders of the subsystems satisfy ny; +np +. . .

y

¢

nm = n, and the largest subsystem is of order v. The subsystems are

coupled to each other only through their outputs.

¥

Proof: The first step in the proof is 'the generation of a certain set
of n linear independent vectors. =

Since the matrix [H, ATH, AT V’1] has rank n, n independent

vectors can be taken as .a certain n columns of this matrix.
To define these vectors precisely:a__,/”\~ ..
(a) Start with the columns hi, hz, . . . hm of the matrix H.
(b) Adjoin to these the columns AThi, AThy, ATh one by one,
' checking that each new column is linearly indepdnetnt of

the previous ones.

&
(c) If any of the new columns is found to be independent, omit

it from the matrix and go on to the' next.
(d) After AThm has been tested, continue with (AT)2h19 (AT)zhz,

R (AT)zhm, etc, until n linearly independent columns .

have been found.

R e
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n independent vectors: ;

where for each K, Ve £ V. Furthermore, by construction there are coef-

' , - 25 -

*

(e) If a column (A ) h; has been skipped because of 11near

dependence, all columns of the form (A ) h ‘where k> i

can be skipped, since they also must be dependent on the

« o ¥
previous columns.

o
As a result of this procedure, there is defined an array of

m A, L (AT “ \
T % Tywa-1, '
hzs Ahay « o oo . (A')V2 ! p, o .
»* lf’—
T T
hos Ahoy oo (A")%n-1 h

A}

ficients qid(k) such that:

J

m v-1

(A1) vkh - E k) (AT)] hy el (3TT0)
1=0 ‘ ' '

where “id(k) =0 for i:>vk, and aid(k) =0 for i = Yy if q > k.

The desired canonical form of the system will have a'structure

similar to the structure of the above array in tﬁat kth subsystem will be

of order vk. HoWever, the state variables of the kthlsubsystem will be

defined in terms of vectors from the complete array rather than just the
kth

row. The Kth subsystem takes the form shown in Fig. 3.3. The outputs

of the m subsystems are’ each linear combinations of the origina1 outputs
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and hence are themselves measureable quantities. Conversely, the ﬁew,
outputs are linearly independent so the old outputs can be recovered from
the new.

The independence of the n outbuts'fo]]ows from the fad¢ that

the transformation matrix re]agi;g.the old and new outputs is triangular
with 1's along the diagonal. In order to establish that the proposed
canonical form is in fact a linear coordinate change of the original sys-
tem, it is only necessary to verify that all variables take the form

X in the canonical -form satisfy Z=A'K. That this requirement is

h

Z=K
satisfied by the Kt subsystems shown in Fig. 3.3, follows directly from

equation (3.1c).

N\
S

EXAMPLE: The system shown‘}n'Fig. 3.1 is already in
canonical form apbropriate for design of a second
order observer. The poles of the observer are
arbitrary and will be both chosen to be -3. The
design is carried out separately for each subsystem.

Syétem S is Qoverned by:

.

According to results from Chapter 2, an observer with a pole at -3 driven

by Xa = [1 0] X will produce TX“where:

2 :
T [ +3T= [1 0] C e e e (323)
0 -2 ~

- get T=[1 rJ]. The observer will be governed according to:




- 28 -

Ee.

9
1 I N
, ~ ‘.'
9 el €+S
9
, e W3LSAS
€+S
oy L
Nm X ¢ P - ) +. X




- 79 -

Suppose these poles are chosen first. Thén the poles of each of the other

blocks of the observer can be chosen to be a subset of the poies of the

largest block. WNow corresponding to each output Yo there is a transfer

; A
function of the form Z%é%l' from Yy through the observer to aTX.

The polynomial A(s) is the characteristic po]ynomié] of the
largest block in the observer, ,and Ak(s) is a polynomial of degree no

greater than that of A{s). Thus, the observer shown in Fig. 3.5 may be

equivalent to the one shown in Fig. 3.6 when the indivddual blocks of the

original observer have common poles. An observer of this form can be
realized by a system of order V-1, therefore the following theorenm-is

established.

3:3.1 THEOREM 11 : v e

A single Tinear functional of‘the state of a linear sy§tem can
- be observed by a system with v-1 arbitrary poles (v is the.dbservabi]ity
index of the system). As shown in [ 1] v-1 iéloften considerably less
than n-m, the order of complete observer. In fact (n/m)-1 < v-1 g n-m.

A twenty-fifth order system with five outputs, for ex;mple, may require as
few as_four arbitrary poles to construct an estimate of a single linear

functional of the state vector.

Example: Considér again the fourth order system in Fig. 3.4,

Suppose it is desired to reconstruct the single linear functional X, + Xi.

According to Theorem 2, an observer with a single arbitrary pole is suf-

ficient. If the pole is chosen to be -3, the observer constructed before

3

s
i b a— -
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Z = BZ+CX+TDu ... o (3.)

which in this case:

£l

-&
~N
u

32+ X, - X3 ° 3 .. .. (3.5)

v 4

The estimate X, is constructed from the measurement X; and 7 according to:

A

Xa = X1 -1 ° . ' (3.6)

A similar procedure applied to the subsystem S 1leads to the observer:

‘ . . 1 .
W = -3w X - %»(u - X1) ‘
A ‘ <
Xu = 3X3 - 6w ’
The complete observer is shown in Fig. 3.4. . ) ‘ _ )

3,3 (BSERVING A SINGLE LINEAR FUNCTIONAL

Sometimes it is only necessary to estimate a siné]e (bht prespeci-
fied) linear functional of a system's state vectorf Thjs 1§ the situation
for exampie in the design‘of linear time invariant state feedback jor a
singlie input system. In these instances, an observer of considerab1y‘reduced
complexity can often be constructed which will produce this single quantity.

Imagine an observer constructed for a multiple-output system »
according to the scheme of Section 3.1? The output of thé observer is aﬁ'

- estimate of the system state vector X. In order to obtain an estimate
of a 1iﬁear ‘functional of X,.say aTX.‘the same linear functional of the

observer output is taken. The result is shown in Fig.-3.5. The largest

block in the observer has exactly v-1 poles which may be chosen arbitrarily.

!

L AN R w320 T

s A s e




- 33 - .

can be used as a first step for this system 1n the des1gn procedure. Using

the results obta1ned in the previous exq&p]e

Xp'# Xy = X1+ 33 = Z = 6W o e .. (3.7)

_ Thj observer shown in Fig. 3.

v

7 is the result. =

3.4 Crosep-loop STABILITY PROPERTIES

. Consider the system:

>
1]

AX + Du

With y = H'X

e . .o .. (3.8a)

CEREEEEE (3.8b)

Suppose that a‘contro1 law of the form u = F(X) has been derived for this

system by some des1gn scheme.

s L

BZ + CX

n

z

An appropriate obseergrLor(3 .8) is:

l

+ TOu AU £ -

where . TA - BT = C. CX must be derived from-the output vector y, hence

C = GHT for some appropriate matrix G. . The estimated state is a linear

”

combination of the system outputs and the state vector of. the observer is:

N
X = LX + KZ

where L + KT

P A
imated by a corntrol law U =

tor. The complete system is

AX + DF{

LX + KZ

xi N ><.
T

I (identity).

,BZ + CX + TDF(X)

A

e e e e e e e (310)

_ The control law u = F(X) can be approx-
[4]
F(X) based on the estimation of the state vec-

then governed by:

1

X)

. S ¢ A B D)

~
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~

So let us investigate the stability properties of the control
“ system governed by (3.11). - The system equations (3.11) can be rearranged
so that many of their stability properties become clearly apparent. Define

Z=171-T% X-= ?,- X, and then subtracting T times the first equation

in (3.11) from the second Teads to: o ‘\ - S
XK= A+ OF(X)
7 - 8z |
- o X - @ o (3.12)

If F(X) = FX is 1ingar, the closed Toop system Qsing the actual
state is % = (A + DF)X. It has beén shown in [21] and in [24] that 1f'an
observer yith transition matrix B is used to supply an estimate of the

. state vegtor, the closed loop poles of the overall system (3.11) are‘the
é%genva]ues of (A + DF) and of B. In other words, the observer does.not
disturb the poles of the original system, but merely adds its own poles.

In similar fashion, it is possible to investigate the effect of

‘an observer in realizing @ non-linear control law. Suppose that the closed
lo;b system: ) 4
X = AX+DF(X)
is asymptotically stable in the large [16]. It is assumed that the
asymptotic stability of (3.13) is estaplished by the cons;ruction of a
continuously differentiable Liapunov function V(x) for the’system which

satisfies the following conditions:

TOWREISRCWEE A

R




s
1) V(X) >0 forX # 0 V(s) =

2) V(X) +~ as HXH‘ > | ‘ : \
3) U(X) = V(x) = X [AY + DF;(x)]<0 for X £ 0
4) Lim x| » e -u(x)/ o, VOOII = + = :

The first three assumptions are sufficient iguardntee asympto-
tic stability of (3.13), while the fourth is an additional assumption

which is often satisfied in practice. The following theorem shows under:

relatively mild conditions the observer scheme out]%ned above leads to

- an asymptotically stable system.

3.3.1 THEOREM 111

Assume that there is available Liapunov function for the system
k = AX ; DF(X) which satisfies the conditions 1) - 4). If F(X) satisfies
a uniform Lipschitz condition aﬁd the observer is asymptnticaliy stable
in the large, i.e.; B has its eigenvalues in the left half plame. The

complete system (3.12) is asymptotically stable in the large.

[

Proof: As a first step in the proof, a quadratic Liapunov function is

constructé& for the‘dbserver i = BZ by the standard procedure
for stable, linear, time jnvariant systems [16], [ 8]. For

this purpose define P as the unique solution to the matrix
equation PB + BTP = -I. It is well known that the matrix P so

def1nes is positive definite and that 7 'p7 = NZU%P is a

-

Liapunov function for the system Z BZ with derlvat1ve

Dimka ke e oS e




- 37 -

(é%) FZ)2 P = - ||Z]}%. For the overall system (3.12) define
w(X,z) = V(X) + |IZ]|?p.  W(x,Z) is clearly positive definite. Also,

wi%,z)

xV(x')'[Ax + OF(X)] - [IZII?

Ux) + V00 D TR - FOT - |12}

<U(x) + il I (1 N O | I L R ¢ I 3

where the positive constant C, is determined by the Lipschitz condition.

Using X = KZ from (3,12), the above inequality can be converted to:

\\ w(x,z) sU{x) + Cy || xv(x)ll M0z - Nz .. .. ... (3.15)

pl

Using‘the function w, it will now be shown that any trajectory
of the system (3.12) is bound%d. Obviously Z is bounded on any trajectorya
Condition 4 on the Liapaunov function V dimplies that for sufficiently
1a*ger X and bounded Z, theyfunction w(X,z) {s negative definite. There-
fore, since w(X,z) » = as [[X|| >», it is impossible that |X|| increase
without bound. Thus, there is an R>0 such taht for all t>0, x(t)] < R.

- Since [Z|| »=as t »~, given >0, there is a'fifrite time T
such that for ¢ > T, “U(X) +Ca )l V) |-l Z)l<o. Thus for t>T
the function w is negative.definife, and X must tend toward the circle

IX]l < €. Since € was arbitrary, X tends to 8. This ©establishes

asymptotic stability in the large.

:
!
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. CHAPTER 4

STABLE ADAPTIVE OBSERVERS - |

4,1 InTRODUCTION

In this Chapter, minimal and nonmin{ma1 realization of the
L. adaptive observer are pre;ented, and their .relative advantages in terms

of ease of éonstruction, speed of convergence, are discussed. The exten-
sion of hasic concept of the adaptive observer to multivariable systems, :
is then treated. Iﬁ all the above problems, the basic que;tion is one ' L
of stability. The error equations of interest in the adaptive observe}
are linear non-autonomous homogeneous differential equaiions.\\The non-,
autqnomous elements are introduced by the input and outpu@ of the p1ant\ '

" that is to be identified. Here, the stability of these non-autonomous

ki

. differential equations are presented..

‘ ( . R
4,2 IDENTIFICATION PROBLEM _—

. Consider an algebraic equation:

JdK=b() . e (a)
defined for all teT = [0, t;], where o(t) and b(t) are bounded piece-

wise continuous fractions. «af.) and b(.) take values in R" and R, and K

¢

: - 138 -
P : \
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is a fixed unknown vector in R".

The aim of identification procedure is to determine the eonstant
vector K from obéerved values of a{t) and b{t) in the interval [0, t1].
-To solve this problem, we can use one of two approaches:

a) Divide the interval t into n distant of time, and measure
(t) and b(t), and solve a set of n 1linearly independent

equations for k.

b) An alternative approach is to obtain an estimate K(t) of K at every

instant of time t by solvihg the’ non-homogeneous differential

equafion:

K o= laft)d IR+ alt)b(t) .. (4.2)
o
Throughout this section, we are going to use the second approach.

4,3 IDENTIFICATION OF MULTIVARIABLE SYSTEMS (A1l States Acces-
sible). ;

Before discussing the adaptive observer, in the next sections,
we shall consider the identification pioblem of an unknown plant, all its
state variables are accessible forAmeasuremedt. The identification pro-
cedure describe& “in this section, gives an idea about the scheme which
shall be used later in adaptive observer.

Consider the unknown plant of linear time-variant differential

equation:

>'<p(t) = AR (L) + BUt) e (4.3)

where Ap and Bp are (nxn), and (nxr) constant matrices with unknown
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elements:

Xp(-)‘and U(-) are in Rt and R". » y
The elements of U(t) are bounded and piecewise continuous. Thé aim of the
identification procedure is to determine the elements of.Ap and Bp which
are the parameters of the plant. ‘

A model of the plant is set up which is:

Km o= KK+ [Ag(t) - K] Xp # B(EU(E) L (4.4)

where K is stable matrix, and Ay(t) and By{t) are matrices of adjustable
parameters. It is desired to determine adaptive laws for adjusting the

time derivatives Am(t) and ém(t) S0 thét:

1im Am(t{

= Ap

ts> o
| lim Br(t) = Bp \ —
tso
T i " L i
t v [Xm(t) - Xp(t)] = tim e(t) =10
. t>+

The state error equation may be written as:
. ) ) -~
e{t) = Ke(t) + o(t)xp(t) + p{y)u(t) . ... .. ... -(4.5) »

where the parameter error matrices are defined by: .

-

[Ant) = Ap] o

>

o(t)

| | < u(t) = DB () - 8] ‘)f

It has been shown, using [31], [13], using Liapunov function candidate:

{ ! \

L anal

P O L e
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e _.,_.,...., :,..,..:._ [

Vie, ¢, y) =

[eTPe + tr {¢Tr1¢ + wT rz'\:}}]
v ‘

. . 2 .
where P, T, and T, are symmetric positive definite matrices, and P satis-

fies the matrix equation:
v

P+ PK 5 - 0=10Q >0

e T ARSI it L

KT

“and the time derivative V d? V along a trajectory can be made negative

semi-definite Ey choosing the adaptive laws: .

$(t) = Am(tj S Pe(t) xg t)y ... (4.6)

N

W) = Bp(t) = -T2 Pe(tT(E) ... AT)
Using (7.6) and (7.7)'1t can be shqwn that:

V = -eTQe < 0, so that stability of the origin in (e, ¢, w),'
and boundedness of solutidﬁs are assured.
}

B i /
4.4 ERrROR MoDELS IN IDENTIFICATION . -

'

a) Model 1 - Fig. 4.1

Equation (4.5) represents the error models that arise natur-
ally in identification and control prbblems, using the methods described
here. The error between the plant and model states satisfies a differen-

¢

o . tial equation of the form:
c& = Ke + 0T (t)V(t) N O

where K is stable matrix

'GT(t) is (nxs) matrix of parameter errors, and

¢

V(t) is an s vector.




¢
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Comparing equations (4.5) and '(4.8) we get:

=
fl

T oo [elt) |e(t)

M CSOURUT

=
——
n

From (4.8) eT(t) is unknown, but §(t) can be adjusted, and it is-desired

to determine adaptive laws so that 1im e(t) = 0, and lim 6(t) = 0.

t + o t +
An adaptive law which can do that is of the form: -
o' = -1 T'pe(t)v'(t) e (4.9) .
where T=T'>0; Kp+PK=-0, Q=0 >0

'b) Model 2 - Fig. 4.2

In case when only some of the’outpu@s of the plant are
accessible, here, the error between plant and model outputs can be des-
£ ‘ \ ,
%ribed by:

€ = Ke+DOW, m=He .t e (4.10)

-

A The adaptive law for updating the (m x s) matrix (t)T in this case is
' found to be: A L 3 ‘ , . /\ |
r= T >0 .......(411)

4

Again, as inlthe previous case, e(t) and 8(t) tend to zero as t + = , if

the input V(t) is sufficiently rich.

e e
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4,5 THE ADAPTIVE OBSERVER

The main disadvantages'of the above models that it depends on

REToReER SR T e

the accessibility of all the state variables of the plant to be identified.
But ﬁn most practical situations, only some state variables of the plant
can be measured. This in turn, leads to the concepts of the adaptive
observer in which both the parameters and the state variables of the plant
are estimated simultaneously.

During 1973-1974, several seemingly different vgrsions of the
adaptive observer appeared in the central Titerature [13], [ 5]. Carroll
and Lindorff were the first to provide such an observer. Liiders and

Narendra suggested an alternative observer [20], and later modified their

At

model to have a simpler structure. The paper by Kudva and Narendra [14]
proposed another model and in [30], Narendra and Kudva showed that all
these results could be derived in a unified manner. - In 4.5.1, an outline of

the phi]osopﬁy of these approaches and inqications of the structure of the «

adaptive observer is given:

4.5.1 Minimal Realization [5 ], [14]

A single input single output plant is assumed to be described f

by the differential equation:

X = [-a|A]X + bu yEX =R L (4.12)

where the constant column vectors a, b represent the unknown parameters
_of the plant.~The nx(n-1) matrix A is known, and h' = [1, 0, 0, . . . OJ.
" It is desired to construct an observer which could estimatef the parameier

rd
vectors a and b, and the state X of the plant simultaneously.




—_—

 The plant equations may be rewritten as:

[-KIAIX + [k-alX + bu

> e
[}

y = KHx - | . (a1

In (4.13), the unknown parameters X, a, b and unknown signals, X1, u are

associated together. A convenient structure for the adaptive observer

then .is: ' , Y
s ~
() = K8 £ (- 3o + B+ Py
g v 0T ¢
......... T (4.09)
where ‘Q(t) and %(t) are the estimates of the parameter vectors a and
b, ﬁ(t) is the estdmate of X(t), and w(])(t) and w(z)(t) are auxiliary i
n-dimensional input signals which are required to stabilize the adaptive :
observer.
If  e(t) & X(t) - x(t) n
olt) 2 a- ()
A A ; .
wt) & Be) - b, M
the eirror equation may bé written as: . , T,
. 4
. & = Ke+8Z+w e=he  ......=*~.. (815
-where 6 =1[4¢ [u;](ZT =Xy, ul,bws= w(]) + QTZ) is n Ywector. The - =
objective in this case is to determine the signals w(1)(t) a w(z)(t), ‘
and the updating laws for é(t) which will make 1im (t), wit) and
. ~ o

(t) =~ 0. From Model 2 above, we know that if:

E=Ke+doV e he ... .. Co. (86)




L/

The adaptive law is o = -€, V RS 2.',J. . f e e .. (417) -

To find the law for updating o in (4.15), the following proposi-
tion is used: Given a 2 vector Z(t) whose elements are/ bounded funttions

“of time, there exists vectors v(t) and w(t) with

a

v(t) = G(pPZ(t) P =& and w=w(b , V) such that:
- - . ~ T
e = Ke+0Z+w - e; = he -
F.Z = }s + deTV ! 1 gy = hT€1 .

- ’

have the, same outputs (i.e., e;(t), -provided fhe‘pair (hT,K) is completely
* observable. For a progf of this proposition, refer to [30]. Using the _ -

. above 'proposition, an adaptive law:

. . v (1) ‘
0 = -eyv where V = : e e v e e .. (4.18)
h v (2) DA

which is the éame as that used in (4.17). The schematic diagram for this

adaptive observer is shown in Fid. 4.3. As shown in Fig. 4.3, Xa (t) and
; i h

)

u(t) are used as inputs into identical (n-1)"" order systems whose outputs

are V(])(t) and V(Z)(f). The signals W’(t), (i =3E-2), which are func-
tions only of V(i)(t) and é(tf are added to -the input of the observer.

/

4.5.2 The Adaptive Observer: (Non Minimal Realization) [32]

_The presence of w(])(t) and w(z)(f)-makes the practical realiza-
tion of the observer‘Qifficuft.' Another approach to eliminate this diffi-
culty is by using transfer function rather than a state varjable descrip-

tion of the plant. The transfer functian of the singie input-single output
4 \ N

~
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is of the form:

4

ARl e e

where Qp(s),,and Rp(s) are respectively (n-])th and nth order ﬁo]ynomia]s

in "s. Tp(s) can take the form: : , ’ AN

where R(s) is a Hurwitz polynomial .of degree (n-1), and R(s)(s +=A0) +
Pp(s) = Rp(s). Thus‘py adjusting the coefficients of the polynomials ,
Q(s) and P(s) of a mo%gl shown in Fig. 4.4 , any nth order transfer func-

tion Tp(s) can be realized. This is the model used for the identification

'd 1

~of the plant in this approach.

!

. The principal contribution of [32] is .the rea11zat1on that the
plant output raf%er than the model output should be used in the feedback
path of "the model to simplify the determination of the mode] parameters

The 1dent1f1cat1on of a single input- single output p1ant takes the form

shown in Fig. 4.5 where: bi and a; are adjusted accord1ng to the law:

y (1)

A
d. T . ~ .
X el.l
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"(between plant and model) are seen to be described by a homogeneous non-

"tions (4.5), (4.6), (4.7) when K,I';,T'> and P are scalars, we have:

_ This assures the boundedness of -the solutions of the equation. LaSalle's

- 52 -

4,6 StaRILITY PROPERTIES OF THE ADAPTIVE 0BSERVER

AL e FE T bt e Sk e e

/

In the cases discussed above, the state and parameter errars '

autonomus linear differential equation. For example, consider the equa-

A - - -t -
e -K. Xp(t) u(t) e
¢ = 'lep(t) 0 0 ¢
. l!} = . "'qu(t) 0 0 ly
L L N L
............ (4.20)
a M
or Ee = A(t)E
T a ] |
where E' = (e, ¢, ¥). :

The matrix A(t) is time varying since its elements contain the
input u(t) and the plant output Xp(t). To.study the behaviour of the
equation (4,20) it is necessary to assume that the matrix A(t) is bounded
and this accounts for the fact that all observer schemes deve]oped so far
can be applied on]& to stable plants. Insalmost all the schemes discussed
in this Chapter,-thé Liapunov function candidate V is ﬁositiVe definite,

and radially unbounded, but v (its time derivative) is negative semidefinite.

theorem for a symptotic stability [17] applied to autonomous systems, and

systems which can be described by equations of the form:

X = f(X,t), where f (X,t +T) = f(X,t) for same constant T.
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A great deal of effort [ 5], [30], [10], was spent in consider-

ing periodic inputs into the system so that LaSalle's theorem could be

TR o e B s B St Vg

abb]ied to prove asymptotic stability, or- convergence of the parameters

of the system to their true values. in all cases, the result is expressed'

as a richness condition on the input, which must contain a sufficient
number of distinct frequencies (i.e., U(t) = C'sin(wit +b.). Morgan
and Narendra discussed in detail two classes of systems [25], [26], which. §

are described by equations of the form:

(1) X = -B(t) B'(t) X |
4 X A -B'(t) X
(1) i (4.21)
y B(t) 0 y

These equations incluce most of the adaptive observers discussed
so far. The necessary and sufficient conditions for uniform and non-uniform
asymptotic stability are given in terms of richness condition on the matrix
B(t). For the first eqﬁation in (4.21), the condition is expressed as a

linear growth of an integral:

t

’// I B()B (1) w | dr 3 alt-t,) +b
0 ‘ ~p

where w 1s any unit vector, a and b are constants a > 0. For the

-

uniform asymptotic stability of the second equafion in (4.21) positive

nos. t., e, and 80 exist such that given t, >0 and any unit vector

» g
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WERn, there is a tze[fl, ty + to] such that:

ﬁ B(T)T wdt|> €q

- t2
*

\ , .
or for any fixed unit vector w, BT(t) w is periodically large and maintains

the same sign for a fixed interval of time 8,
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. . * CHAPTER 5

" AN ADAPTIVE OBSERVER AND IDENTIFIER FOR A LINEAR SYSTEM

Y

5.1 INTRODUCTION

The design of model reference adaptive system using Liapunov's

+ direct method has the important advantage over other adapgive schems in

that the global stability of these systems is automatically guaranteed [19].

However, the main disadvantage of adaptive designs using Liapunov's method

as compared to other methods has been the fact that they require the

complete state of the controlled system for their implementation. In most
X

cages, only the output of the systems can be measured. The solution to

the above problem is presented in terms of a new canonical state represent-

ation, and permits easier implementation. 5 s -

_. 5.2 PROBLEM STATEMENT T

Consider the following system {single input-single output),
/

> .
u

AX + bUCEY ... el L. (5a1a)
y =hx (5.1b)
.~ 55 -
/
v N
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X - th ' .
= n~ order state vector
U(t) = single input
= single output

Y
AT1 that is known about the system is:
a) U(t) c)n

b)/y . d) time invariant

It is required to design a system which would do the following:

1) estimate state vector X

2) identify the parameters A, h, b. «

In the prob]e@ stated above, since ane is only interested in the input
output characteristi?s of (5.%), there is considerable freedom in choosing
the internal state representation ‘X or equivalently, in the choice of

h, A, b. If the system (5.1) is completely observable, then it can

always be represénteq }n the following form:

-~

'-.T - o - " e -
1)

X1 “ay : ] 1 B X1 ' bl
s X 2 az X2 1by
= : /\_ ) + U
{
| e u
t
Xn ! on J .X“J °n
. e e e {5.2a)
« - :
- y={(1 0....0X=X1....... e e (5.2b)

AN
where is an (n-1)x(n-1) diagonal matrix with arbitrary but known con-

——




3

stant and negative diagonal elements - Ai(i =2, . ... n) and

a=(a, d, . .

T - T
n) , and b = (b1’ bz, C bn) are the 2n unknown

parameters to be identified. The reason for the form shown in (5.2) is

to make the right hand side of (5.2) have the special form that all terms

are products of twoqquantitiesz;one known, and the other unknown.

5.3 THE ApaPTiVE OBSERVER AND IDENTIFIER

NOJ consider a model whose form is similar to (5.2), and whose

pa;ameters ar (o, o2y . . . n)T and B= (Bi, Bz, . . . Bn)T- will be
, adjusted éﬁégtively in order to match those of (5.2) as t = «,
R 7 1 ] 5
3% I PR R B %, e “n® - x)
, | 1
n ottt T T A
X2 \92 | - X2 B2 Wo
g
! . .
\
= P A + u
» ; '
i
{
)
]
\
: -
N
0 1 A B
1 nle - ani » Xn By oWy
- . L -l L. 4 L. -
............ (5.%)

where w = (w2, w3, . . . wn)T are signals added to assure the stabi]jty
of the overall adaptive scheme and will be defined later. Subtracting'

A
(6:2) from (5.3) will give the state error e =X - X:

3 et BT rLa W rem ok R
g e e WA
Ga




il |
]
4
N
~
1
1
bt e

'-. h [~ ' ¢ ' -1 _1
el . -Al:] ] PN 2 3 ¢l wl ' x 3
‘ . i i
e S
2 \ 0 : ‘ ez b2 V2 °
l. ”~
I J/ﬁ\L 1. . R
! . -
= 0 . q‘gik X + U+ W
]
i ) ’ é
1
' ’ oy -
] C. N
[ N
0 ! e ) Y
Ln- L ' ~ - I_n_ L L — b‘n_ |~ —
4 {g I4
L (5.4) -
where ¢i =0y - Ay .
) i =1, n

wi » Bi - bi

_are the parameters errors between the system (5.2) and the model (5.3).

< It is now required to find adaptive updaé}ng equations for.the
»pa}ameter vectors ; and B such that t—=+ e, « =+ a, R —b, " and °
e = i - X -——+'O.‘) Since thesé adaptive equations as well as the model
equation will have to be implemented, it is important that ihey are func-
tions of signals which are available or can be beﬁerated from known signals.
However (ez,. . . e ) are unavailable because (X, . . . Xn) ére not
measureable, and therefore it is necessary to eliminate theh from (5.4)&

It can be shown that if w has a special form, the equations of A

o= (es, .7. . € )T

n/ can be integrated analytically, i.e., let

+

w = {[PI ~/A]'] T o -AT uY T (5.5)

3




where b = (d2s - . . . ¢n)T
E:‘(U)z,...-'wn)r .
o . i
. 4 °
P =
If we/define the auxiliary signals vi and s, (i=2,
generated by-.first-order linear filters: |
Vi + Xivi = X1 i=2, .. 0.0 L0 ...
1
si+)\1.si=.u i=2,....n ..., g
then w = (wa, . . . Wﬁ)T can be rewritten in a more simple form:
___' 2 2 Y ‘
W, = {Civi + disi)e i=2,....n e e e e

* To obtain &, we substitute (6.5) into (6.4)

e= &+ oX+ (PILAT X3 6+ o+ {[P1-AT U}

Band integ?ated:

e = (PIUAT ) b+ (0P -AT W) b e 18 (1)

Finally, Substitufing & into the first equation of (5.4) yields
s T -] } -
er = e + Xi¢y + {hl[PI =AY XY ¢+ Ugn

+ [P -AT ! ub §+ n] exp ALTR(EG) . . . . . .




S

where hI ={1,1, ... 1)is an (n-1) vector, and e (to) is the initial

error e at time to‘when the adaptation was started.

5.4 ApapTive FQUATIONS AND PROOF OF STABILITY

It is now straightforward to devise‘én adaptive scheme which
would guarantee global asymptotical stability in the 3n-dimensional

error space (eT, ¢T, wT). Define a Liapunov function-candidate:

. .
- 1,1 LI LR
ERT IS z: [<: ' “H]

_l

N

.......... (5.11)
C], d1 >0, =1, . n
Then, if we choose: ﬁ
b1 =& = -Ciethy - § = -e,;[P1I ‘A]-] ¢x1
ll:'l = By = -die,U ITJ = -el[PI'-A]-] du L.
SR LI R S PR a,)"
e e e e e . (5.12)
" then:
Vo= -nel +eh] epAte(ty) L. ... .. (53)
let f(t) = hI exp D\t]é(to). .
Then from (5.11) and (5.12) we have:
Vo= el rerf(t) < ef(t) < AV R ... ... (5.14)

and s1nce f(t) —> 0 exponentially fast as t -—+ ~, it is easily shown

that also U— 0 wﬁ%ch together with (5.13) implies e;—> 0 as t-r o, '




. \
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Finally using (5.10)_it can b%-shown that: . Com
. ey =0, ¢=0 b =0 .. L (5.15)

-,

if U contgﬁns‘at least n distinct frequencies (real 6r,comp1ex). . .

Hence, we have the final result that if the system (5.1) is
completely observEB]e, and if u is—suf¥icient1y general input, then
“he adaptive observer descrwbed by (5 3), (5 5) and’ (5.12) will asymptot-

ically yield  the state X and 1dent1fy all the parameters a, and bi

!

(i =1 .. .n) of the system (5. 1), ie. ;
) . . & ’ .
1imt . a, = . o, . p
t » = oL -1 Lt *
) 1 ‘ ’
Jlimt . by = B, , .
b - .1 o ) .
- ‘ b.\ \
y A | ~
N Timt Xs =Xy , . (5.186)
) { t > \ .
N ) [ 4 h

5,5 PracTICAL IMPLEMENTATION

-

= . The Nactma] 1mp1ementat1on of the adaptive observew and den-

tifier defvned by~ (5 3),. (5 5), and (5.12), 1nv01ves the generat1on of

signals to update the -parameters o and Ry (y =1, .75 . n), és well as

,f those'}oquirod to construct the é%gngls W, (i =2, .. .'n) fed back
. into the observer.. To illustrate these aspects sand parficu]ars of'the

adaptive écheme, consider Fia. 5.1, whlch 15 the block d1ﬂuram represent-

afion for ah’nth orﬁe} system, and F1g. 5 2 , which shows the detaw]s

s -

rresponding to a second-order system. From (5. 1?) it is seen that
X stem,
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- “,T-.euw.u P

2(n-1) §1’gna1's, v; and g]. (i =2.%. . n)are required to generate 5 and

fp', these are the elements of the diagonal matrices [PI -A]-] X1, and

[pPi -A]'] U, respectively.

\. y ‘ - : :
Further, from (5.5) it is observed that the same signals are needed

P s S5
o RS IS £

]
to obtain the feedback vector w. ‘Qence, for the implementation of the

entire adaptive process these are the only auxiliary signals to be gene

r%.
ted which together with 4(n-1) multiplications, represent the heart of

the adaptive procedure. T o

in]
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» . CHAPTER 6

-

| ADAPTIVE OBSERVERS WITH EXPONENTIAL
S 'Y ‘ : RATE OF CONVERGENCE

6.1  INTRODUCTION \ ‘ 4

" A Luenberger observer as shown in the previous chapters, allows
- asymptotic reconstruction of the state of a lincar system from measurg-

ments of jts {nput and 6utput, provided that the system parameters are

known. ' ’ ' R
| For the case where ng a priori knowledge of the ;ystem parameters

! is available, the so called adaptive observer is used. [The access to

the adaptive abserver problem taken here is different to-[29], [4], not
- _to coﬁfiquous1y adopt the parémeters in a Luenberger observer]. Instead,
a paramétriiéd observer is used, which is an equivalent but structurally
different representation of a Luenbefger qbserVer, and the parameters are
continuously adapted. Thereby, the observation process is well separated
, from the adaptétion process, and suitable adaptation schemes can be
' 5, ‘ developed in a general fashion.

Three such schemes are presented, which are proven to be expo-

» nentially rather than asymptotically convergent.

/
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6.2 OpSERVABLE CANONICAL Form ReaLIZATION OF 9(s) = oo

Cons1Ler nth order differentiak equation DAP)y(t) = N(P)U(t) ~
|
i
\

-i
Pl- (1)
dt
where  D(P) =|P" + opp™ ! 4 ... o, N(P) = g™t + g™ % Py
If we have n ﬂnitial conditions, y(tq), y(]) (tg)s - - - . y("”1) (tg)

then for any input U(ty,t 1, the output y[tos,t ] is completely determinable.

If we, choose y(t), y(1) (t), . .. y(n'])(p) as state variables, then we,

“ cannot obtain a dynamjcal equation of the form X = AX + bu, y =.CX.‘Instead

we will obtain an equation of the form:

“1

<o
1l

AX + bu

x+durduMagu@ s '

Y

%aking the Laplace transformation of equation A, and grouping the terms
]/ L[] .

associated with the same power of S, we will obtain:

yis) = §Ebuls) 4 gpay {y(o) "1+ 1y (0) + cay(g) - Buu(0)3s"2

o ty("'])(O) + ay("2) (p) - 82 (0) 4 ayy(13) (g

1
! ~

T LR R SRR S () B u(O)]} e (D) g
\ ' ' '

A

The right hand side of\equation 6.2 gives the response due to the input
u(s), the remainder gives the response due to the initial conditions. Thus,
if all coefficients associated with A s"'z, . .. 5% are known, then

for any u, a unique y can be obtained.




o

o

Now if we consider the state variables as:

\ Xn(t) = y(t) - . ;
<
X1 =y (D) Fanyie) - sty :
%2 = ¥ B0 4 auyit) - 8V (e) + anyt) - soult) f
k) =y ey vy gy g2y 4
o qy(t) - B Lu(t) L. SEIRTRUPEN § $0)) ,

* The equation IIT can be rewritten as:

y = Xn‘ -
Xn_] Noo= X anXy - B x
CKnez 7Kgy *oaXn - Bau
[
> p
.\
Xl = k‘z + an_’-l Xn - Bn_~| u

Differeﬁtiating X in equation 6.3,'onc:e, and using equatior’nsv 6.1, we get: ,
' . .

o X = - X + 4y - . ‘ ')
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\ . ! ' §
_ . e ‘\ _ " - \
] = [o o o 0 - x1] B, ;
| ‘«
. ) ) : . |
X2 = 1 0 0 ....0 -o X2 B
. N ‘\.
X3 = 0 1 0 ....0 -o '3 .
\\ 3
|
x 1 = jo o o0 1-- 1 %l (e '
: L. . U U
’ y = [g o0 0 01X ..., (1v)
The equation IV is known as observable canonical form.

N
p

§.3 PROBLEM STATEMENT

Consider a dynamic system which has one input u(t) and one out-
Vad
put y(t). - A1l that is known about this system is that it is time invariant,

completely controllable and observable linear system of the\form:

‘ o
Y X(t) = AX(t) + bU(t) . X(o) =X, ... .. (6.1)
o _— y(t) = c¥ x (t) .

where - X(t) is a static vector of known dimension n. No information, how-

ever is available about the parameters of the sys?%ﬁ, i.e. the elements

of the matrices A, b, and C.

+ LY )
Since no further information about the system is available,. there

is no loss of generality in choosing a particular state representation for

i

L ek
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it, where the system matrices have the form: i
(a, 1 0 0 0 0 by ] 1 !
-a; 0 ] by 0
N .
"
\\ 0 4 A
A = \\ b = cC = 0 L
\
\ Q; .
\
\] . 4
"'an 0 N bn ‘. {
s 0 L -
........... (6.2) '
\
In this form only the parameters aj, b. (i =1, 2, . . . n) are

unknown and therefore only the minimum number of parameters necessary to B

describe the system behaviour is involved. The above choice of A, b, ¢

simultaneously fixes the coordinate system and thus defines the state ) '
X(t) of (6.1). The problem is to reconstruct this state of the unknown
system using only measurements of the input u(t), and the output y(t).

%

6.4 RARAMETERIZED OBSERVER

¥ 4

" Since the system (4.1) is time invariant, its state can e recon-
. [} ~

structed asymptotically by méans of a Lugnberger observer of the form:

§ .

% = FX + gy(t) + hu(t)

\

wheré the (constant) observer matrices F, g, and h, are defined as:

.
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e ! -1 ~ - - - 2
-f 1 0.....0 . g1 hy Cy
-f2 0 1 92 ha|, i
\ ‘ ]
A K
\
\
F = \\ g = h = i;
\
\ ’ )
\
\
A \'I !
-f 0 0" q hp
" 0 "] [

F has a desired set of eigenvalues with real parts less than -o (o>o0). ‘

The state observation error e(t) = g(t) - X{(t), vanishes expon-

entially according to e(t) = éxp (Ft) o,» if the observer paramenters g 1

and h satisfy gCT =A-F, and h = b. The matching point g*, h* of

the observer is thus: . -

’ ¢
gl - f'i ) a’l >
" : o (6.5)
h.i = b-i
o Of course, g* and h* are unknown, since a, and bi are ugknown.
- Now consider the set of all (possibly mismatched), Luenberger

.

bbseiver_(6.3) with arbitrary but constant observer parameter values g

and h. For this set the following representation can be made. . N
- \
. Let e denote the ith unit vector, i.e., gTe{ = Gy and define: )
("I
A »
. ) &
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r -7 -
: ;
- ' ' \ !
£(t) = Feo(t) + e.y(t) gloy=0 L., (6.6a) T
‘ - - 3
Ejen = FE(t) v ey ult) Eap(0) =0 oo - (6.6b)

Then by the linearity of (6.3), and application of the superposition

theorem, the state of the observer can be written as:

X(t) =~ [E1(t), £5(t) . . . (TP + BFOR oo vvv s (8.7

H

‘where p = o', 1 cT g ‘ ) ..

»

.
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~ Subtracting (6.11) from (6.7), the state observation error becomes:

-72 A

And‘hence,
(st - F) Ve, = HEE‘(%TJFY" ELI SR W L (X))
(s1-F)Ve =TSI-FN Ve i=(2, ... n) .l (6.9)

where Ti are constant_matr{ces, the elements of which are the numerator

polynomial coefficients of (SIJF)'] Therefore (6) reduces to two nth-
o;der differeqtia] équaiions:
. ) . .

Ant) = Flng(t) + eay(t) © (D) = 0 . (6.10a)

. T i , . J . . . )

n2(t) = Fnz(t) + eju(t) n2(0)=0 . . ... (6.10D)
and the linear relations:.

gi(t_) = Tim(t) &, (t) = Tinz(t)rﬂ,, o E L. . ... (6.10c) =

]

'EquXtions‘(G 7) and (6.10) defined the parametr1zed observer, the state

estimate appears as a 11near funct1on of the observeéf parameters..

Because the parameterized cbserver is equivalent to the Luenberger

-}

observer, p = p* (p* being the m;iching parameter point) implies -

(t) = exp Ft) A It follows from (6. 7). substituted in the relation '+

r4

. X(t) = x(t) - c(t), that:

ox(e) < [Ea(t) .., ()P exp(FElg Lo Lt . L
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elt) = [4(8)s + .o £, (0] (pp%) + exp(FEdeg  « + « ov o . . {6.12)

I , ., e | ..

This relation reveals that the state observation error splits

. into'two components. The first one, which is a parameter induced error
is proportional to the parameter misalignment. The Second component is
the observation error,‘which occurs in an observer with matchiné observer
parameters.. It vanishes with the observer dynamics regardless of what the
actual observer parameter values are. )

. It is thus seen tpat the dynamic part (6.10) performs an essen-
tial portioh of the observation process independent of P. The observer
output is y(t) = CT‘X(t). Define Z(t) 4‘[ nI(t), nI(t)]T, and using
the identity CT(SI - F) e, = e.T(SI - F1)! ey, it follows from (6.6)

‘ and (6.10) that: | S B
S CTTE L), .+ o . By ()] = 27(1)
] fow A ) B _*‘:
" Thus we have from (8.7): " ' . e o
\ . : .
: §(e) 22t P+ O exp(FE)K, . ... L L (613)

A Y

b ™ which becomes particularly simple, if Xo = 0. From (6.12), the output’

)

observation error~a(t) = y(t) - y(t) is obtained as: \ .
- ‘ N

0(£) = Z(t)[P-P*] + Clexp(Ftht, . . o o vve (6.14)

S

‘ -‘l
' The parameterized observer developed so far is only an alter-
o4

e

nativé, eduiYi}eﬁt representation of the Luenberger observer. Its differ-

ent structure is shown in Fig. 6.T. " T

-

é | In what follows, we usgzlhis‘pgnametrized represéhtation of the

. - observer and adjust the parémeters'in it to observe the state of §hé‘
4 ' ] ' | o
E .

L

-~ - ' * , /

b
‘ ¢ " . ¢ !
.
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- ' - ‘ - o ’ a v. \ '. . - . ’ . . \;:\(.:\ o
- unknown system (6.1)., The adaptive obser‘y\er setup in this way is defined *° “a

. . . 4 '

to have'the state: ) . \\ . | . \
b B V "44' - . v ~/ ‘\\ . - g 4
) e A T ’ s . . . v Ko o
() = [aa(t), g2(t), « . . 75, (£) P(t),+ exp FtXg "
(- ' ‘ .
. : . ... (6.15a)
. . - ) . . ’ ‘ ? s : Y
with é;., from (6.104) and P(t), being the current ’parameter estimate, whigh ‘ \
\ 7 ~ )
is contmuous]y adapted by one of the adaptwe 1aws developed be]ow " The - 3
output of the adaptwe obs‘erver is: ' B , o . \
v ) ' Y . . . . —
“ RO 77(t) Bt )+ ¢l exp(Ft) X, o i (6.15D)
* . and the state and "output obs\"/&twn errors are defmed‘}to be: .
‘ &(t) = K(t) - x (t), and 5(E) < 9(t) - yie): T .
4 . A ’ - - \
, T “for any adaptive 1aw, ‘lt remains to %e shown that: ) Coo
Lo , Yo ’
C N e(t) — 0 and P(t) ——> P* as /t}——-’r © ..,
H ‘4 -
) 6.5 FIRST ADAPTATION SCHEME _ - ‘ -
- Pd .
. - , . , . - 3
' ? P * The most natural criterion to orientate t'he adaptation of the:
. ° , Sy
‘} " observer parameters on 1s the square.of the 1nstantdneous output observa- :
o - tion error, i.e., 02(t). Its gradient with respect to p(t) is ‘obtained by |
\ . use of (4.15@‘@5 ZZ(t)’O(t). Chossing the parar&r descent direction .
| . B
: proportional to this gradient, we obtain the adaptive law: |
N | . . ) ' %—
P(t) = -§Z(t) [y(t) - y(t)] e e e s . . (6.16) T
. : o ~ ., ) .',. (]
‘where G .is a symmetric, positive definite dain matrix. S <
' ‘ | P . ‘
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If there exist constants Ki, Kz and T such that «

t+T

0.<'KI§] '

t

Z(I)ZT(j)qukgl

g

for all t30

then the adaptive obéerver, which is defined from (4.10), (4.15

), (4.16),.

"is g]cbaﬂy exponentially stable, i.e./p(t) ——> p*yand e(t) —» 0,

exponentwally fast.

. ¢+ Proof:

2

\\

¢

pooo |
WeTl explained in [11].°

1
r

6.6 _SECOND ADAPTIVE SCHEME -

¥

ohserver co'incide with the unknown system o'utp{ﬂc and its derivatives.

In. tpis section, a g(enerah'ze'd output 'error vector is define}, '
‘ N 3

.
)

P

which can vanish only if certain'genera]%ieci" output

2

»

ignals of .the adaptive

LIS .

" Thereby, the -error criterion can be made posnwe definite, wh1ch results

< in an adapt/ve 'scheme with advanced conver ence propert1es Thi

and non-linear systems.

. f?? .
of u(t) and y(t) are involved directly.

Y(¢)

I(t)

W

Let Y(t) AB(t), y(t), . . .

generalized

. C - [c};}c',

(t) P(t) + C' exp :ﬂgaa{"

[Z(t) Z(t)

0

,_(

. (F

T)?""c]

i NN

(2n 1

The resulting scheme_is !sﬁown

’ %\nd. de

Lt

, .where the derivatives

o

is idea is

.due to Lion [18] iw connect'mn with 1nput—p tpu1;71,dent1f1cat10n of Tlinear

In what follows, a coxresponding adaptive scheme ﬁ\\(‘ 2
_in terms of the parametrized obse/v\ver is develop o

{

fine a

output vector T(t) of:;he adaptive observér by the relations:

. (6.183)

(6 18b1\

. (6)8c)

T

i
3
A

. L
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—

s

. \ $ sat1sfyoth de51gn obJectwes of the adaptwe observer name'ly Ap(t) —> ;0 "f-

Lot

L.

'\ matr1x D1fferent1at1ng this crwterlon with respect to P(t), and using

" 6.7 TH1gD ADAPTIVE SCHEME

. Hence, reduc?ng the value of J(t) by a proper adaptat1on oflp(t) tends eo .-

‘(() " : | _ I
R & 2 : ' .

-
4 ) s ¢
{

P . . i N N . : ,M' N .
Then the generalized output error,‘E(e) = Y(t) - T(t) gives rise to a quad-

rat1c error cr1ter1on of the form E(t)QE(t) where Q is p.d. weighting

e e T

the steepest descent techn1que we obta1n the adaptive law: B : A
’ \\1 \ . MRS 4
P(t) = -GZ(t) QIY(t)= Y(t)] . ... .... . . (6.19)

. 4 .

6 >0. .. This Taw is directly analogous to (6.169.

" .
t . ‘

1"

where G

i "
i

/l' %he a&aﬁiive schemes of,the previous sections made use of the

current va]ues of Z(t) and 1ts time derivatives. In this section.an adapt-
.atfon scheme is presented whzqh,1s based on the time history of Z( t) 'n
N -ing

‘the- sense of a 11m1ted time memory. _Consider an error criterion of the

‘
’

form: [ o ~ ) T
et t E ‘\ ‘ [ ; ' . ‘ N
T T -~ Y12 ; . sl
;.{ (1) P( t) + C exp(Ft) Xo - Y(1)}* exp {-q(t-1)dr
o e i U S’ . \ o “ ........ .‘(6.20,)' ‘/
Yo B ‘ : ) |
:wheré g is-a positixg constant. Note that tke squared. tem in (6.20) "
.. - ' . “\ [ . . ., 4
_is an error s1gna1 which reduces to the actual output observation error  °
N & 4 R 11}
y(r) - y(r) if P(t) <0, di.e., 1f the adaptation has conc]uded e 3’
Further more, us*nq (6 11) premu1t1p11ed by CT and subst1tuted " 4
¢ p . ’ ’ ‘ * * \.
for y(t) in (6.20) gives: = ' J . '
- ) . ) » " ’{‘ \ 4 . ” v
A ot~ K v

() S ] Lzl (o)ap(t) + c; exp(F'r) ¢ 32 exp

‘ " W . . v

\ »

’ .o

A R Ny o LT '
) U | ’ L, . | I Vel T
N . ! ) [ ..‘ Ve ) Aj/l O, ~




© gt
a

.V 9
» A , S
N . ~
rf . hd < ’ v ta . F
( \ . . '):' L < * JE
~ R\ L -
‘ o s ¥ i .. ’ - . :
and e(q)-»—> 0. Th}§~mot1vates us to chod?% an. adapt1ve 1aw, which is ;
. ba{d on the graident of J(t) with reSpect to p(t). From (6.20) “the grad-
A} . B
1ent is obtained as: - . ‘ \ / ‘
’ - d . w. ‘ ’
BJ t = 3 L) * "
: B - 2 G e e =
- " ‘ ‘;‘\:‘
where — ot R
. T \ A N
R(t) = f 2(r) 7'(x) exp {-q(t-t)dr" N (X
G I o 4 “ '
/ ‘ , - .
t - | »
. r(t) = f 2(x) [Cexp(FO)%, - y(1)] exp {-q(t-t)dr _. . (6.22b) E

0 \ : h S

- 4Tl]e adaptive law is chosen as:

5 s ' ¥,

’” * ~ 3 °
plt): = -G {R( By + ()} Ry L el (6.23)
) ' - : - — ' Jr . -
where G is a symmetric, positive definite gain matrix. -
: The 1ntegrals occurring 1n (6 22) can be my?preted convalution
integrals. Therefore R(t) and r(t) can be g\enerated by soTvmg the ‘time
o ,y;xé_r:iarxtr "dwifferenj:i_afequationsz . ’ ’ " X .
C e T R = AR +Z(ZT(E) R(0)=0 ... .. (6.22)
4 ) : . T ~ . ‘ s . ' ’ ‘ ) .
. r(t) = '-qr(t) + Z(tz[c'ggpﬂt)}(o -yl o) =0l Ty
I::J ‘. . * . pi - ) * R }
» ﬁ.....n.y..(szab) s

s , :
l‘ o

¥ 9 : a \‘V.
R(t) and r(t) rewesent the hnnted time memory or‘F the ada}tation stheme. j ’

(3 N ~ ¥ M
a . v ‘ . ¢ ) \ :
] 3 . . - .. , ] <
» . .
. N . . ‘;; /«/). b
o * L}
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B - CHAPTER 7 .
Sy o CONCLUSIONS
. (- \ : ,
\‘ . 4 . ’ l Q

,‘ It has been shown in Chapter 2 and -3 that,the state vector
‘af a system can be reconstruéted from observations of its inputs and out-
puts. Also, it has been shown that the dynamic order of an observer

wh1ch observes an nth order system w1g§ m. outputs is n-m. Hence,

-

. when more outputs are ava11ab1e a s1mp1er observer may be reconstructed.

~
N

_ .the 1ncorporat1on of an observer to reconstruct the state does not

’

change the pole location of the system, but it adds its own poles. to the

system. Also, it'has been shown that stable observer poles do not affect |
' [

o
ovarall system stability.

3 "~ In the case 0f adaptive observer scfiemes, two major questions

e

have to be resolved before the observer schemes that have been considered

K

3 .
so far can‘be used in practica] situations. The.first one concerns the
speed of convergEnce of the schemes, and the second deals with observat1on

noise. As has been shown 1n the wmodel refefence adatpt1ve scheme shown
4.

in Chapter 4, the unknown p]ant1s spec1fzed in terms. of its 1nputs U(t)

and outputs y(t). « Using th1s dhta ”adapt1ve Taws "are genérated for adJust-
o+

1ng the parameters of, the system~a$ a model. In-all cases the dgffer-//
&

uent1a1 equat1ﬁns dgnerh1nq the output and parhmeter errors are considered

.

and has peen shown that,they are unwform1y asymptotlcallyyét ble. Co-
Y

s - A Rt

.
SIS B St




, \
In the case of the parametrized observer shown?; Chapter 6,

it has been shown that if the system 1nput is suff1c1ent1y xciting,
all 'schemes shown converge in an exponent1a1 rather.than 1n an asymptot1c ’\

fashion. So by choice of the observer eigénvalues and the adpativa e

.
Pl

gains, fast conVergence rates can be ob€%1ned in the second and third

. . , B
'scheme ~

2

Still some work has to be done in the area of stochastic stabil- Y

ity 1n case of the existence of no1se, speed of response, and time vary1ng
t

systems which of#er areas of future work. »
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