ON THE DESIGN AND EVALUATION OF
RULE-BASED SYSTEMS

PraBHAKAR GOKUL CHANDER

A ThESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC. CANADA

JUNE 1096
(© PRABHAKAR GOKUL \HANDER. 1996

l * National Library
of Canada

Acquisitions and

Bibliothéque nationale
di Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa Ontanio
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontarno)

Your e Votre reférence

Our tie Notre réterence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniere et sous
queigue forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la these ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-18425-0

Canada

Abstract

On the Design and Evaluation of Rule-based Systems

Prabhakar Gokul Chander. Ph.D.

Concordia University. 1996

In this thesis. we describe a three-tiered framework for the design. development and
evaluation of rule-based systems. It consists of the following stages: the functional
requirements stage, the design stage, and the implementation stage.

The functional requirements stage identifies the tasks that a system has to accom-
plish in its operating domain. At this stage. problem solving in a domain is viewed
as a sequence of “goal-to-goal” progressions. Goals abstract the knowledge acquired
from a domain. Two kinds of goals. intermediate and final, can be used to repre-
sent solutions to sub-problems and domain solutions. respectively. The set of goals
and constraints specified for a domain constitute the goal specification of the domain.
The problem solving in a domain is then modeled as a traversal of a goal graph of the
domain.

The design stage sets certain restrictions for representing the specified goals in
a rule base. However, the mapping between goals and their representation using
hypotheses in a rule base is one-to-many. Thus, we can identify several design schemes
for rule-based systems: the various design schemes impose different goal-to-hypothesis
mapping restrictions. The design schemes are useful for both development and reverse
engineering: for example, to improve the run time performance an existing rule base.
The various design schemes and the relationships between them are studied in detail
in this thesis. More specifically, we explore in detail a sperific form of relationship
between the design schemes, called inheritance. Its use and application are examined.

The implementation stage explicates the relationship between the rules in a rule
base causing them to interact with each other while inferring goals. Goals are inferred

in a rule base using partially ordered rule sequences called paths. Paths and goals can

iii

be used as a reliable basis for severa] evaluation procedures for rule-based systems.
More specifically. we outline validation. performance and quality assessment, and
verification for rule-based systems using paths and goals. The tools and algorithms

developed to facilitate these evaluation processes are also described.

iv

A cknowledgments

I would like to express my deep gratitude to my supervisors Dr. T. Radhakrishnan and
Dr. R. Shinghal. Without their guidance, much of the research work reported in this
thesis would not have been possible. I would like to particularly thank them for their
patience and moral support. [have learnt much from their maturity and outlook.
My research work was partly funded by a joint grant held by Dr. T. Radhakrishnan
and Dr. C. Y. Suen. I thank them for their financial support.

I thank Alun Preece and Clifford Grossner. We spent time together in developing
the initial version of the path model described in this thesis. 1 would also like to
thank Alun for his help during the implementation of the Path Hunter tool described
in this thesis. He also spent a significant amount of his time implementing the Path
Tracer tool described in this thesis.

The Blackbox expert system mentioned in this thesis was designed and devel-
oped by Le Hoc Duong, John Lyons, and Clifford Grossner. Cliff provided the goal
specification of the expert system required by Path Hunter.

An initial version of the Library expert system described in this thesis was de-
veloped by Dao Nguyen. The knowledge base of the expert system was developed
after consulting Carol Coughlin and Lee Harris. reference librarians at Concordia
University. Their help is gratefully acknowledged.

I thank the systems analyst group in the Computer Science department for their
timely response and support whenever their help is needed. I would like to thank
particularly Stan Swiercz, Michael Assels, Paul Gill, and William Wong for their
help. In addition, the secretaries of this department have been very kind and helpful

to me during the years of my study. I wish to convey my heartfelt gratitude to all of

them.

Finally. I thank my parents and my sisters for their support during these vears.
I would particularly like to thank my mother Dr. (Mrs) Alamelu Prabhakar with-
out whose encouragement, I would not have decided to do my doctoral degree. In

appreciation, I dedicate this thesis to my parents.

vi

Contents

List of Figures 1X
1 Introduction 1
1.1 Building Rule-based Systems 2
1.2 Design. Evaluation, and Maintenance of Rule-based Systems 3
1.3 Approach of this Thesis 14
1.4 Otcganization of the Thesis 16
2 Goal Specification of a Domain 17
2.1 Abstracting Domain Knowledge by Goals 18
2.2 Modeling Problem Solving Using Goals . 20
2.3 Optimizing Rule Base Performance: A Case Studv 22
3 Design Schemes for Rule-based Systems 30
3.1 Rule-based System Design: Preliminaries 31
3.2 The Library Expert: Re-design 35
3.3 Analyzing Properties of Design Schemes 14
3.4 Rule Base Transformation Procedures 65
4 Rule Base Model and its Application to System Evaluation 7
4.1 Modeling Goal Inferenceina RuleBase. 78
4.2 Evaluating Rule-based Systemns: Preliminaries 86
4.3 Structural Validation of Rule-based Systems 86
4.4 Performance Evaluation of Rule-based Systems 107
4.5 Verification of Rule-based Systems 115

vii

4.6 Using Paths to Assess Qualitative Aspects of a System 128

5 Summary and Conclusion 132
5.1 Summary of Work Doneo 133
5.2 Summary of Contributions, 136
5.3 Scope for Future Research 138
Appendix: Algorithms to Detect Rule Aberrations 142
Glossary 152
Notation Summary 156
Bibliography 158

Viil

List of Figures

1.1
| 1.2
|

2.1

2.2
2.3

o
(]}

(S A
~1 &

o

N
- O W

W W W
~

3.5
3.6
3.7
3.8
3.9

Illustrating problem, problem domain, and solution.
A software development perspective for rule-based systems.
Identifying goals and inviolables from the acquired knowledge.

Translating goals into a conjunction of atoms.
A sample goal graph of a domain.

An example rule from the rule base of the library expert system. .

A simplified version of a rule in the rule base of the library expert system.

Run time analysis of the sample rule shown in Figure 2.5.
Restructuring the rule shown in Figure 2.5.
The restructured rule of Figure 2.4 based on additional level-0 goals. .
The effect of goal based restructuring on the library expert system.
Choices for the final and intermediate goal constituents.
Hlustrating goal realization in a rule base.
A simplified goal graph depicting the various goals for the re-designed
library expert system.
A sample rule in the re-designed expert system to provide context
sensitive help. o
The inheritance relationship between the design schemes.
Cost analysis for adding a hypothesis h' to an intermediate goal g'.
Deleting a hypothesis k' from an intermediate goal ¢'.
Cost analysis for deleting a hypothesis h' from an intermediate goal g'.
The minimum and maximum values of the rule base distance metric

for the various design schemes.

X

3.10
3.11
3.12

3.13
3.14
3.13
3.16
3.17
3.18
3.19

3.20

4.10

4.11

4.12

4.13
+.14

Interpreting the value of goal and rule base distance metric measures. 3
Illustrating the intent of the adhocness metric. 60
An example description of the occupation of the various persons in a

university domain. e e e e e e e 64
A transformation that fails to preserve a rule base content and inference. 67

Enumerating the invariances associated with a rule base transformation. 68

Using deletion while handling discrepancy. 69
Minimizing changes to final goals while handling discrepancy. 70
Minimizing changes to intermediate goals while handling discrepancy. 71
An example rule base and goal specification in <F1, I3> scheme. . . 71

The rule base of Figure 3.18 after transformation and the revised goal

specification. L e e e e 72
Summarizing the effect of the other scheme transformations. 76
A rule graph depictingapath. 81
A comparison of the rule and goal graphs. 81
A rule graph depicting a path that is unshaved. 83
Tvpical knowledge elicited to describe a university environment. . . . 87
The goal specification of the university domain. 87
The inviolables associated with the university domain. 88

The rule base encoding the knowledge describing the university domain. 88
Paths extracted from the rule base of Figure 4.7.. 91
Summarizing the test coverage for the example system for a test suite
containing two test €ases. 0 e e e 92
Using the path hunter and path tracer tools for structurally validating
a rule-based system. L e 94

An example rule adhering to the syntax of the CLIPS expert system

shell. o e e 95
Output of path hunter for the example rule base shown in Figure 4.7. 99
Ilustrating threads in a path for measuring path coverage. 102
A sample rule from the Blackbox expert’s rule base. 104

4.32
1.33

Path coverage of the Blackbox expert for a test suite containing 17 test

L2 T T T T

Activity of the Blackbox expert’s head rules.

T Percentages of Blackbox expert paths covered in testing two samples.

Determination of optimality and adequacy by testing with a set of test
cases. . e
Determination of relevant and irrelevant routes in a goal graph.

The goal graph for the rule base shown i Figure 4.7.

A procedure to determine whether a system is goal relevant
A description of rule aberration 1.
A description of rule aberration 2.

A description of rule aberration 3. e e
A description of rule aberration 4. . . .

A description of rule aberrations 5and 6
Summarizing the results of redundancy/deficiency aberrations for the
example rule base of Figure 1.7

The path where rule R15 appears.

A description of rule aberrations 7. 8. and 9.

A description of rule aberration 10.

The modified rule base based upon the evaluation results of the rule
base shown in Figure 4.7..
Paths of the modified rule base shown in Figure $.31.

The goal graph for the rule base shown in Figure $.31.

X1

105
106
108

Chapter 1

Introduction

Broad issues that confront developers and researchers alike in the de-
velopment of rule-based systems are introduced. The related research

work is briefly surveyed to provide motivation to the approach in this

thesis.

1.1 Building Rule-based Systems

In the construction of any software system, system builders adopting an engineering
approach have traditionally emphasized the need for a disciplined manner in which
the system is specified, designed. implemented. and evaluated {Ghezzi, Jazayeri, and
Mandrioli, 1991]. Specification is a precise statement of the requirements of the
problem that the system is to solve. The design of a software system can be viewed
as applying successive refinements to the specification of a problem, transforming it
stage by stage, until it can be implemented on a computer. Stated alternatively, the
design phase maps the problem into a solution model, aind the implementation phase
represents this solution model so that it can be executed directly by a computer. The
evaluation phase ensures that the system meets the need for which it is constructed.

Rule-based systems are a special type of software systems that are developed using
a declarative programming paradigm [Shinghal, 1592; Giarratano and Riley, 1993].
The applications of rule-based systems often differ from that of traditional software
systems. For example, rule-based systems are typically used to solve diagnosis type
of problems, such as diagnosing diseases from a given set of symptoms, rather than
solving problems such as matrix multiplication, or matrix inversion [Shinghal, 1992
Lucas, 1994].

Formally, a problem P can be described using a set of ground atoms in first order
logic denoting a permissible combination of initial evidence {Shinghal, 1992, where
an atom consists of a predicate with its arguments. Each problem P is associated
with at least one solution. Given a problem P, if a system finds its solution, then the
system is said to have solved the problem. The set of problems that can be input to a
system for solutions is said to constitute the problem domain (or, simaply, domain)
of the system. However, a system may not be able to solve all the problems in a
domain. The set of solutions associated with the problemsin a domain constitutes the
solution range (or, simply, range). The notions of problem. problem domain, and
problem solving are portrayed in Figure 1.1. As an example, consider identifying the
occupation of persons in a university domain. The problems in the domain consists

of sets of initial evidence describing tlie characteristics of persons working in the

O
O
problem solving
Problem domain Solution range
A problem A solution
to the problem

Figure 1.1: Illustrating problem, problem domain, and solution.

university, and their solution consists of the roles of the persons in the university.

The process of acquiring the knowledge required to solve problems in a given
domain (say, medicine) constitutes knowledge acquisition [Yost, 1993; Krause,
Fox, Neil, and Glowinski, 1993]. While there are several techniques that have been
developed, the most popular one is that of interviewing an expert in the domain to
obtain his/her mental view: how he/she would typically solve a given problem, for
example, diagnosing a disease fron: a given set of symptoms.

Once the problem solving knowledge is acquired for a domain, it can be encoded
to develop a rule-based system for the domain. A rule-based system consists of the

three following components:

e A rule base that contains a set of declarative constructs called rules. A ruleis
akin to a statement in a procedural programming language in the sense that it

is an unit of execution.

¢ An execution mechanism called the inference engine that controls rule execu-
tion. The execution of a rule is called rule firing, and the computation required
to check if a rule can fire is called pattern matching in the literature [Shinghal,
1992; Giarratano and Riley, 1993]. However, unlike a procedural programming
language, the order in which a set of rules are fired need not be the same as th=ir
physical order in the rule base. It is determined by the inference strategy (a

criterion to order the rule firings in a certain way) used by the inference engine.

3

Two of the common inference strategies are as follows: cataloged-order (a rule
r, fires before r,,, if , is cataloged before r,,, in the rule base), priority based
(rule firings are ordered by a rule priority usually assigned by the user) [Shing-
hal, 1992]. For a given inference strategy it is possible to enumerate the rule
firing sequence, however, for an arbitrary inference strategy no assumption can

be made on the order of rule firings [Giarratano and Riley, 1993].

¢ A dynamic data base for holding data produced as a result of rule executions

called the working memory.

Problem solving in a rule-based system occurs as follows: the inference engine
chooses a set of rules to fire for a given input. The firing of this set of rules produces
data that causes other rules to fire. Typically, the rule firings continue until no more
rules can fire, or until some solutions are inferred. The set of rules fired for a given
input constitutes the run time behavior (or, simply, behavior) of the system.

During problem solving, a given rule can fire at different times and can cause
several other rules to fire. The term rule interaction is frequently used in the
literature to indicate the effect of this causality relationship between the rules during
problem solving [Giarratano and Riley, 1993; O’Neal and Edwards Jr.. 1993]. Owing
to the non-sequential nature of rule executions in a rule-based system, the analysis
of the interactions between the rules to understand its behavior better is an actively
pursued topic [Chang, Combs, and Stachowitz, 1990; O’Neal and Edwards Jr., 1993;
Kiper, 1992].

To summarize, there are two key characteristics of rule-based systems that distin-
guish them from a traditional program, making them harder to understand, evaluate,

and maintain:

o the declarative nature of knowledge and the control representation in rules that

characterize them as non-sequentially executing systems [Clancey, 1983; Shing-
hal, 1992}; and

o the interactions that occur between the rules {0'Neal and Edwards Jr., 1993].
As a software system, the design and development of a rule-based system follows a

4

pre-defined set of phases and processes that characterizes its life-cycle [Ghezzi et al.,
1991; Batarekh, Preece, Bennett, and Grogono, 1991; Lee and O’Keefe, 1994]. Thus,
in developing a rule-based system for a domain, there are several criteria that should
be considered {Liebowitz, 1989]. But, strict sequential flow models of development
such as the waterfall model [Boehm, 1977] used for traditional software engineering
projects are not applicable for the development cycle of rule-based systems primarily

because of the following reasons:

e their operating domains are said to be “ill structured” in nature because a
precise specification of the domain’s characteristics may not be known [Simon,
1973; Krause et al., 1993]: for example in the domain of medicine, it is not

possible to precisely specify the problem of disease diagnosis;

¢ the problems that are confronted by these systems often do not have a clear

algorithmic solution [Shinghal, 1992; Pople, 1982]; and

o the domain knowledge evolves with time.

Even though several life-cycle models have been proposed for rule-based sys-
tems, a gradual evolutionary process of each phase in the life-cycle has been pointed
out (Weitzel and Kerchberg, 1989; Batarekh et al., 1991; Lee and O’Keefe, 1994]. The
evolutionary process causes refinement of not only the partially developed system, but
also its requirements [Yost, 1993]. More precisely, the life-cycle of a rule-based system
tends to follow a spiral model of evolutionary development [Boehm, 1983; Giarratano
and Riley, 1993; Lee and O’Keefe, 1994]. Thus, accommodating incremental devel-

opment should be part of any design methodology for rule-based systems.

1.2 Design, Evaluation, and Maintenance of Rule-

based Systems

Researchers have been working on the design and development frameworks, and evalu-
ation methodologies for rule-based systems for the past several years [Chandrasekaran,

1986; Liebowitz and De Salvo, 1989; Debenham, 1992; Hamilton, Kelley, and Culbert,

1991; Gupta. 1993; Schreiber, Wielinga, and de Hoog, 1994]. The current approaches

to the construction of rule-based systems focus on the automation of knowledge ac-
quisition and rule base generation. and on methods for evaluating and maintaining
large rule bases. To facilitate automated rule base generation, the structure of the
problem to be solved is described using an appropriate problem solving model and
a language [Yost, 1993; Marcus and McDermott, 1989]. A common approach for
evaluating a rule-based system is based upon detecting anomalies in its rule base,
and by measuring the extent rule sequences in a rule base are exercised for various
test cases [Gupta, 1993; Preece, 1992; Zlatareva and Preece, 1994]. To facilitate
the maintenance of large rule-bases, researchers provide design restrictions, separate
the control knowledge from the domain knowledge, modularize the system by hav-
ing several rule-bases, or provide rule groupings to localize a change to a subset
of rules [Clancey, 1983; Jacob and Froscher, 1990; Debenham, 1992; Antoniou and
Wachsmuth, 1994].

1.2.1 Designing Rule-based Systems

Four representative approaches described in the literature for designing rule-based
systems are presented below. More specifically, the Generic Tasks approach, the
SALT approach, the SOAR framework, and the KADS methodology for rule-based

systems are discussed.

Generic Tasks A set of six generic tasks, general enough to include a wide range
of existing rule-based systems, are identified in order to facilitate building and un-
derstanding knowledge based systems [Chandrasekaran, 1986; Bylander and Mittal,
1986). These tasks are as follows: (1) hierarchical classification (applicable for diag-
nosis type of problems); (2) hypothesis matching; (3) knowledge directed information
passing (that pertains to general domain knowledge such as domain attributes); (4)
abductive assembly (used to assemble a set of hypothesis inferred into a single “best”
hypothesis to facilitate explanation); (5) hierarchical design (by plan selection and

refinement); and (6) state abstraction (to predict the consequences of an action). An

integration of some of these generic tasks is used to represent the structure of prob-
lems in a domain. The underlying philosophy of this approach can be summarized
as follows: instead of representing all types of knowledge about different domains
using the same rule language (of a rule-based system shell) and inferring hypotheses
in a uniform way, the domain knowledge representation should be made in a specific

language that best reflects the task structure.

The SALT Approach SALT is a knowledge acquisition language for propose-
and-revise systems, and a tool associated with this language enables the generation
of rule-based systems [Marcus and McDermott, 1989]. SALT is intended for use
by domain experts, and is meant for the creation and maintenance of systems that
are suited to constraint satisfaction tasks such as scheduling. Domain knowledge is
represented through a set of design parameters, their values, constraints associated
with the values, and a set of constraint fixes. SALT constructs a dependency network
of these parameters, performs some consistency checks, and applies fixes whenever
constraints are violated. Once the domain specific knowledge is represented in a

dependency network, SALT can generate a set of OPS5 rules [Forgy, 1981] .

The SOAR Framework The philosophy behind this approach is to avoid the do-
main (or task) specific disadvantages of method based tools like SALT [Yost and
Newell, 1989; Yost, 1993]. SOAR is hased on a computational model that is general
enough to represent a variety of problem structures, called Problem Space Compu-
tational Model (PSCM). A computer representation of PSCM is provided using a
language called TAQL (Task Acquisition Language). The components of PSCM are
tasks and problem spaces; problem spaces are comprised of states, operators and the
knowledge associated with the application of these operators. SOAR is an environ-
ment for PSCM, and provides an execution platform for the rules that implement the
solution of a problem expressed in PSCM. The TAQL compiler generates SOAR rules
once the problem modeled in PSCM is represented using TAQL.

-1

The KADS Methodology The goal of this methodology is to provide a set of
generic re-usable knowledge parts, or components that can be used by developers in
system construction. In KADS methodology, development is essentially seen as a
modeling activity [Aben, 1993; Schreiber et al., 1994]. Specification and design are
viewed as construction and refinement of models describing problem solving in the
domain. In this process, the model of expertise (typically obtained from a domain
expert) in problem solving is divided into four layers: the domain layer describes static
and axiomatic knowledge (domain terms); the inference layer is responsible for the
roles of the various knowledge entities and what new information can be made from
existing information; the task layer is concerned with task (problem) decomposition
and relating it to the inference layer; and the strategy layer specifies what goals
need to be reached to solve problems. The inference layer is responsible for problem
solving [Aben, 1993], where a typical problem solving scenario takes place is as follows:
the strategy layer chooses a set of tasks to be solved from the task layer, and they are
solved by the inference layer using the knowledge description in the domain layer.

In the Generic tasks and SOAR approaches, the focus is on the design and de-
velopment, but evaluation and maintenance issues are not explicitly addressed. The
Generic tasks approach has been criticized to have limited re-usability as the gran-
ularity of a generic task is rather large [Aben. 1993]. and the automated rule base
generation using TAQL in SOAR [Yost, 1993] has its applicability limited by the ef-
fectiveness with which a domain expert can communicate his task knowledge, and its
description in TAQL. The SALT approach provides a method for functional testing,
but lacks general applicability, and has been criticized as a “domain (task) specific
approach” [Yost and Newell, 1989].

The KADS methodology is elaborate in its description of system design, and devel-
opment [Schreiber et al., 1994], but its models are too vomplex and its practical use is
yet to be seen. In fact, the KADS ontology is criticized as incomplete, and names and
labels of the inference steps are often ambiguous or confusing [Aben, 1993]. For exam-
ple, not all proposed inference steps are at the same level of complexity; the inference
steps lack clear description; and sometimes the inference description is too general

for specific tasks. In addition, many KADS variations that are available [Schreiber

et al., 1994; Wells, 1993] which can confuse developers as to which indeed is the real

KADS methodology. To make use of this methodology, the knowledge engineers must
have a library of modeling components, but such a generic “reusable” library can only
have a set of components that will require some “fine tuning” for the underlying do-
main [Aben, 1993]. Although, a separate generalized inference layer can facilitate
maintenance, the details of evaluation and issues in maintenance in this framework
are not explicitly addressed [Schreiber et al., 1994). For practical purposes, a design
framework that makes use of the “structure-preserving” philosophy of KADS (pre-
serving the link between the knowledge model and the actual implementation) would

be pragmatic and useful.

1.2.2 Evaluating Rule-based Systems

Evaluation is a process of ascertaining that asystem indeed meets the need for which it
is constructed [Ghezzi et al.,, 1991]. The evaluation processes for rule-based systems
have been classified into three major groups: verification for (static) detection of
rule base anomalies [Ginsberg, 1988; Rousset, 1988; Preece, Shinghal, and Batarekh,
1992b; O’Keefe and O’Leary, 1993], validation for uncovering (dynamic) behavioral
errors [Chang et al., 1990; Kiper, 1992; Preece and Shinghal, 1992; Preece, Grossner,
Gokulchander, and Radhakrishnan, 1995}, and performance assessment to measure
other qualities such as efficiency, reliability, etc [Preece, Grossner, Gokulchander, and
Radhakrishnan, 1994; Giovanni, 1939; Guida and Mauri, 1993].

Rule bases can inadvertently suffer from four anomalies abbreviated in the lit-
erature as CARD [Preece et al., 1992b; Preece, Shinghal, and Batarekh, 1992a]:
Circularity, Ambivalence, Redundancy, and Deficiency. Early verification procedures
to detect these anomalies had limited anomaly detection capability [Suwa, Scott, and
Shortliffe, 1982]. Other methods provide some computational advantage over [Suwa
et al., 1982] by using a pairwise rule comparison method to detect anomalies [Cragun
and Steudel, 1987; Nguyen, Perkins, Laffey, and Pecora, 1983], but are criticized as
incomplete as they can miss detecting some anomalies [Ginsberg, 1988]. Some ap-

proaches make use of the meta knowledge of the domain for a more detailed anomaly

detection: for example, the structure checker in EVA [Chang et al.. 1990] makes use of

atom synonyms to detect redundancy. However, the method of anomaly detection fa-
vored by most researchers is one that takesinto account the transitive inference chains
in a rule base [Ginsberg, 1988; Rousset, 1988], but these methods are computationally
expensive, or have limited applicability. In some works, a rule base is modeled as a
graph and graph properties are used to detect anomalies, but the algorithms are often
comnplex, or cannot be extended for large rule bases [Suh and Murray. 1994; Valiente,
1993). The use of petri-nets and their properties to model a rule base [Agrawal and
Tanniru, 1992; Nazareth, 1993]; use of machine learning approaches {Lounis, 1993;
Meseguer, 1993); modeling a rule base as a set of in-equations [Prakash, Subramanian,
and Mahabala, 1991]; use of formal proof tecliniques [Waldinger and Stickel, 1991];
and using a feedback control system to model a rule base [Lunardhi and Passino,
1991], etc, have been attempted by researchers for anomaly detection. But, these
approaches suffer from one or more of the following problems: scalability, computa-
tional intractability, and limited scope of applicability. As a final note, verification
when extended to hybrid systems—systems using both declarative and frame based
methods for knowledge representation—takes a deeper connotation and anomaly de-
tection is a much harder problem [Lee and O Keefe, 1993; Mukherjee and Gamnble,
1995].

The functional aspect of validation ensures correct working of a system, whereas
the structural aspect ensures that the structural sub-components of a system also
perform correctly, and contribute to its correct behavior. Most of the existing valida-
tion methods are either functional, or empirical in nature. In a functional approach,
the system solutions are compared with pre-solved solutions to often random test
cases, whereas in an empirical approach they are compared with the solutions of
a domain expert {Vinze, 1992; Preece, 1992; Zualkernan and Lin, 1993; McDuffe,
Smith, and Flory, 1994]. But, random functional testing is often criticized to be
inadequate [Plant, 1992), and there is a need for a systematic design of test cases
and automated test case generation tools [Preece and Shinghal. 1992; Vignollet and
Lelouche, 1993). For rule-based systems, generating a representative set of test cases

to test the system adequately is difficult; the test cases are often biased [Chang et al.,

10

1990; Preece and Shinghal. 1992; Preece, 1992]; and they do not exercise a significant
portion of the rule base [O'Keefe. Balci, and Smith, 1987]. Thus, a structure-based
validation consisting of clearly identifying the sub-components of a system, generat-
ing test cases based upon this identification, and exercising as many of these sub-
components as possible [Rushby, 1983; Preece, 1992] would be a reliable way to judge
its acceptability. To further improve the effectiveness of such a validation procedure,
some researchers advocate use of “meta knowledge™ of the domain [Plant, 1993).

However, most developers often refrain from performing structural validation as it
has been perceived to be “difficult” [Hamiltonet al., 1991}. The difficulty in structural
validation for rule-based systems lies in the formulation of structural components of
the system so that they can be tested. The most common approach is to define this
notion as rule sequences in the rule base, called paths of a rule base, thus accounting
for the transitive inference chains and the rule interactions. By measuring the extent
these rule sequences are exercised by a selected set of test cases, one can obtain
a better insight about the system behavior. The individual structural validation
methods differ in the way they define a rule base path [Rushby, 1988; Chang et al.,
1990; Kiper, 1992], but suffer from computational intractability, ambiguity, and/or
inaccuracy [Preece, 1992].

Performance and quality assessment are evaluation techniques concerned with cer-
tain system qualities such as efficiency, adequacy, reliability, etc. Approaches for per-
formance and quality assessment of rule-based system provide methodologies [Guida
and Mauri, 1993], make specific 11easurements focusing on one quality (often relia-
bility) [Giovanni, 1989}, or extend metrics used in software engineering for rule-based
systems to quantify some of their qualities [O'Neal and Edwards Jr., 1993; Chen and
Suen, 1993; Kiper, 1992].

The current approach towards rule-based system evaluation is based upon the
notion of integrating the evaluation processes as part of its life-cycle rather than
viewing them as a post-development phase [Wells, 1993; Andert Jr, 1993; Lee and
O’Keefe, 1994]. These approaches emphasize that the evaluation processes should
start from knowledge acquisition itself [Long and Neale, 1993; Mengshiel, 1993] for

the following reasons: (1) the requirements of rule-based systems cannot be specified

11

formally [Krause et al.. 1993]: (2) system developers are often confused regarding
‘when and how” to perform system evaluation [Andert Jr. 1993; Hamilton et al.
1991]: and (3) improving the quality and reliability of rule-based systems is non-
trivial. Hence. by ensuring that evaluation spans all the phases of a life-cycle, it is

hoped that the quality and reliability of rule-based systems can be improved.

1.2.3 Maintaining Rule-based Systems

A system that is developed and delivered for operation in a field should be main-
tained thereafter until it is de-commissioned from service. Maintenance is a process
of enhancing the system to changing requirements as well as fixing errors encoun-
tered that were not detected earlier, and can incur as much as 60 of the total cost
associated with the system [Ghezzi et al.. 1991]. Further. the person who maintains
the system necd not be the one who developed the systent: hence. the choices made
during system design to improve its understandability play a major role in mainte-
nance [Clancey. 1983; Jacob and Froscher, 1990; Yen. Juang. and MacGregor, 1991;
Antoniou and Wachsmuth, 1994]. However, most of the existing approaches tackle
maintenance from a view point of modifications, and often ignore processes other
than maintenance that are part of a system'’s life-cycle. For example, the issues of
incremental evaluation of a rule base to conserve evaluation costs [Meseguer. 1992],
and the impact of changing existing design decision(s) during maintenance are often
not explicitly addressed.

To facilitate the maintenance of large rule-bases. researchers attempt to separate
the control knowledge from the domain knowledge and encode the control (or in-
ference) knowledge in the form of metarules to impiove the understandability of its
design [Clancey, 1983).

A more common approach for rule-based system maintenance is based upon rule
groupings {Jacob and Froscher, 1990; Mehrotra, 1993. 1993]. To reduce the effort
associated with rule base modifications, it should be localized to a smaller set of
rules; this set of rules is called a rule group [Jacob and Froscher. 1990]. Each group

of rules should ideally encode a method for solving a particular task. Once the rule

grouping is complete, the group dependency is documented by means of the facts
that connect one rule group to another, called inter-group facts; thus. it is expected
that a change can often be localized to a given rule group. By preserving the correct
functioning of the rules in the group, and the assertions relating to inter-group facts,
the knowledge engineer can make a given change with ease, and can be confident that
the change does not affect the overall correctness of the system. In [Mehrotra, 1993,
1995]. a similar rule grouping method called multi-viewpoint clustering is adopted to
improve the understandability of the system. Though the clus ing mechanism is
meant for facilitating evaluation, its goal is to understand the knowledge encoding
in a rule base; this is crucial if changes need to be made on the existing rule base.
The method is based upon grouping related rules, called clusters, based on a distance
measure between the rules that measures the extent of their cohesiveness (the extent
how various items in the rules are related), and coupling (based on the properties
shared by rule groups). By such rule groupings, changes can be identified into a
localized setting. In [Vestli, Nordb®, and SO@lvberg. 1994], the authors describe a
tool that supports rule grouping and controls their execution, and its use in design
and maintenance. A variation of rule groupings is rule base modularization: having
several small rule bases called a module, with clearly documented module interfaces
to improve their maintainability [Antoniou and Wachsmuth. 1994].

Debenham (1992) approaches the issue of maintenance from a design point of view.
By imposing certain constraints in the knowledge to be encoded as part of system
design, it is proposed that the maintainability of the system can be improved. The
design methodology consists of an informal application model that documents the
application, and three formal system models to describe the data, data relationships
and constraints. By a process of normalization, the link between every data item
d and other data items related to d (that could be affected by a modification to d)
is kept. Thus, for maintenance, modification of an item requires locating the item
followed by a check on those items that are linked to this item. The normalization
process, however, can be computationally quite expensive, and though the approach
only partially automates maintenance operations, even such partial automation is

valuable.

13

The use of object oriented methods to improve maintainability and re-usability
of large rule bases is explored in [Yen et al., 1991]. A rule's consequent in this
method corresponds to a generic function that can activate several methods, which
in turn can cause other rules to fire. Thus, the implementation of a rule's function
is hidden. Any changes to a rule's function should. ideally. require changing only
the implementation. By automatically keeping related rules in groups based upon
their function. the authors claim the understandability (hence. maintainability), and
re-usability can be improved. The practic.:! use of this approach. however, is yet to

be seen.

1.3 Approach of this Thesis

This thesis is concerned with the design and evaluation of rule-based systems. It is
aimed at answering the following questions as part of a design framework proposed

for rule-based systems.

(a) what characteristics of the “design stage” for rule-based systeins can

serve as useful guidelines for developers?
(b) how do we map a design choice to it~ correspondimg implementation?

(c) how do we ensure that the implementation and its associated design
choice indeed represer: a given requirement identified from the acquired

knowledge?

(d) how do we evaluate the developed rule base”

A detailed study of the literature shows a need for a design framework that is easy
for developers to adopt, but comprehensive enough 1o handle the above issues.

An analysis of the above development issues reveal that we need a ~link™ between
the various phases of a life-cycle, if we are to map a part of one phase to that of the
preceding phase. Note, however. deciding on this link s non-trivial: the decision of
what cnnstitutes such a link can impact not only the evaluation processes, but also

maintenance {Debenham, 1992; Wells, 1993].

14

Functional Requirements

A
Knowledg- capture

Design Alternatives

A
[
! Design choice
!

The implementation

Figure 1.2: A software development perspective for rule-based systems.

The proposed design framework adopts a slightly modified linear life-cycle modell
of rule-based systems assumed embedded on a spiral model of development to ac-
commodate incremental evolutions {Giarratano and Riley, 1993]. This is shown in
Figure 1.2. Each rectangular box in the figure represents a phase in the life-cycle;
more precisely, the execution of the activities appropriate to a rectangular box is a
phase. For simplicity, each of the boxes are referred to as stages. The dotted lines
in the figure imply that the reverse links shown between the stages, mapping system
implementation back to its conception, are not explicit. The details of these stages
are described in the subsequent chapters. A brief description appears below.

The functional requirements of a rule-based system are captured using a reference
to abstract the problem solving knowledge. The design stage formalizes the acquired
knowledge concepts, and sets certain restrictions for the implementation of the rule
base. The implementation stage uses a model to capture rule interactions occurring
at the rule base level so that problem solving that takes place by rule firings can
be mapped to identify definite portions of the knowledge acquired in the functional
requirements stage. This model can then be used as a reliable basis for evaluating
rule-based systems. System evaluation in this frame work can thus be considered

integrated with all the stages of the life-cycle.

In the software engineering literature, this model is also called “waterfall model with feed-
backs” [Ghezzi et al., 1991].

1.4 Organization of the Thesis

The thesis is organized as follows. The next chapter (chapter 2) describes the details
of identifying the functional requirements of a rule-based system by using an ab-
straction of the acquired knowledge. The proposed approach is based upon viewing
problem solving as “goal-to-goal” progressions; thus, we identify and specify goals to
be achieved and other constraints to be satisfied as part of the functional require-
ments of a system. A careful identification and specification of goals can be used for
optimizing the performance of an existing rule base. This is described using a case
study.

Once goals are identified, the next step is to identify the properties that should
be satisfied in order to represent a goal in a rule base. More specifically, chapter 3
examines the restrictions that should be satisfied by a goal at the implementation
stage. This gives rise to several “design schemes” for rule-based systems. Their rela-
tionships are analyzed to provide insights into system development. The cc+e study
described in chapter 2 is re-designed to exhibit the practicability of this approach for
dev'elopment. reverse engineering and development.

The implementation of a rule-based system for problem solving should meet its
functional requirem~1ts. Chapter 4 describes a model of a rule base to understand
the problem solving that would take place in a system. This is based upon identifying
how rule interactions cause goals to be inferred during problem solving. The usc of
this model for system evaluation is then described. Finally, chapter 5 summarizes the

work done, its contributions, and outlines avenues for future research.

16

Chapter 2

Goal Specification of a Domain

Goals are used to abstract the knowledge acquired from a domain. Two
kinds of goals, intermediate and final, can be used to indicate solutions
to sub-problems and domain solutions respectively. The problem solv-
ing in a domain can then be modeled as a graph traversal. Goals are
also useful for restructuring an existing rule base to improve its perfor-

mance. Rule base restructuring is described using a case study.

17

2.1 Abstracting Domain Knowledge by Goals

Formal and rigorous approaches to knowledge acquisition for rule-based system de-
velopment are currently favored by researchers Yost and Newell, 1989; Batarekh
et al., 1991; Krause et al., 1993] because they are believed to improve the quality
and reliability of a system. In this approach, problem solving in a domain is viewed
in the form of state progressions as in traditional Al research [Rich, 1991; Shinghal,
1992]. In order to solve a problem, a system will transit through a set of states. It is
unrealistic to enumerate every possible state that is traversed by the system without
some sort of abstraction over the state space. A domain expert solving problems in
the domain knows of the typical mileposts that need to be accomplished as part of
solving problems in the domain; referred to as goals, such mileposts can be specified.

Goals are abstractions of states, each representing some concepts of a domain
obtained during knowledge acquisition. For example, in a medical diagnosis domain,
inferring a biliary obstruction disorder is necessary towards inferring a final
diagnosis primary biliary cirrhosis{Lucas, 1994]. Thus, the concept of biliary
obstruction represents an abstraction of a state that serves as a milepost before
inferring biliary cirrhosis, which is another state abstraction of a more specific
concept (in this case, a solution).

The process of identifying and mapping the acquired knowledge into goals is not
a mechanical process [Yost and Newell, 1989]. The extent to which a domain expert
communicates the knowledge clearly and unambiguously, the skill of the knowledge
engineer to abstract the body of knowledge acquired, and the rigor of the knowledge
acquisition process, all play major roles in identifying goals from a given knowledge
description. In this sense, goal identification is similar to the way problem concepts
are identified and mapped to operators and states in SOAR [Yost, 1993].

Every goal, when translated into a first order logic formula, consists of a conjunc-
tion of hypotheses, where each hypothesis is represented as an atom. The atoms that
are present in goals are called goal atoms; the other atoms are non-goal atoms,

they being needed for rule encoding. In addition, the domain expert also specifies

18

A patient must be diagnosed to have biliary obstruction,
before concluding a primary biliary cirrhosis. Abdominal
pain, and multiple cysts seen in an ultra sound scan, can

be indicative of a polycystic disease.

Usually, though not always, a patient having primary

biliary cirrhosis is a female.

Identify mileposts: biliary-obstructive, primary-biliary-cirrhosis, multiple cyst,
abdominal pain, polycystic disease.
Identify an inviolable: the same person cannot be both male and female.
Figure 2.1: The functional requirements stage where the acquired knowledge is
mapped to identify goals, and inviolables. Note, the goals at this stage only ab-

stract the acquired knowledge. The decision of how to represent each goal in the
system would be a design decision.

constraints, called inviolables, associated with the domain; an inviolable is a con-
junction of hypotheses such that all of them should not be true at the same time. An
example of an inviolable is MALE(z) A PREGNANT(z); it is obvious that no goal
should contain an inviolable. To illustrate, Figure 2.1 shows an example knowledge
description, identifying goals and inviolables, and Figure 2.2 shows the translation
of some of the goals identified in Figure 2.1 into a conjunction of atoms denoting

hypotheses.

Goal Identified Represented concept Goal Translation
Biliary cirrhosis A diagnosis representing | P-BILL-CIRR(z, sex, case_hist)
primary biliary cirrhosis.
Multiple liver cysts | An intermediate diagnosis | CYSTS(z, sez, diag_tchng, prev_hist)
indicating cysts in liver.
Abdominal pain A symptom associated PART(z, sex, desc) A
with polycystic disease. SYMPTOM(s_desc)

Figure 2.2: Translating some of the goals identified in Figure 2.1 into a conjunction
of first order logic atoms.

19

The set of goals and inviolables identified for a domain constitutes the goal speci-
fication for the domain [Chander, Shinghal, and Radhakrishnan, 1994, 1995b, 1995c;
Chander, Radhakrishnan, and Shinghal, 1995a]. Goals also serve as “meta knowl-
edge” of the domain that would be useful later for verification and validation (chap-
ter 4, sections 4.3, 4.4, and 4.3) The use of goals for system evaluation is discussed in

chapter 4.

2.2 Modeling Problem Solving Using Goals

While solving problems, two kinds of goals are inferred: goals that facilitate inferring
a solution, and the goals that represent the solutions to problems in the domain. The
former are called intermediate goals and the latter final goals. For the example
shown in Figure 2.1, multiple cyst is an intermediate goal and primary biliary
cirrhosisis a final goal. Typically, the intermediate goals are those that are achieved
in order to infer a final goal, and a final goal is part of some solution. It should be

noted that there can be many solutions to a given problem.

Definition 1 (Intermediate and Final Goals) Goals that are inferred in order to
facilitate reaching a solution are cailed intermediate goals. The goals that are used

for indicating domain solutions are called final goals.

Solving a problem in terms of goals can be viewed as a succession of goal inferences
starting from a permissible combination of initial evidence to inferring a goal, and
then moving from goal to goal until some solution(s) is (are) reached. This traversal
from goal to goal can be represented by an AND/OR graph called the goal graph
of the domain, or, simply, the goal graph. Each node in a goal graph corresponds
to a goal, where the unshaded nodes denote goals that are not solutions, and the
shaded nodes denote solutions. A connector in this graph is from a set of goals
G = {gs),Giz;- - - Gin} to @ goal g, where g ¢ G. A circular mark in the connector near
g indicates an AND edge, and that goal g can be inferred from goal g,, and goal g,,
and ... goal g,,,. Each node g; is said to be a parent of node g. Moreover, a node

gy is an ancestor of node g; iff g, is a parent of gz, or g is a parent of an ancestor of

20

BILIARY

CIRRHOSIS

BILIARY A:ESMINAL
OBSTRUCTIVE @ @

POLYCYSTIC
DISEASE

MALE BILIARY FEMALE
DISORDER

Figure 2.3: A sample goal graph from a medical domain (to diagnose liver and biliary
disorders) to abstract important states associated with problem solving.

g2. The different connectors to a goal portray the OR edges, and depict the different
alternatives for inferring that goal. A goal graph that shows how goal inference would
typically occur for the goals identified in Figure 2.1 is shown in Figure 2.3.

During knowledge acquisition, only the individual goal-to-goal requirements are
recorded for rule encoding. In practice, a goal graph is extracted from a rule base to
inspect the transitivity of the goal-to-goal progressions from initial evidence to a final
goal (as implemented in the rule base). This can subsequently be used during evalu-
ation to perform an empirical validation of the system (confirming the correctness of
the extracted goal graph with a domain expert).

Every goal in a goal graph is associated with a level. Permissible combinations of
initial evidence are said to be level-0 goals. For any other goal g, its level is defined

to be one more than the level of its deepest parent, that is,
level(g) = 1 + maximum of the level of all the parents of g

The goals at level-1 are those goals that can be inferred starting from only initial
evidence. Note, level-1 solution nodes indicate default solutions [Shinghal, 1992].
Solving any problem in the domain is equivalent inferring some level-1 goals followed

by inferring deeper level goals, and so on until the solution is inferred. Thus, solving

21

&

a problem is traversing the goal graph from level-0 goals to one or more final goal(s).

Goal-based problem solving specifies what is required to solve problems in a do-
main, but does not specify how to implement the specification. This is called the
functional view of problem solving because it portrays how problems in the domain
can be solved using goals, but hides the details of how goals are actually inferred
in a system. This view of goal-based problem solving is not only suitable for de-
velopment, but also reverse engineering. A systematic identification of goals to be
achieved and the tasks to be solved can be used for restructuring an existing system,
say to improve its performance. More specifically, the goal specification approach has
been used successfully to restructure and re-design an existing rule-based system in
a real application [Chander et al., 1995b]. The restructuring is described in the next

section, and the re-design in chapter 3 (section 3.2).

2.3 Optimizing Rule Base Performance: A Case
Study

The use of intelligent approaches to assist users in web search and browsing is be-
coming increasingly popular among multi-media researchers [Lieberman, 1995]. An
application is currently being developed at this university to facilitate search and
retrieval of documents in the world wide web [Chander et al., 1995b). In this appli-
cation, the system is given a set of input search fields associated with a document
such as title, author, subject, ..., up to a total of thirteen fields; typically, a
subset of these is entered by the user. The system then checks for the location of the
document using a data base system, and having obtained the location, it eventually
retrieves the document. The system contains a rule base that encodes knowledge of
a reference librarian in order to provide appropriate help to a user of the application.

A group of reference librarians were consulted to acquire the domain knowledge.
During implementation, the knowledge obtained from the the domain experts was
translated directly to handle the various input fields while searching for a relevant

document. One such rule is shown in Figure 2.4. This rule is coded to be activated

(defrule five-fields~-data-not-match

(declare (salience 91))

?addri <- (phase read 7typel $?datai)

?addr2 <- (phase read ?type2&~7typel $7datal)

?7addr3 <- (phase read ?7type3&~7typel&~?type2 $7data3)

7addr4 <- (phase read 7typed4&~7typel&~7type2&~7type3 $?datad)

?addr5 <- (phase read ?typeS&~7typel&~?7type2&~7type3&~?typed $?datas)
(not (phase read ?type&~?typel&~7type2&~7type3&~?typedt~7typa5$7?));/+Px/
(not (match-field $7))
=>

(retract ?addrl ?addr2 ?addr3 ?addr4 ?addr5)

(assert (error-mess Data do not match.))

)

Figure 2.4: An example rule from the rule base of the library expert system.

when the user enters only five input fields to identify a document, but they do not
match any of the existing document descriptions. The (first) prototype version of this
system uses a sample library data base at a central site. It was developed under the
CLIPS expert system shell [Giarratano and Riley, 1993], and the rule base contained
205 rules.

When a direct translation of knowledge is done as shown in Figure 2.4 to check
whether each input field is different from the other using the “&” and “~" opera-
tors of CLIPS, it can result in an enormous computational overhead [Chander et al.,
1995b]. To understand this aspect, consider Figure 2.5 that shows a typical (simpli-
fied) rule found in the rule base of the library expert. The rule tries to find a match
when the user enters three input fields. But, this type of encoding increases enor-
mously the pattern matching computation in the inference engine. For the rule shown
in Figure 2.5, if the working memory contains {(phase author), (phase title),
(phase subject)}, then the rule can fire not once, but six times. This can be as-
certained from its trace shown in Figure 2.6. However, this is not the intent of the
designer because the rule is supposed to fire once only. This behavior occurs because
the encoding shown in Figure 2.5 caused the inference engine to find a matching

instantiation for the variables x, y, and z in the rule antecedent for every possible

23

(defrule test-rule ;; A typical rule simplified from its original form
(phase ?x)
(phase ?y&~7x)
(phase ?7z2&~7y&~17x)
=>
(printout t ?x ?y ?z) ; some action

)

Figure 2.5: A simplified version of a rule in the rule base of the library expert system.

permutation of the given input.

When the type of rule encoding is of the form shown in Figure 2.5, rules that
handle ¢ input fields subsume the rules that handle (i + 1) input fields; however, these
fields should be handled independently, that is, they are mutually exclusive. Rule
subsumption arises because there are no atom(s) encoded in the rule antecedents
to explicitly discriminate ¢ input fields from j input fields, where ¢ < j. Though
subsumption between the rules can be avoided by explicitly checking if there are
exactly i input entries for rule groups handling ¢ input fields (see the pattern marked
P in Figure 2.4), the pattern matching computation of the inference engine would still
enumerate all possible permutation of the input fields (for every rule in the rule base)
to decide which of the rules can fire. As a result, a huge amount of computation
is spent on pattern matching to check if a rule's antecedent is satisfied, when the
number of fields that are input is close to 13 (the total number of input fields).
Though the facility of retraction provided by CLIPS—removing facts from working
memory—can be used to prevent multiple firings of a rule, it however, cannot control
the pattern matching computation, or the order in which rules are fired. Thus,
when translating the rule in Figure 2.4 and others internally, the inference engine
incurs an enormous amount of computation for pattern matching. The complexity of
this computation increases combinatorially because the inference engine enumerates
every possible permutation of the input fields for instantiating the variables in rule
antecedents {Chander et al., 1995b, 1995c]. As a final note, the use of salience (a form
of rule priority assignment in CLIPS) to force sequentiality so that (i + 1) input fields

have priority over i input fields can interfere with the CLIPS rule execution mechanism

24

CLIPS> (matches testrule)
Matches for Pattern 1

f-1

£-2

£-3

Matches for Pattern 2
f-1

£-2

£-3

Matches for Pattern 3
f-1

f-2

-3

Partial matches for CEs 1 -~ 2 tomm +
£-3,f-2 Activations
f-3,f-2,f-1

U
o= W W e

-

*"hi-'hi'lhi-bi-h
HI\)MHQ}
-

v
[}
o
Hhobh Hh Hh Hh b B b b

ial matches for CEs 1 - 3

'
N == W W

3

b

m
f-
f-
,f
f-
f-
f-

-

]

-

HM(AJOJHM

-

"h"h";h"bf'hl"h

-

Figure 2.6: Run time analysis of the sample rule shown in Figure 2.5. The facts in
the working memory are f-1: (phase author), f-2: (phase title), andf 3:
(phase subject). The specific “lues associated with the fields are not shown for
simplicity. The abbreviation CE n-m refers to a combination of facts that (partially)
satisfy the antecedent. The activations refer to the number of times the rule can fire.
Note that the number of activations of the rule is 6 (= 3!).

25

making the run time behavior of the system harder to understand {Giarratano and
Riley, 1993].

In the rule base of the library expert, rule groups similar to the one shown in
Figure 2.4 were coded for each input combination. Rule subsumption was controlled
inelegantly using additional patterns on rule antecedents (such as P in Figure 2.4);
rule execution was controlled by rule saliences; and multiple firings of a rule were
prevented using retraction. However, these “patches” had no control over the pattern
matching computation. Rather, they made the rule base and the run time behavior
of the system harder to understand {Chander et al., 1995b]. In fact, ihe system does
not even reset—the CLIPS operation that determines the first set of rules that can
fire after translating the rules internally—when the number of fields input is more
than six.

Goal specification was applied successfully for optimizing the rule base of this sys-
tem [Chander et al., 1995b]. An analysis of the knowledge encoding in rules such as
the one in Figure 2.4 indicated incorrect and inadequate design of atoms to reflect the
captured knowledge. We need to identify predicates and goals (lev 0 in this case) to
reflect the extent of input handling. In addition, we also need to make use of the fact
that rules that handle ¢ input fields should be treated exclusively from rules handling
a different number of input fields. Thus, we need two level-0 goals: FIELD-INPUT(n)
that records how many fields were input, and FIELDS(x,y, . . .) that records the fields
that were actually input. For example, if the fields author, title and subject are
entered, then these atoms are respectively, FIELD-INPUT(3) and FIELDS(author,
title, subject), and must be input to the system. A restructuring of the example
rule in Figure 2.5 is shown in Figure 2.7 (a), and its execution trace for the same
input (augmented by the atom FIELDS (author, title, subject))is shown in Fig-
ure 2.7 (b). With the added level-0 goals, the rule in Figure 2.4 can be restructured
as shown in Figure 2.8.

The above modifications cut down the subsumption between rules due to the
discriminating predicate FIELD-INPUT. The pattern matching computation was cut
down because the inference engine need not enumerate every possible permutation

of the input fields due to the predicate FIELDS that explicitly records which of the

26

=>

)

(defrule testrule-2
(FIELDS ?x ?y ?2z)
(phase ?7x)
(phase ?y)
(phase ?7z)

(printout t ?x 7y 7z crlf)

(a) Restructured rule.

[Partial matches for CEs 1 ~ 2

;'4,f‘0

Partial matches for CEs 1 - 3
f-4,f-0,£f-1

Partial matches for CEs 1 - 4
f-4,f-0,f-1,£-2

Activations

f-4,f-0,f-1,f-2

(b) Execution trace.

Figure 2.7: Restructuring the rule shown in Figure 2.5.

(defrule five-fields-data-not-match
(field-input 5)
(fields ?typel 7type2

7addri <-
7addr2 <-
?addr3 <-
7addr4 <-
?addr5 <~

(not (match-field $7))

(phase
(phase
(phase
(phase
(phase

reoad
read
read
Tread
read

7type3 Ttype4 7types $7) ; §7 => ignore rest

?typel $7?datal)
7type2 $7data2)
7type3 $7datal)
?typed $7datas)
7type5 $7datab)

(retract 7addri ?7addr2 ?addr3 ?addr4 ?addr5)
(assert (error-mess Data do not match.))

Figure 2.8: The restructured rule of Figure 2.4 based on additional level-0 goals.

27

fields were actually input. This permitted a unique variable instantiation for rule
antecedents, and the system was able to handle the full thirteen field input during its
execution. In addition, the goal based restructuring also modularized the system bet-
ter by explicitly grouping rules handling ¢ input fields independent of rules handling
J input fields, where i # j. This made the analysis of the rule base easier because
each group typically contained no more than 7 to 8 rules. Such modularization of
rule bases is important to improve their understandability and maintainability [Jacob
and Froscher, 1990; Giarratano and Riley, 1993; Preece, Gokulchander, Grossner, and
Radhakrishnan, 1993a). The effect of goal-based restructuring on the rule base of the

library expert system is shown in Figure 2.9.

28

i-field
input Rules handling i-fields >

Subsumption, Unwanted rule interactions,
and pattern matching overhead.

(i+1)-field
input Rules handling (i+1)-fields —

Before goal based restructuring.

i~field
input Rules handling i-fields >
FIELDS
(i+1)-field Rules handling (i+1)-fields N
—
input

After goal based restructuring.

Figure 2.9: The effect of goal based restructuring on the library expert system. Indi-
vidual, autonomous rule groups are forined consistent with the way problems would
be handled in the domain.

29

Chapter 3

Design Schemes for Rule-based

Systems

The raapping between goals and their representation in a rule base is
one-to-many and results in several design schemes for rule-based sys-
tems. The various design schemes impose different mapping restrictions
for representing a goal in a rule base. Their use is described using a
case study. In general, the applicability of a design schemne to a problem
domain, and the relationships between the various design schemes are
important factors that need to be considered before choosing a scheme
for system development. In this thesis, o specific relationship between
the design schemes called inheritance is explored. The relative pros and
cons of using two schemes D4 and Dp, having an inheritance relation-
ship between them, for development versus maintenance are analyzed.
This chapter also provides some metric measures to facilitate general
comparison between various design schemes. Finally, an application of
inheritance is outlined by considering the transformation of a rule base

from one design scheme into another.

30

3.1 Rule-based System Design: Preliminaries

Conceptually, the design and development of a rule-based system can be viewed as
a combination of comprehension, mapping, and encoding of the knowledge into a set
of rules [Yost, 1993]). The comprehension is required in order to acquire the problem
solving knowledge from the domain expert. The mapping is a formalization of this
knowledge identifying the set of tasks associated with problem solving. The rule
base development encodes the task domain representation of the acquired knowledge
into a set of rules. Comprehension, mapping, and encoding are done by a knowledge
engineer.

In this framework, knowledge is abstracted using goals (chapter 2). The aext step
is the mapping and representation of this knowledge based upon some restrictions
that are satisfiable in the rule base to be developed. The design level formalizes this
mapping.

In the implementation of a rule base, domain knowledge is encoded using a set of
declarative rules of the following form [Shinghal, 1992): LiAL, A... = MiAM; AL,
where the L’s and M’s are predicate logic atoms. The conjunction LiAL;A. .. is called
the rule antecedent, and the conjunction M; A M, A ... is called the rule consequent.
Atoms in the consequent of a rule denote hypotheses. The syntax of the rules to
encode the acquired knowledge partitions hypotheses inferred in a rule base into two
types: intermediate and final. An intermediate hypothesis is one that occurs in the
consequent of at least one rule and in the antecedent of at least one rule. A final
hypothesis is one that occurs in the consequent of at least one rule, but never in the
antecedent of a rule.

A design issue arises in mapping the intermediate and final goals arrived at during
specification (chapter 2) to the intermediate and final hypotheses in a ru': base. For
example, while every final hypothesis is expected to be a goal atom (designed to form
part of one or more solutions), the same need not be true for intermediate hypotheses.

More generally, the design issue can be stated as follows:

Let f = ALA A2A ... be a final goal and i = Al' A A2 A ... be an

intermediate goal specified, where the A’s are hypotheses. The question

31

arises: what properties should A1, A2,... and Al', A2,... satisfy in the

rule base?

Since every goal atom can be encoded as an intermediate hypothesis, or a final
hypothesis in a rule base, it is apparent that the mapping restriction imposed between
goals and hypotheses is not unique. A precise description of this mapping restriction
is necessary because it explicates the link between the semantic conception of the
acquired knowledge (using goals) to its actual syntactic representation (using rule
encoding). Such a description is called a design scheme for a rule base (or, simply,
design scheme). More precisely, a design scheme is a satisfiable restriction imposed
in mapping intermediate and final goals to intermediate and final hypotheses in the

rule base.

Definition 2 (Design Scheme) A design scheme D is an ordered pair of partial map-
pings < pi, pa > such that

wF — HUH;
po:l = H;UH;

where F is the set of final goals, I is the set of intermediate goals, H; is the set of
intermediate hypotheses, and H; is the set of final hypotheses. The mapping is partial

because not all hypotheses need be goal constituents.

The possible choices for the constituent hypotheses of final and intermediate goals
are summarized in Figure 3.1. Below, the notation <Fn, Im> is used to denote
a design scheme in analyzing the relationships between the the 25 possible design
schemes from Figure 3.1.

While all the choices in Figure 3.1 are satisfiable restrictions resulting in various
design schemes, some of them can be counter intuitive. For e . ~ple, consider re-
striction I1 for intermediate goals that requires them to be composed of only final
hypotheses. In this case, the intermediate goals cannot help infer any finz! goals
because final hypotheses cannot be causal to other final hypotheses. A similar obser-

vation is applicable to restriction F'4 for final goals. Thus, owing to counter intuitive

32

Hypotheses in a final goal f Hypotheses in an intermediate goal 2
(F1) All are final hypotheses. (I1) All are final hypotheses.

(F2) At 'east one hypothesis is final. (I2) At least one hypothesis is final.

(F3) At least one hypothesis is interme- (I3) At least one hypothesis is intermedi-
diate. ate.

(F4) All are intermediate hypotheses. (I4) All are intermediate hypotheses.
(F5) No constraints. (I5) No constraints.

Figure 3.1: The choices for constituent hypotheses in a final goal f and an interme-
diate goal 1, provided neither f nori contains an inviolable.

semantics of the specification, we recommend avoiding all design schemes with either
of these mapping restrictions. Further, restriction 15, where intermediate goal com-
position is unconstrained, is discouraged because specification of intermediate goals
can be uncontrolled, and such ad hoc specification may not reflect the intent of the
domain expert. We, however, allow restriction F5 for ease in solution specification
to facilitate functional, structural and/or empirical validation [Batarekh et al., 1991;
Preece et al.,, 1994; Zlatareva and Preece, 1994], but care should be exercised in
specifying solutions when using this restriction. Note, the constraints imposed by a
design scheme has a bearing on the understandability and maintainability of a system
(section 3.3.2).

A rule base built to encode the knowledge of goal-to-goal progression for a do-
main would contain rules that infer goal atoms. A set of rules p in the rule base
is said to realize a given goal g = A1 A A2 A ... A A,, iff the consequent of these
rules collectively contain the atoms A;, A2,..., A,. For example, consider construct-
ing a rule base to identify a person’s occupation in a university. One can identify
final goals {DEAN(x), PROFESSOR(x)}, and intermediate goals {ADMINISTRATOR(x),
ACADOFFICER(x)} associated with the dornain. A set of rules that realize these goals
is shown in Figure 3.2.

However, a set of rules realizing a goal does not necessarily imply that the goal
would be inferred at run time. Thus, goal realization refers to a static aspect of
knowledge manipulation (encoding) that takes place during rule base development,
while goal inference refers to a dynamic aspect of knowledge manipulation (inference)

that takes place at run time. For example, if the input to the rule base in Figure 3.2

33

R, | WORKS(x, Deansoffice) — ACAD-OFFICER(x)

R, | ACAD-OFFICER(x) A STAFF(x, Deansoffice) — ADMINISTRATOR(x)

R3 | ACAD-OFFICER(x) A ELECTED(x, Board) — DEAN(x)

R4 | ADMINISTRATOR(x) A INCHARGE(x, Registration) — COGRDINATOR(x)

Rs | WORKS(x, d) A FACULTY(x, d) A HASPHD(x) — PROF(x)

Rs | PROF{x) A TENURED(x) A HELDPOST(x, yr) A GT(yr, 8) — PROFESSOR(x)

r.gure 3.2: Illustrating goal realization in a rule base.

contains only {WORKS(Henry, Deansoffice), ELECTED(Henry, Board)}, then the
system would infer only one (final) goal: DEAN (Henry).

When a set of rules p in a rule base R realizing a subset of the specified goals
=susfies the goal mapping restrictions of some design scheme D, then the rule base R
is said to partly adhere to the design scheme D. If a rule base as a whole satisfies
the mapping restrictions imposed by a design scheme D, then the rule base is said to
fully adhere (or, simply, adhere) to that design scheme. For example, in Figure 3.2
the final goals DEAN(x) and PROFESSOR(x) are realized using only final hypotheses,
and the intermediate goals \CAD_OFFICER(x) and ADMINISTRATOR(x) are realized
using only intermediate hypotheses. Thus, the set of rules in Figure 3.2 satisfies the

restrictions of design scheme <F1, I4>, and hence, it adheres to that scheme.

Definition 3 (Adhering to a design scheme) For a given a goal specification G, a
rule base R is said to adhere {o a design scheme D, iff every intermediate (final) goal
realized in R satisfies the intermediate (final) goal mapping restriction imposed by D.
A rule base R fully adhering to a design scheme D is denoted as follows:

Ri=D
where, X |= Y should be read as “In model X, properties of Y hold.”

If only a subset p of a rule base R satisfies the restrictions of D (that is, R partly
adheres to D), it is denoted by p C R = D. Note, it is possible for a rule base to
simultaneously adhere to more than one design scheme: for example, the rule base in
Figure 3.2 adheres to design schemes <F1, I3> and <F1, I4>. We elaborate more
on this aspect in section 3.3.

The use of goal-based design to improve the performance of the library expert

system is described in chapter 2 (section 2.3). However, as the rule base is to be

34

embedded as part of a larger system, the overhead of the rule base due to its size, and
the overhead of embedding the CLIPS run time control were found to be unacceptable.
The rule base needed to be re-designed to optimize its size, performance, and the

integration overhead. The re-design is described next.

3.2 The Library Expert: Re-design

The expert advice offered by a librarian should be offered to a user of this application
both for searching and cataloging. In searching for a given set of documents, often the
user offers vague, partial and/or incorrect information in his/her attempt to identify
the terms used for the various descriptors of the index for the documents for which
the user is searching. In other words, search specification by the user is often “ill-
structured” [Simon, 1973]; hence, expertise is needed to help users to articulate their
needs. In addition, the total number of input field combinations for document search
to be handled is iarge. Only some of these input field combinations occur at any given
time. For example, in a given search the user may be interested only in the documents
of a particular subject hierarchy (AI.ExpertSystems.Verification) without caring
for the title of the document. In this case, it does not make sense to consider search
situations that also explicitly require the title of documents. Thus, by isolating and
encoding the input combinations and handling them in rules, only a subset of the
rules need be active to process the user input and provide appropriate help. This
also improves the structure of the developed system in terms of its modularity and
understandability [Jacob and Froscher, 1990; Preece et al., 1993a; Anioniou and
Wachsmuth, 1994; Chander et al., 1995b).

Clearly, a direct encoding of knowledge to check for all input field combinations
one after another would be quite inefficient (chapter 2, section 2.3). Further, in the
embedded expert system, modeling the expertise of a rei=rence librarian should not
impose a major integration overhead.

In cataloging a new resource, the cataloging librarian uses the knowledge of the
accepted norms for classification. From this knowledge, and his/her perception of

the resource to be cataloged, the librarian chooses terms to describe the resource.

35

Reference librarians are aware of the conventions used by catalogers as well. They
are typically familiar with the classification schemes, terms, index structures, and
resources available in the domain of the user’s need. The expertise of a reference
librarian should be replicated to assist the users of our application in both searching
and cataloging. The rules for searching are also applicable for cataloging because

searching is required for cataloging as well.

3.2.1 System Requirements for Searching Virtual Libraries

The expert system for searching virtual libraries should be designed in a way that the
query generated for document search should facilitate efficient database access, and
reduce the number of incorrect results generated. This requires several aspects to be
considered as part of its function. They are broadly classified below (more specific

details are described in section 3.2.2):

1. Context Sensitive Help Context sensitive help should be provided while the
user is entering the search fields: for example, the system should give appro-
priate aids to a user for completing a given field entry based on the current

contents of the other related search fields.

2. Query Result Analysis The system should provide appropriate analyses when
no documents are found by suggesting other alternatives to the user input, or
when a large number of documents are found (the search query formulated was

too general) by suggesting alternatives to focus the search.

3. Cataloging and Information Organization For cataloging, the expert sys-
tem would be used for choosing appropriate terms from the thesaurus, and the
associated keywords. Depending on the type of resource, the expert system
should help the user scan the resource to try and fill-in other fields describ-
ing the document. Finally, the system should check that the resource being

cataloged can be accessed by other users.

In addition, the expert system should not be a significant overhead in itself. Thus, we

are constrained to keep the system small, but a useful and efficient aid to searching.

36

Though several expert system shells such as CLIPS facilitate knowledge engineering

and rule encoding, they can incur a significant overhead when integrated into the

overall system. There are several reasons for such an overhead:

1. The expert systemn shell has to be embedded in the applic=tion to process and

apply the rules because rule firings are controlled only by the inference engine.

This can increase the size of the overall system considerably.

. The inference engine overhead can be unacceptable at times. For example, for

every rule firing, if a system such as CLIPS is used, its inference engine would
recompute the set of rules that can fire. However, by knowing the contexts
where a subset of rules can be applied, this inference engine overhead can be

avoided.

. The working memory of an expert system directly affects its performance. Tvp-

ically, several hundred objects can qualify as targets by a search query. We need
this intermediate hits, if the user needs to pursue the resources discovered by a
subset of the query parameters. If this information accumulatesin the working
memory, the performance can slow down. This adds to the size of the rule base
because we also need additional “clean up” rules to periodically cleanse the

working memory from unwanted, or outdated information.

. Inputs entered by a user and stored in data structures should be converted into

appropriate formats for inserting into the working memory before the rules can
fire. Later, rule inferences in the form of atoms should be parsed and mapped
back into data structures. This increases the development effort and the overall

complexity (overhead) of using an expert system.

. The experimental system develc,~=d using CLIPS proved to be large (more

than 100 rules), and the integration overhead was unacceptablr (chapter 2,

section 2.3).

. It was also noted by our experience (section 2.3, chapter 1) that instead of lump-

ing all the rules in a single rule base, if a rule application context is exercised

using a rule (or, a set of rules), then performance improves significantly.

37

Once the rules were designed, we decided to encode them directly as C functions, and
invoke a set of rules explicitly from specific parts of the system, thus, implicitly im-
plementing the inference engine as part of the system. This also avoided the overhead
of embedding an external shell into the system.

Using this approach, the “intelligence” of a cataloging/reference librarian, cap-
tured using a set of rules, was distributed into the system rather than being central-
ized in one place. This significantly improved the performance because only a small

number of rules are applied at any time.

3.2.2 Implementation Details

The user interface for searching requires the user to input information that will help
identify the documents distributed over the world wide web. The user entry can be
at different levels of detail, and depending upon the level of detail entered, one of the
tasks of the expert system is to provide the required amount of help to complete the
input. This amounts to a reference librarian guiding a novice user in entering data
based on what has already been entered by the user. For example, if the user has
entered the subject Computer Science, then the help for other fields of the subject
hierarchy would be tailored to Computer Science. Later, if the user changes the
subject to, say, Chenistry, then help information would change accordingly.

The context sensitivity of help is complicated because the user can input a syn-
onym for an input field. In general, synonyms can be entered for any of the fields
corresponding to the subject hierarchy: a three level hierarchy for document classifi-
cation. Moreover, a synonym entered at one level of the subject hierarchy may resolve
in one or more levels. A synonym must be resolved using a control-thesaurus so that
it can match with an appropriate document identification keyword. For example, the
user can enter the synonym KBS which can mean Knowledge Dase Systems, Expert
Systems, or Deductive Data Base Systems that are part of the control-thesaurus.

In general, searching the subject hierarchy for a control vocabulary can be modeled

38

as a graph (tree) traversal. Synonyms, however, complicate this search for a control-
thesaurus term because they makea tree traversal into a directed acyclic graph traver-
sal, which is computationally more demanding. Yet, synonym resolution allows the
systemn to automatically fill in higher levels of the subject hierarchy as they can be
determined once a synonym at a lower level is resolved in the control-thesaurus. This
greatly aids focusing the search to a specific set of documents. For example, if entry
KBS for sub-subject was resolved to Expert Systenms, then the subject of the entry
would be automatically updated to contain Artificial Intelligence under which
Expert Systems is cataloged. The synonyms and the associated control-thesaurus
are kept in a local database.

Complication in synonym resolution arises when the user enters a synonym for
subject that is actually a sub-subject synonym. Such synonyms are said to be non-
contextual. On detecting a non-contextual synonym entered for a field, the system
warns the user of tnis mismatch and resolves the synonym by traversing up (or, down)
the subject hierarchy. The expert system then displays a list of control-thesaurus
items found for the user to choose. For example, if the user enters a sub-subject
synonym RDB that resolves to Relational Data Bases and Remote Debugging as
sub-subjects (but not into any subject) in the entry for subject, the system warns
the user and traverses up the subject hierarchy in this case to display the subjects
corresponding to the sub-subjects Relat ional Data Bases and Remote Debugging.

When a synonym resolves at multiple levels of the subject hierarchy, the synonym
is said to be overloaded. For example, nothing prevents a generic synonym such as DB
to be used as a shorthand for the sub-subject and the sub-sub-subject levels of the
subject hierarchy. Suppose as a sub-subject it resolves to {Data Base Systems,
Knovledge Base Systems}, and as a sub-sub-subject it resolves to {Relational
Data Bases, Horn Clause Systems}. Then, the context of the input entry is used
to resolve that synonym for the level it corresponds to instead of resolving it into
all matching terms. Handling non-contextual and overloaded synonyms mimic the
discerning capability of a reference librarian in interpreting user input appropriately.

ccmplication arises when the user enters partial values: 1 sub-string for subject,

for example Data Bas. Though one can display a list of subjects that have this

39

substring, context sensitivity implies that the values already entered in other fields
must also be considered in providing a help response to the user. Thus, the help would
be based on not only the partial values of the current field, but also on existing values
of other related fields. For example, if the user has entered Hybrid relational
in sub-subject and Frame in sub-sub-subject field, then the context sensitive help
for subject would take into account the current values in sub-subject and sub-sub-
subject fields before providing appropriate help to the user. If the current values of
sub-subject and sub-sub-subject entries are ignored, the user would be provided with
a long list of subjects, many of which would have sub-subjects and sub-sub-subjects
that may not match with the current values entered in these respective fields. The
above action is equivalent to capturing a reference librarian’s mental view to help
focus the search for documents. The values in the other related fields need not be full
values, but can themselves be partial values. Context sensitivity in the expert system
gives only the appropriate amount of help that would be needed at a particular time.

When a partial value matches entries in multiple levels, then a collision is said
to have occurred in the expansion of this partial value. In this situation, the system
expands the substring appropriately on the level in which it was entered. If, however,
no match can be found on the hierarchy based on the given input value, a warning is
issued and the system displays a set of hierarchies to be chosen containing the given
value at any level.

An interesting aspect of the expertise is automatic inferencing capability. A refer-
ence librarian would be able to identify that the user is searching under the subject
AT if the user tells the librarian that he/she is searching for documents about Expert
systems. In the system, once the value entered for a particular field is complete, but
the other related fields are empty, the pertinent values of these fields are inferred and
automatically updated with those appropriate entries. Such automatic inferencing of
other related fields help to not only focus the search query to select a smaller number
of documents, but also optimize the query.

The final aspect of the system is warnings. Whenever a user-entered field does
not match the existing field values, the user is warned because this could result in a

search query whose processing would not produce any document retrieval. Suppose

40

Expert Systems as a sub-subject entry does not match with Chemistry as a general
subject, then the user must be warned of this potential mismatch. This does not
mean that specific expert systems cannot exist in chemistry; all it means is that the
topic of Expert Systenms is not recorded as a sub-subject of chen:istry. This mimics
the cautionary advice that a reference librarian would give to a user.

We have developed a small demonstration version of the Expert System for rule
testing, refinement, and for eventually evolving it into a complete system. The user
interface of .he expart system was coded under Motif; the rules themselves are im-
plemented in C. The rules are grouped according to their category each associated
with a set of goals to provide help to the user to formulate an efficient search query.
The various rule categories and their associated goals (in parentheses) are as follows:
context sensitive help category (synonym resolution, partial value expansion, warn-
ings), search focus category (automatic inferencing), and search analysis category
(error detection, warnings, field refinement). This classification does not mean the
categories are exclusive: as a set of rules in one categery are applied, they can later
interact with rules in another category. For example, when a sub-string is expanded
in a sub-sub-subject entry, if the sub-subject and/or subject entries can be filled,
then they are automatically filled. This is due to the interaction between the rules
and the goals they infer in the context-sensitive help category and the search-focus
category. A simplified goal graph for the system is shown in Figure 3.3. The level-0
goals correspond to the various fields that are input by the user. For simplicity, the
details of error checking, warnings, and non-context synonym resolution are omitted
in Figure 3.3.

Presently, there are about 40 rules in the system (some additional rules may be
needed during integration, but the total number of rules is not expected to exceed 50).
Any given context requires the application of no more than 5 rules. A sample rule
that handles the context sensitivity of a value entered for subject, if it is a synonym,
is shown in Figure 3.4. The rule actually encodes two conceptual rules often applied
by a reference librarian: one rule is meant for checking synonyms by the user for the
subject field, and its resolution by displaying an appropriate list of subjects for the

user to choose; the second one resolves a non-context synonym (such as a sub-subject

41

Query
Formulation

Automatic
Inferencing

Synonym
Resolution

artial Value

Expansion Date Range

Check

O ..

Subject Title Before Date

Figure 3.3: A simplified goal graph depicting the various goals for the re-designed
library expert system. For clarity, not all level-0 goals and connectors are shown.

synonym entered in a subject field by mistake) and traverses the subject hierarchy to
display a list of the corresponding subjects after issuing a warning.

The query formulation is based on the values of the fields entered by the user. The
result of the query would be a set of documents, possibly empty, matching the search
request of the user. Before formulating a search query, however, additional checking
should be made: this is typical of the way a reference librarian would proceed to
focus his/her search to identify a smaller number of documents. For example, ask
the user to enter author information, title information, spelling correction, phonetic
checks, and input checks such as mismatched subject hierarchy, etc!. If the result
of the search query doc. not retrieve any document, then this is displayed as “No
documents found” followed by an additional analysis of the inputs at the request of
the user. Otherwise, the user is allowed to pick a subset of the retrieved documents

for further manipulation (say viewing, or printing).

1The current version checks only for mismatched subject hierarchy, and incorrect date ranges.

/* context sensitive synonym resolution */
void Rulel(char *subject_string)

{
synonym* syn;
synonym *levl, *lev2; /% levell and level2 synonyms */
/* rule 1: if synonym, then show list of corresponding subjects =/
/* rule 2: if a non-context synonym then show list of subjects by
resolving the synonym and traversing the hierarchy as
appropriate.
*/
/* note: synonym/subject hierarchy database access */
syn = get_synonym(subject_string, 0); /* get ptr to approp
synonym structure */
if (syn)
display_subjects(syn); /* display the subjects to pick one */
else /* check if this is a level 1 or level2 synonym */
{
levi = get_synonym(subject_string, 1); /* note: DB access */
lev2 = get_synonym(subject_string, 2);
if (levi)
{
printf(" WARNING: Level-0 entry is a level-1 synonym\n");
/* resolve levi and get and display the list of subjects
obtained from the hierarchy.x/
display_corresponding_subjects(levi, 1); /* traverse */
}
if (lev2)
{
/* resolve lev2 and get and display the list of subjects
obtained from the hierarchy. x/
printf (" WARNING: Level-0 entry is a level-2 synonym\n'");
display_corresponding_subjects(lev2, 2); /% traverse */
}
}
¥

Figure 3.4: A sample rule in tue expert system for context sensitive help associated
with the general subject field in the user interface. Similar rules code other context
sensitive help such as substring expansion, automatic inferencing, and warnings.

43

3.3 Analyzing Properties of Design Schemes

There are theoretical and pragmatic aspects that should be considered in designing
rule-based systems. A single design scheme may not be suitable for all domains;
thus, we need a design framework. A design framework is characterized by the two
following components: (1) a pragmatic component describing the qualitative aspects
of the design schemes contained; and (2) a theoretical component that outlines the
relationship between the design schemes to facilitate choosing a design scheme. More
specifically, the pragmatic component dictates the choice between design schemes
depending upon the relative importance given to development, and maintenance.
The theoretical component allows for further compromises between development and
maintenance by formalizing the properties of design schemes, and their use.

Unfortunately, there is no procedure to choose a design scheme from the set of
possible design schemes (Figure 3.1, page 33) for a domain. In other words, for an
arbitrary domain and development criteria, there is no known step-by-step method by
which one can choose a design scheme from a set of design schemes. Often, the skill
and experience of a knowledge engineer; size of the proposed system; the extent of
analysis and synthesis components for problem solving used in the domain [Shinghal,
1992]; domain constraints expressed through domain dependent criteria; and long
term objectives (such as expected level of performance and maintenance) expressed
through domain independent criteria dictate whether to reject or select a design
scheme from its characteristics [Debenham, 1992; ¥ ":lls, 1993; Long and Neale, 1993].
A set of empirical criteria to guide the choice of a design scheme is discussed in
section 3.3.3.

As an example, consider a domain dependent criteria where states accepted 2s
solutions can also lead to (perhaps more refined) solutions: for example in » : caical
domain, if both 1iver-disease and liver~cirrhosis are acceptable solutinns, note
that the latter is a refinement of the former. For this domain, design schemes with
choice F1 for final goals is not the right choice because solution causality cannot
be captured by this choice for final goals. On the other hand, if one cannot infer

additionally from domain solutions, or if the solutions are mutually exclusive then

44

design schemes with choice 1 are perhaps more appropriate.

The above discussion is not meant to imply that the characteristics of the various
design schemes are mutually exclusive. In Figure 3.1 some schemes subsume other
schemes: for example, the <F1, I4> scheme is subsumed by the <F1, I3> scheme
because every goal realized using the former scheme also satisfies the restrictions of the
latter scheme. Though different degrees of subsumption can be identified between the
design schemes, we consider only those instances when the intermediate and final goal
restrictions in one scheme D4 are more specific than the corresponding restrictions
in another scheme Dg. The scheme Dpg is then said to inherit the properties of
Dj. Inheritance simply means that the scheme Djg is more general (in terms of its
restrictions) than Dy; however, it does not imply that scheme Djp allows encoding of

knowledge that cannot be encoded using Dy.

Definition 4 (Scheme Inheritance) A design scheme Dg is said to inherit from de-
sign scheme D, iff every rule base R4 adhering to scheme Dy also adheres to scheme

Dg. Thus, if scheme Dpg inherits from scheme D, then the following is valid:

(VR4) (Ra = D4a) = (Rak=Ds)

For simplicity, inheritance between two schemes D, and Dpg, whenever the latter
inherits from the former is denoted by Dp |= D4. Note, a rule base adhering to
scheme Dp need not adhere to scheme D,4; thus, the converse of definition 4 need not
be true.

Inheritance between schemes allows us to state that every property that holds in a
rule base adhering to the <F1, 14> scheme also holds in at least one rule base adhering
to the <F1, I3> scheme, but not conversely. This can be generalized between any

two schemes that have an inheritance relationship between them.

Corollary 1 If design schemes D4 and Dpg are such that Dy inherits from Dy, then
every property that holds in a rule base R4 adhering to D4 can be made to hold in at
least one rule base Rp that adheres to Dg.

Proof. The proof trivially follows because R4 and Rp can be identical by virtue

of scheme inheritance (definition 4).

45

<F1,12> <F3, 12> <F1, 14> <F3, [4>

<F2, 12> <F1,13> <F2, 14>

d

<F5, 12> <F2,I3> <F5,14>

<F3,13>

/
<F§, I3>

Figure 3.5: The various design schemes and their inheritance relationship. An arc
from scheme D4 to scheme Dp indicates that scheme Dg inherits the properties of
scheme Dy,

This corollary becomes important when analyzing the qualities of design schemes
(section 3.3.2), and rule base transformation issues (section 3.4).

The different schemes provide varying amounts of freedom to encode knowledge.
A particular scheme, though easier to implement, need not result in a rule base that
is easier to maintain [Debenham, 1992] because the different schemes exhibit different
qualities depending upon the flexibility allowed in realizing goals. Hence, the extent
of understandability, the extent with which anomalies can creep into a system owing
to incremental modifications, and the extent a scheme allows uncontrolled and ad hoc
changes during rule modifications, differ in rule bases adhering to different schemes.
In addition, the ability to choose a scheme that is flexible for development, but
transform the rule base to adhere to another scheme that is favorable for maintenance
can be useful to optimize both development and maintenance costs [Chander et al.,
1995a). All these aspects are affected by inheritance as will be apparent later. More
specifically, inheritance affects the various qualities of the design schemes, and the
ability to automatically transform a rule base adhering to one scheme into another.

The inheritance between the various allowable design schemes is shown in Figure 3.5.

46

Below, we characterize how inheritance influences system maintenance by analyz-

ing the following cost and quality issues:

e the relative costs involved in maintenance operations between design schemes

D, and Dp, where Dg inherits from D4 (section 3.3.1); and

e quantify certain subjective qualities of the various schemes to compare those

that have an inheritance relationship between them (section 3.3.2).

These analyses serve as guidelines to developers in choosing a scheme for a domain.
We will then use the analyses as motivation to describe the rule base transformation

process and its details (section 3.4).

3.3.1 Analyzing the Cost of Maintenance Operations

Using a set of general system parameters, it is possible to analyze the cost of the
various commonly applicable maintenance operations. In particular, we compare the
costs involved in maintenance operations using design schemes D4 and Dpg, where
Dg inherits from Dy. The typical operations that can arise during maintenance are

summarized below:
(a) Adding a hypothesis to a goal;
(b) Deleting a hypothesis from a goal;

)

)
(c) Changing the hypothesis type in a goal;
(d) Modifying (increasing/decreasing) the arity of a hypothesis in a goal; and
)

(e) Changing goal types.

It is assumed that the operations above are listed in the order of decreasing fre-
quency of occurrence. Thus, adding and deleting hypotheses to and from goals (re-
spectively) occurs more frequently than changing goal types. For brevity, we will
analyze the cost of only two of these maintenance operations in detail: adding hy-
potheses to a goal and deleting hypotheses from a goal. Not only these operations

occur frequently, but the other maintenance operations can be analyzed in terms of

47

these two operations [Chander, 1995]. The cost associated with the other operations

is only summarized; the details can be found in [Chander, 1995].

For illustration, we choose design scheme D4 to be <F1, [4>, and design scheme
Dp to be <F1, 13>, and discuss the costs and issues involved in the first two main-
tenance operations below. The above choice of design schemes was made because F1
is the most stringent restriction involving final goal realization, and I4 is the most
stringent restriction involving intermediate goal realization. The various parameters

used for the cost analysis are given below.

C is the cost involved per unit of work (effort) expended in modification oper-

ations:

Ny is the number of rules associated with hypothesis A’ (that is, use A’ and/or
infer h');

6 is the effort associated with checking and updating the design documentation;

|H;| (|H]) is the number of intermediate (final) hypotheses;

e |G\| (|Gy¢]) is the number of intermediate (final) goals;

| e Ny is the number of rules realizing M final goals (in the worst case, Nas =

number of rules inferring final hypotheses); and

e Ny is the number of rules realizing M’ intermediate goals.

Cost Analysis of Adding Hypothesesto a Goal There are two cases to consider

because a hypothesis can be added to an intermediate goal, and/or a final goal:

1. Adding a hypothesis & to a final goal g: For both the <F1, 14>, and <F1, I3>
schemes, owing to restriction F1, the hypothesis type must be checked to ensure

that it is a final hypothesis from the documentation.

2. Adding a hypothesis A’ to an intermediate goal ¢g’: In the <F1, 14> scheme,
owing to restriction I4, only an intermediate hypothesis can be added. However,
the flexibility of <F1, I3> scheme allows unconstrained modification to g’ with

no effort because if the realization of intermediate goal ¢’ satisfies restriction I3,

-
[# 7}

Operation result Cost in <F1, I4> scheme | Cost in <F1, I3> scheme
Cannot Add NpxC Ny« C

Can Add NpxC Np«C

h' not in rule base | @ 6

Figure 3.6: Cost analysis for adding a hypothesis h' to an intermediate goal g'.

then so is g’ A &’ for any hypothesis A’. However, this flexibility also implies un-
controlled and adhoc changes can take place on intermediate goal compositions

without violating scheme restrictions.

The cost for operations for adding hypotheses in the <F1, 14> and <F1, I3>

schemes are given in Figure 3.6. The first column in Figure 3.6 is the result of trying
to add an hypothesis, and the other two columns give the associated cost in the two
schemes. By similar analysis, the cost for adding a hypothesis A to a final goal can
vary from 6 to Ny * C. The cost and effort associated with the addition operation,
thus, do not differ appreciably in the two schemes under consideration.
Cost Analysis of Deleting Hypotheses from a Goal A unitary goal is a goal
with a single hypothesis. For example, ¢’ = h’ is a unitary goal. If a goal has more
than one hypotheses, then it is said to be a non-unitary goal. One of the issues in
deletion is that a unitary goal becomes empty (when the sole hypothesis constituting
the goal is deleted). Another issue that should be considered is that the deletion of
a hypothesis from a goal can cause a scheme violation: the goal specification and its
realization no longer adheres to the design scheme restrictions.

The cost of deleting a hypothesis & from a final goal is the same in the two example
schemes under consideration and varies from @ to C* V. In deleting a hypothesis from
final goals, no scheme violation checks need {0 be made. However, for intermediate
goals, one must also check for scheme violation in the <F1, I3> scheme, but not in
the <F1, I4> scheme because restriction I4 requires all intermediate goals to contain
only intermediate hypotheses. The procedure is shown in Figure 3.7.

The cost analysis of the operations associated with deletion of an hypothesis '
from an intermediate goal ¢’ is shown in Figure 3.8. In a typical rule base, the number
of intermediate hypotheses is much larger than the number of final hypotheses. Thus,
if C1 = Ny*C,C2 = |Gy|*C+ Ny +C,and C3 = |H,|+C, then C3 > C2 > C1. Note

49

<F1i, 14> scheme.
Case 1. h’ is a final hypothesis. This case is not applicable in this
scheme.

Case 2. h’ is an intermediate hypothesis.
Effort requires checking the rules associated with h’ only.

2.1 If, however, g’ is a unitary goal (that is, becomes empty
because of deletion), then there are two choices:
2.1.1) Add an intermediate hypothesis to g’ from the set of
intermediate hypotheses.
2.1.2) Delete goal g’ from the goal specification.

<F1, I3> scheme.
Case 1. h’ is a final hypothesis.

Hypothesis h’ can be deleted from g’ after checking the rules
inferring h’.

Case 2. h’ is an intermediate hypothesis.

2.1) If the hypothesis deletion does not cause a scheme violation
then the cost is the same as in <F1i, I4> schems.

2.2) If g’ is a unitary goal (that is, becomes empty after
deletion) then, the same analysis as in <F1, I4> scheme above is
applicable.

2.3) If h’ is the only intermediate hypothesis in (a non-unitary
goal) g’, then to prevent a scheme violation there are four
choices.

2.3.1) Add an intermediate hypothesis to g’ from the set of
intermediate hypotheses.

2.3.2) Delete goal g’ from the goal specification.

2.3.3) Make one of the final hypothesis in g’ to intermediate. This
requires deciding which hypothesis to convert, and also
revise some final goals (say M) containing this hypothesis.

2.3.4) Make g’ a final goal. This can require checking all the
existing final goals (for subsumption), and changing
rules realizing some of these goals in order to
accommodate g’ as a final goal.

Figure 3.7: Deleting a hypothesis h' from an intermediate goal g'.

50

Issue Cost in <F1, I4> scheme Cost in <F1, I3> scheme

Cannot delete Not applicable (as operation | Not applicable, if scheme violation is
cannot occur). not tolerated.

k' is final Not applicable (as operation | Ny *C
cannot occur).

h' is intermediate | Ny x C Ny C, if no scheme violation occurs.
delete goal (6). delete goal (8).

g’ is unitary Replace by another hypothesis | Replace by another hypothesis (| H;| *
(1Hd * C). C).

Add another intermediate hypothesis
(1| C).

Delete g’ (6).

Scheme violation | Not applicable. Change ¢’ to final goal (|G¢|*C + Npy*
C).

Make a hypothesis in ¢’ intermediate
(Nag x C).

Figure 3.8: Cost analysis for deleting a hypothesis h' from an intermediate goal ¢'.

that these costs would not occur in the <F1, I4> scheme because scheme violations
do not occur as part of the deletion operation in this scheme. These add:cional costs
arise because of the generality in the mapping restriction involving intermediate goals
in the <F1, I3> scheme.

Summarizing Costs Involved in Other Maintenance Operations The op-
eration of changing the type of a hypothesis in a goal g is the same as deleting
a hypothesis from g and adding another. Thus, the above analysis for addition and
deletion of hypotheses to and from goals can be combined. The operation of changing
goal types should occur only when the domain knowledge has changed considerably,
and can be treated as deleting all the hypotheses from a goal and adding a new
goal (using the same set of hypotheses). The generality of the <F1, I3> scheme re-
quires more checks to be made while performing this operation in general. Note, this
operation can be quite complex, and can require deletion of hypotheses from other
goals [Chander, 1995). If the arity of a hypothesis in a goal is to be changed, then the

example schemes incur the same cost provided the hypothesis is contained in a final

51

goal: in this case, only rules realizing final goals have to be checked and modified, and
the cost would be Nas * C in the worst case. But, if the hypothesis is contained in an
intermediate goal, then the <F1, I3> scheme incurs a higher cost because the entire
rule base can require modification in the worst case. The details of these maintenance
operations are described in [Chander, 1995].

In general, depending on the value of the cost parameters, the cost of a mainte-
nance operation in schemes D4 and Dg, where Dp inherits from D4 can be compara-
ble in some situations (when scheme violations do not occur), but can differ widely in
some situations (when scheme violations occur) with scheme Dp incurring additional
costs for different choices in maintenance. This occurs owing to the generality of
the goal-to-hypothesis mapping imposed by scheme Dg, and the options that should
be used in a maintenance operation. For the example schemes discussed above, the
cost of adding hypotheses to a goal is comparable, whereas it can differ widely when
deleting hypotheses from a goal: for instance, the deletion operation incurs additional
costs in the <F1, 13> scheme, if scheme violations should be fixed by only rule mod-
ifications. Thus, a rule base transformation to scheme D4, where these costs can be

less, is desirable for optimizing the maintenance costs [Chander et al., 1995a).

3.3.2 Assessing Qualities of Design Schemes

In this section, we develop some metric measures whose values can be used to com-
pare certain subjective qualities (such as “understandability”) between the different
design schemes. The values of these metrics between schemes having an inheritance
relationship is used as a further motivation for rule base transformation in the interest
of quality improvement. The software engineering approach of using metric measures
to model, and/or quantify rule-based system qualities has been a source of interest
among researchers [Preece et al., 1993a; O’Neal and Edwards Jr., 1993; Chen and
Suen, 1993; Mehrotra, 1995].

It is not uncommon in software engineering to quantify certain subjective qualities
of a system based on its characteristics to facilitate comparison across different sys-

tems {Ghezzi et al., 1991; Conte, Dunsmore, and Shen, 1990]. For knowledge-based

52

systems, it has been observed by researchers that the greater the deviation between
the acquired knowledge and its representation, the lesser is the understandability of
the system [Chandrasekaran, 1986; Yost and Newell, 1989]. In our case, a dzsign
scheme’s restriction affects the underlying representation of the specified goals, and
hence, that of the acquired knowledge. In addition, the extent a scheme can degrade
owing to adhoc changes during maintenance is an indication of its susceptibility to
become obscure and less maintainable.

A rule base is said to be clearly representing the structure of problems in the
domain to the extent semantics of domain concepts used for problem solving are
represented in the rule base using appropriate syntactic constructs [Chandrasekaran,
1986; Chander et al., 1995a]. In our case, the semantics of domain concepts are
abstracted using intermediate and final goals. If an intermediate goal g is realized
using only intermediate hypotheses in a rule base, then the rule base is said to better
represent this goal than an intermediate goal ¢’ realized using only final hypotheses.
Clearly, the realization of goal g is more intuitive than the realization of g’ because
the semantic domain concept of an intermediate milepost is represented using the

equivalent syntactic structure in the rule base.

Definition 5 (Non-corresponding construct in a goal) A final (intermediate) hy-
pothesis used in the realization of an intermediate (final) goal is said to be a non-

corresponding construct in that goal.

Thus, the extent a rule base represents intermediate and final goals using only the
corresponding syntactic constructs (intermediate and final hypotheses, respectively)
reflects how clearly the rule base represents the structure of the problems in the
domain. We define these ideas using two distance metric measures: one for a goal and
one for a rule base. The use of “distance-based” metric measures is not uncommon
among researchers: for example in [Mehrotra, 1995], a distance metric is used to
group related rules for improving the understandability of a rule base.

The goal distance metric can be used to measure the deviation of goal realization

from its conceived semantics.

Definition 6 (Goal Distance Metric §) The distance between the conception and the

53

realization of a specified goal g is defined as the number of non-corresponding con-

structs used for realizing the goal g in the rule base.

Any value other than 0 for the distance metric of a goal represents that the goal is
not realized using only the corresponding syntactic constructs in the rule base. As
an example, let goal g = Ay A hy A hz where hy, hy are final hypotheses and k3 is
an intermediate hypothesis. If g is an interm~rdiate goal, then §(¢g) = 2 because A,
and h; are final hypotheses. If it is a final goal then §(g) = 1. Thus, the distance
metric of intermediate (final) goals realized as a conjunction of only intermediate
(final) hypotheses is 0.

The rule base distance metric measures the maximum deviation of a rule base

from representing the domain concepts.

Definition 7 (Rule base distance metric A) The distance metric of a rule base R
is represented using the largest distance metric of the intermediate and final goals

realized in the rule base. It is represented as an ordered pair A =< §;,6; > where,

6 = MAX (6(9)) (Vg) Rtg where, g is an intermediate goal.
6y = MAX (6(g9)) (Vg) RFg where, g is a final goal.

As an example, the largest distance metric for a rule base under scheme < F1, I4 >
would be < 0,0 >, whereas a rule base under scheme < F'3, 13 > can have a dis-
tance metric as high as < |Hy|,|H,| >, where |H;| and |Hy| represent the number
of intermediate and final hypotheses in the rule base respectively. These represent
the maximum limits a rule base adhering to these respective schemes can deviate
from representing an acquired concept using non-corresponding (hence, less intuitive)
constructs; this arises as a result of the flexibility provided by a scheme. Figure 3.9
portrays the minimum and maximum value of the distance metric for a cule base
adhering to the various design schemes. An alternative definition of the rule base
distance metric would be to take the average of the distance metrics of the goals
realized in the rule base.

A brief discussion on interpreting the values of these metrics appears below. A

more detailed discussion and justification for such an interpretation can be found
in [Chander, 1995).

54

Design scheme | Minimum | Maximum

< Fl1,14 > <0,0> <0,0>

< F1,13 > <0,0> | <|Hy,0>
< F2,13 > <0,0> |<|Hy| |Hi|>
< F5,13 > <0,0> | <|H4l|,|Hi| >
< F2,14 > <0,0> | <|H,0>
< F5,I4 > <0,0> |[<|H;,0>
< F1,12> <0,1> |<0,|H]>

< F3,12> <1,1> | <|H4l,|Hi| >
< F2,12 > <0,1> | <|Hy|,|Hi| >
< F5,12> <0,1> | <|Hy|,|Hi| >
< F3,I4 > <1,0> | <|H,0>
< F3,13 > <1,0> | <|Hy|,|Hi| >

Figure 3.9: The minimum and maximum values of the rule base distance metric for
the various design schemes.

1. The distance metric of a goal can be interpreted as a measure of the relative
difficulty in understanding the purpose and its realization of a goal in a rule

base.

Justification. For example, final hypotheses in an intermediate goal ¢, though
allowed in some schemes, cannot be causal towards any intermediate goal. In
addition, confusion could arise regarding the purpose of realizing goal ¢', if none
of the final hypotheses in ¢’ are used in final goals. In general, if the distance
metric of goals realized using a scheme s large, then the purpose and realization
of these goals can be relatively more difficult to understand, unless the system

is well documented.

2. The range of tne distance metric of a rule base, that is the values between its
minimum and mazimum values shown in Figure 3.9, is indicative of the amount

of effort required to assess the impact of a rule base modification.

Justification. In particular, if the range is large enough, then a design scheme
violation can occur in the rule base, yet it can go undetected. For example, the
rule base distance metric for the <F1, I3> schume that can vary from <0, 0>
to <|Hy|, 0>. This can be interpreted as follows: assessing the impact of a

modification, say changing a hypothesis in an intermediate goal into a final

99

hypothesis, can require checking every rule inferring a final hypothesis in the

worst case to ensure that this modification does not result in a scheme violation.

. From a maintainer’s viewpoint, goal specification revisions over different ver-
sions of the system can be identified and made easily in a scheme that minimizes

the goal distance metric.

Justification. This is based on the intuition that the more restrictive a
scheme, the lesser will be the room for ambiguous (such as specifying the same
goa!l as intermediate and final), or ad hoc specification of goals. This can even-
tually make the goal specification and the rule base obscure to understand and

possibly error prone (see also the discussion in Figure 3.11, page 60).

. The larger the value of the distance metric of a goal, the more likely the goal

contains redundant atoms.

Justification. For example, consider an intermediate goal g’ = h; A hy where
h, is a final hypothesis. If hypothesis k; is not used in any final goal, then the
question arises: does hypothesis ha and rules inferring h; indicate an error in
the rule base and/or goal specification? A maintainer should therefore exercise
care and additional effort when modifying rules that realize goal ¢’. Thus, a
maintainer would prefer to choose a scheme that minimizes the distance metric

of a goal to avoid these troublesome situations.

For convenience, the above discussion is summarized in Figure 3.10.

Inheritance between the schemes affects the values of these metrics as outlined by

the following results.

Lemma 1 If a design schemne Dg inherits from D., then the mazimum value of the

distance melric of the a rule base Rp adhering to scheme Dg cannot be lower than

that of a rule base R4 adhering to scheme D,.

Proof. Let the largest distance me'rics of R4 be Ay =< 61,68 > and that of Rp

be Ap =< 5?,6,8 > respectively. We need to show that Ag £ As. More specifically,
we need to show that, §2 £ 62 and 68 £ §4.

56

1. The distance metric of a goal can be interpreted as a measure of the difficulty in
understanding the purpose and realization of a goal in a rule base.

2. The range of the distance metric of a rule base, that is the values between its minimum
and maximum allowable values, is indicative of the amount of effort required to assess the
impact of a rule base modification.

3. From a maintainer’s viewpoint, goal revisions over different versions of the system can
be identified and made easily in a scheme that minimizes the goal distance metric.

4. The larger the value of the distance metric of a goal, the more likely the goal contains
redundant atoms.

Figure 3.10: Interpreting the value of goal and rule base distance metric measures.

Let g be the intermediate goal in scheme D, such that §(g) = 6A. To have a
value of 62 smaller than 62, at lea<: one of the intermediate hypotheses in g should
be encoded as a final hypothesis in rule base R4 (without violating the restrictions of
schome D4) which should not be possible in Rg. Let h be an intermediate hypothesis
in g that is encoded in R 4 as a final hypothesis, but cannot be encoded in Rp as a final
hypothesis. However, if h is a final hypothesis in R4 and h cannot be encoded as a
final hypothesis in any rule base Rg adhering to Dg, then by corollary 1 (page 45) rule
base R4 does not adhere to scherwe Dg. Thus, by definition of inheritance (page 45),
it follows thai Dg W= Ds. But, this contradicts our premise that Dg = D4. Thus,
it is pos‘ible to encode h as a final hypothesis ir Ry as = ! (without violating the

restrictions of scheme Dg). Hence, 62 > 6. A similar (complementary) argument

can be used to prove that 6}9 £ 6}‘. See also ['igure 3.9 for clarity.

The importance of the above lemma can be re-stated in Englisb informally as
“the overall understaudability of a rule base adhering to a scheme D4 cannot be
worse than a rule base adhering to scheme Dg, whenever Dy inherits from D4.” The
above lemma holds even if the rule base distance metric is an average measure of the

distance metrics of the goals realized.

Corollary 2 The smallest value of the rule base distance metric of a scheme D is

the smallect of the different schemes from which it can inherit.

57

Proof. This follows from Figure 5.9 and the inheritance graph (Figure 3.5).

Corollary 2 can be restated in English informally as “the understandability of a scheme
D even with the best possible encoding can always be 2chieved by at least one of the
schemes from which D inherits.”

It is well known from software engineering literature, the greater is the extent
of ad hoc specification and development, the lesser is the maintainability of the sys-
tem [Ghezzi et 2l,, 1991]. This is true for rule-based systems as well because a rule
base developed without designing proper constructs to represent knowledge is diffi-
cult to understand and maintain {Chander et al., 1995b; Yen et al., 1991; Jacob and
Froscher, 1990; Mehrotra, 1995]. Thus, it would be useful if the extent of ad hoc
modifications allowable in a scheme can be quantified. Consider the following metric

definition that is based upon the flexibility of goal realization in a scheme.

Definition 8 (Adhocness of a goal g in a scheme D) The adhocness of a goal g
in scheme D is defined as the ratio of the mazimum number of non-corresponding
constructs ellowable in g to the least number of corresponding constructs allowable
in goal g without violating the restrictions of D. If émaz(g) represents the mazimum

value of the goal distance metric of g, then

57710'3
Adhocness(g, D) = — (9)

m

where m = minimum number of corresponding constructs allowable by D in g.

The above ratio can be interpreted as the extent of uncontrolled changes that can
t¢ike place on the composition of a goal g and on the rules realizing that goal; un-
controlled changes can reduce the understandability and maintainability of a system.
Note, it is possible to have rule bases adhering to schemes D4 and Dg respectively
that have the same rule base distance metric, but the adhocness metric of the rule
bases can vary: the variation represents the extent of uncontrolled changes that are
allowed to happen during rule base modification in the respective schemes. A value of
0 for the adhocness metric indicates that a scheme forces a goal to be realized using

only corresponding constructs, and the rigor of the scheme restrictions minimize the

58

likelihood for adhoc changes to that goal. In contrast, a value of oo for the adhocness
metric of a scheme indicates that the scheme restrictions do not impose any con-
straint on incremental rule base modifications; hence, errors can be easily introduced
into a rule base by uncontrolled and hasty modifications. This can possibly deteri-
orate its performance and reliability (chapter 4, section 4.4). The adhocness metric
associated with a scheme simply serves as a caution to a maintainer, when he/she
modifies the system, to be careful lest the system degrades in its understandability,
maintainability, and /or reliability.

As an illustration, the value of this metric for some of the design schemes is given

below:

e <F1, I4> scheme: the final goal adhocness is 0.
o <F5, I3> scheme: the final goal adhocness is co.
e <F2, I3> scheme: the final goal adhocness is |H;| (the number of intermediate

hypotheses in a rule base adhering to that scheme).

In order to distinguish between the distance metrics and the adhocness metric, an
example is shown in Figure 3.11. The purpose of the adhocness metric associated with
the various design schemes is to emphasize that a maintainer’s natural inclir “tion to
reduce his/her modification effort in order to implement a change with ease (and
minimal modifications to rules) can introduce errors and anomalies into the rule
base. This scenario is more realistic in situations when the rule base is developed
and maintained by different persons. The exarnple shown in Figure 3.11 illustrates
this point. In Figure 3.11, the flexibility of the chosen design scheme allowed the
hypothesis FLIES(z) in the final goal to be used up in an adhoc fashion. However,
had the original scheme (<F1, I4>) been in effect, the hypothesis FLIES!z) could
not have been used in this adhoc fashion because restriction F1 constrains a given
final goa! to be realized using only final hypotheses. Thus, a greater rigor in goc!
realization imposed by a design scheme can reduce *rrors during modifications.

To summarize, the higher the value of the adhocness metric for a scheme, the more
is the susceptibility of a rule base adhering to this scheme to uncontrolled changes

permitted during modifications; this can eventually decrease its understandability,

59

The Adhocness metric and its relation to rule base modifications

Background: Consider a rule base to encode some bird characteristics. This encodes
several attributes such as flying and non-flying birds, living characteristics, etc. A part
of the rule base is shown in [a] below. This part of the rule base describes a typical
characteristic of crows specifically. The rules realize a #nal goal CROW(z) A FLIES(z).
Assume that the rule base R adheres to scheme <F1, 14> initially.

BIRD(z) — BUILDNEST(z) A FLIES(z)
BUILDNEST(z) — LIVESONTREE(z)
LIVESONTREE(z) A BLACK(z) — CROW(z)
(a]
Evolution 1: Suppose a maintainer wishes to encode the knowledge in [a] more compactly,
say to optimize performance. For this purpose, suppose another scheme D that is more
flexible than the <F1, I4> scheme is to be chosen. Then, the adhocness metric of scheme
D can be used as a measure in making such a decision because it indicates the extent of
uncontrolled modifications possible during the incremental evolution of the rule base under
that scheme. For illustration, suppose scheme <F35, I4> is chosen, then the adhocness
metric of that scheme (oo for final goals) indicates that totally uncontrolled modifications
can take place on the rules realizing final goals. The incremental evolution of the rule base
is shown in {b].

BIRD(z) — BUILDNEST(z)A FLIES(z)
FLIES(z) A BLACK(z) — LIVESONTREE(2) A CROW(z)
(b]

Evolution 2: An additional set of changes to the rule base is necessitated when the knowl-
edge fragments “some birds live on trees and fly” and “crows are black flying birds” were
refined later to “all tree living birds fly” and “some flying birds are black crows.” This
required some re-writing of the rules in [b] and is shown in [c], while still adhering to the
<F5, I4> scheme for rule encoding.

BIRD(z) — LIVESONTREE(z)A FLIES(z)
FLIES(z) — BLACK(z)
FLIES(z) — CROW(z)

[c]
However, the choice of scheme <F5, T4> for coding convenience has now resulted in anoma-
lies in the rule base: the second rule in [¢] is redundant, and the third rule is not universally
true. Further, the information of nest building about birds is lost (missing knowledge in
ruie encoding is 2 common problem in rule base development [Preece, 1993]), while incor-
porating the refinement to the acquired knowledge, though all the three rule bases realize
the given final goal Crow(z) A Flies(z).

Figure 3.11: Hlustrating the intent of the adhocness metric. Part [a] of the rule base
in the figure initially adheres to <F1, [4> and <F3, 4> schemes. The parts [b] and
[c] of the rule base show the extent of uncontrolled modifications that can take place
during incremental development in the <F35, [4> scheme.

60

maintainability, and reliability due to the introduction of errors and anomalies. In

particular, if scheme Dp inherits from Dj4, then we can state the following:
(Vg) Adhocness(Dg, g) > Adhocness(Dy,g)

The proof of this statement is similar to that of Lemma 1.

Thus, in the overall interest of reducing maintenance cost and general quality
improvement, a scheme D, from scheme Dg is preferable when Dg inherits from Dag.
However, D4 may not provide the ease in development as Dp does. Thus, one can
adhere to scheme Dg during development, and later transform the rule base to adhere
to D4 to facilitate maintenance operations, that is, optimize their cost. However,
changing the rule base manually is cumbersome and the transformation is not always
straight forward because the change can result in certain inconsistencies [Chander,
1995). Thus, an automated way of transforming the rule base is considered desirable.
The details of transforming a rule base adhering to one scheme into adhering to

another scheme and the associated algorithms are discussed in section 3.4.

3.3.3 Empirical Criteria for Choosing a Design Scheme

Problem selection for expert system development requires consideration of several
factors: some are domain dependent, while some are domain independent [Liebowitz,
1989]. Similarly, criteria to choose a design scheme from a set of schemes for a
domain are not unique. In this section, we outline the various criteria that should
be considered in general before choosing a design scheme for a domain. We do not
claim that the criteria listed below are exhaustive. Rather, they reflect our learning
from a retrospective view of our experiences in design and evaluation of rule-based
systems [Preece et al., 1994; Chander et al., 1994; Chander, Radhakrishnan, and
Shinghal, 1995; Chander et al., 1995b, 1995¢c, 1995a].

Criterion 1. The extent of analysis or synthesis aspects of problem solving [Shing-
hal, 1992; Chandrasekaran, 1986] associated with a domain is an important criteria.
The extent scheme restrictions can accommodate analysis, synthesis, or, a mix of both

type of problem solving varies. The schemes near the top in Figure 3.5 (page 46) favor

61

analysis type of problem solving, whereas the schemes near the bottom can accom-
modate a mix of analysis and synthesis type of problem solving.

Criterion 2. The mental view held by a domain expert from whom knowledge
is acquired plays a major role in scheme selection because this often dictates the
representations to be chosen by a knowledge engineer for capturing this knowledge
accurately [Chandrasekaran, 1986, 1983]. For example in a medical domain, a doctor
infers a set of tests from a given set of symptoms. This is analysis type of problem
solving because a new set of hypotheses are now generated from existing hypotheses.
However, from the basis of one or more of the tests, if an intermediate disease is
diagnosed, then this inference is always used in future conclusions, unless it is dis-
proved; thus, there is also a synthetic type of problem solving until a final (set of)
disease(s) are diagnosed. The extent a doctor uses analysis and synthesis in disease
diagnosis should be reflected by the acquired knowledge. This in turn influences the
choice of a scheme that is better suited to encode the acquired knowledge. Further,
during mainten..ice, a different domain expert may be consulted before making some
enhancements. Hence, the ease with which the newly acquired knowledge can be en-
coded into a system also affects the choice of a scheme. Note, even in a pure analysis
type of domain, a domain experts mental view could involve some synthesis type of
problem solving.

Criterion 3. The extent a scheme offers flexibility in goal realization is important
because it can optimize development and evaluation costs. The cost of evaluation,
during development and maintenance, cannot be overlooked. System evaluation is-
sues, however, are non-trivial, and this often plays a deciding role in selecting a scheme
(section 4.2, chapter 4). The schemes near the bottom in Figure 3.5 provide relatively
more flexibility in development and system evaluation owing to their less stringent
restrictions for goal realization.

Criterion 4. The extent a design scheme can improve the maintainability of a system
varies. Hence, if long term usage of the system is important, then maintainability is
an issue that cannot be overlooked. Design schemec qualities quantified using metrics
in section 3.3.2, thus becomes an important factor because they are indicative of the

understandability, maintainability, and the reliability of a system based on a design

62

scheme.

Criterion 5. The solution causality in a domain is another consideration: if states
that are accepted as solutions can also lead to (perhaps more refined) solutions,
then design schemes with choice F1 for final goals is not the right choice for this
domain. On the other hand, if solutions are mutually exclusive then design schemes
with choice F'1 are perhaps more appropriate. A similar argument can be made
for intermediate goals: if intermediate states should also reflect partial solutions,
then choice 12 of Figure 3.1 is more appropriate; thus, in domains such as network
configuration management, choice 12 for intermediate goals is preferable. In domains
where intermediate states cannot form partial solutions, but can only lead to solutions,
choice I3 or 14 is preferable,

Criterion 6. The variability of knowledge in a domain impacts t'.e choice of a design
scheme. Variability of knowledge can be accommodated, with relative ease, by the
design schemes near the bottom of Figure 3.5 owing to their less stringent restrictions
in goal realization. Note, drastic changes to goals specified can be cumbersome to
incorporate in a system using the schemes at the top in Figure 3.5.

As an example, consider constructing a rule base to identify a person’s occupation
in a university environment. The domain description appears in Figure 3.12, and
a vrpical analysis for a knowledge engineer to prune, or choose design schemes is
described below.

Applicability of the Design Schemes: The design schemes based on choice I1 or
15 for intermediate goals are ruled out according to the recommendation in section 3.1.
In addition, for the above description choice 12 for intermediate goals that forces every
intermediate goals to have at least one final hypothesis is not convenient for encod-
ing. The <F1, I3>, and <F1, 4> schemes can accommodate the goal specification
in Figure 3.12, but can have difficulty in accommodating goals specified later as the
rule base develops incrementally. For example, adding new goals REGULAR_STUDENT,
IRREGULAR STUDENT, but emphasizing their relation to GRAD, UGRAD, while still retain-
ing them as solutions, can be cumbersome owing to the restriction F1 that requires
all final goals should contain only final hypothesis. Note, changing a final goal to an

intermediate goal can require significant rule base modification in these schemes. The

63

Final Goals: GRAD, UGRAD, DEAN, ASSOCNEAN.

Intermediate Gaals: FACULTY, STUDENT, POTLSTUDENT, ACAD_.OFFICER,
ADMINISTRATOR, ACADEMIC, ENROLLED.

Every admitted person is a potential student, and the university community broadly
classifies persons into academics, academic officers, administrators,...based upon
the initial evidence such as whether a person is admitted, registered, or works in
an administrative office. The specificity of a particular classification leads to the
identification of the person’s occupation as under graduate, graduate, professor, as-
sociate dean,.... Some of the domain constraints are as follows: (1) a person can
become a dean only after serving as an associate dean for at least 8 years; and (2)
a person can hold more than one occupation on a part time basis.

Let us further suppose that two more final goals were specified at a later stage for
the university domain: REGULAR_STUDENT and IRREGULAR_STUDENT to further refine
the acquired knowledge. All under graduate and graduate students are considered
regular, and the diploma students as irregular.

Figure 3.12: An example description of the occupation of the various persons in a
university domain.

<F2, 13> scheme can accommodate the goal specification with ease. But, of course,
care should be taken while maintaining causal/temporal relations between final goals.
For instance, consider the domain constraint involving DEAN and ASSOCDEAN: we simply
cannot realize final goal ASSOCDEAN as an intermediate hypothesis and use it to infer
DEAN owing to restriction F'2. A similar argument applies to the <F2, I4> scheme.
However, a reversal of goal types is better accommodated in the <F2, 13> scheme
owing to its flexibility. Realizing the solutions as they are specified while maintaining
their relationships is easier in schemes with choice F3 for final goals that require ev-
ery solution to have at least one intermediate hypothesis. However, some of the final
goals in this scheme can be counter intuitive, if they are realized as only intermediate
hypotheses (hence, less understandable). A similar observation applies to schemes
with choice F5 for final goals that impose no constraints in final goal realization. In
addition, care should be exercised if such a scheme is chosen because the rule base
can become obscure and error prone due to incremental modifications (section 3.3.2).
A knowledge engineer may thus prefer to choose either the <F2, I3> scheme, or the

<F2, 14> scheme for this domain.

64

3.4 Rule Base Transformation Procedures

The transformation of a rule base adhering to a design scheme Dp into one that
adheres to a scheme D4, where Dp inherits from Dy is not always straightforward
because the converse of corollary 1 (page 45) need not always hold: that is, there can
be rule bases that adhere to scheme Dp, but not to scheme D4. Such a transforma-
tion, however, would be useful in some situations, if not all, from our discussions in
sections 3.3.1 and 3.3.2. One way to transform the rule base is to check the rules
and goals manually and make the required modifications. However, manual modi-
fication on the rule base is cumbersome, can introduce anomalies, and can change
the existing dependency between the rules that can result in an incorrect operation.
Thus, procedures to automate this transformation is desirable. These procedures
would detect any scheme violations (with respect to D4) in a rule base adhering to
Dp and perform rule re-writing to annul these violations, and revise goal specification
if necessary. But, if the overheads of the transformation procedures outweigh their
benefits, then such a transformation is not justified.

Although a rule base transformation is not meant for optimizing the performance
of a rule base, it should not result in an unacceptable increase in the size of the rule
base, or decreased performance. Performance would degrade considerably if a trans-
formation results in an increased time for pattern matching (as the bulk of the time
required for processing a rule base is spent on pattern matching). A transformation
procedure, however, would not increase the pattern matching computation, if it in-
troduces exactly one extra atom A, for every atom A deleted in a rule antecedent and
A, contains exactly the same arguments as the original atom A. Since the pattern
matching computation to check for the satisfaction of a rule antecedent is propor-
tionzl to the number of atoms in the antecedent, the time for pattern matching will
be unaffected. The transformation, however, can result in the generation of extra
rules and hypotheses [Chander, 1995; Chander et al., 1995a).

In general, certain properties of a rule base must be preserved by any transfor-
mation procedure. These are called transformation invariances, or simply, invari-

ances. They are outlined below:

65

1. The existing dependency between the rules should be preserved by a transfor-

mation; otherwise, incorrect operation, and thereby incorrect solution would

result.

2. The set of atoms in a rule base accounts for the knowledge content in the rule
base. Thus, every atom present in the rule base should be preserved along with

its arguments. In particular, if the transformation of a rule r,
ri A(z,y) A B(y) - C(z,y)

results in a rule r’ such that,
r' . A(z)A B(y) - C(a,y)

then the content of the rule base is not preserved.

3. A rule base transformation is an automated process. Thus, it should not in-

terfere with the semantics of problem solving conceived and abstracted using

intermediate and final goals.

4. The observed run time behavior should not change as a result of a transforma-
tion. In particular, the transformed rule base should infer the same solution(s)
to a given input. Note, preserving the ccntent of a rule base does not neces-
sarily ensure that its run time behavior can he preserved. For example, if the

transformation of a rule r,

r: A(z) — B(z)
results in a rule r' such that

r' i B(z) — A(z)

then, the transformation preserved the rule base content, but not its run time

behavior. Finally, an example of a transformation that preserves neither a rule

base content, nor its inference is shown in Figure 3.13

The invariances that should be maintained by a transformation (8) when transform-

ing a rule base Rp (adhering to scherne Dp) into a rule base R 4 (adhering to scheme

D4) are shown in Figure 3.14.

66

Original rule: A(z)A B(y)— C(z,y) A D(z)

Transformed rule: A(z)AB(y) — C(z,y)

Figure 3 13: A transformation that fails to preserve a rule base content and inference.

The general principles behind a rule base transformation are listed below:

1. Annul scheme violations using rule re-writing and extra rules and

hypotheses.

2. Preserve the dependency between the rules as it was existing before.

This would preserve invariances 1, 2, and 4 of Figure 3.14.

3. Revise goal specification (if necessary) to preserve invariance 3 of

Figure 3.14.

For illustration, let us consider transforming a rule base adhering to the design
scheme <F'1, 13> intoone that adheres to <F1,14>. In this case, the transformation
requires re-writing of only those rules realizing intermediate goals because the final
goal restriction is the same in both the cases. Hovvever, as a hypothesis in the rule
base can only be intermediateor final, but not both, the transformation can encounter

a conflicting situation called discrepancy.

Definition 9 (Discrepancy in a transformation) When transforming a rule base ad-
hering to scheme Dpg into one that adheres to scheme Dy by converting hypothesis
types in @ goal in order to annul a design restriction in the target scheme Dy, the
transformation can inadvertently violate another restriction of that scheme. When

this occurs, the transformation is said to have encountered a discrepancy.

As an example, let ¢’ be an intermediate goal and ¢ be a final goal. Let, ¢ =
k' Ak, and g = k3 A ks, where A’ is an intermediate hypothesis, and k; and ks
are final hypotheses. Consider a rule base adhering to the <F1, I3> scheme (final
goals have at least one final hypothesis and intermediate goals have at least one
intermediate hypothesis). Though k; is a final hypothesis, &' is an intermediate
hypothesis, and hence, intermediate goal ¢' satisfies restriction 13. However, in trying

to transform rules realizing intermediate goal ¢ into scheme <F1, 14>, we have
g g g

67

1. Structure Preservation: The dependency between rules is preserved. More specif-
ically, if ry, 7 € Rp are such that r, is causal to r2, then the corresponding rules
in R4 should have the same causality relation. In other words,

(VTI, Ty € RB) C(Tl,TQ) = C(@(TI),@(T’Q))

The causality relationship between two rules 7y and 72 in a rule base is denoted by
C(r1,r;) above to indicate that the firing of r; can be causal towards the firing of ra.

. Content Preservation: Every hypothesis present in Rp is also present in R 4.
Thus, if a denotes a hypothesis

(Va)a e Rp=>a € Ry

It follows that ©(a) = a for every atom a. Thus, the knowledge represented in an
atom should be preserved by a transformation.

. Specification Preservation: Preserve specification and problem solving semantics
as existed before. Every (revised) goal g4 for scheme D 4 realized in R 4 also satisfies
the restrictions of scheme Dg without any type change. Thus for example, every
intermediate goal realized in Ry is realized (after revision, if necessary) as interme-
diate goals in R4 without violating any scheme restrictions in D4, or Dg. If the
set of intermediate (final) goals for rule base R g is denoted by Ip (Fp) then (using
similar notations for R4),

(Vg)g els = ©O(g)els Ip
(Y9) g € Fg = 0O(g) € Fa, Fp

. Run Time Inference Preservation: For an initial evidence input (say X),if Rg
infers a set of hypotheses H, then the set of hypotheses interred in R4 when X
is input would contain H (the other hypotheses would be extra hypotheses, if any,
generated by the transformation proceduic.) Hence, the solutions inferred in R4
would be the same as that in Rp for a given input evidence X.

(Vo,r€Rp)rra=(JoeRa)ota and Fires(r) = Fires(o)

where ¢ refers to a rule sequence, and the predicate Fires(z) is true if rule or rule
sequence can fire. This invariance simply states that every atom inferred by a rule
in Rp would also be inferred in R4, perhaps by a rule sequence (the sequence can
contain a single rule). Note, content preservation, does not imply run time inference
preservation, or vice versa.

Figure 3.14: Invariances associated with a transformation when transforming a rule
base Rp adhering to scheme Dp into a rule base R4 adhering to another schemeD,4.

68

/* 1: Dption deletion for handling discrepancy */
Procedure Transform_F1I3_to_FilI4-1;
begin
/* Only intermediate goals containing a final hypothesis are in
violation */
For every intermediate goal g’
For every final hypothesis h in g’
/* Goal revision if discrepancy occurs */
IF h is contained in a final goal,
Delete h from g°’.
IF goal g’ bacomes empty, remove g’
ELSE Add a rule, /* annul violation using .. */
r’: h =>h’ /* .. extra rule & hypothesis */
/* Preserve dependency: no changes required */
/* For efficiency combine all extra rules generated into one rule */
end {Transform_F1I3_to_F1I4-1r

Figure 3.15: Using deletion while handling discrepancy.

a problem: since <F1, I4> requires all intermediate goals to contain intermediate
hypotheses, we can change the hypothesis type of k; to intermediate so that ¢’ satisfies
restriction I4. But, now final goal g that contains hypothesis k; violates restriction
F1. The transformation is said to have reached a discrepancy: we cannot transform
rules realizing in*ermediate goal g’ without violating one of the scheme restrictions of
<F1, I4> scheme. Hypotheses such as k; in the above example are called offending
hypotheses.

There are three ways to handle a discrepancy:

Option 1 Delete the offending hypotheses, (see Figure 3.15). This is
easiest to implement, but it can make the system less understand-
able and maintainable. This option is discouraged in general. Note,
this option is not guaranteed to preserve the invariances outlined in

Figure 3.14.

Option 2 This option minimizes changes to final goals, while revising

some intermediate goals (if necessary) to fix a discrepancy (see Fig-
ure 3.16). This option preserves solutions as they were specified as

much as possible.

69

/* 2: Preference to final goals; minimize changes to solutions as much
as possible while revising goals */
Procedure Transform_F1I3_to_F1I14-2;
begin
/* Only intermediate goals containing a final hypothesis are in violation */
For every intermediate goal g’
For every final hypothesis h in g’
/* Intermediate goal revision if goal discrepancy occurs */
Rewrite every rule that infers h of the form
r: Antec -> h AND Rest
into
r: Antec -> h’ AND Rest /* extra hypothegis x*/
/* annul violation and Preserve dependency */
Add a rule
r’: h’ => h /* extra rule & hypothesis */
/* h can now be inferred from Antec as before */
Revise goal g’ replacing h by h’
/* For efficiency combine all extra rules generated into one rule */
end {Transform_F1I3_to_.F1I14-2}

Figure 3.16: Minimizing changes to final goals while handling discrepancy.

Option 3 This option minimizes changes to intermediate goals /see Fig-
ure 3.17). This i. a converse of option 2. From a view point of
functional and /or empirical validation. we favor minimal changes to
existing final goals. This option, however, can revise solutions with
extra hypotheses that can result in alack of undcrstandability of the

specified solutions and their intent.

Note, however, that options 2 and 3 retain the total number of goals constant. As an

example, the rule base of Figure 3.18 is transformed into Figure 3.19 under option 1.

Theorem 1 For every design scheme Dg that inhents from another scheme D4,

there is a transformation procedure that can transform a rule base adhering to Dg

into anciner that adheres to Dy preserving the invarunces listed in Figure 3.14.
Proof. Let the rule base adhering scheme D, be denoted by R4 and that of scheine

Dp be denoted by Rp. Let © be the transformation procedure that transforms rule

base Rp into R4. Then, the proof consists in asserting that the following formula s

70

/* 3: Preference to intermediate goals; minimize changes to
intermediate goals as much as possible while revising goals */
Procedure Transform_F1I3_to_F1I4-3;
begin
/* Only intermediate goals containing a final hypothosis are in violation */
For every intermediate goal g’
For every final hypothesis h in g’
/* Intermediate goal revision if goal discrepancy occurs #/
For every rule group of the form
r: Antec -> h AND Rest
Add a ruls,
r’: h -> h’ /% extra rule & hypothasis =/
/* The goal g’ now satisfies restriction I4. But, this
may cause some final goals to violate Fi. Hence,
the following revision may be needed */
For every final goal g containing h,
Replace h by h®
/* Preserve dependency: Lo changes required */

/* For efficiency combine all extra rules generated into one rule */
end {Transform_F1I3_to.F114-3}

Figure 3.17: Minimizing changes to intermediate goals while handling discrepancy.

<F1, I3> scheme
Goal specification.

Intermediate goals Final goals
g{=h'1/\h’2/\k1 g1=k1/\l€2
g; =hg./\ kl/\k‘z/\ IC5 g2=/’\,1/\k3
The vule base. The atoms a,b,¢, d, e, f are initial evidence.
Rule # Rule
1 a-— hi Al
i = hy AL,
LAb— by
l; Ac—> kz
LAL — ks
d — hj
eA Ry ARy, — R
Bl — ka A R
fAR, = ks

WO O =1 O O = N

Figure 3.18: An example rule base and goal specification in <FI, I3> scheme.

71

<F1, I4> scheme (transformed)
Discrepancy handling: Delete offending hypotheses.
(Revised) Goal specification.

Intermediate goals, | Final goals

g;zh'l/\h'z gl=k1/\k2

g§=h§/\k4/\k5 g2=k1/\k3

The rule base. The atoms a b,c,d, e, f are initial evidence.
“Rule # Rule
1 a— hi Al
| L = Ay AL
lf_, ANc— k2
1'1 A I’g 4 ka
d — h
e A hy A\ by — R
hly — kq N\
f A h's — ks
ky — zl
ks — z2

O W~ O Ut W= W D

-
- O

Figure 3.19: The rule base of Figure 3.18 after transformation and revised goal spec-
ification. Rules i0 and 11 ana hypotheses z1 and z2 represent extra rules and hy-
potheses generated by the transformation.

valid.
Dp = Da < (30) (O(Rp) = R4)

To prove the validity of the above formula, we need to prove that rules in Rg that
are in violation of the restriction(s) imposed by scheme Dy con be modified su that
they no longer violate those restriction(s).

A rule can violate a design scheme restriction in only three ways:

Case 1. Having a goal atom &y in its antecedent, or inferring a goal atom A, that is in
violation of a final goal restriction.

Case 2. Inferring a goal atom k, or using atom A; in its antecedent in violation of an
intermediate goal restriction.

Case 3. A rulein viciation of both final and intermediate goal restriction due to inferring
and/or using atoms in its consequent and antecedent respectively.

For all the above cases, the rule base Rp can be made to satisfy the restrictions
of scheme D, by the following rule re-writing:

e For annuling design scheme violation(s) that can be caused by case 1 by using
hy in a rule antecedent, replace every occurrence of atom Ay by d; A h; in rule
consequents, and replace every occurrence of &y by dy in rule antecedents. This
would annul the violation with respect to restrictions F1, and F2 which are
the only restrictions involving final hypothesis. If the violation occurs because
atom hy is a final hypothesis, then the violation is annulled by adding a rule
rq:hy — dy.

o For annulling design schem' violation(s) due to case 2, the proof arguments
are similar (to the one abc.. | but complementary (as the violation involves
intermediate goals).

o For annulling design scheme violation(s) that can be caused by case 3 which can
cause a discrepancy, use rule rewriting in either (a) or (b) above to annul viola-
tions of final or intermediate goal restrictions respectively. Then perform goal
revision to minimize changes to final goals (option 2, page 70), or intermediate
goals {option 3, page 71}, if necessary.

This preserves invariances I, 2, and 4 of Figure 3.14 in general, but goal revisions
(when handling a discrepancy, if any) can cause a goal to satisfy the restrictions of
D4, or Dp, but not both. However, this cannot happen because inheritance between

D, and Dg implies that every goal realized in R, satisfying restrictions of scheme

D would also satisfy the restrictions of scheme Dg.

73

Lemma 2 If a design scheme Dpg does not inherit from Dy, then a transformation
of a rule base adhering to Dp to one adhering to D, is not guaranteed to preserve all
the invariances shown in Figure 3.14.

Proof. Assume to the contrary that there exists a transformation between two
schemes that do not have an inheritance relationship, but preserves all the invariances
in Figure 3.14. For ezample, consider design schemes <F1, 12> and <F3, I3>. There
is no inheritance relationship between these schemes because final and intermediate
goals allowable in scheme <F3, I3> is not necessarily allowable in scheme <F1,
12>, Of course, syntactic rule re-writing can preserve invariances 1, 2 and 4 of
Figure 3.14. However, let us consider preserving invariance 3 of Figure 3.14. For
example, consider a final goal g = h in <F1, I2>. During transformation if h is made
into an intermeciate hypothesis (say using rule h — d) to satisfy the restrictions of
scheme <F£3, 3>, it no longer satisfies the source scheme restrictions. However, g
cannot be revised into g = d, as it would violate restriction F3. There is no way that
goal y can satisfy the restrictions of both the schemes by rule re-writing. This violates

invariance 3 associated with a transformation shown in Figurc 3.14.

If no discrepancy arises during a transformation, then the time for processing the
rules can be kept the same as before even if extra rules are generated. In this case,
the extra rules are generated in order to annul a design scheme violation. As they
do not change the existing dependency between the rules, pragmatically speaking,
the extra rules can be generated in a separate file, which need not be loaded at
run time.? However, this need not be true when an extra rule is generated while
fixing a discrepancy. The number of such extra rules generated is proportional to the
number of goal atoms common to intermediate and final goals. This number should
be minimized in a systematically formulated goal specification as explicated by the

following corrollary.

Corollary 3 No discrepancy would arise during a transformation if the set of atoms

used in intermediate and final goals are disjoint.

2Alternatively, they can be merged into one rule as indicated by the comments in the figures
depicting the transfurmation procedures.

74

Proof. A discrepancy arises only if a re-writing of rules realizing intermediate
(final) goals violates a design restriction involving final (intermediate) goals as per
the definition given in page 67. This can happen only for rules that infer atoms that
are common to both intermediate and final goals. (See al-o the ecample following the

definition of discrepancy in page 67 for clarity.)

The hypotheses in the extra rules, other than the extra hypotheses, generated in
a transformation indicate that these hypotheses were encoded using the “leniency”
of scheme Dg, and should be restructured (manually, if necessary) in the rule base
to adhere to scheme D4 for reduced maintenance costs. Thus, the transformation
procedures only partially mechanize the ease of maintenance operations; even such
partial mechanization for maintenance can be quite important as observed in Deben-
ham (1992).

As a final note, each of the thirteen directed edges in Figure 3.5 can be thought
of as akin to a transformation procedure because each edge depicts an inheritance
relationship between two design schemes. We described in detail only the transfor-
mation procedure to transform a rule base adhering to scheme <F1, 13> to one that
adheres to scheme <F1, I4>. In Figure 3.20, we provide a brief and informal English
description of the other transformation procedures for the sake of completeness. In
the interest of space, actual procedural level details of preserving rule dependencies,
atom replacements, extra rule generation are not described, but rather the essence of
the transformation from one scheme into another. It is assumed that discrepancy, if
arises, is handled by one of the opticns discussed in page 69. The procedural level

details of the transformation can be found in [Chander, 1995].

From To Transformation Requirement

<F5,12> | <F3,12> | Convert one hypothesis in every final goal containing only final
hypotheses into intermediate hypothesis.

<F5,12> | <F2,12> | Convert one hypothesis in every final goal containing only inter-
mediate hypotheses into final hypothesis.

<F2,12> | <F1,12> | Similar to the one described in section 3.4, but no discrepancy
can arise in this case.

<F5,13> | <F5,[4> | Convert final hypothesis in intermediate goals into intermediate
hypothesis.

<F5,13> | <F3,13> | Convert a final hypothesis in every final goal containing only final
hypothesis into intermediate hypothesis.

<F3,13> | <F3, 4> | Convert every final hypothesis in an intermediate goal into inter-
mediate hypothesis; no discrepancy can arise.

<F3,13> | <F2,13> | Convert an intermediate hypothesis in a final goal containing
only intermediate hypotheses into final hypothesis; discrepancy
can arise unlike transformation between <F5, [2> and <F2,12>.

<F5,14> | <F3,14> | Convert a final hypothesis in a final goal containing only final
hypotheses into intermediate hypothesis.

<F35,14> | <F2,11> | Convert an intermediate hypothesis in every final goal containing
only intermediate hypothesis into final hypothesis.

<F2,13> | <F2, 1> | Similar to the one hetween <F3, I3> and <F3, I4>, but discrep-
ancy can arise.

<F2,13> | <F1,I3> | Convert every intermediate hypothesis in a final goal inte final
hypothesis.

<F2,13> | <F2,14> | Similar to the one between <F2, 3> and <F1, [3>.

<F1, 13> | <F1, 4> | Described in detail in section 3.4.

Figure 3.20: Summarizing the effect of the other scheme transformations.

76

Chapter 4

Rule Base Model and its

Application to System Evaluation

The relationship between the rules in a rule base, causing thenm to
interact for inferring goals, is described. Goals are inferred in a rule base
using non-linear rule sequences called paths. Paths and goals can be
used as basis for several evaluation procedures for rule-based systems.
More specihically, validation, performance and quality assessment, and
verification using paths and goals for rule-based systems are outlined.
The associated tools and algorithms developed to facilitate evaluation

are also described using a case study.

4.1 Modeling Goal Inference in a Rule Base

A rule base R contains a set of declaratii . iles that encode the acquired knowledge
of goal inference in a domain for problem solving [Shinghal, 1992; Giarratano and
Riley, 19¢3], while adhering to the constraints set forth by the chosen design scheme.
The execution of a set of rules and its associated control in a rule-based system &S,
discussed in chapter 1 (section 1.1), can be represented as a triplet < R,Z,W >,

where

o R is the set of rules in its rule base,
o 7 is the inference engine, and

o W is the working memory.

In the proposed niodel of a rule base, we are interested in capturing the rule
interactions that occur while goals are being inferred. This is called the structural
view of problem solving because this model explicitly describes how goals are inferred
in a system for problem solving. This should be compared with the functional view of
problem solving discussed in chapter 2 (section 2.2) that explicates what is required
for problem solving. More specifically, the functional view of problem solving is
traversing a goal graph using the connectors (section 2.2), whercas the structural
view of problem solving is concerned with the representation of connectors using
rules to infer goals in a rule base.

A rule becomes enabled to fire whenever its antecedent evaluates to true. If the
rule does indeed fire, then the hypotheses in its consequent are said to be inferred. For
a rule r to become enabled, the atoms in its antecedent other than initial evidence
must have been inferred as hypotheses. Thus. sonie other rule(s) inferring those
hypotheses must have fired. This general dependency between rules is captured by

the notion of rule attainability.

Definition 10 (Attainability of a rule) A rule ry s attwinable from another rule ry
iff an atom in the antecedent of ry is unifiable with an atom n the consequent of ry, or
with an atom in the consequent of a rule r that 1s attainable fromry. The attainabulity

betrcon the rules ry and ry is denoted by ry > r,.

{

7

Though the rule attainability relation imposes a precedence between the rules, not

all rules are comparable using this relationship. The reason is as follows: if rules r,
and rj are attainable from ry, then it does not necessarily imply that r4 is attainable
from 73 (or, vice versa) because the atoms in the antecedent and consequent of these
rules (respectively) can be disjoint. The rule attainability is thus said to impose a
non-linear precedence relationship between the rules in a rule base.

The rule attainability relation is transitive by virtue of its definition, and the
transitivity of this relation can be used to capture rule interactions that occur in
general. Consider for example, a set of rules p in a rule base that are seemingly
not related to one another because their antecedents and consequents are disjoint.
By computing the transitive closure of the attainability relation for this rule base,
the rule(s) attainable from the rules in p can be identified. This rule dependency
explicates the purpose of (firing) the rules in p, and the causal effect of the interaction
between these rules towards enabling some other rule(s) in the rule base. Thus, the
transitive closure of the rule attainability relation is a measure of the extent to which
rules interact in a rule base.

Using the attainability of a rule and level-0 goals that are composed of permissible
combinations of iritial evidence, the rule dependencies in a rule base can be modeled
using a graph called a rule graph. A rule graph is a labeled directed graph. Each
node in a rule graph corresponds to a rule. The atoms inferred by firing a rule r; are
shown by labeling the directed arcs from r; as A!, A?,.... An arc labeled A? from r;
to r, indicates that the atom A} in the consequent of r; unifies with an atom in the
antecedent of r,.

In a goal-based view of problem solving, we want to capture how rule dependencies
result in inferring hypotheses whose conjuncticn constitutes a specified goal. The rule
dependencies are thus not carried across goal atoms because inferring a goal atom
can be used to infer a goal subsequently; goal atoms in the antecedent of a rule would
be supplied by already infeired goals. We therefore consider only the dependency
between rules that arises due to the unification of non-goal atoms. This is called the

accessibility of a rule.

79

L ~finition 11 (Accessibility of a rule) A rule ry is accessible from another rule r,
iff a non-goal atom in the antecedent of vy is unifiable with an atom in the consequent
of r, or with an atom in the consequent of a rule r that is accessible from ry. The
set of all rules from which a rule r is accessible is called the accessibility set of r. It
is denoted by a(r).

Clearly, the rule accessibility relation is non-linear, transitive, and is a subset of the
rule attainability relation. The transitive closure of the accessibility relation is a
measure of the interactions that occurs between rules required to infer goals.

The rule accessibility relation can be used to identify several sub-graphs of a
rule graph such that the conjunction of the inferred goal atoms in these sub-graphs
constitutes a specified goal. Thus, each of these sub-graphs depicts a connector in
terms of a non-linear sequence of rules. More specifically, a connector in a goal graph,
from a set of goals G = {g.,,9s,,.-.6i.} to goal g, where ¢ & G, indicates a non-linear
sequence of rles that must be fired to iafer g from G. This sequence of rules is called
a rule base path or, simnply, path. Figure 4.1 illustrates a rule graph that is a
path. The rule graph is enclosed between goals G and g (depicted using vertical bars)
indicating the rules to be fired to infer g from G. An arc labeled A? from r, to r,
indicates that non-goal atom A} in the consequent of r, unifies with an atom in the
antecedent of r, (that is, rule r, is accessible from r,). The edge is labeled by the
atom that unifies r, and r;j: for example, the edge labeled A? portrays that rule R,
is accessible from rule Ry via that atom. If a rule infers a goal atom belonging to
g, this is depicted as an edge that is incident on the vertical bar representing g (see
edge labeled A!). The conjunction of gnal atoms inferred by the rules in a path must
constitute a goal as specified for the problem domain. Goal graphs and rule graphs
representing paths are compared in Figure 4.2.

Formally, every path is a set of rules with a precedence relationship defined be-
tween the rules. It is denoted by < ®,>->, where ® is the set of rules in the path,

and > is a precedence relation between the rules of the path defined as follows:

(Vryr, €®)r, > r, =r, is accessible from r,

80

Al R,y A;
{g'}
Al4
R A13 Rg
Af Rs
where the goal g = A} and G = { g’ }
Figure 4.1: A rule graph depicting a path.
Goal Graph Rule Graph
The sequence in which goals are inferred. | The sequence in which rules are fired.
An AND-OR graph. A labeled directed graph.
Nodes represent goals, some of which are | Rectangular nodes represent rules. Ver-
solutions. tical bars represent goals.
Connectors represent paths that portray | Directed edges represent atoms inferred
order of inferring the goals. in rule firings.

Figure 4.2: A comparison of the rule and goal graphs.

A path can also be represented by specifying the precedence relationship > between
the rules in the path. Thus, the path of Figure 4.1 can be represented as > = {<
Ri,R; >, < R;,R3 >,< Ry, Ry >, < R3,R4 >}.

Rules in a path, however, must be enabled so that they can fire once the goals
required by the path are inferred. For a rule r to be enabled, a subset of the accessibil-
ity set of r must have fired. While there can be many such subsets, we are interested
in only some of them. The minimal set of rules that are required to .:able a rule is
called the enabling set of a rule [Grossner, Preece, Gokulchander, Radhakrishnan,
and Suen, 1993].

Definition 12 (Enabling set of arule) ror a rule r with accessibility set a(r), suppose

there exisy sets m(r), n2(r),. .. such that
(i) n.(r) C afr),
(ii) firing all rules in n,(r) enables r, and
(iii) no proper subset of n.(r) enables r.

then each n,(r) is called an enabling set of rule r. In other words, if rules in n,(r)

fire, then r becomes enabled.

81

A path represents a connector, and all rules in a path should fire, by definition, once
the goals required by the path are inferred. Thus, for every rule in a path, its enabling
set is also contained in that path.

As an example, in Figure 4.1, the enabling set of rule R: is { R2, R3 }, but the
enabling set of rule R1 is §. But, this does not mean that the antecedent of rule R1
is empty (that is, does not conta’a any atoms). Since the rule accessibility relation is
limited to the rule dependencies due to the unification of non-goal atomns, there must
be at least one rule in a path that must be enabled due to previously inferred goals
(this includes permissible initial evidence input by the user). These rules are called
the head rules of a path. The atoms in the antecedent of a head rule in a path would
not unify with any atorn in the consequent of other rules in the path. Similarly, the
rules that infer only goal atoms in a path are called toe rules. The atoms in the
consequent of a toe rule would not unify with any atom in the antecedent of other
rules in the path. It should be noted that a toe rule need not be distinct from a head
rule: that is, a path can contain a single rule. Rules that are neither head rules, nor
toe rules of a path are called the body rules of the path. In Figure 4.1, rule R1 is a

head rule, rule R4 is a toe rule, and rules R2 and R3 are body rules.
Corollary 4 Every path has at least one head rule, and one toe rule.

This corollary is used by path hunter, a tool for extracting paths from a given rule
base, discussed in section 4.3.1.

However, it should be noted that paths capture only potential rule execution
sequences because it is the inference strategy that determines if a rule that is enabied
can indeed fire. Further, the paths in a rule base is only a subset of the set of
rule execution sequences in the rule base. But, as a goal specification is intended
to abstract problem solving in a domain and paths in a rule base capture those
rule sequences (hence, rule interactions) that infer goals, the analysis based upon
paths and goals can provide useful insights towards understanding the working of a
system {Grossner et al., 1993; Preece, Grossner, Gokulchander, and Radhakrishnan,
1993b; Preece et al., 1993a, 1993a]. The use of paths and goals as a basis for system

evaluation to detect errors and anomalies in a system is described in section 4.2.

82

{g'}

where the goal g = Aland G = { g’ }

Figure 4.3: A rule graph depicting a path that is unshaved since rule Rz is not fully
consumed.

Two types of paths are possible in a rule base. Paths in which every non-goal
atom inferred by a rule unifies with an atom in the antecedent of one other rule in
the path are called shaved paths. The rules in such paths are said to be fully
consumed. A path is said to be unshaved ifl it is not a shaved path: that is, it

contains at least one rule that is not fully consumed.

Definition 13 (Consumption of a rule) 4 rule r in e path & from goal(s) G =
{Gi1+Gigs+--Gin} to g is fully consumed iff every non-goal atom in the consequent of r
unifies with an atom in the antecedent of one other rule ' in the same path. A rule

is partly consumed iff it is not fully consumed.

As an example, in Figure 1.1 every rule is fully consumed, whereas in Figure 4.3
rule Rz is partly consumed because the non-goal atom Aj} inferred by R does not
unify with any other atom in the antecedent of any other rule in this path. The
notion of rule consumption in a path is useful for identifying some rule base anomalies
(section 4.5).

By definition, a path captures the rule interactions that occur in a goal-to-goal
progression because a path represents the transitive closure of the rule 1ccessibility
relation in that goal-to-goal progression. The extent to whica a given rule base
represents the acquired knowledge of goal inference is reflected by the paths in the
rule base; they are collectively said to portray the structure of the rule base [Grossner
et al., 1995]. Our model of a rule base is the set of paths inferring goals adhering to

a design scheme.

Definition 14 (Rule Base Structure) The structure of a rule base (or, simply struc-

ture) is defined as < G,I1, D > where G is the goal specification of the domain, 11 is
a set of rule base paths, and D =< uy, uz > is the adhered design scheme. such that,

(1) (V& € II) (3G,g9) (GCG)(g € G)GADPFg and
@) (Vg € g)HD{ ui(g) if ¢ is a final goal

p2(g) if g is an intermediate goal

where H is the set of alt hypotheses in the rule base.

The second condition in the above definition simply asserts that goals are inferred
using rule base hypotheses only. Thus. if any external actions are to be modeled as
part of a goal inference, it should still he represented using a hypothesis in the rule
base; the action can take place following the inference of this hypothesis. During
system evaluation, this can ensure that a given rule fires correctly by exa.nining
the inferred goal. This is particularly useful. when simulating external actions (that
could take place during field operation) as part of a rule can be co.tly. or cannot
be done during develonment. As an example, consider a life support system that
monitors patient breathing, and tuins on additional oxvgen when oxygen intake falls
below a threshold. In the system implementation. a rule should fire whe: the oxygen
intake falls below a threshold, and turn on the appropriate oxvgen equipment. In our
model, this action shonld be represented using an hypothesis in the rule .unsequent
in addition to executing the appropriate action. During system development. the rule
firing can then be mapped to a path which can be inspected to check if the rule fires
under the correct conditions. Note, the development site may or may not have the
associated control equipment in this case owing to its cost.

The progression of problem solving at the structural level is then captured by a
sequence of paths from permissible combinations of initial evidence (level-0 goals) to
a solution (final goal). Such a connected sequence of peths is called a route. A route
from a level-0 goal to a solution is called a relevant route: any other route from a
level-n goal to a goal ¢/, where n > 1 and 4’ is not a solution. is called an irrelevant

route.

84

Definition 15 (Relevant and [rrelevant Routes) 4 route w5 a connected sequence of
o..c or more paths of the form ®,® ;... P, such that the goal inferred by path ®, is
required for path @, . wherc) < 2 < n. If O, infers a level-1 goal and ©, infers a
final goal, then the .oule 1s said to be arelevant route; otheruise, the route 15 said to

be irrelevant.

The importance of relevant and irrelevant routes would be apparent when performance
cvaluation aspects of a system is discussed (section 4.4).

The extraction of paths from a rule base using a given goal specification is a
non-trivial problem because procedures that extract inference chains from a rule base
have an exponential complexity in the worst case [Ginsberg. 1988; Kiper, 1992].
However, goal specification can be used to control the computation required to extract
paths [Grossner et al., 1993] as will be apparent later. The extraction of paths from
a rule base is termed str acture extraction, and it influences a variety of evaluation
processes for rule-based systems [Chander et al.. 1994: Chang et al., 1990; Ginsberg,
1988; Kiper, 1992: Chander =t al.. 1993; Preece et al., 1994].

As a final note, chapter 1 (section 1.3) presented a development perspective for
rule-based systems using three stages: the functional requirements stage (chapter 2.
sections 2.1 and 2.2). the design stage (chapter 3. sections 3.1, 3.3, and 3.4), and
the implementation stage (section 4.1). The next step is in explicating the reverse
links between the three stages as shown in Figure 1.2 (page 13): relating how paths
inferring goals (thus, mapping to the design stage), map to overall problem solving
as viewed in the functional requirements stage. Every path in a rule base adhering
to a design scheme maps to one of the goals designed as a conjunction of atoms in
the design stage. This portrays the reverse link from the implementation stage to
the design stage. The routes extracted from a rule base portray how a goal graph
is actually traversed in the system implementation at run time. This progression of
problem solving, ~bstracted in terms of routes. allows one to appreciate how goals
designed during the design stage and inferred in the implementation stage map to the
functional requirements stage of the system, where the goals were conceived. This

explicates the reverse link from the design stage to the functional requirements stage.

85

4.2 Evaluating Rule-based Systems: Preliminar-
ies

Systematic evaluation methodologies, tools, and techniques for rule-based systems are
important in order to assess their reliability, verifiability, and other qualities [Preece,
1990; Giovanni, 1989; Preece et al., 1993a]. System qualities manifest in two forms:
internal and external {Ghezzi et al., 1991]. The external qualities are those that are
visible to the system users (for example, run-time performance). whereas the internal
qualities are those that are visible to system developers (such as maintainability).
The internal qualities are required to achieve some external qualities: for example,
the internal quality ~..rifiability is required to achieve the external quality of relia-
bility [Preece et al., 1993a].

For ease in understanding the evaluation methods discussed, we use a case study
of a rule-based system to describe a university environment. The body of knowledge
acquired by interviews for this domain is shown in Figure 4.4; the goal specification
of the domain is shown in Figure 4.5; and the inviolables are shown in Figure 4.6.
Note, permissible combinations of initial evidence (which represent conjunction of
atoms representing initial evidence that a domain expert would use to start problem
solving) should also be specified. In order to show the effect of each initial evidence on
problem solving, each atom that is an initial evidence is shown as a level-0 goal. Thus,
permissible combinations of initial evidence would be represented as AND edges from
level-0 goals in the goal graph. Suppose design scheme <F1, 13> is chosen for this

domain, a rule base to encode the goal progression knowledge is shown in Figure 4.7.

In the following sections, a set of evaluation techniques for rule-based systems are

outlined. We also show the use of paths and goals in these techniques.

4.3 Structural Validation of Rule-based Systems

The process of validation ensures that the system conforms to its requirements. In

general, the validation process for a system is started after defining a validation

86

Knowledge Acquired Via Interviews

“ All undergraduates hold unique green bordered ID cards.”

“Most undergraduates here hold a GPA that is higher than national average.”
“Though they are hard working, generally no financial aid is available.”

“A hard working student is likely to take honors courses.”

“All undergraduates are considered as regular academic students who are enrolled
using a registration process.”

“Good grades in junior college is required for admission into university.”

“Only regular academic students can enroll during registration.”

“All registered undergraduates are young.”

“Undergraduate students do not receive financial aid; however, students with good
record and good grades in junior college can expect bursaries on a competitive basis
making their life comfortable.”

“Only undergraduates can register for honors courses and those in the dean’s list
(with high GPA, above 3.3) and taking honors courses can pass with distinction:
such high GPA requires hard work from the undergraduates.”

“University graduates with distinction have a good career in industry and a com-
fortable life.”

Figure 4.4: Typical knowledge elicited from a domain expert about a university en-
vironment. Interviews are the most common ways of eliciting knowledge from the
domain. These are later translated into a set of goals associated with the domain
by the knowledge engineer in collaboration with the domain expert forming the goal
specification for the domain.

The Goal Specification.
REGISTERED(z) A GREENBORDRID(z) o .
GREENBORDRID(z) A HARDWORKING(z) |Atoms denoting initial evidence

REGISTERED(z) A DEANSLIST(z) are as follows:

ACADEMIC(z) gor = REGISTERED(z)
GOODCAREER(z) go2 = GREENBORDRID(z)
BURSARY(z) gos = HARDWORKING(z) and
COMFLIFE(z)* gos = DEANSLIST(z)

ACADEMIC(z) A YOUNG(z)*
GOODGRADES(z,y) A GT(z, Gpa, 3.5)*

Figure 4.5: The goal specification of the university domain from its description in
Figure 4.4. An asterisk on a goal indicates that it is a final goal.

87

GRAD(z) A UGRAD(x)
NOFINAID(r) A BURSARY(r)

Figure 4.6: The inviolables of the university domain. It is assumed that a registered
student cannot be both undergraduate and graduate. In addition. if a person receives
a bursary. he/she cannot be categorized as not receiving any financial aid.

Rl

R2
R3
R4
R5
R6

R7
RS
R9

R10
R11
R12
R13
R14
R15

R16

R17

REGISTERED(») A GREENBORDRID(z) —
ENROLLED(z) A NOFINAID(z)

ENROLLED(x) — ACADEMIC(z) A STUDENT(2)

GREENBORDRID(z) A NOFINAID(z) - UGRAD(x)

STUDENT(z) AUGRAD(z) — ACADEMIC(z)

GREENBORDRID(z) - NOTGRAD(z)

REGISTERED(z) A NOTGRAD(z) —

STUDENT(z) ANACADEMIC(z) A YOUNG(z) A UGRAD(z)
DEANSLIST(z) — HIGHGPA(z) A HONSCOURSES(z)
REGISTERED(z) A HONSCOURSES(z) — UGRAD(x)

UGRAD(z) ADEANSLIST(z) —

GOODGRADES(z, Juniorcollege) AN COMPLETED(z, JuntorCollege)
HIGHGPA(z) A REGISTERED(z) — GT(z,Gpa,3.3)
HARDWORKING(z) — HONSCOURSES(z)
GREENBORDRID(z) — HiGHGPA(z)
HIGHGPA(z) A HONSCOURSES(z) — UGRAD(z) A DISTINCTION(z)
UGRAD(z) A DISTINCTION(z) = GOODCAREER(z)
GOODRECORD(z. Juniorcollege) A COMPLETED(z, Juniorcollege)

— GOODCAREER(z) A BURSARY(z)
GOODCAREER(z) — COMFLIFE(z)
BURSARY(z) —» COMFLIFE(x)

Figure 4.7: The rule base encoding the knowledge describing the university domain.

88

criteria [O'Keefe et al.. 19371, A typical set of criteria are as follows [Preece. 1992}:

(a) What to validate?
(b) What tests are to be conducted?

(c) What is the standard against which validation will be performed?

Note that we have deliberately omitted some aspects like "who will validate?”. "when
to validate?”. etc. These questions are relatively minor for a laboratory validation
(validation performed under controlled conditions; tests and results are usually re-
producii.]e), but not for a field validation (the system validation at its site).

Structural validation is conducted in order to ensure that the structural sub-
components of a system are indeed correct. and contribute to the correct execution of
its function [Preece. 1992; Ghezzi et al., 1991]. However. the process of structurally
validating a rule-based system is non-trivial because of the non-sequentiality of rule
firings and rule interactions. An explicit model to capture rule interactions that occur
during problem solving is required. The popular approach among the researchers is
to capture the rule interactions by defining paths using a formalism, and extracting
the paths from a rule base to inspect whether the rule interactions captured via paths
are indeed the interactions desired by a system designer [Kiper, 1992: Chang et al..
1990; Rushby. 1988]. However, the notion of path in a rule base among researchers is
not unique.

For structurally validating a rule-based system, the implementation model dis-
cussed in section 4.1 can be used. This way of structurally validating rule-based sys-
tems has several advantages compared to the other approaches [Kiper, 1992; Chang

et al., 1990; Rushby, 1988]:

(a) Every path infers a goal, thus it makes it possible to map a set of rules to a
definite aspect of problem solving: towards solving a sub-problem. This brings

a notion of meaningfulness to the purpaose of firing a set of rules.

{(b) Every path is self-contained: once the goals required by a path are inferred,
the path can fire. Thus, rule interactions that occur for a given goal-to-goal

progression are completely localized and captured in a path.

89

(c) The formal characterization of a path in this model can act as a specification
for automatic path enumeration by a tool [Gokulchander, Preece, and Grossner.
1992].

(d) Use of goal specification can be used for controlling the combinatorial explosion

that occurs when trying to enumerate paths [Grossner et al.. 1993].

(e) Goals and paths can also be used for other evaluation procedures; thus, paths
and goals provide a common basis for system evaluation [Preecce et al.. 1993a,

1994: Chander et al.. 1994. 1995, 1995b, 1993c}.
The structural validation of a rule-based system consists of two steps:

1. extracting the paths from a rule base; and

2. measuring the extent to which the set of paths in a rule base are

exercised by a test suite (called path coverage).

A test suite consists of a set of test cases (a set of atoms denoting initial evidence).
To measure the path coverage, every test case in a test suite would be input to a
system. and the extent paths are exercised would be observed. An ideal test suite is
one that should achieve 100% path coverage. but is either difficult to obtain. or too
costly to construct in practice [Preece. 1992].

To structurally validate the example rule base shown in Figure 4.7, the paths from
the rule base must be extracted. They are shown in Figure 1.8.

The next step in validating this system would be to measure the extent paths are
exercised for a test suite. However, we have to simulate a run time control that would
typically be exerted by an inference engine. Often. the inference engine strategy can
affect the measurement of path coverage because a path may not be covered fully
during run time, yet its goal may be inferred. For example, this can happen if the
inference engine adopts a strategy called “chilling of prod rules” [Shinghal, 1992]:
that is. a rule would be prevented from firing if its consequent is already contained in
the working memory. Thus, if the consequent of the head rules of a path is already
contained in the working memory, then the head rules would not fire. But, the rest

of the rules in the path can fire, when the goals required by the path are inferred.

90

ACADFMIC 2,
— 13
{8y 8n} ‘ R2 1
L_—__'_N\ ——————
e =] ——7 ~ a~
| R3 3
id = R1 /ﬁ‘___
\ S / ACADE MIC
e - | R3
o
84
{8xnBu) ACADEMIC
. r— T ety |
b RS }‘——‘"‘ R6 Wem——— R4
r C O ACADEMIC o
) TTROTRG T]
i By
{8y +Bos? ——————- GOODGRADES
R9
. N
®3 R7 N R3 COMPIL ETED(v Junioreoilege)
e e
— Rio
s GTxgpa. 3 5)
g ¢
(B & 92)
|
Rl : 3 — (GOODCAREE
[e:3) /~ R13 i L ORi4
Ri2

821

(815 Bu (g
COMFLIFE @ COMILIFE
&5 R16 7 R1? ——

Figure 1.8: Paths extracted from the rule base of Figure t T To avoid cluttering. not
all of the inferred atoms in a path are shown.

91

Test Path Coverage Overall
case | ¢1 2 ®3 o4 ®5 ®6 | coverage
1 .{0% 333% 0% 100% 100% 0% | 35.3%
2 (0% 0% 100% 50% 100% 0% | 41.2%

Figure 4.9: Summarizing the test coverage for the example system for a test suite
containing two test cases.

To illustrate path coverage measurement for the example system, we will adopt
the following inference strategy: the order in which the enabled rules are fired is the
same as their physical order in the rule base. To measure path coverage, we use
the following criteria: if a rule appears in multiple paths, the rule firing is mapped
to every path in which that rule appears. For our example rule base in Figure 4.7,
assume that a test suite T containing two test cases (1) {HARDWORKING(Henry),
GREENBORDRID (Henry) }, and (2) {REGISTERED (Henry), DEANSLIST(Henry)} was
applied.

The path coverage for the first test case in 7 would be as follows:

o Path 2 would be partially covered: rule RS would fire in path $2 (but no goal
would be inferred). Thus, path ®2 is considered c.vered 33.3% (1 rule out of 3
fired).

e Paths ®4 and @3 would be exercised fully (100% coverage).
o Paths ®1, 3. and $6 would not fire at all (0% coverage).

Thus, the overall coverage for this test set would be 35.3% because 6 rules fired cut
of a total of 17 rules in the rule base.

On similar lines, if the second test case of T is applied, paths &1, ®2, and 6
would be covered 0%, paths ®3 and ®3 would be covered 100%, and path ®4 would
be covered 50% (rules R13 and R14 fire). The overall coverage of the rule base would
be 41.2% (7 out of 17 rules fired). The coverage of the example system for test suite
T is summarized in Figure 4.9. This example rule base (see Figure 4.7) was coded
using CLIPS, and the above test suite T was applied. The coverage results obtained
concur with the analysis summarized in Figure 4.9, but the order in which the rules

fired was different. This occurred because the CLIPS inference strategy does not

92

guarantee that the rule execution order would match with their physical order in the
rule base [Giarratano and Riley, 1993].

There are two main observations that are apparent from this example:

1. Even for a simple rule base, a 100% coverage of all the paths was not achieved
despite the fact the test suite contained all the initial evidence. This emphasizes

the need for a careful construction of test cases for a domain.

2. For the second test case, the coverage of path &1 deserves attention because
according to the goal requirement of path ®4, it should not have been covered.
It will be apparent later that this occurred because of a coding error in the rule

base causing rule subsumption (section 4.5).

This validation example also illustrates that the actual events that take place at
run time need not map uniquely to a model because of its simplifying assumptions.
We elaborate more on this in section 4.3.2.

We developed two tools to facilitate structural validation of rule-based systems:
the tool path hunter extracts paths from a rule base using a given goal specifica-
tion [Grossner et al., 1993], and the tool path tracer measures the extent paths in a
rule base were exercised for a given test suite [Preece et al., 1993b]. The appropriate
use of these tools is illustrated in Figure 4.10. Path hunter uses the rule base of the
system along with the goals specified in a declarations file to extract the paths from
the rule base. It is described in section 4.3.1. Path tracer works with the paths ex-
tracted from a rule base and a set of run traces of the system (files capturing rules
fired and hypotheses inferred for a test run), and provides measures to reflect the
extent paths are exercised by a given test suite. It is described in section 4.3.2.

Though the method of structural validation that we discussed is the same in
principle for any rule-based system (that is, independent of the size of a system), the
pragmatic issues involved in path extraction, and in measuring path coverage for large
rule bases deserve special attention. Further, expert system shells like CLIPS allow
procedural constructs like if, while,... on the consequent of a rule for coding con-

venience {Giarratano and Riley, 1993]. Rules containing such procedural constructs,

93

Rule Decls

base file T;’ ace
"/ T
Hunter listing Tiacer Stats

Figure 4.10: Using the path hunter and path tracer tools for structurally validating a
rule-based system.

strictly speaking, are not declarative. In addition, as many rule-based systems cur-
rently exist, the goal specification has to be reverse engineered from the existing rule
base for validation, and needs to be refined to control the computation for path ex-
traction. Thus, the question arises: how should the above method be modified for
such systems? These details are outlined in the following sub-sections. As a final
note, the path statistics obtained from a rule base as part of system validation also
provides insights into certain qualities of the rule base (complexity, verifiability, etc).

This aspect is described in section 4.6.

4.3.1 Path Hunter: A Tool to Extract Paths from a Rule

Base

Path hunter has several modules that are needed when extracting paths from a “real
life” rule base where rules are not guaranteed to be declarative as assumed in this
framework (section 3.1). This requires that such rules be pre-processed into a set of
declarative rules before applying our implementation model to extract the paths from
a rule base. The various modules that comprise the path hunter tool, its design, and
its implementation are only briefly explained below. For additional details, refer to
the technical report [Gokulchander et al., 1992).

The first step in path extraction is to to obtain the items on the antecedent and
the consequent of every rule. In our case, the rule base was coded under CLIPS

expert system shell [Giarratano and Riley, 1993]. The CLIPS tokenizer! was used to

!This CLIPS parser was written by A. Preece as part of his COVER [Preece et al., 1992b]

94

(defrule R-i
P
=>
(assert (Q))
(if (cond) then
(assert (R)))
) ; end of rule R-i

Figure 4.11: An example rule adhering to the syntax of the CLIPS expert system
shell.

parse a CLIPS rule base and obtain the items on the antecedent and the consequent
of each rule as separate tokens. Foi example, the tokens obtained correspond to the
constructs like defrule, assert, if-then-else, while, ... that can be present
in arule coded using the syntax of CLIPS. It should be noted that the CLIPS tokenizer
is not actually a part of path hunter, but is only required to pass the various constructs
of a rule coded using the syntax of CLIPS as tokens to path hunter for processing.
Path hunter is independent of the expert system shell used to develop the rule base
as long as a parser is available to parse the rule constructs and provide a sequence
of tokens for each rule (consisting of its name, antecedent, and consequent) to path
hunter.

From the set of tokens obtained, every rule in the rule base is mapped into a rule
of the form: Antecedent — Consequent, as viewed in the design stage. The module
that maps a CLIPS rule into a set of declarative rules of the above form is called the
rule splitter as its function appears to “split” a given CLIPS rule and re-write it
as a set of declarative rules. This is necessitated because CLIPS allows procedural
constructs in the consequent of a rule, user defined functions, and additional operators
for flexibility in development. In CLIPS, it is perfectly legal to have a rule to contain
procedural constructs suchas if ... then ... else, while, etcinits consequent.
For example, the rule

R :P—Q,if (cond) R.

can be encoded in CLIPS as shown in Figure 4.11.

Whenever a rule encodes a (procedural) conditional construct such as an if in

verification tool.

its consequent, two situations can be observed when the rule fires. For example, two
situations are possible when the rule R, shown in Figure 4.11 fires depending upon
the boolean condition cond. If this condition is false, then the rule infers Q; otherwise,
it infers Q and R. But, this rule is not in the form that is stipulated in the design
stage. Rule splitter cuts a rule containing a conditional construct in its consequent
into two rules: one rule corresponds to the situation when the boolean condition in
the construct fails, and the other when iv succeeds. More specifically, the CLIPS rule
R, in Figure 4.11 would be split into two rules: a rule that infers only Q, and a rule
that infers Q and R.

In splitting rules, however, we need to preserve the effect of external function calls,
if any, in a conditional construct. When an external function appears in a rule, it is
modeled as a predicate on the antecedent, or consequent (as appropriate) of the split
rule generated by this module. Thus, for a rule base containing external function
calls, information pertaining to such external functions should also be supplied to
path hunter.

Each rule that is split by the rule splitter is registered and the following informa-

tion is captured:
1. the split name: usually of form OriginalName%n, where OriginalName is the
original name of the rule;

2. the antecedent of the rule as a set of predicates used in the antecedent of the

original rule, and those predicates representing external functions;

3. a set of atoms for the rule consequent modeling a possible truth value for the

boolean conditions in the rule consequent (if any);

4. provision is made for retractions, but is left currently empty as we do not handle

negated atoms in this formalism; and

5. the original name of the rule to maintain the origin of the split rule.

Sometimes, several split rules are identical due to the abstractions in treating con-

ditionals and external functions. The set of split rules that are identical are said to

96

form a rule equivalence class. A rule equivalence class is treated as a single rule
by path hunter for reasons that will be apparent later.

The presence of a module in path hunter to handle procedural constructs in a rule
does not imply that a programmer can use these constructs without care. Though
CLIPS provides constructs such as if, while,..., for convenience in encoding, their
use is discouraged in general [Giarratano and Riley. 1993]. Further. rule base analy-
sis becomes cumbersome when individual rules mix procedural and declarative con-
structs [Rushby. 1988]. More specifically, for rule base analysis using path hunter,
heavy use of procedural constructs on the consequent of a rule can bring down the
efficiency of rule splitting. and hence. that of path extraction owing to the following

result.

Lemma 3 The rule splitting algorithm 1s of exponential complerity in the worst case.

Proof. Consider a rule R that has n conditional constructs in its consequent as

shoun below.

(defrule R
(P)

(1f (cond,) then
(assert (R1)))
(if (cond;) then
(assert (R2)))

(1f (cond,) then
(assert (Rn)))
) ; end of rule R

Every conditional cond, can be true or false. Thus, when the above rule R fires there
arc 2" possible situations each inferring a combination of the atoms R1,...,Rn in

the consequent of rule R. Thus, 2" split rules should be generated in order to account

for these 2™ situations.

97

However, in practice the value of n, the number of conditional constructs in a rule
consequent, is usually small (at most 2 or 3), and rule splitting does not impose a
major overhead. The above lemma serves as a caution to developers “extensive use
of procedural constiucts in encoding knowledge (perhaps done by the designer to
minimize the total number of rules) would make ihe later analysis and evaluation of
the rule base cumbersorue.”

Once the rules in a rule base are represented in a declarative form, we are con-
cerned with the extraction of the accessibility relation between the rules (definition 11,
page 79) to determine the enabling sets for each rule (definition 12, page 81). The
accessibilit; between the rules is determined from the output of the rule splitter by
checking if a non-goal atom inferrrd by a rule r; unifies with an atom in the an-
tecedent of another rule r;. The rule accessibility that is captured is then used to
determine the enabling sets for each rule. Finally. the tool obtains rule chains that
start with one or more head rules, and terminates on a toe rule because every path
starts (ends) with at least one head (toe) rule by corollary 4 (section 4.1). This is
done by obtaining the enabling sets of to= rrles. and repeating this step (recursively)
for every rule contained in the enabling sets obtained until one or more head rules are
encountered. Every such rule chain containing a toe rule and one or more head rules
is called a fragment. Finally, the set of fragments are checked for goal inference to
identify the rule base paths. The paths produced by path hunter for the example rule
base is shown in Figure 4.12.

A major issue in extracting paths from a large rule base is the number combina-
tions in which a given rule car be enabled. For small ru'e bases, path hunter executed
efficiently and extracted the paths, but when the size of the rule base is increased,
the number of enabling sets for individual rules increased consideraL!v. Since p~*h
hunter recursively enumerates these dependencies, the number of combinations to be
enumerated increased so rapidly, a combinatorial ezplosion was encountered (caus-
ing the tool to run for hours without terminating). Though this computation can
be controlled partly by restricting the tool to extract only shaved paths from a rule
base, its run-time performance required optimization when handliag large rule bases

in general [Grossner et al., 1993].

98

Path Hunter Path in
Output Figure 4.8 (page 91)
path(example, [’R1%1’,’R2%1’,’R3%1’,'R4%1’]). o1
path(example, ['R4%1’,’R5%1’,’R6%1°]). o2
path(example, [’R10%1’,’R7%1’,’'R8%1',’RO%1’']). 3
path(example, [’R11%1’,’R12%1’,°R13%1’, R14%1°1). b4
path(example, [’R16%1']). k)
path(example, [’R17%1’]) o6

Figure 4.12: Output of path hunter for our example rule base shown in Figure 4.7.
The path predicate above also contains the accessibility of the rules in the path, but
is not shown for clarity. In the above output, the argument example in the path
predicate refers to the task name of the path. Note that the paths are enumerated in
terms of split rules.

The combinatorial explosion in a rule base arises primarily due to the following

three reasons [Grossner et al., 1993; Preece et al., 1994]:

Case 1. when several split rules are identical;
Case 2. when a specified goal is too general; and

Case 3. the multitudeof rule dependencies arising out of non-goal atom(s).

When several split rules are identical, the number of combinations to be enumer-
ated increases since every rule that is identical to a rule r can replace r in every rule
sequence in which r can appear. Thus, for handling case (1), path hunter uses a rule
equivalence class to replace identical split rules.

When a goal is too general, then too many rule sequences infer that goal; this
increases the number of combinations to be handled when enumerating paths inferring
that goal. To handle case (2), the goal is specialized: goal specification is refined so
that a goal that is too general is either made more specific, or split into a number of
specific goals.

Whenever a combinatorial explosion was encountered due to case 3 above, the rule
dependencies were checked to see the cause for this combinatorial explosion. Suppose
m rules infer a non-goal atom A that unifies with the antecedent of n other rules,
then there are m x n dependencies between the rules that are created; this number

m x n can be treated as indicative of the “importance” of the atom A in terms of

99

the knowledge it encodes. In order to control the computation due to these rule
dependencies, the acquired knowledge and the goal specification are checked to see
if the knowledge represented by atom A should be incorporated into a goal, thus
making A a goal atom. In the event where this is not possible one can augment
the goal specification by goal incorporation: a new goal is introduced that uses the
knowledge encoded in .4. The justification for this is as follows: if several rules infer
an atom and many others use it in their antecedent, clearly this atom is important
for problem solving; if not, it indicates a possible error in rule encoding and the
rules need to be modified. Thus, inferring atom A can be related to achieving an
important state, or milepost in problem solving. As the purpose of goal specification
is to identify these states as completely as possible, it is refined to include atom A. For
practical purposes, these heuristics are usually suffici=nt to control the combinatorial
explosion, if it arises during path extraction [Grossner et al., 1993}.

Overall, goal specification can be very handy in controlling the computation for
path extraction because it can cut down the rule dependencies whenever they cause
a combinatorial explosion. However, abusing this flexibility (for example, by making
changes to goal specification in an ad hoc manner solely to control this computation)
can undermine the usefulness of yoals to abstract problem solving in general (sec-
tion 4.4). This further emphasizes the importance of design. As a final note, path
hunter requires every specified goal to be associated with a task. For example, the
goal graph of the domain shown in Figure 2.3 (page 21) can be characterized using
two tasks: a biliary diagnosis task, and a liver diagnosis task. Grouping goals by
tasks can further facilitate validation by providing selective control over a portion of

a rule base (section 4.3.3).

4.3.2 Path Tracer: A Tool to Measure Path Coverage

The purpose of a path tracer is to measure the extent to which paths are exercised
for a chosen set of test cases [Preece et al., 1993b], that is, it measures path coverage.

This allows us to observe the following run time characteristics of a system:

100

1. thefrequency with which a rule participates in problem solving for goal inference

(a measure of rule activity); and

2. the number and the extent paths were exercised for the given test suite (a

relative measure of systemn performance).

In addition, the path characteristics output by the tool helps to portray how realistic
is our model for analyzing the run time performance of a system in terms of its
abstractions, and can help in model refinement, if necessary. Though the results of
running path tracer is collected overa set of test cases applied to the system, it does not
imply that this set of test cases is representative [Preece and Shinghal, 1992; O’Keefe
et al., 1987). Path tracer simply provides some system statistics observed at run time
and measured in terms of the number of paths exercised and their characteristics. Of
course, the results can be utilized for tuning the performance of the system.

Unfortunately, mapping a set of rules fired at run time into a set of paths is
a non-trivial task. For example, a CLIPS trace file only records the rules fired in
that sequence and their inferred hypotheses [Giarratano and Riley, 1993]. The first
step in path tracing is to map an observed rule firing in a trace file into the rule
abstractions used by path hunter (because the paths are enumerated in terms of split
rules). Measuring path coverage for systems coded using an expert system shell is,
however, complicated because the rules observed in a run trace need not map one-
to-one to the rule abstractions made by path hunter when extracting paths. More
specifically, an observed rule firing can match more than one split rule. Such a rule
mapping is said to be equivocal because it cannot uniquely identify a rule as part
of some path.

Path tracer uses the notion of a thread in mapping an observed sequence of rules
to a path. A thread is a linear seguence of rules with an head rule and a toe rule.
For example, in Figure 4.13 there are two threads: D1 and (D2, D3), where the D’s
label the rule accessibilities in a thread. A path is analyzed in terms of the threads
it contains. In so doing, path tracer measures path coverage in terms of the rule
accessibilities present in a thread using three counting strategies. The three strategies

vary ir the extent they count the accessibility between two rules in a thread as part

101

Figure 4.13: Illustrating threads in a path used for measuring path coverage from run
trace information. The rule shown in the greyed box is assumed to be involved in an
equivocal mapping.

of path coverage, when one of the rules is involved an equivocal mapping. They are

described below.

e The Liberal strategy: This takes into account the accessibility that is observed
even if a rule cannot be uniquely mapped to a split rule. In other words, it allows
for threads to have an equivocal mapping, but counts only the first accessibility
arising because of the rules involved in a equivocal mapping. Referring to
Figure 4.13, this would count all the accessibilities (D1, D2, D3) of the path as

seen in the trace file.

The Moderate strategy: It allows for the presence of rules which cannot be
mapped uniquely to a split rule in a thread, but does not measure them as part of
the thread. In other words, it allows for threads that have an equivocal mapping,
but does not count the accessibility arising because of the rules irvolved in
a equivocal mapping. Referring to Figure 4.13, this would count only two

accessibilities (D1, D2) of the path as seen in the trace file.

The Conservative strategy: It does not allow for any accessibilities arising
due to the presence of rules that cannot be uniquely mapped to a split rule.
In other words, this does not allow any thread of a path to have an equivocal
mapping. Referring to Figure 4.13, this would count only one accessibility (D1)

of the path as seen in the trace file.

Since path coverage is measured in terms of the rule dependencies in a trace file, it

can be expressed as a percentage. If all the accessibilities in a path are counted in the

trace file, then the path coverage is 100%. Otherwise, the number of accessibilities

102

of a path that are counted can be used to determine the percentage coverage of that
path. Thus, for the path in Figure 4.13, the coverage for the various strategies are as

follows:

e based on the liberal strategy, this path coverage is 100% (because all the three

accessibilities are counted);

e based on the moderate strategy, this path coverage i> 66.7% (because only two

accessibilities are counted); and

o based on the conservative strategy, this path coverage is 33.3% (because only

one accessibility is counted).

The above measures provide a broad perspectivein viewing path coverage in terms
of the observed rule causalities in a trace file. The above measures also reflect that a
model of a system abstracts events that take place in the system, thereby simplifying
the assumptions imposed on it for ease in understanding the behavior of the system.
However, in order to map the actual events that occur (at run time) intc abstractions
of a model, we need to allow for the simplifying assumptions that were made during
model definition, and should rely on a set of measures associated rather than one

absolute measure [Preece et al., 1993b).

4.3.3 Validating a Large Rule-based System: A Case Study

To experiment the feasibility of extracting paths adhering to our definitions (sec-
tion 4.1), we chose an existing rule-based system called Blackbox expert because it
solves a puzzle called Blackbox. The Blackbox puzzle is an abstract diagnosis prob-
lem [Simon, 1973]. This is a large system consisting of 442 rules developed using the
CLIPS expert system shell [Giarratano and Riley, 1993; Preece et al., 1994]. The size
of the rule base of this system and the complex way in which the rules encode knowl-
edge makes this system an ideal test bed to check for the pragmatic aspects involved
in extracting paths. A sample rule from the Blackbox expert rule base is shown in
Figure 4.14. As the system was not developed using an initial goal specification, it

had to be reverse engineered from the rule base, and refined to facilitate validation.

103

(defrule adjust-shot-value
(declare (salience 200))
(phase selection)
7vari <- (ADJUST-SHOT ?rule-ID ?r ?c 7new-val ?code)
7var2 <- (SHOTLEFT ?r 7c 7?level 7total 7count)
=>
(retract ?vari ?var2)
(bind 7new-total (+ ?total ?new-val))
(bind 7?new-count (+ ?count 1))
(bind 7new-level (/ 7new-total ?new-count))
(assert (SHOTLEFT ?r ?c¢ 7new-level 7new-total ?new-count))
(if (= ?code 0) then
(assert (ADJUSTED-SHOT ?rule-ID ?r ?c))) ; end if.
) ; end rule adjust-shot-value.

Figure 4.14: A sample rule from the Blackbox expert’s rule base.

The Blackbox puzzle consists of an 10 x 10 opaque grid, called the grid map,
hiding a certain number of balls. The task of the system is find the location of the
balls. To do so, the system fires “beams” into the box. The beams get absorbed
(“hit”) if their trajectory is incident on a ball, or get deflected if their trajectory is
adjacent to a ball. The hits and deflections are observed. Based on the deflections
and the hits, the system analyses the existing situation to infer position of the balls.
If it cannot determine the locations of all the balls, then it selects beams to be fired
from certain locations so that they can provide additional analysis information. This
process of beam selection and beam analysis continues until all balls are located, or
the system cannot identify some balls. In addition, the system is expected to minimize
the number of beams fired while trying to identify ball locations. The system was
developed independently by a research group who have also functionally validated
the system to compare its ability with a set of humans on selected set of test cases.
The problem solving ability of the system relative to the human subjects was found
to be acceptable [Grossner, Lyons, and Radhakrishnan, 1991].

Due to the large size of the rule base of the Blackbox expert, a combinatorial
explosion was encountered during path extraction. This combinatorial explosion was

controlled using rule equivalence classes, goal specialization, and by augmenting the

104

Strategy 0% >0% >30% >60% >70% >80% >90% 100%
Conservative | 35.9 64.2 32.4 26.2 20.0 18.6 17.6 174
Moderate 283 T1.7 30.6 46.9 36.4 27.3 19.0 18.4
Liberal 283 T71.6 52.8 50.1 43.1 42.2 33.0 33.3

Figure 4.15: Path coverage of the Blackbox expert for a test suite containing 17 test
cases.

goal specification by goal incorporation (section 1.3.1). Goal grouping by tasks re-
quired by path hunter made it easier to focus on the portion of the rule base where
combinatorial explosion was encountered, and thus allowed us to refine only a subset

of rules and goals.

Results: The CLIPS tokenizer was used for parsing the rule base of the Blackbox
expert. The execution of path hunter on the Blackbox expert’s rule base containing
442 CLIPS rules produced 512 split rules (rule abstractions that adhere to our model),
72 equivalence classes, and resulted in the identification of 516 paths [Grossner et al.,
1993]. These paths were inspected by the system designer and were certified to portray
the desired rule interactions in inferring goals. Rule splitting also identified several
rule coding errors by identifying several “undesirable” split rules to inspect and fix
the original rule that was the source of the split rules.

The path coverage of the Blackbox expert for a test suite containing seventeen
test cases is shown in Figure 4.15.2 The numbers in Figure 4.15 must be interpreted
as follows: for example, a number of 20.0 in the conservative strategy under column
“> 70%" is interpreted to mean that for the given set of test cases, 20 percent of the
516 paths had a coverage of more than 70%. Similarly, 33.3% of the paths had 100%
coverage using the liberal strategy for the given test set.

In addition, path tracing also provided insights into the activity of the various
rules in a path. Rule activity of a rule r refers to the relative frequency of firings of
this rule compared with the other rules. In particular, we are interested in the head
rules of a path because they are the first rule(s) in a path to fire. Thus, head rule

activity indicates which paths at least begin to fire for a given set of test cases, and

*Data reproduced (after correction) from [Preece et al., 1993b).

105

1500 A

Number of firings —
g

g

Head rules

Figure 4.16: Activity of the Blackbox expert’s head rules.

hence, the overall extent a path participates in problem solving (that is, it indicates
the path firing frequency [Preece et al., 1993b]). This information can be used for
system optimization, if necessary. For example, rule activity of head rules in Blackbox
expert’s rule base is shown using an histogram in Figure 4.16.

Though the results of (previous) testing of the Blackbox expert using the same
test suite was considered satisfactory [Grossner et al., 1991}, the structural validation
of the systern revealed that a significant portion of the rule base was never exercised
for this set of test cases. This indicated that a large part of the rule base may need to
be refined (see Figure 4.15). It also allowed a better understanding of the blackbox
expert’s problem solving and the interactions that occur between the rules. Path enu-
meration helped to uncover some coding errors in the rule base: for example, coding
errors were revealed when some rules did not appear in any path. The structural
validation experiment based on our model resulted in a better understanding of the

system, and also demonstrated the applicability of this model for analyzing large rule

106

bases (using path hunter and path tracer). This was one of the primary objectives

behind developing the implementation model discussed in section 4.1.

44 Performance Evaluation of Rule-based Sys-

tems

The term performance is used frequently to denote different qualities: extent of
anomalies, eficiency, etc. A survey of current works emphasizes the need for precise
definitions to quantify the notion of performance [Guida and Mauri, 1993; Hamilton
et al., 1991] because of the different interpretations used by different researchers [Long
and Neale, 1993; Preece et al., 1993a; Lunardhi and Passino, 1991; Plant, 1992; Vinze,
1992]. We define performance of a rule-based system in terms of two measures: the
ability of the system to arrive at a solution for a given problem. and the utilization
value of its resources used in problem solving. These measures are indicative of how
adequate is a system in its domain [Giovanni. 1939], and how efficiently it solves
problerns in its domain; they are called adequacy and optimality respectively. In
particular, the adequacy of the system indicates the extent a user can rely on the sys-
temto solvea given problem. Though optimality and adequacy are general measures
of performance. they are relative to the goal specification of the domain.® Note, the
use of paths and goals in assessing systermn qualities (section 4.6) can also be viewed
as qualitative measures of performance when comparing two systems.

General measures to quantify performance are needed because generic conclusions
about system performance cannot be made using specific coverage data obtained
from testing alone (even after testing with a large number of test cases). Though
conventional testing and test coverage measures produced as part of testing a systemn
can provide data to analyze the run-time performance, the data is relative to a set of
test cases. Inaddition, this set of test cases is not guaranteed to be a representative set
of the domain (one that ensures that the system has been tested sufficiently) [Preece

and Shinghal, 1992; Chang et al., 1990; O Keefe et al., 1987].

3This is not a drawback because the goal specification of a domain is meant to abstract general
problem solving for the domain and not that of solving one specific problem.

107

Test coverage with one test case. (File: log.a.patra)

Strategy 0% 1-30% 51-60% 61-70% 71-80% 81-90% 91-99% 100%
Conservative | 72.5 17.6 0.8 0.8 0.2 0.0 0.0 8.1
Moderate 67.4 85 2.3 6.6 6.0 1.0 0.0 8.1
Liberal 67.4 T4 0.0 1.2 3.9 3.1 0.0 17.1
Test coverage with seventeen test cases. (File: log.q.patra)
Strategy 0% 1-50% 51-60% 61-70% 71-80% 81-90% 91-99% 100%
Conservative [35.9 31.8 6.2 6.2 1.4 1.0 0.2 17.4
Moderate 28.3 211 3.7 10.5 8.9 8.5 0.6 18.4
Liberal 28.3 18.8 2.7 3.0 2.9 7.2 1.7 33.3

Figure 4.17: Percentages of Blackbox expert paths covered in testing: two samples.

For example, consider Figure 4.17 that depicts the coverage information obtained
for the Blackbox expert (section 4.3) for one test case and seventeen test cases [Preece
et al., 1993b]}. Using a conservative counting strategy, the percentage of paths that
were covered 100% for the Blackbox expert was 8% for a single test case, and goes up
to only 17% with seventeen test cases. Thus, even with 17 test cases, nearly two-thirds
of the paths are not covered.* However, we cannot assume that the system does not
exercise a major portion of its paths or a large portion of the rule base is redundant,
even though this set of test cases was used to compare its performance with human
experts [Grossner et al., 1991], because this is not necessarily a representative set of
test cases that are needed to sufficiently test the system [Preece et al., 1993b, 1995].

General performance measures are necessary when comparing two systems because

of the following:
e dataobservations based on a set of test cases cannot compare systems operating
in different domains; and
e testing alone can miss detecting some general performance attributes of a sys-

tem [Chander et al., 1994).

To model the optimality and adequacy of a system, consider a typical problem

solving scenario in this framework. Let v be a set {i1, 22,..., f1, fa,...} such that in

1At the other extreme, the number of paths that had 0% coverage dropped from 70% (one test
case) to 35% (seventeen test cases), but, based upon this information, one cannot conclude that
nearly one-third of the rule base is useless.

108

solving a problem P in the domain, the system infers goals 2;.1a. fi. fa. ... where,
1. The f’s are final goals that constitute the problem solution.
2 The i’s are intermediate goals that are ancestors of the final goals inferred.

In solving a problem, if an intermediate goal ¢’ was inferred that later did not become
an ancestor of any of the f's, then i’ does not belong to v. Since i’ did not help
in inferring any of the f's. inferring 7 was unnecessary. Thus, the set of i’s that is
not an ancestor to any of the final goals indicate that the system is not functioning
optimally in its domain. Similarly, the problems for which the system does not infer
a solution indicate that the system is not adequate enough for the domain.

More precisely, the performance measures adequacy and optimality can be com-
puted using the notions of goal relevancy and relevancy ratio. Given the initial
evidence corresponding to a problem, if the system infers some final goals that cor-
respond to the solution of the problem, then the inferred final goals are said to be
relevant. An intermediate goal is relevant iff there exists a problem in the domain
whose solution has this intermediate goal as its ancestor. A final (intermediate) goal is
irrelevant iff it is not a relevant final (intermediate) goal. A system is goal-relevant
iff all its goals are relevant. A system is said to be goal-irrelevant iff it is not
goal-relevant. Clearly, an irrelevant firal goal does not constitute a solution to any
problem in the domain and reflects on the capability of the system, that is, its possible
inadequacy [Giovanni, 1989]. Irrelevant intermediate goals indicate that the system
at times may do redundant work by inferring goals that are never used for inferring
any solution; this may suggest that the system may be functioning sub-optimally in
its domain. The relevancy ratio measures the percentage of relevant intermediate and

final goals, and indicates the extent of goal (hence. resource) utilization of the system.

Definition 16 (Relevancy ratio) The relevancy ratio of intermediate goals is defined

NI S
as —-N—I-'- where, NI, is the number of relevant intermediate goals and N1, is the total
t

number of intermediate goals in a goal specification. The relevancy ratio of final goals
NFr . . .
is defined as ~NT. where, NF, is the number of relevant final goals and NFy is the
{
total number of final goals in a goal specification. The overall relevancy ratio of the

109

1
12
13
fi The set v (partial) from this test is,
f . S
i4 T = { ({21) 12, 7'3}3 fl)v ({ll1z2’ 13}1 f2)7 <{zla 12,13, 24315}1 f3) }
i . . : . .
f5 This set 4, extracted is partial because, this set of goals inferred
X s is specific to problem P,. We have used the notation iy, 22,... to
' indicate intermediate goals and fi, f2... . to indicate final goals.
Goals observed in testing the
system on problem P,.

Figure 4.18: Determination of optimality and adequacy by testing with a set of test
cases.

system is defined to be:
(NI + NF})
N

where N is the total number of goals in the goal specification (that is, N = NI,+NF;).

R =

A relevancy ratio of less than 1 for intermediate (final) goal indicates sub-optimality
(inadequacy). Thus, the relevancy ratio R for the system is a general performance
measure of the system’s utilization of its resources for problem solving. Note, if the
adhocness metric of a scheme is 0o (chapter 3, section 3.3.2), rule bases adhering to
that scheme may exhibit a low relevancy ratio.

One way of determining goal relevancy and relevancy ratio of a system is by testing
the system on a set of problems Py, P, ... to determine the set v for each problem P,
as shown in Figure 4.18, and computing their union. However, testing to determine

a systemn’s optimality and adequacy is limited by the following result.

Theorem 2 The determination of goal-relevancy by testing (that is, using a set of
test cases) is semi-decidable.

Proof. For every P, used as a test case, we obtain the corresponding set ; by the
procedure outlined above. If a stage comes that yy U v, U3 U ... contain all the goals
in the system, then we terminate the procedure since the system is goal-relevant. The

disadvantage of this approach is that this procedure may never terminate. The reason

110

s as follows: if after generating ~,, the procedure has not termimated because the wnion
of the 4y 's collected so far does not include all the goals, this does not necessarily suggest
that this procedure will terminate after generating =41, The rapidity with which the
procedure terminates, if it does at all, depends upon the problems selected from the

domain which can be infinite. The procedure is thus semi-decidable in general.

Note that the semi-decidability arises owing to the decision of using a testing
strategy that tries to include all problems in the domain to determine the perfor-
mance measures optimality and adequacy; v problem of optimality and adequacy
determination itself is not semi-decidable. However, most developers tend to use a
functional testing approach for their systems and often refrain from performing any
structure-based testing as observed in [Hamilton et al.. 1991] (see also chapter 1, sec-
tion 1.2.2). Thus, the above result is important to a developer because it emphasizes
the need to determine the performance measures optimality and adequacy through an
examination of the system structure by pointing out the limitation of the commonly
used functional testing in this context.

The determination of relevant and irrelevant goals is non trivial in general because
a given intermediate goal may have a path inferring the goal. vet it can be irrelevant.
This can happen because this goal was never used to infer any other final goal.
Similarly. a final goal may be inferred by a path. but the rules ia the path may never
be enabled because no permissible combination of initial evidence would be causal
to do so. Thus, it is necescary to enumerate all path sequences from permissible
combinations of initial evidence to final goals to determine the goal dependencies. In
other words, a procedure to extract the goal graph from a rule base, using paths as
connectors, is required. The goal graph extracted from the rule base can be traversed
to identify goal irrelevancy in the system. if any.

A goal graph traversal should mark all the connector chains from permissible
initial evidence to a final goal. Since these are simply the routes {definition 15,
page 84) paths and goals can be used to determine the gval-relevancy of a system.
Intuitively, the procedure to determine the goal-relevancy of a system proceeds as

shown in Figure 4.19.

111

1. Select a final goal f.

2. Starting from f, recursively traverse goal graph containing all
the goals from which f can be inferred.

The above procedure gives all relevant routes, and irrelevant routes
culminatirg on a final goal in the goal graph.

To obtain .rrelevant routes that culminate on an intermediate goal, do
the following:

1. Start from every intermediate goal : that has not appeared in any
of the routes after steps 1 and 2 of the above procedure are
applied to all the final goals.

2. For such intermediate goals ¢ traverse recursively the goal graph

containing all the goals from which 1 can be inferred.

This would obtain irrelevant routes that culminate on the intermediate
goal 1.

Figure 4.19: Determination of relevant and irrelevant routes in a goal graph.

The goal graph of the example rule base shown in Figure 4.7 is shown in Fig-
ure 4.20. For this rule base and the given goal specification, the algorithm would
output intermediate goals g;; and gi4 as irrelevant. An examination of the rules re-
alizing these goals indicate a design scheme violation (goal g;, does not contain any
intermediate hypothesis, thus violating restriction I3), and errors (goal g14 is irrel-
evant because rule R15 can never be enabled from the given set of initial evidence
possibly ind:cating a deficient goal specification). Note, had the rule base been coded
such that rules R16 and R17 were combined into one rule, then solution g,; would
have been flagged as irrelevant. The relevancy ratio of the example system is 80%:
this means that eighty percent of the goals specified were usefully utilized for problem
solving.

For the Blackbox expert, 38.7% of the goals specified were not inferred by any
path. Thisis not surprising as the goals were reverse engineered from the rule base and
goal specification refinement was focused only to « ontrol the computation; thus, many

of the goals specified were not useful in abstracting problem solving in its domain.

132

gon = REGISTERED(z)

go2 = GREENBORDRID(z)

gos = HARDWORKING(z)

goa = DEANSLIST(z)

911 = GOODGRADES(z,y)n
GT(z,Gpa,3.5)

g12 = ACADEMIC(z)

913 = ACADEMIC(z) A YOUNG(z)

914 = BURSARY(z)

15 = GOODCAREER(z)

921 = COMFLIFE(z)

Figure 4 20: The goal graph for the rule base shown in Figure 4.7.

This further emphasizes that system development should stari with an initial goal
specification, and as part of the system’s life-cycle, incremental evolution of the rule
base and refinement of goal specification should go hand in hand to improve its quality
and performance.

A formal presentation of the algorithm to traverse a goal graph using the connec-
tors is shown in Figure 4.21. Once the irrelevant goals are identified, the relevancy
ratio can be determined. In the worst case, the algorithm visits every intermedi-
ate goal |F| times, - here |F'| is the number of final goals, because every final goal
f € F can require every intermediate goal in I. Thus, the total number of times
the intermediate goals would be visited in the weust case by the traversal algorithm is
given by |I| x| F|. In this analysis, we have not included the complexity of goal graph
extraction which can be exponential in the worst case as outlined by the following

result.

Theorem 3 Given an arbitrary rule base and geal specification, extraction of the goal
graph from the rule base is of exponential complezity in the worst case.

Proof. The proof consists in showing that the procedure for extracting the necessary
paths to build the goal graph is identical to a procedure that has an exponential time

complezity in the worst case for at least one instance of the goal specification. Since the

113

Procedure Gety
Input: Connectors, Set of final goals (F), Set of intermediate goals (I)
Gutput: The set v
begin /* Determination of v */
1.y:=0

2. Start by selecting a f € F; mark connectors to f as unseen

3. Repeat
3.1 While (one more connector @ to f is marked unseen) do
311 I':'=10

3.1.2. Pick the connector @ inferring f marked unseen;
mark this connector as seen.

/* obtain the goals at the other end of ¢ */
3.1.3. Derive the subset G of I that is required by
the connector ®

3.14. I':==I'UG /* G obtained in previous step */

/* Traverse the goal graph using the connectors */
3.1.5. Apply 3.1.3—3.1.4 recursively for all connectors to each
goal in I' until a level-0 goal is reached.

/* Accumulate the goals collected so far into v */
3.16. y:=qUT'U{f}

end /* while */

/¥ All possible traversals from f has been completed */

Until (as long as there is a goal in F' to which step 3.1 has not been applied)

4. Qutput 7.
end. /* End of Gety */

Figure 4.21: A procedure to determine whether a system is goal relevant by traversing
the extracted goal graph from a rule base.

114

goal specification can be arbitrary, in a goal specification where every final hypothesis
is a final goal and every intermediate hypothesis is an intermediate goal, the goal
graph exrtraction procedure is identical to computing final-hypothesis labels from initial
evidence combinations [Ginsberg, 1988; Loiseau and Rousset, 1993] which has an

ezponential complezity in the worst case.

Such a worst case scenario, however, would rarely arise in practice when using a
well formulated goal specification. Theorem 3 is only a caution against ad hoc goal

specification, and should not be construed to be a limitation of this framework.

4.5 Verification of Rule-based Systems

In practice, a system should be verified before it is validated because the anomalies
in its rule base (if any) can affect the validation results [Preece, 1992]. Rule-based
systems inadvertently suffer from four anomalies known as CARD (chapter 1, sec-
tion 1.2.2): Circularity, Ambivalence, Redundancy, and Deficiency. These anomalies
can cause errors during rule base processing. It is not practical to manually detect
these anomalies in large rule bases; procedures to automate this detection are required.
Such procedures are collectively referred to as rule base verification procedures [Preece
et al., 1992b).

A rule base that contains a rule and/or an atom such that removing it, or removing
a part of it does not affect the functioning of the system, is said to exhibit redundancy.
A system is said to be ambivalent whenever an inviolable becomes true. Deficiency
refers to missing knowledge in a system. Circularity is present whenever circular
dependencies exist between the rules [Preece et al., 1992a]. In order to detect these
anomalies, one must identify certain rule situations that can be indicative of one or
more of these anomalies. They are called rule aberrations because they indicate

an abnormality in the system [Chander et al., 1993].

Definition 17 (Rule Aberration) Let A denote the anomaly set of a rule base (typi-
cally the CARD anomalies). A rule aberration in a rule base consists of a set of paths

that portray the manifestation of one or more elements from the anomaly set A. If

115

™, a (sub)set of paths in a rule base, is an aberration, then we can state that
rkEaCA

Goal specification, paths, and the extracted goal graph allow for a comprehensive
detection of the CARD anomalies in a rule base at any stage during its construction:
simply spot paths satisfying the conditions of one, or more rule aberrations. We give
below a list of aberrations, and provide comments about the possible anomalies that
the aberration could indicate. We, however, do not claim that the list is exhaustive.
Studying the aberrations provides a different perspective on anomaly detection in rule
bases by basing this process on rule sequences pertinent to problem solving rather
than rules, thus capturing the rule interactions as well.

Prior to checking for the aberration conditions in a rule base, it is assumed that
the relevant and irrelevant routes have been extracted from the 1ile base (section 4.4).
The identification of specific rules and atoms that cause anomalies in the rule base is
called flagging. These procedures flag rules to make the knowledge engineer aware
of them; on further examination, the knowledge engineer may leave a flagged rule
unchanged, edit the flagged rule, or may add other rules to the rule base so that
the flagged rule is no longer causal to the detected anomalies. Below, we describe a
list of aberrations that characterize redundancy [Chander et al., 1995]. Note, these

aberrations can be caused due to deficiency in the system as well.

Aberration 1. Ifa rule appears only in irrelevant routes, then it does not contribute
to solving any problem because either it does not begin from initial evidence, or it
does not end in a solution. Hence, such a rule could be redundant. Similarly, a
rule does not contribute to problem solving if it does not appear in any route. Such
rules are flagged by these procedures. The description for this aberration is shown in
Figure 4.22.

In the example rule base, rules R1, R2, and R3 (see Figure 4.8) will be flagged
because they appear only in an irrelevant route, and rule R15 will be flagged since it
appears in no route (the atom GOODRECORD(x, Juniorcollege) in its antecedent is

not inferred by any of the rules). Interestingly, even if this is corrected, rule R15 would

116

Aberration 1 (Redundancy due to route irrelevancy.)

begin
1. For all rules r do
if all routes in which r appears are irrelevant or empty,
then flag r as potentially redundant;
end

Figure 4.22: A description of rule aberration 1.

Aberration 2. (Detection of redundant rule chains.)

begin /* For redundancy of rule chains; See Nguyen (1987);
we also enable detection of redundant rules */
1. Flag paths appearing only in irrelevant routes as redundant.
2. For any two paths @, and ®,,
(i) if the goals required for ®; subsume the goals required for ®,, and
the goal inferred by ®; subsumes the goal inferred by &,, then flag &, and ..
/* For efficiency, we may consider only relevant routes */
3. For any two paths &, and ®; where each appears in at least one relevant route
(i) if goals required for @, is subsumed by the goal(s) required for &,, and
(i) if goal inferred by ®; subsumes goal inferred by ®;, then flag ¢, and ®,;
/* For example, if goal atoms inferred by @, is a subset of the goal atoms
inferred by ®,, then flag rules in ®; not appearing in any other path. */
end

Figure 4.23: A description of rule aberration 2.

still not appear in any path. Inspection should reveal that the atom GOODCAREER(x)

in the consequent of R15 is redundant.

Aberration 2. A rule chain as used in the literature [Nguyen, 1987] is a linear

sequence of rules. Aberration 2, shown in Figure 4.23, can be used to detect redundant

rule chains.

We detect redundant rule chains without much of computational overhead. For

example, we can flag the sequence @ — ¢ — d as redundant with respect toa — b — d.

Further, if rule ¢ — d does not appear in any path other than those where @ — ¢

117

Aberration 3. (Detection of redundant atoms.)

begin /* Based on goal redundancy */
1. For all paths @, if more than one rule infers the set of goal atoms for goal ¢
inferred by ® do
(i) Let X := set of goal atoms that are multiply inferred.
(it) if any subset Y of X is multiply inferred in all paths in which these goal atoms,
are inferred, flag this subset of goal atoms.
(ii1) if a toe rule r in @ has goal atoms only from the set Y in (ii) above,
flag rule r.
/* a complementary step to step 1; applied to non-goal atoms; */
2. For all paths ®, let X be the set of dangling non-goal atoms
(i) if non-goal atoms in (a subset of) X are dangling in every path they appear,
flag this (sub)set of non-goal atoms.
(it) For all rules ry that infer some dangling non-goal atoms in (a subset of) X
above, and some other consumed non-goal atoms, if some other rule(s) infer the
consumed non-goal atoms in every path where r; appears, flag r,.
end

Figure 4.24: A description of rule aberration 3.

appears, we can infer that the former rule is redundant; in addition, if rule ¢ — d
appears in only those paths where a — ¢ appears, we can also conclude that a — ¢
is possibly redundant. The method in Nguyen (1987) will flag the above rule chains,
but their approach to the extraction of rule chains may not be practical for large rule
bases. We, however, can extract paths from large rule bases using the path hunter
tool (section 4.3.1). Note, by virtue of path definition, we flag not only rule chains
that are linear, but those that are non-linear as well. In the example rule base, path
®1 (see Figure 4.8) exhibits redundancy with respect to path $2: both ®1 and 2
infer ACADEMIC(x) whenever initial evidence { REGISTERED(x), GREENBORDRID (x)

} is present; path ®1 is a non-linear sequence of rules.

Aberration 3. The intuition behind aberration 3, shown in Figure 4.24, for de-
tecting redundant atoms is that whenever atoms are inferred by a rule r, if some
other rule(s) always fire to infer these atoms additionally, then such atoms in the

consequent of r are possibly redundant.

118

Two types of non-goal atoms can be identified in a path based upon the consump-
tion of a rule in that path: “dangling” atoms and “consumed” atoms. A dangling
non-goal atom in a path is an atom in the consequent of a rule, but does not unify
with an atom in the antecedent of any other rule in the path: for example, atom
COMPLETED(x, Juniorcollege) in path ®3 of Figure 4.8. A consumed non-goal atom
in a path is an atom that is in the consequent of a rule, and unifies with an atom in
the antecedent of one other rule in the path. Toe rules can be easily flagged redun-
dant by this aberration whenever their consequent is inferred by other rules in every
path they appear. All that is required is a simple look up on the set of paths. In the
example rule base, the rule R4 will be flagged redundant by step 1 (iii) of Figure 4.24
because the atom ACADEMIC(x) in its consequent is always inferred by some other
rule in every path in which it appears, and atom COMPLETED(x, Juniorcollege) in
the consequent of rule R9 to be redundant by step 2 (i) of Figure 4.24. Note, atom
COMPLETED(x, Juniorcollege) is used in the antecedent of rule R15; thus, detection
methods based on simple unification may not detect this atom as redundant [Polat

and Guvenir, 1993).

Aberration 4. The traditional methods flag duplicate rules and rules of the form
a — band a A ¢ = b, where the latter is subsumed by the former. Using paths,
however, a more general form of detection is possible. Let r; : A, A A3 — H and
r2 ¢ A1 A Ay — H' be any two rules such that A3 is a goal atom, the remaining atoms
are non-goal, and the H's represent hypotheses which can be a conjunction of atoms.
Further, let H subsume H'. Then, the rule pair < ry,r; > is flagged redundant based

upon the following conditions:
(1) If every path in which r, appears has at least one rule that infers A, (in other
words, whenever r| fires, r; can also fire) then perhaps rq, or r; is redundant.

(ii) Whenever ry occurs in a path from G to g and Aj is contained in G (in other
words, r; can also be used to traverse between any G to g whenever r; can do

so), then perhaps r;, or r; is redundant.

119

Aberration 4 (Subsumed rules.)

begin
Let r; and r; be any two rules in the rule base.
1. Flag < ry,7m3 >,
{/* r1 can traverse between any goal-goal whenever r, can */
(i) if the goal atoms in the antecedent of r, are contained in the
goals required for every path where r; appears, and
(ii) Every non-goal atom in the antecedent of r; not present in the
antecedent of r; is supplied by some rule in every path in which r, appears, and
(iii) One of the rule consequents subsumes another.
2. Flag < r1,ry >, /* vice versa */
(i) if goal atoms in the antecedent of r; are contained in the set of
goals required for every path that contains ry, and
(it) Every non-goal atom in the antecedent of r; not present in the
antecedent of 7, is supplied by some rule in every path in which r, appears, and
(iii) One of the rule consequents subsumes another.
end

Figure 4.25: A description of rule aberration 4.

We flag both the rules because the consequent of rules r; and r; should be exam-
ined before concluding redundancy. For example, (1) if H is BIRD(z) and H' is
BIRD(Tweety), and condition (i) above holds then r; is redundant; and (2) if H is
BIRD(z) and H' is BIRD(z) A SINGS(z), and condition (ii) above holds then ry
is redundant. A description of this aberration is shown in Figure 4.25.

As a further example, the above aberration can be used to flag rules R8 and R13
in the rule base of Figure 4.7 because rule R13 is enabled whenever rule R8 is enabled,
and the consequent of R13 contains the consequent of R8. This unwanted interaction
(due to subsumption) between these rules accounts for the coverage of p>th ®4 for
test set 2 shown in Figure 4.9 (section 4.3). The detection of subsumed rules is
important because rule subsumption can interfere with certain “greedy” inference

strategies producing unexpected results (O’Leary, 1995].

Aberration 5. Inferring an atom used only in the antecedent of flagged rules is

possibly redundant. If an atom A in the antecedent of one of the rules flagged by

120

Aberration 5. (Detecting useless inferences.)

begin
1. Let X := rules flagged redundant in any of the above aberrations 1-4, consider
the atoms in the antecedent of the rulesin X.
2. If some of these atoms never appear in the antecedent of rules not in X
then flag these atoms.
3. if a rule r infers any of the atoms flagged in step 2,
then flag r. /* useless inference */
end

Aberration 6. (Detecting redundant consumed atoms.)

begin
1. Let X := rules flagged redundant in any of the above aberrations 1-4, consider
the atoms in the consequent of the rules in X.
2. If some of these atoms never appear in the consequent of rules not in X,
then flag these atoms.
3. If a rule r uses any of the atoms flagged in step 2,
then flag r. /* potential unreachability */
end

Figure 4.26: A description of rule aberrations § and 6.

aberrations 1-4 never appears in the antecedent of rules that are not flagged, then
this atom is redundant. Aberration 3 checks for this condition, and is described in
Figure 4.26. Note, this type of flagging would require examination of some rules that
have not been flagged, but use these atoms in their consequent.

In the example rule base, atom HONSCOURSES(x) would be flagged by aberration
5. This would, in turn, require examination of rules R7 and R11 that use this atom

in their consequent.

Aberration 6. Atoms in the antecedent of a rule r inferred only by rules flagged
already are redundant. The rule r can become unreachable if all the flagged rules are
deleted from the rule base. Aberration 6 checks for this condition and is shown in
Figure 4.26. Note, this type of flagging would require examination of som.e rules that

have not been flagged, but use these atoms in their antecedent. This is complementary

121

Flagged Rules/Atoms Route(s) | Aberration(s)
R1, R2, R3 o1

R17 o6 Aberration 1
R15 none

Paths ®1 and $2 NA Aberration 2
COMPLETED(x, Juniorcollege) | NA Aberration 3
R4, ACADEMIC(x)

R8, R13 NA Aberration 4
UGRAD(x), NA Aberrations
HONSCOURSES(x),... 5and 6

Figure 4.27: Summarizing the results of redundancy/deficiency aberrations for the
example rule base of Figure 4.7.

to aberration 5. Checking for aberrations 5 and 6 is, however, optional.

In the example rule base, atom UGRAD(x) would be flagged by aberration 6. This
in turn requires examination of rule R9 that uses this atom in its antecedent. For
convenience, the rule aberrations and the affected rules and atoms in the example
rule base are summarized in Figure 4.27.

Inspection of the rules and atoms flagged by the above aberrations should also
reveal a design scheme violation. Of course, whenever rules or atoms are flagged
by aberration procedures, refining the goal specification and editing the rule base
may remove the anomalies. For example, the subsumption problem between R8 and
R13 can be corrected by modifying the permissible combination of initial evidence
HARDWORKING(x) A GREENBORDRID(x) to HARDWORKING(x) A GREENBORDRID(x) A
GOODRECORD(x,y), and the antecedent of rule R13 to contain the atom GOODRECORD(x,
Courses). However, modifications to fix a detected anomaly can also introduce ad-
ditional anomalies. For illustration, consider the following modification to the rule
base in Figure 4.7 to ensure that rule R15 appears in a path.

As rule R15 was flagged redundant by aberration R-1, a knowledge engineer try-
ing to fix this redundancy can include GOODRECORD(x, Juniorcollege) as initial
evidence. However, this still would not make R15 appear in a path. It is required to

remove GOODCAREER(x) in the consequent of rule R15. In addition, the conjunction

122

NOFINAID

{REGISTERED, —

GOODRECORD) RIS R1S

Figure 4.28: The path where rule R15 appears.

REGISTERED(x) A GOODRECORD(x,y) must also be added as a permissible combina-
tion of initial evidence. To accommodate the status of a registered person with good

grades in junior college, assume that the following new rule is added:

R18: REGISTERED(zx) A GOODRECORD(z, Juniorcollege) —
COMPLETED(z, Juniorcollege) A NOFINAID(z)

to encode the knowledge describing a person just registered after completing junior
college, who does not receive any financial aid. This adds a new path which is shown
in Figure 4.28.

However, the modification to remove the redundancy of rule R15 3s now resulted
in another anomaiy in the rule base. The path in Figure 4.28 infers an inviolable:
BURSARY A NOFINAID; thus, the system is now ambivalent. An inspection of the rule
base shows that, in this case, atom NOFINAID(x) is not required in the consequent of
rule R18, because rule R1 makes that inference for a general registered undergraduate
student. The impact of a rule modification can immediately be assessed by thus
checking the paths affected for aberrations, if any.

In general, ambivalence can manifest in other ways than the one described above.
The aberrations shown in Figure 4.29 characterize ambivalence in a system [Chander

et al., 1995b, 1995¢].

Aberration 7. This is based on a path and a goal it infers. Clearly, in trying
to infer a goal, the non-goal atoms in a path should not violate a constraint. For
example, MALE(x) A FEMALE(x), should not be inferred in a path even though it

may infer something useful. Condition 2 of this aberration prohibits incorrect goal

123

Aberration 7 (Ambivaicnce in a Path.)

begin
1. (Intra-path) The conjunction of non-goal atoms in a path should not be
subsumed by an inviolable. This also applies to the conjunction of all the atoms
in a path.
2. (Goal ambivalence) No goal should be subsumed by an inviolable. This can
indicate inaccuracies in knowledge acquisition.
3. The set of goals required by a path should not contain or be subsumed by
an inviolable.

end.

Aberration 8 (Ambivalence over Inference Chains.)

begin
1. The conjunction of non-goal atoms in a relevant route should not be subsumed by
an inviolable. This means as part of problem solving at leasi one constraint
is violated.
2. The conjunction of goal atoms in a relevant route should not be subsumed
by an inviolable. This means as part of problem solving at least one constraint is
violated.
/* Also check for constraint violation for all atoms inferred in the route */
end.

Aberration 9 (Impact of Impermissible Initial Evidence.)

begin
1. As part of route determination check if an impermissible set of initial evidence
is obtained at level-0.
2. (Reverse of 1) For every set of impermissible initial evidence, check if paths
and routes can be enumerated. Flag all these paths.

end.

Figure 4.29: A description of rule aberrations 7, 8, and 9.

124

specification, and condition 3 checks that no path should start at the cost of violating

a constraint.

Aberration 8. Aberration 8 considers transitivity of inferences—an inference used
for other inferences—to check for ambivalence. Note, checking that every path is free
from ambivalence (cf. aberration 7) does not ensure that a route is free from ambiva-
lence. There are two scenarios to consider when checking for route ambivalence. In
the first scenario, while goals are not inviolables themselves, some of the goal atoms
can be part of inviolables. During problem solving. whenever this set of atoms are
collectively inferred over a sequence of paths, the system would infer an inviolable
(hence, ambivalent). In general, a system is potentially ambivalent., whenever a set of
goals subsume an inviolable. The ambivalence is potential because this is problematic
iff we have path(s)/routes that involve this set of goals. In the second scenario, we
ensure no atoms involved in a relevant route violate a constraint: this ensures that
this complete sequence of paths from level-0 goals to final goals is free from ambiva-
lence. More specifically. we may check if a set of non-goal atems. or goal atoms (or
their combination) violates a constraint in order to focus the fix in the rule base, or

goal specification (or both).

Aberration 9. This is based upon measuring the system response to impermissible
combinations of initial evidence by checking the rules/paths affected. Conditions 1
& 2 of this aberration check for all routes that can be caused by an impermissible
combination of initial evidence: this is serious because if at least one of these routes
is relevant, then initial evidence that is insufficient (or, perhaps invalid) is treated as
a valid input by the system. This reflects on inaccuracy and negative adequacy of the
system (solving problems that are not intended to be solved). For instance, a doctor
requires more information in addition to the fact that r is female to infer that = is
pregnant. However, if a system infers PREGNANT (x) whenever FEMALE(x) is iuput, this
indicates an error in knowledge encoding. The purpose of aberration 9 is to detect

such behavior, if present, in the system. As an additional example, the rule base of

Aberration 10 (Path Circularity.)

begin
1. A sequence of paths (d,...®,) where goal inferred by a path @,_; 1 <i<nis
used as part of the start state of path ®,, such that the goal inferred by ®,, is
contained in the start state of ®,.

end.

Figure 4.30: A description of rule aberration 10.

Figure 4.7 can infer a solution COMFLIFE(x) from DEANSLIST(x).% However, as atom
DEANSLIST(x) alore does not constitute a permissible combination of initial evidence
according to the goal specification, this can indicate an error in the rule base and/or
goal specification. In our case, it indicated an error in the rule base (deficiency in
rule R13) and goal specification. Note, checking for condition 2 of aberration 9 only

requires a minor modification to the algorithm described in Figure 4.21 (section 4.4).

Aberration 10. There is only one aberration to characterize circularity in a rule
base. Its description appears in Figure 4.30. The start state of a path refers to
the set of goals required by a path before the rules in the path can fire. The above
detection of circularity can flag more than one circular dependcucy between the rules
in the system because a path is not necessarily a linear sequence of rules. (Any
cycle detection algorithm for graphs can be used to detect cycles once the goal graph
is extracted frorn the rule base.) In addition, during path extraction, path hunter
(section 4.3.1) also flags rules whenever it detects a circular accessibility relationship
between the rules in the rule base. The algorithms for detecting the rule aberrations
described in this section appears in the appendix. The finul version of the rule base
after making the required modifications to fix the detected anomalies is shown in
Figure 4.31.

Once all the detected anomalies are fixed, and the system behavior is judged to
be acceptable by a knowledge engineer, the system is tested for the satisfaction of

the user acceptability criteria [Preece, 1950; Ghezzi et al., 1991]. Often, the user

5This rule chain was captured as a fragment by path hunter.

126

R1 : REGISTERED(z) A GREENBORDRID(z) —
ENROLLED(z) A NOFINAID(z)
R2 : ENROLLED(z) - STUDENT(x)
R3 : GREENBORDRID(z) A NOFINAID(x) — UGRAD(z)
RY . STUDENT(zr) A UGRAD(z) — ACADEMIC(z) A YOUNG(z)
R5 : DELETED
R6 : DELETED
R7 : DEANSLIST(z) — HIGHGPA(z) AHONSCOURSES(z)
R8 : REGISTERED(x) A HONSCOURSES(x) - UGRAD(z)
R9 : UGRAD(z) A DEANSLIST(z) — GOODGRADES(z, Juniorcollege)
R10 : HIGHGPA(z) A REGISTERED(z) - GT(z,Gpa, 3.5)
R11 : HARDWORKING(z) A GREENBORDRID(z) —
HIGHGPA(x) AHONSCOURSES(x)
R12 : Merged with rule R11 above
R13 : HIGHGPA(z) A HONSCOURSES(z) A
GOODRECORD(z, Courses) — DISTINCTION(z)
R14 : DISTINCTION(z) - GOODCAREER(«x, Industry)
R15 : GOODRECORD(z,Juniorcollege) A
COMPLETED(z, Juniorcollege) = BURSARY(z)
R16 : GOODCAREER(z,Industry) — COMFLIFE(z)
R17 : BURSARY(zr) — COMFLIFE(x)
R18 : GOODRECORD(z,Juniorcollege) NREGISTERED(z) —
COMPLETED(z, Juniorcollege)

Figure 4.31: The modified rule base based upon the evaluation resul.s of the rule
base shown in Figure 4.7.

127

acceptability criteria can impose further constraints on the user interface required,
on the response times, on the system adequacy, etc. Let us assume that the user
acceptability criteria involves that the system should be adequate in its domain (that
is, should produce a solution for every permissible combination of initial evidence).
The final set of paths and the goal graph for the system are shown in figures 4.32
and 4.33. There are no more unwanted rules or atoms. All the rules in the rule base
come into play for problem solving and the system is optimal and adequate for the
given goal specification. As there are no irrelevant final goals, the system satisfies the

user acceptability criteria.

4.6 Using Paths to Assess Qualitative Aspects of

a System

There are several qualitative aspects of a system such as understandability, maintain-
ability, etc, that cannot be described using a numerical measure. In this section, we
provide perspectives on how paths and goals can be used for assessing of a variety
of rule base qualities, both internal and external, to facilitate comparison between
two systems [Ghezzi et al., 1991; Preece et al., 1993a]. The qualities below are not
exhaustive, but are the most popular and frequently cited in the literature [Preece
et al., 1993a; Ghezzi et al., 1991; Hamilton et al., 1991; O’Neal and Edwards Jr., 1993;
Chen and Suen, 1993; Antoniou and Wachsmuth, 1994]. Note, not all system quali-
ties can be assessed this way. For example, system qualities such as inter-operability,

and portability cannot be assessed using paths and goals.

Understandability: The understandability of a system is portrayed to some extent
by the individual paths for goal-to-goal progressions and routes to arrive at a
solution for permissible initial evidence. The paths and routes thus :apture the
overall problem solving that occurs. The goal graph extracted from the rule
base (section 4.4) allows one to compare the working of a system to that of
the mental view of a domain expert: this allows a better understanding of the

system, and the fixes required (if any) to obtain the desired behavior.

128

B2
{8o3' 8 } R2
YOUNG
@1 RI R4
ACADEMIC
R3
g
{801’ 802 ¥ RIS [__; RIS BURSARY ,{
P2
GOODGRADES glJ
{%02> 8os } R7 - J_W RS R9
D3
— R10
GT(x,Gpa, 3.5)
£14
{ 803 Bo4» gon)
Ril \ GOODCAREE
4 S R =l RI4
(Bu) 821 {81) g2
COMFLIFE COMFLIFE
ds5 RI16 ' 6 R17 >

Figure 4.32: Paths of the rule base shown in Figure 4.31 which is the rule base

modified to fix the errors, anomalies and scheme violations detected after evaluation
of the rule base shown in Figure 4.7.

129

gon = GOODRECORD(z, Juniorcollege)

goz = REGISTERED(z)

goz = GREENBORDRID(z)

go4 HARDWORKING(z)

gos = DEANSLIST(z)

gnn = BURSARY(2)

g1 = ACADEMIC(z)A YOUNG(z)

g1z = GOODGRADES(z, y)A
GT(z,Gpa,3.5)

g14 = GOODCAREER(zx, Industry)

g1 = COMFLIFE(z)

]

Figure 4.33: The goal graph for the rule base shown in Figure 4.31.

Modularity: The modularity of a system is described by rule sets, also called rule
groups [Jacob and Froscher, 1990], that are required to solve a task, and the re-
lation between the various rule groups. Path hunter requires goals to be grouped
by tasks. (For small systems, we have just one task: the problem name itself.)
The tasks can be treated as portraying the minimally required modularity in the
system and the goals of a task as akin to “module interface specification” [Ghezzi
et al., 1991; Preeceet al., 1993a]: that is, it portrays how one task can be solved
using goals only, viewing them as “black boxes.” The paths associated with a
task refers to rules inferring goals required to solve that task. Thus, this allows
grouping of rules associated with that task. The rules that participate in solv-
ing more than one task, that is, rules that appear in paths for different tasks
serve to connect the tasks, and hence facilitate documenting the relationship
between the tasks. Paths for a task and the rules that appear in the paths of
more than one task form adequate measures for further modularizing the rule
base either by rule re-organization, and/or rule modification as appropriate. As
noted by Jacob & Froscher (1990), this can also improve the maintainability

of the system.

130

Verifiability: A software system is verifiable if its properties can be verified eas-
ily [Ghezzi et al., 1991]. The use of paths and goals to devect the CARD

anomalies in a rule base is described in detail in section 4.5.

Complexity: The complexity of rule bases can be assessed using a variety of metric
measures such as the cyclomatic complexity {O’Neal and Edwards Jr., 1993;
Kiper, 1992|. Paths provide another measure: the mean length of a path, and
its “breadth” (the size of the enabling set containing the maximum number of
rules in a path). The larger these numbers for a rule base, then greater is the
complexity of rule interactions in that rule base because paths localize all the

required rule interactions in a goal-to-goal progression.

131

Chapter 5

Summary and Conclusion

The work done as part of this thesis research and its contributions are

summarized. Scope for future research work is briefly described.

132

5.1 Summary of Work Done

This thesis is a contribution to the evolution of a design framework for rule-based
systems consisting of three stages: the functional requirements stage, the design stage
and the implementation stage. The functional requirements are abstracted using
mileposts for problem solving, called goals. The goals and inviolables specified for a
domain, called the goal specification, is intended to capture the essence of problem
solving in the domain. Problem solving at this stage is modeled as a sequence of
goal inferences, and can be portrayed as an AND/OR graph traversal called the goal
graph.

The design stage sets some restrictions to be imposed in mapping the specified
goals to the eventual rule base implementation. More specifically, a design scheme
is a mapping constraint imposed between a goal and its constituent hypotheses in
a rule base. This mapping is non-unique and there are several ways (mappings) of
realizing a given goal. This gives rise to different design schemes. The different design
schemes provide flexibility in choosing a scheme to best suit the system development
criteria. The use of goal-based design schemes is not only useful for development, but
can also be used to restructure and optimize an exisiing rule base. This was outlined
by means of a case study.

The mapping restrictions imposed by the various design schemes are not mutu-
ally exclusive: some scheme restrictions are more general than others. Based upon
the generality of the scheme mapping restrictions, a specific relationship between the
design schemes, called inheritance, was analyzed in this thesis. A design scheme Dp
inherits from another scheme Dj4, whenever every rule base R 4 that adheres to Dj4
also adheres to Dp, but the converse need not be true. Inheritance between the design
schemes is an important notion because it can allow for certain compromises between
development and maintenance. This was demonstrated by a cost-benefit analysis of
the maintenance operations between two scheme D4 and Dg that have an inheritance
relationship between them. In addition, the mapping restriction imposed by a design
scheme can be analyzed to provide an assessment of certain system qualities in an

implementation independent way. Metric measures were developed as a part of this

133

thesis based upon the restrictions imposed by a design scheme, to facilitate compar-
ison between design schemes to help choose one for a domain. The values of these
metrics are influenced by scheme inheritance.

The compromises between development and maintenance, and for quality improve-
ment in this design framework for rule-based systems is possible by the existence of
a rule base transformation from a rule base adhering to scheme Dp to a rule base
adher’ng to scheme D,, whenever the former inherits from the latter. The trans-
formation preserves the rule base structure, content, runtime inference, and problem
solving semantics (goal types). The details of the rule base transformation, using a
sample pair of design schemes, was outlined with an example.

The criteria to choose a design scheme from a set of schemes for a domain are not
unique. We provided a set of empirical criteria that can be used to select or reject
a design scheme for a domain as an aid to system developers. Such analyses are
meant to provide a developer with a deeper understanding of the goal-to-hypothesis
mapping restrictions, scheme relationships, and on the issues in system development,
evaluation, and maintenance. This should facilitate choosing a scheme for a domain.

A rule base constructed based on a given goal specification, and adhering to a
specific design scheme implements the problem solving by rule sequences that progress
from goal(s) to goal from the given goal specification. Every such rule sequence in
the rule base is said to have realized a connector in the goal graph; thus, there may
be more than one rule sequence to realize a given connector. These rule sequences
are called paths. A rule graph can be used to pictorially depict the accessibility of
the rules in a path.

The extent to which a given rule base realizes the acquired knowledge of goal
inference is represented by the paths in the rule base; they are collectively said to
portray the structure of the rule base. The extraction of paths and the goal graph
from a rule base is called structure extraction, and it influences a variey of evaluation
processes for rule-based systems. However, the extraction of paths from a rule base
using a given goal specification is a non-trivial problem because procedures that
extract inference chains from a rule base have an exponential complexity in the worst

case. The use of goal specification to control the computation required to extract

134

paths <-as described. The use of a tool called path hunter, to extract the paths in a
rule base from a given goal specification, and the feasibility of this model to handle
large rule-based systems were also described [Grossner et al., 1993].

All the proposed evaluation methods are based on the structural model of a rule
base (definition 14, page 83); thus, evaluation is based upon paths and goals rather
than individual rules. The advantage of this approach is that paths automatically
account for the rule interactions that take place in the rule base. Evaluation that
does not take into account the rule interactions that take place may miss some errors
and/or anomalies that are present. The system evaluation methods proposed in this
thesis allow a general measurement of performance, structurally validate the system,
and perform verification to detect rule base anomalies. The individual evaluation

methods are summarized below.

Structural Validation The structural validation of a system is conducted by ex-
tracting the paths in its rule base and checking if the goal-to-goal progression
indeed captures the mental view of a domain expert from whom this knowledge
was acquired. In addition, selected test cases are applied and the rule traces are
mapped to paths to measure the coverage of the system. This also provides a
performance measure albeit it is more specific to the test suite used. The tool
path tracer described in this thesis can be used to measure the path coverage of
a system. The path statistics obtained as part of system validation can be used

to assess a variety of rule base qualities.

Performance Evaluation The performance of a system can be measured using
traditional benchmarking, but general performance measures are desired when
considering systems operating in critical domains [Giovanni, 1989). Performance
evaluation is based on measuring the usefulness of a goal in problem solving,
called goal relevancy. The goal relevancy and relevancy ratio of a system can
be measured by detecting unreachable final goals and “dead end” intermediate

goals in the rule base.,

Verification The verification of a rule base can be performed by identifying certain

rule situations that can be indicative of the CARD anomalies. They are called

135

rule aberrations because they indicate an abnormality in the system. Goal
specification, paths, and the goal graph extracted from the rule base allows
for a comprehensive detection of the CARD anomalies in a rule base at any
stage during its construction: simply spot paths that adhere to one or more
rule aberrations. The details of the rule aberrations to facilitate the detection

of the CARD anomalies in a rule base were described.

5.2 Summary of Contributions

The contributions of this thesis are summarized below:

1. The goal specification approach to abstract problem solving.

Abstracting domain knowledge in terms of goals and relationships between
goals presented in this thesis enables a knowledge engineer to succinctly
capture the important aspects of problem solving in the form of a goal
graph. The functional view of problem solving represented by a goal graph
can be useful for empirical evaluation because the correctness of a system
can be confirmed by checking the goal graph extracted from its rule base
for agreement with the mental view held by a domain expert in solving
problems [Preece, 1990; Vinze, 1992]. The goal specification approach is
not only useful for developing a new system, but also for restructuring
an existing system. This was demonstrated by means of a case study

(chapter 2, section 2.3).
2. The design schemes for rule-based systems.

The design stage, as viewed in this thesis, is intended to suit the charac-
teristics of a wide range of domains. The various design schemes presented
impose different restrictions in mapping goals to hypotheses. The analysis
developed as part of the design stage through an examination of the re-
lationships between the design schemes portray the compromises between
development and maintenance in the design framework (chapter 3, sec-

tion 3.3). By carefully identifying and encoding the goals of a domain, a

136

system can be designed in a better way: this aspect was demonstrated by
the re-design of the library expert system (chapter 3. section 3.2). We do
not specifically recommend any one design scherne because different appli-
cation domains exhibit different characteristics that should be taken into
account when choosing a scheme. In this thesis, we compared the design
schemes based upon one aspect: their ease in system development versus
system maintenance. This could serve as a guide to system developers in

choosing a scheme.
3. The implementation model of a rule base to capture rule interactions.

An implemented rvle base adhering to a design scheme can he analyzed in
terms of rule sequences, called paths, that infer the specified goals. This
is called the structural model of a rule base (chapter 4, section 4.1). Every
path in a rule base maps to a definite portion of the acquired knowledge,

thus explicating how that knowledge is manipulated in the system.

[t has been observed in the literature that the understandability of a rule
base is often obscured by the interactions that occur between its rules. The
path concept localizes the rule interactions that occur in a given goal-to-
goal progression. Thus, a developer can inspect the paths extracted from
an implemented rule base to check if a given sequence of rules inferring
a goal indeed represents the rule interaction that was intended. Such an
inspection helped to uncover some rule base coding errors in the Blackbox
expert system [Grossner et al., 1993; Preece et al., 1993b). In addition, the

structural model of a rule base is useful for the evaluation of rule bases.
4. The implementation model and its role in system evaluation.

In this thesis, we have viewed the system evaluation to comprise of ver-
ification for detecting CARD (circularity, ambivalence, redundancy, and
deficiency) anomalies, validation for ensuring a system’s compliance with
its requirements, and performance and quality assessment for assessing

its other attributes. The various procedures for evaluating rule-based

137

systems based upon paths and goals encompass the above evaluations:
verification can be performed by detecting rule aberrations, validation by
path extraction and path coverage measurement, and performance and
quality assessment can be done by measuring the goal relevancy, the rel-
evancy ratio, and other path characteristics of the system. The tools,
algorithms, and results from case studies reported in this thesis illustrate

the practicability of these procedures.

In summary, the feasibility of the proposed design framework for reverse engi-
neering (restructuring for optimization), development, and evaluation strengthens
the practicability of this approach. The case studies portray the applicability of
this framework for managing rule-based systems consisting of hundreds of rules: for
example, modularization, restructuring, and computation control for path extraction.

Overall, the proposed design framework provides a systematic and rigorous method-
ology for the development of rule-based systems. The design schemes are pragmatic
for both development and reverse engineering, and also provide a strong link between
system conception and implementation. The formalizations developed for model-
ing rule base design (design schemes, quantification using metrics, inheritance, and
transformation), and rule base structure (paths and their properties) provide a strong
analytical foundation for this framework. The applicability of the design schemes for
development and for reverse engineering. automated rule base transformation to facil-
itate maintenance, and tools and algorithms to facilitate system evaluation underscore

the practicality of this approach.

5.3 Scope for Future Research

This work opens up a lot of exciting avenues for future research in the design and
development of not only stand alone rule-based systems, but also multi-agent systems,
where the individual agents are implemented as rule-based systerus.

In the short term, two improvements can be m.de to the existing formalism for

rule bases to further improve its scope.

138

1. The first enhancement would be to provide a simple semantics that allows goals
and rules to contain negated atoms. For simplicity, a closed-world assumption
stated informally as “negation of an atom is its absence from working memory”
can be used imitially (this negation semantics is used in CLIPS). Thus, the
formalism for a path in a rule base should also accommodate for negated atorns
in rule antecedents and consequents. Currently, the rule splitter (section 4.3.1)
has provisions to hold negated atoms in a rule, but they are left empty. All
that is required is to fill this data structure appropriately when the rule base is

parsed, and augment the way rule accessibility is computed.

2. The second enhancement would be re-write the path hunter and path tracer tools

in a language, such as C, efficiently. This would improve their portability.

The algorithms discussed for measuring goal relevancy, ~nd for detecting the rule
aberrations should be implemented as part of path hunter. Currently, path hunter
provides limited verification support by flagging rule circularities and rules that do
not appear in any path, and by recording path statistics as part of path extraction.
However, in the interest of modularity, a separate tool to augment the existing tool
suite is desirable.

A major enhancement to the goal formalism is the use of a general first order
logic formula to represent a goal. Thus, a language is required to express goals
and constraints of a domain. The following question, however, arises: how does the
formalism to characterize a path in a rule base would change? The use, feasibility, and
practicability of this extension should be explored. Note, the additional expressive
power to represent goals can be used for modeling a wide range of problems in a
dormnain.

In this thesis, the nse of inheritance for automated rule base transformation was
explored. A rule base Rp adhering to a scheme Dp can be automatically transformed
into a rule base R4 adhering to another scheme using one of the transformation
procedures. An interesting application of inheritance is to view the transformation
process in reverse: is it possible to convert a rule base R4 adhering to a scheme

D, into another scheme Dp that inherits from D4, such that the resulting rule base

139

is more efficient than R4? In other words, the use of inheritance for automated
performance optimization of rule bases would enhance the use, and the application
of the framework discussed in the thesis.

An interesting aspect of the goal graph based abstraction of problem solving is
its potential for explanation: providing a justification (usually to the user) of the
system’s conclusion from a given set of initial evidence. This justification can be
provided in terms of the justification associated with the inferred intermediate goals
that were subsequently used to infer the final goals. The goal graph in this case can
be viewed as a semantic network, and the explanation can be easily given by keeping
track of the set of rouies that were traversed by the system during problem solving.

A preliminary exploration of the use of paths to analyze the performance of multi-
agent systems by examining the data distributed among them appears in [Grossner,
Gokulchander, Preece, and Radhakrishnan, 1993; Grossner, Preece, Gokulchander,
Radhakrishnan, and Newborn, 1994]. The results of using paths to capture the
data distribution in a multi-agent environment for performance analysis provides
motivation to extend this design framework for multi-agent systems. However, several

issues arise in so doing. Some of them are outlined below:

1. The agent modeling issue: Should an agent be modeled as a set of paths, or
should every path be modeled as a (“pseudo”) agent? In particular, note that
if the goal and path formalism are extended to include negated atoms, then the
closed-world assumption cannot be used in a multi-agent setting. For example,
if an agent, say X removes an atom A from its working memory, then -A is
true in X by closed-world assumption. But, if another agent, say Y infers atom
A, then .1 is true in Y (conversely, —A is faise in Y). But, now the system as
a whole is inconsistent: considering the “worlds” of agents X and Y together,

we have an inconsistency because both A and —A are true.

2. The design issue: What “design schemes” are possible for a multi-agent setting?
One way would be to rustrict ourselves with the existing schemes, and assume

that every agent adheres to a scheme.
3. The evaluation issue: How should the evaluation procedures be extended to

140

handle multi-agent evaluation? The extensions are, unfortunately, non-trivial.
For example, consider the notion of goal relevancy: Suppose if a goal g is
irrelevant in agent X, but is relevant in agent Y, what can we say about goal
g? (If goal g is not realized in agent X, then the issue is trivial, but if it is also

realized in agent X, the issue requires a deeper analysis.)

. The problem solving model issue: In this approach for single rule-based sys-
tems, problem solving can be modeled as a goal graph (chapter 2, section 2.2).
However, in a multi-agent setting, if goals are realized in different agents, the

question arises: how to extract the goal graph of the system?

141

Appendix: Algorithms to Detect

Rule Aberrations

It is assumed that the paths are pre-processed into a set of indices before the aberra-
tions can be spotted. The typical indices are the rule index (list of paths, and routes
in which a rule appears), and fact index (list of paths and routes in which the fact
appears). Whenever a rule, or an atom is flagged, an appropriate field is set in the
indices. This facilitates later checking for flagged rules.

An algorithm to detect aberration 1 (page 117) is given below. The route com-
putation part of the algorithm requires that the algorithm for goal graph extraction
to determine relevant and irrelevant goals has been run to extract all the relevant
and irrelevant routes. The route extraction procedure GetRoutes is repeated below
for convenience. The rest of the algorithm is straight forward: simply check for rules
that does not appear in any route, or appear in only irrelevant routes. Note, in the
algorithm for aberration 1, we have made use of a boolean function Irrelevant(z)

that should return true, if z is an irrelevant route.

Procedure GetRoutes;
Input: Paths, Goal specification (F is the set of final goals,
and I is the set of intermediate goals)
Output: The set v of all routes in the goal graph
begin
1.7y:=0
2. Mark every intermediate goal in I as unvisited.

3. Select a f € F'; mark every path inferring f as unseen

142

4. Repeat
4.1 While (one more path @ to f is marked unseen) do
411. I':=0
4.1.2. Pick the path ® inferring f marked unseen;
mark this connector as seen
/* obtain the goals at the other end of & */
4.1.3. Derive the subset G of I that contribute to the start
state of path .
414, I' =I'UG [* G obtained in previous step */
and mark intermediate goals in I’ as visited.
/¥ Traverse the goal graph using the connectors */
4.15. Apply 4.1.3—4.1.4 recursively for all paths to each
goal in I’ until one of the following is true:
If a level-0 goal is reached, then
Mark this sequence of paths as a route Il
else Mark this sequence of path as an irrelevant
route II; culminating on final goal f
/* Accumulate the routes collected so far into y */
4.16. v :=qUlls
end /* while */
/* All possible traversals from f has been completed */
Until (as long as there is a goal in F' to which step 3.1 has not been applied)
5. For every intermediate goal : not visited (as determined by step 4),
5.1. Repeat step 3.1 to enumerate the irrelevant routes II; culminating on ¢
52. v :=~yUII;
6. Output v
end. /* End of GetRoutes */

Procedure aberl; /* detect aberration 1 */
Input: Rule index (RI), Goal specification.
begin

143

GetRoutes; /* get the set v */
For all rules r € RI
if (VII € 4) r € I A Irrelevant(II)
Flag rule r /* r appears only in irrelevant routes */
if(VIIey)r¢gll
Flag rule r /* r appears in no route */

end.

An algorithm for detecting aberration 2 (page 117) to detect redundant rule chains
appears below. The function Subsume(X,Y’) returns true whenever there is a sub-
sumption relationship between X and Y. We have also used a function Goals(®)
that returns the set of goals required by a path &. Note the use a break statement
in order to exit from a nested loop (this semantics is similar to the break statement
in C) for convenience. For efficiency, we restrict ourselves to only paths in relevant

routes in step 2 because paths appearing in only irrelevant routes are flagged by step
1.

Procedure aber2; /* detect aberration 2 */
Input: Rule Index, Paths, Goals, The set 7.
begin
/* Flag every path that appears in an irrelevant route */
1. For every path @, do
1.1. redundant_chain := false;
1.2. f (VII € v) ® € Il = Irrelevant(II), then
redundant_chain := true;
alse
redundant_chain := false; /* @ is in at least one relevant route */
break; /* break out of inner for loop */
1.3. If redundant_chain = true, then
Flag path (and rules in) ®. /* path appears only in irrelevant routes */
/* Flag redundant rule chain pairs based on subsumption */

2. For every path @;, do

144

2.1 For every path &;, j #1, do
2.1.1. If (30,11, € v) &; € II; A @, € II; A Relevant(Il;) A Relevant(IL,), then
2.1.1.1. goal_atoms.l := true;
2.1.1.2. goal_atoms.2 := true;
2.1.1.3. For every g € Goals(®;), do
goal_atoms_l := goal_atoms_1 A g;
2.1.1.4. For every g € Goals(®,), do
goal_atoms 2 := goal_atoms 2 A g,
/* ensure input goal subsumption */
2.1.1.5. If Subsume(goal_atoms_1, goal_atoms_2) = true, then
2.1.15.1. If Subsume(gy,92) A ®, F g1 AP, I go, then
Flag ®; and @, /* redundant rule chains */
Flag every rule r appearing in only ®; and/or @,
/* An additional perspective for non-goal atoms; optional. */
If a non-goal atom a is inferred in both ®; and ®;, then
Flag this (sub)sequence of rules in ®; and ;

end.

In the algorithm for aberration 3 (page 118) to detect redundant atoms below, the
function InferenceNo(h,®) associated with atom h is assumed to give the number
of times k is inferred in path ®. The Antecedent(r) (Consequent(r)) is assumed
to return the list of atoms in the antecedent (consequent) of a rule r. Note, if the
rule index also contains a boolean field that evaluates to true if a rule r is flagged
redundant, then step 8.3 can set this field, and step 8.4 can be done after all the rules
in the rule index are processed. This can speed up the output processing to some

extent.

Procedure aber3; /* detect aberration 3 */

input: Rule index (RI), Fact Index (Fl), Paths .
1. M :=0 /* to hold multiply inferred goal atoms */
2. D:=0 /* to hold dangling non-goal atoms */
3. For every h € F1I, do

145

3.1. multiply.inferred := true;
3.2, For every path & such that ® I A,
3.2.1. if GoalAtom(h) A InferenceNo(h,®) < 1
multiply_inferred := false;
3.3. If multiply_inferred = true, then
331 M:=MUR
4. Flag atomsin M /* atoms multiply inferred in all path they appear */
5. If (3r € RI) Consequent(r) C M (from step 2), then
Flag rule r /* redundant toe rule */
6. For every h € FI, do
6.1 dangling := false;
6.2. For every path ® such that ® I- A,
6.2.1. if NonGoalAtom(h) A (Ar € ®)h € Antecedent(r)
dangling := true; /* h is a dangling atom in ® */
6.3. If dangling = true, then
6.3.2. D:=DUh
7. Flag atoms in D /* atoms dangling in every path inferring them */
8. For every rule r € RI such that Consequent(r)N D # 0, do
8.1. redundantl := false;
8.2. redundant2 := false;
/* Flag a rule whose consequent is either dangling or inferred by other rules in a path */
8.3. For every path ® where r € @,
8.3.1. Forevery h € Consequent(r),
if h & Consequent(r)N D =
(3r' € ®,r # r')h € Consequent(r'), then
redundantl := true;
if h € Consequent(r)N D, then
redundant? := true;
8.4. If redundantl A redundant2, then

Flag rule r.

146

end.

Aberration 4 (page 120) is the rule aberration aberration that is applicable when-
ever a rule r can replace another rule ' in every path where r’ appears, or vice
versa. We repeat the conditions from the text (page 119) for convenience. Let
r1: AiAA; — H and rp: Aj A A, — H' be any two rules such that Aj; is a goal atom,
the remaining atoms are non-goal, and the H's represent hypotheses which can be a
conjunction of atoms. Further, let H subsume H’. Then, the rule pair < ry,r; > is

flagged redundant based upon the following conditions:

(i) If every path in which r, appears has at least one rule that infers A, (in other

words, whenever r; fires, r, can fire) then perhaps ry, or ry is redundant.

(ii) Whenever r; occurs in a path from G to g and A3 is contained in G (in other
words, r; can be used to traverse between any G to g whenever r; can do so),

then perhaps ry, or r; is redundant.

For example, (1) if H is BIRD(z) and H' is BIRD(Tweety), and condition (i) above
holds then r; is redundant; and (2) if H is BIRD(z) and H' is BIRD(z)ASINGS(z),
and condition (ii) above holds then r, is redundant.

The details of detecting aberration 4 for rule subsumption appears below. Note,
we the use of notation RI(r;) to indicate the index information associated with rule
ri, and the use of BREAK statement to break out of any level of loop nesting for ease
in readability. The function NonGoalAtom (GoalAtom) should return a list of non

goal atoms (goal atoms) from the list passed as its argument.

Procedure aber4; /* detect aberration 4 */
Input: Rule Index (R!), Fact Index (FI), Paths.
1. For all rule pairs ry, 72 do /* a two loop construct */
/¥ get list of non-goal atoms from the antecedents */
1.1. Ny = NonGoalAtom(Antecedent(r;));
1.2. N, .= NonGoalAtom(Antecedent(r;));
/* Get the goal atoms from the antecedents */

1.3. Gy = GoalAtom(Antecedent(ry));

147

1.4. G; = Goal Atom(Antecedent(r,));
/* Check for subsumption conditions */
1.6. containedl := true;
1.7. For every path & in Rl(r;), do
1.7.1 if G; € Goals(®), then
1.7.1.1. containedl := false;
1.7 1 2. break;
/* ensure non-goal atoms in antecedent of r3, but not in r;
is supplied by some rules in every path where r, appears. This ensures
that r; can replace r; in those paths */
1.8. For every a € N, such that a &€ Ny, do
1.8.1. NonGoalinference ;= true;
1.8.2. For every path @ in Ri(r;), do
18.2.1. f NOT(® t a), then
1.8.2.1.1. NonGoallnference := false;
1.8.2.1.2. BREAK; /* Out of outer for loop as well */
/* Finally, put all together to check for subsumption */
2. If containedl A NonGoallnference A
Subsume(Consequent(ry), Consequent(rs)), then
2.1. Flag rule pairs r; and r,.
/* Check for syntactic subsumption; this ensures compatibility with
existing CARD detection tools */
3. For all rule pairs ry, 7 in Rl, do /* a two loop construct */
3.1 If Susbume(Antecedent(ry), Antecedent(rs)), then
3.1.1. Flag rule pairs vy and rs.

end.

An algorithm to detect aberration 5 (page 121) appears below. It requires only

the current set of flagged rules and atoms.

Procedure aber5; /* detect aberration 5 */

Input: Rule Index (RI), Fact index (FI).

148

begin
Let FlaggedR := current set of flagged rules from RI;
Let FlaggedA := current set of flagged atoms from Fl;
For all z such that z € FlaggedA, do
if 3r ¢ FlaggedR A £ € Consequent(r), then
Flag rule r /* r potentially makes a useless inference */

end.

An algorithm to detect aberration 6 (page 121) appears below. It requires only

the current set of flagged rules and atoms.

Procedure aberb; /* detect aberration 6 */
input: Rule Index (R!), Fact Index (Fi).
begin

Let FlaggedR := current set of flagged rules from RI;

Let FlaggedA := current set of flagged atoms from Fl;

For all z such that z € FlaggedA, do

If 3r ¢ FlaggedR A = € Antecedent(r), then
Flag rule r /* r can become potentially unreachable */

end.

The algorithms to detect ambivalence (aberrations 7, 8 and 9, page 124) appears

below.

Procedure aber7; /* detect aberration 7 */
Input: Fact Index (Fl), Set of Inviolables (S), Goal Specification (G).
begin
1. For every path ® do
1.1. Let NGA := The set of set non goal atoms in a path ®;
1.11 W 3z € S A Subsume(z, NGA), then
Flag path ® as violating inviolable = (by inferred non-goal atoms).
1.2. Let GA := The set of goal atoms in path ®;
1.2.1. f 3z € S A Susbume(x, GA), then

149

Flag path @ as violating inviolable z (by inferred goal atoms).
/* Also check if all atoms in a path (NGAU G A) above is
subsumed by an inviolable. */
2. For everygoal ¢ € G, do
21. 3z € SA Susbume(z,g), then
Flag goal g.
3. f 3z € S A Susbume(z, Goals(®)), then
Flag ® as requiring an inviolable to start.

end.

Procedure aber8; /* detect aberration 8 */
Input: Fact Index (Fl), Set of Inviolables (S).
begin
1. For every route R, do
1.1. Let NGA := The set of set non goal atoms in route R;
1.1.1. f 3z € S A Subsume(z, NGA), then
Flag route R as violating inviolable = (by inferred non-goal atoms).
1.2. Let GA := The set of goal atoms in route R;
1.2.1. f 3z € S A Susbume(z,GA), then
Flag route R as violating inviolable z (by inferred goal atoms).
/* Also check if all atoms in a route (NGAU G A) above
is subsumed by an inviolable. */

end.

Procedure aber9; /* detect aberration 9 */
Input: Fact Index (F1), Set of Inviolables (S), The set v, Goal Specification (G).
begin
1. For every route R, do
1.1. Let GA := The set of level-0 goal atoms of route R;
1.1.1. FGAE GV (3z € S)Subsume(z,GA), then,
Flag route R.

/* The next step of this algorithm requires tracing

150

routes for test cases that deliberately contain inviolables
and/or impermissible combinations of initial evidence (see page 124) */

end.

The algorithm to detect path circularity (aberration 10, page 126) is given below.
If the goal graph extracted from the rule base is represented so that every goal g is
ordered using the form:

[9 [Goals on AND edges incident on g] [Goals on OR edges incident on g]]
then, the algorithm to detect circularities in the goal graph is similar to the way rule
accesibilities are computed in path hunter which also checks for rule circularites when
enumerating paths (section 4.3.1). The code, with minimal changes, can be re-used

to check for path circularity.

Procedure aberl0; /* detect aberration 10 */
Input: Goal graph G (assumed ordered as discussed above).
begin
1. For every goal g € G, do
1.1. Mark goal g as seen.
1.2. Let S’ := Set of goal required to infer g
1.3. Compute S’ for every goal g’ in S’ recursively after
marking ¢’ as seen.
1.3.1. If a goal that was seen before needs to be included in the current set S/, then
flag the set of goals seen as involved in a circularity.
/* The above method is straight forward. For efficiency, any cycle checking algorithm
for graphs can be used */

end.

151

Glossary

1. Accessibility of a Rule A rule r; is accessible from another rule r{ iff a non-
goal atom in the antecedent of r; is unifiable with an atom in the consequent

of 1.

2. Accessibility Set of a Rule The set of all rules from which a rule r is

accessible is called the accessibility set of r.

3. Adhering to a Design Scheme Given a goal specification G, a rule base
R is said to adhere to a design scheme D, iff every intermediate (final) goal

realized in R satisfies the intermediate (final) goal mapping restriction imposed

by D.

4. Adhocness of a Goal g in a Scheme D The adhocness of a goal ¢ in
scheme D is the ratio of the maximum number of non-corresponding constructs
allowable in g to the least number of corresponding constructs allowable in g

without violating the restrictions of scheme D.

5. Attainability of a rule A rule r; is attainable from another rule ry iff an

atom in the antecedent of r; is unifiable with an atom in the consequent of ry.

6. Behavior The behavior of a rule-based system is the set of rules fired and
hypotheses inferred at run time for a given input. In the literature, the terms
‘run time behavior’, and ‘problem solving behavior’ are als> used synonymously

when referring to this term.
7. Connector An AND edge, or an OR edge in a goal graph.

8. Consumption of a Rule A rule r in a path is fully consumed iff every

non-goal atom in the consequent of r unifies with an atom in the antecedent of

152

10.

11.
12.

13.
14.

16.

17.

18.

19.

21.

one other rule v’ in the same path. A rule is partly consumed iff it is not fully

consumed.

Design Scheme A design scheme is a mapping restriction imposed in realizing

intermediate and final goals in a rule base.

Discrepancy in a Transformation When transforming a rule base adher-
ing to scheme Dp into one that adheres to scheme D4 by converting hypothesis
types in a goal in order to annul a design restriction in scheme Dy4. the trans-
formation can inadvertently violnte another restriction of that scheme. When

this occurs, the transformation is said to have reached a discrepancy.
Enabled Rule A rule whose antecedent is true.

Enabling Set of a Rule The minimal set of rules whose firing enables a rule

r.
Fact A generic term referring to an atom, or a predicate.

Flagging The identification of specific rules and atoms that can be causal for

some anomalies in a rule base.

. Goal An abstraction of a state in problem solving.

Goal and Non-goal Atoms The atoms that are present in goals are called

goal atoms. The other atoms (used for rule encoding) are called non-goal atoms.

Goal Distance Metric The distance between the conception and the re-
alization of a specified goal g is defined as the number of non-corresponding

constructs used for realizing the goal g iu the rule base.

Goal Graph A graphical way of portraying problem solving in the domain

using goals.

Goal Specification The set of goals and inviolables specified for a domain.

. Inference Engine A mechanism that controls rule execution in a rule-based

system.

Intermediate and Final Goals Goals that are inferred in order to facilitate

reaching a solution are called intermediate goals. The goals that are used for

153

22.

23.

24,

25.
26.
217.

28.

29.

30.

31.

indicating domain solutions are called final goals.

Non-corresponding Construct in a Goal A final hypothesis nsed in
the realization of an intermediate goal (or, vice versa) is said to be a non-

corresponding construct in that goal.

Path A path in a rule base is sequence of rules that infer a goal from a given

set of goals. It represents a connector.

Path Coverage Measuring the extent the paths in a rule base are exercised

for a given test suite.
Fath Hunter A tool to extract paths from a rule base.
Path Tracer A tool to measure path coverage.

Pattern Matching The computation required to check if the antecedent of

a rule is satisfied.

Realizing a Goal A set of rules p in the rule base is said to realize a given
goal g = A) A A; A Ay, iff the consequent of these rules collectively contain the
atoms A;, Aj,..., An.

Relevant and Irrelevant Goals Given the initial evidence corresponding to
a problem, if the system infers some final goals that correspond to the solution
of the problem, then tlie inferred final goals are said to be relevant. A final

(intermediate) goal is irrelevant iff it is not a relevant final (intermediate) goal.
NI,

NI,
where, NI, is the number of relevant intermediate goals and NI is the total

Relevancy Ratio The relevancy retio of intermediate goals is defined as

number of intermediate goals in a goai specification. The relevancy ratio of final

goals is defined as _N_Fr where, NF, is the number of relevant final goals and
t

NF, is the total number of final goals in a goal specification.

Relevant and Irrelevart Routes A route from a level-0 goal to a solution

is called a relevant route; any other route from a level-n goal to a goal ¢’, where

n > 1 and ¢’ is not a solution, is called an irrelevant route.

. Route A sequence of one or more paths.

154

33.

34.

33.

36.

37.

38.

39.

40.
41.

42.

43.
44.
45.

Rule Aberration A rule aberration in a rule base consists of a set of paths

that portray the manifestation of one or more rule base anomalies.

Rule Base Distance Metric The distance metric of a rule base is represented
using the largest distance metric of the interm_.diate and final goals that are
realized in the rule base. It is represented as an ordered pair A =< §,,4; >
where, 6, (67) is the largest distance metric of the intermediate (final) goals

realized in the rule base.

Rule Base Structure The set of paths in a rule base adhering to a design

scheme.

Rule Base Transformation An automated way of re-writing rules in a rule
base R4 adlering to a scheme Dp so that it adheres to another scheme Dy,

where Dg inherits from Dj,.

Ru'e Equivalence Class The set of split rules (produced by the rule splitter
module of path hunter) that are identical are said to form a rule equivalence

class.

Rule Graph A graphical representation of the rule accessibility relaticnship

in a rule base.

Rule Interactions The effect of the causality relationship between the rules

for rule firing during problem solving.
Salience A form of rule priority assignment used in CLIPS.

Scheme Inheritance A design Tp is said to inherit from design Dy, iff every

rule base R4 adhering to scheme D, also adheres to scheme Dg.

Shaved Path A path containing only fully consumed rules. Otherwise, the

path is said to be unshaved.
Test Case A set of initial evidence.
Test Suite A set of test cases.

Working Memory A component of a rule-based system used for storing the

data produced by rule firings at run time.

155

Notation Summary

Symbol Represented Concept

G, Set of goals.

H Set of hypotheses in a rule base.

P A problem in a domain.

A Anomaly set of a rule base.

c Causality relationship (between rules in a rule base).

D and u Design scheme and mapping respectively.

<Fn, Im> Denotes a specific design scheme; numbers ‘n’ and ‘m’ vary from 1 to 5.

G, I,and F | Goal Specification, Set of intermediate goals, and Set of final goals
respectively.

S Rule-based system.

R,Z, and W | Rule base, Inference engine, and Working memory respectively.

tand f Intermediate and final goal respectively.

g A goal. The context clarifies whether g is intermediate or final.

h,k Rule base hypotheses. The context clarifies if they are intermediate or
final.

rand R A rule in some rule base and a specific rule useC. in an example rule base
respectively.

a and 7 Accessibility set and enabling set (of 2 rule) respectively.

6 and A Goal and rule base distance metrics respectively.

® and o Path and rule sequence (in a rule base) respectively.

I () Set (subset) of paths in a rule base.

¥ and p Property and set of rules (in a rule base) respectively.

C] Rule base transformation.

> and > Rule attainability and accessibility respoctively.

F X Y should be read as “from X infer Y.”

X | Y should be read as “in model X properties Y hold.”

156

Atoms Upper case letters, such as A, B,C, ... denote atoms. The context clarifies
whether an upper case letter is an atom or a predicate. Any word that is in upper
case also denotes an atom.

Constants Lower case letters from the beginning of the alphabet such as g, b, ¢, ...,
are used to denote constants. Any other word with its first letter capitalized is also
a constant: for example, Tom, Cathy,

Variables Lower case letters from the end of the alphabet, such as z, y, 2, .. ., are

used to denote variables. Any word that is in Jowercase also denotes a variable.

In addition, if S is a set, then |S] denotes the number of elements in the set S.
The definitions given in this thesis are either original, or considerably modified (if

adopted from other sources) to correspond to the work of this thesis.

The notation that was used for the cost analysis of maintenance operations in chap-

ter 3 (section 3.3.1) is summarized below.

Symbol Represented Concept
C Cost per unit of work (effort).

H;, H; Set of intermediate and final hypotheses in a rule base respectively.

Nn Number of rules associated with hypothesis h.

Gi, Gy Set of intermediate and final goals respectively.

Nary, Npp | Number of rules realizing M final goals and number of rules realizing M’

intermediate goals respectively.

0 Cost associated with checking system documentation.

A symbol may be augmented by an apostrophe, superscripts and /or subscripts when-
ever doing so improves the clarity of the presentation. Unless otherwise specified, the

notation sumrmnarized above is followed in this thesis.

157

Bibliography

Aben, M. [1993]. “Formally Specifying Reusable Knowledge Model Components,”
Knowledge Acquisition, 5(2), 119-141.

Agrawal, R., and Tanniru, M. [1992]. “A Petri-Net based Approach for Verifying
the Integrity of Production Systems,” International Journal of Man-Machine
Studies, 96(3), 447-468.

Andert Jr, E. P. {1993]. “Integrated Design and V&V of Knowledge-Based Systems,”
In Notes of the Workshop on Validation and Verification of Knowledge- Based
Systems (Eleventh National Conference on Artificial Intelligence), pp. 127128
Washington D.C.

Antoniou, G., and Wachsmuth, I. [1994]. “Structuring and Modules for Knowledge
Bases: Motivation for a New Model,” Knowledge-Based Systems, 7(1), 49-51.

Batarekh, A., Preece, A. D., Bennett, A., and Grogono, P. [199]1]. “Specifying an
Expert System,” Ezpert Systems with Applications, 2(4), 285-303.

Boehm, B. W. [1977]. “Seven Basic Principles of Software Engineering,” In Software
Engineering Techniques (Infotech State-of-the-Art Report). Pergamon-Infotech,
Maidenhead, UK.

Boehm, W. [1988]. “A Spiral Model of Software Development and Enhancement,”
IEEE Computer, 21(5), 61-72.

Bylander, T. C.,and Mittal, S. [1986]. “CSRL: A Language for Classificatory Problem
Solving,” AI Magazine, 7(3), 66-71.

158

Chander, P. G., Radhakrishnan, T., and Shinghal, R. [1995a]. “Design Schemes for
Rule-based Systems,” Submitted to International Journal of Expert Systems:

Research and Applications.

Chander, P. G., Shinghal, R., and Radhakrishnan, T. [1995b]. “Goal Supported
Knowledge Base Restructuring for Verification of Rule Bases,” In Notes of
the Workshop on Verification & Validation of Knowledge-Based Systems (Four-
teenth International Joint Conference on Artificial Intelligence), pp. 15-21 Mon-

treal, Canada.

Chander, P. G., Shinghal, R., and Radhakrishnan, T. [1995c]. “Using Goals to Design
and Verify Rule Bases,” Submitted to Decision Support Systems.

Chander, P. G. [1995]. “Analyzing Properties of Design Schemes for Rule-based Sys-
temns,” Computer Science Technical Report (August’95), Concordia University,

Montreal, Canada.

Chander, P. G., Radhakrishnan, T., and Shinghal, R. [1995]. “Using Paths to Detect
Redundancy in Rule Bases,” In Proceedings of the 11th IEEE Conference on
Artificial Intelligence Applications (IEFEE CAIA °95), pp. 133-139 Los Angeles,

California.

Chander, P. G., Shinghal, R., and Radhakrishnan, T. [1994]. “Static Determination
of Dynamic Functional Attributes in Rule-based Systems,” In Proceedings of
the 1994 International Conference on Systems Research, Informatics and Cy-

bernetics, AI Symposium (ICSRIC 94), pp. 79-84 Baden Baden, Germany.

Chandrasekaran, B. [1983]. “Towards a Taxonomy of Problem Solving Types,” A[
Magazine, 4 (1), 9-17.

Chandrasekaran, B. {1986]. “Generic Tasks in Knowledge Based Reasoning: High
Level Building Blocks for Expert System Design,” IEEE Ezpert, 1(3), 23-30.

Chang, C. L., Combs, J. B., and Stachowitz, R. A. [1990]. “A Report on the Expert
Systems Validation Associate (EVA),” FEzpert Systems with Applications, 1(3),
217-230.

159

Chen, Z., and Suen, C. [1993]. “Application of Metric Measures: from Conventional
Software to Expert Systems,” In Notes of the Workshop on Verification and
Validation of Knowledge-Based Systems (Eleventh National Conference on Ar-
tificial Intelligence), pp. 44-51 Washington D.C.

Clancey, W. [1983]. “The Advantages of Abstract Control Knowledge in Expert
System Design,” In Proceedings of the Third National Conference on Artificial
Intelligence (AAAI 83), pp. 74-78 Washington D.C.

Conte, C., Dunsmore, H., and Shen, V. [1990]. Software Engineering Metrics and

Models. Benjamin Cummings, Califoi.iia.

Cragun, B. J., and Steudel, H. J. [1987]. “A Decision-table-based Processor for Check-
ing Completeness and Consistency in Rule-based Expert Systems,” Interna-

tional Journal of Man-Machine Studies, 26(5), 633-648.

Debenham, J. [1992). “Expert Systems Designed for Maintenance,” Ezpert Systems
with Applications, 5(3), 233-244.

Forgy, C. [1981]. “OPS5 User's Manual,” CMU technical report, Carnegie Mellon

University.

Ghezzi, C., Jazayeri, M., and Mandrioli, D. [1991]. Fundamentals of Software Engi-

neering. Prentice Hall, New York.

Giarratano, J., and Riley, G. [1993]. Ezpert Systems: Principles & Programming (2nd
edition). PWS Publishing Company, Boston, MA.

Ginsberg, A. [1988]. “Knowledge-Base Reduction: A New Approach to Checking
Knowledge Bases for Inconsistency & Redundancy,” In Proceedings of the 7th
National Conference on Artificial Intelligence (AAAI 88), Vol. 2, pp. 585-589

St. Paul, Minnesota.

Giovanni, G. [1989]. “Assuring Adequacy of Expert Systems in Critical Application
Domains: A Constructive Approach,” In Hollnagel, E. (Ed.), The Reliability of
Erpert Systems, pp. 134-167. Halsted Press, New York.

160

Gokulchander, P., Preece, A., and Grossner, C. {1992]. “Path Hunter: A Tool for
Finding ilic Paths in a Rule Based Expert System,” DAI Technical Report
DAI-0592-0012, Concordia University, Montreal Quebec.

Grossner, C., Gokulchander, P., Preece, A., and Radhakrishnan, T. [1993]. “Data
Distribution in Organizations of Cooperating Expert Systems,” In Notes of the
12th International Workshop on Distributed Artificial Intelligence, pp. 203-218
Hidden Valley, Pennsylvania.

Grossner, C., Lyons, J., and Radhakrishnan, T. [1991]. “Validation of an Expert
System Intended for Research in Distributed Artificial Intelligence,” In Pro-
ceedings of the 2nd CLIPS Conference, Johnson Space Center, pp. 365-381

Houston, Texas.

Grossner, C., Preece, A., Gokulchander, P., Radhakrishnan, T., and Newborn, M.
[1994]. “Data Sharing Among Cooperating Rule-Based Systems,” DAI Techni-
cal Report DAI-0394-0019, Concordia University, Montreal Quebec.

Grossner, C., Preece, A., Gokulchander, P., Radhakrishnan, T., and Suen, C. [1993].
“Exploring the Structure of Rule Based Systems,” In Proceedings of the 11th
National Conference on Artificial Intelligence (AAAI 93), pp. 704-709 Wash-
ington D.C.

Guida, G., and Mauri, G. [1993]. “Evaluating Performance and Quality of Knowledge-
Based Systems: Foundation and Methodology,” IEFEEFE transactions in Knowl-
edge and Data engineering, 5(2), 204-224.

Gupta, U. G. [1993]. “Validation and Verification of Knowledge-Based Systems: A
Survey,” Journal of Applied Intelligence, 3(4), 343-363.

Hamilton, D., Kelley, K., and Culbert, C. [1991]. “State-of-the-Practice in Knowledge-

based System Verification and Validation,” Ezpert Systems with Applications,
3(3), 403-410.

161

Jacob, R. J. K., and Froscher, J. N. [1990]. “A Software Engineering Methodology for
Rule-Based Systems,” IEEE Transactions on Knowledge and Data Engineering,
2(2), 173-189.

Kiper, J. D. [1992]. “Structural Testing of Rule-Based Expert Systems,” 4 CM Trans-
actions on Software Engineering and Methodology, 1(2), 168-187.

Krause, P., Fox, J., Neil, M. O., and Glowinski, A. [1993]. “Can We Formally Specify
a Medical Decision Support System?,” IEEE Ezpert, 8(3), 56-61.

Lee, S., and O’Keefe, R. M. [1993]. “Subsumption Anomalies in Hybrid Knowledge
Bases,” International Journal of Ezxpert Systems, 6(3), 299—320.

Lee, S., and O’Keefe, R. M. [1994]. “Developing a Strategy for Expert System Verifi-
cation and Validation,” IEEFE Transactions on Systems, Man, and Cybernetics,
24 (4), 643-655.

Lieberman, H. [1995]. “Letizia: An Agent that Assists Web Browsing,” In Proceed-
ings of the International Joint Conference on Artificial Intelligence (IJCAI 95),
Vol. 1, pp. 924-929 Montreal, Canada.

Liebowitz, J. [1989]. “Problem Selection for Expert Systems Development,” In
Liebowitz, J., and De Salvo, D. A. (Eds.), Structuring Ezpert Systems: Do-
main, Design and Development, pp. 3-23. Englewood Cliffs, New Jersey: Pren-
tice Hall.

Liebowitz, J., and De Salvo, D. A. (Eds.). [1989]. Structuring Expert Systems: Do-

main, Design and Development. Englewood Cliffs, New Jersey: Prentice Hall.

Loiseau, S., and Rousset, M.-C. [1993]. “Formal Verification of Knowledge Bases
Focused on Consistency: Two Experiments Based on ATMS Techniques,” In-

ternational Journal of Expert Systems, 6(3), 273-298.

Long, J. A,, and Neale, I. M. [1993]. “Using Paper Models in Validation, Verification
and Testing,” International Journal of Ezpert Systems, 6(3), 357-382.

162

Lounis, H.[1993]. “Integrating machine-learning techniques in knowledge-based sys-
tem verification,” In 7th International Symposium in Artificial Intelligence, pp.

405-414 Trondheim, Norway.

Lucas, P. [1994]. “Refinement of the HEP AR Expert System: Tools and Techniques,”
Artificial Intelligence in Medicine, 6(2), 175-188.

Lunardhi, A. D., and Passino, K. M. {1991]. “Verification of Dynamic Properties of
Rule-based Expert Systems,” In 80th IEEE Conference on Decision and control,
pp. 1561-1566 Brighton, England.

Marcus, S., and McDermott, J. [1989]. “SALT: A Knowledge Acquisition Language
for Propose-and-Revise Systems,” Artificial Intelligence, 39(1), 1-37.

McDuffie, R. S., Smith, L. M., and Flory, S. M. [1994]. “Validation of an Accounting
Expert System for Business Combinations,” FEzpert Systems with Applications,
7(2), 175-183.

Mehrotra, M. [1993]. “Multi-Viewpoint Clustering Analysis,” In Notes of the Work-
shop on Verification and Validation of Knowledge-Based Systems (National
Conference on Artificial Intelligence), pp. 49-56 Washington, D.C.

Mehrotra, M. [1995]. “Requirements and Capabilities of the Multi-Viewpoint Clus-
tering Analysis Methodology,” In Notes of the Workshop on Verification and
Validation of Knowledge-Based Systems (Fourieenth International Joint Con-
ference on Artificial Intelligence), pp. 49-56 Montreal, Canada.

Mengshiel, 0. J. [1993]. “Knowledge Validation: Principles and Practice,” [EEE
Fzpert, 8(3), 62-68.

Meseguer, P. [1992]. “Incremental Verification of Rule-based Expert Systems,” In
Neumann, B. (Ed.), 10th European Conference on Artificial Intelligence, pp.
829-834 Vienna, Austria.

163

Meseguer, P. [1993]. “Expert System Validation Through Knowledge Base Refine-
ment,” In 13th International Joint Conference on Artificial Intelligence (IJ-
CAI'93), pp. 477-482 Savoie, France.

Mukherjee, R., and Gamble, R. [1995]). “Critical Examination of Subsumption
Anomalies in Hybrid Systems,” In Notes of the Workshop on Verification and
Validation of Knowledge-Based Systems (Fourteenth International Joint Con-
ference on Artificial Intelligence), pp. 57-62 Montreal, Canada.

Nazareth, D. L. [1993). “ Investigating the applicability of Petri Nets for Rule-based
System Verification,” IEEE Transactions on Knowledge and Data Engineering,
4(3), 447-468.

Nguyen, T. [1987]. “Verifying Consistency of Production Systems,” In Proceedings of
the 3rd Conference on Artificial Intelligence Applications, pp. 4-8 Washington,
D.C.

Nguyen, T., Perkins, W., Laffey, T., and Pecora, D. [1985]. “Checking an Expert
Systems Knowledge Base for Consistency and Completeness,” In Proceedings
of the 9th International Joint Conference on Artificial Intelligence (IJCAI 85),
Vol. 1, pp. 375-278 Boston, MA.

O’Keefe, R. M., Balci, O., and Smith, E. P. [1987]. “Validating Expert System
Performance,” IEEE Ezpert, 2(4), 81-90.

O’Keefe, R. M., and O’Leary, D. E. [1993]. “Expert System Verification and Valida-
tion: A Survey and Tutorial,” Artificial Intelligence Review, 7(1), 3-42.

O'Leary, D. E. [1995]. “Inference Engine Greediness and Subsumption of Conditions
in Rule-based Systems,” In Notes of the Workshop on Verification and Valida-
tion of Knowledge-Based Systems (Fourteenth International Joint Conference
on Artificial Intelligence), pp. 42-48 Montreal, Canada.

O'Neal, M. B., and Edwards Jr., W. R. [1993]. “Comprehending Rule-based Pro-
grams: A Graph Oriented Approach,” International Journal of Man-Machine
Studies, 39(1), 147-175.

164

Plant, R. T. (1992]. “Expert System Development and Testing: A Knowledge Engi-
neer’s Perspective,” Journal of Systems Software, 19(2), 141-146.

Plant, R. T. [1993]. “The Meta Knowledge Level: A Methodology for Valida-
tion,” In Proceedings of the AAAI Workshop on Validation and Verification
of Knowledge-Based Systems, pp. 94-108 Washington D.C.

Polat, F., and Guvenir, H. A. [1993]. “ UVT: A Unification-based Tool for Knowledge
Base Verification," IEEE Ezpert, 8(3), 69-75.

Pople, H. W. [1982]. “Heuristic Methods for Imposing Structure on Ill-Stru: ‘*nred
Problems,” In Szolovits, P. (Ed.), Artificial Intelligence in Medicine, pp. 119~
190. Westview Press.

Prakash, G. R., Subramanian, E., and Mahabala, H. {1991]. “A Methodology for Sys-
tematic Verification of OPS5-Based Al Applications,” In Twelfth International
Joint Conference on Artificial Intelligence, pp. 3-8 Sydney, Australia.

Preece, A., Gokulchande1, P., Grossner, C., and Radhakrishnan, T. [1993a]. “Model-
ing Rule Base Structure for Expert System Quality Assurance,” In Notes of the
Workshop on Validation of Knowledge-Based Systems (Thirteenth International

Joint Conference on Artificial Intelligence), pp. 37-50 Savoie, France.

Preece, A., Grossner, C., Gokulchander, P., and Radhakrishnan, T. [1993b]. “Struc-
tural Validation of Expert Systems: Exverience Using a Formal Model,” In
Notes of the Workshop on Validation and Verification of Knowledge-Based Sys-
tems (Eleventh National Conference on Artificial Intelligence), pp. 19-26 Wash-
ington D.C.

Preece, A., Grossner, C., Gokulchander, P., and Radhakrishnan, T. [1994]. “Struc-
tural Validation of Expert Systems: Experience Using a Formal Model,” In

Liebowitz, J. (Ed.), Second World Congress on Ezpert Systems, pp. 323-330
Estoril, Portugal.

165

Preece, A., Grossner, C., Gokulchander, P., and Radhakrishnan, T. [1993].
“Structure-Based Validation of Rule-Based Systems,” Submitted to Knowledge

and Data Engineering.

Preece, A. D. [1990). “Towards a Methodology for Evaluating Expert Systems,”
Ezrpert Systems, 7(4), 215-223.

Preece, A. D. [1992]. “A Survey of Empirical Validation Techniques for Expert Sys-
tems,” Report for Bell Canada, Centre for Pattern Recognition and Machine

Intelligence, Coucordia University, Montréal, Canada.

Preece, A. D. [1993). “A New Approach to Detecting Missing Knowledge in Expert
System Rule Bases,” International Journal of Man Machine Studies, 38(4),
661-688.

Preece, A. D., and Shinghal, R. [1992]. “Verifying and Testing Expert System Con-
ceptual Models,” In IEEFE International Conference on Systems, Man and Cy-
bernetics, pp. $22-927 Chicago, Illinois.

Preece, A. D., Shinghal, R., and Batarekh, A. {1992a]. “Principles and Practice in
Verifying Rule-Based Systems,” Knowledge Engineering Review, 7(2), 115-141.

Preece, A. D., Shinghal, R., and Batarekh, A. [1992b]. “Verifying Expert Systems:
A Logical Framework and a Practical Tool,” Ezpert Systems with Applications.

3(2/3), 421-436.
Rich, E. {1991]. Artificial Intelligence (2nd edition). McGraw Hill, New York.

Rousset, M.-C. [1988]. “On the Consistency of Knowledge Bases: The COVADIS
System,” Computational Intelligence, 4(2), 166-170. Also in ECAI 88, Proc.
Luropean Conference on AI (Munich, August 1-5, 1988), pages 79-84.

Rushby, J. [1988]. “Quality Measures and Assurance for Al Software,” NASA Con-
tractor Report CR-4187, SRI International, Menlo Park, California.

Schreiber, G., Wielinga, B., and de Hoog, R. [1994]. “CommonKADS: A Compre-
hensive Methodology for KBS Development ,” IEEE Ezrpert, 9(6), 28-37.

166

Shinghal, R. [1992]. Formal Concepts in Artificial Intelligence. Chapman & Hall,
London, U.K., co-published in U.S. with Van Nostrand, New York.

Simon, H. A. [1973]. “The Structure of Ill-Structured Problems,” Artificial Intelli-
gence, 4, 181-201.

Suh, Y.-H., and Murray, T. J. {1994]. “A Tree-Based Approach for Verifying Com-
pleteness and Consistency in Rule-based Systems,” Erpert Systems with Appli-
cations, 7(2), 199-220.

Suwa, M., Scott, A. C., and Shortliffe, E. H. [1982). “An Approach to Verifying
Completeness and Consistency in a Rule-Based Expert System,” AT Magazine,
3(4), 16-21.

Valiente, G. [1993]. “Verification of Knowledge Base Redundancy and Subsumption
Using Graph Transformations,” International Journal of Expert Systems, 6 (3),
341-335.

Vestli, M., Nordbd, I., and SO@lvberg, A. [1994]. “Modeling Control in Rule-based
Systems,” IEEE Softw.re, 11(3).

Vignollet, L., and Lelouche, R. [1993]. “Test Case Generation Using KBS Strategy,”
In 13th International Joint Conference on Artificial Intelligence (1JCAI 93),
pp. 483-488 Savoie, France.

Vinze, A.S. [1992]. “Empirical Verification of Effectiveness for a Knowledge-based
System,” International Journal of Man-machine Studies, 37(3), 309-334.

Waldinger, R. J., and Stickel, M. E. [1991]. “Proving Properties of Rule-based Sys-
tems,” In Proceedings of the IEEE 7th Conference on Al Applications, pp. 81-88
Miami Beach, Florida.

Weitzel, J. R., and Kershberg, L. [1989]. “Developing Knowledge-Based Systerns:
Reorganizing the System Development Cycle,” Communication of the ACM,
32(4), 482-488.

167

Wells, S. A. [1993]. “The VIVA Method: A Life-Cycle Independent Approach to
KBS Validatinn,” In Proceedings of the AAAI Workshop on Validation and
Verification of Knowledge-Based Systems, pp. 109-113 Washington D.C.

Yen, J., Juang, H.-L., and MacGregor, R. [1991]. “Using Polymorphism to Improve
Expert System Maintainability,” IEEE Lzpert, 6(2), 48-55.

Yost, G. R. [1993]. “Acquiring Knowledge in SOAR,” IEEE Ezpert, 8(3), 26-34.

Yost, G. R., and Newell, A. [1989]. “A Problem Space Approach o Expert System
Specification,” In Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI 89), pp. 621-627 San Mateo, California.

Zlatareva, N., and Preece, A. D. [1994]. “State of the Art in Automated Validation of
Knowledge-Based Systems,” Ezpert Systems with Applications, 7(2), 157-167.

Zualkernan, 1. A., and Lin, Y.-J. [1993]. “Experimentzal Evaluation of Output Based
Partition Testing for Expert Systems,” In Proceedings of the 1993 IEEE Inter-
nationai Conference on Tools for Al, pp. 190-197 Boston, Massachusetts.

