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ABSTRACT

On The Development of Computational Models of the
English Lexicon

Kevin Stanley O'Mara, Ph. D.
Concordia University, 1991

The study of the form, acquisition, use and meaning of language
has been a seemingly perpetual focal point of scholarly activity. Not
surprisingly, language design and use have been viewed as pivotal
issues to both practical and theoretical computer science.

The research results reported in this thesis address the issues
of syntactic form and lexical structure in natural language processing.
In particular the lexicon defined in the Oxford Paperback Dictionary
was analyzed in order to discover whatever basic principles or rules
underlie the structure of the English words it lists.

The principle, a priori, assumption underlying this thesis is that
a physical symbol system underlies the structure of the lexicon. An
exhaustive analysis of the words defined in the Oxford Paperback
Dictionary supports the view that the English lexicon conforms to a
simple physical symbol system.

This research found in particular that there are fundamental
patterns underlying the English language word structure at the
orthographic level. A classification and clustering scheme referred to
as Vowel Normal Form (VNF) is sufficient for approximating the basic
linguistic structures found in English.

A simple prefix code underlies the relationship between the
major word structures of various sizes found throughout the English
language lexicon listed in the Oxford Paperback Dictionary. The prefix
code structure of English language word structure assures band-

filtering effects which may be exploited by simple pattern recognition
routines.

1



A single two parameter model is sufficient to predict the size of
the major VNF word group structures found in the Oxford Paperback
Dictionary. The prefix code structure model when coupled with the
two parameter set-size model predicts both the structure and size of
the major VNF frames found in the lexicon.

A form of directed graph, referred to as a WORD-WEB, is
sufficient to represent all words of a given VNF set.

The frequency of occurrence of words may be computed as the
product of word-length and position-dependent letter-frequencies for
the most frequently occurring smaller words. Context-sensitive rule
base schema are sufficient to reduce longer words, such as 10-letter-
long words to their root words or base component.
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CHAPTER ONE
THE SEARCH FOR STRUCTURE IN INTELLIGENCE AND
LANGUAGE

1.1 INTRODUCT'ON

What are the agencles of mind and memory? (Questions such as
these have preoccupied philosophers since the dawn of time. It is
only since the beginning of the scientific revolution that such
questions have been posed by empiricists. For over five hundred years
physicists, biologists and psychologists have sought to determine the
physical concomitants of thought [ 1.1, 1.2 ]. Unfortunately, within the
paradigms of science, no convincing answers have been found to such
questions as: how do we know? what can we know? how do we
learn? and how do we forget? [ 1.3, 1.4 ]. It is only within the last
thirty years that such questions have been posed by a group of
scientists who have at their disposal an ever-increasing ability to
analyze and simulate the macroscopic behavior of complex,
hierarchical concomitant physical systems [ 1.3 ].

Today many computer scientists, particularly those working in
the areas of cognitive science and artificial intelligence, seek to
model, simulate and evaluate models of problem solving, insight,
emotion, thought, and reason | 1.4 ]. The search for a basic
computational metaphor of mind is, of course, not without opponents
[ 1.5, 1.6 ]. Curiously, this opposition comes most from those who are
displeased, frightened and appalled by attempts at applying naive
determinism to the 'miracle of mind'. It seems likely that this
century's classic mind-brain dichotomy [ 1.7 ] will be slowly resolved
over the next decades in computer science laboratories around the
world [ 1.4 . This great inquiry may lead us to a fundamental
understanding of intelligence and even new embodiments of mind.

Language appears fundamental to our study of mind [ 1.8 |. In
fact, Newell & Simon [ 1.9 ], who coined the physical-symbol system
hypothesis, claim that a necessary and sufficient condition for
intelligence is the ability to manipulate a symbol system abstracted
from reality. For example, consider the physical-symbol system



underlying competitive game-playing scenarios such as chess. Each
chess plece has a well defined and specific repertoire of possible
moves. These moves are context free and may be applied anywhere
within the bounds established by the chessboard. Of course a chess-
plece cannot legally attempt to move outside of the chessboard
perimeter. The game of chrss proceeds through a set of opening
moves that establish the context of the contest to arrive at a typical
phase referred to as the "mid-game". While the game's opening moves
are critical to the contex. of the game, they have little effect on the
strategies used for playing the next phase of the game. Once the
opening moves have established the context of the game, a classic
min-max algorithm may be employed to compute consecutive moves
[ 1.16 ]. The min-max algorithm uses an objective function to always
choose the move that most disadvantages ycur opponent while best
advantaging you. The min-max algorithm may be used recursively to
any aepth needed to assure a 'win'. A win in such scenarios is often
the result of the success of a process of delayed gratification. Your
move and the subsequent move your opponent is referred to as a 'ply’,
The depth of recursion used in the evaluation of a move is referred to
as the number of plies used in the simulation. The optimal number of
plies required to win the game is, of course, not easy to determine; in
fact, it may vary as the game proceeds. If the human excels at
competitive game- playing, using something like a min-max
algorithm, this is most likely because of our ability to adaptively choose
the depth of recursion used in our game-playing. One scenario for
chess playing has both players using a min-max algorithm until
relatively few pieces remain on the board and an overwhelming
advantage is obvious. This state signals the start of the final phase of
the game. The "endgame", or final phase of the game, typically uses
look-up tables to invoke previously compiled, context-sensitive moves
to quickly finish the game [ 1.16 ]. A typical physical-symbol system
for competitive game-playing incorporates an objective function, a
min-max algorithm and a fixed set of symbolic pieces each of which
have archetypical behavior.

The concept that language, which is a classic physical-symbol
system, both underlies and limits human thought is often traced to a



seminal work by Benjamin Whorf entitled Language. Thought, and
Realjty [ 1.10 ]. Early researchers in computer science came quickly

to appreciate the validity and practical importance of Whorf's work.
They found that the native constructs established in the design of a
computer language often limited both its utility and its domain of
applicability [ 1.11 ).

Classicists such as Polya { 1.12 ] have demonstrated that the way
in which a problem is posed, or rather abstracted, can radically affect
its solution. Pilaget [ 1.13 ] is the first to carefully observe the
maturational stages of such skills. Research in these fields
established the complex and fascinating inter-relation of language and
computation [ 1.14 ]. The differential growth of vocabulary in
response to our experience and ability to solve problems in a given
domain is an example of an object-oriented approach to problem
solving. The development of formal abstract symbol manipulators,
such as mathematics by humans, has often been hailed as one of
mankind's greatest intellectual achievements [ 1.15 ]. Mathematics 1s
,0f course, a language whose power and applicability may paradoxically
rest with its unambiguous and relatively simple, context-free
grammar. This realization and the idee fix of the Al community of
the early 1980's led to the development of systems suitable for the
elegant solution of problems drawn from the domain of calculus.
While immensely practical, these systems, which were composed of
less than a few hundred rules from the domain of number theory,
shed very little light on intelligence; although that was the prime, a
priori, assumption underlying researchers' preoccupation with the
study of mathematical reasoning.

A previous generation of research in Al has resulted in few, hard
won, conclusions. Perhaps foremost among these is the observation
that any significant computational intelligence has, to date, required
both copious data which is often referred to as a knowledge base and
a set of algorithms suitable for inference, deduction and learning |
1.16 . The process of coding has played two principle roles in the
development of these systems. The first role is typically that of
encryption [ 1.17 |. Encryption has two distinct roles: to increase or
to decrease the thought needed to grasp a message. In its first role,



theorems such as the Shannon-Fano codes are used to enhance the
privacy of a message [ 1.18 ]. Their encryption maximizes the
computation needed to extract the message from the code..
Encryption's second role is exactly opposed to its first use.
Encryption may be used as Northrop Frye { 1.19 ] points out 'in the
spirit of Shakespeare', to ensure the maximum 'modality’ of a
message. In this light authors such as Shakespeare and Freud
intuitively seek the explanation of complex ideas in simple terms.
Others such as Burgess [ 1.20 ] illustrate the opposite of this idea.

One of the distinct goals of twentieth century science has been
to formalize operational models of mind, language, computation and
codingl 1.21 } . In fact, it was not until this century that the concept
and power of operational models was exploited [ 1.22 ].

The turn of this century marked a rebirth of simplistic gestalt
paradigms in mathematics and science. It was this period that lead to
the ambitious pursuits by such giants as Russell & Whitehead [ 1.23]
and Sir James Jeans | 1.24 ). It was during this period that S. Freud |
1.25 ], C. J. Jung [ 1.26 }, W. Penfield [ 1.27 ] and K. Lashley [ 1.28 ]
were establishing the first gestalt operational models of mind.
Determinist schools of mind, such as those established by McCulloch
& Pitts [ 1.29 ], Sherrington [ 1.30 ], and D. O. Hebb { 1.31 ], provided
the first operational models of neural activity. It was these
operational models of cell assemblies and neural nets that
Investigators such as Papert & Minsky [ 1.32 ] exploited in their early
work on artificial intelligence. It was not until much later that
comprehensive hybrid models which attempted to encompass both
the gestalt and local agenci<s of the mind were posited by Minsky's
school [ 1.4 ].

In the first half of this century, the young British mathematician,
Allan Turing, turned his academic interest to the study of
computation, encryption and language [ 1.33 ]. Turing is cited as
providing the first operational definition of artificial intelligence
[ 1.16, 1.34 ], and his model of computation remains a benchmark in
computer science. It was during the Second World War that Turing
devoted his attention to the practical concerns of computational
linguistics.



Atwell [ 1.34 ] has recently pointed out that the origins of
computational linguistics date back to the deveiopment of first-
generational machines and what can be referred to as modern
computer science. Turing led much of the original research in this
area, which focused the British war effort on coding and encryption.
It is this early work. and that of Shannon and Chomsky, that
eventually lead to new statistical theories of languages.

In was not until after the Second World War that Noam Chomsky
radically revolutionized linguistics through a series of publications
that established the normal forms and hierarchies of language that
today bear his name [ 1.35, 1.36, 1.37 ]. Chomsky's models of
language had great impact on early formalizations of context-free
languages in computer science [ 1.34 ]. The impact of Chomsky's
transformational grammars was immediately appreciated by the small
community of computer scientists working in the then new field of
artificial intelligence. In fact, it can be argued that the formalism
underlying conjunctive normal form within computer science has its
basis both in Chomsky's transformational grammars and the early
work of Lewis Carroll [ 1.36 ], who developed disjunctive normal
form in 1896. Transformational grammar revolutionized linguistics by
providing the field with a plausible, formal framework for an
understanding of the concept of semantic meaning or deep structure
of a thought. The various effects which can interfere with our
comprehension of deep structure are referred to by computer
sclentists as "representational distortions” { 1.38 |.

The realization that there existed a fundamental relationship
between the Chomsky hierarchy of formal grammars and the
functional features of machines that could recognize them was one of
the most important fundamental discoveries of computer science
[1.34]

The early work in automata theory arose from work on
formalisms of neural nets. While automata theory led to functional
abstractions of computation machinery, it took the insight of a decade
of computer science research to realize that the properties of these
models of computational mechanisms could be described by the
languages that they could accept { 1.39 1.



It s tmportant to understand the functional equivalence of a
language and the automata that can recognize constructs conforming
to the language. It s more important to understand the significance
of a linguistic statement and to know what criteria must be met to
successfully transmit the statement. Such issues remained open until
the ploneering work on information theory by Claude Shannon [ 1.40 ]
in 1948. It is from this basic research on information theory that
models of prefix and separable ccdes were developed.

While this century has seen the development of fundamental
operational models of mind, language, computation and
communication, researchers are still attempting to integrate our
Fnowledge of these areas into a cohesive whole. Unification of these
models has proven to be particularly difficult and not very satisfying.
It might be that we are still missing fundamental concepts such as an
understanding of memory and its role within these models. Memory
management may turn out to be a critical factor in discovery
processes which typically involve us in cycles of inference and
deduction. While perhaps critical to the future developments in the
field of artificial intelligence, this question falls outside the domain of
this thesis.

How much of our intellectual ability 1s genetically endowed? Are
important high-order agencies such as the human language center
among those genetic endowments, as Chomsky suggests? If our
language center is genetically endowed, how can we best determine
and simulate its functions?

These questions belong to a class of difficult problems at which
human ingenuity excels | 1.41 }. Such problems often confronted the
early pioneers in pattern recognition such as K.S. Fu [ 1.42 ]. Fu
established, to a large extent, the domain of structural or syntactic
pattern recognition and realized the intrinsic limitations of this
approach in analyzing an unknown pattern. Statistical pattern
recognition could, in theory, be applied to the task of assessing the
similarity of patterns. Unfortunately, in order to apply such statistical
techniques, it is necessary to specify the important features on which
statistical measures could separate and cluster similar patterns. Sokal
& Sneath [ 1.43 | developed a field of study known as numerical



taxonomy. A major preoccupation of this field is the determination of
Jjust how many features are needed to achieve efficient classification.
A second concern is which of the features, of a usually large set of
mutually correlated features, should be used in this task. Pattern
recognition techniques typically use a min-max procedure to
empirically optimize clustering schemes. The interesting question of
how we identify 'causal factors' in what is often an immensely long
sequence of antecedent events remains open. Of course, there s a
school of thought [ 1.44 | that claims that we are in fact actually
incapable of this process and can only really abstract, model, and
manipulate that which we know through our genetic endowment.

A decade ago in an elegant, empirical study, Adams | 1.45 ]
developed a carefully controlled set of experiments intending to
disprove a tenet proposed at the turn of the century by Pillsbury
[ 1.46 ]. Pillsbury had hypothesized that humans read or recognize
words, even words they had never seen before, much more easily than
they can read nonsense strings. Adams carefully fabricated nonsense
strings of specific word-sized units which were composed of letters
having the same position dependent probabilities as her set of test
words. Surprisingly, her experiments overwhelmingly confirmed
Pillsbury's hypothesis. How could it be that humans could quickly and
intuitively recognize patterns in English words? English is a difficult
language whose object-based vocabulary is drawn as loanwords from
many languages. It is partially because of its hybridity that there is an
apparent lack of rules to specify its s2elling, declension and grammar.
Englisii would appear to be a language where anything can, and in fact
does, occur. How then can we explain Adams's results? The results
presented in this thesis help to explain Adam's results and confirm
Pillsbury's hypothesis.

1.2 PHILOSOPHICAL APPROACH & ASSUMPTIONS

This thesis proceeds in the tradition of Immanuel Kant [ 1.47 |
with a set of hypotheses which are assumed, als ob. First among
these, is the implicit assumption that there are rules which
determine whether words, such as the German loanword zefigeist,



are accepted into English usage. A second assumption which is
posited on parsimony, is that such rules might be both context-free
and operate at a semantic level of understanding that is below that
necded to grasp a well-formed phrase or sentence. The third
assumption is that the observations of patterns at the lexical level of a
language will provide a sufficient basis from which to infer general
syntactic rules that apply to the language as a whole. There is
additionally the assumption that a computational analysis of accepted
English lexicon will shed light on the patterns, rules and
mathematics that underlie English [ 1.48 ]. The fourth assumption is
that observations based on computations of the relative use of word
structures will enhance our understanding of the syntactic rules
which were derived from a static lexical anaiysis. A fifth assumption
is that the computational method and procedures used to isolate the
patterns and rules that apply to English may prove to be valuable to
the study of its spoken form. Finally there is hope that this work may
extend to the analysis of other languages and perhaps deeper
structures.

1.3 THESIS GOAL

The principal goal of this thesis Is to establish computational
models of the English language lexicon.

14 THESIS OUTLINE

Chapter One is an introduction to the intellectual basis of
computational linguistics and the thesis tomnic.

Chapter Two provides an outline of the historical background
underlying to the thesis toplic.

Chapter Three describes the source materijals used in this
research.

Chapter Four describes the development of a classification
scheme referred to as "Vowel Normal Form". This chapter also
presents basic empirical resuits obtained by using vowel normal form




to cluster words of a given length into common structural templates
or syntactic frames.

Chapter Five describes the use of a prefix code model of English
language word structure. This model allows one to simulate the
dominant structural components of an entire lexicon from a small
kernel of archetypes.

Chapter Six outlines the development of a second simple model.
This model allows one to predict the set size of the principle
syntactic word forms found in the lexicon.

Chapter Seven describes the complementary use of the two
models presented in Chapters Five and Six in predicting the size and
location of the basic components of the Zinglish ledcon.

Chapter Eight describes the use of an augmented transition
graph, referred to as a "Word Web", to describe all words conforming
to a given vowel normal form.

Chapter Nine describes the use of context-sensitive statistics to
predict the frequency of occurrence of words. Word-length and
position-dependent letter-frequencies are used to predict the
orthographic form of words. These statistics can also be used to infer
the prefix and suffix components of longer words.

Chapter Ten describes a context-sensitive, rule-base suitable for
reducing large words to their stems or roots by the application of sets
of suffix rules that are tuned to the word-length and vowel normal
form. Vowel normal form and word 'ength are used in this work as
the two principle features underlying the application of a specific
context-sensitive rule-base.

Chapter Eleven summarizes the results of this study and outlines
the further work that would be needed to generalize its conclusions
to the formalized function of a lexicon in the language center of
humans and perhaps other highly evolved mammals.

The results presented in this thesis offer fundamental insight
into the English language and suggest new approaches to artificial
learning and understanding which may release natural language
processing systems from the use of tables and primitive data
structures. They should allow one to mimic, in artificial intelligence
systems, the behavior observed in Adams's experiments on humans.



Practical applications include the use of such systems in intelligent
spelling checkers which could access the likelihood and acceptability
of unknown words. Another practical application would involve
embedding such systems in smart optical scanners. Immense
improvements in the performance of these scanners would result
from their ability to correct errors. These errors result not only from
transliterations which involve letter substitutions but also from the
deletion or insertion of letters in a word. This work suggests the
potential utility of developing a system for detecting the insertion or
deletion of letters within the prefix code structures of English.

The theory underlying this thesis has its origins in pattern
recognition [ 1.52 ], artificial intelligence [ 1.53 ], computational
linguistics [ 1.54, 1.55, 1.56 ], automata theory [ 1.57, 1.58 ], the
theory of formal [ 1.59, 1.60 ] and natural languages [ 1.61, 1.62. 1.63,
1.64 ], including work on information theory, coding and encryption
| 1.65 ], fractal geometry [ 1.66, 1.67 ], and statistical sampling theory
[ 1.68, 1.69, 1.70, 1.71 ].
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CHAPTER TWO
HISTORICAL PERSPECTIVE

2.1 INTRODUCTION TO THEORY AND METHODOLOGY

The development of computational models of language is one of
the central areas in artificial intelligence. This chapter develops the
background of my thesis work with a broad perspective of relevant
concepts and paradigms in artificial intelligence.

The theoretical foundations of this thesis are based on a broad
range of related, but distinct, domains which have played central roles
in the evolution of computer science during this century.

The history of science demonstrates that deeper understanding
usually follows the careful investigation of empirical rules which are
generalizations accrued from human experience and from intuitions
that have demonstrated practical importance | 2.1 1.

The evolution of scientific understanding has, at least in
observable systems, lead to the development of competing operational
models which can be evaluated and verified by experiments and
simulations [ 2.2 ]. A fundamental cycle of inductive and deductive
inference is basic to our present functional definition of sc‘ence { 2.1 }.
It is exactly this paradigm of enquiry that underlies the success and
growth of modern science and our understanding of the physical
universe. Of course, in order to undertake such enquiries, the
sclentist must account for the peculiarities of the domain of enquiry |
2.3 1. Thus, while the scientific process is similar across all domains,
the study of medicine, physics and linguistics share so very little in
common with each other that it is difficult to see a common thread in
their respective scientific methodologies.

This chapter will outline some of the theory underlying the
lexical and grammatical components of computer science that is
essential to this thesis. In this review some very germane problems
and results in the areas of pattern recognition are also discussed.



2.2 LEXICAL THEORY

In 1935, G. K. Zipf published a text [ 2.4 | entitled, The Psycho-
Biology of Language, in which he described his observations on the
relative frequency of word usage in natural language texts. Zipf found
that there existed an inverse relationship between the frequency of
use of a word and its relative rank. Thus, if there were a thousand
different words found in a text, then the most frequently occurring
word among them was used one thousand times. Empirical results
such as those depicted in Figure 2.1 led Zipf to his conclusion that in
general the p -th most common word in a natural language text occurs
with a frequency which is approximately inversely proportional to p.
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Figure 2.1 Zipf's Law. Abscissa shows frequency (number of
times a word is used) plotted against rank (order of common-
ness) for 260,430 running werds of James Joyce's  Ulysses
( curve A ) and for 43,989 words from newspapers ( curve B ).
The straight line C illustrates Zipf's idealized curve or 'law'.
Reproduced from 2.44
There was an evolution of thought from the early work of Zipf,

principally through the critiques of Yule [ 2.5 |, Van Herdan [ 2.6 ], and
the thesis work of Mandelbrot| 2.7 ] in 1952. This evolution saw an
attempt to develop a sound and functionally meaningful lexical model
of natural-language use from Zipf's work. Much of the work described
in Chapter 6 of this thesis was undertaken within this milieu.

Zipf was obsessed with confirming that the first empirical
results he obtained were in fact truly characteristic of most natural
languages. It was this quest that lead to work by many other authors
[ 2.8, 2.9 ] who attempted to develop and use appropriate sampling
techniques for statistically meaningful computational analysis ¢f texts.
Some authors argued that Zipf's descriptive models suffered from
severe theoretical limitations. Most of the objections to Zipf's
equations dealt with their inappropriateness in modeling the behavior
of both the most frequently occurring vocabulary elements as well as
the least frequently used terms. Various alternative models were
proposed to modify the behavior at its extrema of the law proposed by
Zipf. Other objections to Zipf's work [ 2.10 ] focused on the
Inappropriate nature of his equation's convergence characteristics,
which theoretically limited the size of the lexicon. Other
theoreticians disliked Zipf's law because it, like Miller's "magic
number 7" [ 2.11 ], were based on black box observations that
appeared to describe the operating conditions of a complex system but
really failed to offer any significant understanding of the system itself |
2.12 . Zipfs law describes macroscopic behaviour without providing
insight into any mechanism underlying these macroscopic effects.

For instance Zipf's law may be a simple concomitant of the log-
normal statistical distribution observed for natural-language word
usage | 2.6 . On the other hand, Zipfs law may result from the
internal workings of the memory-management scheme for lexical
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processing in the human's language center [ 2.13 . In any case, Zipf's
law, which as it turns out [ 2.14 ] was first noted by Estoup [ 2.15 ],
remains a very interesting and useful observation which may someday
fit within a comprehensive theory of language processing.

Knuth | 2.16 ] has pointed out that Zipf's law and other
probability effects [ 2.17 | are extremely useful in the design, analysis
and modeling of a wide range of text-based computer applications
working at the lexical level.

A great many applications of these still-empirical observations
arise in systems for both natural and computer language processing.
For instance, Chapters 6 & 7 demonstrate the utility of such
probability effects in predicting the macroscopic characteristics of
vocabulary dispersal throughout the predicted lexical structures
described in Chapter 5.

In natural language processing, one usually wants to help
determine a lexical signature in order to help verify authorship of a
disputed scholarly work [ 2.18 ]. Other interesting applications
include the use of pattern recognition schemes for key-word matches
[ 2.19 ] and concordance studies [ 2.20, 2.21 ] that compute partial
correlation coefficients on vocabulary associations. These lexical
methods have been applied to artificial intelligence applications in
verbal reasoning studies [ 2.22, 2.23 ], as well as in the field of clinical
psychiatry [ 2.24 ]. It is expected, in fact, that such approaches will
have a major impact on our present attempts { 2.25, 2.26 ] to unravel
the molecular code of the human genome.

In the case of machine languages, lexical effects form the basis of
metrics that have been proposed as a way of assessing software quality
[ 2.27, 2.28 | and the likelihood of the presence of errors in the
software | 2.29, 2.30 ].

A second important practical use of lexicon-based equations is
their ability to predict the length of a source text solely from the size
of its lexicon. Chapter 6 presents work which implies that such
equations may be used to estimate the size of the vocabulary
conforming to the dominant lexical structures found in the language.

Within the domain of computer science, lexical equations such
as those proposed by Halstead [ 2.31 | and O'Mara et al| 2.32 | have
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been used to predict the length of source code from the details of its
lexicon. This is important in that present industry standards [ 2.33 ]
require that this lexicon be established in the software requirement
specification of a system. Hence, these metrics may be computed long
before coding is undertaken.

Shortly before his death in 1977, Halstead published a synopsis
of his work in this area | 2.34 ] in the text Software Science. Since
then, Halstead's work has suffered a fate similar to that encountered
by Zipf. After over twenty years of investigation, controversy still
surrounds the implications and value of Halstead's observations.
Perhaps the best known and most controversial of these observations
is Halstead's length equation [ 2.35, 2.36, 2.37 ]. This formula (which
is given in Equation 2.1) predicts the length of the source code, N, as
a function of the number of distinct operators, ny , and operands, ng ,
needed to specify the program. Some authors | 2.38, 2.39 | doubt the
utility of Halstead's equations altogether, while others [ 2.40, 2.41 |
note the need to establish ad hoc methodologies in order to apply
Halstead metrics to modern programming environments. Various
authors [ 2.42 ] have proposed relatively minor modifications of
Halstead's formulations (such as those given in Equation 2.1} in an
attempt to improve the quality and range of applicability of the
metrics. However, as in the case of Zipf's law, computer scientists are
once again confronted with a set of empirical generalizations that exist
without a good theoretical framework. Halstead metrics were based
on a paradigm of programming that reflected the fetch-execute cycle
of the assembly languages of the late 1960's. As such, the application
of Halstead's original equations to modern, higher-level programming
languages is not clear and certainly requires the development of
counting and clustering rules which are required to map the native
constructs of modern, high-level languages onto Halstead's original
binary classification scheme.

Both Halstead and Zipf attempted to use rationalizations based
on psychological concepts, such as the "Stroud number" | 2.43 ] and
the "principle of least effort" | 2.44 ], to support their work.
Unfortunately, further psychological research showed these concepts
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to be weak; and they are now considered simply outmoded within
cognitive science | 2.45 ).

N = nplgn + ny 1g Ny (2.1

N = nytiging) + notig(ngy (2.2

where 1g denotes the logarithm to base 2

In order to even conceptually apply Halstead's original-length-
equation estimates to modern language constructs, a two step process
is required: It is first necessary to translate high-level language source
code into an operationally equivalent low-level form. It is the length of
this translated, operationally equivalent, low-level form that is then
estimatable by Halstead's metrics.

Furthermore, in higher-level languages, it is more difficult to
accept Halstead's implicit view that all operators are equally important
[ 2.32 ]. The functional partitioning of the linguistic elements used in
all computer languages into the two disjoint categories proposed by
Halstead ignores the importance and nature of higher-order native
constructs.

Both high- and low-level cons. ucts may be predefined or native
to a language. However, high-level constructs, such as a sort Ladlity,
are clearly not linguistically nor computationally equivalent to low-level
operators such as division. Such difficulties often complicate even
simplistic lexical analysis. More comprehensive linguistic analyses
which are based on context-sensitive or hierarchic features, while
fundamentally worthwhile, are very difficult to design, interpret and
analyze.

Some authors [ 2.32 ] have sought to refine the concept of
Halstead's length equations by basing them explicitly on an
hierarchical scheme of operators and operands that attempts to
profile the operational features of computer languages. While initially

22



appealing, this approach is made difficult by the idiosyncrasies and
often ill-conceived preferences of computer language designers which
have contributed to the production of an immense plethora of domain-
specific computer languages and their native constructs. Models such
as those given in Equation 2.3 are used to quantify the impact of the
powerful native constructs found in higher-level languages on source
code length. Within such models [ 2.32 ], there are k types specified
in the code's syntactic feature set.

k

No= 2 ngig () (2.3
(=1

When k = 2 with k | = { operands }, k 9 = { operators }, Equation 2.3
reduces to Halstead's original length equation; and the estima..
provided by Equation 2.1 conform to those found by Halstead for his
equations [ 2.34 ]. equation 2.3 is of course very closely related to
Shannon's 'Information function' which is the same as the well known
'entror 7 function' of statistical mechanics [ 1.40, 1.65 |. Shannon
proved that there is a unique mathematical function, which is related
to Equation 2.3, that satisfies certain reasonable postulates that
describe the abstract concept of 'information'. Shannon showed that
there is one, and only one, way to assign a quantitative value to
measure information, provided that the mieasure satisfies two
postulates. The first postulate is that if all outcomes are equally likely
then the information measure is a strictly increasing function of the
number of possible outcomes. The second postulate is that the
amount of information provided by an 'answer' is independent of the
way in which the answer was found. Information theory measures have
been extensively used in the design and analysis of coding and
transmission systems. They have also been applied to a wide range of
studies and it is not surprizing to see variants of 'entropy’ measures
used In lexical measures for approximating 'complexity' in natural
language texts and source code.
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Halstead's equations and their refinements differ fundamentally
from Zipf's length equations in that Zipf, perhaps wisely, chose to
ignore the role that a word played in linguistic use. By adopting this
simple device, Zipf avoided considering the multiple roles that a word
often plays in natural language semantics. Furthermore, even the
number and relative usage of the parts of speech vary among languages.
It is exactly the ramifications of these lexical effects on Halstead's
metiics which have raised serious concerns about their practical
utility. In addition, many lexical elements in high-level programming
languages are splintered across the source code. For instance, does
the selection construct 'If..Then..Else' count as a single operator? In
practice, it appears that, in order to practically apply Halstead's
n.etrics, a set of consistent and rather ad hoc lexical rules must be
adopted.

The lexical equations developed by both Halstead and Zipf
describe macroscopic behavior while offering little insight into
whatever mechanisms that underlie this behavior. However Halstead's
equations are applicable to the hierarchical analysis of context-free
code. Halstead's equations are also applicable to the lexical analysis of
context-sensitive text that is both expository in nature and relatively
frec of redundancy. Thus Halstead's equations are applicable to the
analysis of scientific writing but fail in the analysis of poetry.

Zipf observed that the product of the rank, R , of a word and its
frequency of occurrence, F , is a constant, ¢ , for most natural
languages. Zipf's length equation ( which is given in Equation 2.6 ) is
fundamentally different in form from those proposed for computer
languages by Halstead and his followers.

c = R~*F (2.4
Equation 2.4 is usually written as:
log F = -log R + w (2.5

where the size N of a piece of natural language text containing M
distinct terms or vocabulary items is approximated by N as :
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M

N = ©2 1 =ceM+(M+1)/2 (2.6

t=1

Zipf's law is insufficient to adequately describe vocabulary use in
computer languages. A second, slightly more complex approach,
which was first proposed by Halstead in his analysis of computer
languages, partitions vocabulary into two fundamental functional
classes. Halstead proposed a classification scheme which partitioned
source code elements into one of two possible disjoint
sets:{operators},{operands}. Halstead's lexical model works on
restricted domains of natural language text, such as technical reports
or scientific papers [ 2.34 ] but fails to describe natural language texts
which contain significant redundancy.

More elaborate models attempt to establish functional classes,
such as those based on the parts of speech in a natural language, or
various arbitrary archetypical hierarchies of computational operators
and operands [ 2.32 .

This laudable approach is made difficult, if not fatally flawed, by
context-sensitive effects which confound simple classification
schemes. For instance, it is often not possible to determine the part
of speech of a vocabulary item without knowing the context in which it
was used. Classification schemes which attempt to ensure the
specificity of their taxonometric basis are, of course, desirable in that
they are the easiest to use but also, unfortunately, the hardest to
derive. Chapter 4 presents a classifications method which has shown
itself to be useful in describing and predicting natural language word
structures found in English.

Within the domain of computer language design, the use of
semantics to clarify the syntax of an ambiguous operator allows one to
extend the use of a concept such as addition to many data types. Such
semantic extensions within computer languages are referred to as
'overloading' { 2.46 ]. This term reflects the belief that such
generalizations of concept in computer languages are against the spirit
of strongly typed languages. The use of overloaded operators, for
Instance, often increases the cognitive burden of really understanding
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the code, let alone remembering its significance [ 2.47 ]. Overloaded
operators enhance the likelihood of error in code that humans
consider complex [ 2.48 .

The impact of overloading on even such simple software metrics
as those proposed by Halstead means that it is necessary to devise
counting rules [ 2.49, 2.32 ] specific to source code for each
programming language. The '+' operator when applied in one context
may be used to specify set union, while it might also be used to specify
the addition of two numeric types or the concatenation of two string
types. The task of interpreting the semantic meaning of a lexical
operator in a higher-level computer langnage often requires
knowledge of its contextual application.

A second major theoretical difficulty in positing functional
classes is establishing what we, as computer scientists, mean by "their
equivalence" [ 2.50 ]. Much attention must be paid to the spirit in
which one accepts the equivalence of constructs. Physical science,
since the turn of this century [ 2.51 ], usually accepts operational
equivalence while computer scientists are less pleased with this
notion. Some computer scientists accept functional equivalence,
while others insist on structural * rather than operational equivalence
[ 2.47 ]. Semantic equivalence | 2.52 ] is the key concept underlying
transformational grammars that attempt to show a common deep
structure or semantic equivalence between two natural language
sentences [ 2.53 ]. To date, the concept of deep structure has not
been explicitly used in computer science. Frame based, object-
oriented artificial intelligence systems [ 2.54, 2.55, 2.56 | come
closest to embracing some of the basic ideas of deep structure. It is,
of course, impossible to establish a classification scheme based on
archetypes or seminal structures without a concomitant a priori
agreement on the basis of equivalence. In this regard the myriad of
abstract objects and classes with which computer science presently
works resembles the arbitrary collections of fauna and flora that
preoccupied the pre-Darwinian mind. This state of affairs, while

* The models developed in this thesis focus on simple structural

equivalence.  For instance all words (types) conforming to a given lexical
frame arc considered to be 'equivalent' within that frame.
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problematic, is hardly surprising considering that computer science is
still an extremely young discipline.

Unfortunately, the practical ramifications of ou. present
situation are immense. Intent errors, introduced by the ambiguity
between the semantic inwent and lexical representation of the source
code, are considered [ 2.57, 2.58 ] to be the most serious and
expensive of coding errors. Intent errors are often assoclated with
complex code, which is also typically heavily overloaded [ 2.59 . Such
error-prone software seems to possess characteristic lexical and
syntactic signatures or styles. The fundamental sources of these
immense practical problems remain poorly understood today. It is
hoped that analytical work on natural language structures will
eventually offer insight into similar problems with the more restricted
languages used in conventional programming. The next section of this
chapter will describe current empirical approaches to style analysis in
greater detail.

2.3 GRAMMATICAL AND SEMANTIC THEORY

The computational analysis of style whether it be that of Byron or
Knuth can of course be undertaken at the lexical, grammatical and
semantic levels.

In the previous section of this chapter we discussed the
foundations and use of lexical analysis. The problems encountered in
lexical analysis usually reduce to difficulties encountered in one-to-
many mapping scheme where the orthographic form of a word is in
itself insufficient to uniquely specify its intent | 2.60 ]. For instance a
single word in English may have a great number of meanings and be
used as many different parts of speech [ 2.61 ). The single
orthographic form of a word, such as present, may also be pronounced
differently as its use changes from noun to verb [ 2.62 |. The results of
overloading symbols in natural languages are no less ominous than
those encountered in computer languages. Lexical overloading forces
us to use context to determine the meaning or intent of a word.

In written work the simplest lexical context can be estimated by
concordance studies which use n-gram statistics [ 2.63 ], based on a

27



Markov process model, to attempt to isolate the intended meaning of
a word on the basis of its neighboring terms. Chapter 9 describes the
use of contextual-probablilities in modeling the frequency-of-use of a
given word. Such studies carry with them the modern paradigm of
'guilt by association' which is really a classic fallacy in the form of an
argument ad hominen. Concordance studies do not require a parse of
a sentence and are hence both computationally efficient and immune
to the simple or even poor grammatical form that one expects from
the aanscripts of verbal discourse or Shakespeare. It is in this sense
that lexical analysis can surmount some of the problems introduced by
the immense difference between 'linguistic competence' and
'inguistic use' long touted by Chomsky [ 2.64 ]. Such differences are
even extreme when one compares the written and verbal performance
of an individual. In 1991 it remains an open question as to how it is
that we grasp the intent of verbal utterances.

The formal study of syntactic structures in language dates
primarily to the work of one, still very active, researcher.
Grammatical analyses were essentially a subjective domain until
Chomsky published a series of articles on the syntactic nature of
language [ 2.65 ). These works established a hierarchy [ 2.66 | of
linguistic structures which surface at a grammatical level. The form
and behavior of the production rules first used by Chomsky to describe
different levels of grammatical complexity precipitated a revolution of
thought in their domain of discourse. The Chomsky hierarchy of
language i1s undoubtedly one of the greatest intellectual achievements
of this century. In his iconoclastic works, Chomsky at once reduced
the role of vitalism in linguistics and supplanted it with a palatable and
viable mathematical theory of linguistic grammars that has since fueled
basic research in linguistics and computer science. A digestible
synopsis of this work was published in his text, Aspects of The Theory
of Syntax [ 2.67 |, in 1965. Chomsky humbly opens this text with the
following statement:

“The idea that a language (s based on a system of rules
determining the nterpretation of its infinitely many
sentences Is by no means novel. Well over a century ago,
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it was expressed wlth reasonable clarity by Wilhelm von
Humboldt in his famous but rarely studied {ntroduction to
general linguistics....

Nevertheless, within modern linguistics, it ts chiefly
within the last few years that fairly substantive attempts
have been made to construct explicit generative grammars
Jor particular languages and to explore thelr consequences.
No great surprise should be occasioned by the extensive
discussion and debate concerning the proper formulation
of the theory of generative grammar and the correct
description of the languages that have been most intenstvely
studied. The tentative character of any conclusion that
can now be advanced concerning linguistic theory, or,

Sor that matter, English grammar, should certainly be
obvious to anyone working in this area.”

Twenty-five years after Chomsky's publication of, Syntactic
Structures | 2.65 ], the tentative character of its conclusions remains
the same. If agreement on the principles of lexical analysis is difficult
then it is hardly surprizing that grammatical analysis has proven to be
close to intractable. This is not to say that the basic ideas of the
hierarchy of syntactic form has not been generally accepted by
linguists and adopted wholeheartedly by computer scientists
concerned with language design. Rather it has proven very difficult to
apply and implement these abstract syntactic forms. For instance
there is still doubt in the literature [ 2.68 ] as to whether English is
necessarily a context-sensitive language!

Unfortunately these questions appear simple in comparison to
perhaps more important and principle questions that have
preoccupied the structuralist school. For instance consider one that
preoccupies us here: Does form predispose function?

Within a Platonic system the concept of form is, in itseilf, a very
important component of an individual's abstracted reality | 2.69,
2.70 }. The relation of form to function within living systems
underwent a process of profound reevaluation in science with the
publication of the works of D'Arcy Thompson | 2.71 ] at the beginning
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of this century. Such concerns surfaced in twentieth century art in
the form of 'assemblage’. Assemblage represented a way of creating art
almost entirely from pre-existing elements or 'found objects’. The
artist's contribution in this school was to formulate the links between
known 'ready-made' objects rather than making them ab initio. This
reevaluation of the role of the artist led to the rise of dadaism [ 2.72 ]
in the early 1920s. It is the evolution of processes such as these that
led to the advent of a new determinism that predisposed the
revolutionary studies of Piaget | 2.73, 2.74 ] and the abstract
structuralists such as Chomsky [ 2.75 | and Minsky | 2.76, 2.77 }. The
results presented in Chapters 4 & 6 indicate that a modified form of
assemblage can be applied to the analysis of English language word
structure,

The formalisms of the hierarchy of grammar developed by
Chomsky are critical to entire areas such as syntactic pattern
recognition which was pioneered by the late K.S. Fu. In fact generative
grammars have helped form the basis of a wide range of structural
models such as ‘hose developed within computer science for the
analysis and una.rstanding of N-dimensional signals [ 2.78, 2.79 ].
Chapter 7 presents a comprehensive structural model of the principle
components of the English lexicon.

One dimensional analyses are typically associated with string
parsing and have been used in computer science [ 2.80, 2.81 ],
molecular biology [ 2.82 ], and linguistics [ 2.83 ]. Two dimensional
pattern recognition applications of generative grammars have been
used in many imaging [ 2.84 ]| and medical applications [ 2.85 ],
including the development of grammars suitable for parsing
electrocardiograms [ 2.86 ]. Three dimensional applications include
the work by Waltz | 2.87 ] on a lexicon of the 18 vertices needed to
characterize 3-D trihedral surfaces as well as in Marr's primal sketch
theory of vision [ 2.88 ]. Complex N-dimensional grammars show
promise for use in signal processing domains such as those
encountered in speech recognition [ 2.89, 2.90 |].

In some applications generative grammars are used to accept a
string as parsable and therefore conforming to the rules of some
arbitrary language [ 2.91 ]. Such applications only establish the
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syntactic acceptability of a string of code and do not provide any
assurances that the code has in fact any semantic meaning. While such
applications only establish the syntactic acceptability of a string in a
grammar they work over all possible finite strings. This feature
provides immense power to pattern recognition problems which must
be able to accept for analysis new, or at least previously
unencountered, signals. Chapters 4 & 5 demonstrate the use of such
models in describing and generating lexical frames in English.

In other applications generative grammars are used to specify or
differentiate forms. For instance syntactic algorithms can be applied
to the task of classifying airplanes from pictures of even partially
obstructed views of their structure. In such cases the parse of the
form of the obstructed structure can be used to specify which
secondary, statistical, pattern recognition routines should be used to
either verify the object's classification or enhance its image. Of course
procedures such as these are only applicable to the recognition of
objects which are know to exist and have already been classified. The
classification of a polygon using Waltz's algorithm usually results in a
unique labelling of its vertex set. As it turns out[ 2.92 ], Waltz's work
may have fundamental importance to our understanding of visual
processing. Various visual illusions, such as those which are
interpreted by our eye as the image of an object taken in one of two
possible perspectives, are found to exhibit two different mutually
consistent vertex labellings under the Waltz algorithm.

Still other applications of generative grammar use the parse of a
signal to specify, or partially interpret its meaning. Some diagnostic
systems for the syntactic interpretation of electrocardiograms are
good examples of such applications. The structure of the
electrocardiogram waveform, as given by its parse, is considered to be
Indicative of the patient's cardiac status and in some cases is
considered to be diagnostic. Few applications however have the
necessary one-to-one functional relatifonship which underlies the
success of such mappings of form to function.

The components of syntactic structure are used extensively as
domain knowledge in artificial intelligence applications where they
can heuristically help clarify the semantic meaning of a signal.
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However when we view structure, in and of itself, we find that it is
usually devoid of meaning or at best ambiguous in its interpretation
[2.93].

How important is syntax as a vehicle to understanding? I
Whorf's postulate on the importance of language to the process of
thought is correct, then what role does syntax play in linguistic
function and understanding?

Some¢ research being undertaken by Minsky's school is
attempting to demonstrate that such things as music are in fact empty
syntax [ 2.94 |. It is Minsky's view that music conforms to grammars
which can be used to simulate the works of specific composers or
periods. In fact, he suggests that the pleasure derived from a wide
range of musical forms could well be described by a simple
transformational grammar.

Transformational grammars, such as those developed by
Chomsky [ 2.95 ], have been used to convert metacategories such as
active sentences into their semantically equivalent passive forms.

For instance transformational grammars provide the correct
syntactic form of the translation into the active voice of any
syntactically correct passive sentence within a grammar. It may be
that transformational grammars which show promise in establishing
semantically equivalent, syntactic forms can be applied to the task of
reducing the endless variation of expression that actually describes the
vibrancy and value of natural language into a canonical form which is
best sulted to the analysic of its meaning by some agency.

Transformational grammars operate on syntactically different,
yet semantically equivalent forms. Within the domain of mathematics
such grammars could be used to describe various mathematically
equivalent forins of an expression. Transformational grammars
guarantee the semantic equivalence of a set of expressions or
sentences without regard to their underlying semantic meaning. Such
grammars, which are ubiquitous in traditional mathematics, are much
more difficult to construct in context sensitive domains such as
lUnguistics [ 2.96 ]. Alas transformational grammars, which promise
the existence of a formal scheme for the reduction of well formed
natural language sentences into some canonical form, stop short of
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providing insight into whatever semantic meaning there is in such
canonical forms [ 2.97, 2.60 ].

If the richness of syntax is really a matter of transformational
form then how is it that we derive meaning and semantic
understanding from structure? What aspects of language really limit or
determine thought?

These questions remain central to the entire area of artificial
intelligence. They are also reflected in research work on the number
of native constructs and the size of the lexicon in computer languages.

Unfortunately today's academic, whether a linguist or computer
scientist, is as preoccupied by such quests as was an entire generation
of previous researchers who witnessed the publication of Chomsky's
hierarchy of form and Minsky's text The Society of Mind.

It may be that Minsky and his colleagues will soon demonstrate
the poverty of empty syntax in such domains as music and poetry.
Such results, while very important and interesting, would per se, offer
little insight into the nature of thought and semantic interpretation.

There has been considerable practical interest in grammatical
and semantic analysis in both the artificial intelligence and software
engineering communities over the last decade. Such work has led to
the development of utility packages which are capable of detecting
awkward grammatical and semantic constructs in texts [ 2.98 |.
Further work is needed to determine whether the methods and
models developed in this thesis are applicable to such practical
applications.

The software engineering community have sought to develop
systems suitable for assessing the lexical, syntactic [ 2.99 ], and
semantic style of computer code. These systems can be used to detect
awkward or error prone constructs such as nested 'If..Then' clauses or
GOTO's in computer code as well as the use of semantic forms such as
recursion in source code. Present systems attempt to isolate not only
chunks of error-prone code [ 2.100, 2.101, 2.102 ] but also
computationally inefficient constructs [ 2.103 ]. Work in this field is
based on the belief that source code is read and understood in
psychologically meaningful modules referred to as chunks [ 2.104,
2.105 ). It is the premise of this work that it is possible to build both a
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comprehensive database of code chunks and a thesaurus relating
statistically defined 'semantically equivalent' chunks. Smart
optimizing compilers would then proceed by first recognizing an
abstract chunk such as that used to implement bubble-sort and then
substitute it with that specifying the equivalent, but computationally
preferable, quick-sort routine [ 2.47 ].

The artificial intelligence community has sought to develop
natural language systems suitable for enhanced word processors which
are capable of detecting awkward constructs [ 2.60 ], tense
incompatibilities [ 2.98 ], ill-formed or run-on sentences, and grossly
ambiguous pronoun, or clause referencing [ 2.60, 2.106, 2.107 . The
artificial intelligence community has also focused an immense amount
of effort on the development of efficient parsing systems suitable for
natural language processing [ 2.108, 2.109, 2.110, 2.111, 2.112,
2.113 ). It is also expected that such systems will be of great value in
speech recognition research [ 2.114 ]. While it can be argued that a
successful parse of a sentence will not revel its semantic intent. It is
also true that a successful parse can not help but improve attempts at
deriving the semantic meaning of a sentence and appears to be
certainly needed to determine its deep structure.

The last three decades have witnessed an immense growth in
our present understanding of language whether it be at the lexical,
syntactic, transformational or semantic level. This growth has been
the result of great effort.

Linguistics offers a domain of enquiry wherein it is likely that its
most prolific and well respected living authors and native speakers
have precious little awareness of just how it is that they create
masterworks. It is as if high level linguistic processes are to remain by
their very nature inaccessible to analytical analysis by those who best
use them.
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2.4 PATTERN RECOGNITION

In a restrictive sense of the word, pattern recognition may be
viewed as the process of classifying and recognizing unknown patterns
from a set of a priort known patterns. A wider view of pattern
recognition expands the domain of this field to include the processes
involved in recognizing or discovering the basic a priorl patterns
needed to achieve domain specific recognition tasks. This second
view of pattern recognition makes its study fundamental to the pursuit
of artificial intelligence. Comprehensive linguistic models must
address both of these issues. For our purposes we shall limit the
review given here to a discussion of three core components of pattern
recognition research: classification reasoning, classification schemes
and classification/recognition problems.

2.4.1 CLASSIFICATION REASONING

Patterns appear to be critical to the means by which we
interpret the world { 2.115, 2.116, 2.117 . Humans readily
distinguish many very complex patterns such as faces, handwritten
text, diseases, music, cars, flowers, etc. Within the framework of
pattern recognition, decades of research have been spent attempting
to define the processes by which we are able to recognize signals that
stimulate our senses and thoughts. The fundamental processes which
enable us to discover and recognize complex patterns are still
relatively unknown. This is not to say that domain specific recognition
research has not yielded both good theoretical results and many
practical pattern recognition systems [ 2.118, 2.119, 2.120 |. If
Minsky's thesis of a 'society of mind' is correct then it is not
surprising that we have not found a generic pattern recognition
system in humans. The 'society of mind' thesis implies that each
mental agency has its own, domain specific, physical-symbol system.
If this is the case evolution [ 2.121 | would assure that pattern
recognition processes would be optimized to meet the special needs
of each of these physical symbol systems. Much of the early research
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in pattern recognition and artificial intelligence focused attention on
the ' mechanization of perception and thought processes'. After four
decades, it has become clear that the vast majority of problems which
have been "successfully" solved contain a common element,
classification. These successful solutions have ranged from simple
classification problems to multiple-classification problems whose
soluiion mandated that sub-classification reasoning be used [ 2.29,
2.122, 2.123, 2.124 ). However the basic fundamental processes
underlying these success stories, including the process of
classification, remain poorly understood.

Pattern classification is often considered to be the basis of
pattern recognition. The ability to classify patterns into groups gives
us a foundation necessary for recognition. Chapter 4 presents a single
feature that appears to be of great use in clustering and classifying the
lexical structures found in English. Given this information we can
attempt to recognize new patterns by processing them to achieve the
best match of a pattern to an element in some set of previously
learned patterns.

2.4.2 RECOGNITION & CLASSIFICATION

Pattern classification appears to be an important part of the
recognition problem. In fact both the recognition and classification of
patterns are considered to be among the most fundamental of human
activities.

The general guidelines for the recognition process focus on
three issues. First the pattern must be perceived by the senses,
Second, patterns of the same class must have been perceived and
catalogued beforehand. Third, an equivalence or correlation must be
estab’ .aed between the perceived pattern and a past perception.

It is the study of this third consideration that has fueled much
work on the theoretical applicability and the practical use of decision
rules { 2.125 ], statistical methods { 2.126, 2.127, 2.128 ] and
traditional as well as fuzzy logics | 2.129, 2.130 ] in classification.
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Classification itself requires some feature selection process.
This process, as we shall see shortly, turns out to be both very
important and very difficult.

First we need to consider the role of decision rules on the
classification process. Developing a set of decision rules and correctly
applying them are two main aspects of a pattern recognition process.
Chapter 10 illustrates various uses of the sets of decision-rules. These
sets of rules were derived from clusters of lexical structures which are
based on the feature classification method proposed in Chapter 4 of
this thesis. The various uses of these rule-based systems include
deriving roots and hence a bit of the semantics of a word. However in
order for a pattern recognition system to adapt or learn it must be
possible to change existing rules or establish new ones. Hence the
decision rule database must be modifiable as well as context-sensitive.
Two early examples of recognition strategies are depicted in Figures
2.2 and 2.3.

Figure 2.2 outlines a process where initialization occurs before
recognition. The decision rule base s fixed in this scenario and
adaptation cannot occur. Figure 2.3 refines this process by allowing
decision rules to be modified on the basis of the system's detectable
error. Such adaptive systems allow for the learning and recognition
phases of the pattern recognition system to occur in tandem.

To use decision rules effectively, the process must incorporate
some method for relevant feature selection. The objective is to define
and extract features for classification groups which will allow for the
correct and efficient recognition of new patterns via decision rules.
These features also dictate the formulation of the decision rules in that
eventually such rules must recognize a pattern by its features.
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LABELLED PATTERN ,| PROCESSNG L | DECISION
SAMPLES RULES

NEW PATTERN FIXED DECISION |
Figure 2.2 Classic fixed pattern recognition system. After [ 2.86 ]
ADAPTIVE DECISION
SEQUENTIAL PATTERN RULE _ .| CLASSIFICATION
SAMPLES
y

RULE MODIFICATION

SUB-SYSTEM ‘ - ERROR DETECTION

Figure 2.3 Adaptive pattern recognition system. After [ 2.86 |
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Should the feature set be poorly chosen it may not be possible
for the pattern recognition system to adapt to patterns. Some recent
work has focused on analyzing just what changed the rules in an
adaptive rule base system. This focus is based on the observation that
modified rules can complicate the pattern recognition system. New
patterns may require a more comprehensive feature than the one
initially chosen! Similarly more than a single feature may be needed to
correctly classify an ambiguous pattern. Chapter 10 demonstrates the
application of a divide-and-conquer approach, based on the feature-
classification-method developed in Chapter 4, to the selection of an
appropriate set of grammar rules for words of a specific lexical
structure.

For example the adaptive addition of a new feature for
recognition can corrupt the entire classification structure. Additional
features must be added conservatively and only with the realization
that a retrospective study is needed to confirm that their inclusion
will not degrade the system’'s performance. For instance whole groups
of classes which were clearly defined by the previous decision rule
may be now incorrectly classified by a modified rule-base which
adapted itself to correctly classify an exceptional case. As such the
rule modification sub-system depicted in Figure 2.3 is critical to the
success of adaptive systems. In all cases the careful selection of
features in both fixed and adaptive environments is critical to the
overall success of the pattern recognition system.

A proper detailed study of the functional requirements for a
given application which exhibits well-defined, stationary behavior can
lead to the choice of a very good feature set for a fixed system.
Unfortunately systems with fixed rule-bases are context-free and have
very limited scope. Furthermore the performance of fixed rule-base
systems must be monitored to detect potentially seriocus error
introduced because of their inability to handle 'new' cases.

Adaptive system such as those depicted in Figure 2.3 must
implement their rule-modification subsystem very carefully if they are
to avoid degrading the integrity and overall performance of the pattern
recognition process. Prudence requires that a form of cost/benefit
analysis must be used to access the real value of any modification to
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the system's rule-base. Realistic guidelines for such an analysis are
very complex.

The concept of 'adapting data' in pattern recognition processes
makes these applications ideally suited to object-orientated
programming paradigms [ 2.131 }. In such a paradigm a great deal of
time is spent analyzing the properties of the system's data in an
attempt to formulate meaningful operations on that data. Object-
oriented paradigms exploi* the distinctive attributes of the data set.
Such features are isolated only after extensive investigation in that
they ai: usually neither initially known nor are they obvious. This
Investigative procedure can often yield simple and effective decision
rules. Chapters 9 & 10 illustrate the applicability of simple
morphological and probabilistic features to the extraction of context-
sensitive natural language grammar rules.

2.4.3 CLASSIFICATION/RECOGNITION PROBLEMS

A great many authors have expressed their opinions on the
fundamental problems of pattern classification and recognition. The
problems expressed usually are related to the origins of recognition
and classification. Central to these discussions is the weak
fundamental basis of the field. For instance such concepts as 'shape’,
‘cognizance’ and 'tdentification' are not clearly defined. While it is
possible to operationally define such concepts, such definitions are
only suited to their particular branch of recognition research. It may
be that shape and identification are intrinsically dependent on the
objective to be achieved. This observation is consistent with the
'society of mind' paradigm. A second concern is the degree of
complexity needed In a pattern recognition system to assure its
accuracy. In the course of designing a pattern classification scheme
more than one type of process will most likely need to be
implemented. An implication here is that more complex
implementations provide more complete solutions. Systems which
only implement one basic recognition system usually drastically reduce
the domain of recognition problems which they can resolve.
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Perhaps the most fundamental classification problem facing
research in pattern recognition arises in the difficulty encountered in
correctly defining 'matural’ versus man-made or 'architected' patterns.
Artificial recognition processes which deal with both natural and
architected patterns encounter many 'exceptions’' which are a direct
result of the constraints and restrictions in the physical-symbol
system adopted by their designers. As discussed previously adaptive
systems can use data to modify or fine-tune a particular physical-
symbol system. The adaptation process is an order of magnitude
simpler than using data to determine which of the many possible
physical-symbol system to invoke. Man-made or architected patterns
such as an alphabet or the Dewey decimal are relatively easy to define
and classify. Natural patterns such as those observed in plants, clouds,
rocks and non-linear processes have been traditionally very difficult to
analyze, define and classify. This difficulty can be traced to our
relatively poor understanding of the processes underlying the
development of natural patterns. A lack of understanding of the basic
processes underlying a phenomenon can make it much more difficult
to analyze and classify patterns produced by the process. This thesis
tackles the problems of analyzing a system which apparently contains
both natural processes and architected patterns. For unlike man-
made languages such as ADA, natural languages lexicons have
undergone extensive natural selection. In Chapter 7 one observes both
fractal-like and architected components of the lexicon's frames.
Fortunately our understanding of the patterns produced by natural
processes has improved markedly over the last decade [ 2.132 |.

In fact generic mathematical models have been recently
developed which incorporate fractal geometry and the principles of
chaotic processes. The existence of these models allows one to
classify patterns in terms of meaningful features such as the fractal
dimension of an object. Wether these models are sufficient or
necessary to correctly analyze natural processes and the patterns they
produce is at the moment an open question. To what extent is such
analysis whimsy? To what extent is the fractal nature of natural
artefacts arbitrary? Progress in this field has been rapid in that these
models are testable. The results of such work are needed to form the
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basis of a new generation of physical-symbol systems suitable for the
classification and recognition of many presently intractable natural
patterns. The application of this approach to the study of the
evolution of context-free language is the subject of further research.

2.4.4 FEATURE SELECTION

Features may be thought of as attributes of data which promote
recognition. The number and choice of features often limits the
accuracy and resolution of pattern recognition systems. Practical
questions arise whenever one needs to determine how many features
are needed to recognize or classify patterns | 2.86, 2.78 }.

There 1is also concern over which of the many mutually
correlated features arc best suited for use in a model. Central to the
problem of feature selection is the degree of our understanding of the
process which generates the patterns. Features which are selected to
correlate to parameters of a naive linear model of a non-linear natural
process cannot be expected to work outside of a very limited range of
application.

The process of feature selection for recognition systems that
focus on architected systems is a far simpler task than those that seek
to recognize and classify pattern formations that are the result of
poorly understood, non-linear 'natural' processes. It remains clear
that the mathematics and models of the physical universe that are
assumed by the researcher in fact form a de facto basis for rational
feature selection. For example a classic reductionistic approach to
these problems is to choose features which represent reduced
primary components of the data. This approach uses the principle of
‘assembiage’ | 2.72 ] with its implicit assumption of basic archetypes
from which all patterns can be constructed. Unfortunately the issue of
the primary components refers us back to the models and
mathematics that are implicit to our systems [ 2.1, 2.12 }.

Fundamental problems occur when the features selected do not
reduce patterns to their primary components. For instance features
which only partially decompose patterns can incorrectly categorize
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them because too general a view was adopted in the decision rule
analysis.

Feature selection implicitly focuses our attention on matching
the complexity of the processes involved in producing a pattern with
the simplicity of the model used to describe, recognize and classify
these patterns. We attempt to define pattern classes which are
important to us in terms of the simplest models needed to
successfully handle the task at hand. Practical considerations can be
used to choose the most accurate and economically measured features
of our model. These considerations are not based on a desire o
achieve elegance but rather the desire to produce an understandable,
maintainable, accurate and non-arbitrary system. Once a feature is
chosen one must deal with statistics including the degree of resclution
used in its measurement and the effects of measurement error on the
pattern recognition system. Chapter 5 demonstrates that the prefix
model developed in this thesis needs to be complemented by a model
like that developed in Chapter 6, which establishes the relative
magnitude of the structures produced by the prefix models. A pattern
recognition system iIs considered to be robust if it can recognize
ambiguous patterns in noisy environments. Of course, robust systems
usually achieve their results through redundant computation and are
thus computationally expensive.

2.4.5 MAPPINGS & DATA TRANSFORMATIONS

The data transformation section of a pattern recognition system
can be described as a mapping scheme which adopts procedures to
define an equivalence between a particular pattern class and a newly
perceived pattern. Such procedures use sets of rules which are based
on the data's features and a well defined sequence of computations
based on the rules which define equivalence classes.

The problem of defining the equivalence relations in such
systems is very difficult. Careful feature selection helps reduce this
task, however equivalence is usually defined quantitatively by
computing and comparing a sufficlent number of data properties.
Such operationally defined approaches are statistically practical but
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error-prone. Chapter 3 discusses the issues involved in selecting the
words used in this work.

Key to the problem of successful pattern recognition is not only
the relevance of the selected features but the amount of raw data
needed to reliably measure a feature.

The simplest solution to this problem has been to extract as
much feature information as possihle, via sound mathematical
transformations, from a relatively small but accurately measured and
reproducible sample set that spans critical areas of the sample space.

A very important problem in this mapping process is the ability
of the system to assure the integrity of the pattern classes under
transformation. The pattern classes, or archetypes, were chosen, a
priort, on the basis of distinct characteristics. Sometimes the
transformations adopted by the pattern recognition system force some
of the original pattern classes to be radically reclassified upon
reevaluation. Such reclassification must be analyzed very carefully
because if the original classification was correct then this forced
reclassification under transformation implies that this process has
Introduced significant error into the system. If however forced
reclassification under transformation is the result of the detection of
an error or ambiguity in the original data set then the pattern
recognition system has tmproved the accuracy of its own classification
scheme.

2.4.6 COMPLEXITY & AMBIGUITY

Empirical observations have shown that comprehensive solutions
from pattern recognition systems are associated with the degree of
complexity found in the system itself. Complexity is, of course, a
poorly defined term and can refer to the choices of underlying
models, feature selection processes, data measurement and
transformations [ 2.133, 2.134 ]. The choices made in each of these
areas drastically effects the overall utility of a pattern recognition
system. While every effort has been made to use an authoritative
comprehensive and academic lexicon as the basis for this analysis,
there is a need for further research to confirm the results of the
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models developed here on the complete Oxford English Dictionary. It
is expected that our data set which consists of all valid English words
listed in the Oxford Paperback Dictionary has ylelded results which
are indicative of those obtainable from an analysis of the entire English

lexicon.
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CHAPTER THREE
MATERIALS & METHODS

3.1 INTRODUCTION

In most dictionaries the set of words found in the language is
ordered alphabetically. For the work described in this thesis a
dictionary in which the words or types were ordered by length or size
was required. The task of re-ordering the set of words contained in
an alphabetically sorted dictionary to form a dictionary ordered by
word length is formidable. However, with the exception of: 1-, 2-, and
3-letter words, it is simpler to re-order the entire dictionary than to
confirm the existence, in a college level dictionary, of every possible

word of a given size. Mathematically there are 264 or 456,976
possible 4-letter words in the English language while a typical college

dictionary such as Funk & Wagnalls Standard College Dictionary , FW
[ 3.1] contains only about 152,000 entries. It is thus a simpler task to
sort the entire FW dictionary than to look up all possible 4-letter
words contained within it.

The principle database used in this study was the set of words

listed as parts of speech in the Oxford Paperback Dictionary. OPD,

[ 3.2 ], although other sources such as Funk & Wagnalls Standard
College Dictionary . [ 3.1 ] and the Oxford English Dictionary . OED,
[ 3.3 ] were used in Chapter 8. These alphabetically ordered lists were

subsequently sorted by word-length. These alphabetically sorted lists
of words of various lengths were then further analyzed in order to
isolate their common structural similarities and characteristics. For
our purpose, in this thesis, we consider a dictionary to be a set of
types or unique words found in the language.

The format or structure of the dictionary's entries is a relatively
simple matter to establish. Once a consensus is reached by the editors
of a dictionary about its intended content, scope, and audience.
Standardization of format can make a dictionary easler to use.
Standardization can also improve a dictionary's content and reliability.
In most cases the format of an entry in a dictionary usually conforms to
a well-defined structure which can be used to build pattern



recognition procedures needed to automatically isolate word entries
from the text of the dictionary.

3.2 DICTIONARIES, LEXICONS & WORD-LISTS

A dictionary is more than a personal word-list, while it is true
that the earliest dictionaries were little more than idiosyncratic note-
lists [ 3.4 ], a modern dictionary is a very scholarly work compiled
under academic review. Such standards are needed in order to assure
a dictionary's uniformity, quality, as well as the accuracy with which its
entries reflect received English. Conservative academic review may be
used to assure that transient terms are not embedded in the
dictionary. The correct spelling and pronunciation of the word
entries in a modern dictionary have also undergone very careful peer
review. Unfortunately peer review also typically introduces a degree of
explicit as well as implicit censorship.

Many of the words which have been censored from most
dictionaries are very well known and popular terms. In fact, most of
us would not need to consult dictionaries like the OPD, for the correct
spelling or meaning of these censored words. Actually many of our
greatest authors use offensive words to great effect. It is exactly such
authors, who usually coin the words which are eventually accepted into
the OED.

Any censorship of a lexicon does however reduce Iits
comprehensiveness as well as its scholarly merit. It can be argued
that a censored version of the OPD is suited for use in primary and
secondary schools, however a comprehensive uncensored version is
also needed for scholarly work.

In addition to a consensus on the principles of censorship the
editors of a dictionary must determine just what information should be
contained in their dictionary. Some dictionaries contain capitalized
abbreviations such as CDN, WI, CPU, AFL/CIO and MUXES as well as
abbreviations such as Ms. and log. Other dictionaries contain entries
for the names of mythicai, historical or famous figures such as Zeus,
Christ and Liberace. Some dictionaries even have entries for dates
such as 1066, 1776, 79, and July 1st. Clearly things can get quickly
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out of hand once one begins to include more than 'words' In a
dictionary. Such ‘enhanced’ dictionaries often become 'poor’
encyclopaedias both in the literal and practical sense of the term.

If one accepts the view that a 'proper' dictionary should only
contain 'the parts of speech of a language' then all of its entries are by
definition valid English words. ( assuming of course that one does not
admit abbreviations as a part of speech! ) Thus each entry in such
'proper' dictionaries lists at least the correct spelling and part of
speech of its entries as well as a definition of the word in question.
Indeed, if the word is a noun then perhaps a picture or a line drawing,
of the object may be included. Some dictionaries include additional
information such as the word's received phonetic transcription,
variant spellings and contextual examples, of the word's use, are often
found in 'larger' dictionaries. More comprehensive dictionaries
provide historical information such as when and where the word was
first coined as well as listing the word's roots, synonyms and
antonyms. Of course a great many words with identical spellings have
more than one meaning. For instance many words may be used both
as verbs or nouns or some other part of speech. In some cases a word
may assume more than one part of speech and may be pronounced
differently in accordance with its different meanings or uses.

3.3 SORT KEYS: HOW TO ACCESS A DICTIONARY'S ENTRIES

Almost all modern dictionaries are sorted alphabetically. The
decision to collate the word entries in a dictionary on the basis of
their spelling reflects the primary use of the modern dictionary. One
usually looks up a dictionary entry to verify its spelling, meaning or
pronunciation.

Early dictionaries were not necessarily sorted alphabetically
[ 3.5 ]. For instance dictionaries were often constructed so that their
entries were collated on the basis of the frequency with which a word
was used [ 3.6 J. Other dictionaries were constructed with collating
sequences which were based on the frequency with which its entries
were typically misspelled [ 3.7 |. Still other dictionaries are collated
on the basis of their entries' phonetic form. Special purpose
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dictionaries, such as crossword-puzzle dictionaries, first sort their
entries on the basis of word-length. A secondary key is then used to
further sort these lists on the basis of some other feature such as their
spelling. T  -re are, of course, dictionaries of verbs, nouns and other
parts of speech.

Obviously the primary use of a dictionary effects the decision as
to how to best collate its entries. One could sort and cluster the
entries of a dictionary by a common semantic feature or purpose such
as color, type of tool, birds of prey, or geological processes. In fact by
overlaying a classification and clustering scheme onto a dictionary's
entries we would effectively turn the dictionary into a crude
encyclopedia. In some sense the inclusion of a word entry's history in
a dictionary, such as the OED, extends its use. The OED specifies the
origins of ancient words as well as their role as a dead, archaic, or a
presently active part of the living lexicon. In the case of traceable or
more recently coined words some dictionaries actually cite the author
and passage in which the word was first coined.

3.4 FUNK & WAGNALLS STANDARD COLLEGE DICTIONARY

The principle reason for choosing the FW dictionary is that this
source has a companion lexicon [ 3.8 |, CFW, in which entries are
listed first by length and then alphabetically. The CFW was produced
for the benefit of cross-word puzzle aficionados. It lists all 2-, 3-, 4-,
5-, and 6-letter entries contained in the FW dictionary. These listings
have been censored, by the dictionary's editors, to remove all phrases
and words which were deemed obscene, scatological, or racially
offensive. However, the CFW contains: foreign words as well as
American English; standard, informal, and slang words in every part of
speech and every tense, number, and gender; variant spellings,
abbreviations, acronyrs, hyphenated words, and prefixes and suffixes;
geographical names and the first and last names of people.

The CFW differs significantly from other dictionaries. It contains
only the name or index of the entry described in the FW dictionary.
Also for the benefit of the crossword puzzle enthusiast, it lists many
permutations for each entry in the FW dictionary. In fact a given word
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of length N will be found N!/ (( 2 « ( N-2 )1 )) times within the N-
letter-long word list. An example of a page listing from CFW s
reproduced in Figure 3.1. For the purposes of this thesis it was
necessary to delete all redundart entries from the CFW listings. The
FW dictionary must then be consulted for each remaining entry in the
CFW listings to determine if the cited letter-string or sequence is in
fact listed in the FW dictionary as a part of speech in the English
language. Each dictionary entry so established is a valid English word,
VEW. The lists of VEW contained in the CFW dictionary form
dictionaries of 2-, 3-, 4-, 5-, and 6-letter VEW. It is from these
derived dictionaries that some of the results, presented in Chapter 8,
are obtained.

3.5 OXFORD ENGLISH DICTIONARY

The ultimate lexicon for the study of the English language is the
Oxford English Dictionary, OED. While this dictionary is undoubtedly
the most comprehensive single source listing of the English language
it is neither complete nor unbiased to the British usage of the English
language | 3.5 |. Some of the results, presented in Chapter 8, are
derived from the OED. Access to the OED required the manual look-

up of each word. An example of a word entry in the OED is given in
Figure 3.2.

3.6 FREQUENCY DATA: LETTER AND WORD STATISTICS

While most of the work, presented in this thesis, is derived from
the word-lists found in the OPD and the Oxford Spelling Dictionary,
OSD, some auxiliary statistical data sources [ 3.9 ] were used to
compute the expected, position-dependent letter-frequencies for
words of a given length occurring in English text. This statistical data
has been used in Chapter 10 primarily to help estimate the relative

likelihood of an arbitrary suffix occwrring in larger words such as 10-
letter-long-words.
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248 ssfe el '

ARECAS oACe s RACERS LANCET MANIAC SHACKS
AVOCET AACHEN RACHEL LASCAR MANTIOC SLACKS

BACHED RACHIS MADCAP MANTIC SMACKS
AeeeCe BACHES RACIAL MANCHU MASTIC SNACKS
ABBACY BACKED RACIER MARCEL NASTIC SPACED
ABDUCT GACKER RACILY MARCIA PARSEC SPACER
ABJECT CACAOS RACINE MARCOS SAITIC SPACES
ACKACK CACHED RACING MARCUS TACTIC STACIE
ADDICTY CACHES RACISM MASCON TAMBAC STACKS
ADDUCE CACHET RACIST MASCOT TANNIC STACTE
ADDUCY CACHOU RACKED NANCYS TANREC STACYS
ADVICE CACKLE RACKER PARCAE TARMAC TEACUP
AFFECT CACTUS RACKET PARCEL TRAACED
AFRICA DACHAS RACOON PASCAL *oACe e TRACER
AGENCY DACHAU SACHEM PATCHY ABACAS TRACES
ALMUCE DACOIT SACHET RANCHO ABACUS TRACHE
ALPACA DACRON SACKED RANCID ACACIA TAACHY
ALSACE DACTYL SACKER RANCOR AEACUS TRACKS
AMEACE FACADE SACRAL RASCAL APACHE TRACTS
ANLACE FACERS SACRED SAUCED BEACHY WHACKS
ANTICS FACETS SACRUM SAUCER BEACON WRACKS
APERCU FACIAL TACKED SAUCES BLACKS

APIECE FACIES TACKER TALCED BRACED esAeCe
ARNICA FACILE TACKEY TALCUM BRACER BIANCA
ARRACK FACING TACKLE BRACES BLANCH

ASPECT FACTOR TACOMA sAseCe BRACHI BRANCH
ASPICS FACULA TACTIC BARUCH BRACHY CHALCO
ATTACH HACKED VACANT BASICS BRACTS CHANCE
ATTACK HACKEE VACATE CALICO CHACMA CHANCY
ATTICA HACKER VACUUM CANUCK CLACKS CRATCH
ATTICS HACKIE YACHTS CARACK CRACKS EPARCH
AVOUCH HACKLE DARICS CRACKY EXARCH
AZTECS JACANA sAeCe e GALACT CRACOW FIANCE

JACKAL BAUCIS HAUNCH DEACON FIASCO
Aseosl JACKED CAECUM JANICE DRACHM FRANCE
ACETIC JACKET CALCAR LAUNCE ENACTS FRANCK
ACIDIC JACKIE CALCES LAUNCH EPACTS FRANCO
ADIPIC JACKYS CALCIC MACACO EXACTA FRANCS
ADONIC JACOBS CANCAN MALACO EXACTS GLANCE
AEOLIC LACHES CANCEL MALICE FIACRE GLAUCO
AGAMIC LACIER CANCER MARACA FLACKS GRAECO
AGARIC LACILY CARCEL NAUTCH FLACON INARCH
AGONIC LACING CATCHY PALACE FRACAS ISAACS
ALARIC LACKED CAUCUS PANICE GLACES NUANCE
ALCAIC LACKEY OANCED PANICS GLACIS PLAICE
ALTAIC LACTAM DANCER PAPACY GRACED PLANCH

AMEBIC LACTIC DANCES PAUNCH GRACES PLANCK
AMIDIC LACUNA FALCON VARICO GUACOS PRANCE
AMYLIC MACACO FARCED KNACKS SCARCE

ANEMIC MACAWS FARCER LZ XX X1+ LEACHY SEANCE
ANGLIC MACERS FARCES BALTIC NIACIN SEARCH
ANODIC MACING FASCES BALZAC ORACHS SNATCH
ANOMIC MACKLE FASCIA BARDIC ORACLE STANCE
ANOXIC MACLES FAUCAL CALCIC PEACHY STANCH
AORTIC wMACRON FAUCES CALPAC PLACED STARCH
APNEIC MACULA FAUCET CAPRIC PLACER SWATCH
ARABIC MACULE GARCON CARPIC PLACES THATCH
ARCTIC PACERS GASCON FABRIC PLACET TRANCE
ATAVIC PACIFY GAUCHE GAELIC PLACID USANCE
ATAXIC PACING GAUCKO GALLIC PLACKS

ATOMIC PACKED HANCES GARLIC POACHY s3A+eC
ATONIC PACKER LANCED IAMBIC QUACKS AGAMIC
AZONIC PACKET LANCER IATRIC REACTS AGARIC
AZOTIC AACEME LANCES LACTIC SHACKO ALARIC

Figure 3.1 Example of a page entry from Funk & Wagnalls
Crossword Puzzle Dictionary [ 3.1 ]. An asterisk is used to

represent a wildcard character. For example a block of words in

column 2 on this page lists all 6-letter-long dictionary entries
which end in "AC".
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Reeling (ri*liy), 28/, 541 [f. REEL 2.1+ -1Ng1)
The action of staggering, etc.

1378 BarBour Bruce x11, 265 The king Robert be thair
relyng Saw thai war neir discomfyting. 3498 7revisa’s
Barth. De P. R. (W.de W,)v. xx. 126 :’l‘hc passyons of the
teeth ben dyuers..brekynge, and brusynge. ., relynge and
)vaglging] and fallynge. & 2800 Peebles to Play ii, For reil.
ing thair micht na man rest, Forgarray and for glew. a 1‘5‘9:
H. SmitH Six Serm. (1594) 89 As if he should say, neither
the winds blowing. .nor the ships reeling..should..waken
him from his sleepe. 1607-13 BacON £55., Counsel (Arh.) 312
They will.,be full of inconstancye,..like the reeling of a
drunken Man. 1664 H. More Myst, Inig. 329 Singing and
dancing and drinking and reeling were usual concomitants
of all the Pagan Holy-days. 1736 E. Ersxine Sern, Wks,
1871 I1. 406 The Avenger of thy blood will 1ake care of thee
in public reelings. 1781 CowpER Conversat. 862 Though
such continual zigzais in a book, Such drunken reelings,
have an awkward lock., 1899 Altbutt's Syst, Med. V11,
(A %ait] in which there is unsteadiness, titubation, and reel-
mg ike a drunken man, . .

omb. 1610 SHAKS. Temp. v, i. 279 Trinculo is reelin{g
ripe: where should they Finde this grand Liquor that hath

ilded ‘em? 3706 E. WarD Wooden World Diss. (1708) 100

hen he's seeling drunk ashore, he takes it for granted to
be a Storm abroad. .

Reeling (ri-lin), v8l. 562 [f. REEL 2.2 + -ING 1]

1. The action of winding on a reel.

1589 RipErR Bidl. Schol,, A Reeling, alabratio. 1603
Dexker Grissi/ v. i, Janiculo, leave your fish-catching,
and you your reeling. 1683 F'ublic Gen. Acts 179 Abuses
..in the Reeling of the Yarns. 17a37-43 Cuambrrs Cycl.
s.v. Reel, The reel used.. in the reeling or winding of
sitks. 1989 Trans. Soc, Arts VIi. 143 It was..afterwards
reeled off from those bobbins, and in the reeling passed
through warm water 1803 W. TavLor in Ann. Bev. L. 432
The purchases [of silk] are made about the ead of August
when the reelings terminate. 1884 MCLAREN Spinning (ed. 2)
235 The processes of twisting, reeling, and scouring.

Figure 3.2 Example of an entry taken from the Oxford English
Dictionary { 3.3 ]. This dictionary defines the semantics of each
word entry and cites, where possible, an example of the the
word's use in each of its possible contexts. This information is
presented in historical context by listing the citation date and
source for each new semantic use that a word can adopt.
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Most of the statistical data used in the auxiliary studies,
described in Chapters 9 and 10, was extracted from two sources. The
first is a bocX of word frequencies [ 3.10 | that contains an extensive
rank-ordered word frequency list. This source text documents a list
of 86-741 different English words of types that composed a text file of
5,088,721 running words or tokens. The 86,741 word vocabulary
described in this analysis [ 3.10 ] was sorted by its frequency of
occurrence. This set of words is also presented [ 3.10 ] as an
alphabetically-ordered dictionary that provides statistics on the
absolute and relative frequency of occurrence of a word as well as
measures of its dispersion cover the various categories of the text file
used in the analysis. The second major source of statistical data, used
in Chapters 9 and 10, was a series of tables of probabilities of
occurrence of characters, character-pairs, and character-triplets in
English text [ 3.11 }.

3.7 OXFORD PAPERBACK DICTIONARY

The principal lexicon used for the work, presented in this

thesis, is the Qxford Paperback Dictionary, OPD, and its companion
text the Oxford Spelling Dictionary | 3.12 | This lexicon was the

largest and most scholarly version of a magnetically stored dictionary
available to us! . Its listings are almost always entries for valid English
words conforming to popular British use.

A string processing routine which capitalized on the relatively
rigid st/listic structure | 3.13, 3.14 ] of the entries in the OPD was
developed to parse and extract all entries which are listed as parts of
speech In this dictionary. For example, Figure 3.2 depicts a word
entry found in the original version of the Oxford English Dictionary ,
OED, while Figure 3.3 depicts an entry taken from the 1st edition of
the Oxford Paperback Dictionary, OPD. Figure 3.5 provides the
Backus-Naur Form, BNF, [ 3.15 ] of the frame used to describe the
structure of all entries found in the OPD. The BNF given in Figure 3 5

1 This data was made available to us for academic use by the Oxford
University Press through the kind support of Dr. Robert Burchfield, CBE, the
cditor-in-chicf of the Oxford University Dictionaries.
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was used to build heuristic pattern recognition routines that isolated
word entries from text in a computer readable magnetic tape file of
the OPD. Figure 3.4 depicts a page taken from the Qxford Spelling
Dictionary.

This lexicographically ordered word-list generated by this process
was then sorted by word-size to yield, for example, a lexicographically
sorted word-list of 10-letter-long words. In order to group together
all words of a similar structure, each word-list was subsequently
classified by a scheme presented in Chapter 4. Word-lists of a given
length and classification were then submitted to further syntactic
analysis using word-root data [ 3.16, 3.17 ]. These studies produced
the rule-bases given in Chapter 10.
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Baal (pl Ba'alim)
baa-lamb
Haaljism
baas(skap
baba
Bablbage
babibitt (alioy)
Bab|bitt
{complacent
business man)
Bab/bittry
babble
(bab/bling)
bab|hler
ba_bel (scene of
confusion)
Ba bel (tower)
Babi
ba bijroussa
Bablism
Bablist
ba boon
balbushka
baby (as n , pl
ba bies, as v,

ba'bies, ba'bied,

babyling)
ba bylhood
ba bylish
Babyllon
Ba by lonlian
baby-sit
(baby-sat,
baby-sitting)
baby-sitter
bac;callaur eate
bacicarat
bacicate
Bacicuanal
Bac,chan|a lis
Bac,chania’lian
Bacichant (p/
Bacichants or
Bac|chantes)
Bac|chante
Bac(chantic
Bacichic
bacey
Bach

Figure 3.3

bachijelor
bachiel orlhood
ba cililary
ba cil lijform
ba cililus (p!
bajcilli)
back (super!
backimost)
backiache
back-bench
back-bencher
back|bite
(backi|bit,
back|bit ing)
back|biter
backiboard
back-boiler
backibone
back/chat
backicloth
backicomb
back-cross
backidate
{backidsting’
back|drop
backer
back-fill
backifire
(back(fir ing)
back-formation
backigam mon
backiground
backihand
backihan ded
backhander
backiing
backlash
backiless
backilist
backllog
backimarker
backimost
backipack
back-pedsl
(back-pedalled,
back-pedalling’
backirest
Backe tat
Cambridge)

18

B

back-scattering
back|scratcher
back-veata
backsheesh use
baksheesh
bsckiside
back|sight
backislap ping
backislide
(backielid ing)
backislider
back{space
(backispa cing)
backistage
backistay
backistitch
back/stroke
backitrack
back-upn &a
backiward a
backiwarda tion
back|/wardsa &
ady
backiwash
backiwater
back|woods
back woodsiman
(p/ back woods,

men)
backiyard
bacon
Ba con
(philosopher)
Ba coinian
baciteria (p! of
bacterium?
baciterial
bac teriicide
bac teriollo/gical
bac teriiolo gist
bac teriiology
bac teriiolysia (p!
bac terjiolyses!
bac terilolytic
bac terio|phage
bac teriostasla
(p! bac terioi
stases)
bac terio;atatic

Bahamas

bac(terium (p!
baciteria)

bad (worse,
worst)
badidish

baddy (p/
badidies’

bade (pas! of bid)

Baden

badge

badger

bad iniage

bad{min'ton

bad-mouth ¢

Bae|deker

Baffin (land)

baffie (bafifling)

baffie-board

baf fleiment

baffie-plate

baffler

bag (as v, bagged,
bagiging!

ba garre

ba gasse

ba gaitelle

ba gel

bag 'ful (p!
bag|fuls:

b Figage

bag giinesa

baggy (bagigier,
bag gitest)

Baghidad

bag man ip!
bag men)

bagnio (pi
bagnios)

bag|pipe (as v,
bag!pip ing)

bagipiper

ba guette

bagiwash

bag-wig

Ba ha'i

Ba ha'iem

Ba ha'ist

Ba he'ite

Ba ha mas

[ustrative example taken from the Oxford

Paperback Dictionary [ 3.2 ]. This example highlights the
basic features of this dictionary
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This dictionary features. . .

Words in large clear type
Phrases

Countries

Capital cities

Meanings numbered for clanty
Compounds

Levels of usage

Counties
Parts of speech

Up-to-date vocabulary

Pronunciation (see page vii)

Examples of usago

Comparative and superiative
forms of adjectives

Derived words
Other forms of verbs (see page vi)

Notes on usage

Computer terminology

Notes on origin

American States
Abbreviations

astray adv & ud; awas from the rnight
path go astrey. 10 be led into efror or
wrongdoing, (of things) 10 be maslad
Belgium a couniry in Europe Belgisn
wdy & n
Belgrade the capital of Yugoslavia
colfes 7 1 the bean hike seeds of a trop
val shrub roasted and ground tor making
adrnk 2 thisdrink 3 light brown colour
coffee ber a4 place serving collee
and hght refreshments trom g counter
fed v feed fed up (nformal) discon
tented displeased
Gloucestershiro a county of England
glum ad; (glummer glummest) sad and
gloomy glumiy adv  glumness n
hang-ghding n the sport of being sus
pended 1n an airborne trame controlled by
one s own mosements heng-ghder 1 this
frame
haphazard (hap har erd) ady
chosen at random  without
tmmune ud; having immunity
trom ot agamst of 1o infection e
lazy a4y (lazier lariesty 1 unwilhng o
work domng hittde work 2 showing or char
acterized by dack of encrgy o lasy vunn
lanly udr laziness »
lend : tlent lending) 1 to give or gllow
the uwe ol g thing) tempozanly on the
understanding that it o0 1s equivalent will
be returned
media (meed 10) p/ n we medium  the
madis  newspapens and broadeasing by
which informaten v conveved o the
pencral public € This word s the plural of
medium and should have o plural verb
ey the media are (not w) influennal 11w
incarreet to reler to one of these services
(¢ g televistony as a media o the media or
to several of them as medias
modem tmoh-dem; n 1 device hinking o
computer system and o tedephone hne vo

done or
planning
immune

that data wan he transmitted at high
speedsy
pot? n tung) marguana *trom the

Merian Spamish phrase potacion de guava
t = dnnk of gnei) for a dnnk made by
sogking cannabis seed pods in wine or

brandy
Texas 4 State of the USA Texanud) & n
VDU ubbrev wisual display  unit (e
visual)

Figure 3.4 Example of an entry taken from the Oxford Spelling
Dictiopary [ 3.12 ). This dictionary defines derived word-root
information and specifies accepted hyphenation points for words

defined in the Oxford Paperback Dictjonary{ 3.2 ].
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<DICTIONARY>

<ENTRY> NEW-PARAGRAPH [<ENTRY>]*

<FNTRY> = <VEW>.
| KOTHER>.
<OTHER> = <COUNTRY-NAME ENTRY>.

| <CAPITAL:CITY-NAME ENTRY>.
| <BRITISH-COUNTY-NAME ENTRY>.
| KAMERICAN-STATE-NAME ENTRY>,
| <ABBREVIATION ENTRY>.
| <COUNTRY-NAME ENTRY>.
<VEW> = <HEADWORD> [<PRONUNCIATION>]
[<CASE>]<PART-OF-SPEECH>
{ & [KCASE>)<PART-OF-SPEECH>]*
[<RELATED-WORDS>]}*<DEFINITION-STUB>
(<EXAMPLE-OF-USE>]*
{ § <HISTORICAL-NOTES-ON-ORIGIN>]*
{§<GRAMMATICAL-NOTES-ON-USAGE>]*
<DEFINITION-STUB>::= (<DEFINITION-NUMBER?> . <DEFINITION> . ]*
{# <PHRASE-ENTRY>]
[<DERIVED-WORD-ENTRY>]*,
IKDEFINITION> ([ # | <PHRASE-ENTRY>]
(<DERIVED-WORD-ENTRY>]*,

<DEFINITION> =  <SENTENCE>*
|<PHRASE>*
<PHRASE-ENTRY>::= <PHRASE> , [<LEVEL-OF-USE>]
[<PHRASE-IN-CONTEXT>, [<LEVEL-OF-USE>]]
<DERIVED-WORD-ENTRY>::=  <VEW>
<LEVFEL-OF-USE>::= INFORMAL
| SLANG
<CASE> HHE SINGULAR
| PLEURAL
Figure 3.5 A simplified sketch of the extended Backus Naur

Form specifying the syntactic structure of the Oxford Paperback
DRictionary. This structure was used to derive a heuristic text

processing routine which isolated valid English word entries
from the dictionary. Notation conforms to that found in [ 3.15 ].
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CHAPTER FOUR
WORD-LEVEL SYNTACTIC STRUCTURE

4.1 INTRODUCTION

Markovian production rules expressed in BNF, have been used
extensively as generic representations of syntactic structure. This
formalism has been applied to many practical problems through
developments in syntactic pattern recognition [ 4.1, 4.2 }. While
such techniques are very powerful, syntactic pattern recognition
techniques suffer from a major methodological drawback. They
require that a correct a priort structural model of the abstraction
exists. Furthermore the implementation of successful syntactic
parsing routines requires not only the existence of an a priori
structural model but also the availability of pattern recognition
routines which can be used to isolate and correctly classify the model's
features from raw data. Much of the work presented in this chapter
has either been published | 4.3 ] or has been submitted for publication
[4.4]

4.2 YVOWEL NORMAL FORM: WORD LEVEL SYNTACTIC
STRUCTURE

Vowel Normal Form, VNF, is a heuristic structural feature which
has been developed { 4.3, 4.5 ] to cluster and classify words on the
basis of a single hybrid feature which has orthographic, phonetic and
probabilistic components.

A basic premise underlying the work presented in this paper is
that a word's form may be usefully characterized by syntactic or
structural features. The VNF of a word is derived by simply
substituting the symbol V for each vowel and the symbol C for each
consonant in a word's written form. For the purpose of the VNF
classification, the set of English vowels is V= {a, e, {, 0, u, y } and the
set of consonants is C. For our purposes y € V and hence the sets V



and C are disjoint. Valid VNF strings can contain only V and C symbols
and are composed by concatenating the sequence of VNF symbols that
corresponds to the literal translation of the word from correctly
spelled English into VNF. This classification is thus based on the
inverse letter-by-letter mapping of a word from English into its
corresponding VNF form. The VNF classification scheme establishes
sets of homomorphic forms which are based solely on the number and
relative positions of the vowels used in the word's written form. The
VNF form of a word is a character string representation which maps
the base twenty-six English alphabet into the base two character set
{V},{C ). There are thus 2N possible VNF frames or structures for
an N-letter-long-word.

The binary representation of word structure provided by VNF
may be viewed linguistically as a syntactic frame. Alternatively VNF
may be viewed as specifying an ordinal number system which may be
derived by considering VNF form as specifylng a binary number where
C denotes 0 and V denotes 1.

A simple example of the use of Vowel Normal Form is perhaps
the shortest way of describing its utility. For instance, this
classification scheme weould group together all 3-letter-long words
composed of three vowels into the group VVV, while words such as
{ LAT, MAT, SAT, SAW } would be classified as elements of the set
CVC. The word SAW is listed as a single entry in the set CVC in spite
of its use as many different parts of speech. For instance, SAW might
be used to denote the past tense of the verb, SEE. Alternatively SAW
might denote the process of cutting or the object that is used to do
the cutting.

As a second example consider the set ZETA, Z, of all 3-letter-
long English words found in the OPD. These words when clustered
into classes, on the basis of the number and sequence of vowels within
them, specify., on the basis of VNF, eight possible disjoint sets:
Z = {{CCC}, {CCV}, ({CVCY, {CVVL, {VCC}, {VCV}, {VVC}, {VVV}}. Each of
these sets defines a VNF word structure or syntactic frame.

The set-size or type-sum [ 4.7, 4.4, 4.8 |, of each of the syntactic
subsets for words of a specified length, is defined as the number of
words found listed as parts of speech in the OPD. For example the set

70



size or type-sum, S|{w}|. where { w} € {Z }, of each of the eight
syntactic classes or subsets of Z 1is found to be respectively {3, 41,
599, 166, 63, 34, 38, 5}. Not surprisingly there are very few triple
vowel, VVV, combinations (5 words or 0.6%) that are considered as
words in the OPD. Similarly the great majority (599 words or 67%) of
English 3-letter-long words belong to the vowel normal form CVC. In
the next section of this chapter, we will observe that for each word-
length there are very few VNF classes or subsets that constitute the
majority of words of a given length.

4.3 EMPIRICAL RESULTS: VNF OF 1TdAE ENGLISH LEXICON

Tables 4.1, 4.2, 4.3, 4.4 and 4.5 specify the VNF word structures
or frames for all 2-, 3-, 4-, 5-, and 6-letter-long words found in the
OPD. Tables 4.6, 4.7, 4.8, 4.9 and 4.10 specify the number of words
(ie 'types') which are listed in the OPD that fall into each VNF word
group given in Tables 4.1, 4.2, 4.3, 4.4 and 4.5. The number of words
conforming to a specific structural frame or VNF form is referred to as
the VNF set size, I Figure 4.1, depicts the set sizes of all VNF forms
for words of all lengths which were found listed in the OPD.

Figures 4.2, 4.3, 4.4, 4.5 and 4.6, depict histograms of the VNF
set sizes for each of the VNF syntactic forms underlying 2-, 3-, 4-, 5-,
and 6- letter-long words found in the OPD.  An analysis of this data
shows that for each word-length there are very few VNF classes or
subsets that constitute the majority of words of a given length.

In Figure 4.4, we note that there are 1044 different 4-letter-
long words with the VNF form CVCC listed in the OPD. The VNF form
CVCC may be represented as the binary number 0100, or 4,0 In
general we observe that not only do relatively few VNF structures
account for the majority of words of a given length but that a great
many VNF frames are either sparsely populated or not populated at all.

Figures 4.7, 4.8, 4.9, 4.10, 4.11, 4.12 and 4.13 depict the VNF
set sizes for each of the VNF syntactic forms underlying 7-, 8-, 9-, 10-,
11-, 12- and 13-letter-long words.
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The fundamental patterns underlying the VNF structures found
in the English lexicon are not readily observable in Figure 4.1. In fact,
while a similarity is detectable in the set size distributions found for
6-, 7-, 8-, 9-, 10-, 11-, 12- and i3-letter-long words, the nature of
this similarity is not readily apparent. This similarity i more
recognizable when one observes superimposed normalized VNF set
size distributions. For instance, composite images may be formed
from the normalized distributions that are observed in the OPD. VNF
density plot distributions are norr.alized by scaling both their X- and
Y- axes to the same linear dimensions. This procedure assures that
when superimposed the spans of the distributions are equal.

The normalization of the X- axis in the superimposed images
requires that the distance between adjacent points on the N-letter-
long-word VNF line segment is half that used for depicting (N + 1)-
letter-long-words. This scaling or doubling effect is fundamental to
the superposition of the observed VNF distributions for N-letter-long-
words and (N + 1)-letter-long-words.

The empirical effects described in this chap.er may be observed
more clearly once the effects of low density VNF sets have been
deleted from superimposed images. This process can be expanded
over a wider range by simply superimposing the distributions of all 6-,
7-, 8-, 9-, 10-, 11-, 12-, and 13-letter-long-words found in the OPD.
This normalized image indicates that the fundamental VNF types
found for words of a given length propagate throughout most of the
VNF line segment.

Figure 4.14 depicts the composite image produced by
superimposing the normalized VNF distributions 6-, 7-, 8-, 9-, 10-,
11-, 12-, and 13-letter-long-words found in the OPD. This Figure
illustrates that the patterns observed between 6- and 7-letter-long-
words are common to the vast majority of word-lengths found in the
OPD. The principle peaks found are, in effect, fundamental word
structures. These peaks are common to the structure found. In fact
Figure 4.15, which is the filtered superimposed image of the filtered
normalized density plot given in Figure 4.14, demonstrates that very
few fundamental forms are basic to all 6-, 7-, 8-, 9-, 10-, 11-, 12-, and
13-letter-long-words found in the OPD.
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A simple prefix code model of English language word structure
is developed in Chapter 5 to account for these effects.

44 NOTATION: SUB-CLASS OF VNF

The numerical representation and labeling of VNF structures
enhances the ease of scale transformations. Such numerical
representations simplify the development of schemes suitable for
clustering word structures based on distance measures in VNF space

[ 4.9, 4.10 ]. All VNF classes are represented in this thesis are either
base 2 structures such as VCV: (VCV = 101,) or as base 10 number

such as 510 (1012 = 510)
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GAMMA

2*

Figure 4.1 VNF density plot of all valid English words
defined in the OPD | 4.11 ) which are shorter than 12-
letters-long. Abscissa VNF class or structure specified

as a base 10 number. Ordinate set size in words.
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VNP TLASARS POR # LEYTRAR.LONG WORDS

Figure 4.2 VNF density plot of all 2-letter-long valid
English words defined in the OPD [ 4.11 ]. Abscissa VNF
class or structure specified as a base 10 number. Ordinate

set size in words
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100 4

VNF CLABBES FON 3LETTEN-LONG WORDS

Figure 4.3 VNF density plot of all 3-letter-long valid
English words defined in the OPD [ 4.11 ]. Abscissa VNF
class or structure specified as a base 10 number. Ordinate

set size in words
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VNF CLASSES FOR 4-LET7ER-LONG WORDS

Figure 4.4 VNF density plot of all 4-letter-long valid
English words defined in the OPD [ 4.11 ]. Abscissa VNF
class or structure specified as a base 10 number. Ordinate

set size in words
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VNF CLASBES FOR 8 LETTEA LONG WORDS

Figure 4.5 VNF density plot of all 5-letter-long valid
English words defined in the OPD | 4.11 ]. Abscissa VNF
class or structure specified as a base 10 number. Ordinate

set size in words

78



1200 1

1000

"oo -4

S00

SET STE

a4an0 -

® 4 @ 8 10 TRIA RS IEKOUROGANE CEICIVIABE BRA0ATALARAABORERABABGSOER

VNF CLABSES FORM -LETTEM-LONG WORDS

Figure 4.6 VNF density plot of all 6-letter-long valid
English words defined in the OPD [ 4.11 ). Abscissa VNF
class or structure specified as a base 10 number. Ordinate

set size in words
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VNF CLASSES FOM 7-LETTEM-LONG wWOoOmRDS

Figure 4.7 VNF density plot of all 7-letter-long valid
English words defined in the OPD [ 4.11 |. Abscissa VNF
class or structure specified as a base 10 number. Ordinate

set size in words
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SET SIZE
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VNF CLASSES FOR 8-LETTER-LONG-WORDS

Figure 4.8 VNF density plot of all 8-letter-long valid

English words defined in the OPD [ 4.11 ]. Abscissa VNF
class or structure specified as a base 10 number. Ordinate

set size in words
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VNF CLASSES FOR 9-LETTER-LONG-WORDS
FIGURE 4.9 VNF density plot of all 9-letter-long valid

English words defined in the OPD [ 4.11 ]. Abscissa VNF
class or structure specified as a base 10 number. Ordinate

set size in words
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VNF CLASSES FOR 10-LETTER-LONG-WORDS
Figure 4.10 VNF density plot of all 10-letter-long valid

English words defined in the OPD [ 4.11 ]. Abscissa VNF
class or structure specified as a base 10 number. Ordinate

set size in words
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VNF CLASSES FOR 11-LETTER-LONG-WORDS
Figure 4.11 VNF density plot of all 11-letter-long valid

English words defined in the OPD [ 4.11 |. Abscissa VNF
class or structure specified as a base 10 number. Ordinate

set size In words
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VNF density plot of all 12-letter-long valid

English words defined in the OPD [ 4.11 ]. Abscissa VNF

class or structure specified as a base 10 number. Ordinate

set size in words.
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Figure 4.13 VNF density plot of all 13-letter-long valid

English words defined in the OPD | 4.11 ]. Abscissa
VNF class or structure specified as a base 10

number. Ordinate set size in words
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Figure 4.14 Superimposed image of the Normalized 6-,
7-, 8-, 9-, 10-, 11-, 12- and 13-letter-long VNF density
plots depicted in Figures 4.15, 4.17, 4.19 and 4.21.
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Figure 4.15 Superimposed image of the Filtered
Normalized VNF Density Plots for 6-, 7-, 8-,9-,10-,11-,
12-,and 13-letter-long words depicted in Figures 4.23,
4.25, 4.27 and 4.29.
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Table 4.1

Table 4.2

Table 4.3 Derived 4-letter-long Vowel Normal Form frames
constructed from a 3-letter-long suffix base

[ DERIVED VNF FORM| SUFFIX
v + SUFFIX] C + SUFFIX|] VNF BASE
vV CV v
VvC CC C

Derived 2-letter-long Vowel Normal Form frames
constructed from a 1-letter-long suffix base

DERIVED  VNF FORM SUFFIX
V + s:UFleIC + SUFFIX| VNF BASE
2% CW vV
WC CVC VC
VCV ccv CcV
VCC ccC oC

Derived 3-letter-long Vowel Normal Form frames
constructed from a 2-letter-long suffix base

DERIVED VNF FORM SUFFIX
V_+ SUFFIX] C + SUFFIX| VNF_BASE
VVVV CVVV VvV
VVVC CVVC Ve
VVCV CVCV VCV

[ wcc CVCC VCC
VCW CCVV CcVV
VCVC CCVC CVC
VCCV CCCV CCV
VCCC CCCC ocC
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DERIVED __ VNF FORM| SUFFIX

V_+ SUFFIX] C + SUFFIX| VNF_BASE
VVVVV CVVVV VVVV
VWVVC CVWC VVVC
VVVCV CVVCV VVCV
VVVCC CVVCC VVCC
VVCVV CVCWV VCVV
VVCVC CVCVC VCVC
VVCCV CVCCV VCCV
VVCCC cvcee VCCC
VCVVV CCVW CVVV
VCVVC CCVVC CVVvC
VCVCV CCVCV CVCV
VCVCC CCVCC CVCC
VCCVV CoCVV CCVV
VCCVC CCCVC CCVC
VCCCV CCCCV CCCV
VCCCC CCCcCcC oooe

Table 4.4 Derived S-letter-long Vowel Mormal Form frames
constructed from their 4-letter-long suffix base.
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DPERIVED VNF FORM SUFFIX
V 4+ SUFFIXI C + _SQEFIX VNF BASE
VVVVVV CVVVVV vVvVvvv

— VYVVVC CVVVVC VvVVVC
VVVVCV CVVVCV vYVVCV
VVVWVCC CVVVCC vvvCcce
VVVCVV CVVCVV vVCVV
VVVCVC CVVCVC VVCVC
VVVCCV CVVCCV VVCCV
VVVCCC CVvCcCcC VVCCC
VVCVVV CVCVVV vCcvvv
VVCVVC CVCVVC VCVVC
VVCVCV CVCVCV VCVCV
VVCVCC CVCVCC VvCVvCCe
VVCCVV CVCCVV VCCVV
VVCCVC CVCCVC VCCVC
VVCCCV CVCCCV VCCCV
VVCCCC CVCCCC VCCCC
VCVVVV CCVVVV CVVVVv
VCVVVC CCVVVC CcvVvvve
VCVVCV CCVVCV CVvCev
VCVVCC CCVVCC cvvCce
VCVCVV CCVCVV CVvVCvwv

[ "VCVCVC CCVCVC CcvCcvCe
VCVCCV CCVCCV CV(CV
VCVCCC Cccvecee CVCCC
VCCVVV CCCVVV CCVvVvVv
VCCVVC CCCVVC coyve
VCCVCV CCCVCV CCVCV
VCCVCC CCCVCC CCVCC
VCCCVV CCCCWV CCCVvVv
VCCCVC CCCCVC CCCVC
VCCCCV CCCCCV CCCCV
VCCCCC CCCCCC CcCceee

Table 4.5 Derived 6-letter-long Vowel Normal Form frames
constructed from their S-letter-long suffix base.
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DERIVED __VNF FORM

V + SUFFIX] SET SIZE || C + SUFFIX| SET SIZE
% 2 i CV 29
VC 31 i CcC 0

Table 4.6 Set size of the derived 2-letter-long Vowel Normal Form

frames
DERIVED VNF FORM
V 4+ SUFFIX! SET SIZE || C + SUFFIX| SET SIZE
1%A%% 5 CW 116
W¢E 38 CVC 599
VEV 39 CCV 41
VCE 63 CCC 3

Table 4.7 Set size of the derived 3-letter-long Vowel Normal Form

frames
DERIVED VNF FORM

V + SUFFIX| SET SIZE | C + SUFFIX| SET SIZE
VVVV 0 CVVV 8
VIWC 5 CWE 480
WCEV 17 CVCV 619
WeEe 30 CVEE 1044
VCVV 13 CCW 58
VEVE 7 CCVC 412
VCCV 60 CCCV i
VECC i2 CCCe 1

Table 4.8 Set size of the derived 4-letter-long Vowel Normal Form
frames
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V + SUFFIX| SET SIZE | C + SUFFIX| SET SIZE
VVVVV 0 CVVVV 5
Ve 0 “ CUVVC 29
VVVCV 0 CWCV 181
VWCC 8 CVVCE 330
VVCUWV 3 CVCW 76
VVGVC 19 “ CVCVC 521

[ VVCCV § CVCCV 581
VWWCCC 5 CVCCC 178
VCVWV 1 i CCVW 2
VCVVC 39 CCWC 309
VCVCV 79 CCVCV 351
VEVCC 60 CCVCE 642
VCCW 28 CCCW il
VCCEVC 128 II CCCVC 40
VCCCV 26 CCCCV 0
VCEECE 0 | ccece 0

Table 4.9 Set size of the derived 5-letter-long Vowel Normal Form
frames
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DERIVED __VNF FORM

V + SUFFIX; SET SIZE || C + SUFFIX!| SET SIZE
VVVVVV 0 CVVVVV 0
VVWANVC 0 CVVWCE 3
VAAVEV 0 CUVEY 7
VWWVCECE 0 CVWVCC 5

""""""" VWWEW 0 CVVEW 35
VWVGEVE 4 CVVCEVE 163
VWVEEV 3 CWCECEV 133
VVVCCC 0 CVVCCC 26
VVEVW 0 CVEVWWV 3
VWCWC 2 CVCWC 199
VWEVEY ii CVEVEV 410
VVCVCEE 9 CVCVCC 290
WEEW k] CVECW i12
VVCCVC 28 CVCCVCE 1112
VWEEEV 3 CVCECV 347
VWCCCEE 1 CVCCCE 8

T EVV 0 CEVVWV i
VCVWVE ] CCVWVC )
VEVVEV i5 CEVEV 105
VCVVCC 13 CCVVCC 79
VEVEW 7 CEVEW io
VCVCVC 51 CCVCVC 174
VEVEEV 3] CCVEEV 375
VCVCCC 6 CCVCCCE 78
VECVWWV 0 CEEWNV 0
VCCWC 52 CCCWC 30
VECVEY 38 CEEVEY 35
VECVCC 185 CCCVCC 58
VECCW 9 CEEEW 0
VCCCVCE 35 CCCCVC 0
VECEEV p) CCEECV 0
VCCCCC 0 CCCCCC 0

Table 4.10 Set size of the derived 6-letter-long Vowel

frames
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CHAPTER FIVE
A PREFIX CODE MODEL
OF ENGLISH LANGUAGE WORD STRUCTURE

5.1 INTRODUCTION

In Chapter 4 we observed that the binary representation of word
structure provided by its VNF may be viewed linguistically as a
syntactic frame [ 5.1 ]. Alternatively VNF may be viewed as specifying
an ordinal number system which may be derived by considering VNF
form as specifying a binary number where C denotes 0 and V denotes
1. The numerical representation and labeling of VNF structure
enhances the ease of scale transformations and the usc of numbering
schemes suitable for clustering word structures based on distance
measures in VNF space [ 5.2 ]. In Chapter 4 we observed common
patterns in VNF word structures used by the vast majority of words
listed in the OPD. These common patterns can be simply described in
terms of a prefix code model of English language word structure. The
simplest restricted form of the prefix code is sufficient to describe our
results [ 5.1, 5.2, 5.3 ]. We inferred a propagation effect from our
empirical analysis, wherein each #-digit VNF structure forms two

(7 + 1 )-digit VNF structures. If £ is the location of the n-digit VNF
structure on the VNF line segment, then 2% and 2% + 1 are the
locations of the two ( 2 + 1 )-digit structures derived from £ . Much

of the work presented in this chapter has been submitted for
publication [ 5.1, 5.2 ].

5.2 METHODS

To see if a model is more than simply descriptive it is often
informative to use it in a predictive manner. In this instance it would
be useful to see the degree to which the Prefix Code Model of English
language word structure is predictive.



Such predictive behavior can be assessed at both the
macroscopic and the microscopic level. For instance at a microscopic
level the model could be used to predict the set size of an arbitrary
VNF group. Macroscopic predictions would focus on predicting the
overall presence and size of band-filtered effects in English language
word structure.

The robustness of a model is determined by the degree to which
macroscopic effects are not seriously effected by perturbations in the
model's parameters. It is possible to apply such perturbation tests to
the assessment of the validity of the proposed Prefix Model of English
language word structure at a macroscopic level [ 5.2 ].

In this chapter we will see that perturbations can be introduced
by initializing the Prefix Model with different VNF kernel sets.

5.3 THEORY

Let %( A ) be a function which operates on the values of a set, A.
The application of % to A is used to compute the values (2 * x) and (
2 +*x) + 1 for each x in the set A. The elements of the set A form a
kernel for this simulation. The function % may be applied recursively
to the set A. Using this notation the depth of the recursive application

of % to A is specified by N in the expression *N( A ). More formally
we have that VN 2 2:

*N(A)
Avxixen™ Yanay e #Nay
|y =2+x y =2+x +1} (5.1
where the set (¥ (A)} = (A] (5.2

For example if the set A ={a, b, ¢}
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then (*2(a)) = {vx:xe (*'(a)

|y=2*x,y=2*x+l} (5.3
thus *Z(A) = { 2a, 2a+1, 2b, 2b+1, 2c, 2c+1} (5.4

while *3(A) = {Vx:xe[*2(a)

ly =2+x y=2+x +1} (5.5

= { 4a, 4a+2, 4b, 4b+2, 4c, 4c+2, 4a+l,
4a+3, 4b+1, 4b+3, 4c+1, 4c+3 ) ( 5.6

and *%(a) : {vx:xe{*3(a)

|y=2*x,y=2*x+1} (5.7

= { 8a, 8a+4, 8b, 8b+4, 8c, 8c+4, 8a+2, 8a+6, 8b+2,
8b+6, 8c+2, 8c+6, 8a+l, 8a+5, 8b+1, 8b+5,
8c+1, 8c+5, 8a+3, 8a+7, 8b+3, 8b+7,
8c+3, 8c+7 } (5.8

Clearly the number of terms in the set, *N is a simple function

of the size of its kernel set A. Following convention let the size of A be
denoted as: S| A l.

slaNa)l = 2(N-Dugyay (5.9
for instance in the example given above where S | A | =3 then
sl#%(a)l = 2%3 =6
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sl x3(a)l = 22%3 =12

slxa)l = 2%+3 = 24
The superset of terms computed in a simulation of the VNF line
segment that includes % (A) * (A) * (A).. (A ) terms may

be computed by the function @ (A ). The function ® (A) may be
defined as:

dNa) = {Nanu Ay

U V%A o'a)) (5.10
or as:
dVa) = *Na)y U &oNla) (5.11

where *N( A ) may be defined recursively as:
*N(A)={Vx:xe{*N-1(A)]3ye{*N(A)}ly=2*x,y=2*x +1]}
and {*!(A)} = (A)

The total number of terms in a simulation of the VNF line segment
whicn includes the frames computed in the sets *1( A), *2( A),
*3( A )....,*N( A) is given by the function ¥(N, A):

N N

vnA =2 slaia)] = 220 Daga) (5.12

i =1 i=1
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I

snAn*z 2 (i-1) ' (5.13
i=1

= stat »2(N) (5.14

The term, ¥(N, A), may be used to compute the total number of

terms in the set, (DN( A ), for any given kernel A and any recursive
depth of computation N.

All VNF line segments are bounded by 1 and ¥. The numerical
value of X represents the largest VNF form computable from the

application of *N( A) on a given kernel set A. K can be computed
simply as 2 (N+M) where N is the depth of the recursive
computation used and M is the word-length of the kernel used in A.
How well packed is the integer line segment bounded by 1 and k?

In general the term, Tau, T, may be used to describe the gross
macroscopic density of the VNF line segment. The term 7T specifies a
simple global measure of the degree of packing of the VNF linc
segment. Tau, 7, is a measure of the ratio of the number of VNF
groups that are occupied to those which could be populated.

si1al +2(N) _

T = { 5.15
o (N+M)

For large N Equation 5.15 may be approximated as:

(N)
2

1 =S|Al (5.16
2(N+M)
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Let the size of the kernel, S | A I, be denoted as & then Equation
5.16 may be rewritten as:

T= & (5.17

For example if & = 10 and M = 6 we would expect that only
approximately one sixth of the possible VNF word groups could
possibly be densely populated.

54 RESULTS

In the last chapter we observed complex structures throughout
the wide range of VNF line segments used to map 2-, ..., 12-letter-long
English language word frames. The complexity of the VNF line
segments increase as we observe composite structures depicting VNF
structures found in words of many different lengths. Perhaps the most
complex of these is the histogram depicting VNF set size as a function
of set structure for all words listed in the OPD [ 5.6 ]. This histogram
was presented in Figure 4.1 while a scatter plot of the same data is
presented in Figure 5.1. A histogram depicting a filtered image of
Figure 4.1 that shows the location of the more sparsely populated VNF
frames is illustrated in Figure 5.2. The horizontal band structures
found between the more-sparsely and less-sparsely populated VNF
structures in this figure are consistent with those observed in other
filtered images of Figure 4.1. Complex band filtered effects are
observed across the wide range of VNF set sizes shown in Figures 5.3
and 5.4. A comprehensive mode! of the lexicon must account both for
its most populated VNF frames and the band structures found for sets
of any given size within a VNF line segment.

Estimates of 7T derived from Figure 5.2 allow one to compute the
number of terms in the kernel set A needed to simulate the dominant
features of the English lexicon. Given a T = 0.1 then Equation 5.17
predicts that 6 6-letter-long VNF frames or 10 5-letter-long frames
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are needed to accurately simulate the major features on the VNF line
segments compuied to a X of 4095. While Equation 5.17 allows us to
determine the minimum number of terms or VNF frames to include in
our kernel, it does not help us to determine which structures to
include. Next we will consider just how to derive which VNF
structures to include in a kernel which we have determined must
contain at least a specified number of elements.

Table 5.1 gives the VNF structure, as VNF, . of the ten-largest

VNF frames found to occur for 6-, 7-, 8-, 9-,10-, 11- and 12-letter-
long words in the OPD [ 5.6 ]. The data presented in Table 5.1 is

rank-ordered. For instance Row 1, the top row, of Tables 5.1 and 5.2
gives the VNF, 4 structure of the most populated word-group or frame

found to occur for all words listed in the OPD. The first column in
Table 5.2, which is referred to as Column 6, lists the VNFIO

structures for the top-ten most-populated VNF,q frames found to

occur in all 6-letter-long words listed in the OPD. Thus Column 12,
Row 10, lists the tenth most densely populated VNF, 4 found to occur

for all 12-letter-long words listed in the OPD.

A simplified version of Table 5.1 is depicted in Table 5.3. In this
simplified table each VNF structure is symbolized by simple dots
which may be connected by three different types of arrows. Case 1: A

closed arrow is used to depict an #-letter-long VNF structure which
was exactly computed by a prefix code model applied to a (%= -1 )-
letter-long frame. Case 2: An open arrow is used to depict an z-letter-

long VNF structure which was approximately computed by a prefix

code model of an ( 2 - 1 )-letter-long frame. The approximation uscd
was that the VNF4 address had to be within a distance of 4; of its

predicted value. Case 3: A thin arrow connecting a dot to the table's

outer edge is used to depict those #-letter-long VNF structures than

could not be either exactly nor approximately computed from the top-
ten VNF frames found in the (% - 1 )-letter-long word frames. For our

analysis of this effect we use a restricted form of prefix coding in
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which an #-digit binary number & forms an (7 + 1 )-digit binary
number whose numerical value is either 22° or (22 +1).

Analysis of the data given in Tables 5.4 for the top-ten largest
VNF frames found for all 6-, 7-, 8-, 9-, 10-, 11- and 12-letter-long
words in the OPD demonstrates that this simple approach was
sufficient to correctly predict the exact VNF form in 32 cases (53%)
and was able to approximately predict the location of a further 20 VNF
frames ( 33% ) (with an absolute error of < 45 ). Simple prefix
coding, was insufficient to accurately predict the location of 8 VNF
frames { 13% ). However only 1 of these 8 exceptional VNF frames,
VCVCCVCVC, had not been computed previously. A composite image
of the data is found in Table 5.5. Table 5.5 illustrates that a simple
prefix code is capable of exactly predicting many of the dominant
features of the English language lexicon from a single small kernel of
VNF frames. This figure also demonstrates that the prefix code model
is insufficient to exactly determine all of the dominant word frames
found in English.

In the next section of this chapter we will explore some
simulations of the prefix code model's performance. For these
purposes we will use the VNF frame structures found to be most
densely populated in 4-, 5-, 6- and 7-letter-long words. In addition a
few simulations will use kernels constructed from information other
than that obtained by a statistical analysis of rank-ordered set size. For
example the 5-letter-long VNF kernel or basis of Table 5.1 is { 4, 5, 8,
9, 10, 11, 13, 18 }, while the empirically observed top-ten4 5-letter-
long word groups are { 4, 9, 10, 5, 6, 12, 13, 8, 18, 21). Since these
sets are very similar only the results of a few simulations are presented
in this chapter.

4 The elements of this set are listed ir descending rank-order;

thus 4 is the base 10 VNF address of the most populated 5-letter-long

VNF class and 21 is the address of the tenth-largest 5-letter-long VNF
frame
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5.5 SIMULATIONS

The simulations described in this chapter use N-th order VNF
delta functions [ 5.1, 5.2 ] to predict the VNF forins found in the
lexicon on the basis of the forms used in the kernel set A.

If the set A is composed of the most frequently occurring 5-
letter-long VNF word forms then, *2( A ), specifies the dominant 6-
letter-long VNF word forms. Similarly the set, *3( A ), specifies the
dominant 7-letter-long VNF word forms on the basis of the kernel set
A. Figures 5.6 and 5.7 depict the 5-letter-long VNF sets: *2( A ) and
*3( A ) respectively derived from the set A of 5-letter-long word
frames given in Figure 5.5.. In this example the kernel A is composed
of the eight most populated 5-letter-long VNF word groups. Given a
kernel of the top eight 5-letter-long VNF word groups the

computation of the set { {*2( A )}. {*3( A )}. {*4( A )}. {*5( A )}.

{*6( A )}. {*7( A )}, {*8( A )] } would predict the major word forms
for 6-, 7-, 8-. 9-, 10-, 11- , and 12-letter-long English words on the
basis of their 5-letter-long kernel.

The total size of the set of VNF groups produced by these
computations, W( N, A ), is given by Equation 5.14. In this example
where S | Al =10and N =8 the value of ¥(N, A ), is 2550. Each of
these 2550 terms can be represented as a spike on the VNF number
line. In this example M = 5 because 5-letter-long words were used as
the basis for the kernel A. The largest VNF group described by this
process is thus 212 - 1= 4098, ‘inus in this example, over half (
255074095 ), cf all possible VNF groups were depicted as being well
populated. Using the top ten 6-letter-long VNF word forms (M = 6 )
as a kernel and limiting our simulation to an upper limit of *7( A) will
maintain the value of M + N at 12 and thus the value of ¥ will remain at
4095. Figures 5.9, 5.10, 5.11, 5.12, 5.13 and 5.14 depict the 7-, 8-, 9-
, 10-, 11- and 12-letter-long word sets *2( A), *3(A ). *4( A), *5( A
), *6( A), *7( A ) derived from the 6-letter-long word frames given in
Figure 5.8. In this example the value of S| A | = 10 and N =7 and
the value of ¥ becomes 1270. Therefore, in this case, approximately a
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third (1270/4095), of all possible VNF word groups were depicted as
being heavily populated. Similarly if A used a 6-letter-long VNF kernel
and computations were carried to *10( A) then 10 » (210 -1) of
the 216 . 1, possible VNF forms are specified as being well populated.
In this case approximately one sixth (10,230/65,535) of the VNF word
groups are predicted to be densely occupied.

Figure 5.15 depicts the macroscopic band-filtered characteristics
of the VNF word line constructed on the basis of the eight most
frequently used 5-letter-long VNF word groups, <D7( A),A=1{4,09 10,
5 6, 12, 13. 8 }.

Figure 5.16 depicts the similar macroscopic effects computed on
the basis of the eight most frequently used 6-letter-long VNF word
groups, <b7( A), A=[18, 21,17, 20,9, 22,36, 10}.

In all cases these simulations show that the macroscopic effects
of a band-filtered response is independent of the kernel used to
generate a given VNF line segment. The results of these simulations
indicate that the presence and location of band-filtering in English
language word-form groups is relatively independent of the word-size
and base form used to initialize the simulation of the English lexicon.

Simultation results such as those depicted in Figures 5.15 and
5.16 do however indicate that the fine-structure detail of these
simulations is dependent upon the kernel or base set of the VNF form
used to compute the structure of the English language lexicon. The
accuracy of such fine-structure detail is of course dependent upon the
terms used in these simulations.

56 CONCLUSIONS

Detailed analysis of the data presented in this chapter
demonstrates that in most instances it is possible to predict the

structure of the top-ten VNF frames for z-letter-long-words directly

from the structure of the top-ten VNF fraries for ( # - 1 )-letter-long-

words. The analysis of the most densely populated VNF structures
found in 6-, 7-, ..., 12-letter-long word frames demonstrate that these
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dominant VNF frames are related in English across word-size by a
simple mathematical relation which makes use of prefix coding.

The simulation results described in this chapter indicate that
the choice of the specific kernel of VNF word forms used to initialize
the prefix code model has little effect on the macroscopic behavior of
the model. In each simulation band-filtering occurs. Word groups are
separated from adjacent clusters of word-groups by forbidden bands
where English language word groups do not occur. Such simulations
do not predict the size of the VNF word group but rather that it can or
cannot exist. As such these models produce band-limited | 5.2 |,
comb-filtered VNF line segments. These segments resemble the Dirac
Delta Functions [ 5.4, 5.5 ] first formulated in atomic physics.

106



10000

10004 ° .o

' coh R
g , : Co
S 100 ) ".I,- :'.“.;‘, 3 E. ,
2 SR B
0 R
TR T
a 10 L e

1 I L] r"'“ll T lllllll L} !TITTqu LI | tlllll

TL 101 102 103 104 109
VNF

LA 4 lll]

Figure 5.1 Scatter plot of VNF set size as a function of VNF
structure. Abscissa: VNF class or structure specified as a
base 10 number. Ordinate: two times VNF set size. See Figure
4.1 for a histogram of this data.
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Figure 5.2 Sparsely populated VNF structures. Histogram of
VNF set size as a function of VNF structure for VNF frames
containing between 1 and 10 words. Abscissa: VNF class or
structure specified as a base 10 number. Ordinate: log of VNF set
size. Horizontal bands in this figure illustrate the effect of VNF set
size on the band filtering observed in sparsely populated VNF

structures. See Figure 4.1 for a non-filtered histogram of this
data.
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Figure 5.3 Sparsely populated VNF structures. Histogram of
VNF set size as a function of VNF structure for VNF frames
containing between 10 and 100 words. Abscissa: VNF class or
structure specified as a base 10 number.  Ordinate: log of VNF set
size. Horizontal bands in this figure illustrate the effect of VNF set
size on the band filtering observed in sparsely populated VNF

structures. See Figure 4.1 for a non-filtered histogram of this
data.
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Figure 5.4 Composite image of the more sparsely populated

VNF structures. Histogram of VNF set size as a function of VNF
structure for VNF frames containing between 1 and 100 words.
See Figures 5.2, 5.3 and 5.4 for fine-level detail of this image. The
horizontal bands illustrating band filtering as a function of set
size. Abscissa: VNF class or structure specified as a base 10
number. Ordinate: log of VNF set size. See Figure 4.1 for a non-
filtered histogram of this data.
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1~ 18 36 &5 149 342 598 1173

2 - 21 37 74 148 341 597 2345
31 17 18 84 165 292 1173 1193
4 - 20 38 68 146 293 585 1174
x 5 9 42 73 150 297 661 2390
é 6 22 41 36 169 294 662 2389
S 74 36 34 82 293 597 1193 1365
Z 8- 10 17 86 164 298 580 1321
“ 94 26 21 69 170 585 596 1194
10 37 50 37 85 148 1174 1348

: . r r ; T - .

6 7 8 9 10 11 12 ‘

WORDLENGTH
Table 5.1 The top-ten rank-ordered VNFIO word frames

found in all 6-, 7-, 8-, 9-, 10-, 11- and 12-letter-long words
listed in the OPD [ 5.6 ]. Colrmns specify word size. Rows
specify the 1st, 2nd, ..., 10th most-densely populated VNF
word groups. VNF structures are given as base 10 numbers.

111



11 <— 36 598 ;1173

2 21 597 | 2345
31 17 1173 1193
4+ 20 (585) 1174
e 51 9 661 2390
§ 6 22 662 2389
g 74 36 1193 1365
Z 8 1.0 580 1321
* the 26 596 1194
10+ 37 50 37 148 1174 1318

- T T Y Y ; T |

6 7 8 9 10 11 12 '

WORDLENGTH
Table 5.2 The top-ten rank-ordered VNF10 word frames

found in all 6-, 7-, 8-, 9-, 10-, 11- and 12-letter-long words
listed in the OPD [ 5.6 ]. Columns specify word size. Rows
specify the 1Ist, 2nd, ..., 10th most-densely populated VNF

word groups. VNF structures are given as base 10 numbers.
Two types of directed arrows are used in this table to show
that, in all cases, the most-populated VNF structure found for a
given word-length can be either exactly or approximately
computed from a well-populated VNF structure found in the
next largest word-size. Closed arrows are used to specify VNI
structures which can be exactly computed from the VNF frames
found in the next largest word-size by the application of a
simple prefix code. Open arrows are used to specify VNF
structures which can be approximately computed ( with an
error of less than 410 ) from VNF structures found in the next

largest word-size by the application of a simple prefix code.
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Z 8- ° ° [ ® ® o ®
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10 ® | J L @ ® [ L
S S S e T I
WORDLENGTH
Table 5.3 Simplified version of Table 5.1 in which the specific

value of all VNF word frames are substituted by dots. The
relations observed between the top-ten rank-ordered word
frames found in Table 5.1 are depicted by three types of
directed arrows. Closed arrows such as those found in Table

5.2 are used to specify VNF structures which can be exactly
computed from the VNF frames found in the next largest word-
size by the application of a simple prefix code. Open arrows
such as those used in Table 5.2 are used to specify VNF
structures which can be approximately computed ( with an
error of less than 4,4 ) from VNF structures found in the next
largest word-size by the application of a simple prefix code. .
Thin arrows, such as those first seen in Table 5.8, are used to
depict those VNF structures which cannot be either exactly or
approximately compated in such a simple manner.Colurins
specify word size. Rows specify the 1ist, 2nd, ..., 10th most-
populated structures
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3+ o [ o o
4 L [ J ® ®
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Z 8- ° ® ° ®
® 94 o o o °
10+ L @ o [ o
6 7 8 9 10 11 12
WORDLENGTH
Table 5.4 Predicting the most-populated VNF frames for

words of lengths 6,..., 12 as a function of the structures used in
the next-largest word-length. Simplified version of Table 5.1
in which the specific value of all VNF word frames are
substituted by dots. The prefix relations observed bectween the
top-ten rank-ordered word frames found in Table 5.1 are

depicted by three types of directed arrows described in Tables
5.2 and 5.3.
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a
e 6
Q 7 -
X
3 8
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& 7 8 9 10 11 1z
WORDLENGTH
Table 5.5 Predicting the kernels, or the top-ten most-densely

populated VNF frames, for words of lengths 6,..., 12 as a
function of the structures used in the kernels of the next-
largest word-size. This composite table demonstrates that

( for 6-, ..., 1l-letter-long-words ), in mos* cases, the kernels of
the each set can be computed from the dominant VNF
structures found in the larger words. Simplified version of
Table 5.1 in which the specific value of all VNF word frames
are substituted by dots. The prefix relations observed between
the top-ten rank-ordered word frames found in Table 5.1 are
depicted by three types of directed arrows described in Tables
5.2 and 5.3. For the sake of clarity only two types of arrows
are depicted in this table.
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Figure 5.5 Base 10 VNF number line segment (2..14) depicting
the set A which, in this case, is composed of the top-eight most
populated 5-letter-long frames { 4, 9, 10, 5, 6, 12, 13, 8 } found
in the OPD [ 5.6 ]. Vertical spikes are used to denote the

presence of a dominant VNF set.
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VNF

Figure 5.6 Base 10 VNF number line segment (0..30) depicting

*1 (A). *1 ( A) is, in this case, the predicted dominant 6-
letter-long VNF word groups computed on the basis of the
kernel set A of 5-letter-long VNF word groups given in Figure
5.5. Vertical spikes are used to denote the predicted presence

of a dominant VNF set.
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VNF

Figure 5.7 Base 10 VNF number line segment (10..60)

depicting *2 (A). *2 ( A) is, in this case, the predicted
dominant 7-letter-long VNF word groups computed on the basis
of the kernel set A of 5-letter-long VNF word groups given in
Figure 5.5. Vertical spikes are used to denote the predicted

presence of a dominant VNF set.
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VNF

Figure 5.8 Base 10 VNF number line segment (10..40)
depicting the set A which, in this case, is composed of the top-
ten most densely populated 6-letter-long VNF frames ( 18, 21,
17, 20, 9, 22, 36, 10, 26, 37 } found in the OPD [ 5.6 ]. Vertical

spikes are used to denote the presence of a dominant VNF set.
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VNF

Figure 5.9 Base 10 VNF number line segment (10..80)

depicting *2 (A). *2 (A)is, in this case, the predictad
dominant 7-letter-long VNF word groups computed on the basis
of the kernel set A of 6-letter-long VNF word groups given in
Figure 5.8. Vertical spikes are used to denote the predicted

presence of a dominant VNF set.
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Figure 5.10 Base 10 VNF number line segment (20..160)

depicting *3 (A). *3 ( A) is, in this case, the predicted
dominant 8-letter-long VNF word groups computed on the basis
of the kernel set A of 6-letter-long VNF word groups given in
Figure 5.8. Vertical spikes are used to denote the predicted

presence of a dominant VNF set.
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Figure 5.11 Base 10 VNF number line segment (0..400)

depicting *4 (A). *4 (A) is, in this case, the predicted
dominant 9-letter-long VNF word groups computed on the basis
of the kernel set A of 6-letter-long VNF word groups given in
Figure 5.8. Vertical spikes are used to denote the presence of

a densely populated VNF set.
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Figure 5.12 Base 10 VNF number line segment (100..700)

depicting *5 (A). *5 ( A) is, in this case, the predicted
dominant 10-letter-long VNF word groups computed on the
basis of the kernel set A of 6-letter-long VNF word groups given
in Figure 5.8, Vertical spikes are used to denote the presence

of a densely populated VNF set.

123




.4 v v
200 400 00 800 1000 1200 1400

VNF

Figure 5.13 Base 10 VNF number line segment (200..1400)

depicting *6 (A). *6 ( A ) is, in this case, the predicted
dominant 11-letter-long VNF word groups computed on the
basis of the kernel set A of 6-letter-long VNF word groups given
in Figure 5.8. Vertical spikes are used to denote the presence

of a densely populated VNF set.
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Figure 5.14 Base 10 VNF number line segment

(100..10000) depicting *7 (A) *7 (A) is, in this case, the
predicted dominant 12-letter-long VNF word groups computed
on the basis of the kernel set A of 6-letter-long VNF word groups
given in Figure 5.8. Vertical spikes are used to denote the
predicted presence of densely populated VNF sets.
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Figure $5.15 Base 10 VNF number line segment (1..1000)
<D7( A ) depicted here is constructed on the basis of the top-
eight most densely populated S-letter-long word groups found

in the OPD [ 5.6 ]. @ ( A) produces a composite image formed as
the union of elements contained in seven sets: A, %2 (A ),..
.,*7 ( A) respectively.
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5.16 Base 10 VNF number line segment (1..10000)
® ( A ) depicted here is constructed on the basis of the top-ten
most densely populated 6-letter-long word groups found in the

OPD [ 5.6]. ® (A) produces a composite image formed as the
union of elements contained in seven sets: A, *2 (A ),..,*7 (A)
given in Figures 5.8,...,5.14 respectively.
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CHAPTER SIX
PREDICTING THE SIZE OF THE DOMINANT
VNF SETS IN ENGLISH

6.1 INTRODUCTION

The previous chapter presented work on a Prefix Code Model of
word structure which was developed to determine which VNF word
structures or frames are dominant in the lexicon defined in the OPD
[ 6.1 ]. The models presented in Chapters 4 and 5 provided insight
into the existence of VNF band-filtered frames found in the English
lexicon. However, such prefix models, per se, are insufficient to
determine the actual set size of the dominant VNF frames.

Equations, such as those presented in this chapter, can be used
to compute the predicted set sizes of the most popular VNF structures
found in English words of a given length. Much of the work presented
in this chapter has been submitted for publication [ 6.2, 6.3 ].

6.2 THEORY & RESULTS

Figure 6.1, which is from the work of Kucera, [ 6.4 ], depicts
the number of distinct words or "types" of a given length found in a
lexicon. Figure 6.1 also depicts the number of "tckens" or the total
number of words of a given length found in the same lexicon.

Log-normal distributions, such as that shown in Figure 6.1,
typically describe both the "type-counts" and the "token-counts" for
natural language texts [ 6.2 ]. Statistical data, which has a log-normal
distribution [ 6.4, 6.5 ], also conforms to Zipf's law [ 6.5, 6.6 |. Zipf
noted that such data, when sorted into a rank ordered sequence,
exhibits a relationship where the logarithm of the rank of an item is
inversely proportional to the logarithm of some measure such as its
frequency of use or size. More recently various researchers have
demonstrated that classic, inverse power-law relationships such as
those depicted in Figure 6.2, occur in many natural settings | 6.7, 6.8,
6.9 ], including computational linguistics [ 6.6, 6.7 . These Zipf-like



effects are different from those found in the study of English language
VNF set size and form.

The empirically observed exponential relationship found in the
analysis presented in this chapter resembles that observed by Halstead
and his colleagues for Chomsky's type 2 languages | 6.8 ).

The results of an empirical analysis of the actual VNF set size, T,
for the ten most-populated VNF word forms used in 5-, 6-, 7-, 8-, 9-,
10-, 11-, and 12-letter-long words, in the OPD, are depicted in
Figures 6.3 and the histogram given in Figure 6.4. Figure 6.4
fllustrates that a simple exponential relationship accurately represents
set size as a function of rank for the most-populated, second-most-
populated, third-largest, fourth-largest, ..., tenth-largest VNF word
forms found in 5-, 6-, 7-, 8-, 9-, 10-, 11-, and 12-letter-long words
defined in the OPD.

In general, we observed in Chapter 4, that relatively few VNF
structures account for the majority of words of a given length and that
a great many VNF frames are either sparsely populated or not
populated at all. The set of histograms found in Figure 6.5 depicts the
VNF set sizes of the rank-ordered top-ten VNF structures found for 4-,
.., 12-letter-long-words listed in the OPD. From Figure 6.5 we can
observe the characteristic shape and self-similarity of the histograms
for the largest, second-largest, .., tenth-largest VNF frame. From
these results we observe that, for words of any given length, rank-
ordered VNF set size follows a simple exponential decay. This
observation does not hold for the relatively few very long words found
in the OPD. Similarly 2-, 3- and 4-letter-long words, which have very
few possible VNF frames or structures, do not conform to the
regularity observed across the great mass of words listed in the
dictionary. Figure 6.4 demonstrates the remarkable degree to which
the observed regularity holds for words listed in the OPD of lengths 5
through 12. Furthermore, the collinearity of the decay curves found in
this study indicates that a single function may be used to accurately
describe set size as a function of rank.

The predicted VNF set size, I', for word structures of a given
rank order, p, and length, [, may be given in terms of a simple, two
parameter equation of the form:
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B, « (6.1

MNe, !l )= axl +e¢€
for 4<l <14 and p=1.10
where o =-101.67 , B=0.16698 and x =1246.7

Figures 6.6, 6.7, and 6.8 depict the disparity observed between
the VNF set size data found in Figure 6.4 and that predicted by
Equation 6.1. The correlation coefficient, r2, for this model when
computed over the range, 4< 1 <14 and p = 1.10, is 0.844. If one
deletes the single outlier ( p= 1,1 = 6 ) the model's correlation
coefficient raises to a value of 0.946.

Figure 6.5 shows that the 4-letter-long words, in the OPD, do
not follow the decay curve given by Equation 6.1. The 4-letter-long
word results are perhaps accounted for by the exclusion from the OPD
of words that are deemed socially unacceptable or offensive by the
editors of the Oxford dictionaries. Typically words that are considered
to be racist, obscene, sexist, or scatological are deleted from the OPD.
Among the words that are censored in this process are very popular 4-
letter-long words belonging to VNF forms such as CVCC, and CCVC.
Other censored words are 3-letter-long words, belonging to VNF
forms such as CVC. As mentioned in Chapter 3, censorship makes it
difficult to use a dictionary database to perform a proper analysis of 3-
and 4-letter-long word groups.

Figure 6.9 illustrates the relationship observed by Kucera | 6.4 ]
between the number of 'types' and the number of 'tokens' observed in
text samples as well as that predicted on the basis of a log normal
sample distribution. Figure 6.10 iliustrates the relationship observed
in this study between the population density of a VNF frame and its
rank-order. The relationship between type-count and token-count is
only crudely described by Zipf's law in these two cases.Figures 6.9 and
6.10 appear to show remarkably similar complex dynamics that will be
the subject of further research.
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6.4 CONCLUSION

The ten most used VNF word groups of a given word length,
account for the vast majority of words of a given size. A single function
suffices to predict the size of the most populated VNF word groups as
a simple function of word length and rank order, for [ > 4.

The empirically observed exponential relationship shown in
Figure 6.4, that was found to hold between word rank and VNF set size
may be used to accurately estimate VNF set size with the exception of
a single VNF group. This word group, which has the form CVCCVC, is
predicted, by Equation 6.1, to have only 551 elements while over
1112 words are found in the OPD to have this structure. There is no
obvious reason for the aberrant bekavior of this outlying VNF set.
Further in-depth analysis, of the words conforming to this structure,
may provide some insight into the aberrant behavior of this word
frame.

Simple equations such as Equation 6.1 can be used to accurately
predict rank order VNF set size shown in Figures 6.4 and 6.5.

Chapter 7 will discuss the role of functions such as those
presented here in developing comprehensive models of basic English
language word frames. A comprehensive model of the lexicon must

not only predict the structure of basic linguistic frames but also their
relative size.
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Figure 6.1 Abscissa: Length in alphabetic characters. Ordinate:

Number of 'types' and 'tokens'. A 'type' is a distinct word such
as the article 'THE' which if used 10,000 times in a textbook
would have a 'token-value' of 10,000. For example the 'type-
cov it' of 2-letter-long words found in this figure caption is "5"
while the caption's 'token-count' is "11". This figure was taken
from Kucera [ 6.4 ].
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Figure 6.2 Zipf's Law. Inverse power 'law' or relationship

observed between the actual frequency of occurrence of a word
in a text and its rank order. For this purpose words are ranked
in descending order so that the most frequently used word s
given order one, while the least frequently used word of N
distinct vocabulary words is given order N. Abscissa: Base 10
logarithm of the word's relative frequency of occurrence or rank
in a text. Ordinate: Base 10 logarithm of the actual frequency of
occurrence of the word in a text. This figure was taken from
Kucera| 6.4 ]
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Figure 6.3 VNF set size as a function of rank order. The set
sizes of the ten most populated VNF frames for 5-, ..., 12-letter-

long words defined in the OPD are given as a function of their
rank order. These plots illustrate a simple exponential decay in
set size as a function of rank order. Abscissa: Rank order, 1
being assigned to the largest set size and 10 being assigned to
the smallest set size. Ordinate: Base 10 logarithm of the set size
in words.
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Figure 6.4 Composite images of ten histograms. Each of these
histograms depict the relative set sizes of 5-, , 12-letter-long-
word frames defined in the OPD. A separate histogram is used
to illustrate the effect of word-length on set size for the most-
populated, second-most-populated, .., tenth-most-populated VNF
classes. These histograms illustrate the simple regularity of the
observed exponential decay process throughout the top-ten
major VNF classes found in 5- to 12-letter-long words.
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Figure 6.5 VNF set size as a function of rank order. The set
sizes of the ten most populated VNF frames for 4-, ..., 12-letter-

long words defined in the OPD are given as a function of their
rank order. These plots illustrate that the simple exponential
decay in set size as a function of rank order that was observed in
Figure 6.3 does not hold for 4-letter-long words. Abscissa: Rank
order, 1 being assigned to the largest set size and 10 being
assigned to the smallest set size. Ordinate: Base 10 logarithm of
the set size in words.
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Figure 6.6 Scatter plot of the observed set sizes for the top-ten

most populated VNF frames found in 5-, , 12-letter-long words
defined in the OPD and that predicted by Equation 6.1. A single
outlier reduces the model's correlation coefficient to a value of
0.844. Ordinate & Abscissa : VNF set size in words.
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Figure 6.7 Scatter plot of the observed set sizes for the top-ten

most populated VNF frames found in 5-, , 12-letter-long words
defined in the OPD and that predicted by Equation 6.1. The
single outlier has been removed from the data set in this
analysis. Filtering this outlying VNF set raises the model's
correlation coefficient to a value of 0.946. Ordinate & Abscissa:
VNF set size in words.
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Figure 6.8 Scatter plot of the observed set sizes for the top-ten

most populated VNF frames found in 5-, .., 12-letter-long words
defined in the OPD and that predicted by Equation 6.1. The
model has been reevaluated to demonstrate that the single
outlier may indicate a more complex effect than that given by
Equation 6.1. The case illustrates the possible presence of a
power law relationship between set size and rank-order. The
simpler model is preferred until studies on other languages
clarify this point.. Ordinate & Abscissa : VNF set size in words.
Ordinate: Base 10 logarithm of VNF set size in words.
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The relationship of 'type-counts' to 'token-counts'
formulated by Kucera | 6.4 ] for natural languages which exhibit
log-normal distributions ( such as that depicted in Figure 6.1) in
their type and token counts. Abscissa: Base 10 logarithm of the
number of tokens in words. Ordinate: Base 10 logarithm of the

number of types in words. Taken from Kucera | 6.4 ].
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Figure 6.10 The empirically observed relationship between

actual VNF set size and the rank of the VNF set. VNF set rank
was assigned by sorting VNF set sizes to produce a rank-ordered
listing based on descending VNF set size. This figure
demonstrates that the effects observed here using VNF set
features resemble those obtained by a raw analysis of the lexicon
depicted in Figure 6.9. Such curves have been found | 6.7, 6.8,
6.9, 6.10, 6.11, 6.12, 6.13] to be typical of natural 'fra. ‘al'
behavior. Abscissa: Base 10 logarithm of rank-ordered VNF set-
size. Ordinate: Base 10 logarithm of the number of words per
VNF frame.
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CHAPTER SEVEN
PREDICTING THE SIZE AND LOCATION OF
DOMINANT VNF SETS IN ENGLISH

7.1 INTRODUCTION

The set size equation developed in Chapter 6 can be used In
conjunction with the Prefix Model developed in Chapter 5. For
instance, the Prefix Model allows one to compute the structural forms
of the most dominant VNF found in the English language. Similarly,
Equation 6.1 can be used to predict the actual set size of a computed
VNF form, given its rank, p, and word length, I. Much of the work
presented in this chapter has been submitted for publication.

7.2 RESULTS

The predicted set sizes for the top-ten most-popular VNF word
forms, found in 5-, 6-, 7-, and 8-letter-long words, are given in
column 3 of Table 7.1. This information is also depicted in the form of
a histogram given In Figure 7.1. This histogram plots the observed
VNF set size for each of the top-ten VNF frames found in 5- to 12-
letter-long words defined in the Oxford Paperback Dictionary.

The observed VNF set sizes for the lexicon's dominant frames
are given in column 5 of Table 7.1. The histogram given in Figure 7.2
plots the predicted VNF set size for each of the top-ten VNF frames
found in 6 to 9-letter-long words defined in the Oxford Paperback
Dictionary.

The difference between the actual VNF set sizes and those
predicted by Equation 6.1 for the top-ten VNF classes found in 5 to
12-letter-long words is depicted in Figure 7.4. The results depicted
In Figure 7.4 demonstrate that this model is not perfect. However
these results depict a good fit, over the entire range, of observed set-
sizes. Furthermore there is also no trace of a systematic error term in
these results. The source of the model's residual error is a topic for
further research.



Let the set A = { 4, 9, 10, 5, 6, 12, 13, 8, 18, 21 }, be the 5-
letter-long VNF kernel which will be used as the basis for the
stmulations presented in this chapter. This kernel which corresponds
to VNFg frames: { CCVCC, CVCCV, CVCVC, CCVCV, CCVVC, CVVCC,
CVVCYV, CVCCC, VCCVC } is composed of the top-ten rank-ordered
VNF word structures.

The dominant VNF structures, predicted on the basis of this
kernel for a lexicon containing 6- to 9-letter-long words, are given in
column 3 of Table 7.2. In contrast, the observed top-ten VNF frames,
for words of lengths 6..9, are given in column 5 of Table 7.2.

The predicted values listed in column 3 of Table 7.2 are
generated by successively doubling the VNF address of the previously
generated top-ten word frame. If the previous base 10 representation
of this VNF structure was an odd number the predicted value of the
new VNF address is simply double that of its base. However, if the
previous VNF structure was an even number the new VNF structure
was doubled and then incremented by one. This simple procedure
allows one to keep the same relative-ratio of odd-to-even numbers
initially observed in the kernel A, throughout the entire simulation.
This procedure also allows one to simply compute the top-ten N-
letter-long successors from their top-ten (N-1)-letter-long
predecessors. For example; the VNF element 4 found in the kernel A
would predict 9 ( fo be a top-ten VNF structure for 6-letter-long-
words), which, in turn, would predict 18 ( tr be a top-ten VNF
structure for 7-letter-long-words), which, in turn, would predict 37...

Figure 7.3 is a histogram which plots the location of the VNF
frames tabulated in column 3 of Table 7.2. Figure 7.3 also depicts the
predicted set-sizes of these predicted VNF structures. Thus both axes
of this Figure 7.3 depict predicted values, while both axes of Figure 7.1
fllustrate observed data.

The difference between the location of the actual top-ten VNF
frames found in 5- to 12-letter-long words and those predicted by a
simple prefix code is shown in Figure 7.6.

In fact, careful observation traces most of the error introduced

in Figure 7.3 to the failure of tiie single seven-letter-long frame
CVVCCVC to propagate.
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While the results illustrated in Figures 7.3 and 7.5 are very good,
the ability to trace most of the error observed in the model to the
presence of a single non-propagating VNF structure is truly
remarkable.

The final simulation presented in this chapter attempts to
access the effects of an unrealistic, degenerate case on our results.
The kernel A, given above, was used for this simulation. However, the
predicted VNF frames were computed by simply doubling the address
of each previously predicted structure. As such, only even addresses
can be generated by this procedure. The results of this simulation
illustrates similar qualitatively effects similar to those observed in

Figure 7.3. Of course, these predictions contain substantially more
error.

7.3 CONCLUSION

The agreement, both in location of the principle VNF sets and
their set sizes, demonstrates that the computation of both the

structure and size of the dominant VNF forms, for English, is a simplc
computational feat.
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Table 7.1

Word Rank order | Predicted VNF VNF
Length Set size 10 Set size
5 1 833 CCVCC 642
Letters 2 705 CvcCV 581
3 597 CVCVC 521
4 505 CCVCV 351
5 427 CCVVC 309
6 362 CVVCC 239
7 306 CVVCV 181
8 259 CCVCC 178
9 219 VCCVC 128
10 185 VCVCV 79
Word Rank order | Predicted VNF
Length Set size VNF} o Set size
6 1 551 18 1112
Letters 2 466 21 410
3 394 17 341
4 334 20 290
5 282 9 275
6 239 22 199
7 202 36 185
8 171 10 174
9 145 26 163
10 123 37 139
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Word

Length Rank order PrSeeczlgjt;d VNFl o S\e,ivglze
7 1 364 36 530
Letters 2 308 37 503
3 261 18 387
4 221 38 257
5 187 42 256
6 158 41 200
7 134 34 191
8 113 17 165
9 96 21 132
10 81 50 128
Y‘\Z;‘rgth Rani order PrSee%igitzi:d VNF 10 S\e"ivsl:;ze
8 1 241 85 340
Letters 2 204 74 244
3 172 84 234
4 146 68 205
5 123 73 203
6 105 36 183
7 88 82 160
8 75 86 141
9 63 69 120
10 54 37 111
149 111

sizces are thus listed.
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Table 7.2

Word Rank Actual Predicted
Length Order Structure VNF,, |Structure VNF,,
VNF VNF
6

Letters 1 CVCCVC 18 CCVCCV 9
2 CVCVCV 21 CVCCVC 18
3 CVCCCV 17 CVCvVCv 21
4 CVCVCC 20 CCVCVC 10
5 CCVCCV 9 CCVVCV 13
6 CVCVVC 22 CVVCCV 25
7 VCCVCC 36 CVVvCvC 26
8 CCVCVC 10 CVCCCV 17
9 CVVCVC 26 VCCVCV 37
10 VCCVCV 37 VCVCVC 42

Word Rank Actual Predicted

Length Order Structure VNF,, |[Structure VNF;

VNF VNF
7

Letters 1 CVCCVCC 36 CCVCCVC 18
2 CVCCVCV 37 CVCCvVCVv 37
3 CVOCvC 18 CVCVCVC 42
4 CVCCVVC 38 CCVCVCV 21
5 CVCVCVC 42 CCVVCVC 26
6 CCVVCCV 41 CVVCCVC 50
7 CVOOCVC 34 CVVCVCV 53
8 VoV 17 CVCCCVC 34
9 OCVCVCV 21 VCCVCVV 75
10 CVVCCVC 50 VCVCVCV 85
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Actual Predicted
Word Rank Structure Structure
Length Order VNF VNF,, VNF VNF,,
8
Letters 1 CVCVCVCV 85 CCVCCVCV 37
2 CVCCVCVC 74 CVCCVCVC 74
3 CCVCVVCC 84 | CVCVCVCV 85
4 CCVCCVCC 68 CCVCVCVC 42
5 CVCCVCCV 73 CCVVCVCV 53
6 CCVCCVCC 36 | CVVCCVCV 101
7 CVCVCCVC 82 CVVCVCVC 106
8 CVCVCVVC 86 CVCCCVCV 69
9 CVCCCVCV 69 | VCCVCVVC 150
10 CCVCCvVCV 37 VCVCVCVC 170
VCCVCVCV  * 149
Word Actual Predicted
Length Rank Structure VNF;4| Structure VNFyg
Order VNF VNF
9
Letters 1 [CVCCVCVCV 149 | CCVCCVCVC 74
2 |CVCCVCVCC 148 JCVCCVCVCV 149
3 |CVCVCCvVCV 165 |CVCVCVCVC 170
4 |CVCCVCCVC 146 | CCVCVCVCV 85
5 [CVCCVCVCV 150 |CCVVCVCVC 106
6 | CVCVCVCCV 169 |CVVCCVCVC 202
7 | VCCVCCCVC 293 |CVVCVCVCV 213
8 |CVCVCCVCC 164 |CVCCCVCVC 138
9 |CVCVCVCVC 170 |VCCVCVVCV 301
10 | CCVCVCVCV 85 |VCVCVCVCV 341

.

sizes arc thus listed.
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CHAPTER EIGHT
WORD WEBS

8.1 FOREWORD

The previous three chapters of this thesis focused on the use of
two complementary models which have been coupled to allow one to
predict both the dominant lexical frames of English language words
and their set-size. Chapters 4 and 5 demonstrated the use of a simple
prefix code model in predicting the dominant lexdcal structure of
English Language words. Chapter 7 demonstrated that these simple
models when coupled account for the principle macroscopic
characteristics of English Language word structure.

This chapter focuses on the use of a microscopic model to
describe in detail the words that conform to a given VNF. A structural
model referred to as a 'word web’, was developed for this task and has
been described elsewhere | 8.1 |.

A word web condenses word structure by exploiting the
occurrence of common natural language suffixes. A word web allows
more than one prefix form to share common suffixes. In fact, each
natural language derivative may be explicitly constructed only once in
such structures.

A word web may be represented as a special form of a directed
graph. The vertices in a word web are of two types: terminal nodes
and starting nodes. Starting nodes are depicted in a word web by a
capital letter with a single circle surrounding it. In contrast, terminal
nodes are depicted by a capital letter surrounded by two concentric
circles. In the text of this chapter we shall let an outlined capital
letter, such as A, denote a starting node in a word web, while an
underlined outlined capital letter, such as §, will be used to denote a
terminal node in a word web. A word-web may be traversed, starting
from any starting node. Traversal may terminate at any terminal node
that is reachable from the traversal's starting node.



8.2 INTRODUCTION

Natural languages have a highly context-sensitive form. Chomsky
in 1956, [ 8.2 ] has described this form as a type 1 language. The
exact manner in which a human is able to interpret language has been
of interest to psychologists such as Pillsbury [ 8.3 ] since at least the
the end of the last century. Early studies sought to identify the
perceptual orthographic clues that may underlie our ability to read
Woodworth | 8.4 ]. Modern psychologists have sought to determine
the degree to which the recognition process involves whole words,
letter clusters, or single letters [ 8.5, 8.6 |. Conventional models of
word recognition assume multiple levels of stimulus processing.
These models, using the constructs of information theory, attempt to
account for perceptual ability in terms of the redundancy of natural
languages [ 8.7, 8.8, 8.9 ]. These paradigms of perception assume that
reading involves learning a sophisticatec guessing procedure [ 8.10 ]
or criterion bias [ 8.11 ], which allows us to perceive what sensory
information alone is insufficient to determine [ 8.12, 8.13, 8.14, 8.15 |].
It would appear that it is possible to concisely specify microscopic
rules for the synthesis and recognition of English words. These rules
complement the macroscopic approach to lexical analysis that was
developed in Chapters 4, 5, 6 and 7 of this thesis. Much of the work
presented in this chapter has been published elsewhere [ 8.1, 8.16,
8.17 |

8.3 METHODS

The fundamental idea underlying a word web is that any
sequence of suffix production rules which is common to more than
one prefix is shared or made accessible to all appropriate prefixes
[8.1, 8.16, 8.17 .

An adjacency matrix, A ( {, j), such as that depicted in Figure
8.1, may be used to describe words of a specific structural form.
Figures 8.1, 8.2 and 8.3 show the adjacency matrixes for all 2-letter-
long words listed in Funk & Wagnalls American Dictionary, FW [ 8.18,
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8.19 |. Figures 8.4, 8.5 and 8.6 depict the word webs for the VNF
classes, VV, CV, and VC given in Figures 8.1, 8.2 and 8.3.

In the adjacency matrix A ( {, f ), given in Figure 8.1, the value of
the initial letter of all 2-letter-long valid English word, VEW, is
specified by the row index {, while the second letter of each word is
specified by the column index, j. Thus A (3,4) specifies the 2-letter
VEW, " IF " in Figure 8.1.

B|CID|F|G|H|J |K{L |[M|N P RISIT|{V]IWIX]Z
A 3 3 3 i3 3 {3 i3 3
E 3 3 13 {3 |3 3
I 3 |3 3 W E]
o 3 |3 3 3 313 3 {2 3
U 3 313
Y
Figure 8.1 Adjacency matrix for all 2-letter-long words defined

in Funk & Wagnalls Dictionary [ 8.19 ] having the form VC. Row
Index specifies the first letter of the word while the Column
Index specifies the last letter of the word. All VC frames defined
in[ 8.19 ] are demarcated by an ' 3",

A]E{I JO}JU Y
A 3 3
E 3
I 3 |3
O 3 13 3
U e
Y
Figure 8.2 Adjacency matrix for all 2-letter-long words defined

in Funk & Wagnalls Dictionary | 8.19 | having the form VV. Row
& Column Indices are the same as used in Figure 8.1.
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AJE}JI |JO]JU Y
Bia 3
C
D 3 3
Fls
G 3
His {3 |3 |3
J |3 3
Kls
L1s 3 |3
M3 {3 |3 3 |3
Nls 3 13
P13 i3 ]3
Q
R 3
S 3 i3
T 3 |3
V
W 3
X 3
Z

Figure 8.3 Adjacency matrix for all 2-letter-long words defined

in Funk & Wagnalls Dictionary [ 8.19 | having the form CV. Row
Index specifies the first letter of the word while the Column
Index specifies the last letter of the word. All CV frames
defined in | 8.19 ] are demarcated byan '3’.
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The adjacency matrices given in Figures 8.1, 8.2 and 8.3 may be
used to construct the word webs given in Figures 8.4, 8.5 and 8.6.

A valid path in the word web given in Figure 8.4 starts at an
initial state depicted as a starting node, such as A, and terminates at
any terminal node reachable from that initial state. For example, all
traversals from the initial state A form { AT, AS, AR } by a single
transition; { AD, AH } by two transitions; { AX, AN } by three
transitions, and { AN } by four transitions. Similarly all traversals from
the initial state I form { IT, IS, IF, ID, IN }. While traversal from the
initial state E form { EL, EN, EX, EM, EH }.

Figure 8.4 Word Web of all 2-letter-long words defined in Funk
& Wagnalls Dictionary [ 8.19] having the form VC. All starting
nodes are denoted by an encapsulated letter. All terminal nodes
are denoted by a letter surrounded by two concentric circles.
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All 2-letter-long-words starting with a vowel and ending in a
consorntant, VC, which are defined in FW [ 8.19 ], can be represented as
valid paths in the word web depicied in Figure 8.4. Thus the same set
of words is depicted in the adjacency matrix given in Figures 8.1 and

the word web depicted in Figure 8.4.

B —
= 4--M :‘( N -
! P
' P SN |
. » i
JE ‘
/ + N |
‘ P i N !
¥ . LN ;
) i A= -
T :/\ F )"’ A\I"" L (S'T ,W'R(}E)) i
T — =
~ \
( x g\\o ¥ v
- A /? Q
;\ J ' ‘6 -
=¥ -
N ~
(N KU
\\" \_’/1
- -%k
(H - N N j
Figure 8.5 Word Web of all 2-letter-long words defined in Funk

& Wagnalls Dictionary [ 8.19] having the form CV. All starting
nodes are denoted by an encapsulated letter. All terminal nodes
are denoted by a letter surrounded by two concentric circles.
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Figure 8.6 Word Web of all 2-letter-long words defined in Funk
& Wagnalls Dictionary [ 8.19] having the form VV. All starting
nodes are denoted by an encapsulated letter. All terminal nodes
are denoted by a letter surrounded by two concentric circles.

8.4 FORMING WORD WEBS

There are many ways of constructing a word web from an
adjacency matrix. The following section briefly outlines one of these
and gives a simple example of its use on a fictitious case.

Given any adjacency matrix, such as that depicted in Figure 8.7,
we can compute its occupancy, as measured by its row and column
sums. It is then a straightforward matter to apply elementary row and
column operators to the task of permuting the matrix into an upper
triangular form, such as that illustrated in Figure 8.8. In this form
both the row and column-sums are ranked in order of their
descending occupancy. (The adjacency matrix may be condensed or
filtered at this point by deleting 2ll rows and columns whose
occupancy equals zero or falls below some threshold.) The columns in
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Figure 8.8 represent the terminal nodes in a word-web, while the
rows of this matrix represent the starting nodes in a word web.

PREF”.‘BCDFGHIJKL!WNPQRSTVXZ
BA * * * 3
CA * * * * | % * * 7
TA " * " x| x| * * * * 9
Bo | * ™ * 4
BU * * N ™ * 5

3 4 5 21313 2 4 2
Figure 8.7 Hypothetical adjacency matrix. Column sums are

given in the last row of this matrix while row sums are given in
the last column o1 this matrix. Column headers represent
terminal nodes in a word web. Row headers represent starting
nodes in a word web

TA*********

CA*|*]*}*]|*]|* *
BU|*|*|* * *
BO | * * * *
BA|*1*]|*

Wil &l Q] e

Figure 8.8 Condensed version of the adjacency matrix given in

Figure 8.7. The rows and columns of this matrix have been
permuted so as to place them in descending order of occupancy.
Column sums are given in the last row of this matrix while row
sums are given in the last column of this matrix.

By treating each row in Figure 8.8 as a set of elements we may

compute their degrce of similarity by computing their set
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Intersections. The intersection of two sets can be used to isolate a
common sub-set if one exists. Let R1, R2,.., R5 denote the names of
the sets enumerated in the first, second, .., fifth row of the adjacency
matrix given in Figure 8.8. We need to compute ten intersections: R1
N R5, R2 N R5, R3 N R5, R4 N R5, R1 M R4, R2 N R4, R3 N R4, R1
N R3, R2 N R3, R1 N R2 to determine, by brute force, that BA is a
subset of BU, CA and TA; BO is a subset of TA: BU is a subset of CA and
TA; and CA is a subset of TA. We can make use of this information to
construct the Venn diagram shown in Figure 8.9 in which BA and BO
are classified as a level-1 set; BU a level-2 set and; CA a level-3 set.

Figure 8.9 Venn diagram illustrating the hierarchy of sub-sets

observed in the data given in the adjacency matrix depicted in
Figure 8.8.
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A word web may be constructed from an adjacency matrix, such
as that given in Figure 8.8, by first transposing the horizontal header of
the matrix. Each column header in a condensed adjacency matrix is a
terminal node in the word web. Once transposed each column header
is surrounded by two concentric circles and placed so as to form the
vertical backbone of the word web+. This backbone is usually
positioned so as to be centered in the viewer's visual field.

Next we intrcduce all level-1 sets. These nodes are placed
within a vertical band on eithcr side of the word web's backbone* .
The paths between the level-1 starting nodes and their terminals are
then drawn as directed arcs on the word web. Figure 8.10 depicts the
results of applying these steps to the data given in the adjacency
matrix shown in Figure 8.8. The names of the word web's starting
nodes are specified in the row headers of its adjacency matrix.
Starting nodes in a word web are always encapsulated by a single
circle.

Level-2 nodes are then added to the word web. Level-2 starting
nodes are placed within a more distal vertical band on etiher side of
the word web*. The paths between the level-2 starting nodes and
their level-1 subsets are then drawn as directed arcs. Finally, the
remaining paths between the level-2 starting nodes and their
terminals are drawn as directed arcs. Figure 8.11 {llustrates results of
applying these steps to the word web outlined in Figure 8.10.

This procedure is repeated until the starting nodes of all levels
are entered on the word web. In the example given in Figures 8.8 and
8.9 there are only three levels of nested sub-sets and the word web is
completed upon the addition of its level-3 nodes. Figure 8.12 depicts
the final word web drawn from the data contained in the adjacency
matrix found in Figure 8.8.

+

The wvertical component of the node's position may be computed using a
geometric mean or some other acsthetic measure.
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Level 1 Level 1

© ©

© ©

()
® @J©

®& ©

Figure 8.10 Word web drawn from the data contained in the
adjacency matrix given in Figure 8.8. This web depicts level-1
starting nodes and their terminals.
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Figure 8.11 Word web drawn from the data contained in the
adjacency matrix given in Figure 8.8. This web depicts level-2
starting nodes, their level-1 sub-sets and their terminals.
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Figure 8.12 Complete word web drawn from the data contained
in the adjacency matrix given in Figure 8.8.
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The condensed adjacency matrix given in Figure 8.8 Is a classic
example of a representation that is well suited to human information
processing. However in general the brute force method outlined in
this section requires O(n2) set intersections to compute 21 possible
sub-sets of an adjacency matrix A(n, m). One simple way to improve
on the computational cost of this procedure is to cull from the set of
all possible set intersections those that are not likely to contain
significant overlaps. One may use statistical information and a
thresholding procedure to isolate those sets which share an arbitrary,
ad hoc, percentage of elements in common. By treating each row in
Figure 8.8 as a binary vector we may compute their degree of similarity
by using a dot product calculation *o produce the similarity matrix
given in Figure 8.13. From this matrix we can readily observe that CA
and TA share 7 out of a total of 9 nodes in common. By inspecting
Column S of Figure 8.9 we observe that the smallest set BA is a subset
of BU, CA and TA. We choose to make BA a subset of BU in that it is
the smallest of these three sets.

TA| CA{ BU | BO | BA
TA] 9 7 5 4 3
CA 7 4 3 3
BU 5 1 3
BO 4 1
BA 3
Figure 8.13 Similarity matrix. The elements of this matrix

are computed as the dot product of the rows of the condensed

adjacency matrix given in Figure 8.8. For this computation the

rows of the adjacency matrix are treated as representing binary
vectors. The matrix is symmetric about its diagonal.

One may isolate the major similarities in Figure 8.13 by filtering
it in order to retain only those overlaps which account for more than
some arbitrary percentage of each sets elements.

For example Figure 8.14 s produced by filtering Figure 8.13 of
all set overlaps which account for less than forty percent of the set's
size. The size of each set is given as the value of the diagonal elements
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in Figures 8.13 and 8.14. Significant overlap ( > 40% ) in the
membership of two sets is denoted by an asterisk in Figure 8.14. By
inspecting column 5 of Figure 8.14 we note that there is a significant
overlap in the membership of the set BA and the sets BU and CA. A
similar inspection of column 3 in Figure 8.14 shows that there is a
significant overlap between BU and the sets CA and TA. Column 2
fllustrates that the set CA and TA have a significant overlap in their
membership while column 4 specifies that there is no significant
overlap between the set BO and any other set in this series other than
TA.

In all there are only six pairs of candidates that are selected for
set intersection as the result of this thresholding procedure.
Furthermore the result of the analysis of the selected computation is
sufficient to determine that BA is a subset of BU and CA; BO 1is a subset
of TA; BU is a subset of CA and TA; and CA 1s a subset of TA. Thus we
can make use of this information to draw the Venn diagram shown in
Figure 8.9 in which BA and BO are classified as a level-1 set; BU a
level-2 set and; CA a level-3 set. Thus the six intersections that were
deemed deemed worthy of further inspection proved to be useful in
the construction of the word web given in Figure 8.12.

TA| CA| BU | BO| BA
TA 9 * * *
CA 6 * *
BU S *
BO 4
BA 3
Figure 8.14 Fiitered similarity matrix. This matrix 1s

constructed from Figure 8.13. If the ratio of an element's value
to its row sum exceeds a threshold of 0.4 the element 1s defined
to be 'significant’. Any element found to be significant in Figure
8.13 is denoted by the presence of an asterisk in this figure.

The matrix is symmetric about its diagonal.
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The word web construction procedure may be summarized as follows:

C: Obtain the word web's adjacency matrix.

1: Transform the adjacency matrix into its upper triangular form.

2: Condense the transformed adjacency matrix.

3: Compute a similarity matrix from 2.

4: Filter the similarity matrix produced from 3.

5: Compute the set intersection on all pairs of sets deemed
significant in step 4.

6: Establish the level of each subset found in 5.

7: Construct the word web's backbone.

8: Overlay the word webs for each sub-set level found in 6.

8.5 OBSERVATION & RESULTS

1. All uni-letter valid English words, VEW, are vowels. They are: a, 1, o
2. Al two-letter VEW listed in CFW { 8.18 ] contain at least one vowel.
We shall consider these words to fall into three classes. The first case
are VEW which are composed of a vowel prefixed to a consonant. The
second case is the set of VEW composed of a vowel suffixed to a
consonant. A third case is the set of VEW composed of two vowels. We
shall denote these cases as: VC, CV, VV; where VE {a, e, 1, 0,u,y}
and CE€{b,c,d.f,g h, j,k,, m,np,qrs, tvwxz}

A complete list of the 73, 2-letter VEW, listed in the OED and FW,
may be tabulated in matrix form in Figure 8.15. All VEW contained in
FW are demarcated by an, '3.' All additional 2-letter VEW found in the
OED are demarcated by an, ' 3', while those cited in the OED as
obsolete, archaic, or belonging to Middle English are denoted by an ' ="'
{811
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A[E[1|O|U|Y[BIC[D|F|G[H|J[K|LIMIN[P|Q[R[SITIVIW[X|Z]
LY FRERK 3{3]3i=1{31{> 3 ={=1313 3i3l3 =13
El={31}= =3 3 3 3i3i31i3 3iele =13
I = 3 3{3 ={=13 ={31]3 =
O = =l=13 =313 3 3 3j3}{-= 33 =13
U = E) =13 31=143 31343 =
1333:: =1= =|= = =i{d}j= =
Blaiai{=13!i=13

C33 == =

D33 3i3i=

Flai= =

Gj- 3 =

Hial3s}3j3}=1]>3

J i3 3=

Kia I RERERE]

Llai=i3{3(=1|=

MlIsgtalajsfals

M EBE 3i3}=

Pl3i3i3i=}3]=

Q =

R=3 =|=

li.:.,=33=- 3

T9=33=

v=3 = =

w33=3== = =

x:

Z = =

Figure 8.15 Composite adjacency matrix for all 2-letter-

long words defined in either the OED, or FW, having the VNF
forms VV, CV, VC, CC. Row Index specifies the first letter of the

word while the Column Index specifies the last letter of the
word.

From the adjacency matrix, jiven in Figure 8.15, it may be
clearly seen that 2-letter words of the form, CC, have been prohibited
throughout the history of the English language. The only living
exception to this rule, which is defined as a word in the OED, is the
2-letter injunction, ' SH ' . In fact it would appear that all strings of

the form, CN, are prohibited from forming N-letier long VEW. It is
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interesting to note that most of the other possible CV, VC, VYV
permutations have been valid English words at some point in the
history of the language.

Our results have shown that it is possible to generate the 425 3-

letter-long VEW contained in FW in terms of the 276 possible
permutations specified by CV, VC, VV. Seven transition diagrams of

the forms; CVV, VVV, CVC, VVC, CCV, VCV, VCC are required for this
task. They may be formed by prefixing either a vowel or a consonant
to CV, VC, VV to yield the following partitions:

vv| CV | VC

<

VVV|VCV | VVC

C |CvV|CCV |CVWC

Alternatively they may be formed by suffixing etther C or V to
CV, VC, VV as:

vv|i Cvi VC

VVV|CVV | VCV

<

vCicvC {vCC]| C

VEW which may be formed from either a prefix or suffix
operation are called 'multiradical' words * . Thus the multiradical
VEW, " PIN ", of type CVC may be formed as:

CVC <« [C < VC ] (for example: PIN «P +IN ), or
[CV = C]-»CVC (for example: PI + N — PIN ).

Approximately 64% of 3-letter-long VEW are multiradical while
the rest can be legally formed only as:

*

I would like to thank Professor P.F. McCullach of McGill University's
Classics Department for his help in coining this term.
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CCV «[ C<«= CV|](for example: SKY <« S + KY)

in that CC is not a valid 2-letter-long base form.

In this simple recursive manner it is possible to describe all but
two of the 2875 4-letter-long VEW found in FW. For this task 23
transition diagrams are needed.

It would appear that in general all N-letter-long English words
may be specified with 4 « (N - 1 )| -1 transition diagrams. As we have
seen in Chapters 4, 5, and 6, relatively few VNF classes are used to
represent the majority of English Language Words. Hence relatively
few word webs would be needed to specify the actual words found in
the more densely populated VNF groups.

Furthermore, it is likely that further research will find that word
webs will exhibit similarilies that are a function of their related VNF

frames. The prefix code model developed in Chapter 5 can be used to
predict these related frames

8.6 CONCLUSIONS

This chapter presents a scheme of transition diagrams for finite
automata which can synthesize English language v.ords. To date this
model has synthesized almost all words of size < 5. The thiee
transition diagrams for all 2-letter-long words contained in FW are
given.

For each VNF group there is a word web. The extension of the
process described in this chapter to the synthesis of word webs for
words of larger size is a simple straijghtforward process. These webs
may be enhanced by transforming them into something akin to
augmented transition networks [ 2.62, 2.92 }. Such networks add
additional information such as the part of speech or origin of the term
constructed by traversing a path in a word web. Such models may be
used to enhance our knowledge of the process of reading.

As we will see, in the next chapter of this thesis, our results
indicate that one may compute the relative frequency of use { 8.17 | of
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each VEW obtainable from modified transition graphs such as the word
webs introduced here. A word's frequency of use will be approximated
by calculations based on the product of the positional-probability of
each letter within its lexical structure or frame.

On-going research*®® work seeks to extend the grammar rules,
depicted in this chapter as word webs, to cover the problems of
concatenation, hyphenation, and hopefully, syllabification.

-

I would like to thank William Gillespic and Kent Farrell for their many
thought provoking discussions on the work which was described in this

chapter and published in [ 8.1 ]. I would also like to thank Professor. C.Y. Sucn
of Concordia Umversity's Department of Computer Science for introducing me

to this area of research. This work was partially supported by NSERC grant No.
A9372.
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CHAPTER NINE
MODELS OF WORD- AND LETTER-FREQUENCY USE

9.1 INTRODUCTION

The study of the English language words presented in this thesis
has, up to this point, dealt with structural or morphological features of
the written word. The results of this research have shown that even
such limjied studies can produce fundamental results.

However, for over half a century dynamic philology has focused on
models of word use that emphasized the frequency of use, or token-
value, of the words, or types, that form a lexicon. Such statistical
studies have helped researchers, such as Halstead, study word use in
both natural and computer languages.

Similar context-sensitive statistical studies of letter-frequency
usage within words can provide insight into the rules of English
language concatenation. In particular these studies, can help derive
the form of a language's prefix and suffix structures.

As we will see in Chapter 10, the results of such intra-word
studies of larger, English language, word-frames, can be heuristically
appled to the task of reducing a larger, or derived, word to its root or
base.

This chapter proposes a scheme for estimating the frequency of
occurrence of English words from the product of position-dependent
letter-frequencies. A sampling method is described for computing
these frequencies at a given confidence imit from a minimum number
of words. Computations for words of different lengths can be
normalized under the assumption of a log-normal distribution of word-
size within the language. The normalized position-dependent letter-
frequency plots for 2-, 3-, and 4-letter-long English words are
presented in this chapter. These plots are derived from the set of
types of a given length that account for 80% of the observed tokens of
the same length within a large corpus [ 9.1 ]. The frequency of
occurrence of English words can be approximated when modified
conditional probability plots are used in conjunction with a scheme of
transition diagrams for finite automata, described in the previous



chapter, that synthesize these words. The three transition diagrams
for all 2-letter-long English words contained in the Oxford English
Dictionary are presented along with statistics on their observed and
estimated word-frequencies. Much of the work presented in this
chapter is taken from work published elsewhere [ 9.1, 9.2 |.

The role of context In problems of pattern recognition and
perception has been intensively studied by philosophers and biologists.
Today it is also an important area of research in computer science.
Since Plato's time, research on this topic has provided valuable
insights into the way in which inan percelves the world.
Neurophysiologists [ 9.1, 9.2 | and cognitive psychologists | 9.3, 9.4,
9.5 ] have yet to understand the manner in which a human is able to
preferentially recognize words from random-letter sequences and
pseudo-words. In fact, it now appears that one is able to rapidly
recognize English words from pseudo-words that are equivalent to
Markovian approximations ( n-grams ) of English words | 9.4 ].

In numerous attempts to understand and simulate the human's
ability to read, psychologists, and computer scientists have studied
word form [ 9.6, 9.7, 9.8 ] as well as spatial and temporal context { 9.9,
.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16 ] at the grammatical level of
the word.

For practical purposes, computer scientists have attempted to
use coniextual information to improve machine character recognition
of type font and cursive script [ 9.17, 9.18, 9.19, 9.20 |]. Contextual
information is also of great value in the error detection and correction
techniques [ 9.21, 9.22, 9.23, 9.24 | that are needed to enhance the
ability of word processors to spell, format, and transmit informatfon.

There are two traditional approaches [ 9.25 | for the use of
contextual information at the syntactic level: the dictionary look-up
method and the Markov process. The accuracy of the Markovian
method is lirmited by the availability of a priort knowledge about the
statistical structure of the language. The dictionary look-up method
requires that the word exist in a previously compiled dictionary
available to the recognizer. Dictionary methods achieve low error
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rates at a cost of large storage demands and high computational
complexity. Consequently, hybrid methods [ 9.26, 9.27, 9.28 | have
been developed to make use of the best characteristics of both bottom-
up Markovian and top-down dictionary methods. This chapter
presents the basis for one such hybrid technique.

9.2 THEORY AND RESULTS

Zipf | 9.34 ] and Estoup [ 9.35 | were the first to describe an
inverse relationship between the frequency of a word's occurrence and
its rank, or order of commonness, in written usage. Since then many
authors [ 9.36, 9.37, 9.38, 9.11 ] have proposed various models of the
constraints that may underlie this relationship.

Under the assumption of a log-normal model of word-frequency
distribution, first advanced by Herdan [ 9.39 |, it is a simple matter to
compute the number of types and tokens of a specific length that are
expected to occur within a text of a given number of tokens. In this

particular analysis the token distribution observed by Suen [ 9.14 | was
used to estimate the percentage to text, 1; . occupled by words of a

given length, [.

As shown in Figure 9.1 it is possible, from word-frequency
statistics, to compute the minimum number, x, of types of a given
length, [, that can account for a percentage, ¢ , of I, as:

K
K l (Il-zf(l’j))z ¢ 1 (9.1

j=1

where each term f (L) of the sequence { f n) } is the

( m,
observed relative frequency-of-occurrence of the type specified by
f (LY In this notation f (LJ) is the j-th term of the |- th sequence

(f ) } defined for all positive integers m = 1, 2, 3,..s where s

{m, n
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specifies the length, or number of characters of the largest type found
to occur in the text. For each m, the set of types of length m is sorted
into the descending rank-order of each type's frequency-of-
occurrence within the text. Hence the rank order of a given type
f (mj) within any sequence, m, is specified by the value ({ ordinal

number, j. This ordinal number is defined for all positive integevrs f =
1, 2, 3, ...z, where z specifies the last and least-frequently-used word
of the sequence.

This process is equivalent to partitioning the published rank-
ordered frequency-list [ 9.29 ], by word-length, into a series of rank-
ordered sub-lists. From these sub-lists it is then possible to direcily
compute the principle components of the overall letter-distribution
for words of a given length, . The accuracy of these statistics in

describing the lexicon's behavior for each [ is proportional to ¢ and
thus determined by the number of terms, x; , used in this

computation. In a similar manner it is possible to calculate estimates

of the position-dependent letter-frequency distributions for a given [
from these sub-lists.

This situation is analogous to the decomposition of an absolutely

convergent series into absolutely convergent sub-series | 9.40 |. If the
probability of a letter's occurrence within the English lexicon 1s P,,

then the absolutely convergent ser! - 2 P, has the value 1.
Pa+Pb+P+ ..... + P = EPK-I (9.2

Q = 26 for English

Where P q I8 the probability of the letter ' a ' occurring in the lexicon.

This series may be decomposed, rearranged, and written as:
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P]'Z + Pz,z + Pa,z + ... 0+ Pq).z =1 (9.3

For example P (3.b) is the probability of the letter ' b ' occurring in
three-letter-long words. Let P be the probability of occurrence of

w-letter-long words in the lexicon. Then each column-sum of
Equation 9.3 is equal to the probability of occurrence of words of a
given length within the lexicon:

ZP = P (9.4

1 is the size of the alphabet
n = 26 for English

and the sum of these probabilities over the entire lexicon equals one:
P1+P2+P + ... P =2P =1 (9.5

Furthermore, each row-sum of Equation 9.3 is equal to the probability
of occurrence of a specific letter within the lexicon:

¢
)) Py w= Py (9.6

w=1
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In a similar manner Equation 9.3 may be further decomposed
into position-dependent probabilities. Position-dependent letter-
frequency distributions can also be computed from the row- and
column-sums of tables [ 9.30 ] of n-gram statistics that have been
tabulated for tokens of a given length.

=
S .6 o —
/’ \\\ ’ v
P .5 o /I \\ s MM
= ! N g s Y)
— / l \\ -
- ,’ n - .
= 4 i B u - b (uey)
- l l = [ Mo ]
e n
= 3 il )
= 7 Ela
< a
=T I I
I N
1 - B
|
1 s 7 9 1 13 15 17
TYPE LENGTH X
Figure 9.1 The partial decomposition of a simulated log-normal

frequency distribution, P(Y). The total proportion, ¢, of each
discrete word-length interval, | , is approximated by the sum of

terms in the sequence associated with each [ . K] is the
minimum number of terms in the sequence needed to account
for the proportion, ¢, of the distribution, P(Y), at each word
length, I. The values of kK associated with ! =1, 2, 3, 4, 5 and

6 in this diagram are respectively: 2, 7, 9, 8, 9 and 14.
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9.3 RESULTS

Figure 9.2 depicts the minimum number of types, x|, needed to

account for a percentage, ¢, of tokens of a given length, [, in a log-
normal word-frequency distribution. These results show that x; is
linearly related to | at least over the range of the various word-lengths

considered in this study.

Figure 9.3, as well as Figures 9.4a, 9.4b, 9.4c, and 9.4d, are plots
of the frequency-of-occurrence of the various letters of the English
alphabet. When placed in descending rank order, as in Figure 9.3, the
observed [ 9.30 ] overall occurrence of the letters of the alphabet
assumes the form:

Pir) = Al 4 Befl (9.7

where P ( A;) 1s the frequency-of-occurrence of the I-th letter and I is

an integer.
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Figure 9.2 The minimum number of terms, K| , in a monotonically

descending sequence, { f ) }, associated with a given word-

{m, n
length, !, as a function of ¢, for 1-, 2-, 3-, 4-, and 5-letter-long
Englis’ words.
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Figure 9.3 Probability of occurrence of the letters of the
English Alphabet. The vertical axis is in a logarithmic scale.
The horizontal axis is an ordinal scale which is linearly ranked
in the order of decreasing frequency-of-occurrence.
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In Figure 9.4 we show the decomposition of the overall rank-
frequency graph, shown in Figure 9.3, into letter-distributions
observed [ 9.29 | for 1-, 2-, 3-, and 4-letter-long English words. The
simplest rank-frequency graphs computed from frequency data on
words contained in Funk and Wagnall's Standard College Dictionary
exhibit an exponential relationship between the observed frequency-
of-occurrence of a letter and its rank. This relationship is shown in,
Figures 9.4a, 9.4b, and 9.4c, to occur in normalized ( ¢ = 80% ).
samples of 1-, 2-, and 3-letter-long English words. The letter-
frequency data computed for 4-letter-long word samples exhibited a
twin exponential form when graphed as a function of descending rank
order. The more complicated form of the 4-lstter-long word rank-
frequency plot, shown in Figure 9.4d, ( ¢ = 80% ), resembles that
observed in Figure 9.3 for the overall frequency distribution of the
various letters in English.

The letter distribution shown in Figure 9.4 may be furtuer
decomposed into position-dependent or fundamental rank-frequency
plots. Consider, for example, that the simple exponential relationship
observed in Figure 9.4c, between a letter's rank and its frequency-of-
occurrence in a 3-letter-long word arises as the sum of the data
contained in the three fundamental rank-frequency plots shown in
Figure 9.6. From Figure 9.6 we see that the fundamental rank-
frequency plots describing the alphabetic distribution observed | 9.30 ]
within the first, second, and third positions of these words are all
simple exponentials.

Figure 9.5 depicts the position-dependent decomposition of the
rank-frequency plot given in Figure 9.4b. The twin exponential forms
of the rank-frequency plot observed in Figure 9.4d for 4-letter-long
words may be described in terms of the sum of the four position-
dependent, rank-frequency plots presented in Figure 9.7. The twin
exponential form of Figure 9.4d appears to result from the asymptotic
behavior of Figure 9.7 at the lower end of the fundamental rank-
frequency plot for the first and second position of 4-letter-long words.
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Figure 9.4a The frequency-of-occurrence of the letters of the

English alphabet as a function of word-length observed in
samples where ¢ = 80. The vertical axis is in a logarithmic
scale. The horizontal axis is linearly ranked in the order of
decreasing frequency-of-occurrence. Figure 4a is a plot of the
observed frequency-of-occurrence of the various letters of the

alphabet found in the 1-letter-long word sample used in this
study.
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Figure 9.4b The frequency-of-occurrence of the letters of
the English alphabet as a function of word-length observed in
samples where ¢ = 80. The vertical axis is in a logarithmic
scale. The horizontal axis is linearly ranked in the order of
decreasing frequency-of-occurrence. Figure 4b is a plot of the
observed frequency-of-occurrence of the varjous letters of the

aiphabet found in the 2-letter-long word sample used in this
study.
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Figure 9.4c¢ The frequency-of-occurrence of the letters of

the English alphabet as a function of word-length observed in
samples where ¢ = 80. The vertical axis is in a logarithmic
scale. The horizontal axis is linearly ranked in the order of
decreasing frequency-of-occurrence. Figure 4c is a plot of the
observed frequency-of-occurrence of the various letters of the

alphabet found in the 3-letter-long word sample used in this
study.
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Figure 9.4d The frequency-of-occurrence of the letters of

the English alphabet as a function of word-length observed in
samples where ¢ = 80. The vertical axis is in a logarithmic
scale. The horizontal axis is linearly ranked in the order of
decreasing frequency-of-occurrence. Figure 4d is a plot of the
observed frequency-of-occurrence of the various letters of the
alphabet found in the 4-letter-long word sample used in this
study.
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Figure 9.5 Position-dependent rank-frequency plots computed
from 2-letter-long English word samples with ¢ = 80. The
vertical axis is in a logarithmic scale. The horizontal axis is
linearly ranked in the order of decreasing frequency-of-
occurrence for each letter position. The leftmost rank-
frequency plot depicts the distribution observed for the first
letter position of 2-letter-long words. The rightmost rank-
frequency plot depicts the distribution observed for the last
letter position of these words. This plot gives the frequency-of-
occurrence of the various letters of the alphabet in the first and
second positions of the 2-letter-long word sample.
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Position-dependent rank-frequency plots computed

from 3-letter-long English word samples with ¢ = 80. The
vertical axis is in a logarithmic scale. The horizontal axis is
linearly ranked in the order of decreasing frequency-of-
occurrence for each letter position. The leftmost rank-
frequency plot depicts the distribution observed for the first
letter position of 3-letter-long words. The rightmost rank-
frequency plot depicts the distribution observed for the last
letter position of these words. This plot gives the frequency-of-
occurrence of the various letters of the alphabet in the first,
second and third positions of the 3-letter-long word sample.
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Figure 9.7 Position-dependent rank-frequency plots computed

from 4-letter-long English word samples with ¢ = 80. The
vertical axis is in a logarithmic scale. The horizontal axis is
linearly ranked in the order of decreasing frequency-of-
occurrence for each letter position. The leftmost rank-
frequency plot depicts the distribution observed for the first
letter position of 4-letter-long words. The rightmost rank-
frequency plot depicts the distribution observed for the last
letter position of these words. This plot gives the frequency-of-
occurrence of the various letters of the alphabet in the first,

second, third and fourth positions of the 4-letter-long word
sample.

194



It is possible to demonstrate that the overall frequency
distribution of the letters of the alphabet, shown in Figure 9.3, can be
approximated by the weighted sum of the distributions given in
Figures 9.4a, 9.4b, 9.4c, and 9.4d ( ¢ = 80% ). An analysis of variance
shows that the weighted sum of these distributions accounts for 7.7,
43.7, 78.7, anda 82.8 percent, respectively of the variance observed in
Figure 9.3. These approximations are computed under the assumption
of a log-normal distribution of word length where the relative weight
of each component distribution in the cumulative sum is that observed
[ 9.14 ] in the sampled. data.

One may derive a first-hand approximation of the frequency-of-
occurrence of any N-letter-long word in the English language from the
position-dependent, rank-frequency plots computed for words of
length N. Unfortunately, given the N fundamental rank-frequency
plots, the model will generate fictitious probabilities for any sequence
of letters of length N which can be permutated from the English
alphabet. The computed probability of a sequence of letters only has
meaning for those permutations which are listed as a part of speech in
the English language. As such, for practical applications, it is
necessary to somehow maintain a dictionary of valid English words
[ 9.8 ]. Rather than store many dictionaries listing words of specific
length, it is possible [ 9.8 ] to specify all N-letter long words in terms

of 2N- 1 automata graphs, referred to as word webs in Chapter 8.

The three transition diagrams for finite automata which can be
used to exclusively generate all valid 2-letter-long English words listed
in the Oxford English Dictionary are given in Figures 9.8, 9.9 and 9.10.
It is possible to compute the expected frequency of occurrence of any
2-letter-long word listed in word webs, such as those given in the

previous chapter, as the product of its position-dependent letter-
iven in Figure 9.5.
frequencies f (2, g g

In general, the frequency of occurrence of any ! -letter long type,
f (T) ., can be approximated by the product of its position-dependent
letter frequencies, f (L) as:
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l
f(T):Hf(U) (9.8
y=1

The validity of this computation is somewhat constrained by the
fact that the frequency-of-occurrence of a word cannot be wholly
ascribed to the simple product of the observed, disjoint, position-
dependent frequency-of-occurrence of its letters.

A rank-correlation test showed significant agreement (Kendall,
Tau = 0.613, SD = 0.150, p < 0.001 ) between the most-frequently
observed 2-letter-long words [ 9.29 ] and those predicted on the basis
of Equation 9.8 to be the most-frequently used. The observed 'types'
used for this study included all 2-letter words known to occur at least
500 times per million tokens of running text.

Two obvious outliers or exceptions exist in this list. The
computed frequencies of the rare words " OS " and " AY " are,
erroneously very large. These errors occur as the result of the very
frequent use of words such as { OF, ON, IS, AS } and { AS, AN, BY, MY}
which like " OS " and " AY " either start with the letters "O "or "A"
or end in the letters " S " or " Y". Hence, both " OS " and " AY " must
be noted as valid exceptions to the fidelity of this method.

Using refined position-dependent frequency-data it is possible
to obtain almost perfect rank-correlations between the observed and
computed frequency-of-occurrence of all 2-letter-long types known to
occur at least twice-per-million tokens of running text. These results
are obtained at a cost of two more exceptions to the fidelity of
Equation 9.8. Word-size and position-depended letter-frequency data
may thus be used to compute the expected frequency-of-occurrence of
most words.

The overall position-dependent letter-frequencies for 5-, 6-, 7-,
8-, 9-, and 10-letter-long-words are given in Figures 9.11, 9.12, 9.13,
9.14, 9.15, and 9.16. In all cases the observed distributions are
similar to those described here for the smaller words. Word-size and
position-dependent letter-frequency data may also be used to infer the
most likely size of the suffix and prefix structures found in larger
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'derived' words. Such information proves to be very useful in the
development of context-sensitive rule bases for the reduction of a
derived word from its base or word-root [ 9.41 ]. The development of
such rule bases is the topic of Chapter 10.

9.4 CONCLUSION

The method and results presented in this chapter demonstrate
that it is possible to easily compute the existence and approximate
frequency-of-use of popular N-letter-long-words in the English
language.
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Figure 9.8 Word web, or transition diagram, for the finite

automata which may be used to exclusively generate all 2-letter-
long words of the form VC listed in the Oxford English
Dictionary. All vowels are initial states in this directed graph.
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Figure 9.9 Word web, or transition diagram, for the finite

automata which may be used to exclusively generate all 2-letter-
long words of the form CV listed in the Oxford English
Dictionary. All consonants are initial states in this directed

graph.
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Figure 9.10 Word web, or transition diagram, for the finite
automata which may be used to exclusively generate all 2-letter-long
words of the form VV listed in the Oxford English Dictionary.
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Five Letter Words
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Figure 9.11 The frequency-of-occurrence of the letters of

the English alphabet as a function of position within a 5-letter-
long English word sample. The vertical axis is in a logarithmic
scale. The horizontal axis is linearly ranked in the order of

decreasing frequency-of-occurrence for each position within a
5-letter-long template.
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Six Letter Words
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Figure 9.12 The frequency-of-occurrence of the letters of
the English alphabet as a function of position within a 6-letter-
long English word sample. The vertical axis is in a logarithmic
scale. The horizontal axis is linearly ranked in the order of
decreasing frequency-of-occurrence for each position within a
6-letter-long template.
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Seven Letter Words
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Figure 9.13 The frequency-of-occurrence of the letters of

the English alphabet as a functi - of position within a 7-letter-
long English word sample. The vertical axis is in a logarithmic
scale. The horizontal axis is linearly ranked in the order of

decreasing frequency-of-occurrence for each position within a

7-letter-long template.
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Eight Letter Words
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10

Figure 9.14 The frequency-of-occurrence of the letters of
the English alphabet as a function of position within a 8-letter-
long English word sample. The vertical axis is in a logarithmic
scale. The horizontal axis is linearly ranked in the order of
decreasing frequency-of-occurrence for each position within a
8-letter-long template.
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Nine Letter Words
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Figure 9.15 The frequency-of-occurrence of the letters of
the English alphabet as a function of position within a 9-letter-
long English word sample. The vertical axis is in a logarithmic
scale. The horizontal axis is linearly ranked in the order of
decreasing frequency-of-occurrence for each position within a
9-letter-long template.
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Ten Letter Words
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Figure 9.16 The frequency-of-occurrence of the letters of
the English alphabet as a function of position within a 10-letter-
long English word sample. The vertical axis is in a logarithmic
scale. The horizontal axis is linearly ranked in the order of
decreasing frequency-of-occurrence for each position within a
10-letter-long template.
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CHAPTER TEN
SYNTACTIC STRUCTURES AND WORD-LEVEL GRAMMARS
IN ENGLISH

10.1 INTRODUCTION

Research activity in the field of computational linguistics has
grown at the rapid rate which parallels the recent attention given to
the study of artificial intelligence and the widening application of
computers to non-numerical problem domains.

In this chapter we shall discuss Natural Language Processing,
(NLP), in the areas of word recognition and word understanding.
Atwell [ 10.1 ] has recently pointed out that Chomsky's early work on
syntactic structures [ 10.2 | has greatly influenced the importance
placed on metaknowledge, such as deep structure, in NLP systems.
However, it would now appear [ 10.1 ] that simpler heuristic surface
structure techniques, such as those discussed in this chapter, yield
good practical results when compared to systems seeking to exploit
deeper structures.

'Word recognition' can be viewed as a syntactic problem with
important practical applications in word processing, man-machine
interfaces, and the development of sophisticated input devices such as
'smart' optical scanners [ 10.3, 10.4 ]. Smart optical scanners are
required to circumvent the errors introduced by the optical scanner's
pattern recognition routines which, even when working at 99%
efficiency, end up garbling one word in every two English sentences
[ 10.5, 10.6 ].

‘Word understanding', on the other hand, is usually considered
to be a difficult semantic problem [ 10.7 ] with application to next
generation relational database systems and embedded or robotic
devices. Present applications of such semantic systems have involved
Isolating a word's root or base-word for use in sophisticated NLP
systems | 10.8, 10.9, 10.10, 10.11 ].

In pursuing work on mathematical models of English language
word structure and usage this chapter presents some efficient
techniques to enable a machine to recognize English language words
and their grammatical structure. Such studies typically require that



one attempts to achieve simultaneously two goals. The first goal, which
Is to maximize the absolute size of the vocabulary covered by the
model, requires that one analyses a large carefully compiled lexicon.
The second goal is to assure the model's usefulness by somehow
restricting its errors to rarely used words. This second objective
requires access to probabilistic or statistical information on the
frequency of use of the words in the lexicon.

The results presented here are based on our own previous work
[ 10.12, 10.13, 10.14 | as well as that of others [ 10.15, 10.16, 10.17,
10.18 1. These results are mostly derived from an exhaustive analysis
of a database encompassing the vocabulary of the Oxford Paperback

Dictionary, OPD, [ 10.19] and the Oxford Spelling Dictionary, OSD,
[ 10.20 ].

10.2 SYNTACTIC STRUCTURE

Markovian production rules expressed in Backus-Naur Form,
BNF, have been used extensively as generic representations of
syntactic structure. This formalism has been applied to many
practical problems through developments in syntactic pattern
recognition | 10.21 ].

While they are very powerful, syntactic pattern recognition
techniques suffer from a major methodological drawback. They
require that a correct a priori structural model of the abstraction
exists.

Furthermore the implementation of successful syntactic parsing
routines requires not only the existence of an a priori structural model
but also the availability of pattern recognition routines which can be

used to isolate and correctly classify the model's features from raw
data.

10.3 VOWEL NORMAL FORM: WORD LEVEL SYNTACTIC STRUCTURE

Vowel Normal Form (VNF) is a heuristic structural feature which
has been developed [ 10.12, 10.13 ] to cluster and classify words on
the basis of a single hybrid feature which has orthographic, phonetic
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and probabilistic components. Figures 10.1 and 10.2 illustrate the
importance of VNF classification. These figures demonstrate that the
VNF classes found to be most frequently used in forming words of a
given length form a structural kernel of the VNF frames empirically
found to be most frequently used in forming words of greater length.
As we shall see in the next section of this chapter VNF can also be
used to isolate clusters of structurally similar words of a given length.
It is subsequentially possible to build sets of rules for accurately
reducing words in these well-populated VNF classes to their root or
base word [ 10.11, 10.14 |.

10000
T .o
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A1 BT
B _ i
= [
= T
P
© 100
N
; il
1 10 100 1000
VNF CLASS
Figure 10.1 Filtered VNF density plot for all 2-, 3-,.. 12-letter-

long valid English words defined in the OPD. Only those sets
with 10 or more elements are depicted in this figure. Abscissa
VNF class or structure specified as a base 10 number. Ordinate
set size in words. This is a filtered image of Figure 4.1
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Figure 10.2 Superimposed Composite Image.
TOP-PLATE: Observed Top-Ten VNF frames found in 5-,.., 12-
letter-long-words defined in the OPD [ 10.19 ] (see Figure 7.1).
BOTTOM-PLATE: Predicted Top-Ten VNF frames (see
Figure 7.3). This figure demonstrates that relatively few VNF
frames account for the majority of the vocabulary structures
found in English and that both the size and lexical structure of
these principle frames are predictable .
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10.4 METHODS

The lexicon used for this work was the Oxford Paperback
Dictionary (OPD) [ 10.19 ). This lexicon was the largest magnetically
stored dictionary available to us. ® A string processing routine which
capitalized on the relatively rigid stylistic structure [ 10.23 ] of the
entries in the OPD was developed to parse and extract all entries
which are listed as parts of speech in this dictionary. This
lexicographically ordered wordlist was then sorted by wordsize to
yield, for example, a lexicographically sorted wordlist of 10-letter-long
words. In order to group together all words of a similar structure,
each wordlist was subsequently classified by its VNF. Wordlists of a
given length and vowel normal form were then submitted to further
syntactic analysis in order to produce the rulebases given in this
chapter. While it is possible to produce a rulebase for each set of
words given by its VNF grouping, it proves to be both more informative
and efficient to construct rulebases which cover all words which share
the same VNF suffixes. In this procedure, all VNF groups with
common structured endings, such as VCCV, are clustered together to
generate the rulebase for their suffixes.

While most of the work presented in this chapter is derived
from the wordlists found in the OPD and the OSD, some auxiliary
statistical data sources [ 10.24 ] were used to compute the expected,
position-dependent letter-frequencies for words of a given length
occurring in English text. This statistical data has been used primarily
to help estimate the relative likelihood of an arbitrary suffix occurring
in 10-letter-long-words.

10.5 WORD LEVEL GRAMMARS

Word level grammars have been developed by various
authors | 10.25, 10.26, 10.27, 10.28, 10.29 ] for use in such

9 This data was made available for the purposes of this study by the Oxford
University Press through the kind support of Dr. Robert Burchfield, CBE, the editor-in-
chief of the Oxford University Dictionaries.
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environments as the UNIX spelling checker. These grammars are
however context free and hence are both very limited in their
application and very prone to error. The work presented in this
chapter is principally the result of context sensitive refinements to
early context-free approaches such as Paice's algorithm [10.25, 10.15}.
The algorithms described hers allow for both the sequential and
parallel evaluation of a word using our rulebase. Earlier context free
systems resemble simple expert systems based on production rules in
that they do not have the ability to learn or modify their rulebase. The
rulebases (presented in this chapter) were derived by a manual
analysis of the system's wordlists. However, the process of clustering
the various VNF groups into the major amalgamated subclasses used in
this work is not a difficult one to automate.

Further work on the merits of using VNF as the principle word
feature in the development of a discovery algorithm for the automated
derivation of the system's context-sensitive rulebase is in preparation.

10.6 ALGORITHM

The principle design philosophy [ 10.30, 10.31 ] underlying the
algorithm presented in this chapter is to incorporate the hierarchical
constraints that logically exist within a set of domain-specific rules
into a rulebase of context-sensitive production schemata.

The aim of this approach is to produce a uniframe ( 10.33,
10.34 ] system suitable for the reduction of natural language words to
their stems or roots. Such a system may be used to reduce each
member of a set of derived words, such as { egolsm, egoist, egotism,
egotist, egotize, egotistic, egolstic, egomania, egomanlac, egotizing,
egoistical, egotistical, egoistically, egotistically, egocentric,
egocentricity, egocentrically } and the hyphenated form ego-trip to its
root: ego in this example. Besides reducing such semantic and
syntactic derivations of a concept to a common stem, the algorithm
may be easily modified to tackle the tasks of breaking or decomposing
compound words such as 'wavelength' into 'wave + length'. It is also
possible [ 10.14 ] to use this system to hyphenate derived words, for
example 'ifonization', would be hyphenated as 'fon-ization'. The
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hyphenation procedure forced us to accept a standard or benchmark
such as that recently published by the Oxford University Press [ 10.20]
as the knowledge base for the algorithm. One of the consequences of
undertaking this research has been the derivation of a comprehensive
set of syntax rules for specifying natural language word structure and
morphology.

This system's rulebase contains a set of context sensitive
IF...THEN productions. These rules may be viewed as a record
structure which contains five essential fields: RULE_NUMBER,
SUFFIX_STRING, REPLACEMENT_STRING, NEXT_RULE_NUMBER,
PREREQUISITE_RULE_NUMBER.

1 SELECT APPROPIATE RULESET ON THE BASIS OF THE WORD'S LENGTH AND
VOWEL-NORMAL-FORM (VNF).

2 INITIALIZE THE VARIABLE RULE-NUMBER,R, TORULE 1,r; .R :=rj .

3 SEQUENTIALLY SCAN THE RULESET UNTIL ENCOUNTERING EITHER A
TERMINATOR SYMBOL @ , OR THE FIRST SUFFIX RULE, r ; , WHICH
MATCHES THE WORD'S ENDING.

4 TERMINATE IF A @ SYMBOL WAS ENCOUNTERED AT STEP 3.

REPLACE THE WORD'S ENDING IN ACCORDANCE WITH THE SPECIFIED
RULE, r {.

7]

6 CONTINUE FURTHER ANALYSIS OF THE WORD BY RESETTING R, IN
ACCORDANCE WITH THE DIRECTIVES OF THE NEXT RULE_NUMBER FIELD
OF r  TO ONE OF THREE POSSIBLE CASES:
1) R := R + 1, RE}+..AT STEP 3 THROUGH STEP 6.

i) R :=r; REPEAT STEP 3 THROUGH STEP 6.

i) TERMINATE IF THE SYMBOL * 1S ENCOUNTERED.

Figure 10.3 Sequential Algorithm.
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[PROCEDURE EVALUATE ( STRING, RULE_NUMBER )
BEGIN

IF ( RULE_NUMBER.SUFFIX_STRING = STRING.SUFFIX_STRING )
THEN

REPLACE ( STRING, RULE_NUMBER )
ELSE

IF ( SUCC( RULE_NUMBER.SUFFIX_STRING @ )
THEN
EVALUATE ( STRING, RULE_NUMBER + 1)
ELSE

TERMINATE
END

|PROCEDURE REPLACE ( STRING, RULE_NUMBER )
BEGIN
STRING := STRING - RULE NUMBER.SUFFIX_STRING
+ RULE_NUMBER.REPLACEMENT_STRING

IF ( RULE_NUMBER.NEXT_RULE_NUMBER # * )
THEN

EVALUATE ( STRING, RULE_NUMBER.NEXT_RULE_NUMBER )
ELSE

TERMINATE

Figure 10.4 Two recursive procedures for implementing the
sequential algorithm given in Figure 10.3.

The algorithm, given in Figure 10.3, may be viewed as two
procedures, as outlined in Figure 10.4 which call each other
recursively in their evaluation of the system's rulebase. Each
production-rule in our rulebase specifies the string substitutions
appropriate to the reduction of a given SUFFIX_S8TRING by its
REPLACEMENT_STRING field. In addition to this IF
(S8UFFIX_STRING Found ) THEN ( Substitutc REPLACEMENT_STRING for
SUFFIX_STRING ) script each rule specifies the control flow appropriate
to the further sequencing of the production rules. The rulebase aiso
contains information on which rule, if any, must by evaluated as the
immediate prerequisite to the evaluation of a production rule. By
maintaining this information on immediate prerequisites
( PREREQUISITE_RULE_NUMBER Field ) for every entry in the
rulebase, [in addition to the control flow information needed to specify
priority sequencing (NEXT_RULE_NUMBER Field)] this system may
be executed in either a parallel or a sequential manner.
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6

SELECT APPROPIATE RULESET ON THE BASIS OF THE WORD'S LENGTH AND
VOWEL-NORMAL-FORM (VNF).

INITIALIZE R :=C ; TO INITIATE PROCESSING AT THE FIRST CLUSTER OF
RULES, C ;.

EVALUATE ALL RULES IN C ; TO FIND THE FIRST POSSIBLE MATCH OF A
SUFFIX RULE TO THE WORD'S ENDING.

I NO MATCH IS FOUND IN C | THEN EXECUTE THE EXCEPTION CLAUSE FOR
THE RULE CLUSTER.

IF A POTENTIAL MATCH IS FOUND IN STEP 3 THEN CHECK THE
PREREQUISITE CONDITIONS SPECIFIED BY THE RULE IN ITS
PREREQUISITE_RULE_NUMBER FIELD

i) IF NO PREREQUISITES ARE SPECIFIED THEN EXECUTE STEP 6.
ii) IF A PREREQUISITE RULE EXISTS THEN EXECUTE STEP 8.

REPLACE THE WORD'S ENDING IN ACCORDANCE WITH THE SELECTED RULE.

CONTINUE FURTHER ANALYSIS BY EVALUATING ALL POSSIBLE
SUBSEQUENT MATCHES BY RESETTING R IN ACCORDANCE WITH THE
NEXT_RULE_NUMBER FIELD OF THE SELECTED RULE ONE OF TWO CASES
CAN OCCUR.

i) R=Cxg
ii) TERMINATE WHEN THE SYMBOL * 1S ENCOUNTERED.
8 EVALUATE THE RULE CLUSTER C j SPECIFIED IN THE
PREREQUISITE_RULE_NUMBER FIELD EXECUTE STEP 4.
Figure 10.5 Parallel Algorithm.

The parallel algorithm, given in Figure 10.5, makes use of

sequencing prerequisites (PREREQUISITE_RULE_NUMBER Field) to
Isolate and correctly compute necessary sequential dependencies.
Pseudo-Code for such a system, conforming to the principles of mini-
language Parallel [ 10.35 |, is given in Figure 10.6. A more detailed
view of the rulebase is given in Figure 10.7, which outlines the Backus-
Naur Form of its structure.
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PROCEDURE EVALUATE ( STRING, RULE_NUMBER )
BEGIN

Flag := false

LOOP { Cluster 1 }

WHEN

RULE_NUMBER_ONE.SUFFIX_STRING = STRING.SUFFIX_STRING

=> BEGIN
FLAG := true;
REPLACE ( STRING, RULE_NUMBER_ONE )
END
WHEN
RULE_NUMBER_TWO.SUFFIX_STRING = STRING.SUFFIX_STRING
=> BEGIN
FLAG := true;
REPLACE ( STRING, RULE_NUMBER_TWO )
END
END LOOP;

IF ( FLAG = false ) => EXCEPTION_CLAUSE ( CLUSTER_ONE ) ;
END

PROCEDURE REPLACE ( STRING, RULE_NUMBER_ONE )
BEGIN
STRING := STRING - RULE_NUMBER_ONE.SUFFIX_STRING
+ RULE_NUMBER_ONE.REPLACEMENT_STRING

IF ( RULE_NUMBER_ONE.NEXT_RULE_NUMBER * ~ )

THEN

EVALUATE ( STRING, RULE_NUMBER_ONE.NEXT_RULE_NUMBER )

ELSE
TERMINATE

END

PROCEDURE REPLACE ( STRING, RULE_NUMBER_TWO )
BEGIN
STRING := STRING - RULE_NUMBER_TWO.SUFFIX_STRING
+ RULE_NUMBER_TWO.REPLACEMENT_STRING

IF ( RULE_NUMBER_TWO.NEXT_RULE_NUMBER * * )

THEN

EVALUATE ( STRING, RULE_NUMBER_TWO.NEXT_RULE_NUMBER )
ELSE
TERMINATE

END

Figure 10.6 Pseudo-code for algorithm given in Figure 10.5.
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<RULE-SET>

{ <RULE>

| <cRULE-NUMBER>

j<pIGIT>
| <ENTRY-POINT>

| <SUFFIX-STRING>

| <PRIMARY-SEGMENT>

| <SECONDARY-SEGMENT> ::

<CHARACTER-STRING

i
1
i

|
]
I
|
4
}

<LETTER>

<TERMINATOR>

'
i
¥

<WlLD-CARD-CLUS'l‘ER>

i<BLANK>
|

<REPLACEMENT-STRING>::

<TRANSFER-LABEL>

<SIGNAL>

|
|
| <SIGN>

|
j <COMMENT>
|
|

| <WORD-EXAMPLE>
| <ANALYSIS-RESULT>

| <BASE-STRING>

<PREFIX>

..

<CHARACTER-CLUSTER>

>

<RULE-SET> @
<RULE> ;
| <RULE> ; <RULE-SET>

<RULE-NUMBER> <ENTRY-POINT> «SUFFIX-

STRING> <REPLACEMENT-STRING>
<TRANSFER-LABEL> <COMMENT>
<PREREQUISITE-RULES>

<DIGIT>

| <DIGIT> <RULE-NUMBER>
032|134 15]6)17)8]9

| <BLANK>

- <PRIMARY-SEGMENT>

| | <BLANK> - <SECONDARY-SEGMENT>

| <CHARACTER-STRING> <BLANK>-<SECONDARY

SEGMENT>

| ®

<CHARACTER-STRING>

| <TERMINATOR>

| <BLANK>

<LETTER>

| <LETTER> <LETTER-CLUSTER>
<LETTER-CLUSTER>

| <LETTER-CLUSTER> <WILD-CARD-CLUSTER>

<LETTER-CLUSTER>

A|B|C|D|E|F|G|H|I|J|K|L|M|N

[O|PIQIR[S|T|U|VIW|X|Y]Z

?

| ? <WILD-CARD-CLUSTER>

| <BLANK>
- <BLANK>
| <SIGN> <LETTER-CLUSTER> <BLANK>

| <SIGN> <LETTER-CLUSTER> <WILD-CARD-

CLUSTER> <LETTER-CLUSTER>
<RULE-NUMBER>

| <SIGNAL>

<TERMINATOR>

| [ ( < RULE-NUMBER > )

| +

<WORD-EXAMPLE> <ANALYSIS-RESULT>
<NOTE>

| <BLANK> <NOTE>

<LETTER CLUSTER>

<LETTER-STRING>

| <BASE-STRING> - <LETTER-CLUSTER>
| <BASE-STRING> + <LETTER-CLUSTER>
<PREFIX> <LETTER.STRING>»

| <LETTER-STRING>
<SCRIPT-LETTER>»

| <SCRIPT-LETTER> <PREFIX>
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<SCRIPT-LETTER> 1= alblcldlel|flglhltlylkil|im
nlo|plqfrisjtiulviwixiyit
<PREREQUISITE-RULES> ::= ( < RULE-NUMBER > )
] ( < RULE-NUMBER ><PREREQUISITE-RULES> )
| <

<NOTE> 1=

Figure 10.7 BNF of the Rulebase Structure.

CCCV ANALYSIS

RULE ENTRY PRINARY SECONDARY REPLACENENY HWEXT WORD-EXANPLE ANALYOIS~ [ ] PRE~
WUNBER FOINT SEGMENT BSEZONENT STAING RULR RROUVLY O REQUINLITR
T
]

1 cY . . . BANKRUPTCY  BANKRUPT (L] [
2 -RY - - » PLEASANTRY PLEASANT 8) H
3 -LY - . §(8) CONSTANTLY CONSTANT (L) ]
4 : -I8H - 16 | SHEEPISHLY SHEEP §
8 : -LESS - 18 | FLAWLEBMLY FLAW . H
L] : -ING - 10 ] UNERRINGLY UNERR H
7 ~ . * i
8 [ 4 . MATRIARCHY MATMARCH l
[ oA a

10 > -8 E - ACCUBINGLY ACCUBE H
11 -Q E . ORUDGINGLY GRUDOR i
12 -C E . MENACINGLY MENACE t
13 -K bt STRIKINGLY STRIKE H
14 -M K 16 { BRECOMINGLY BECOME H
18 =y -1 -¥ » PITILESSBLY PITY '
16 => -MME ‘M ~ SWIMMINGLY SWIM t
17 -GG -G . BLUGOIBHLY sLUo H
18 -PP -P . BNAPPISHLY SNAP l
19 -BB -B SNOBBIBHLY SNOB {
20 -NN -N . STUNNINGLY STUN i
31 -TT -T - SKITTISHLY sKIT i
2 et o e ! : : .

Table 10.1 Rulebase for 10-Letter-Long-Words Ending In CCCV.
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The first column in Table 10.1 specifies the rule number while
the second column is used to denote or label the rules which are entry
points in the schema. For example, the symbol => in column two of
Rule 10 in Table 10.1, specifies that this rule is an entry point to a
subset of this schema's rulebase.

The third column specifies the primary suffix segment. For
instance the string -RY is the primary suffix specified by Rule 2 in
Table 1. All primary and s~condary segments are preceded by a -
symbol. In Table 10.1 for example, both the primary suffix -LY given in
column 3 of Rule 3 as well as the secondary suffix -ISH given in
column 4 of Rule 4 are preceded by a - symbol. The symbol " is used
to specify the last element of the list of primary suffixes and, hence,
causes the procedure to terminate whenever it is encountered.

Column four is used to specify secondary suffix strings which are
exposed as terminal suffixes only after the word's primary suffix string
has been processed. For example in Table 10.1, the secondary suffix
-ING specified in rule 6 is removable from the word unerringly only
after the primary suffix -LY has been removed from the word by rule 3.
The symbol " is used to specify the last element of the list of primary
suffixes and, hence, causes the procedure to terminate whenever it is
encountered.

PARTITIONS CONFORMING TO A HAND ANALYSIS
OF TEN LETTER WORDS ENDING IN CVCV

RULE BFsRY PRYNARY SRCOKDARY REPLACENENY WEIT WORD -
WUNBBR POIRY SEOUENY OROMNRET SYNINE RVLE RIANPLE

ABALYSIS- | -2 13 PRE -~
RESULY REQUISIZE

1 ATY - -E §(6)

2 { -CIL -CLE -

s 1 -BILE -BLE

4 | -Uosk -ye

8 | - -

L] -ATE - - §(15) INTIMIDATE INTIMID

7 | -TR -TER * | MAGISTRATE  MACISTER #
[ ] | -iC Y TRIPLICATE TRIPLY

| | -MM -ME CONSUMMATE CONSUME

10 | B - EXACERBATE EXACER
1 | -AR EXHILARATE EXHIL

12 | -8T +8TATL UNDERSTATE  UNDER+STATE +
13 ' -UR -ER INAUQURATE  INAUGER
14 | "
18 LY - - §(20) ADEQUATELY ADEXQUATE
16 { -8IVE -8 ‘ INCISIVELY INcisx
17 { -TIVE -T ABORTIVELY ABORT
l: | -1 -Y ORDINARILY ORDINARY
1 1 -t -
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Table 10.2

-AGE

-ORY

-INB

§(28) TRIPARTITE

-8C - * ] riEBISCITS
-FIN +PINITR ~ | INDEFINITS
WR +WRITE » | UNDERWRITE
-eT - » |sraLacTiTE
-M - * | sTALAGMITE
-L - - | tasoboLITE
- -ITR -
- Y §(31) ASSEMBLAGE
-FLY -FLAGE ~ ] caMourLace
- : s
M1 - -~ | coMPrOMISE
-1 . + LENOTHWISE
-ct - ~ | CIRCUMCINE
PRI - + | ENTERPRISE
-E - *  |JournaLESE
- B3 J(44) PEREMPTORY
AT 53 =" | oBLIGATORY
-89 8L ~ | rmoMISSORY
B3y B 3 * | RBPOISTORY
-8T +STORY ~ | cLemEsTORY
- - _}(50) SACCHARINE
TW +TWINE ~ | INTERTWINE
-T “TINE ~ | emILISTING
KL -ELINE » | MoussELIRE
L +LINE * | BORDBRLINE
- -INE * | IREENGING
o - [ [&D)]
-8T1 +8TICE ] INTERSTICE
-1 -Y * [AccomPLICE
-FRY +FRICE ~ | pENTIFRICE
- -CE ~ | mIRTEPLACE
. . 58) MINERALOQY
-OL . - Iomnon.oor
: o 62) EVANGELIZE
-T - ~" | sTIOMATIZE
-op . ~  {RBAPSODIZE
- - §(6%) INACCURACY
1M - - ]uumlu\cv
- - §(71) EXBAUSTIVE
SAT -8K * | AccusaTive
“TAT -TE ~ |nxciTaTIVE
-RAT R ~ | rzsORATIVE
- -8 ~ | assORPTIVE
. . §(74) TORYEITURE
E‘r -ARE * |yupicaTure
. - *  INEPTITUDE
. +TOMY *  EPISIOTOMY
. . *  AFICIONADO
. -T *  CONCERTINA
. K *  PROJECTILE
M *  SCHISMATIC
. +80ME *  BURDENSOMK
. -us “  THROMBOSIS
. . ~  SPERMICIDE
. -0 ~  PIANISSIMO
. . *  PERNICKETY
- - " DISQUALIPY
. *  STRUCTURAL
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Column five specifies the replacement string which is used to
substitute either the primary or secondary suffix. This replacement
string may be either the null string or any alphabetic string. In Rule 7
of Table 10.2, which handles10-letter-long-words ending in CVCV, the
secondary string -TR is replaced by the string -TER to transform a
word such as magistrate to magister. Rule 16, in Table 10.2, reduces
the secondary string -S8IVE by replacing it with -SE in order to reduce
words such as (ncisively to incise. An example of a null-string
replacement is found in Table 10.2, when Rule 10 replaces the
secondary string -B by - (nothing) to tranform for example the word
exacerbate into exacer.

Column six specifies which rule should be analyzed next. By the
definitions given in BNF in Figure 10.7, two possibilities can occur. In
either case, word evaluation is immediately halted whenever the
control-flow terminators * , or @ are encountered. Case 1: The @
symbol indicates that the word has not been modified by any of the
context-sensitive rules specified by its VNF schema. Whenever the
procedure terminater 1nder @ the word's ending was not matched by
any of the suffix strings specified by the schema. In such cases the
word is either an exception conforming to previously unencountered
rules or it is simply a misspelled word! Case 2: Termination under " .
All further analysis of a word halts whenever a ~ symbol is
encountered. Termination under such circumstances means that the
word has been analyzed and most likely modified. Under most
circumstances the word has been reduced to a smaller base form by
the application of a short sequence of production rules. However, in
certain well defined circumstances, a set of production rules will be
applied to a word which eventually returns it to its original form and
notes it to be an exceptional case. Seven classes of exceptional cases
are denoted in column nine of cur schema whenever termination
occurs under * .

Column nine is used to specify that an exceptional case has been
encountered. Such exceptions are crudely characterized into seven
linguistically meaningful subclasses. This field is used to state which



of the seven auxiliary rule types {4, %, ¢, V., l, O, (]} best
describes the exception.

A4 symbol denotes compound or concatenated wordform,
such as understate (Figure 10.14, Rule 12), while an 5% symbol is used
to denote words whose replacement string is longer than the string
deleted from them. An example of such a rule is given in Table 10.4
for 10-letter-long-words ending in CVVC by Rule 9 which would
replace the secondary suffix -ET by -ETE to reduce for example the
word discretion to discrete.

The ¢ symbol is used to denote suffixes which behave
semantically as qualitative operators such as -LESS (Table 10.3, Rule
8) or -ETTE (Table 10.5, Rule 16) in words such as effortless or
malisonette.

A V¥ symbol is used to denote an exceptional case in an
otherwise valid context sensitive generic rule. Such exceptions may
specify a unique word or class of words that share an exception which
may be correctly handled by an auxiliary rule. For example while the
suffix -ITE may be removed from most words in the class CVCV , given
In Table 2, an auxiliary rule (such as Rule 23 in Table 10.2) must
check that -ITE was not preceeded by -WR- in order to prevent
producing 'mutant strings' from words such as underwrite.

The symbol @ is used to specify those words which conform to
the analysis criteria but are simply unanalyzable with the given VNF
rulebase. Take for example the word xxy which is hyphenated as
xx-y while its VNF homomorph the word xxy is hyphenated as x-xy.
In that these two words share the same VNF structure and are hence
structurally homomorphic it is impossible to specify a single VNF rule
which will corrrectly hyphenate both words.

The symbol O is used to denote a word that has had its primary
suffix returned to its reduced form after no further reductions were
found to apply to its reduced form. For example the suffix -INE
removed from the word fireengine by Rule 44 in Table 10.2 for 10-
letter-long-words ending in CVCYV is returned to its original form by a
replacement string when termination occurs under " in Rule 49. An
O type rule specifies that a word was returned to its original form
after none of the secondary suffixes specified by the schema Rules 45,
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46, 47, and 48 were found to apply to its reduced form. In this case
while Rule 44 was correctly applied to fireengine neither Rules 45,
46, 47, nor 48 were applicable and thus Rule 49 was invoked, if and
only if, all other alternatives were exhausted. The string fireeng is
returned to its original wordform by applying a replacement string
which simply reversed Rule 44.

The symbol (] is used to denote technical or scientific words
which conform to the very rational set of rules [ 10..36 ] used to coin
such words from Greek, Latin or other language bases. Take for
example the word episiotomy which as noted in column 9, Table 10.2,
Rule 74 conforms to such rules [ 10.36 ] where episio is derived from
the greek episio meaning "region of pubes; vulva" and tom , which is
used as the suffix -TOMY, meaning "cut".

Column seven gives an example of a word meeting the rule's
specification while column eight illustrates the result of applying the
rule to the word used as an example in column seven. For example,
column 7 of Rule 59 in Table 10.3 specifies that the word boyishness
would be reduced as shown in column 8 to its stem boy. This
reduction is the result of the sequential application of Rule 1, Rule 3,
Rule 53, and finally Rule 59.

RULE  SNTRY  PAIMART SECOSPARY REPLACENESRY SEXT WORD- AWALYSIS- nozs vag-
BUBBER POINY  SUFPFIX  GUPFIR sTRING RULE RIANPLE aBsuLY REQUISITE

1 ss - - $03) '

2 § -INE -Y . UNTIDINZSS un TIDY (3(9)) H

3 § il 4 . 83 | YELLOWNESS YELLOW (] H

4 { -DRE +DRR ST . NIGHTDRESS MIGHT+DRESS + (L] 3

] | -BTRE +STREBS - BEAMSTRESS SEAM+STRESS + ® H
[} ] -PRE ‘PRESS * | DECOMPREBS decom PRESS [ 9) 3

7 | -ORE -QRESS - TRANSGRESS trans GRE8SS (o] 1] i

] | -LB . . EFFORTLESS EFFORT * €] H

® ) -B . STEWARDESS STEWARD H
10 § -FLo +FLOES - CANDYFLOSS CANDY+ FLOSS + H
11 | -GLA +GLASS o FIBREGLASS FIBRE+GLASS + H
12 | .. . - :
13 XT - . B2 :
14 ] -Ck . ~ IRIDESCENT ui DEB i21) H
18 | -AME - * | REARMAMENT re ARM (7@ t
18 i -IMB 3 4 * | BMBODIMERT em BODY 17121y 1
17 | -ME - » ENDEARMENT en DEAR (21) H
18 | -TR “TENT - OMNIPOTENT omnt POTENT [e] {21 !
19 | -vE -VENT s CIRCUMVENT ctr curn VENT o] {21) H
20 | -QE - - ABTRINGERT ABTRIN 1) i
a1 { -B . 83 ) ANTECEDENT ante CED H
22 | -TA - - ACCOUNTANT ac COUNT 28) H
23 | -PLA -PLANT “ | TRANBPLANT  trans PLANT (e} {28) !
a4 | -PA -PANT h DISCREPANT dis CREPANT (o] (28) H
28 ] -BA -8R * | UNPLEABANT PLEASE (28) i
26 | -CHA -CHANT - DISENCHANT dis en CHANT (o] {28} H
7 | -RA RANT . RESTAURANT RESTAURANT [e] (28) H
20 | -A . » COMMANDANT COMMAND 3
2 i -FRO +FRONT . WATERFRONT WATER:FRONT + H
8 ] -M3 +MINT - PEPPRRMINT PEPPER+MINT + 3
L3} ! - -NT - TRIUMPRANT TRIUMPHANT (o) L
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2 -ING . §(40) UNYIELDING un YIELD :
s3 \ LR . ] swEETEMING  swERT :
34 | -z -28 - STARGAZING STARGAZIR L] H
33 1 -L . - CBANGELING CHANGE H
se | -DD D » FORBIDDING for BID H
87 | -COM +COMING - UNBECOMING  un kB+ COMING + !
ss | -SPR +SPRING . HAIRSPRING BAIR+SPRING + 1
” ' -h - -~ :
40 8T - $(46) :
a1 1 1 3 ~ | MISOGYNIST  miso QYN :
42 | -MO +MOST ~ BOTTOMMOST DOTTOM+MOST + H
43 | BE +BRST . SECONDBEST SECOND:BEST + [
44 ] B AY +10%T o WANDERLUST WANDER+LUST + H
48 { . -8 - WATERCREST WATERCREST o H
46 -19M - - - JOURRALISM JOURNAL }
a7 -cB - - ¥(53) s
48 I -BATI -BAT » ARROBATICS arro BAT o {49(80)) H
49 | -ATI - - RHEUMATICS  RMEXUM [u] (80) H
80 | 11 T ~ |orumasTiCE  gymmMAST o :
[} ' “TRI T » ] OBBTETRICS  ob STET o :
82 1 -" -c8 . NUCLRONICS NUCLEONICS [e} H
U —— i :
84 \ -BRU +BRUSH - PAINTBRUSRH PAINT+BRUSRE + H
88 | -BRA +BRASH " WATERBRASE WATER:BRASE + H
se | -DA +DASH . BALDERDASH  BALDER+DASH + H
87 l -FLE +FLESH * HORMEFLESH HORSE+FLESH + H
88 | -rI +FISH . CUTTLEFIBH CUTTLE+FISH + H
89 } -1 . ~ BOYIBHNESS BoY 89) H
.o ' ~ - ‘
o1 -UL . ¥(64) i FRAUDULENT  FRAUD :
2 | -r . JOYFULNESC Joy . H
[ %) ] - H
[ 2] -@ [
Table 10.3 Rulebase for 10-Letter-Long-Words Ending In CVCC.

Column ten is used to specify an essential but infrequently used
constraint on the application of every rule in the schema. Column ten
is used to enforce priorities whenever they are needed to ensure the
correct sequential application of some set of related rules. Typically
these constraints result from the inclusion of rules which detect the
presence of embedded sub-strings in a schema; consider for example
the abstract case of 'y' or 'By' iIn the string 'afy'. Under such
circumstances the rulebase may be evaluated in the correct systematic
order by using the information contained in column ten. As a more
specific example consider Rules 1, 2, 3 and 8 given in Table 10.1.
The intent of this schema is that the primary suffixes -CY, -RY and -LY
specified by Rules 1, 2 and 3 must be evaluated before checking to see
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if the word's ending matches the suffix string -Y specified in Rule 8.
The entry found in column ten for Rules 1, 2, and 3 informs us that
these rules must be evaluated before Rule 8 in order to meet this
schema's intent. The constraint specified by column ten allows the
rulebase to be used and maintained in an order that does not explicitly
conform to the sequential dependencies that are concomitant with the
necessary conceptual prerequisites that underlie such linguistic
schema. Column ten is used to specify adherence to the topological
orderings that constrain the schema.

The sequential order in which syntactic rules are applied is
specified by the value of the next-rule-number found in column 6 of
Table 10.1. The next-rule-number may specify termination under ”
or continuation of the evaluation process. Further computation
continues by either transferring the evaluation process to some
specified rule-number or simply evaluating the next rule.

The symbol | is used to instruct the system to continue with its
sequential evaluation of our rulebase. If the | symbol is encountered
in column 3 during the sequential search of the rulebase, such as that
given in Table 10.1, a process of reverse chaining is used to transfer
control flow to the rule-number referenced after the | symbol in
column 6 of the nearest preceeding rule. Whenever a | symbol is
encountered in column 5 the subsequent set of rules is encapsulated
in a rectangular structure which blocks all rules bounded by the |
symbol and the next © termination symbol. This blocking device is
used solely to clarify the structure of the schemata presented in this
chapter. The context of these schemata is easily depicted by nesting
all 'secondary' or 'auxiliary' suffix rules under their dominant primary
production rule and graphically encapsulating the set of rules into a
block. Whenever two or more rules in such schemata share a common
set of secondary rules, the 'common set'is blocked and treated
conceptually as a 'subroutine' which may be accessed by a particular
rule which serves as an entry point to an encapsulated or blocked
structure. All such subroutine structures used within these schemata
conform explicitly to the previously outlined constructs and notations.
Thus it is possible to have both primary and secondary suffix rules
within a subroutine.
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The inference algorithm adopted in this work is based on the
concept of the implicit sequential evaluation of a set of rules. This
implicit strategy is the default sequencing process which can be over-
ridden whenever a rule's suffix string matches a word's ending and
column 5 specifies either termination under ”~ or continued
evaluation at the rule-number specified. Under all other
circumstances the dominant process of sequential evaluation of the
schema's rulebase is adopted until either a string-match is found; a |
symbol is encountered; or termination occurs under the @ symbol.
Whenever a | symbol is encountered the implicit default control-flow
process is interrupted and control-flow is transferred to the rule
specified by the second term of the nearest preceeding | symbol in
column 5. Under such circumstances the | symbol is ignored and
control flow is transferred to the rule specified by the second term of
the control-flow label given in column 5 of these schemata. Under
normal circumstances this procedure involves simply querying column
five of the preceeding rule. However, in order to ensure the
robustness of these schemata whenever control-flow is transferred
under the | symbol, a backward chaining process is invoked until a
preceding rule containing the necessary | operator in column five is
encountered. This simple procedure protects the system from
important errors which could otherwise occur by accidently directing
the start of the evaluation of a schemata's subroutine to begin at a rule
which was not declared, a priori, to be an entry point. Rules skipped
In such an erroneous manner would never be evaluated and can be
viewed as unreachable nodes in the schema's sequential state graph.

A sequential state graph, such as that drawn in Figure 10.8 from
the schema given in Table 10.1, is a decision-te-decision point, (D-D),
graph [ 10..37, 10..38 ] in which each rule or node can specify two or
fewer control-flow transfers and hence has an outdegree of < 2 and an
arbitrary indegree.
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Figure 10.8 Sequential State Graph for the schema given in
Table 10.1 which depicts the ruiebase for 10-letter-long words
ending in CCCV. ( CASE II bebavior)

Figure 10.8 is drawn in a manner that depicts the implicit underlying
‘cascadence’ or waterfall approach used in the design of this system's
rulebases. Every rule is represented by a circle in these graphs.
Those rules which direct the procedure to terminate under either *
or @ are denoted by larger shaded circles. Thus both Rule 8 and 10
in Figure- 10.8 and Table 10.1 instruct the system to terminate the
evaluation of the word in question. Rule 24 also instructs the system
to terminate evaluation of the word in question. Termination from
Rule 8 uccurs after a partial match of the word's ending by the suffix-
string specified by Rule 3 in Figures 10.8 and Table 10.1. Termination
specified by Rule 10 occurs whenever every primary suffix specified in
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the rulebase given in Table 10.1 has been queried with no success.
Thus termination at Rule 10 occurs under the @ symbol.
Termination at Rule 20 however occurs only after at least a partial
match of the suffix's terminal sub-string. Termination at Rule 20
always occurs as the result of the evaluation of a subroutine or sub-
rulebase specified by Rules 11 through 20 (R11..20). This subroutine
may be reached from four different paths: { (R11..20), (R1l1..15,
R18..24), (R17..24), (R18..24)}. All of these paths originate from a
single cluster or block of rules which is only reachable from Rule 3.

Figures 10.8 and 10.10 give the sequential and parallel
flowgraphs of the evaluation procedure for the rulebase specified in
Table 10.1.

The north-eastwardly directed arcs in the schema graph
depicted in Figure 10.8 specifies termination under the * symbol
whenever the rule's guard is satisfied. All nodes in such decision
graphs must also have a south-eastwardly directeu arc which is
determined as a consequence of the inference scheme adopted in this
model. Our inference scheme defaults to the evaluation of the next
rule whenever the present guard is not matched (ie: the rule fails to
fire). Consider for example Rule 3 in Figures 10.8 and Table 10.1.
When its guard is matched Rule 3 fires and Rules 4 through 7 are
subsequently evaluated in sequence for secondary matches. Rule 8 is
invoked only if Rule 3 fired and all of its subservient rules R4..7 were
inapplicable. However if both Rule 3 and Rule 5 fired, then Rule 24
invoked termination only when all of its subservient rules R18..23
were inapplicable. The case is considerably more complex when Rule
3, Rule 7, Rule 15 and R18..23 do not apply. When Rule 3 and Rule 7
apply and Rule 24 invokes termination then Rule 16 and Rule 17 may
or may not have been evaluated. When termination cccurs at Rule 16
or Rule 17 then both Rule 3 and Rule 7 must have been satisfled while
if Rule 17 specified termination then either (Rule 3 and Rule 7 ) or
(Rule 3 and Rule 6) may have been satisfied.

Within this nondeterministic paradigm it is impossible to
precisely determine the exact path that led to a specific termination
point [ 10.35, 10.39 ]. Consider Rule 18 which may have been reached
by immediate transition from Rule 17, Rule 15 or Rule 5 and which
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can lead to at least one more further word reduction through
satisfaction of R18..23 or termination at Rule 24 with no further word
reduction. Similarily Rule 17 could be reached by a single transition
from either Rule 6 or Rule 16. Rule 6, in turn, was arrived at by
satisfying Rule 3 while Rule 10 was arrived at by first satisfying Rule
3, and subsequently satisfying Rule 7.

Figure 10.9 A 'Prefect’ and its components.
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Such sequential representations are consistent with more
conventional views of computation. A functionally equivalent view of
this computation is depicted in parallel state graph drawn in Figure
10.9 for the schema outlined in Figure 10.8 and Table 10.1. Figure
10.10 demonstrates the conceptual ease with which the schema
depicted in Figures 10.8 and Table 10.1 may be evaluated by parallel
processing. In addition to the two types of circular nodes introduced
in Figure 10.8, there is a need to introduce another type of construct,
=3 in Figures 10.9 and Figure 10.10. The symbol, =3, denotes an
adjuvant acriinistrative process referred to as a 'prefect. A =i is
depicted as communicating with the schemata graphs through three
operationally distinct routes denoted < I', ¢, 6 > each of which are
described below. A prefect has eight basic functions which are used to
coordinate parallel processing in a schema graph :

Hail: queries all of the prefect's subservient processes.

Log: catalogues all subscrvient processes that responded to Hail.

Listen: polls each of the Logged processes until they respond to a Delagated
task.

Delegate: broadcasts a task to all of the prefect's subservient processes.

Compile: uses Listen and Log to update the status of the prefect's Logged
processcs. When Complle detects the failure of all Logged processes
it terminates Walit.

Respond:  uscs Listen to flag the success of a Delegated process.
When Respond detects success it then immediately
terminates the Wait process and the prefect procedure.

Wait: suspends its own processing until either Compile or
Respond terminates Wait,

Forward: whencver Wait is terminated by Compile the Forward
procedure is used by the prefect to terminate,
continue processing or default to exception handling

or error processing rules.

The behaviour of a prefect is outlined as follows:
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The prefect =3 is invoked by a request which is depicted in
Figure 10.9 as being passed-by-value on the path or route denoted by I".

This request may have originated from either an external calling
procedure, such as that denoted by S in Figure 10.9, or as the result
of a rule firing. An example of the latter case is depicted in Figure
10.10 where I'3 is invoked by firing Rule 7 in Figure 10.10. T’ paths
are denoted in the schemata outlined in Figures 10.9 and 10.10 as
dashed lines. A query referred to as 'Hail' is used to initiate a
handshake routine (Hail & Log) which determines and notes the
availability of 0 rules. Paths from the prefect to its 6 rules are denoted
by dotted lines in the schemata outlined in Figures 10.9 and 10.10.
'Log' 1s effectively an initialization procedure, which establishes how
many and which rules are engaged by a prefect. This information is
needed to guarantee termination under the default procedure,
Forward', wrich is routed on a f path. Once initialized the prefect
= broadcasts or Delegates its request to each of the sequestered &
rules filed by Log. The prefect then assumes a Walit state which
prevails under Listen until the o rules respond to the Delegated task
that was broadcast to them. o rules report to prefects in either one of
two possible ways. The first possibility occurs when all engaged o
rules return a declaration to the prefect that they are inapplicable.
The second possibility occurs when one of the 6 rules queried returns
a declaration through Respond that it has fired. Whenever a b rule
informs a prefect that it was applicable and hence fired, the prefect
procedure immediately terminates Wait and the evaluation procedure
proceeds in accordance with the applicable 6 rule. If on the other
hand, all sequestered o rules inform the prefect, through Listen &
Log, that they were inapplicable then Compile terminates the
prefect's Wait state. The prefect then uses its exception route ¢ to
Forward the result of its computation. Whenever processing
continues under the perfect's exception route { the prefect, in fact,
required two sequentially distinct computational steps to proceed
with its analysis. The first of these the o process is inherently a
parallel nondeterministic process, while the second which is referred
to as the § process involves simple sequential computation. The total
number of computational steps, ( £ u + £ f ), needed to arrived at a
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given rule in our parallel schema are marked on each 'arc’ of the five
prefects =3 1, =32, =33, =34, =3 5 found in Figure 10.10.
Exception rules , ¢, are denoted by double lines in the schemata
illustrated in Figures 10.2 and Figure 10.10. Under most
circumstances ¢ routes are used to specify termination under *.

In their simplest conceptual form I' routes require a single
passed-by-value parameter whereas { routes require a single passed-
by-result parameter and & paths require both a passed-by-result
parameter and a passed-by-value parameter.

The parallel evaluation of the rulebase given in Table 10.1
terminates under * in three cases ( see Figure 10.10 ). The first of
which occurs under Rule 10 and involves a single prefect and two
steps of computation, ( lo + 1 ). The second case occurs under
Rule 8 and involves two prefects and three sequential steps, ( 2o + 18
), of processing while the third case under Rule 24 may be reached in
either four ( 3a + 1B), or five ( 4a + 1B ), steps of processing which
involved either three or four prefects. For instance at =3 1 in Table
10.1, if Rule 3 is satisfled and then Rule 7 is satisfied at =3 2 followed
by Rule 17 firing at =3 3 and none of the five rules: R19..23 of the
concomitant rules specified by =3 4 are satisfied, then Rule 24 is
reached by a ¢ route under the exception clause of =3 4 which
specifies termination under ”. Similarily Rule 24 may be reached
from =3 1 by satisfying Rule 3 and Rule 6 at =3 2 followed by
enacting the termination clause " associated with =3 5. The longest
parallel computation encounterable undzr these conditions is thus
( 4o + 1P).

The number of sequential steps, or cycles, in the parallel
computation needed to arrive at each node in Figure 10.10 is given as
the depth of computation on each arc incident to rules R1..24 in
Figure 10.10.

While both the sequential and parallel algorithms may be
implemented with many different control structures, using either
static or dynamic memory allocation techniques, the recursive
versions given in Figures 10.4 and 10.6 perhaps best capture the
simplicity and power of the schemata reported here. The system's
rulebase may be maintained in an optimum probabilistic order by a
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number of computational steps, ( £ a + £ § ), needed to arrived at a
given rule in our parallel schemae are marked on each 'arc’' of the five
prefects =3 1, =3 2, =3 3, =3 4, =3 5 found in Figure 10.10.
Exception rules , L, are denoted by double lines in the schemae
illustrated in Figures 10.9 and Figure 10.10. Under most
circumstances ¢ routes are used to specify termination under ".

In their simplest conceptual form I' routes require a single
passed-by-value parameter whereas { routes require a single passed-
by-result parameter and & paths require both a passed-by-result
parameter and a passed-by-value parameter.

The parallel evaluation of the rulebase given in Table 10.1
terminates under ™ in three cases ( see Figure 10.10 ). The first of
which occurs under Rule 10 and involves a single prefect and two
steps of computation, ( la + 18 ). The second case occurs under
Rule 8 and involves two prefects and three sequential steps, ( 2a + 1§
), of processing while the third case under Rule 24 may be reached in
either four ( 3a + 1f), or five ( 4a + 1 ), steps of processing which
involved either three or four prefects. For instance at =3 1 in Table
10.1, if Rule 3 is satisfied and then Rule 7 is satisfied at =3 2 followed
by Rule 17 firing at =3 3 and none of the five rules: R19..23 of the
concomitant rules specified by =3 4 are satisfied, then Rule 24 is
reached by a T route under the exception clause of =3 4 which
specifies termination under ". Similarily Rule 24 may be reached
from =3 1 by satisfying Rule 3 and Rule 6 at =3 2 followed by
enacting the termination clause " associated with =3 5. The longest
parallel computation encounterable under these conditions is thus
(4a + 1B).

The number of sequential steps, or cycles, in the parallel
computation needed to arrive at each node in Figure 10.10 is given as
the depth of computation on each arc incident to rules R1..24 in
Figure 10.10.

While both the sequential and parallel algorithms may be
implemented with many different control structures, using either
static or dynamic memory allocation techniques, the recursive
versions given in Figures 10.4 and 10.6 perhaps best capture the
simplicity and power of the schemae reported here. The system's
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self-organizing scheme [ 10.40 , 10.41 ] which ensures that the most
likely suffixes are dynamically assigned high priority RULE_NUMBERSs
and, hence, evaluated first by a sequential search scheme. Sequential
search on a frequency-ordered list guarantees O(Lg(N)) behavior [
10.42 ]. In that the most likely occuring suffix can be statically
determined from statistical data [ 10.12, 10.14 ] it is seldom that the
overhead encountered in maintaining a self-organizing structure is
truly warranted [ 10.42 ].

10.7 RESULTS
For the sake of brevity we will restrict the discussion here to the
analysis of our results obtained for all 10-letter-long-words listed in

the OPD. These results are however typical of those obtained for
words of other lengths and VNF [ 10.14 ).

40

NUMBER OF SETS

100 10!
NUMSBER OF ELEMENTS IN SET

Figure 10.11 Least densely populated sets for 10-letter-long words.
This plot depicts the number of VNF sets of a given size. Abscissa:
Rank-ordered set size. Ordinate: Number of VNF sets found.
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NUMBER OF WORDS IN VNF SET

10 Y T v |
0 10 20
RANK ORDER
Figure 10.12 Most densely populated VNF sets for 10-letter

-long words. This plot depicts the number of VNF sets of a given
size. Abscissa: Rank-ordered set size. Ordinate: Number of VNF
sets found.

The first observation, which can be drawn from Figures 10.11
and 12, is that relatively few of the possible 1,024 VNF groups
describing 10-letter-words are densely populated, while ov 1 seventy
VNF groups are sets with but a single element. In all, ove; 990 VNF

groups are needed to account for all ten-letter-words found in the
OPD.

The simple product of the VNF group's rank, p, and its
frequency, f, is a constant for VNF sets with a small number of
elements ( fp = 75.8, 0=9.85 for 10-letter-long-words computed for p
=1..5) This result is in accordance with Zipf's law of rarely occurring
or sparsely populated sets [ 10.43 |. A similar analysis of the twenty
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most densely populated VNF sets demonstrates their decay in size is
accountable as a simple exponential function of rank.

A simple analysis of the largest nineteen VNF groups given in
Figure 10.12 illustrates that six 4-letter-long suffix groups: { CVCV,
CVCC, CVVC, VCCV, VCVC, CCVC } of respective size: { 310, 290, 261,
239, 108, 35 } and composed of the following number of VNF sets:
{4, 5, 3, 4, 2, 1 } encompasses the suffix structure of all the most
densely populated VNF groups found for 10-letter-long-words listed in
the OPD.

The rulebases given in Tables 10.2, 10.3, 10.4, 10.5, 10.6 and
10.7 are derived for suffixes for 10-letter-long-words ending in
{ CVCV, CVCC, CVVC, VCCV, VCVC, CCVC}.

PARTITIONS CONFORMING TO A HAND ANALY®SIS
OF TEN LETTER WORDS ENDING IN CVVC

avLe aeTRY PRINARY ARY REPLA ; 4 ARET WORD- AFPALYSIO - | ['1{] PRE -~
BUONBER PFOIRY SRENERT SBENEUNT SRRINS AULE BEIANPLRE 2BSULT ARQUISIZR
1 -JON - - §(13) ADMONITION ADMONIT
2 ] -Vi8 +VIBION - TELEVISION TELE+VISION +
9 | -MOT +MOTION ~ LOCOMOTION LOCO+MOTION +
4 [} -MPrT -ME - ASSUMPTION ASBUME
. ] -RPT -RB ~ ABBORPTION ABSORB 1e)
e ] -IPT -1BE - ABSCRIPTION ASCRIBE
7 I -TENRT -TAIN - ABSTENTION ABSTAIN
[ ] [} -IZAT - ol IONIZATION 10N 11
1 4 [} -RT -ETE ~ DISCRETION DIBCRETE "
10 | -UT -UTE ~ DEVOLUTION DEVOLUTE &
11 t -AT - -~ ALIBRATION ALIEN
12 | .~
13 -uT - J(18)
14 } -ABO +ABOUT ~ ROUNDABOUT ROUND+ABOUT +
1.} | -NA +NAUT o JUGGERNAUT JUGGER:NAUT +
1e 1 -0 . -
17 | e
18 -AN - ¥(26) :
19 I -BAN - - ARTIPODEAN ANTIPOD [u} H
20 | -CB - - CRUSTACEAN CRUSTA o :
21 | -Gl ¢} 4 - THEOLOGIAN THREOLOGY o H
22 ] -1C1 -Y . BEIAUTICIAN BEAUTY i
23 1 -TR1 . - PEDESTRIAN PEDES 1
a4 [} -u - - GARGANTUAN GARGANT H
a8 ) - - ~
2e -UM - - 31
27 ] -B . - PERITONEUM PERITON (o]
28 i -R1 - ~ OPPROBRIUM OPPROB fa)
a0 | -1 ) 4 ~ PROSCENIUM PROCENY fu]
30 ] . " . -
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n -AL . - $08) :
2 i -u -B " INDIVIDUAL INDIVIDE :
a3 | 3 | . . JANTTORIAL JANITOR :
b , ! : . ;
kL -IE8 - -Y §(38) BUMANITIES BUMANITY :
E } -RY . . TOILETRIES TOILET :
a” ) .t - - :
ss -BR - - §l44) :
» | -B . . COMMANDEER COMMAND :
40 ] -1 -Y . HUMIDIFIBR BUNIDIFY :
41 | -0 . . CATALOGUER  CATALOG H
42 { TR T * | CHARIOTEER  CHARIOT :
43 ] o . - s
4“4 -OUs . - J(34) ORATUITOUS QRATUIT :
45 | -MO . - SYNONYMOUS SYNONY ¢ :
4 | -VOo +Vous . RENDEZVOUS  RENDEZX+VOUS + H
Ly } -OR R 4 . MELODOROUS  MELODY :
9 | -VELL -VEL ~ MARVELLOUS  MARVEL H
49 ] -CUL -CLE . MIRACULOUS MIRACLE H
80 ] -MIN -ME . VOLUNMINOUS  VOLUME :
s1 t -ATR - - IDOLATROUS iDOL :
82 ] ‘REN -BR " GANGRENOUS GANGER H
8 | .. . - :
64 -1AR - . . UNFAMILIAR UNFAMIL :
] -BON . . . CURMUDGEON CURMUDG :
88 -CBAUN - +CBAUN - LEPRECEAUN LEPRE+CHAUN + H
87 -POID . . . ANTHROPOID ANTERO [n] H
(1] -O1D . . - RHEUMATOID RARUMAT [s] :
[ ] -18D . - . STRATITIED STRATIFY H
60 -SCHAUM - +8CHAUM . MEERSCHAUM MEER+SCHAUM + :
[ )} - . . . [ J

Table 10.4 Rulebase for 10-Letter-Long-Words Ending In CVVC.,

PARTITIONS CONFORMING TO A HAND ANALYSIS
OF TEN LETTER WORDS ENDING IN VCCV
RULE SETIRT PRINARY SECONDARY REPLACENESY ERIY EIANILE REBUCED COoNNgRNY
UUNBRR POIN? GSESNEEY SRONEST STRINS AULR STYAING
1 -LE - - | -
2 -B -B » |-~ -
3 -NAC +NACLE - TABERNACLE TABER+NACLE +
4 -EL -ELLE . IMMORTELLE im MORT .
8 -DRIL +DRILLE - ESPADRILLE ESPA+DRILLE +
] -VIL +VILLE - VAUDEVILLE VAUDE+VILLE +
7 -BRET +BEETLE - STAGBERTLE STAG+BEETLE +
. .. - -
° TY . . [ - -
10 -L -L 43 | DISLOYALTY dis LOYAL
11 . . -
12 -TE - - [ - -
13 -L -L 443 |-~ -
14 -TAN -TANTE » DILETTANTE DILET L4
18 -AN -B - CONFIDANTE con ¥IDE
18 T -ETTE . MAISONBTTE MAISON
17 -PAB +PABTE - TOOTHPASTE TOOTH«PASTE 4
18 TOR -FORTE - PIANOFORTE PIANO .
19 - . »
20 -LY - . §  DISCREETLY  dis CREET
21 -UL - 47 |- -
22 -Us - Bl |- -
23 -BD . 88 | DESIONEDLY de SION
24 <1AR -Y - FAMILIARLY FAMILY
28 .* - 43
20 -CY . - 0 - -
27 -CE - . 60 -~ -
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Table 10.5

-RY . . . § -
PAT TPATH » ] oBTREOPATHY
-ORAP +GRAPE . TOPOGRAFAY
-sop +s0PH » | rmLOSOPEY
» - "
RY . . § -
-AT - * | PBYCHIATRY
-BER +BERRY - STRAWBERRY
MAR +MARRY . INTERMARRY
-1B . . < 1 INSENSISLE
-1AB - Y ¢ { UNDENIABLE
VAR -VE ~ { ACBIRVABLE
AR ke wreerrsenonnei UNBEATABLE
-TICAL -8 ~"1 BROTICALLY
-BAB . -8 * | ABBORBABLY
-ICALLY - . .
T : Y Y OUTHIULLY
. 8 4 2 rANCIFULLY
‘e’ Y T 12 L USCIOUSLY
‘10 . - ~ | SPURIOUSLY
-TRO . -TER » i DERTROUSLY
-0 - - ~ | coveTOousLY

‘I SPIRITEDLY
OCCURRENCE
EXCELLANCE

"L | EXUBERANCE
"1 coomzance
+ | LuRuRIANCE
* i COMPLIANCE
* | ADMITTANCE
* | MONSTRANCE

86 : ABSTINENCE
. RECRUDESCER

Rulebase for 10-Letter-Long-Words Ending In VCCV.
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OSTRO+PATH
TOPO+GRAFE
PEILO+SOPHY

PRYCHI
OTRAW+BEFRY
INTER+MARRY

tnh SENS

un DENY
ACRIRVE
un BRAT
EROS

ab BORB

YOUTH
FANCY

LUSH
APUR
DEXTIR
COVEY

SPIRIT
OCCUR
RXCEL

ex UBER
COOGNUS
LUXURY

com FLY

ait MIT
MONSTRANCE

ah STIN
re CRUDE

+
+
+
+
+
42)
42)
(82(84)
(64)
84)
(08)
.
L]

Mla e DL my cten d




VCVC HAND ANALYSIS

AULE REFRY PRINARY SECOEDAAY REPLACENEET NEXY WORD- ABALTS XA~ son PAR -
RTURERN POIRT ERENENT SRANRRY STINING AVLE  BIANPLE aasvULY ABQUIBITYN
1 -ic - b §(9) AUTOCRATIC  AUTOCRAT 1
2 1 -MET - - ARITHMETIC ARITH 1
1] | -AT - ~ |SMBLEMATIC BMBLEM [
4 1 -ET -y * 1 APOLOGETIC AroLoqy '
] ] -OM -OMY * | URECONOMIC ECONOMY “ '
L] ] -TIF -CE - SCIENTIFIC SCIENCE '
7 ] -GEN - - |PHOTOGENIC PHOTO '
s 1 .n - - '
’ -AL - - §(24) ABORIGINAL ABORIGIN t
10 } -TIC -88 * | BLLIPTICAL ELLIPSE (1e) '
1 | -DIC - » | PERIODICAL PERIOD 1e) 1
12 i -RIC -ER ~ | THEATRICAL THEATER e t
13 ] -NIC - . RABBINICAL RADS] e ]
14 | -FIC -r * | PONTIFICAL roNTIF 18 '
18 ] -MIC MY ~ | ANATOMICAL  ANATOMY ae) '
18 ] -1C -Y * {ANARCHICAL ARARCHY '
17 i -TYP -TYPR » |ARCHETYPAL ARCHETTPR n H
18 ] -1AC - - DEMONIACAL DEMON i
1% ] -ER - * | PERIPHERAL PERIPR i
20 ] -DUR -ED * | PROCEDURAL PROCEED '
21 [} -1T - ~ CONGENITAL CONOEN 1
22 ) -1C1D -1 * | FUNGICIDAL FURG] [w] i
23 | -~ - ~ '
24 -ED - -K §(28) INEERIATED  INEBRIATE [
28 ] -NE -N - UNLEAVENED UNLERAVEN i
20 ! -ULATE - * | ACIDULATSD ACID i
ar ] - - - :
28 OR - -E §(32) SUPBRVIBOR SUPZRVISR '
20 [} -ATR -E o DESECRATOR DESZCRE t
30 ] -17% -2 * ] COMPETITOR COMPETR :
n ! -* - - H
52 -MAN - +MAN §(36) JOURNEYMAN JOURNEBY:MAN + H
8s \ wo +WOMAN * | BALESWOMAN  SALER: WOMAN + ;
34 | -HUM +HUMAN * | SUPERBUMAN SUPER.:HUIAN + H
3 } e . - :
38 SR - - §(39) MALINGERER  MALINGER '
87 ] I:ll - - I LIQUIDIZER LIQuUID i
s ] -* - » |
s -8 - . - ABORIGINES ABORIOIN t
40 - - - - .
Table 10.6 Rulebase for 10-Letter-Long-Words Ending In VCVC.,
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PARTITIONS CONFORMING TO A HAND ANALYSIS
OF TEN LETTER WORDS ENDING IN CCVC

AWLE GFTRT PAINARY ORCONDARY REPLACENERT SR1Y WOAD- ABALYSIS - nors PRR-
WONSER POINY SEGNEEY SRONERY ezalze ULE BIANPLE agavLY ABQUISLIYE
1 -PLED - -FLE UNEXAMPLED  UNBXAMPLE (@) :
2 -oLzD - -oLE - BEDRAGGLED  BREDRAGLE (8) :
L] -VED -VE " UNDESERVED  UNDESERVE (] :
4 -G2D . -0% - UNABRIDGED  UNABRIDGE e :
8 -CED - -CE - UNBALANCED  UNBALANCE () :
L} -ED - - 3(13) :
7 | rP -P - WORSHIPPED  WORGHIP :
[] | -LL -L - UNEQUALLED  UNKQUAL :
® | -8 -8 - MONPLUSARED  NONPLUS :
10 \ TT -T - BALYWITTED  BALYWIT :
1 | -C -CE - PRONOUNCED PRONOUNCE a :
12 ] -* - s H
13 -AL - - §{17) MONUMENTAL MONUMENT :
14 | -CHR -CHER - SEPULCHRAL  SEPULCEIR o :
15 i ™ “TRA - ORCHZSTRAL  ORCEESTRA # :
1e | - - - :
17 -BR - - §(40) :
18 | -rr -r - WORSHIPPER  WORSHIP :
1 t -ERN . - NORTHERNER  NORTH :
20 i 38 -B - LANDLUBEER  LANDLUB :
n ! L -L - VICTUALLER  VICTUAL :
22 | MM -M - PROGRAMMER  PROORAM :
23 ] -NN -N - FORERUNNER  FORERUN :
24 ' -MAND -MANDER - SALAMANDER  SALAMANDIR o H
as | -GETH -GETHER - ALTOGETHER  ALTOGETHER o :
26 | -AFT +AFTER - THEREAFTER  THERE:AFTER + :
7 | -BURG +BURNER - BEEFAURGER  BEEF+BURGEIR + :
28 | -MAST +MASTER - POSTMASTER  POST+MASTER + :
29 ! -FIND +FINDER - SBTARFINDER  STAR+FINDER + :
30 | 8187 +8ISTER - HALPSISTER HALF+SISTER + :
£} | ‘MOTH +MOTHER . STEPMOTEER  MALF+MOTHER + :
82 | -FATH +FATHER - STEFFATHER  STEP«FATHIR + :
33 ) -LADD +LADDER - STEPLADDER  STEP+LADDIR + :
34 ] -7ING +FINGER - FOREFINGER  PORE+FINGER + :
a8 ! -LBTT +LETTER - NEWSLETTER  NEWS:LETTER + :
s I -corT +COPTER - HELICOPTER  HELI+COPTER + :
a7 | -MINIST  +MINISTER - ADMINISTER  AD+MINISTER + :
3 | <" - - J :
40 -EN - §(43) DISHEARTEN  DISHEART :
4 | -GARD +GARDEN - ROCKGARDEN  ROCE+GARDEN + :
42 1 . . - H
4 -1c - - J(51)  OPTIMISTIC OPTIMIST :
4" 1 -LIST -L - FATALISTIC FATAL :
4 | -NOST -NOBE . DIAGNOSTIC  DIAGNOSE :
40 y -CENTR  +CENTER - CONCENTRIC  CON+CENTER * :
Y4 | -METR +METRIC - BAROMETRIC  BARO+METRIC o :
.- | -ABT -AR - SCHOLASTIC  SCHOLAR :
€ | -MALM - - OPATMALMIC  OPHT+MALMIC o :
30 \ -* - - i
61 OR . - §(54) INSTRUCTOR  INSTRUCT :
82 | l -LL L - J CHANCBLLOR  CBANCEL .
83 \ .- - - i
84 -NIK . - KIBBUTINIK  KIBBUTZ 'S :
88 -FUL - DELIGHTFUL  DELIGET PS :
.7 -THES TH - BEDCLOTHES  BEIDCLOTE :
07 xs N - SPECTACLES  SPECTACLE :
ss ENDUM 8 - REFERENDUM  REFERE a :
o -ORAM - - CRYPTOGRAM  CRYPTO-GRAM + :
60 -PLET - - - QUADRUPLET  QUADRU o :
61 smir - . CENSORSHIP  CENSOR+SHIP + :
B2 MAN - - - GROUNDSMAN  GRANDS+MA * + :
[t 30X - . - CEATTEREOX  CHATTER+BC . + :
s CRAT - - - ARISTOCRAT  ARISTO+CRAT + :
o8 -sLIP - - PiLLOWSLIP PILLOW8LIP + :
(ad STAT - - THERMOSTAT  THERMO a :
87 .0 . . - .
Table 10.7 Rulebase for 10-Letter-Long-Words Ending In VCVC.
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Four archtypical schemata graphs are encountered in our
analysis of 10-letter-long word endings.

The first and simplest of these which will be referred to as a
'cascade’ graph involves simple sequential control flow transfer either
throught the evaluation of a string of primary suffix rules or through
the evaluation of at most one block of nested secondary rules.
Transfer to a block of secondary, or auxillary, rules within a cascade
graph is equivalent to a call to a local or nested subroutine with
embedded scope. Control flow within a cascade graph may also be
transferred to a non-local subroutine. An example of a cascade
schema graph is illustrated in Figure 10.13 which is drawn from Table
10.6. This sequential schema graphs can be characterized in terms of
four parameters (P, Q, SP, SQ) where P is the number of primary
nodes and @ is the number of secondary nodes in the graph depicting
the schema, while SP is the number of primary subroutine nodes and
S@ is the number of secondary subroutine nodes. For instance the
cascade graph drawn from Table 10.6 has P = 8 , Q = 33 and
therefore an average of six secondary or auxillary rules per primary
suffix. In this example SP = 0 and SQ = 0. Figure 10.14 {llustrates a
parallel version of the cascade schema graph given in Figure 10.13.
The parallel structure given in Figure 10.14 exhibits ( 2a + 1§ )
behaviour. In fact all simple cascade graphs ( with SP = 0 and SQ = 0)
possess ( 2a + 18 ) behaviour. Tables 10.2, 10.4, 10.6 and 10.7 are all
simple cascade graphs which structurally differ from each other only
in terms of their (P, Q. SP, S@Q ) values and the location and
distribution of the Q@ and SQ nodes.

The second archtype, case il, is illustrated in Table 10.1 and
Figures 108 (P = 5, Q =4, SP = 14, SQ = 0 ) and Figure 10.9/ lua +
4p). This case is characterized by simple sequential execution with the
optional capacity to shift forward or skip the evaluation of a block of
primary rules, such as R4..R8 in Figure 8, or subroutine rules, such as
R16..R17 in Figure 10.8. Such time-warped behaviour in case Il
structures is unidirectional. Case 11 graphs differ from simpler
cascade graphs by their ability to direct a shift forward in control flow.
A common block of rules, such as R18..R24, may thus be reached from
any number of paths. In this example SP = 14 and SQ = 0.
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Figure 10.13 Sequential Cascade Schema Graph constructed
for the rulebase given in Table 10.6 for 10-letter-long words
with suffix strings of the form -VCVC. ( CASE 1 BEHAVIOUR )



Figure 10.14

Parallel Cascade Scheme Graph constructed
for the rulebase given in Table 10.6 for 10-letter-long words

with suffix strings of the form -VCVC. ( CASE 1 BEHAVIOUR )
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The third archtype, case III, is characterized by simple
sequential execution which may be enhanced by the ability to skip
forward from the schema's secondary or auxilary ruleset to a node in
the primary ruleset. This type of control flow behaviour is similar in
nature to that exhibited by a restricted-exit construct. An example of
case Il behaviour is depicted in Figure 10.15 (P =9, Q = 55, SP = 0,
SQ = 0 ) which is drawn from Table 10.3. In this example control
flow transfer from two different secondary nodes ( R3 & R21 ) is
directed to a common primary rule, R53. Such control flow behaviour
is conceptually simjlar to allowing multiple exits from a single
subroutine. The parallel version of Figure 10.15 exhibits ( 3a + 1B )
behaviour.

The fourth archtype, case IV, is characterized by simple
sequential execution which may be enhanced by the ability to skip
forward from anywhere within the schema's primary or secondary
rulesets to a node in one of the schema's subroutines or common
block rulesets. Whenever a node is used as a common entry point to a
block of rules in Case IV schema graphs a further restriction is placed
on the schema's control flow. This restriction is that a common entry
point may be reached only by control flow transfer from either a set of
primary nodes or a set of secondary nodes. Under no circumstances
may a common entry point be reached from a mixture of both primary
and secondary nodes. An example of case IV behaviour is depicted in
Figure 10.16 (P =9, Q = 29, SP = 23, SQ = 8 ) which is drawn from
Table 10.5. In this example control flow transfer from three different
secondary nodes ( R10, R13 & R25 ) is directed to a common primary
subroutine rule, R43. Similarly in this example control flow transfer
from two different primary nodes ( R26 & R27 ) is directed to a
common primary subroutine rule, R60. This type of restriction is
conceptually similar to placing scope restrictions on a program's
structural subcomponents. The parallel version of Figure 10.16, which
is given in Figure 10.17, exhibits ( 4a + 1§ ) behaviour.



Figure 10.15 Sequential Cascade Schema Graph constructed
for the rulebase given in Table 10.3 for 10-letter-long words
with suffix strings of the form -CVCC. ( CASE III BEHAVIOUR )
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Figure 10.16 Sequential Cascade Schema Graph constructed
for the rulebase given in Table 10.5 for 10-letter-long words
with suffix strings of the form -VCCV. ( CASE IV BEHAVIOUR )



\ ' 5' ( w
\ ¢ \ \
\ \ \
\ 8 é
NS
R
]
d\ ' g
8 8
Figure 10.17 Parallel Cascade Scheme Graph constructed

for the rulebase given in Table 10.5 for 10-letter-long words
with suffix strings of the form -VCCV. ( CASE IV BEHAVIOUR )
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VNF WORD WORD PREFIX FIRST ROOT CONJUNCTION SECOND ROOT SUFFIX NOTE

ENDING

[2244
GONORRHOEA OONO RRHOEA

CLAX,
POOTLIGHTS FOOT LIGHT S
THOUSANDTH THOUSAND TH
WAVELENOTH WAVE LENGTH

CCVV
CATAFALQUE CAT A FAL gue
CHIMPANZRE
HUMORESQUE HUMOR ESQUE
POINSETTIA
PRESENTDAY PRESENT DAY
QUARTERDAY QUARTER DAY
RIFTVALLEY RIFT VALLRY
S8CREENPLAY SCREEN PLAY
STATUESQUE STATUIE) ESQUE
STRATHSPEY SBTRATH SPEY
UNBIRTHDAY UN BIRTH DAY

ylvyv
AFRORMOBIA AFRO RMOSIA
BUDGERIGAR BUDQERI OAR
COMMUNIQUE COMMUN]} QUE
CORNUCOPIA CORNU COPIA
DIPSOMANIA DIPSO MANIA
DIPHTHERIA DIPH THERIA
ESCALLONIA
HULLABALOO HULLA BALOO
IMPRESARIO M PRESA RIO
MONTBRETIA MONT BRETIA
PARAPLEGIA PARA PLEGIA
PASSAGEWAY PASSAGE WAY
ROTISSERIE ROTISS ERIE
SATURNALIA SATURN ALIA
TRAVELOOUE TRAVE:L) Logue
UNDERVALUE UNDER VALUE
XENOPHOBIA XENO PHOBIA

[VeTT

AFTERBIRT™H AFTER BIRTH
AFTERWARDS AFTER WARDS
BFLONOINGA BE LONG INGS
BIRTHRIQHT BIRTH RIGHT
COERLACANTH COELAC ANTH
CARTWRIGHT CART WRIOHT
CHILDBIRTH CHILD BIRTH
CLOUDBURST CLOUD BUI
DISTRAUQHT DIs TRAUGHT
EIOHTEENTH EIOHIT) TEEN TH
FISTICUPFS PIST 1 CUFPP 8
PLASHLIGHT FLASH LIGHT
FORTHRIGHT FORTH RIOHT
POURTEENTH FOUR TEEN T™H
FLOODLIONHT rOooD LIGHT
QREENFINCH GREEN FINCH
HENCEFORTH HENCE FORTH
HOTCHPOTCH HOTCH POTCH
INDISTINCT IN DISTINCT
LINEAMENTS LINE A MENTS
MAKEWEIQHT MAKE WEIOHT
NINETEENTH NINE TEEN TH
NORTHWARDS NORTH WARD 8
QVERWEIGHT OVER WEIGHT
PENNYWORTH PENNY WORTH
PLAYWRIGHT PLAY WRIGHT
SACROSANCT SACRO SANCT
SHIPWRIONT SHIP WRIGHT
SIDEBOARDS SIDE BOARD 8
SOUTHWARDS SOUTH WARD S
SHOREWARDS SHORE WARD S
THIRTEENTH THIR TEEN TH
TORCHLIGHT TORCH LIOHT
UNDERWORLD UNDER WORLD
UNDERPANTS UNDER PANT S
WATERWINGS WATER WING S
WATE RWORKS WATER WORK ]
WATERTIOHT WATER TIGHT

HAND ANALYSIS OF ALL WORDS FOUND IN RARELY USED 10-LETTER LONG

WORDS ENDING IN CVVV, OCCC, CCVV, VCVV and VOCC.

Table 10.
8 List of exceptions found in the OPD for 10-letter-

long words ending in CVVV, CCCC, CCVV, VU'VV, VCCC.
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The remaining classes { CVVV, CCCC, CCVV, VCVV, VCCC } as
seen in Table 10.8 are small, rarely used, sets of words which are
mostly compound words. Such sets and their elements are best
treated as exceptional cases which can be best handled by a table look-
up procedure. The most densely populated suffix groups such as CVCV,
CVCC and CVVC are however both simply and efficiently handled by
our rulebase system.

In an analysis of the algorithm's performance, it is important to
remember that compiled statistics such as those given in Figure
10.18, for the position-dependent, letter-frequencies found in 10-
letter-long-words, allow us to initialize the order of evaluation of a set
of given sequential rules in a manner that optimizes the effictency of
sequential search. For instance, by using the data compiled in Figure
9.16, for the most frequently encountered 10-letter-long-words, we
would rank order the primary suffixes { -CY, -RY, -LY } found in Table
10.1 as { -LY, -CY, -RY }!I0, In that both the 'depth of recursion' and
the 'branch-factors' found in rulebases needed to span the OPD is
modest, the applications of dynamic optimization techniques to the
maintenance of the rulebase is unwarranted. The process of rank
ordering the rulebase on the bases of static statistics which were
compiled for a representative sample set is more than adequate.
Procedures such as these are referred to as robust when they yleld
sufficing solutions for a wide range of sample sets.

10.8 IMPLEMENTATION

The schemata presented in this chapter have been easily
implemented on a number of systems in various high level languages,
such as Pascal and Prolog. On-going research will investigate them

10 In this case for example the rank of the letter C, p(C) , is 6 whilc the

rank of the letter R, p(R) = 10 and p(l) = 5 when occuring at position ninc of
10-letter-long-words and thus p(-LY) > p(-CY) > p(-RY).
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further within a language independent programming envircnment
called ABL/W4]10.43 ).

TEN LETTER WORDS

100000 -

- —o— POSITION 1
oL e g POSITION 2
E - .--m---- POSITION 3
; -c-@---- POSITION 4
: —a— POSITION 5
: ——a— POSITION 6
€ _ & —vy— POSITION 7
g S w... POSITION 8
C % .! ee0eeee POSITION 9
R «e-q--—- POSITION 10

100+ -+ + — } ~

] 20 40 68 80 100 120

Figure 10.18 Position-dependent, letter-frequencies found

in a sample of 10-letter-long words [ 10.24 . The following list
gives the rank ordered letter sequences for each possible position
in 10-letter-long words.

Position 1={C,P,],A.S.E,D,R.M,T,O,F, UG, H,L,B,N,W, V,Q.Y, U, Z, KX}
Position 2= {0, E,N,S,A.R,LU.H.C,X,P,M,T.L,V,D,G,B, Y. F, @, W,K, J, Z}
Position 3={N,P,S,R, T.E,D,C,I.M,0, A, J,L,F, V,G.U,B, Y, H.W,Q.K, X, Z}
Position 4={E,I,R,T.O,C,S,A,L,U,P,N,M,D,F,V.H,G, K, Q. B,J, W, Y, Z, X}
Position 5={E,R,1,S,0, T. A,U,N,L,C,V,G,P,M,H,D,B,F. Y, WK, X, Z, J, Q}
Position 6={1, T, A,S,E,R,N,C,X,0,D,U,P,M,L,G,H,B,F. V. W,Q,Y,K, Z, J}
Position 7={T,1, AM,S,E,U,R.L.O,D,N,C,H,P,V,G,Y.B,F, Q. X. W, Z, K, J}
Position 8={l,E, B,N,O,T.Z,L.A,D,R,C,S,U,V,P,H,F,G,M. W,K,Q,Y, X, J }
Position 9={E,N,0,A,L,C,T.J,1,R,S,U, H,V,G,D,M, Q,P, W, Z,F, B,K, Y, X}
Position 10={S, N,E,Y,D, T.L,G,R,C,M,H.A,P.K,,O,U,F, W, X, Z,B, J. Q, V}
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10.9 VERIFICATION AND VALIDATION

The process of validation and verification of knowledge-bases or
expert systems is an important and difficult process { 10.45, 10.46 }.
In our model we need to assess those cases in which the system
derived a reduced form which is in disagreement with that of a human
expert.

Fortunately, the task of compiling a comprehensive list of
primary and secondary hyphenation points for most of the words
found in the OPD was undertaken on a case-by-case basis by a group of
linguists and etymologists at Oxford in 1986 [ 10.20 ]. The approach
taken by these scholars was to render justice, including considerations
of historical precedence, to each and every word in the lexicon. In
this manner, these experts avoided the problem of attempting to
establish a set of non-contradictory syntax rules for word morphology.
The existence of the OSD [ 10.20 ] is fortuitous in that it provides a
'‘benchmark' on which to base the algorithm's performance at word-
hyphenation.

The OSD may also be used as the basis on which to verify a
derivation's root or stem. This latter process is however more
complex and requires value judgements, which, while complex, are
nonetheless apparently obvious to the native speaker.

When using the OSD | 10.20 | as a benchmark, one finds that the
rulebases given in this chapter reduce most words to their correct
root. The ruiebases reduce words to a wrong root or stem in very few
cases. The system performs accurately in its analysis of the vast
majority of all 10-letter-long-words found in the OPD.

10.10 DISCUSSION

In classical expert systems it is often the choice of the domain
features which are used to access and establish a rulebase, that
determines the system's overall utility and efficiency [ 10.45, 10.47 |.
Even if one modifies an expert system's rulebase to take into account
any natural hierarchy, that exists within its rulebase, one is confronted
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with essentially the same 'feature selection problem' that has plagued
pattern recognition research for decades | 10.48, 10.49 ).

Clearly the intuitiveness, expressiveness, simplicity and
applicability of IF...THEN production rules to natural language word
syntax is an excellent example of the power of this approach and the
subtle difficulties that can occur in such systems. While a set of
IF...THEN production rules would appear, in principle, to be eminently
applicable to natural language word morphology, the contextual
dependencies of such rules make it a very demanding task to
determine features which can be accurately used to specify which
rules apply to an arbitrary word. The brute force approach would
simply tabulate a case-by-case analysis of each word in the entire
lexicon. It is this latter approach that led to the publication of the OSD
[ 10.20 ). While the OSD is a very valuable reference source it is a
simple databank which does not provide us with any understanding of
the processes which underlie English language word morphology. The
brute force approach is best reserved for use in situations where it is
impossible to preduce a set of consistent, context-sensitive, syntax
rules.

In spite of the merits of the philosophical objections to
reductionistic efforts such as the derivation of natural language
structure, the immense pedagogical and technical practicalities of
such rulebases would surely guarantee the acceptance of a schema of
comprehensive syntax rules for English.

The simplicity of the schemata described in this chapter is the
result of the mapping of a Chomsky type 1, context-sensitive, grammar
to a set of readable IF...THEN rules which provide an easily understood
representation of English Language syntax that is concise enough to be
easily learned and quickly verified or validated. The use of context
sensitive blocks of rules is essential to this task in that this approach
limits the scope and enhances the understandability of the process.

The inclusion of explicit control flow, and the use, of a hierarchy
of rule-sets, empowers the system with a clear and simple semantic
notation for generic schemata with the computational facilities needed
to clearly manage the symbolic complexity of English. These system
endowed features are important in that it is not reasonable to expect a
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simple orthogonality in the actual rulebase. English language grammar
rules are not like sets of independent, mutually, exclusive, non-
Interactive IF...THEN production rules encountered in many successful
expert systems. The success of many expert systems is attributable in
part to their application in a constrained and modeled environment
where the logical equivalent of the superposition principle holds |
10.34 ).

The system described in this chapter is not constrained by such
principles. Of course, the inclusion of control flow in the rule-base
reduces the modularity of the rule-base and also increases the
possibility of generating side-effects when the rule-base is updated.
This hopefully minor deficit in design is balanced by a clearer
understanding of the inipact of the rule-interpreter's control flow on
the rule-base in its evaluation of specific cases. This approach is
particularly applicable to sets of rulebases each of which contain very
few rules. The opacity encountered by the interaction of control-flow
on rule-based systems is less of a problem in our formulation since the
rule-base itself is process oriented. The simplicity of our inference
system is the result of a basic model [ 10.13 ] of the morphological
processes encountered in English language word structures and their
derivations.

The inference model used in this work is very simple. The
model may be operationally described in terms of two processes.
First, it applies the rules causing suffix removal and then it checks for
'mutant-strings' which would have resulted from the application of
generic rules to an exceptional word. On the rare occasions when a
mutated stiring is detected, the application of a rule that led to the
mutation is reversed and the word is noted to be an exception to the
system's rule-set. In such exceptional cases further processing of the
word is terminated. If the system encounters no exceptions
processing continues by checking for any further possible suffix
reductions. The system described here restricts the possibility of
'state-space-explosions' by restricting the 'outdegree’ of its schema
graph to 2.

Many expert systems have established [ 10.50, 10.45 | rule
priority schemes in an attempt to avoid conflict resolution. Conflict
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resolution | 10.34, 10.51 | is less of a problem in our system in that it
is assumed that a given word has a unique root or stem and thus our
schema does not incorporate a set of sufficing solutions. The use of
priority in our system is thus primarily restricted to the sequencing of
rules which guarantees that the longest possible suffix strings
consistent with the data is checked first.

10.10 CONCLUSICNS

The method and results presented in this chapter demonstrate
that a system based on the application of a set of simple context-
sensitive rule bases is sufficient to efficlently and accurately derive the
word-root or base of larger English language words.
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CHAPTER ELEVEN
CONCLUSIONS

11.1 RESULTS

The basic fundamental results obtained from this work are:

1)

2)

3)

4)

5)

6)

7)

8)

9)

There are fundamental patterns underlying English language
word structure at the orthographic level.

A classification and clustering scheme referred to as Vowel
Normal Form (VNF) is a powerful tool for classifying English
word structure. Its great advantage is simplicity, but this quality
limits classification to a single letter level and can not
accommodate multiletter combinations such as qu or ch.

A simple prefix code underlies the relationship between the
major word structures of various sizes found throughout the
English language lexicon listed in the Oxford Paperback
Dictionary.

The prefix code structure of English language word structure
assures band-filtering effects which may be exploited by simplc
pattern recognition routines.

A single two parameter model is sufficient to predict the size of
the major VNF word group structures found in the Oxford
Paperback Dictionary.

The prefix code structure model, when coupled with the two
parameter set-size model predicts both the structure and size of
the major VNF frames found in the lexicon.

A form of directed graph, referred to as a WORD-WEB, 1is
sufficient to represent all words of a given VNF set.

Context-sensitive rule base scliema are sufficient to reduce
longer words, such as 10-letter-iong words to their root words
or base component.

The frequency of occurrence of words may be computed as the
product of word-length and position-dependent letter
frequencies for the most frequently occurring smaller words
listed in the Oxford Paperback Dictionary.



11.2 FURTHER RESEARCH

Further work is needed to determine if:

1) These results are expandable to larger English language lexicons
such as the Oxford English Dictionary.

2) These models and results apply to languages which are closely
related to English such as French, Spanish and German.

3) These results indicate support of Chomsky's theory that the
human language center is genetically endowed.

4) These results can be directly applied to other forms of animal
communication such as those encountered in dolphins and the
higher apes.

5) The Prefix Model presented in this work is both necessary and
sufficient for predicting English language word structure.

6) The VNF Set Size Model presented in this work is both
necessary and sufficient for predicting English language word
structure.

7) The frequency of occurrence of words may be computed as the
product of word-length and position-dependent letter
frequencies for the most frequently occurring 5- to 10-letter-
long-words listed in the Oxford Paperback Dictionary. This
frequency could be expected to be influenced to a certain extent
by domain-specific characteristics, for example technical terms
in legal or medical texts.

Furthermore the following 'what' questions need to be answered:

1) What type of statistical distribution is concomitant with the
observed rank-ordered set-size function found to underlie
English language VNF word structures.

2) What is needed to extend these models and their results to
languages, such as Turkish, where pronunciation and phonetics
are mapped as one-to-one functions unto a word's written form.

3) What is needed to extend these models and their results to
iconographic languages, such as Chinese, or to languages which
do not use explicit vowel representation, such as Arabic or
Hebrew.
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4)

5)

6)

7)

To what degree can these results predict the origin and
evolution of natural languages such as English.

To what degree can these results be used to predict the

primitive archetypes underlying modern day languages in
general and English in particular.

What characteristics make the English language VNF group
CVCCVC make it an aberrant outlyer.

To what degree do the two models developed in this thesis
establish the basis components of a physical symbol system
needed to model and predict English language word structures
and thelr usage.

11.3 BASIC ASSUMPTIONS

This work has been undertaken under the following three basic
assumptions:

1)

2)

3)

While the spoken word is fundamental to our understanding of
English, the written word is sufficient for an analytical analysis of
English language word structure.

The Physical Symbol System Hypothesis first presented by
Newell and Simon is necessary and sufficient for generalized
intelligent action.

The English lexicon can be described as a relatively simple
physical symbol system.
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