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Abstract

On the Language Design and Semantic Foundation of LCL, a
Larch/C Interface Specification Language

Patrice Chalin, Ph.D.
Concordia University, 1996

The specialization of a specification language to a particular programming language
is an important characteristic of module interface specification languages (MISL’s).
The only well-developed MISL’s are the Larch interface languages and among these
LCL, a Larch/C interface specification language, would seem to be the most mature,

Our efforts to elaborate a semantic model for LCL lead to the identification of
inadequacies and insufficiencies in the language and its informal definition. After
defining and motivating the concept of object dependency, we demonstrate that LCL
lacks the necessary language constructs for specifying object dependency relation-
ships. We illustrate shortcomings caused by implicit constraints that are related to
function parameters and object trashing. We show that the implicit constraint asso-
ciated with the trashing of objects results in a violation of the principle of referential
transparency.

The identified inadequacies and insufficiencies are overcome in LCL’, the variant
of LCL described in this thesis. The main contribution of this thesis is a semantic
model within which a core subset of LCL' (consisting of constant declarations, variable
declarations and function specifications) is formally defined. We present the semantics
in a style known as natural semantics. The meaning of the non-interface part of an
LCL' specification is captured by an embedding into LSL. The primary notation used
to write the semantics is Z. We have chosen to use LL, the logic underlying LSL,
as the logical basis for LCL’. At the heart of the semantic model is our model of
the store. The storage model is exceptional in that it supports object dependencies
in their full static generality. Previously published definitions of the meaning of a
function specification are shown to be inaccurate; we present a corrected definition.

Finally, we note that our semantic model (particularly the model of the store) is

general enough that it can serve as a base for the formal definition of other imperative

i



programming langnages and MISL’s—especially the Larch interface languages LCPP
and LM3.
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Chapter 1
Introduction

“...a robust program [or specification] written in an insccure language is
like a house built upon sand.” [MTH9O0, p. vii]

Formal methods are mathematically based techniques that can be used to model,
design, and analyze computer based systems [CGR93]; they are seen as the applied
mathematics of computer systems engineering [Cra89). Although formal methods
are immature in some important aspects, it is believed that an appropriate use of
formal methods can contribute to the cost-effective and timely production of systems
of the highest quality [BH94]. Recent studies support this claim: increasingly, formal
methods are being successfully applied to the development of industrial-scale projects
[CGRY3].

Underlying every formal method is a mathematically based notation— usually a
specification language. For a specification language to be suitable for use in an in-

dustrial setting it must be
® expressive
e precisely defined
e free from errors and inconsistencies
e supported by appropriate tools.

Languages are not simply defined and then used, they are subject to evolution. Lan-
guage evolution—as in the evolution of many complex engineered products-—is a long

and laborious process in which initial inception is followed by cycles of use, assessment
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and change. Asin any engineering discipline, assessment is best achieved by the use
of mathematically based techniques.

In this thesis we have used mathematical methods to increase our understanding
of LCL, a Larch interface specification language for ISO C [ISO)]. We have done so by
attempting to create a semantic model for LCL. Our initial analysis of the language
brought to light inadequacies in the definition and insufficiencies in the expressiveness
of LCL. To date, LCL does not have a formal semantics and hence it precariously
holds the status of being a formal specification language. We propose changes to the
language that overcomethe identified inadequacies and insufficiencies, and we provide

a. semantic model in which a core subset of the language is formally described.

1.1 Larch

The Larch approach to specification promotes the modular development of programs
and encourages the use of data abstraction. In Larch there are two specification tiers
or levels. The shared tier contains specifications (called traits) written in the Larch
Shared Language (LSL) [GH93]. A trait defines a multisorted first-order theory. The
inierface tier contains interface specifications written in a Larch interface language.
There are several Larch interface languages. The most widely used are LCL {GH93],
LCPP (an interface language for C++) [LC95) and LM3 (an interface language for
Modula-3) [GH93). Each! interface language is specialized for use with a particu-
lar programming language. Using constructs, concepts and terminology from the
programming language, an interface specification describes what resources are being
provided by a module. Although the shared tier is independent of the interface tier
the opposite is not true. The meanings of the (concrete and abstract) data types
used in a module are captured in the form of LSL traits. That is, traits are used to

provide formal theories for the data types that are used in interface specifications.

1.2 Module Interface Specification Languages

Specification languages can be used during the entire software development process

to document requirements, designs and the interface specifications for modules and

'With the exception of the two generic interface languages GIL [Che89] and GCIL [Ler91).



program components. One must be careful in choosing an appropriate specification
language for the task at hand [Hoa87, BH94]). The specialization of a specification
language to a particular programming language is an important characteristic of
module interface specification languages (MISL’s). After soine preliminary definitions,

we clarify the role of interface in MISL’s and we argue that there are very few MISL's.

1.2.1 Specifications

There are many kinds of specification. We are concerned with specifications that
describe the functional (behavioral) characteristics of computer-based systems. Spec-
ifications can describe many different kinds of system, ranging from independent or
embedded computer-based systems to individual statements within a software com-

ponent.
A specification is a description of (PM91, PST91, Jon90]:

e an interface, and
¢ externally observable behaviors of a system as visible at its interface.

A formal specification is a specification written in a formal language. Note that under
the given definition, a program is a specification.

A system [ is said to satisfy a specification S if:
o the interface of [ satisfies the interface of S, and
e the behaviors of I are among the behaviors permitted by S.

The ‘satisfies’ relation for specifications is defined in terms of the more primitive
‘satisfies’ relation for interfaces. The latter is often defined as the identity relation—-
i.e. I satisfies the interface of S if and only if they have the same interface. When [/
satisfies § we may say that I is an implementation of S, or that I is a refinement of
S and write S C 1.

1.2.2 On the Importance of Interface

The interface component of a specificaticn is often taken for granted and even forgot-
ten. Yet, it is a very crucial part of a specification {Lam89]. In [Mer74], “interface”

is defined as:



“the place at which two independent systems meet and act on or commu-

nicate with each other.”

Thus, the interface part of a specification is a description of the boundary between the
systemn and its environment. All interactions between a system and its environment

occur at the interface between them. The interface part of a specification:

e prescribes the kinds of communication that are possible between a system and

its environment, and

¢ for each kind of communication, identifies what (i.e. the system or the environ-

ment) can initiate a communication.

The interface allows us to determine what kind of system is being described
[Lam89]. The importance of interface becomes evident when we recognize that dif-
ferent kinds of system can exhibit the same behavior. In such cases the behavioral
component of a specification becomes insufficient to determine which kind of system
is being described. Consider, for example, all systems that do nothing. These all
have identical behaviors, but a computer system that does nothing is certainly quite
different from a program statement that does nothing. The interface of a specification

must allow us to determine which system the specification is meant to describe.

1.2.3 MISL’s and Other Specification Languages

Most formal specification languages are general purpose languages. Among the most
popular are VDM-SL [Jon90] and Z [Spi92). These languages are best suited for
design specification. Even the wide-spectrum languages COLD-K [FJKRdAL89] and
RAISE [NHWG89] are meant for expressing designs and design refinements. If any of
these languages were to be used as an MISL, an interface refinement relation would
have to be defined. Even so, it is unlikely that programming language specific features
could be captured in these design specification languages. Another approach is used
with the B Method [Abr91}: in this case the programming language used is specially
tailored to fit inte the overall development scheme.

Much less attention has been given to MISL’s by the research community than to
design or wide-spectrum specification languages. To our knowledge, the only MISL’s

are the Larch interface languages and an adaptation of the language used with the



Trace Assertion Method (TAM) [PW89]. Of the Larch interface languages, LCL
would seem to be the most developed and used. Development of the TAM-based

language is at a preliminary stage and a new release is in preparation [IMPKY3].

1.3 MISL’s and Industry

Although this thesis is quite theoretical, the research has been motivated by a practi-
cal concern for industry. We believe that MISL’s are an excellent way of introducing
formal methods into industrial settings. It is particularly important to industry that
start-up costs be minimized and that benefits be apparent even with small invest-
ments. We believe that MISL’s can offer this. Some of the advantages of the use of
MISL’s are enumerated next?.

MISL’s can be immediately and ‘unintrusively’ integrated into current industrial
development processes [WZ91]. A company that has invested considerable resources
in the creation and installation of their development processes (e.g. training of per-
sonnel and construction of tools) is more likely to welcome formal methods that can
be used in conjunction with inhouse development standards.

One of the greatest challenges faced by industry is the maintenance of legacy code.
Not only can MISL’s be applied to new developments, they can also be integrated
into the maintenance cycle of existing software systems. This is of great value since
it means that formal methods can be retroactively brought into projects that were
developed without formal methods.

MISL’s can be gradually integrated into a project:

e they can be applied to isolated portions of a system (such as those aspects
for which reliability is most critical); they need not be applied throughout the

system.

o MISL’s can be applied to varying degrees of rigor: from merely documenting
function signatures to providing complete behavioral descriptions for functions.

At all levels one can reap benefits.

Tool support for most other classes of specification language is limited to type

checking; in some cases proof assistants can be used. More automated checks can be

2These advantages are not necessarily exclusive to MISL’s—they may be shared by other classes
of specification language.



performed for MISL’s. For example, the LCLint tool can be used on LCL specifica-
tions to detect abstraction houndary violations, illicit access to global variables, and
undocumented modification of client-visible objects [EGHT94]. As another example,
Vandevoorde has developed a prototype program optimizer that makes use of the in-
formation derived from module interface specifications to perform optimizations that

cannot be accomplished by the analysis of code alone [Van94].

1.4 Why a Formal Semantics?

The main goal of the research reported in this thesis has been to provide a formal
semantics for LCL. What are the advantages of having a formal semantics for a
specification language?

A formal semantics provides the foundation that will allow for the rigorous (and,
if necessary, formal) analysis of specifications. In general a specification cannot be
verified [GH93, p.41,p.121] (i.e. shown to satisfy another ‘more abstract’ specifica-
tion), it can only be validated. The principal (and in most cases the only®) means of
validating a specification is by proving that it has certain desirable properties.

A formal semantics provides the necessary framework for establishing a precise
definition of correctness (of implementations) and the means by which correctness
can be established [Spi88, §1.2].

A formal language definition provides the necessary framework within which the
language definition itself can be analyzed. Thus, properties of the language can be
proven (e.g. well-formedness, compositionality and certain forms of consistency), and
language design alternatives or proposed extensions can be more rigorously evaluated
and compared [MT91].

Modularity is our weapon against complexity. It allows us to decompose a system,
whose specification is §, into a collection of modules, described by the specifications
Sty...,Sx. Development of each of the S; can proceed independently—resulting,
say, in the implementations I;. But what assurance do we have that when we put
the parts together they will work as a whole as expected—i.e. that the combined
I; will satisfy §7 A method that allows us to assert the correctness of the whole

from the correctness of the parts is said to be compositional [Jon93]. In industrial

3The other means of validating a specification is by testing, but this is possible only if the
specification is executable. Generally, specifications are not executable.



settings, where we face programming-in-the-large, compositionality is an essential
characteristic of a modular development method. The formal definition of a language
allows us to prove (or refute) the claim that a language is compositional.

The process of elaborating a formal semantics 1s just as important as the end
result (namely, the formal semantics itself) since the process provides us with a deeper
understanding of the language and it often allows us to become aware of subtleties
in its definition of which it is good to be aware (Win93, p.xv]. The evolution of
a language is best achieved by a close interplay between language design, formal
definition, and use. It has aiso been argued that a semantic definition should be used
prescriptively rather than descriptively: that is, the language design should be guided
by the underlying semantic model [AW82]. Defining a language around a coherent
semantic model (in contrast to developing a model for a ‘given’ language) should
result in a more coherent language because, the understanding of a language comes
from an understanding of its underlying model. Since we think and reason about a
language by means of its semantic model, a simpler model will result in a language
that is easier to use in practice. When writing specifications, simplicity is our best
defense against errors.

A formal semantics can be used to validate a program calculus or an algebra of
programs—e.g. Morgan’s Refinement Calculus [Mor90] and the “Laws of Program-
ming” of Hoare et o/ [HHJ*87)]-—that permits program development and program
optimization by transformation [Hoa94] . It is more practical to make use of such
rules or laws to reason about programs than it is to appeal directly to the semantic
model.

Finally, the soundness of checkers (such as LCLint [EGHT94]) or tools that ma-
nipulate specifications (e.g. a tool translating LCL specifications into LP scripts) can
be ascertained only if the specifications have a formally defined semantics [Spi88,

§1.2].

1.5 Contributions

The principal contribution of this thesis is a semantic model within which the stable
aspects of the LCL language can be formally documented and alternatives for the

contentious aspects of the language can be formally expressed and evaluated. Other



major contributions of this thesis are:
¢ an identification of shortcomings in the LCL language and its definition,
e solutions to the identified shortcomings,

¢ a formal semantics for a core—consisting of constant and variable declarations
and function specifications over basic and array types—of the stable aspects of

LCL.

1.6 Related Work

The conventional approaches to programming language semantics include operational,
axiomatic, algebraic and denotational semantics. An operational semantics describes
the behavior of the constructs of a programming language in terms of the effect their
execution would have on an abstract machine [Hoa94, Chapter 4]. The meaning of a
construct is taken to be the set of all possible behaviors that it can exhibit on the ab-
stract machine or, the abstract machine code to which the construct corresponds. An
operational semantics can be presented in several different styles. Natural semantics
[Kah87) and structural opcrational semantics are two styles in which the semantics is
presented in the form of inference rules [SK95, Chapter 8]). An axiomatic semantics
defines the meaning of 2 program by means of a proof system that allows us to deduce

assertions of the form

{P}s{Q}

where P and @ are predicates and S is a command in the programming language.
In words, such an assertion means: if § is executed when the program state satisfies
P, then @ will be true when S terminates (provided it terminates). In the algebraic
approach, equations and inequations are used. This makes it ideal for use in program
development by transformation as well as program optimization [Hoa94]. A denota-
tional semantics compositionally maps each syntactic object into an object from an
appropriate semantic domain.

The various approaches are not in opposition to each other, they are complemen-
tary. The distinction between some of these approaches can be fuzzy, e.g. natural

semantics can be seen a stylistic variant of denotational semantics [SK95, p. 262). In
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his paper on “Unified Theories of Programming”, Hoare has shown that the denota-
tional, algebraic and operational approaches are equally expressive [Hoa94].

Relatively few programming languages (that are in wide-spread use) are formally
defined. Of those that are, most are incompletely defined; often “problematic” lan-
guage features (such as aliasing) are excluded from the definition. For example, the
early published axiomatic semantics of Pascal [HW73] does not cover functions with
side-effects, aliasing or goto statements. Similarly, the semantics of the Turing lan-
guage [HMRCB88] is defined under the assumptions that functions are side-effect free
and aliasing does not occur, yet programmers are not prevented from making use of
these features®. Hence programmers must either program in a restrictive® subset of
the language or write programs for which there is no semantics.

Standard ML is a notable example of a language for which a complete and formal
definition, in the form of a natural semantics, has been given [MTI190}. Although
some errors have been found in the definition, solutions have also been proposed
[Kah93]. New approaches to programming language semantics have been applied
to several languages, but the completeness and accuracy of these definitions have
not been assessed. For example, evolving algebras have been used to describe the
semantics of Ada, C [GH92], C++, Modula-2, Occam and Prolog [Hug95]. Action
semantics [SK95, Chapter 13] of Pascal and Standard ML have also been published.

It is also the case that relatively few specification languages are formally defined.
Of those that are, Z has been given a denotational semantics [Spi88] and COLD-K
is formally defined in a style known as translational or transformational semantics
[FJKRAL89].

In Section 1.2.3 we discussed module interface specification and design specifica-
tion languages. We stated that the only well-developed module interface specification
languages are the Larch languages. None of the Larch interface languages have a for-
mal semantics. Rigorous (and partial) semantic definitions exist for LCL, LCPP, and
LM3. LCL is informally described in the Larch book [GH93, Chapter 5]. The most
complete semantics published for LCL (actually, for any Larch interface language)
is in Tan’s PhD thesis [Tan94, Chapter 7]. LCPP is a Larch interface language for

4The Turing compiler does not check for aliasing and potential side-effects in functions even
though the authors of Turing conceded that it would [HMRCS8S, p. 20].

SE.g. any set of rules used to detect potential side-effects in functions would prevent programmers
from writing legitimate functions since it is impossible, in general, to assess from inspection of a
program alone whether certain side-effects are benevolent or not,



C++ designed by Leavens and Cheon. The syntax and informal semantics for LCPP
are given in the LCPP Reference Manual [LC95]. LM3 is a Larch interface language
for Modula-3 whose principal designer was Kevin Jones. The syntax and an informal
semantics of LM3 were first published in {Jon91]. LM3 is also described in the Larch
book [GH93, Chapter 6]. In a more complete version of the semantics of LM3 [Jon92],
Jones defines the meaning of an LM3 specification by means of rules for translating
the specification into an LSL trait. A technical assessment of the semantics of LCL,

LCPP and LM3 is given in the related work sections of subsequent chapters.
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Chapter 2

LCL

2.1 Relationship between LSL and LCL

We find it helpful to symbolize the relationship between LCL and LSL by the equation
LCL = CISL(LSL) (1)

We can view LCL as consisting of a C interface specification language (CISL) that
makes use of LSL as a sublanguage. LCL expressions can in fact be viewed as LSL
terms. The equation suggests that we could “instantiate” the CISL with another
language [GH93, §8]. In fact, our very preliminary research efforts were dedicated to
the creation of CISL(Z). We felt it necessary, though, to establish a precise semantics
for LCL as afirst step. Consequently, CISL(Z) is now beyond the scope of the thesis.

Each LCL type is based on or associated with an LSL sort [GH93, p.21, p.58]; if
the type T is based on the sort S we also say that S is the sort of T. For example,
int and Arr[int] are the respective sorts of the types int and int[3]. If T is an
abstract type then the sort of T is also named T. For any sort S, an object containing
values of sort S will be of sort Obj [S]!. 0bj[s] is called the object sort of S. If the
sort of the type T is S, then the object sort of T is the object sort of S2.

10bj[S1 is simply a composite LSL sort name; it does not represent a parameterized sort.
2Tan calls S the value sort of T [Tan94]. Our definition of “object sort” is more general than that
used by Tan.
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2.2 Organization of a Module’s Interface and Im-

plementation: C vs. LCL

Under the usual C programming conventions, a C module M is documented as a pair
of files: a header file M.h and a main source file M.c3. The header file M.h is meant
to document the module interface and M.c holds the implementation. Unfortunately,
it is often necessary (due to the way the C language is defined) to include part of
the implementation in the header file. Since M.h is used as the principal source of
documentation for M, this scheme violaies the principle of separation of concerns and
increases the likelihood that clients will make use of implementation details that are
meant to be private to M.

By using LCL, developers can provide a clean separation between a module’s
interface and its implementation. LCL also allows complete documentation of the
module’s functional properties. The interface of a module M is expressed as an LCL
specification conventionally contained in the file named M.1cl. Using LCLint, one
can generate from M.1cl the include file M. 1h containing C declarations for the com-
ponents exported by M. The implementation of ¥ is contained in M.h and M.c. The
programmer need not repeat the declarations of the components exported by M since
they are present in M.1lh; instead M.1h is included by M.h. Clients refer to the speci-
fication of M for documentation, and client code continues to include M.h.

In addition to the checks performed by the traditional Unix lint program verifier,
LCLint also performs stricter type checking. In particular LCLint will report illegal
access, by a client, to the representation of an abstract type. By making use of LCL
and LCLint, one can achieve a level of type security that is comparable to that of
Ada.

2.3 Brief Review of LCL

By means of examples, this section provides a brief overview of the main characteris-
tics of LCL. This is not a tutorial on LCL; for this purpose, readers may consult the
Larch book [GH93].

3For simplicity we assume that the main source of the module is contained in one file. This need
not be the case.
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2.3.1 Example: QueueOne

The interface specification for a module named QueueOne is given in Figure 1. The

constant int MAX = 100;
spec int saved;

int q1(int x) int saved; {
requires x < MAX;
modifies saved;
ensures result = saved"
A saved’' = x;

Figure 1: LCL Specification QueveOne

module declares an integer constant MAX, an integer global variable saved! and a
function qi.

A constant declaration defines the type and, optionally, the value of a constant.
Global variables are declared as in C (but without the keyword extern). A function
declaration is provided by means of a function specification which consists of a header
and a body. A header is (essentially) a C function prototype optionally followed by
a list of global variable declarations. The function prototype identifies the name and
types of the function parameters as well as the name and return type of the function.
The global variable list identifies which global variables the function implementation
is permitted to access. Thus, q1 accepts a single integer parameter and yields an
integer value. The implementation of q1 can access only saved®.

A function specification body documents the permitted behavior of a function.
The behavior of a function is described relative to two states: the state before the
function is entered, called the pre-state, and the state after the function returns,
called the post-state. Most function specifications contain requires, modifies and
ensures clauses. From the point of view of a client, a function should be invoked
only when the program state satisfies the predicate in the requires clause. Given that
a client respects this obligation, the function will terminate in a state that satisfies

the predicate in the ensures clause. Furthermore, the only client-visible objects that

4The spec attribute is discussed later in this section.
5 Although, in this case, saved happens to be the only global variable declared in the specification.
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may have changed value are those objects referenced in the modifies clause. If a
function is invoked when the pre-state does not satisfy the requires clause predicate,
then the behavior of the function is unconstrained. All of the clauses in a function
specification body are optional. Omitting either the requires or the ensures clauses is
equivalent to including the clause with the predicate true. An omitted modifies clause
is equivalent to the clause modifies nothing—which specifies that no client-visible
object may be modified by the function.

The requires predicate of q1 states that the function parameter x should be less
than MAX. The cxpressions e” and e’ denote the values contained in the object (re-
ferred to by the subexpression) e in the pre-state and post-state respectively®. The
pseudovariable result denotes the value returned by the function. Therefore, the
result of q1 will be the value of saved in the pre-state and the post-state value of
saved will be changed to x.

Any declaration can be preceded by the spec keyword. A module only exports the
non-spec components that are documented in its interface, therefore, client code can-
not make use of spec components. spec components are used as an aid in specifying
the overall functionality of a module. The module QueueOne exports two components:

MAX, and q1.

2.3.2 Types

C types are called ezposed types in LCL. They are so named because the represen-
tation of the type (i.e. the type itself) is “exposed”. This is in contrast to abstract
types, which are also supported by LCL. The representation of an abstract type is
hidden from its clients’.

There are two kinds of abstract type: immutable and mutable. Immutable ab-
stract types are treated in a way that is similar to exposed types. Mutable abstract
types provide for a more object-oriented style of programming [GH93, p.59]. Given
the declarations in Figure 2, the differences between immutable and mutable types
are highlighted in Table 1. (T, in Figure 2, represents an arbitrary exposed type and

S, in Table 1, is the sort of T.) The first column of the table consists of expressions

6__A, ' are synonyms for __\pre and __\post respectively.

"In general, it is not possible to hide the representation of an abstract type in C, but use of
LCL and its conventions allows programmers to detect, and hence prevent, illicit access to the
representation of an abstract type.
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involving the identifiers declared in Figure 2. Just as ¢ and ¢’ denote the value of
the object e in the pre- and post-states, €® denotes the value of the object ¢ in an
arbitrary (generic) state. __*is a synonym for .__\any. The second column shows the

LSL sort associated with the expression from the first column and in the same row.

immutable type I;
mutable type M;

constant T ct;
constant I ci;
constant M cm;

T vt;
I vi;
M vm;

Figure 2: Sample LCL Constant and Variable Declarations

[ LCL Expression | LSL Sort |

ct S
ci I
cm Obj [M]
em”, cm', cm® M
vt Obj [S]
vi Obj[I]
vm Obj [0bj [M]]
vth, v/, vt* S
vi®, vi', vi® I
vm®, vi', vm® Obj [M]

Table 1: Sorts of Sample LCL Expressions

Notice that cm, a constant of the mutable abstract type M, denotes an object
containing values of sort M. The “value” of cmis an object and this “value” is invariant:
cm will always denote the same object (although the value contained in the object
may change since this value depends on the program state). Also note that vm is an
object that can contain objects containing values of sort M. Thus, the “values” of a

mutable abstract type M are objects containing values of sort M.
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2.3.3 Example: Queue

The Queue LCL specification is given in Figure 3. Queue is declared to be a mutable
abstract type, and E1t as an abbreviation (called a typedef name) for int. The
LSL theory for Queue’s is defined in the Queue trait given in the Larch book [GH93,
p.171].

mutable type Queue;
typedef int Elt;

uses Queue(Elt for E, Queue for C);

Queue Create_Queue(void) {
ensures result’ = empty A fresh(result);

}

void Dispose_Queue(Queue q) {
modifies q;
ensures trashed(q);

}

void Enqueue(Queue q, Elt ) {
modifies q;
ensures q’' = append(e,q’);

Elt Head(Queue q) {
requires q" # empty;
ensures result = head(q");

}

Figure 3: Queue LCL Specification

Modules defining an abstract type typically have creator and destructor functions.
A creator function, as the name implies, creates an instance of the abstract type. A
destructor function is applied to an object when it is known that the object wili no
longer be needed. Usually, destructors deallocate the storage associated with the
object.

Create_Queue is the sole creator function for Queue module. The value contained
in the created instance is the empty queue. An occurrence of the expression fresh(e)
in an ensures clause guarantees that the object e is not aliased to any object that was
visible to a client in the pre-state [GH93, pp. 76-77]. Hence, the instance created by
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Create_Queue is not aliased to any client-visible object. The expression trashed(c)
is used in an ensures clause to state that the object ¢ can no longer be reliably
accessed by a client—usually because (in the implementation) the storage associated
with e is reclaimed. [f a client attempts to access a trashed object, then the program
behavior is undefined [GH93, p.76). The destructor Dispose_Queue disposes of its
argument q. Enqueue adds the element e to the head of the queue q and Head yicelds
the element that is at the head of the nonempty queue q without altering the value
of q.

2.4 Shortcomings of LCL 2.4

Preliminary work on the semantics of LCL brought to light errors, omissions and
inconsistencies in the language and its intended interpretation. The purpose of this
section is to document those shortcomings that can be understood without detailed
knowledge of the semantics of LCL. Solutions to the shortcomings arc discussed in
Section 3.2.

2.4.1 Dependencies Between Objects

In this section we introduce the concept of object dependency and describe how
dependencies can arise. We argue that programmers rely on certain “desirable” kinds
of dependency and that they tend to overlook other “less desirable” forms. Our
examples will serve to illustrate that LCL lacks operations that would .llaw specifiers

to document and reason about dependency relationships in interface s;.ecifications.

2.4.1.1 Definitions

In C, an object is a region of data storage consisting of a contiguous sequence of
storage units {ISO, p.2]. In LCL, the term is used in a more abstract sense (in
particular because of the need to model objects that are instances of abstract types):
an object is a container for values of a particular type [GH93, p. 59].

Informally we say that an object z; depends on an object z; if changing the value
contained in z; may affect the value contained in z;. It is possible for z, to depend

on z; without z; depending on z;8. If z; depends on z; or z; depends on z;, then we

8This kind of asymmetry may exist between instances of an abstract type.
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say that a dependency exists between z; and z,. If z; is not dependent on 1, then we
say that z; is independent of z;. The objects in a given collection are independent, if
each object from the collection is independent of every other object in the collection.
Given an expression e that refers to an object—e is called an lvalue in C—we shall
often lighten our prose by speaking of “the object e” instead of the more verbose
but precise “the object referred to by e”. Thus, for example, we may state that
e; and e, are independent by which we mean that the objects that are denoted by
the expressions are independent. As a consequence, we note that if e; and e; are
independent then the expressions cannot be aliases.

Turning to the low-level model of C for an example, we understand that two
objects with overlapping regions of storage are dependent on each other. Thus, objects
of array, structure and union types depend on the objects that correspond to their

members and vice versa. For example, given the following declarntions

struct { int i; } s;
int a[10];

8.1 and s depend on each other since these expressions refer to the same region of
memory. Also, by definition, s and s.i are dependent on each other since changing
the value of one will affect the value of the other; the dependency relationship can be

characterized by the following expression:

8.i* = 8.1’ & 8" = g’

An object of a structure type contains values that are LSL tuples [GH93, p.61]. In
this case, the value contained in s will be a one-component tuple whose value is
always equal to the value of s.i: that is, (s*).i = (s.i)®. Similarly, a depends
on its members—e.g. a[9]. On the other hand, a[0], a[1], ..., a[9], and s.i are
independent. The dependency relationship that holds between an aggregate or union
object and its members is one of the kinds of dependency that programmers rely on
and actually take for granted.

When dealing with abstract types we can no longer appeal to the low-level concept
of overlapping storage for an intuitive model of dependency. Whether a dependency
exists between two instances of an abstract type will depend on the implementation
of the abstract type [EHO94].
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2.4.1.2 Motivating Example: Error in the Larch Book

The purpose of this example is twofold: we wish to illustrate that there are legitimate
uses of dependencies (beyond those mentioned in Section 2.4.1.1) and that there are

certain kinds of dependency that are often overlooked by specifiers and implementors.

typedef struct {... char name[maxEmployeeName]; ...} employee;

bool employee_setName(employee *e, char nal]) {
requires nullTerminated(na’);
modifies e—~>name;
ensures result = lenStr(na") < maxEmployeeName
A (if result
then sameStr(e—>name’, na’)
A nullTerminated(e—>name’)
else e—>name’ = e—>name’);

Figure 4: An Excerpt from employee.lcl

Our example (see Figure 4) is an excerpt from the Larch book employee specifi-
cation [(GH93, p.65]. This specification is part of a small database program used
to store and perform simple queries on employee records. Employee records are
represented by the exposed type employee which is defined as a C structure. Of
the functions provided for manipulating employee records we show only the func-
tion employee_setName. It can be used to assign a string to the name field of an
employee record. Before calling employee_setName, a client must ensure that the
parameter na is a null terminated string. After the call, the name field of the given
employee record will be set to the string contained in na if the string length is less
than maxEmployeeName. Otherwise, the name field of the record is left unchanged.
The function result is true if and only if the length of the string contained in na is
less than maxEmployeeName.

Suppose that all of the employee records in a given database begin with either
of the titles “Mr.” or “Ms.” and that the database maintainer wishes to remove
the titles. He or she decides to write a program that will accomplish this task by

accessing each employee record, say, as the variable e, and then performing the call

employee_setName(Ze,e.name + 3)
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Unfortunately the program crashes® and inspection of the implementation of employee_setName

reveals the cause:

bool employee_setName(employee *e, char na []) {
int i;
for (i = 0; na[i] !'= '0/; i++)
if (i == maxEmployeeName) return FALSE;
strcpy(e—name, na);

return TRUE;

The particular way in which employee_setName is being invoked causes the
standard library function strcpy to be called with overlapping arguments (since
e->name and na are part of the same array). The behavior of strcpy is undefined
when it is called under such circumstances [ISO, §7.11.2.3]. The specification of
employee_setName does not prohibit calls for which its arguments are dependent.
It is possible that the specification inaccurately reflects the intent of its authors or
that the source of error is the implementation: in either case the implementation
is incorrect with respect to its specification. With appropriate (but small) changes,
the implementation can be corrected by making use of the standard library func-
tion memmove instead of strepy (since memmove may be called with overlapping ar-
guments). The reader may wonder whether memmove can be specified in LCL; we
address this question in Section 2.4.1.4.

We can trace the publication of the database program to the original technical
report on LCL 1.0 [GH91]. The program was subsequently revised and published as
part of the Larch book [GH93, §5.3]. To determine the effectiveness of LCLint at
detecting certain classes of errors in LCL specifications and their implementations,

David Evans applied LCLint to (among others) the database program. Evans writes:

“The specifications [of the database program| had been checked by the
LCL checker [a predecessor of the LCLint tool] ..., and the source code
had been compiled and tested extensively. Since the code and specifi-

cations were written by experts, and checked copiously by hand prior to

A sample program compiled with gcc version 2.6.3 and run under SunOS release 4.1.3 generates
a segmentation fault.

20



publication, it was expected that not many bugs would be found.” [Eva94,
p.41]

The case study “did uncover two abstraction violations, and one legitimate modifica-
tion error” [Eva94, p.50]. We have demonstrated an additional error in the database
program which has also escaped the scrutiny of the original designers and subsequent
reviewers.

This example illustrates that there are legitimate uses of dependencies (such as
the dependency permitted between *e and na in employee_setName) beyond those
mentioned in Section 2.4.1.1. It also illustrates that errors resulting from unexpected
depen-encies between arguments can easily be overlooked. We believe that this is true
because developers have not been encouraged to think about dependencies that may
exist among parameters or between parameters and global variabies. A specification
language that permits dependencies must have constructs that allow the description of
dependency relationships as well as a semantic model that supports reasoning about

dependencies: LCL is deficient in both these respects.

2.4.1.3 Example: lookup

The specification given in Figure 5 defines a global struct variable as consisting of
an array of elements, elts, and the size of the prefix of elts that is in use. It also
defines the function lookup which can be used to search for the occurrence of a given
value v in as?®. If v is present in as, then *i is set to the index of an element of as
containing v and as is left unchanged; otherwise, v is added to as and *i is set to the
index of the newly added value. The function result is true precisely when the value
v occurs in as (before lookup is invoked). The predicate that follows the else in the
ensures clause of lookup is not shown since it is not relevant to our discussion.
After a careful review, the reader may feel that the specification of lookup is
accurate. It is actually inconsistent—there is no implementation that can satisfy
it—since there are situations for which the postcondition cannot be satisfied. For
example, suppose that v occurs in as and that *i aliases as.size or any of the
elements of as.elts that are in use. Then the ensures clause states that the value of
*i may change while requiring that the value of as remain unchanged; this constraint,

in general, will be unsatisfiable in the presence of the described aliasing,

10We will at times use the term “as” to refer to “the prefix of as.elts that is in use”.
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constant int N;
struct AS {int size; int elts[N];} as;

bool lookup(int v, int *i) struct AS as; {
requires as.size” < N;
modifies *i, as;
ensures  result = v € prefix(as.elts”,as.size’)
A if result
then 0< (i)' A (*i)! < as.size"
A as.elts” [(xi)'] = v
A as' = as?
else /* v is inserted into as.elts */ ...;

Figure 5: Specification of lookup

We can attempt to remedy the situation by strengthening the precondition of
lookup so that *i is prohibited from aliasing any of the subcomponents of as (see

Figure 6). The resulting specification is less clear and more complex (this augments

bool lookup(int v, int *i) struct AS as; {
requires as.size® < N A *i # as.size
A (VY ji:int ((0<j A j < as.sizeM)
= *i # as.elts[j1));

Figure 6: Strengthened Precondition for lookup

the risk of introducing errors into the specification) and less maintainable since the
specification is now more sensitive to changes in the AS structure.

More importantly, the specification is still inconsistent since it is possible for *i
and as to satisfy the requires clause without being independent. In formulating
the strengthened precondition we have relied on the following false assumption: if
two distinct objects are instances of base types (char, int, etc.), then they must
be independent. In C, as in some other imperative programming languages, this
assumption can be invalidated by the use of union types. Type casting can also

invalidate the assumption.
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This example illustrates the need for new LCL language primitives which accu-

rately and succinctly express the independence of objects.

2.4.1.4 Example: ISO C String Library Functions

It would be reasonable to expect LCL to be expressive enough to allow one to doc-
ument the behavior of most ISO C standard library functions. Consider the task of

writing specifications for the standard string copying functions memcpy and memmove

[1SO, §7.11.2].

void *memcpy(void *s1, const void *s2, size_t n);

void *memmove(void *s1, const void *s2, size_t n);

Both functions can be used to copy n characters from the object pointed to by s2
into the object pointed to by s1. There is an extra requirement for memcpy: the
objects *s1 and *s2 must not overlap [ISO, §7.11.2]. It is impossible to write an LCL
specification for memcpy since we cannot express the requirement that its arguments

are independent of each other.

2.4.1.5 Dependencies and Abstract Types

The fresh operator is the only LCL operator, other than equality over objects, that
allows specifiers to document dependency relationships between objects. An occur-
rence of the expression fresh(e) in the ensures clause of a function specification
asserts that the object referred to by e is not aliased to any object that was visible
to the client before function entry (GH93, p. 77]. By means of the next example, we
highlight the need for LCL primitives that would allow for a more precise description
of the dependency relationships that may exist between objects.

Most abstract type constructors yield instances of the abstract type that are
independent of other client-visible objects. It is not uncommon, though, to find
“quick” or “destructive” versions of some constructors that fail to guarantee the
independence of the resulting abstract type instance; independence is sacrificed for
sake of efficiency.

For example, a list module might provide two versions of the concatenation operation--
see Figure 7. Notice that the specification of fastConcat does not ensure fresh(result).

It would be more useful, for example, if we could assert that the only dependency
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mutable type List;
uses List(int,List);

List mkList(void) {
ensures result’ = empty A fresh(result);

List concat(List x1, List x2) {
ensures result’ = x1" || x2" A fresh(result);

}
List fastConcat(List x1, List x2) {
ensures result’ = x1* || x2%;

}

Figure 7: List specification.

created by fastConcat is between result and x2. This extra information would
allow us to make better use of fastConcat, for example, in the optimization of a

series of successive concatenations (as is illustrated in Figure 8).

List concatBunch{List x[10]) {
int i;
List result;

result = mkList();
for(i = 9; 0<i; i--)

result = fastConcat(x[i],result);
return result;

/* ensures fresh(result)
A result’ = x[01" || ... || x[91"; »/

Figure 8: Function concatBunch

2.4.1.6 Summary

In this section we have defined the concept of dependency between objects. An object
) is said to depend on an object z, if changing the value contained in z; may affect

the value contained in z;. Dependencies may arise between:
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e an object of an array, structure, or union type and the objects that correspond

to its members,
e the members of an object of a union type,
e subarrays of a mutually common array,
o “arbitrary” objects (related by means of a type cast),
s instances of abstract types,

e an instance of an abstract type and the objects that constitute its representa-

tion.

Dependences can arise in programs written in any imperative programming language
that provides array, structure (record), union or abstract types. It can be said that
dependencies are a distinguishing characteristic of imperative programming languages
and that they are also to blame for much of the complexity in the semantics of these
languages. This would seem to be the price to pay for giving programmers low-level
control over storage reuse.

Programmers take certain forms of dependency for granted; such as the depen-
dency between aggregate or union objects and their members. Under certain circum-
stances, there are other forms of dependency that are undesirable—e.g. the occurrence
of aliasing among function parameters. Since it is not possible in general to detect de-
pendencies by static analysis, it becomes the responsibility of the developer to reason
about and, when necessary, prove the absence of dependencies. This can be achieved
only if an appropriate proof system—supported by a proper collection of language
constructs—is available.

By means of examples we have shown that LCL could benefit from the addition of
language constructs that would allow specifiers to accurately and succinctly express
dependency relationships. Without these constructs there are useful programs that

cannot be specified.

2.4.2 Implicit Constraints on Parameters

In LCL, it would seem that the specifications of functions with parameters have

implicit constraints, derived from the parameter declarations, that affect the meaning
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of the specifications. Unfortunately, most of these implicit constraints are either not
documented or inadequately defined. The purpose of this section is to expose these
implicit parameter constraints and to discuss the consequences of their inclusion in

LCL.

2.4.2.1 Conustraint for All Parameters

There is an implicit constraint that applies to all parameters in a function specifica-
tion; it requires that a function be called with arguments that are defined. Although
the LCL literature is not clear, it would seem that the “defined” means “initialized”.

For example, given the specification

T gv;
void £f(Tpv) { ... }

(where T is any LCL type) a client would be required to initialize gv before calling £
with gv as an argument. More concretely, let T be the mutable abstract type empset
(of sets of employee records) and f the function empset_clear from the Larch book

empset specification [GHI3, p. 73]

void empset_clear(empset 8) {
modifies s;

ensures 8’ = { };

¥

By the absence of a requires clause, no explicit requirements are placed on clients
of empset_clear. Implicitly, though, it is assumed that on function entry, s is
bound to a defined empset (as can be concluded from the informal description of
empset_clear): “empset_clear, is provided for reinitializing an existing empset”
[GH93, p. 76].

This implicit constraint on parameters is not documented in the Larch book
[GHI3] or in Tan’s semantics {Tan94] but there is abundant evidence of reliance on
the constraint. We have only been able to find an explicit (but incomplete) statement

of the implicit parameter constraint in Evans’s thesis:

“An omitted requires clause means there are no constraints on the caller,
other than the implied constraint that all parameters that are not specified
out must be defined before the call.” [Eva94, p.15]
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(The out parameter qualifier is discussed in Section 2.4.2.3.) Although Evans
only describes the implicit constraint in the context of an omitted requires clause,
the constraint applies even when the requires clause is present. (Otherwise, the
specification of a function—of one or more parameters—with an omitted requires
clause would differ from the equivalent specification which has true as an explicit

requires predicate.)

2.4.2.2 Parameters of Pointer Types

There is an additional constraint for parameters of pointer types. The implicit prop-
erty requires that a pointer parameter reference an allocated object and that this
object be defined. This constraint is not documented in the Larch book nor in Tan’s

semantics!!, Evans writes:

“Normally, if a parameter to a function is a pointer, it i, assumed that the

value it points to is defined and may be used in the bedy of the function.”
[Eva94, p. 36]

We discuss some of the shortcomings associated with this implicit constraint.

2.4.2.2.1 Constraint is Overly Restrictive Theimplicit constraint for pointer
parameters is overly restrictive since it prevents us from using certain useful imple-

mentation techniques. Consider the specification fragment!?

typedef struct node { ... } *List;
constant List emptyList = O;
List mklList(int info, List tail) { ... }

in which the empty list is represented by a null pointer. The function mkList is
meant to allow clients to construct a new list from a given integer and list. The
implicit constraint for pointer parameters effectively prohibits us from representing
the empty list by means of a null pointer, since, for example, we cannot call mkList

with emptyList as an argument for tail. This is because all pointer parameters

Tan documents the effect of the out parameter qualifier as applied to parameters of pointer
types, but he fails to describe the implicit constraints derived from pointer parameters that are not
qualified with out.

12This specification fragment is not accepted by LCLint 1.4c (the latest release as of the time of
writing) because it does not recognize 0 as a null pointer. This will be fixed in a future release.

27



must refer te allocated objects and a null pointer “is guaranteed to compare unequal
to a pointer to any object or function” [ISO, §6.2.2.3]—i.e., a null pointer can never

refer to an allocated object.

2.4.2.2.2 Constraint is Ambiguous and Problematic From a given pointer

parameter p we can access all of the objects p+i for i in the index set
I = {1 ] minIndex(p) < ¢ < maxIndex(p)}

[GH93, p.60). With this in mind, there would seem to be two reasonable interpre-
tations for the implicit constraint. Firstly, we can interpret the implicit constraint
as applying to all of the objects that can be accessed via p: i.e. all objects p+i (for
i € I) would have to be allocated and defined. Such an interpretation renders the
constraint too restrictive. For example, this would require that every member of a
string (represented by a pointer into an array of char) be initialized before the string
can be passed as a parameter, even if the string does not occupy the entire array.
There is no reason to require that the string be initialized beyond the null character
that terminates the string.

Another possible interpretation for the implicit consi:aint would require that all
objects p+i (i € [) be allocated but that only the object at p need be defined.
Assuming 1 € I, how would a specifier express the additional requirement that p+1
be defined? There are no LCL language constructs available to the specifier that

would allow the expression of this property.

2.4.2.3 The out Parameter Qualifier

It is common in C for a function to return values to its caller by means of objects
that are referenced by the function’s pointer parameters; the out parameter qualifier
serves to indicate which parameters are being used for this purpose [Tan94, §4.3]. The
specification of add given in Figure 9 illustrates the use of out. The out qualifier has
the effect of partly “relaxing” the extra constraint that is usaally applied to pointer
parameters. An out qualified pointer parameter is still implicitly required to refer to
an allocated object, but that object need not be defined [Tan94, §4.3].

As a final remark, we highlight a contradiction in [Tan94): although Tan states
that the out qualifier is applicable only to parameters of pointer types [Tan94, §4.3],

28



void add(int m, int n, out int »sum) {
modifies *sum;
ensures (*sum)’ = m + n;

)

Figure 9: Use of out in a function specification.

he also applies it to array parameters [Tan94, §D.27]. Of course, this more liberal use
of out is reasonable (and is accepted by LCLint), but it has not been documented.

Array parameters are discussed in Section 2.4.2.4.

2.4.2.4 Parameters of Array Types

Although we have found no explicit description of it, there is an implicit constraint on
array parameters that is similar to the one for pointer parameters. This would seem
reasonable, due to the close relationship between pointers and arrays in C. In fact,
someone familiar with C might think that it would be unnecessary to reformulate
the implicit constraint for pointer parameters in terms of array parameters because
the type of an array parameter is “adjusted to” a pointer type [ISO, §6.7.1]. But in
LCL, parameters of array types have a different semantics from those of pointer types
[GH93, p. 60}, [Tan94, §7.3.1].

The specification of date_parse [Tan94, §D.28] given in Figure 10 provides ev-
idence of the implicit assumption that array parameters refer to objects that have

been allocated and whose contents are defined. cstring’s are null-terminated arrays

bool date_parse (cstring indate,..., out date *d)... {
modifies ...;
ensures result = okDateFormat(getString(indate”))
A if result
then (*d)’ = siring2date(getString(indate”))

oo ey

Figure 10: Tan’s date_parse Function

of char. If indate is a well-formatted date, then this date is parsed and returned
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in *d. The function date_parse makes use of the content of indate, hence indate
must refer to allocated storage and its contents must be defined.

The implicit constraint over array parameters suffers from the same ambiguities
and drawbacks as the constraint for pointer parameters discussed in Section 2.4.2.2.2;
i.e., it is not clear whether the implicit constraint requires that all or only some of

the array elements be defined—either interpretation leads to difficulties.

2.4.2.5 Parameters of Other Types

Consider a function specification with the header

void £(int **i)

The implicit constraints require that i be defined and that *i be allocated and defined.
Suppose that we further wished to constrain the parameter by requiring that **i be
allocated and defined. We cannot document this extra property for lack of language
primitives in LCL. Similar remarks can be made about parameters of other types

(e.g. pointer to pointer, array of pointer, struct containing a pointer member).

2.4.2.6 Parameters vs. Global Variables

In designing a module one must decide on the mechanisms by which information will
be communicated between the module and its clients. In particular, one must choose
between information exchange by means of function parameters or global variables.
A designer’s freedom of choice is impeded (in favor of the use of function parameters)
by the lack of expressiveness of LCL.

For example, given

int *gv;
void £(int *pv) { ... }
void g(void) int *gv; { ... }

one could not express, in the specification of g, a constraint on gv that would be
equivalent to the implicit parameter constraint on pv in f. This is because there
are no language constructs in LCL that express the property that a given object

is allocated, or that it is both allocated and defined. It is also because, unlike for
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function parameters, implicit constraints are not imposed on variables (like gv) that

are part of the global variable list of a function specification.

2.4.2.7 Summary

We have introduced the various kinds of implicit parameter constraint that affect the

meaning of LCL function specifications, and we have argued that the constraints are

¢ not well documented (they are ambiguous, and in some cases, simply not doc-

umented at all),
e without formal or informal semantics, and

e in some cases, overly restrictive (since they prohibit us from writing specifica-

tions for useful programs).

We have also illustrated that LCL lacks language constructs that would allow
specifiers to assert whether or not an object is an allocated object and whether or

not it contains a defined value.

2.4.3 'Trashing of Objects

The trashed operator can be used in the ensures clause of a function specification to
indicate that a given object cannot be reliably accessed after the function returns. The
trashed operator is typically used in the specifications of functions that deallocate
memory or that dispose of instances of mutable abstract types. For example, after a
call to the function trashInt0Obj

void trashIntObj(int *i) {
modifies *i;

ensures trashed(*i);

>

a client must not attempt to access the contents of *i “because referencing a trashed
object can even cause the client program to crash” [GH93, p. 76]. Notice the presence
of *i in the modifies clause: an object can be trashed only if it is listed in the modifies
clause—although specifications in the LCL literature consistently mention trashed

objects in the modifies clause, there is no explicit statement of this requirement.
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Hence, the modifies clause plays a dual role: it serves to identify those objects that
may be trashed as well as those objects that may be preserved but whose values may

be modified.
On the other hand, after the invocation of changeVal

void changeVal(int *i) {
modifies *i;

ensures true;

}

a client may still make use of *i (though no constraint is placed on the value contained
in *i) [(GH93, p.76]. Thus, an object that is not explicitly trashed is implicitly
preserved—i.e. not trashed. We will illustrate next that this aspect of the semantics
of LCL can lead to contradictory interpretations for function specifications that should

logically have the same meaning.

2.4.3.1 Referential Opacity

Consider the following specification of trashOrChange, which may nondeterministi-

cally choose between trashing and not trashing *i:

void trashOrChange(int *i) {
modifies *i;

ensures trashed(*i) V - trashed(*i);

}

The predicate in the ensures clause is an instance of the law of excluded middle and
hence, it is logically equivalent to true. One would expect to be able to simplify the

ensures clause while preserving the meaning of the specification.

void trashOrChange(int *i) {
modifies *i;

ensures true;

}

The resulting specification of trashOrChange cannot trash *i because of the implicit

constraint that *i be preserved.
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We have illustrated a violation of the principle of referential transparency which
states, in essence, that the only important property of an expression is its value and
that we can, consequently, substitute equals for equals. Referential transparency
is a fundamental principle of mathematical formalisms. If P is logically equivalent
to @ then the meaning of a function specification should remain unchanged if an
occurrence of P is replaced by @ in the ensures clause. We have illustrated a counter
example above (using true and trashed(*i)V — trashed(*i)), thus demonstrating
an instance of “referential opacity”. Not only do formal specification languages permit
precise documentation, but they also provide the grounds for the formal analysis and
transformation of specifications. Formal arguments are most often conducted within
a proof system (rather that by direct application of a model theory). For example,
in the Refinement Calculus [Mor90], one can make use of “refinement laws” (which
can be used as proof rules) to establish the correctness of an implementation with
respect to its specification. As a consequence of the identified referential opacity,
we note that laws, such as the strengthen postcondition law, do not hold for LCL.
The strengthen postcondition law states that if @ = R, then any implementation

satisfying (the specification body)

requires P;
modifies my, ..., my;

ensures ();
will also satisfy

requires P;
modifies my, ..., m;;

ensures K;

Two applications of the strengthen postcondition law allow us to infer that the two
specifications of trashOrChange should be equivalent, but they are not. Hence, one
of the problems with the implicit constraint related to nontrashed objects is that it
invalidates the strengthen postcondition law. Intuitively this law is reasonable (in fact
it holds in other specification languages—such as the Refinement Calculus [Mor90]
and VDM [Jon90]—in which operations are documented using pre- and postcondi-

tions) and invalidity of the law should be taken as an indication of an error in the

design of LCL.

33



2.4.3.2 Trashing the Whole or the Parts of an Object

What can be asserted about an aggregate or union object if one of its members is

trashed? For example, given the following declarations

int al10];
struct {int i; char ¢;} s;

union {int i; char c¢;} u;

void trashIntObj(int #*i) {
modifies *i;

ansures trashed(*i);

}

what can be said about a, s or u after invoking trashIntObj with #a[1], &s.1i, or
&u.i (respectively) as an argument? (The answer to this question is not as trivial
as it first appears. Consider, for example, memory management libraries that allow
clients to deallocate (trash) parts of an allocated array.) Conversely, does trashing
an instance of an aggregate or union object trash its members too? The answers to

these question are not found in the current literature on LCL.

2.4.4 Relevance of Shortcomings

Why are these shortcomings important? The concept of object dependency is appar-
ently lacking from the current Larch culture. There seems to be an implicit assump-
tion that object dependencies exist only in a restricted form. The key problem here
is not the assumption itself but that there is no precise statement of this assumption.
Hence, it is not possible to determine the kinds of object dependency that are being
modeled. This is a serious issue since, fundamentally, it is the semantic model that
determines what specifiers can describe and reason about.

Function specifications form the major part of most LCL specifications. Thus, a
clear definition of the implicit constraints that are applicable to function specifications
is crucial. To this end we have highlighted the nebulosity surrounding the definition
of implicit parameter constraints and we have shown the inadequacy of some of these
constraints.

The implicit constraint related to nontrashed objects, though clear, creates an

instance of referential opacity. This is undesirable since, for example, it invalidates
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certain laws which will eventually be used to reason about LCL specifications.
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Chapter 3

LCL/

Two of the points that are considered to be “the essence of Larch” [GH93, §8] are:

e The most important use for specification is as a tool for helping to understand

and document interfaces. Therefore, clarity is more important than any other

property.

¢ Specification languages should be carefully designed. Having an elegant seman-
tics is not enough. Careful attention to syntax and static semantic checking is

crucial,

Clarity and understandability of specifications can only be achieved if there is clarity
in the definition of the specification language. Although an elegant semantics is not
sufficient, an accurate and clearly defined semantics is necessary. Hence, our primary
goal has been to maximize the simplicity and clarity of the semantic model of LCL
while maintaining or enhancing the expressiveness of the language.

In this chapter we discuss the major design decisions (Section 3.1) behind LCL/,
the variant of LCL that is the subject of this thesis. (In the remainder of the thesis an
unqualified use of the name “LCL” will refer to LCL’ unless noted otherwise.) These
design decisions, which have been guided by our primary goal of simplicity, clarity and
enhanced expressiveness, affect both the semantic model (and in particular the model
of the store given in Chapter 6) and the language definition. In Section 3.2 we propose
changes to the LCL language that allow us to overcome the shortcomings documented
in Section 2.4. Our approach to the semantic definition of LCL is introduced in

Section 3.3 and an overview of the semantics is given in Section 3.4.
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3.1 Major Design Decisions

3.1.1 Undefined Variables and Undefined Values

How we choose to model undefined variables, if at all, has a profound impact on the
semantic model of LCL. We cannot escape the fact that objects are implemented
in some medium—e.g. volatile storage—that is used to encode the values contained
in the objects. For a given object of type T, we may ask whether all bit patterns in
storage represent values of type T; there are cases where the answer to this question
is no. We say that an object is well-defined with respect to a type T if it contains
an encoding that corresponds to a value of type T; that is, if the object contains a
valid representation of a value of type T. When we say, without qualification, that
an object is well-defined, we mean that the object is well-defined with respect to its
declared type.

Uninitialized objects are problematic because there is no guarantee, in the general
case, that they are well-defined. The use, in a computation, of an object that is
not well-defined can at best have no effect, and at worse lead to program faults
whose origin (use of the undefined object) is difficult to locate. Various approaches
have been adopted in programming languages to cope with uninitialized variables.
Some languages have been designed so as to ensure that every variable always has
a well-defined value. Standard ML is one example!. In Turing [HMRC88], use of
uninitialized variables is illegal and is reported by the compiler, when it can, or
detected by run-time checks. The semantics of Turing are given under the assumption
that uninitialized variables are not used in computations. Ernst [EHO094] describes a
variant of Modula-2 that makes use of implementation specific initialization routines
that are invoked automatically when instances of abstract types are created.

The prevailing belief would seem to be that the use, in a computation, of an
uninitialized variable is an error. There are exceptions, for example, Hehner’s theory
of programming supports reasoning about uninitialized variables [Heh93]. In support
of the prevailing belief, many compilers (and other static program analysis tools such
as LCLint and its ancestor lint) can, in some cases, indicate points in a program

which will lead to the use of a variable before it has been assigned a value.

1Since SML is vrincipally regarded as a functional programming language its use as an example
may seem inappropriate. This is not so, since SML is “equipped ... with full imperative power”
[MTH90, p. vii).
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Most semantic models (for programming or interface specification languages) do
not support uninitialized variables and, if they do, they make a fundamental as-
sumption: once an object has been initialized (i.e. becomes well-defined) it remains
well-defined for the remainder of its existence. Of course, this need not be the case.

As is illustrated by the following example, the issue of uninitialized objects can

potentially carry over into the underlying logic:

immutable type T;
T gv;
void £(T pv) { ...}

Since T is an immutable type, the parameter pv is of sort T. If f is invoked with gv
as an argument when gv is not well-defined, then pv will have an undefined value.
There exist logics that support undefined values, among them are MPL,, [MdL94] (the
multisorted partial infinitary two-valued? logic underlying COLD-K [FJKRdL89]) and
LPF [JM94] (the three-valued Logic of Partial Functions underlying VDM [Jon90]).
There are no theoretical limitations that would prevent LCL from having a logic that
would differ from that of LSL. As is discussed further in Section 3.1.2, it is our opinion
that, if possible, this should be avoided. In this thesis we explore the feasibility of
using the same logic for both LSL and LCL.

3.1.2 Logical Basis of LCL/

LSL is a specification language. LSL is used to document traits whose interpretations
are viewed as theories in a first-order logic. We will refer to the logic underlying
LSL as LL. Although LL has not been formally defined®, it is understood to be a
classical multisorted logic with equality in which all operations are interpreted as
total functions. LL is very similar to ML= defined by Middelburg and Renardel de
Lavalette [MdL94]. What should be the logic underlying LCL? Although there is no
obligation to do so, we have chosen LL. Our principal motivation for choosing LL
as the logic underlying LCL is based on our primary design goal: simplicity. Using a

logic that would be different from that of LSL would render LCL more complex and

2Hence, in MPL,,, all sorts except the Boolean sort have an undefined value.

3Guttag et al. provide a semantics for LSL [GHM90], but they do not define LL. Similarly, in
the Larch book a tutorial introduction to the logic underlying the Larch languages is given [GH93,
§2], but LL is not formally defined.
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more confusing to users. Any design decision that will simplify the semantics of L.CL
should be exploited. If LL proves to be inadequate, then the logic can be changed;

maybe in this case we can consider changing the logical foundations of LS. to match
that of LCL.

3.2 Shortcomings Resolved

Following the organization of Section 2.4, we document solutions to the shortcomings

that have been identified in that section.

3.2.1 Dependencies Between Objects

The history of programming languages has been marked by a tendency to make
languages more abstract. Increasingly, languages are based on programming concepts
(i.e. semantic objects) that allow designers to think at a level of abstraction that
is closer to the problem domain and further from the computer architectures on
which the programs are being executed. In the programming language comrnunity,
object dependencies tend to be frowned upon. High-level languages tend to severcly
restrict the kinds of dependency that can be created and low-level languages are
characterized by the opposite. In the extreme, object dependencies are prohibited
from high-level languages—as in logic or functional programming languages in which
computation is based on values rather than objects (by definition, object dependencies
cannot exist between values, only between objects). It is important to note that
object dependencies cannot be eliminated from imperative programming languages
that support abstract and indexable* types.

By suggesting the systematic adherence to certain programming conventions (c.g.
with respect to mechanisms for the implementation and use of abstract types), LCL
attempts to raise the level of abstraction at which C programmers think. In provid-
ing a semantics for LCL, there would seern to be a tension: although use of LCL
promotes C programming at a higher level of abstraction, it is also necessary that
the semantic model of LCL subsume that of C since LCL is an interface specification

language for C. The LCL semantic model must capture the behavior of as large a

4E.g. array or dynamic types.
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class of C programs as is possible. Hence arises the question: to what degree should
dependencies be supported in LCL?

Usually, a model that supports descriptions from two levels of abstraction must be
defined in terms of concep.s that are from the lowest level. Hence, the semantic model
for LCL must accurately capture the kinds of object dependency that can be created
in C programs. Our approach to modeling dependencies is formally described in
Chapter 6. Of course, it is also necessary that the LCL language have an expressively
complete set of constructs for describing dependency relationships. These consty.cts
are introduced next.

In its full generality, the object dependency relation is a dynamic property. For
example, dependencies between instances of abstract types implemented by shared
realizations may change at run-time [LHO94]. Modeling the object dependency rela-
tion as a dynamic property would complicate the semantics and would have important
repercussions at the language level. It is not clear, at this point in our research, what
language constructs would be best suited to supporting a dynamic dependency rela-
tion. The extent to which the dynamic quality of the dependency relation would be
actually needed in documenting interface specifications is also unclear. Consequently,
in this version of the semantic model the object dependency .elation is represented by
a static relation, that is, a relation whose value is independent of the program state.

We propose the introduction, in LCL, of two predicates:

e depOn(e, e') holds when the object referred to by e depends on® the object

referred to by e'.

o indep(ep, ez..., €,) holds when the expressions ¢, e, ..., e, denote objects

that are independent.

The depOn predicate allows specifiers to describe any (static) dependency relation
that can exist between objects. Although indep can be defined in terms of dep0On,
indep is more likely to be used in practice cince we generally wish to specify that
the objects in a given collection are independent (as opposed to characterizing a
particular dependency relationship). For example, indep can be used to write concise
and accurate specifications for the functions lookup and memcpy. Concretely, in the
case of lookup, we capture the requirement that as and *i be independent by adding

indep(as,*i) to the requires clause:

3The definition of dependence is given in Section 2.4.1.1.
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bool lookup(int v, int *i) struct AS as; {

requires as.size” < N A indep(as,*i);

The last example of Section 2.4.1 required that we be able to strengthen the speci-
fication of fastConcat by ensuring that the only dependencies created by fastConcat
are between result and x2. More precisely, we wish to ensure that result is inde-
pendent of any client-visible object that is active in the pre- and post-states and
that is also independent of x2. One way of rewriting the specification to include this

property is as follows®

List fastConcat(List x1, List x2) {
ensures V void *x (
((*x)\activePre A (*x)\activePost
A indep(*x,x2)) =
indep(result,*x))
A result’ = xi1M || x2%;

(The \activePre and \activePost operators are discussed in the next section.) The
ensures clause is somewhat intimidating. Frequent occurrence, in specifications, of
properties like these may warrant the introduction of special notation that would

allow us to say, e.g. “fresh(result) ezcept for x2.”

3.2.2 Implicit Constrainis on Parameters
3.2.2.1 Constraints for All Parameters

Because of our choice of LL as the logic underlying LCL and because LL does not
support undefined elements for each sort, we are obliged ‘o keep the implicit con-
straint that applies to all parameters. Thus, every function parameter is implicitly
constrained to have a well-defined value. For example, when applied to the parameter

pv of the function f in the following specification fragment,

¢The notation that we are using for the declaration of the quantifier variable is not the notation
of LCL 2.4. LCL’ does not currently support quantified expressions; when it does we plan on using
C style declarators as is done here.
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immutable type T;
void £(T pv) { ... }

the implicit constraint forbids calling £ with an lvalue that is not well-defined.

3.2.2.2 New LCL Operators

In Sections 2.4.2.2, 2.4.2.5 and 2.4.2.6, we noted that it is not possible in LCL to
express the property that an object is allocated or that it is both allocated and

well-defined. For this purpose we propose the introduction of the following boolean

operators
-- \activePre, __ \wellDefPre,
-- \activePost, __ \wellDefPost,
-- \activeAny, __ \wellDefiAny : T — Bool

The expression e\activePre holds when the object e is active (i.e. allocated) in the
pre-state. e\wellDefPre holds when the object e is (active and) well-defined in the
pre-state. The other operations provide similar predicates over the post and generic
states. Note that the meaning of the trashed operator can be given in terms of

\activePost

trashed(gv) & - (gv\activePost)

Due to the problems discussed in Section 2.4.2, implicit constraints for pointer and
array parameters are not part of LCL’. The new operators can be used to express the
necessary constraints. For example, the following specification of f requires that the
object pointed to by i be allocated and that the global variable gv be well-defined.

void £(int *i) int gv; {
requires (*i)\activePre A gv\wellDefPre
modifies *i;
ensures (*i)\wellDefPost A (*i)’ = gv*;

}

The function ensures that the post-state value of *i is well-defined and that it is

equal to the pre-state value of gv.
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3.2.3 Trashing of Objects

The semantics of function specifications, in LCL 2.4, is defined in such a way that
under certain circumstances some objects are implicitly preserved. We now explain
this aspect of the semantics of LCL 2.4 in more detail than in Section 2.4.3 and we
reexamine the resulting violation of the principle of referential transparency.

The modified set of a function specification consists of those objects that are ref-
erenced by expressions occurring in the modifies clause. The trashed set of a function
specification consists of those objects that are referenced by expressions occurring as
arguments to the trashed operator in the ensures clause {Tan94, §7.4.1]. For exam-
ple, the modified and trashed sets for the following specification of trashSome are

{*a,b,*c}, and {*a,b} respectively.

mutable type M;

void trashSome(int *a, M b, int *¢) {
modifies *a,b,*c;
ensures (*c)’ = (*c)® + 1 A trashed(b)
A (if (*a)? t= (*c)® then
then -trashed(*a) A (*a)’ = (xc)A
else trashed(*a));

As was indicated in Section 2.4.3, an object that is a member of the modified set may
be either trashed or modified. An object in the modified set is implicitly preserved
only if it is not a member of the trashed set. In the trashSome example, *c is
implicitly preserved. Thus, the presence or absence of certain argument expressions
(of the trashed operator) affects the meaning of the function specification. Since the
meaning of a function specification depends on more than the truth or falsity of the
ensures clause predicate, this clearly leads to a violation of the principle of referential
transparency.

To recover referential transparency we need only eliminate that aspect of the se-
mantics that relies on the presence or absence of argument expressions to the trashed
operator. With this new appreach to the semantics, specifiers must explicitly indicate
when objects are to be preserved. For example, the specification of trashSome would

have to be rewritten as
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void trashSome(int *a, M b, int #*c) {
modifies *a,b,*c;
ensures (*c)’ = (*¢)® + 1 A trashed(b)
A - trashed(*c)
A (if (%a)* t= (*c)" then
then -trashed(*a) A (*a)’ = (*c)?

else trashed(*a));

(Notice the addition to the ensures clause of a predicate asserting that *c is not
trashed.) In practice, very few functions trash the objects in their modified sets. For
example, of the fifty-two functions given in LCL specifications in the Larch book,
only two of the thirty-two expressions (that occur in the modifies clauses) are argu-
ments to the trashed operator [GH93]. Thus, requiring an explicit statement of the
fact that objects are preserved would (unnecessarily) lengthen specifications; func-
tion specifications that are less concise are more difficult to write, understand and
maintain.

Fortunately there is a better solution. We suggest the introduction of a trashes
clause which is syntactically like the modifies clause except for the leading trashes
keyword. That is, the trashes clause is optional and when present, it may be followed
by the nothing keyword, or by a list of lvalues (expressions denoting objects). A
function may trash an object if and only if that object is referenced by an expression

7. Thus, the modifies clause recovers its intended

that occurs in the trashes clause
role: it identifies which objects may have their values modified. The roles of the
modifies and trashes clauses are independent; an expression may occur in both, in
either or neither of the clauses. Under this scheme, the specification of trashSome
would be identical to its original specification but with the addition of the clause

trashes *a,b.

void trashSome(int *a, M b, int *c) {
modifies *a,b,*c;
trashes *a,b;
ensures (#c)' = (*c)™ + 1 A trashed(b)

"Actually, object dependencies must be taken into account for both the modifies and trashes
clauses. Details are given in Section 8.6.
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A (if (%a) 1= (*xc)” then
then - trashed(*a) A (xa)’ = (*c)

else trashed(*a));

Most function specifications will be written without a trashes clause, implying that no
(client-visible) object may be trashed. For those few functions that do trash objects,

these objects will be explicitly identified by listing them in the trashes clause.

3.3 A Semantics for LCL/

A language is characterized by the abstract entities that it can be used to describe.
These entities are usually called semantic objects in contrast to the elements of the
(concrete and abstract) syntax of the language that are often referred to as syntactic
objects®. Semantic rules and functions are used to relate syntactic objects to the
semantic objects that define their meanings. We present the semantics in a style
known as natural semantics [Kah87] (having been inspired by the formal definitions
of Standard ML [MTH90, MT91] and Extended ML [KST94}). In this style, inference
rules are used as the principal means of relating syntactic and semantic objects.

An LCL specification is denoted by a semantic object called an LCL environment.
An LCL environment has two parts. One part, called an LCL signature, describes
the specification’s interface and the other part (which we will call the non-interface
part) captures the meaning of the interface components. As was noted in Chapter 2,
LCL can be regarded as a language consisting of a C interface specification language
that makes use of LSL as a sublanguage within which data types can be defined and
expressions (over these data types) can be written. Symbolically, LCL = CISL(LSL).
Thus, any semantic description of LCL must include a semantics for LSL. Conse-
quently, it would seem that the simplest approach to defining the meaning of the
non-interface part of an LCL specification is by means of a “semantic embedding”
into LSL. Thus, an LCL specification is denoted (in essence) by an LCL signature
and an LSL trait.

There are several advantages to the approach which we have adopted for the

formal definition of LCL.

8Yet another use of the term “object”.
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o The semantics is considerably simpler than would be, e.g., a corresponding
denotational semantics. Since LCL uses LSL as a sublanguage, a denotational
semantics of LCL would have to include a complete semantics for LSL. In our
approach we are using LSL as the notation within which the meanings of LCL
interface components are expressed. Hence, we can use the features of LSL to
enhance the conciseness and clarity of the semantic definition. In a sense, the
resulting definition is expressed at a “higher” level of abstraction than could

otherwise be achieved.

e Since the meaning of (the non-interface part of ) an LCL specification is captured
as an LSL trait, the semantic definition should be more accessible to the Larch
community in general and to LCL users in particular since they are already
familiar with LSL.

o Using a natural semantics (which is a form of translational semantics) allows
us to easily “implement” the semantic definition. The result is a tool that
generates an LSL trait from an LCL specification. In conjunction with the use
of such a tool, we can capitalize on the existence of other Larch tools. For
example, scripts for the Larch Prover [GH93, §7] can be obtained for an LCL
specification from its corresponding LSL trait by use of the LSL checker [GH93,
§7.2].

3.4 Overview of the Semantic Definition

The formal definition of LCL is written primarily in Z [Spi92], a formal specification
language based on a typed set theory. Alternatively, we could have invented our own
mathematically based notation (as was done for the definition of SML [MTH90]) or,

we could have used LSL. We have chosen Z because it is
e a mature notation that is in widespread use,

® an expressive language—also, a high level of conciseness and clarity can be

achieved with its use,
o formally defined [Spi88],

e supported by tools (for type-checking and reasoning).
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Although in theory, LSL and Z have the same expressive power, the Z formulation
of the semantic definition is much clearer than an equivalent formulation written in
LSL would be. The Z notation is introduced throughout the thesis as required.
Since LSL is the target formalism into which the non-interface part of LCL specifi-
cations are being translated, LSL syntactic objects form a major part of the semantic
objects used in the definition of LCL. A partial formalization of LSL is given in
Chapter 4; our purpose is not to present a complete definition of LSL, but to provide
definitions for a simple and yet expressive subset of LSL which will allow us capture
the meaning of any LCL specification. The syntax of LCL is given in Chapter 5. At
the heart of the semantic model for LCL is the model of program states, or more
precisely, the model of the store, given in Chapter 6. Semantic objects, other than
LSL constructs, are given in Chapter 7. Finally, the semantic rules and the semantic

functions relating syntactic to semantic objects are given in Chapter 8.
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Chapter 4

A Partial Formalization of LSL

In our semantics, the meaning of the non-interface part of an LCL specification is
captured by an LSL trait. Thus, constructs of the LSL language are used as semantics
objects. In this chapter we present a formalization of LSL. Since our goal is not
to provide a semantics for LSL we do not cover all aspects of the language. We
formalize only those LSL constructs that are needed to express the meaning of LCL
specifications. The material in this section is organized as if we were defining a
(denotational) semantics for LSL. Hence, Section 4.1 defines an annotated abstract
syntax. Semantic objects and semantic functions are given in Sections 4.4 and 4.6,
respectively.

Before continuing, we review the major components of an LSL specification by
illustrating a simple theory defining groups. A group can be regarded as a monoid
with an inverse operation; Figure 11 contains a trait named Group that defines a

group in this way. Using the includes statement, traits can be defined by making

Group: trait
includes Monoid
introduces
inverse: T — T
asserts V x:T
inverse(x) o x = unit;

Figure 11: Group Trait

use of other traits. The Monoid trait [GH93, §A.14] that is included in Group defines
an associative binary operator ‘__o__’ over the sort T and a unit element named
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unit. Following the introduces keyword, an operator can be introduced into a
trait by providing its name and signature. An operator represents a mathematical
function in the theory defined by the trait. The signature of an operator identifies
the sorts of its domain and range. Thus, inverse is introduced as a unary operation
mapping group elements into group elements. Assertions, i.e. predicates that hold in
the theory defined by the trait, are given in the assertions part of the trait (following
the asserts key word): usually a universal quantifier is given, followed by a list of

declared variables and a sequence of Boolean terms separated by semicolons.

4.1 Annotated Abstract Syntax

We begin by defining syntactic classes that describe a subset of LSL. The given ab-
stract syntax is termed “annotated” because we assume that the following ambiguities

have been resolved:

e simple names have been classified as either logical variables or constant opera-

tors.

e overloading has been resolved: that is,

— each occurrence of a logical variable is qualified with a sort, and

— each occurrence of an operator is qualified with an operator signature.

4.1.1 Names, Symbols, and Operator Signatures

In an LSL trait a name can refer to a sort, logical variable, operator or trait. These
define four name spaces: hence, the same name may be used to refer to any one of
these entities. Which entity is being referred to will be determined from the context.

The set of all possible LSL names is represented by Nm. We are not concerned
with how names are themselves represented, hence Nm is introduced as a given set,

also called a basic type in Z.
[Nm]

Sort, logical variable, operator and trait names are (possibly proper) subsets of Nm.
P X denotes the power set of X.
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SortNm, LVarNm, OpNm, TraitNm : P Nm

Bool, x, empty, Array are examples of names. We will at times represent elements of
Nm literally in the formal Z text by formatting the names in typewriter type style.
E.g.

{Bool,x,empty} C Nm
Bool € SortNm

In our annotated abstract syntax trees, occurrences of logical variables are quali-
fied with their sorts and operators are qualified with their signatures. The notation
LHS == RHS introduces LHS as an abbreviation for the expression RHS.

LVarNS == LVarNm x SortNm

OpSig
opDom : seq SortNm

opRan : SortNm

OpNmSig == OpNm x OpSig

An operator signature identifies the operator’s domain (as a sequence of sort names)
and its range (as a single sort name). Thus, each operator maps tuples of values
into values. We have defined operator signatures by means of the schema type
OpSig. A schema type, as we have used it here, is analogous to a structure or record
type in a programming language. Field selection uses the usual post-fix notation:
E.opDom represents the value of the opDom component of E.seq X is the set of all
finite sequences of X's. Sequences are modeled as partial functions. The domain
of a sequence s is the set of integers from 1 up to #s, the length of s: formally,
doms = {i: 2|1 < i< #s}. A finite sequence of elements can be written by
listing the elements enclosed in angle brackets: e.g. (1,2,3).

An LSL operator that takes no arguments is called a constant operator. The
function mkConOpSig yields the signature of a constant operator from the sort name

of the operator’s range.
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l mkConOpSig : SortNm — OpSig

mkConOpSig sort =
(p OpSig | opDom = () A opRan = sort)

In Z, the application of a function f to an argument z is written as f r. Equivalently,
we can write the customary, f(z), which is regarded as the application of f to the
parenthesized expression (z). The expression (¢ OpSig | P) denotes the unique OpSig
whose components satisfy the predicate P. The set of all sort names that occur in

the operator signature opSig is given by opSigSorts opSig.

| opSigSorts : OpSig — F SortNm

I opSigSorts = (A OpSig e {opRan} U ran opDom)

The range of opSigSorts is the set of all finite subsets of sort names.
The vocabulary of symbols of a trait are the sort names, logical variables names
(qualified with their sorts) and operator names (qualified with their signatures) that

appear in the trait.

LSym ::= SortSym{SortNm))
| LVarNSSym{LVarNS))
| OpNSSym{OpNmSig))

This is our first example of a free type definition. It introduces LSym as a basic type
with SortSym, LVarNSSym and OpNSSym as constructors. The constructors are
modeled as injective functions with disjoint ranges. Each constructor maps elements
from the indicated domain (the expression in the (...))) into LSym. Thus lsym =
SortSym S denotes a sort symbol for which the following properties hold:

Isym € ran SortSym
S = SortSym™ lsym

For any relation (and hence any function) R, the relational inverse of R is denoted

by R™.
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4.1.2 'Terms

A term! can be either

e an occurrence of a logical variable,
e an application of an operator to some arguments, or

e a quantified term.

Term ::= LVarTm{{LVarNS))
| AppTm{{OpNmSig x seq Term))
| QnrtTm{QntTmSchG|Term])

LSL has the usual universal and existential quantifiers. QntNm is a free type with
two constant constructors; i.e., @ntNm is a type that has only two values named

ForAlINm and FEzxistsNm.
@ntNm ::= ForAlINm | EzistsNm

A quantified term consists of a quantifier, a logical variable (qualified with its sort),

and an LSL predicate.

QntTmSchG[X)
gntNm : QniNm
gntVar : LVarNS
IslPred : X

Because of the mutual dependency between Term and @ntTmSchG we are obliged to
define QntTmSchG as a generic schema. For any set S, QntTmSchG[S] represents
the schema type that results when the formal generic parameter X is replaced by S
in the schema definition of @QntTmSchG. The value of the actual parameter for the
generic schema can sometimes be deduced from the context, hence it need not be
written explicitly. An LSL predicate is a Boolean valued term (and hence it is merely

represented as a term in the abstract syntax).

LSLPred == Term
QntTmSch = QntTmSchG|LSLPred)

! An unqualified use of the word “term” will always, unless indicated otherwise, refer to an LSL
term.
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We define @ntTmSch to be the schema type @nt TmSchG[LSLPred).

The name of a quantifier variable is not relevant to the meaning of the quantified
term of which it is a part. We say that two terms are (syntactically) equivaient if
they are identical or, if one term can be obtained from the other by the renaming
of its bound variables. A term can be either a logical variable, the application of an
operator to arguments or a quantified term: if two terms are to be equivalent, then
they must be of the same kind of term. We define equivTm as a binary relation over

Term’s; i.e. a subset of the Cartesian product Term x Term.

equivTm : Term < Term

(tmq, tmg) € equivTm =>
{tmy,tm2} C ran LVarTm Vv
{tmy,tmy} C ran AppTm V
{tmy,tmz} C ran QntTm

Two terms that are logical variables are equivalent if they have the same name and

sort.

(LVarTm lvarNS,, LVar Tm lvarNS;) € equivTm &
lvarNS; = lvarNS,

Two terms, that are the application of operators to arguments, are equivalent if the
operators are the same, they have the same number of arguments and the correspond-

ing arguments are equivalent terms.

let tm; == AppTm(opNmSig, tms,);
tmy == AppTm(opNmSig,, tms,) @
(tmq, tmq) € equivlim &
opNmSig, = opNmSig, A
#ims, = #imsy A

(Vi:domitms, e

(tmsy i, tms; i) € equivTm)

Two quantified terms are equivalent if renaming the quantifier variable of the sec-
ond term to the quantifier variable of the first term results in equivalent subterms.

(Renamings are defined in Section 4.2.)
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I

let tm; == QntTm 6 QntTmSch;;
tmy == @QutTm 6@ntTmSch, o
(tmy, tm;) € equivTm &
gntNmy = gntNm, A
second gntVar, = second qntVar; A
(let ren == (i Ren |
sortPRen =@ A
lvarPRen = {qntVar; — first qgntVar,} A
opPRen = J) e
(IslPred,, ren Tm ren IslPred;) € equivTm)

We will sometimes use the z ~ y abbreviation for (z,y), as we have done above.
The functions first and second can be used to extract the first, respectively second,
component of an ordered pair: first(z,y) = z and second(z,y) = y.

In Z, we can achieve the effect of a record ¢ «mnstructor for schemas by using the 8
notation. For example, the expression §0pSiy denotes the value of OpSig (called a
schema binding) formed from the values of the variables opDom and opRen from the

surrounding scope. For example, in the following expression,

let opDom == (S;,S2);
opRan ==Se E

an occurrence of #0pSig within the expression E will denote an OpSig whose opDom
is (S1,S2) and whose opRan is S.

By decorating a schema name we obtain a new schema iype. Any combination
of primes (‘), 7, ! and numeric subscripts can be used for decoration. For example,

OpSig’ reoresents the schema

opDom' ; seq SortNm
opRan': SortNm

which has the same components as OpSig except that the decoration (') is applied to
all of the component names to obtain new, decorated, component names.
Since terms are fully qualified with their sorts, it is always possible to determine

the sort of a term. The sort of a term ¢m is given by tmSort im.
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tmSort : Term — SortNm

tmSort( LVarTm(lvarNm, sort)) = sort
tmSort(AppTm(opNm — 00pSig, tms)) = opRan
tmSort(QnlIm 0Qnt TmSch) = Bool

The function tmSyms yields the set of all symbols that occur in a term. This
function is used to define ¢tmSorts, tmLVarNSs, tmOpNSs that yield the set of all

sort, logical variable and operator names (respectively) that occur in term.

tmSyms : Term — F LSym

tmSorts : Term — F SortNm

tmLVarNSs : Term — F LVarNS
tmOpNSs : Term — F OpNmSig

tmSyms(LVarTm(lvarNm, sort)) =
{LVarNSSym(lvarNm, sort), SortSym sort}
tmSyms(AppTm(opNm — opSig, tms)) =
{OpNSSym(opNm, opSig)} U
SortSym(opSigSorts opSig) U
U(tmSyms(ran tms))
trnSyms(QntTm IQntTmSch) =
{LVarNSSym gntVar, SortSym (second gntVar)} U
{SortSymBool} U
tmSyms IslPred

tmSorts tm = SortSym™ (tmSyms tm)
tmLVarNSs tm = LVarNSSym™ (tm.Syms tm)
tmOpNSs tm = OpNSSym™ (tmSyms tm)

fRe X — Y and z5 € PX, then R{zs) (called the relational image of zs under
R) is the set of all Y’s that are related by R to the X's in zs. {Jzss denotes the
distributed union of the sets in zss.

The function tmFreeLVars yields the set of variables that occur free in a given

term.
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tmFreeLVars: Term — F LVarNS

tmFreeLVars(LVarTm lvarNS) = {lvarNS}

tmPFreeLVars(App Tm(opNmSig, tms)) =
U(tmFreeLVars{ran tms))

tmFreeLVars(QntTm 6 @Qnt TmSch) =
(¢tmFreeLVars IslPred) \ {gntVar}

The set difference operator is written as ‘\’ in Z.

4.1.3 'Traits

A trait has a name and a body. The body of a trait is simply defined as a sequence

of trait components.
TraitBody == seq TraitCpt
Trait

traitNm : TraitNm
tb : TraitBody

A trait component is either
e a variable declaration (a variable name and a sort)
¢ an operator declaration (an operator name and signature)
e an assertion, or
e an include statement (including a single trait)
TraitCpt ::= LVarCpt{LVarNS))
| OpCpt {OpNmSig))

| AsnCpt{(LSLPred))
| InclCpt{ TraitRef))

We identify the trait to be included by means of a trait reference contairing the name

of the trait and a renaming. Renamings are presented in Section 4.2.
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TraitRef
traitNm : TraitNm

ren : Ren

We sometimes wish to include a trait without performing any renaming. This is

achieved by a trait reference with an empty renaming.

traitNm2Ref : TraitNm — TraitRef

traitNm2Ref traitNm' =
(¢ TraitRef | traitNm = traitNm' A ren = emptyRen)

The function mkTB yields the set of all trait bodies that contain the trait refer-
ences, logical variables, operators and assertions that are provided as arguments to

the function.

mkTB : F TraitRef x F LVarNS x
F OpNmSig x F LSLPred — P TraitBody

tb € mkTB(refs, lvarNSs, opNmSigs, asns) <
refs = InclCpt™ {ran tb) A
lvarNSs = LVarCpt™ (ran tb) A
opNmSigs = OpCpt™ (ran tb) A
asns = AsnCpt™(ran tb)

4.1.4 Extension of LSL Syntax and a Special Notation

Given an arbitrary context, most LSL terms written in concrete syntax are ambiguous.

E.g. the term

0+p

is potentially ambiguous since the operators 0 and + could be overloaded. Further-
more, we do not know whether p refers to a constant operator or a logical variable
(either of which could be overloaded). To allow us to write terms unambiguously,
we extend the concrete syntax of LSL so that constant operators can be followed by

parentheses, (), to distinguish them from similarly named logical variables. Using
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this extension, along with explicit qualification of terms with their sorts, we obtain a

scheme that allows us to unambiguously denote terms. E.g.
(0:int + p():int) :int

When denoting an LSL term as a value of the Z type Term, it will be convenient
to use LSL concrete syntax along with the following special notation. In an LSL term
(written in concrete syntax), fragments that are underlined represent Z expressions
which denote values of type Term or Nm which are meant to replace (in the concrete

syntax tree) the underlined Z expressions. For example, given

sort =2
tm = (let ztm == LVarTm(x — X);
ptm == App Tm(p — mkConOpSigY,());
opSig == (p OpSig |
opDom = (X, Y} A
opRan=12) e
AppTm(f — opSig, (ztm, ptm)))

then

z:sorl < 1

represents

2:2 < £(x:X,p():Y):2

In a Z expression, an LSL term (written in concrete syntax) within metabrackets
‘[...]’ is meant to represent the corresponding Z expression of type Term. For exam-

ple, the following Z predicate is true

[£(x:X,p():Y):2] = tm

4.2 Renamings

The symbols in the vocabulary of a trait may be renamed. Renamings are sometimes

used, for example, when including a trait into another trait. We represent a renaming
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by three partial renamings partitioned according to the symbols that they rename:

there is a partial renaming for sort, operator and logical variable names?.

— PRen

sortPRen : SortNm —+ SortNm

lvarPRen : LVarNS - LVarNm
opPRen : OpNmSig -+ OpNm

disjoint (sortPRen,id SortNm)
disjoint (lvarPRen,id LVarNm o first)
disjoint (opPRen,id OpNm o first)

Since operators can be overloaded, the renaming for operators requires that an op-
erator and its signature be specified as the target of a renaming. Similar remarks
apply to the renaming for logical variables. For reasons explained below, we require
identity renamings be excluded from the functions sortPRen, lvarPRen and opPRen.

We define functions that allow us to apply renamings to terms, trait components,
and trait bodies. Note that the components of PRen are partial functions. The
definitions of renaming application can be simplified if we have total functions with

identical domain and ranges. For this purpose we define Ren.

2X > Y denotes the set of partial functions from X’s into Y'’s that have finite domains. id X
is the Z notation for the identity function over X's. disjoint (zsy, ..., zsy,) is true precisely when the
sets zs, in the given sequence are disjoint. ‘o’ is the (backward) relational composition operator—

(fog)z=f(g2)
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—_Ren
PRen

sortRen : SortNm — SortNm
lvarNSRen : LVarNS — LVarNS
opNSRen : OpNmSig — OpNmSig

sortRen sort =
if sort € dom sortPRen
then sortPRen sort

else sorl

lvarNSRen(nm, sort) =
(let nm' ==
if (nm, sort) € dom lvarPRen
then lvarPRen(nm, sort)
else nm o

(nm’, sortRen sort))

opNSRen(nm, opSig) =
(let nm' ==
if (nm, opSig) € dom opPRen
then opPRen(nm, opSig)
else nm e

(nm’, opSigRen sortRen opSig))

where opSigRen renames the sorts in opSig according to the sort renaming sortRen

opSigRen : (SortNm — SortNm) — OpSig — OpSig

0pSigRen sortRen =
(A OpSig' e
(1 OpSig |
opDom = sortRen o opDom’ A

opRan = sortRen opRan’))

It is also possible to define the total functions in Ren more succinctly as®

3The pair function is defined in Appendix C. ‘@’ denotes the functional overriding operator.
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— Ren_AltDef
Ren

sortRen = id SortNm @ sortPRen
lvarNSRen =

pair (first @ lvarPRen) (sortRen o second)
opNSRen =

pair (first @ opPRen) (0pSigRen sortRen o second)

The constraint imposed on PRen’s allows us to formulate the following property:
each Ren is uniquely determined by its PRen and each PRen corresponds to a unique

Ren*:
(A Ren ¢ §PRen) € Ren »» PRen

Therefore, when defining a renaming it is sufficient to provide the values of the partial

functions in PRen. For example, when reng, given by

reng = (u Ren |
sortPRen = {Y — YY} A
lvarPRen = {(z,Z) — zz} A
opPRen = {(f,(X,Y— 2)) — ££})

is applied:

¢ All occurrences of the sort name Y will be changed to YY. All other sort names

will be left unchanged.

o All occurrences of the logical variable z declared to be of sort Z will be renamed

to zz. All other logical variable names will be left unchanged.

¢ Finally, all occurrences of the operator £ with signature X,¥ — Z will be re-

named to ££. All other operator names will be left unchanged.

4.2.1 Applying a Renaming to a Term

The application of the renaming 6 Ren to the term tm is given by renTm 0Ren tm.

4X »» Y is the set of bijections from X onto Y.
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renTm : Ren — Term — Term

We define renTm by cases on tm..

o If tm is an occurrence of the logical variable lvarNS, then the logical variable

is renamed.

renT:a 0 Ren (LVarTm lvarNS) =
LVarTm(lvarNSRen lvarNS)

e If tm is the application of the operator opNmSig to the arguments tms, then the

operator is renamed and § Ren is recursively applied to each of the arguments.

renTm @ Ren (AppTm(opNmSig, tms)) =
(let tms' == renTm @Reno tms e

AppTm(opNSRen opNmSig, tms'))

e Care must be taken when a renaming is applied to a quantified term to ensure
that bound variables are not renamed. The renaming § Ren’ is the same as
0 Ren with the exception that application of § Ren’ leaves the quantifier variable
gntVar unchanged. The result of applying ARen to tm is the quantified term
that results from the application of 8§ Ren’ to IslPred®. In the definition we use p-
expressions in their generalized form. For example, the value of (4 Ren’ | P o E)
is the value that E takes on when the schema components of Ren’ are bound

to the unique values that satisfy the predicate P.

525 @ R is the relation obtain by omitting from R the pairs (z,y) € R for which z € zs. ‘@’
is called the domain anti-restriction operator. Similatly, zs < R is the relation obtained from R by
keeping those pairs (z,y) € R for which z € zs. ‘<’ is called the domain restriction operator.
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renTm O Ren (@QntTm 0@QntTmSch) =
(¢ Ren' |
sortPRen' = sortPRen A
lvarPRen' = {qntVar} < lvarPRen A
opPRen' = opPRen o
(u @ntTmSch' |
gntNm' = qgntNm A
gntVar' = gntVar A
IslPred’ = renTm 0Ren’ lslPred o
Q@ntTm 0 QntTmSch'))

As a concrete example, the application of reny (defined above) to the term

z:2 < £(x:X,p0):Y):2Z

will result in the term

zz:Z < ££(x:X,p():YY):2Z

4.2.2 Applying a Renaming to a Trait Component

We define the application of the renaming §Ren to the trait component ¢raitCpt by

cases. To do so we need a composition function for renamings

compRen : Ren x Ren — Ren

compRen(0Ren’,0Ren") =
(1 Ren |
sortRen = sortRen" o sortRen’ A
lvarNSRen = lvarNSRen" o lvarNSRen' A
opNSRen = opNSRen" o opNSRen')

The definition of compRen is such that the application of the composition (of two
renamings) will be the same as the application of each renaming in succession (this

property is formalized in Section 4.2.4).

I renTraitCpt : Ren — TraitCpt — TraitCpt
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o If traitCpt is a variable or operator declaration, then the appropriate partial

renaming is applied.

ren TraitCpt  Ren ( LVarCpt lvarNS) =
LVarChpt(lvarNSRen lvarNS)

ren TraitCpt 6 Ren (OpCpt opNmSig) =
OpCpt(opNSRen opNmSig)

o The renaming of an assertion component is achieved by the renaming of its

constituent assertion (i.e. term).

ren TraitCpt O Ren ( AsnCpt tm) =
AsnCpt(renTm ORen tm)

o If traitCpt is an include component, then 6 Ren and the renaming in the trait

reference are composed. The resulting renaming is used to form a new trait

reference.

ren TraitCpt O Ren (InclCpt 0 TraitRef’) =
(¢ TraitRef |
traitNm = traitNm' A
ren = compRen(ren’,0Ren) o
InclCpt 0 Trait Ref)

4.2.3 Applying a Renaming to a Trait Body

The application of a renaming to a trait body is obtained by applying the renaming

to each of the components in the trait body.

I renTB : Ren — TraitBody — TraitBody

renTB ren tb = renTraitCpt ren o th
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4.2.4 Properties

The application of the empty renaming

emptyRen : Ren

emptyRen = (u Ren |
sortPRen = @ A
lvarPRen = @ A
opPRen = @)

leaves things unchanged, that is

renTm emptyRen = id Term
ren TraitCpt emptyRen = id TraitCpt
renTB emptyRen = id TraitBody

Applying two renamings in succession is the same as applying their composition.

renTm ren' (renTm ren tm) =

renTm (compRen(ren, ren’)) tm

renTraitCpt ren’ (renTraitCpt ren traitCpt) =
renTraitCpt (compRen(ren, ren')) traitCpt

renTB ren’ (renTB ren th) =
renTB (compRen(ren, ren’)) th

Thus, renamings form a monoid under composition (compRen) with the identity

emptyRen.

4.3 Substitutions

A substitution can be applied to a given term to replace all free occurrences of one
or more logical variables by arbitrary terms. We represent a substitution by a partial

function from logical variable names (qualified with their sorts) into terms.

Subst == LVarNS - Term
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A naive implementation of substitution application, which we will call unsafe substi-

tution, is defined next.

unsafeAppSubst : Subst — Term — Term

unsafeAppSubst subst (LVarTm lvarNS) =
if lvarNS € dom subst
then subst lvarNS
else LVarTm lvarNS

unsafeAppSubst subst (App Tm(opNmSig, tms)) =
(let tms’' == unsafeAppSubst subst o tms e

AppTm(opNmSig, tms'))

unsafe AppSubst subst (QntTm @ntTmSch’) =
(let subst’' == {qntVar'} 4 subst e
@ntTm (x QntTmSch |
gntNm = gntNm' A
gntVar = qntVar’ A
IslPred = unsafeAppSubst subst’ IsiPred'))

This definition of substitution application is termed unsafe because the free variables

that occur in the terms (that are replacing the logical variables) may become bound.

For example,

let subst == { (x,Bool) — [b:Bool] };
tm == [Vb :Bool x:Bool] e
unsafeAppSubst subst tm = [Vb : Bool b:Bool]

Since the name of a quantifier variable is not relevant to the meaning of a term,
variable capture can be avoided with an appropriate renaming of bound variables.
Hence, we define safe substitution [MW85, §3.3]. The result of safely applying the
substitution subst to the term tm is any one of the terms which is obtained as follows:
if necessary, to avoid variable capture, we rename the quantifier variables that appear

in tm, then we can “safcly” make use of unsafeAppSubst.
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appSubst : Subst — Term — P Term

tm' € appSubst subst tm & (3tmg : Term o
(tm, tmo) € equivT'm A
(subst, tmg) & capture A
tm' = unsafeAppSubst subst tmy)

The details regarding the circumstances under which a variable is captured can be

found in, e.g. [MW85, §3.3].

4.4 Semantic Objects

4.4.1 Signatures

The sort, logical variable and operator names that are used in a trait define the trait’s
vocabulary of names. An LSL signature (or signature when it is clear from the context
that we are referring to an LSL signature), can be used to represent the vocabulary of
a trait. Since an LSL operator name may be associated with more than one operator
signature and a logical variable name may be associated with more than one sort, a
signature must actually identify a trait’s vocabulary of symbols. In Section 4.1.1 we
defined a symbol to be either a sort name, a logical variable name qualified with its

sort, or an operator name qualified with its signature.

—LSig

sorts : F SortNm

lvarNSs : F LVarNS

opNSs : F OpNmSig

lvars : F LVarNm
ops : F Oplm

ops = first|opNSs)
U(0pSigSorts(second(opNSs))) C sorts
lvars = dom lvarNSs

second (lvarNSs) C sorts
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sorts, lvarNSs, and opNSs represents the vocabulary of sort, logical variable and
operator symbols respectively®. At times we need to refer to names rather than
symbols. For this purpose, we define lvars and ops to represent the set of logical
variable and operators names that are part of the vocabulary of names.

For a signature to be consistent, every sort name that occurs in a logical variable
or operator symbol must be present in the sort name vocabulary. The LSL Checker
[GH93, §7.2] disallows a constant operator and a logical variable from having the
same name and sort (within any given trait). We find this restriction unnecessary
and hence we do not support it. When such a situation arises, an occurrence of the
name is taken to be an instance of the variable (since variables have tighter scopes).

Since relations are represented as sets of ordered pairs in Z, we note that

opNSs € OpNm < OpSia
lvarNSs € LVarNm < SortNm

The empty signature contains no names:

' emptyLSig : LSig

emptyLSig = (n LSig |

sorts = J A
opNSs =D A
lvarNSs = &)

Two signatures can be combined. The result is a signature that contains the names

that were present in both of the original signatures.

addLSig : [Sig x LSic — LSig

addLSig = (A LSig'; LSig" e
(p LSig | sorts = sorts' U sorts” A
opNSs = opNSs" U opNSs" A
lvarNSs = lvarNSs' U lvarNS¢"))

The expression sigHideOps Isig opNmSigs is the signature obtained by hiding the

operators in opNmSigs from the vocabulary of Isig.

SFor convenieuce, sorts, lvarNSs, and opNSs are declared to be of types F SortNm, F LVarNS
and F OpNmSig respectively, rather than F LSym.
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IsigHideOps : LSig — F OpNmS:ig — LSig

IsigHideOps = (A LSig' o
(A opsToHide : F opNSs' e
(1 LSig |
sorts = sorts' A
lvarNSs = lvarNSs' A
0pNSs = opNSs' \ opsToHide)))

4.4.2 Special Trait Bodies

The non-interface part of an LCL specification is translated into an LSL trait body.

During the translation process we need to have convenient access to some information
from the trait body that is being built. Hence, we define TBS to hold a trait body

along with components derived from the trait body.

— TBS

th : Trait Body

Isig,

localLSig : LSig
includes : seq TraitRef
asns : seq LSLPred

Isig = tb2LSig tb
localLSig = tb2LSig(th | (ran LVarCpt Uran OpChpt))
includes = InclCpt™ o (tb [ ran InclCpt)
asns = AsnCpt™ o (tb | ran AsnCpt)

The derived components include”:

o a “local” LSL signature (localLSig) containing only the vocabulary of symbols

that are explicitly declared in tb,

e a “global” LSL signature (lsig) containing the vocabulary of all symbols declared

explicitly or implicitly (via included traits) in ¢b,

"The function $2LSug is defined in Section 4.6.2.
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e the sequemnce of trait references that occur in tb, and
e the sequence of LSL predicates that occur as assertions in tb.

A TBS is uniquely defined by its tb component.

(A TBS e tb) € TBS »» TraitBody

4.5 Trait Store and Include Dependencies
We assume the existence of a “store” that maps trait names to trait bodies.
| traitStore : TraitNm — TraitBody

Using this store we can define a mapping from trait references into trait bodies. Given
the reference 8 TraitRef, this is achieved by extracting the body of the named trait
traitNm, and applying the renaming ren to this body.

l ref2TB : TraitRef — TraitBody

I ref2TB = (X TraitRef o renTB ren (traitStore traitNm))

A trait body tb is said to include the trait named traitNm’ when tb includes a
reference to traitNm’. Similarly, a trait named t¢raitNm is said to include a trait

named traitNm' if (the body of) treitNm includes a reference to traitNm'.

thincl : TraitBody <~ TraitNm
includes : TraitNm > TraitNm

(tb, traitNm') € thinel &
(3 traitRef : TraitRef |
traitRef .traitNm = traitNm' e
InclCpt traitRef € ran tb)

(traitNm, traitNm') € includes &
(traitStore traitNm, traitNm') € tblncl

A trait body tb or a trait named traitNm is free of include cycles if none of the traits

that it (transitively) includes (transitively) include themselves.
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nolnclCycles : P TraitNm
nolnclCucInTB : P TraitBody

traitNm € nolnclCycles <
(V traitNm' : includes* ({traitNm}) o
(traitNm/', traitNm') ¢ includes™)

th € nolnclCycInTB &
(VtraitNm : tbIncl({tb}) o traitNm € nolnciCycles)

4.6 Semantic Functions

4.6.1 Well-structuredness and Well-formedness

A term is well-structured if within the term each occurrence of

e an operator is applied to an apprepriate number of arguments and that each
argument is well-structured and has a sort that matches the corresponding sort

in the operator signature,

e a term that is part of a (universally or existentially quantified) binding has the

sort Bool and is well-structured.

wsTm : P Term
LVarTm lvarNS € wsTm

AppTm(opNm — 00pSig,tms) € wsTm &
tmSort o tms = opDom A

ran tms C wsTm

QntTm 0QntTmSch ¢ wsTm &
tmSort IslPred = Bool A
IslPred € wsTm

A term tm is well-formed with respect to a given signature Isig if tm is well-

structured and if all free occurrences of symbols are present in lsig.
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wfTm : LSig — P Term
LVarTin lvarNS € wfTm 0LSig & lvarNS € lvarNSs

AppTm(opNm — 00pSig, tms) € wfTm0LSig &
opNm — 00pSig € opNSs A
tmSort o tms = opDom A
ran tms C wfTm 0 LSig

QntTm 0QntTmSch € wfTm 6LSig &
tmSort IslPred = Bool A
(Flsig’ : LSig |
Isig’ = tb2LSig (LVarCpt yntVar) e
IslPred € wfTm(addLSig(8LSig, Isig')))

4.6.2 From Traits to Signatures

Provided there are no include cycles in the trait body tb, then the LSig that corre-
sponds to tb is simply the sum of the LSig’s obtained from each of the components

in the trait body.

tb2LSig : TraitBody -+ LSig

dom tb2LSig = nolnclCycInTB

t62LSig () = emptyLSig
(traitCpt) ~ tb € dom th2LSig =
tb2LSig((traitCpt) ~ tb) =
addLSig(trtCpt2 LSig traitCpt, th2 LSig tb)

tb2LSig can also be defined using foldLL

Vb : TraitBody e
tb € dom th2LSig =
(let Isigs == trtCpt2LSigo th e
tb2LSig tb = foldLL addLSig emptyLSig lsigs)

The function trtCpt2LSig is defined by cases over TraitCpt.
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trtCpt2LSig : TraitCpt - LSig

dom trtCpt2LSig = {traitCpt : TraitCpt |
traitCpt € ran InclCpt =
(InclCpt™ traitCpt).traitNm € nolnclCycles}

trtCpt2LSia( LVarCpt(lvarNm, sort)) =
(1 LSie |
sorts = {sort} A
lvarNSs = {lvarNm — sort} A
opNSs = @)

trtCpt2LSig( OpCpt(opNm, opSig)) =
(1 LSig |
sorts = opSigSorts opSig A
lvarNSs = @ A
opNSs = {opNm — 0pSig})
trtCpt2LSig(AsnCpt tm) = emptyLSig

traitRef .traitNm € nolnclCycles =
trtCpt2LSig(InclCpt traitRef) =
tb2LSig(ref2TB traitRef’)
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Chapter 5

Annotated Abstract Syntax

We define an annotated abstract syntax for LCL in which iderntifiers and operators
are annotated with their types, sorts, or signatures (as appropriate) so as to remove
any possibility of ambiguity. For sake of completeness, we provide the concrete syntax
of LCL in Appendix B.

5.1 Identifiers

LCL identifiers are modeled as a subset of the set of all names that can appear in an

LSL trait.
| Id:P Nm

Nm is defined in Section 4.1.1.

5.2 Types

In C there are qualified and unqualified types. A member of the syntactic class of
phrases that constitute the qualified types is called a type name. (In contrast, a name
given to a type by means of a typedef is called a typedef name.) A type name is
formed from an unqualified type name and a (possibly empty) set of type qualifiers.

TpNmG[XUTpNm)|
tpQuals : F TpQual
utn : XUTpNm
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TpNm & TpNmG[UTpNm|

We will follow common practice and use the term “type name” to refer to a qualified
type name.

There are two C type qualifiers: const and volatile. When used in a variable
declaration, const informs the compiler that the value of the given variable will be
constant; volatile variables may change value even when they are not assigned
to—e.g. these variables could refer to memory mapped input/output ports. In LCL
we also have the out parameter qualifier (discussed in Section 2.4.2.3) and the obj

qualifier.

TpQual ::= ConQual
| VolQual
| ObjQual
[ OutQual

If the sort of an LCL type T is S, then the sort of the obj-qualified tyne obj T is

0bj[s].

5.2.1 Unqualified Types

Next, we define the unqualified tvpes of C as well as collective names given to certain
groups of C types. The following information is taken from the ISO C standard {ISO,
§6.1.2.5].

e void corresponds to the “empty” type; there are no values of type void.
e char type is for characters.
¢ signed char, short int, int, and long int define the signed integer lypes.

e unsigned char,unsigned short int,unsigned int,and unsigned long int

define the unsigned integer types.
e char, signed char, and unsigned char are the character types.

e float, double, and long double are the floating types.
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e char, the signed and unsigned integer types, and the floating types are collec-

tively named the basic types.

BasicTp ::= IntTp | ...

e Each enumeration corresponds to a distinct enurerated type. (Enumerated

types are not supported in the current semantic definition.)

e void, the basic types and the enumerated types are called the fundamental

lypes.

The remaining unqualified types are derived types: array, structure, union, function
and pointer types. An array type consists of a qualified element type and, optionally,
an expression defining the array dimension. E.g.

const int aci[];

struct S *aps[10];

declares aci to be an array of const qualified integers with an unspecified number of
elements—thus, the element type of aci is ‘const int’. apsis an array of 10 pointers
to S tagged structures—the element type of aps is ‘struct S*’ and its dimension is
10. Function types are discussed in Section 5.2.2. Structure, union and pointer types
are not supported in this version of the semantic definition. Array and structure
types are called the aggregate types—union types are not considered aggregate types

since it is assumed that only one member of a union is active at any given time.

OptEzp ::= NoFzp
| OneEzp(Exp))

UTpNm ::= VoidUTN
| BasicUTN ((BasicTp))
| ArrUTN{TpNmG[UTpNm) x OptEzp))
| FunUTN {FunUTNSch|UTpNm)))
| ImmUTN (1d)

Figure 12: Unqualified Type Names (UTpNm)

In addition to the types of C, LCL provides immutable and mutable abstract
types. An abstract type is identified by its name. (Only immutable abstract types are
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supported in the current version of the semantic definition.) A Z free type definition

for unqualified type names is given in Figure 12.

5.2.2 Function Types

A function type identifies the function return type (retlUTN)-—which must be an
unqualified type [ISO, §6.5.3]—as well as the number of function parameters and the
type of each param-.ter [ISO, §6.1.2.5).

FunUTNSchO[XUTpNm)
retUTN : XUTpNm
prmTNs : seq TpNmG[XUTpNm]

In LCL, a function must be declared by means of a prototype (hence, old-style
function declarations [ISO, §6.5.4.3] are not supported). We also impose the following

additional restrictions:
o parameter names are mandatory (contrary to C, where they are optional),

e support is not (yet) provided for functions that accept a variable number of

arguments.

It is more convenient if we generalize function types to include the names of
function parameters and the global variable lists (that are a part of the headers of

function specifications).

B FunUTNSch[XUTpNm]
FunUTNSchO[XUTpNm]
prmlds,

gvarlds : seq Id
gvarUTNs : seq XUTpNm

#prmlds = #prmTNs
#gvarlds = #gvarUTNs

With this scheme, a function specification header will simply consist of an identifier

declared with this generalized function type.
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For example, the function type of £, which is a part of the following function

specification header

void f(const int a[5], int *i) int gv;
is represented as

(¢t FunUTNSch |
retUTN = void A
prmTNs = (const int[5],int*) A
prmlds = (a,i) A
gvarlds = (gv) A
gvarUTNs = (int))

5.3 Expressions

Any LSL term is a valid LCL expression (within the appropriate context). Hence, we

model LCL expressions in the same way as LSL terms. An LCL expression is either
e an occurrence of a logical variable (LVarEzp),

e the application of an (LSL, LCL or C) operator to a sequence of arguments
(AppEzp),

e or a quantified expression?.

Ezp ::= LVarFEzp{{LVarNS))
| AppErp{{OpNmSig > seq Ezp))

An LCL predicate is simply a Boolean expression.

Pred == Fzp

!Quantified expressions are not supported in the current version of the semantic definition.
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5.4 Declarations

A declaration is composed of an identifier and a type. A declaration can be used to
introduce a constant, variable, function, type or function parameter. Since there are

qualified and unqualified type names, we also have qualified (@Dcl!) and unqualified
(UDcl) declarations.

UDcG[XUTpNm]
id: Id
utn : XIUTpNm

QDclG[XUTpNm)]
id: Id
tn : TpNmG[XUTpNm]

UDel 2 UDcIG[UTpNm]
@Dcl = QDclG[UTpNm)

5.5 Specifications and Specification Components
An LCL specification consists of a sequence of specification components
Spec == seq Cpt

A specification component is either

e an import clause,

® a uses clause,

e a constant, type or variable declzration,

¢ a function specification or,

e a claim.
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In this version of the semantics we restrict our attention to constant and variable
declarations and function specifications since they are at the heart of every LCL

specification.
Declarations are the only components to which the spec qualifier can be applied.

Thus, a declaration component ( DclCpt) is a spec or a non-spec declaration.

DclQual ::= SpecQual | NotSpecQ

Cpt i:= DelCpt {DelQual x Del))
| FSCpt{FSHeader x FSBody))

Constant and variable declarations are given by means of unqualified and qualified
declarations respectively. Type declarations (declarations of abstract types or type-

def’s) are not included in this version of the semantics.

Dcl ::= ConDcl{{ UDcl))
| VarDcl{QDcl)

A function specification (#SCpt) consists of a header and a body. The header
consists of a C function prototype and a list of global variables. We represent the

header as an unqualified declaration?.

FSHeader = UDcl

— FSBody . _
reqEzp : Pred

modEzps,
trashExps : seq Exp
ensEzp : Pred

The behavior of the function is specified by means of a body (FSBody) which contains

the following clauses:

2Why and how this is possible is discussed in Section 5.2.2.
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o requires and ensures clauses which define requires and ensures predicates, re-

spectively.

e modifies and trashes clauses which contain a sequence of expressions (or the
keyword nothing which can be used to denote the empty sequence of expres-

sions).
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Chapter 6

A Storage Model

Use of LCL encourages developers to organize their programs as a collection of mod-
ules where each module may be documented by means of an LCL specification. Some
of the components exported by modules are executable and when executed, they ex-
hibit a certain behavior. Our model of behavior is based on states. At any given
moment a program is assumed to be in a particular state. The state contains, among
other things, the values contained in the objects that are in use by the program as
well as program control information!. The behavior of a component is represented
by the sequence of state transformations induced by the execution of the component.
The behavior of noninteractive (nonconcurrent) components is recorded as a sequence
of two states: the state before the component is executed, called the pre-state, and
the state that results when the component returns (provided execution terminates),
called the post-state.

For simple languages it is sufficient to model the state as a mapping from (variable)

identifiers into denotable values.

[1d, Val]
State0 == Id — Val

This model is too elementary for most practical languages. When defining a semantic
model for a programming language it is customary (and Tennent says convenient) to
partition the computational state into two components: an environment and a store

[Ten81, p.16]. The environment consists of a mapping from identifiers int» objects

! Although, usually, program control information is not explicitly represented.
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and the store binds objects to the values they contain [Ten81, p.61].

Env == Id — Obj
Store == Obj — Val

State]l == Env x Store

Semantic functions tend to alter either the environment or the store and usually
not both. For example, a variable declaration will alter the environment and an
assignment of a value to an object will alter the store. Hence, this partitioning of the
state usually results in a simpler semantic definition.

The semantics of the non-interface part of an LCL specification is given in the form
of an LSL trait. There is no need to explicitly model the environment component of
the program state since the environment is implicitly described in the LSL translation
of the LCL specification. In this chapter, we present two formalizations of our model
of the store. Our main vehicle for expressing the semantics of LCL is Z. Hence the
first formalization, given in Section 6.2, is written in Z. LSL is the target notation into
which the non-interface part of LCL specifications are encoded. To avoid having to
use metalogical properties or to mix different notations, we encode the Z formalization
of the store in LSL (Section 6.3). Section 6.4 contains the traits defining the meaning
of the sorts on which LCL exposed types are based. We note that our model of the
store is quite general and it could be used as a part of the semantic model of other

imperative programming languages or module interface specification languages.

6.1 Requirements for the Model of the Store

The model of the store is the corner stone of the LCL semantic model. The storage
model must accurately capture the nature of the store as it is (meant to be) used
in LCL (and C). The model must also be expressive enough to allow the meaning of
all LCL constructs to be described. Hence, both the C and LCL languages impose
requirements on the model of the store. In the subsections that follow we highlight
the most important of these requirements. All of the stated requirements are satisfied

by our model of the store.
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6.1.1 Objects of Aggregate and Union Types

In C, an object of an aggregate or union type is viewed as a collection of objects.
The members of aggregate types are independent but those of union types need not
be—dependencies are discussed in the next section. For example, given the following

declarations

int afi];
struct {int i; char c;} s;

union <{int i; char ¢;} u;

void change(int *i) {
modifies *i;

ensures (*i)’ 1= (*xi)%;

}

the expressions af[i], s.i and u.c denote objects: we can thus, for example, use
gali], &s.i and &u.i as arguments to change. The model must support such a
representation for aggregate and union types. This rules out, in particular, models
in which an object of an aggregate type is represented as an “entire” (i.e. atomic)

object?.

6.1.2 Dependencies and fresh

Dependency relationships may exist, for example, between an aggregate or union
object and its members and among the members of a union object. Dependencies
may also exist between instances of abstract types. The model must support such
object dependencies. For reasons given in Section 3.2.1, the current version of the
semantic model only supports static object dependencies.

An occurrence of the expression fresh(e) in an ensures clause states that the
object denoted by e is independent of any client visible object that is active in both
the pre- and post-states. Hence, it is necessary to be able to identify the set of active
objects for a given state and to assert that a given object is independent of each of
the objects in this set.

2In LM3, for example, arrays and records are modeled as “entire” objects [Jon92].
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6.1.3 Modifies Clause

Function specifications form the major part of most LCL specifications and the mod-
ifies clause has much to contribute to the meaning of each function specification.

Informally, the meaning of the modifies clause is as follows®:

The set of all objects that are explicitly or implicitly referred to by the list
of expressions in the modifies clause is called a frame. Any client-visible
object that is active in the pre-state, that is not in the frame, and that
is still active in the post-state must have the same abstract value in hoth

states, or be undefined in both states.

The formalization of this statement is expressed as a quantified predicate over the
set of all objects; hence, it must be possible to represent this set in our model of
the store. Furthermore, in formalizing this statement it is necessary to be able to

determine, for any given state
¢ which objects are active,
e which objects are well-defined, hence

— the sort attribute? of any active object, and, finally,

— the value contained in any well-defined object.

The statement that an object has the same abstract value in two given states can be
ascertained only if the sort attribute (i.e. type) of the object is known. The object
dependency relation is used to determine the objects that are implicitly asserted as

being a part of the frame.

6.2 Theory of the Store

As is commonly done in the formalization of typed or multisorted languages, we begin
by defining an unsorted model of the store (Section 6.2.1). Independently from the
unsorted model we formalize the object dependency relation (Section 6.2.2) and sorts

(Section 6.2.3). These three theories (defining the unsorted store, object dependencies

3A formal treatment of the meaning of the modifies clause is given in Section 8.6.
4The sort of the values contained in an object is called the object’s sort attribute. See Section 6.2.3.
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and sorts) are used in the definition of our sorted model of the store (Section 6.2.4).
Finally, a theory scheme for defining a sorted projection of the sorted store is given
in Section 6.2.5.

Why define a model of the store in terms of LSL sorts and not LCL types? An LCL
type can be thought of as a set of values with an associated collection of operators
[GH93, p. 4, p.58]. In LCL, as in other Larch interface languages, each type is based
on (or associated with) an LSL sort [GH93, p.21, p.58]: i.c., the “semantics of the
type”—by which we mean the semautics of the operators defined over the type are
provided by the LSL traits that define the sort on which the type is based. Since the
semantics of each LCL type is defined in terms of the sort associated with the type,

it becomes reasonable to base the storage model on sorts instead of types.

6.2.1 An Unsorted Model

We begin with two brief explanations of the purpose of the store. From a traditional
computational perspective we can say that a store is used to store (i.c. record and
preserve) values. Since we usually wish to store more than one value, we must have a
convenient way of identifying the values that are stored so that we can later retrieve
them: objects can be regarded as “labeled”® containers that serve this purpose.

From an object-oriented perspective, a store can be seen as a representation of a
collection of objects. Execution of an object-oriented program results in the birth,
mutation and death of objects. At any given moment there is never more than a finite
number of live or active objects. Each active object has a collection of attributes. The
identity of an object is a fundamental attribute: each object has a unique identity
that is invariable over time and that is set at the birth of the object (or possibly even
before). Other attributes include the value contained in an object and the sort of this
value.

In either perspective, we see that the notion of object is central. Qbj represents

the set of all possible objects.
[Ob5]

We require that there be an infinite supply of objects (our motives for doing so are

5The object identity serving as a label.
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given in Section 6.2.3).

YV objs : F Obj e
Jobj : Obj e 0bj ¢ objs

The values that can be stored in an object are from the given set U.
(U]

Our unsorted model of the store (captured by the UStore schemna) identifies the

objects that are active as well as the values contained in the active objects.

— UStore
activeObjs : F Obj
val : Obj U

activeObjs = dom val

As was mentioned earlier, there can only be a finite number of active objects—hence,
activeObjs is a finite set. val is a finite partial function whose domain coincides with

the set of active objects. Note that UStore is isomorphic to Obj -+ U.

6.2.2 Dependencies Between Objects

We say that the object = depends on the object z’ if changing the value contained in
z' may cause a change in the value contained in z. If z does not depend on z’, then
z is independent of z'. Object dependencies are modeled by means of the depOn

relation.

| depOn : Obj <> Obj

‘ depOn € Reflerive

Every object depends on itself; hence depOn is reflexive. depOn need not be syin-
metric; asymmetric dependencies can arise with the use of abstract data types. The

object dependency relation need not be transitive: e.g. given the declaration

int al3];
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a[1] depends on a and a depends on a[2], but af1] and a[2] arc independent.
The objects in a given indexed collection rs are independent (of ecach other, or
mutually independent) if all objects from the collection are pair-wise independent (for

pairs constructed from objects at different indices).

indep : P(seq Obj)

ts € indep &
(Vi,j:domas |i#je(zsi,rsj) ¢ depOn)

indep zs is true precisely when the objects in the sequence rs are independent. indep
is fully defined in terms of depOn.

For any object, , the set of objects on which it depends is given by depOn{{.r}).
The set of objects that depend on z is depOn™ ({.c}).

6.2.3 Sorts

Objects contain values from the unsorted domain U. Unsorted values are meaningless
unless we know how to interpret them—just as a string of bits is meaningless unless
we know what it is meant to represent. Thus, each object has a sort attribute which
informs us of the intended interpretation of the unsorted values which it contains.

Sorts are represented by their names.

[SortNm]

l sortAttr : Obj —» SortNm

Each object has a fixed sort attribute that is independent of the state. There is
at least one object of each sort—hence sortAttr has been declared as a surjective
function.

We assume that there is an infinite supply of objects of each sort. Hence Obj must
be infinite—this property is stated in Section 6.2.1. This assumption will simplify our
model since we will not have to deal with the complications of computational failures

due to insufficient storage.

objsSort : SortNm — P Obj

objsSort = relToFun sortAttr™

objsSort sort ¢ F Obj
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objsSort sort is the set of all objects containing values of sort sort. (The definition of
relToFun is given in Appendix C.)

For each sort sort we assume the existence of an equality relation (over U) that
holds when two unsorted values are considered equal when viewed as sorted values of
sort sort. Not all unsorted values in U will represent a sorted value of sort sort. The
set of unsorted values that are valid representations for values of sort sort is called
the representation set of sort. The representation set coincides with the domain of

the equality relation.

equal : SortNm — (U = U)
repSet : SortNm — P U

repSet sort = dom(equal sort)

equal sort € FEquivalenceRel[repSet sort]

Although equal sort is not an equivalence relation over U—since it will not be reflexive
if repSet sort # U—it is an equivalence relation over its domain.

There are different kinds of equality. equal sort is an ezistential equality relation.
Later, while defining the semantics, we will find it useful to have a strong equality
relation. Strong equality over a sort sort differs from existential equality (over the
same sort) in that strong equality also holds true for a pair of values (u, u’) if neither

u nor u’ is a valid representation of a value of sort sort.

strongEq : SortNm — (U — U)

(u,u') € strongEq sort &
(u,v') € equal sort V

u ¢ repSet sort A u’ ¢ repSet sort

6.2.4 A Sorted Model

By making use of the basic theories for the unsorted store, object dependencies, and
sorts we can provide a theory for “sorted stores” with dependent objects. The stores
are “sorted” in that each object has a sort attribute. We also define an additional
concept: well-definedness. An object is well-defined with respect to a given store if

the value contained in the object (relative to that store) is in the representation set
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of the object’s sort attribute. That is, if sort is the sort attribute of the object, then

the value it contains must be a valid representation of a value of sort sort.

__Store
UStore
wellDefObjs : F Obj

r € wellDefObjs &
T € activeObjs A
vael z € repSet(sortAttr z)

We define the empty store to be the store containing no active objects.

I emptyStore : Store

] emptyStore.activeObjs = O

Every Store is uniquely determined by its underlying unsorted store and cvery un-

sorted store determines a unique Store.

(X Store @ UStore) € Store —» UStore

6.2.5 A Sorted Projection of the Store

The theory for the sorted model of the store provides us with all of the expressive
power that we need—it can be used to provide a meaning for any® LCL specification---
but we can increase the conciseness and clarity of the semantic definition if we exploit,
the fact that we are translating the non-interface part of LCL specifications into LSL.

For example, the LCL statement

is represented in LSL as”

6 Actually, in the current version of the semantic definition, the model of the store can be used
to provide a meaning for any LCL specification that only makes use of static object dependency
relationships.

"The LSL notation used here is defined in Section 6.3.1 which presents the LSL formulation
of the model of the store. The forward reference is necessary since the organization of the LSL
formalization of the store depends on the knowledge that a trait defining sorted projections will be
defined.
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abs(sortAttr(x),val(pre,x)) = abs(sortAttr(z),val(post,z))

By making use of LSL operator overloading we can simplify this expression to

val(pre,x) = val(post,z)

The operators which allow us to achieve such conciseness are defined in a theory which
provides what we call a sorted projection of the store. For every sort 0bj [S] that is
used in (the LSL formalization of) the non-interface part of an LCL specification, we
define an S-sorted projection of the store. An S-sorted projection provides us with a
view of the store that includes only those objects whose sort attribute is S.

In this section we define a theory for an S-sorted project of the store. In our Z

formalization of the theory, the sort S is represented as a given set.
[S]

The object sort of S, usually written as 0bj[S] in LSL, will be denoted by Obj_S.
We let s be the name of the sort S.

s : SortNm

In this theory we must

e establish the nature of the relationship that is to exist between the unsorted

values in U and the sorted values in S (Section 6.2.5.1),

o define a bijection between the objects having sort attribute S (objsSorts) and
the set of object identifiers Obj_S (Section 6.2.5.2),

e define the promoted store operations (Section 6.2.5.3).

We will call the elements of Obj_S object identifiers and the elements of Obj objects
so as to make it intuitively clearer that the elements of Obj_S are not new objects

but merely new labels for some of the objects in Obj.
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6.2.5.1 Abstraction Function

We assume the existence of an abstraction function that maps unsorted values in U

into sorted values in S.
absg : U -+» S

For our purpose, a precise definition of abs is unnecessary. We need only specify
the required relationship between the abstracticn function and the equality relation
equals. Two unsorted values are equal (when regarded as values of sort S) if they are
both in the domain of the abstraction function and if the abstraction function maps

them to the same value.

(u1, u2) € equals &

{u1,u2} C dom abss A abss u; = abss u,

Since every value in S has a representation, abss is declared as a surjective function.
abss need not be injective since there can exist more than onc unsorted value repre-
senting any given sorted value. As a corollary to the relationship between absy and

equal s specified above, we have:
dom absg =: repSet s

6.2.5.2 Bijection Between Objects and Object Identifiers

The function up is a bijection between the objects whose sort attributes are S and the

object identifiers Obj_S. A bijection can be regarded as a simple renaming scheme,

up : objsSort s »» Obj_S
dwn : Obj_S >» objsSort s

up = dwn™

We usually speak of “raising the level of abstraction of ...”. Just as the abstraction
function absg can be seen as “raising” unsorted values into values of sort 8, up can be
seen as “raising” Objs’s into Obj_S’s. Hence the name up for the bhijection between
the objects whose sort attributes are S and the object identifiers Obj_S, and the

name and dwn {i.e. “down”) for the inverse of up.
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6.2.5.3 Promoted Operations

We say that an object identifier from Obj_S is active (wrll-defined) if the object,
from Obj, that it represents is active (respectively, well-defined). The sorted value
of a well-defined object identifier tz is the sorted value represented by the unsorted
value contained in the object denoted by tz.

The schema SProjStore defines an S-sorted projection of the store with the pro-
moted inspectors activeObjss, valy and wellDefObjss .

SProjStore
Store
activeObjss : F Obj_S
valy : Obj_S - S
wellDefObjss : F Obj_S

activeObjss = { tz : Obj_S | dwn tz € activeObjs }
wellDefObjss = {tz : Obj_S | dwn tz € wellDefObjs }
dom valy = wellDefObjsg

Y iz : wellDefObjss ® vals tz = abss(val(dwn tz))

We could have defined SProjStore more concisely as

— SProjStore_AltDef
SProjStore

activeObjss = up(activeObjs)
wellDefObjss = up(wellDefObjs)

valy = abss o val o dwn

Every SProjStore is uniquely determined by its underlying unsorted store and every

unsorted store determines a unique SProjStore.

(A SProjStore o UStore) € SProjStore »» UStore

6.3 An LSI. Formalization of the Store

Deriving an LSL formulation of the Z model of the store is rather straightforward. Z

types and functions are usually mapped to similarly named LSL sorts and operators.
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The most notable exceptions are functions with ranges that are power sets and rela-
tions over infinite sets. In these cases we usually represent the function or relation
as a boolean operator. Furthermore, in the case of a function, we must explicitly
constrain the corresponding boolean operator to be functional over its “domain”.
There would appear to be no theoretical limitation preventinyg us from defining a
sort that consists of possibly infinite subsets of values from another sort. On the other
hand, such a formalization would allow higher-order functions to be defined- making
it dublous to claim that LSL is a first-order formalism. We have chosen to avoid such

murky waters.

6.3.1 Store and StorePOps Traits

We have adopted a literate programming {Knu92] approach for the documentation of
the LSL traits that comprise the Z formalization of the stere. That is, the LSL traity
and this presentation of them are generated from a single source, thus eliminating the
risk of inconsistencies between the two. We have made use of Norman Ramsey’s noweb
system [Ram94]. The theories for the unsorted and sorted models of the store are
captured by the Store trait. The organization of Store follows the typical strncture
of an LSL trait.
(Store.lsl 94)=
Store: trait
includes
(Store include 95b)
introduces
(Store opsig 96¢)
asserts
\forall (Store assert var decl 95c}
(Store assert eqn 96a)
implies
(Store implies gen/part 96b)
\forall (Store assert var decl 95c)

(Store implies eqn 97c)

What is given above is an outline of th> contents of the Store.1sl file which defines

the Store trait. The components, like (Store include 95b), are defined below.
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95a

95b

95¢

95d

95e

We make use of an auxiliary trait named StorePOps to hold (only and all of) the
declarations of the operators over the store that will be subject to promotion.
(StorePOps.lsl 95a)=

StorePOps(U,0bj): trait
includes
(StorePOps include 95d)
introduces
(Store POps opsig 95f)
Having such an auxiliary trait will allow us to declare the promoted operators, in
a sorted projection of the store, simply by including StorePOps with appropriate
renamings for the sorts I' and Obj. Since Store captures the theory of the store, it
must necessarily include Store POps.
{Store include 95b)= (94) 97ao
StorePOps,
Here are some of the variables that are used in this trait
(Store assert var decl 95¢)= (94) 95ep
u, u’, u’’: U,
x, x’: 0bj,
any, any’: Store,

The core material of the traits Store and StozePOps is presented next. For ease

of comparison, we have organized the material under subsections that mimic the

presentation of the Z theory (Section 6.2) that these traits are meant to encode.

6.3.1.1 Unsorted Store

We make use of the Set trait [GH93, §A.5] to define Set [0bj], the sort representing
finite sets of objects.
(StorePOps include 95d)= (95a)
Set(0bj,Set[0bjl)
(Store assert var decl 95¢)+= (94) «95¢c 97bo
xs: Set[0bj],
The schemas types UStore, Store and SProjStore are all represented by the sort
Store. The schema selectors are represented as LSL prefix operators; e.g., the Z

expression any.activeObjs is written as activeObjs(any) in LSL.
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95f

96a

96b

96¢

96d

(StorePOps opsig 95f)= (95a) 99ap
activeObjs: Store -> Set[0bj]
val: Store, Obj -> U

activeObjs and val are operators that will be subject to promotion and hence their
declarations are contained in the StorePOps traiv. In LSL, an operation denotes
a total function. Thus, we “lose” the fact that (in the Z theory) val is a partial
function with activeObjs as its domain, but we can achieve the same effect by

explicitly encoding the following property: a store is fully determined by:
e the set of active objects it contains,
e the values contained in the active objects.

(Store assert eqn 96a)= (94) 96dp

(activeObjs(any) = activeObjs(any’)

/\ \A x:0bj (x \in activeObjs{any) =>

val(any,x) = val(any’,x)))

=> any = any’;
(The universal quantifier is represented as \A in LSL.) This property implies
{Store implies gen/part 96b)= (94)

Store partitioned by activeObjs, val

which states that two stores are equal if they cannot be differentiated by means of

the two listed inspectors.

6.3.1.2 Dependencies

The depOn and indrp relations are represented as boolean operators.

(Store opsig 96¢c)= (94) 97do
depOn: Obj, Obj -> Bool
indep: Seq[0bjl -> Bool

(Store assert egn 96a)+= (94) <96a 97gv
depOn(x,x);
indep(xq) ==
MiNG(C
i \in inds(xq) /\ j \in inds(xq)
/\ i \neq j => \not depOn(xq[il,xq[j1));
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97a

97h

97c

97d

97e

97t

97g

The sort Seq[0bj] denotes the sort of finite sequences of objects and is defined in

the Seq trait (Section 6.5.1).

{Store include 95b)+= (94) <95b 97e>
Seq{(0bj),

(Store assert var decl 95¢)+= (94) <95e 98av
xq: Seq[0bj],
i, j: Int,

Two objects (in a sequence) are independent if each is independent of the other.

(Store implies eqn 97¢)= (94)
indep(empty |- x |- x’) ==
\not depOn(x,x’) /\ \not depOn(x’,x);

6.3.1.3 Sorts

Each object has a fixed sort attribute which is given by sortAttr. There is at least

one object of each sort, i.e., sortAttr is surjective.

(Store opsig 96c)+= (94) «96¢c 97fp
gortAttr: Obj -> SortNm
(Store include 95b)+4= (94) «97a

Surjective(sortAttr,0bj,SortNm)

Since the range of objsSort is a power set, we will represent it as the relation objsSameSort

which will hold true of a pair (sort, objs) if all of the objects in 0bjs have sort as sort

attribute.

objsSameSort : SortNm < F Obj

V sort : SortNm; objs : F Obj e
(sort, objs) € objsSameSort <

Vz : objs e sortAttr z = sort

(Store opsig 96¢c)+= (94) <97d 98co
objsSameSort: SortNm, Set[0bj] -> Bool

(Store assert eqn 96a)+= (94) <96d 98bo
objsSameSort(sn,xs) ==
\A x (x \in xs => sortAttr(x) = sn);
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98a

a8b

98¢

98d

98e

98f

(Store assert var decl 95¢)+= (94) <97b

sn: SortNm

There is an infinite supply of objects of each sort. That is, for any given sort sn and

finite set of objects with sort attribute sn, we can always find an object with sort

attribute sn that is outside of this set.

(Store assert eqn 96a)+= (94) «97g 98de
objsSameSort(sn,xs) =>

\E x (x \notin xs /\ objsSameSort(sn, {x} \cup xs8));

Since the ranges of equal, repSei and strongEq are potentially infinite sets, we
must change their representations. equal and strongEg will be represented by the
ternary boolean predicates equal and strongEq respectively. repSet will be replaced
by the binary predicate isRep.

(Store opsig 96c)+= (94) <97f 99co
equal: SortNm, U, U -> Bool
isRep: SortNm, U ~> Bool
strongEq: SortNm, U, U -> Bool

The unsorted value u is in the representation set of sn iff isRep(sn,u). As in the
7 formalization of the store, the representation set corresponds to the “domain” of
equal(sn,__,__).

(Store assert eqn 96a)+= (94) a98b 98ep

isRep(sn,u) == \E u’ equal(sn,u,u’);

equal(sn,__,__) is reflexive, symmetric and transitive over the representation set
of sn.

(Store assert eqn 96a)+= (94) <«98d 98fo
isRep(sn,u) => equal(sn,u,u);
isRep(sn,u) /\ isRep(sn,u’) =>
(equal(sn,u,u’) => equal(sn,u’,u));
isRep(sn,u) /\ isRep(sn,u’) /\ isRep(sn,u’’) =>
(equal(sn,u,u’) /\ equal(sn,u’,u’’)

=> equal(sn,u,u’’));
Finally, we define strong equality.

(Store assert eqn 96a)+= (94) «98¢ 99bo
strongEq(sn,u,u’) ==
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equal(sn,u,u’) \/
(~isRep(sn,u) /\ "isRep(sn,u’));

6.3.1.4 Sorted Store

The only additional definitions that are required are for well-definedness

99a  (StorePOps opsig 95f)+= (952) < 95f
wellDefObjs: Store -> Set [0bj]

99b  (Store assert eqn 96a)+= (94) «98f 99do
x \in wellDefObjs(any) ==
x \in activeObjs(any)

/\ isRep(sortAttr(x), val(any,x));

and the empty store (which we call empty in LSL rather than emptyStore).
99c¢  (Store opsig 96¢)+= (94) < 98¢
empty: ~> Store

99d  (Store assert eqn 96a)+= (94) <99%b
activeObjs(empty) == {};

6.3.2 SProjStore Trait

The trait SProjStore defines an S-sorted projection of the store. It has the usual
overall structure.
99e  (SProjStore.lsl 99e)=
SProjStore(S): trait
includes
(SProjStore include 99f)
introduces
(SProjStore opsig 100b)
asserts
\forall (SProjStore assert var decl 100a)
(SProjStore assert egn 100c)

A sorted projection makes the link between the sorted model of the store and a
projection (i.e. restricted view) of the store that contains only those objects whose

sort att.ibutes are S. Thus, it is necessary to include the theory of the sorted model.
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99f

100a

100b

100c¢

100d

100e

(SProjStore include 99f)= (99¢) 102bo

Store,
Here are the variables that are used in this trait.
(SProjStore assert var decl 100a)= (99¢) 102>

u, u’:U,

s, 8':S5,

x, x’: 0Obj,

tx, tx’: 0bj[s],

any: Store,

In the Z description of the sorted projection of the store we simply assumed that

s was the element of SortNm naming S®. We follow another approach here: we define
a constant function that maps all values of sort S into the sort name of S.
(SProjStore opsig 100b)= (99¢) 100ev

sortNm: S ~> SortNm

(SProjStore assert eqn 100¢)= (99¢) 101ap
sortNm(s) == sortNm(s’);

(sn 100d)= (101 102a)
sortNm(s)

It is necessary to assert that for each pair of distinct sorts S and S’ the functions
sortNm from the S and S’-sorted projections will have distinct values. This can be
achieved by a global assertion or stated as a metalogical property as follows. For each

pair of distinct sorts S and S?,

Y 8:8, 8':S' (sortNm(s) # sortNm(s'))
holds under the theories of SProjStore(S) and SProjStore(S’).

6.3.2.1 Abstraction Function

In LSL, the abstraction function abs is modeled as a total function.

(SProjStore opsig 100b)-+= (99e) <100b 10lco
abs: U -> S

8We could follow this approach in the LSL formalization of the store but it leads to ditficulties.
With this approach, instantiation of SProjStore, would be achieved by renaming both S and s.
This leads to difficulties, for example, when we attempt to define LSL traits defining C array or
structure types.
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In the Z theory of the store, abs is a (partial) surjective function: every sorted value
has a pre-image in the domain of abs. Since the domain of abs coincides with the
representation set of (sn 100d), we can express the surjectiveness of abs as follows
(SProjStore assert eqn 100c)+= (99¢) «100c 101bp

\A 8 \E u (isRep((sn 100d),u) /\ abs(u) = 8);
Two unsorted values are equal (when viewed as values of sort S) if they are both
representations of some value of sort S.
(SProjStore assert eqgn 100c)+= (99%) «10la 101do

equal ((sn 100d),u,u’) ==

isRep((sn 100d),u) /\ isRep({sn 100d),u’) /\ abs(u) = abs(u’);

6.3.2.2 Bijection on Obj_S

When the domain of up is restricted to the set of objects with sort attribute S, up is
injective
(SProjStore opsig 100b)+= (99e) <100e 101fc
up: Obj -> 0bj[s]
(SProjStore assert egn 100c)+= (99%) «101b 10len
sortAttr (x) = (sn 100d)

/\ sortAttr(x’) = (sn 100d)
/\ up(x) = up(x’) => x = x’;

and surjective.

(SProjStore assert egn 100c)+= (99¢) <101d 101gp
\A tx \E x (sortAttr(x) = (sn 100d) /\ up(x) = tx);

dwn is injective
(SProjStore opsig 100b)+= (99) <10lc 102d»
dwn: Obj[S] -> Obj

(SProjStore assert eqn 100c)+= (99e) «10le 10itho
dwn(tx) = dwn(tx’) => tx = tx’;
and its range is exactly the set of objects whose sort attribute is S.

(SProjStore assert eqn 100c)+= (99) «101g 102a>
sortAttr(dwn(tx)) = (sn 100d);
sortAttr(x) = (sn 100d) => \E tx (dwn(tx) = x);
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Furthermore, up and dwn are inverses

(SProjStore assert eqn 100c)+= (99e) <101h 102¢n
up(dwn(tx)) = tx;
sortAttr(x) = (sn 100d) => dwn(up(x)) = x;

6.3.2.3 Promoted Operators

We declare the promoted operators simply by including StorePOps with an appro-
priate renaming,.

(SProjStore include 99f)+= (99e) <99f 103do
StoreP0Ops(S,0bj[s]),
Here are the definitions of the promoted operators.
(SProjStore assert eqn 100c)+= (99e) <1022 102ev
tx \in activeObjs(any) == dwn(tx) \in activeObjs(any);
tx \in wellDefObjs(any) == dwn(tx) \in wellDefObjs(any);
tx \in wellDefObjs(any) =>
val(any,tx) = abs(val(any,dwn(tx)));

6.3.2.4 Sugar for Sets and Sequences

In the translations of the non-interface part of LCL specifications into LSL traits we
will often need to denote sets and sequences of objects of possibly different sorts. The
following infix operations will allow us to write more concise expressions denoting

such sets and sequences.

(SProjStore opsig 100b)+= (99e) «101f 103av
-~ \ins __: Set[0bjl, 0Obj[S] ~> Set[0bj]

(SProjStore assert egn 100c)+= (99¢) <102¢c 103bo
xs \ins tx == insert(dwn(tx),xs);

(SProjStore assert var decl 100a)+= (99e) <100a 103co>

xs: Set[0bj],

The operator \ins can be used as a constructor for sets of objects. For example, we

will be able to write

empty \ins tx1 \ins tx2 \ins ... txk
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instead of

insert (dwn(txk), ...
insert(dwn(tx2), insert (dwn(tx1) ,empty))...)

Similarly, we define \apd to ease the writing of sequences of objects.

{SProjStore opsig 100b)+= (9%) <102d
-— \apd __: Seq[0Objl, Obj[S] -> Seq[0bj]
(SProjStore assert eqn 100c)+= (99%¢) <102

xq \apd tx == xq \postcat dwn(tx);

(§ProjStore assert var decl 100a)+= (99%) <102f
xq: Seq[0bj]

Sequences are defined in the Seq trait given in Section 6.5.1.

(SProjStore include 99f)+= (99¢) <102b
Seq(0bj)

6.4 Traits for LCL Types

The traits in this section provide a semantics for the sorts on which LCL exposed

types are based®.

6.4.1 IntTp Trait

IntTp is meant to be an axiomatization of the C int type. In the current version of
the semantic definition we ignore the fact that the int type corresponds to a subrange
of the integers and define it in terms of the LSL Integer trait.
(IntTp.lsl 103e)=

IntTp: trait

includes Integer(int)

®In the current release of the semantic model we only provide definitions for the sorts associated
with the int and array types. Adding traits for the other basic types is straightforward.
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6.4.2 ArrTp Trait

An object that has an array type contains values of sort Arr(E] called array values.

As usual, such an object is of sort 0bj[Axrr[E]]. The ArrTp trait defines

¢ the Arr[E] sort,
¢ E-sorted and Arr [E]-sorted projections of the store,

¢ those array value operations that are “promoted” so that they can also be

applied to array objects (which are of sort 0bj [Arr[E]]), and

o the particular relationships (namely, dependencies, active/inactive status and
well-definedness) that exists between array objects and the objects that are

their members.

104a (ArrTp.lsl 1042)=
ArrTp(E): trait
includes
(ArrTp include 104c)
asserts
\forall (ArrTp assert var decl 104b)
(ArrTp assert egn 106c)
implies
\forall (ArrTp assert var decl 104b)
(ArrTp implies eqn 107c)
104b (ArrTp assert var decl 104b)= (104a)
i: Int,
x: Obj,
tx: Obj[Arr[E]],

any: Store

A theory for array values is given in the Arr trait of Section 6.5.2.

104c (ArrTp include 104c)= (104a) 105ae
Arr(E),
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The two sorted projections of the store are defined by appropriate trait references to

SProjStore.
(ArrTp include 104c)+= (104a) <104c 105bp

SProjStore(E),
SProjStore(Arr [E]),

6.4.2.1 Array Operations on Array Objects

Some of the operators over array values are also defined over array objects. These
operators, along with some of their basic properties, are contained in the ArrQps trait
which is included in ArrTp!?.

(ArrTp include 104c)+= (104a) <105a
ArrOps(Obj[E], Obj[Arr(E]])
The outline of ArrQOps is
(ArrOps.lsl 105¢)=
ArrOps(E, C): trait
includes
Integer, Set(Int,Set[Int])
introduces
(ArrOps opsig 105d)
asserts
\forall c:C
(ArrOps assert eqn 106a)
More specifically, the operators over array values that are extended to array objects
are:
(ArrOps opsig 105d)= (105¢)
inds: C -> Set[Int]
--[..): C, Int =>E
dim: C -> Int
maxIndex: C -> Int

The term tx[i] denotes the ith member object of the array tx. The other operators

yield the index set, dimension and maximum index of the array value contained in

1%We could not simply include Arr(obj[E], Obj[Arr[E}] for Arr[ObjLE]]) to define the array
operators over array objects since this would incorrectly assert that 0bj [Arr[E]] was generated by
the array constructor operators.
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the array object. The properties of these operators are given in Section 6.4.2.3, with
the exception of two general properties which are given next:
(ArrOps assert eqn 106a)= (105¢)

dim(c) == size(inds{(c));

inds(c) \neq {} =>

dim(c) = maxIndex(c) + 1;

Since we claim that we are defining “promoted” array value operators, then these
operators must exists over array values. Furthermore, the general properties of the
promoted operators must hold for the array value operators also. We express these
requirements by including a reference to ArrOps in the implies section of ArrTp.
(Arr implies trait 106b)= (109a)

ArrOps(E, ArrfE])

6.4.2.2 Dependencies

The first thing to be defined about array objects is that nature of the dependencies
that exist between arrays and their members. An array object depends on each of its
member objects and vice versa.
(ArrTp assert eqn 106¢)= (104a) 106de
\A i (i \in inds(tx) =>
depOn (dwn(tx), dwn(tx[il))
/\ depOn(dwn(tx[i]), dwn(tx)));
Furthermore, an object x depends on an array object tx if and only if, x depends on
at least one of the member objects of tx. Similarly, an array object tx depends on
an object x, if and only if at least one of the member objects of tx depends on x.
(ArrTp assert egn 106¢)+= (104a) «l06¢c 107av
depOn(x,dwn(tx)) ==
\E i (i \in inds(tx) /\ depOn(x, dwn(tx[il)));
depOn(dwn(tx),x) ==
\E i (i \in inds(tx) /\ depOn(dwn(tx[i]), x));

6.4.2.3 Other Relationships Between Arrays and Their Member Objects

Since there exists dependencies between an array object and its member objects, we

must clarify the nature of the relationships between the value, active/inactive status
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and well-definedness of an array and its members. An array object is considered to
be active precisely when all of its members are active.
(ArrTp assert eqn 106c)+= (104a) <106d 107bo

tx \in activeObjs(any) ==

\A i (i \in inds(tx) => tx[i] \in activeObjs(any));
Consequently, trashing an array object also trashes all of its members and trashing a
member renders the array (and hence all other array members) inactive.
The set of indices (and consequently the dimension) of an array object is the same

as that for the array value that it contains.
(ArrTp assert egn 106¢c)+= (104a) «107a 107do

inds(tx) == inds(val(any,tx));
As a consequence of these definitions we have,
(ArrTp implies eqn 107¢)= (104a)

dim(tx) == dim(val(any,tx));

dim(tx) > 0 =>

maxIndex(tx) = maxIndex(val(any,tx));

The value contained in the ith member object of an array is always in agreement
with the ith value of the array value contained in the array object. The ith member
object of the array tx is tx{i] and the value contained in this object (in an arbitrary
state) is val(any,tx[i])). The array value contained in tx is val(any,tx) and the
value associated with the ith entry is val(any,tx) [i]. Hence,
(ArrTp assert egn 106c)+= (104a) <107b 107ev

\A i (i \in inds(tx) =>

val(any,tx)[i] = val(any,tx[i]1));
An array object is well-defined when all of its members are well-defined.

(ArrTp assert egn 106¢)+= (104a) <107d
tx \in wellDefObjs(any) ==
(\A i (i \in inds(tx) => tx[i] \in wellDefObjs(any)));
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6.5 General Traits

6.5.1 Seq Trait

The trait Seq defines sequences, somewhat like Z sequences. Sequences are defined
in terms of the String trait [GH93, p. 173]. Note that strings have a base index of 0.
(Seq.lsl 108a)=
Seq(E): trait
includes
String(E,Seq[E]), Set(Int,Set[Int])
introduces
(Seq opsig 108¢)
agserts
\forall (Seq assert var decl 108b)
(Seq assert eqn 108d)
implies
\forall (Seq assert var decl 108b)
(Seq implies eqn 108e)

(Seq assert var decl 108b)= (108a)
e: E, s: Seq(E], i: Int

In addition to the operators over strings, we define inds(s) to be the set of indices

of the elements of the sequence s'!.

(Seq opsig 108c)= (108a)
inds: Seq[E] -> Set[Int]
(Seq assert eqn 108d)= (108a)
inds(empty) == {};
inds(s |- e) == insert(len(s), inds(s));
The indices of a. sequence are the integers between 0 and len(s) — 1, and there are

as many indices as there are elements in the sequence.

(Seq implies eqn 108e)= (108a)
i \in inds(s) == 0<¢= i /\ i < len(s);
size(inds(s)) == len(s);

11 We provide a recursive definition for inds since thissimplifies proofs (in particular those written
using LP) involving inds.
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6.5.2 Arr Trait

Our formalization of array values is mainly based on sequences as defined in the Seq
trait.
(Arr.lsl 109a)=
Arr(E): trait
includes
Seq(E, Arr[E] for SeqlE])
introduces
(Arr opsig 109b)
asserts
\forall (Arr assert var decl 109c)
{Arr assert eqn 109d)
implies
(Arr implies trait 106b)
In addition to the usual operator for extracting the value at the ith index of an array,
—_[_-1, we also provide operators that yield the number of elements in an array
(called the array dimension) and the maximum index of an array.
(Arr opsig 109b)= (109a)
dim: Arr(E] -> Int
maxIndex: Arr[E] -> Int
The array dimension is the same as the length of the array when it is viewed as a
sequence. If there is more than one element in an array then, the maximum index is

one less than the dimension (since array indices start at 0).

(Arr assert var decl 109¢)= (109a)
a: Arr[E]
(Arr assert eqn 109d)= (109a)

dim(a) == len(a);
dim(a) > 0 => maxIndex(a) = dim(a) - 1;

6.5.3 Properties of Functions

A function is surjective if every element in its range has a pre-image.

(Surjective.lsl 109e)=
Surjective(f,Dom,Ran) :trait

109



introduces
£: Dom -> Ran

asserts \forall 4: Dom, r: Ran
\Ar \Ed (£f(d) = 1)

6.6 Summary and Related Work

Our model of program states is conventional: the program state is partitioned into an
environment and a store. Our model of the store is exceptional in that it covers object
dependencies in their full static generality. Furthermore, an important characteristic
of the model is that each object has a fixed, state-independent sort attribute. This is
in contrast to C where objects are untyped; the type with which an object is viewed
depends on the lvalue that is used to refer to the object [ISO, §3). As a consequence
of this, we represent (what would be considered in C as) a single object with several
types by a collection of objects (each with a single type) related by certain object
dependencies.

In the subsections that follow, we discuss the storage models for LCL (as defined
by Tan), LCPP and LM3. Our discussion is guided by the requirements for the

storage model that we identified in Section 6.1.

6.6.1 Tan’s LCL Model of the Store

Tan informally describes the model of the store using the following domain equations
[Tan94, §7.1):

values = bvalues U objects

states = objects — values

objects = mutable_objects U exposed_objects
ezposed_objects = locations U structs U unions U

arrays U pointers

His formalization of the store is captured as two traits. Unfortunately no link is
made between his model (described by domain equatjons) and the two traits. In
particular, the fact that objects is a (disjoint) union of various kinds of object is

not expressed in his formal model. Tan defines a trait named state that describes
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an unsorted model of the store. The trait typedObj provides sorted projections of
the store [Tan94, §7.2]. Tan’s model allows us to determine the set of active objects.
It is not possible though to determine the sort associated with an object; it is not
clear whether objects have a fixed (state independent) sort attribute—informally Tan
states that they do, but this claim is not supported by his model.

Although Tan states that aggregate and union objects are viewed as collections of
objects, he does not forimally model this property. Dependencies between aggregate
objects and their members are only partly modeled using the concept of base objects.
The set of base objects of an object of a fundamental or an abstract type is the
singleton set consisting of the object itself. The set of base objects of an aggregate
object is defined as the union of the base objects of its members [Tan94, §7.4.1]. Tan
does not model dependencies among the members of union types nor dependencies

between instances of abstract types.

6.6.2 LCPP
The model of the store used for LCPP [LC95] is similar to Tan’s model. Formally, the

model of the store is captured by two traits. The State trait provides an unsorted
model of the store and the TypedObj trait defines a sorted projection of the store.
The LCPP model allows us to denote the set of all active objects and, as was the case
with Tan’s model, it is not possible to determine the sort of an object!?.

An “object”, say z, of an array type is modeled as the collection of objects that
constitute its members but z itself is not considered to be an object. On the other
hand, an object of a structure or union type is consider to be an object.

A restricted form of object dependency relationships can b¢ modeled in LCPP
using an object containment relation. The object containment rlaiion coincides with
a transitive subrelation of the general object dependency relation. This approach does
not model union types in their full generality. For example, it is not possible to explain

the behavior of the call changeAorB(flag,&u.i,&u.c).

union { int i; char c; } u;

void changeAorB(Bool changeA, int *a, char *b) {

modifies *a, *b;

120f course the issue is more complicated in LCPP because of subtyping.
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ensures if changeA
then (*a)’ I= (*xa)®
A indep(*a,xb) => {*b)’' = ()"
else (xb)’ != (xb)"

A indep(*a,*b) = (¥a)’ = (*a)’;

The LCPP model does not cope with dependencies between instances of abstract

types.

6.6.3 LM3

Jones models the store as a collection of functions of the form

o: 0bj[S], State — S

There is one such function for each LSL sort S that occurs in (the translation of)
an LM3 specification. His formalization of the store is not based on an underlying
unsorted model. Arrays (and presumably records too) are treated as “entire objects”;
that is, an assignment to an array element is regarded as a change in value of the
entire array object—such a model for array types is inadequate for LCL. No treatment
of union objects is described.

There seems to be no notion of active or inactive objects. There is no formal
expression coriesponding to the set of all possible objects. The only property of an
object that is modeled is the abstract value that it contains. Since the collection of
functions defining the store are sorted, it is impossible to determine if an object is
well-defined. Object dependency relationships are not modeled (neither for exposed
nor abstract types).
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Chapter 7
Semantic Objects

The semantic object that corresponds to an LCL specificaticn is an LCL environment
(also referred to simply as an environment when there is no possibility of confusion).
An environment has two components one of which captures a specification’s interface
and the other assigns a meaning to the components that are part of the interface.
The interface is documented as an LCL signature and the meanings of the interface

components are captured in the form of an LSL trait body.

Since LCL specifications make use of LSL traits we must deal with interface com-
penents from two languages. Thus, an LCL signature consists of an LSL signature
(LSig, Section 4.4.1) together with a semantic object—named an ISig—used to hold

LCL specific information about the interface components.

7.1 Identifiers

In Table 2, we list the various entities that an identifier can denote in a C program
after preprocessing has been performed [ISO, §6.1.2]. In addition, an identifier in an
LCL specification can denote any one of the entities shown in Table 3. Identifiers can
be classified by the context in which they are used, thus resulting in different name
spaces. This allows for distinct entities to share the same identifier. LCL has the

same identifier classification scheme as C: the name spaces are [ISO, §6.1.2.3]:
o label names,

e tags of structure, union and enumerated types,
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] An identifier can name... | Name Space |

enumeration constant ordinary id
function ordinary id
label label name
object ordinary id
structure or union member member name
tag of a structure, union or enumeration tag
typedef name ordinary id

Table 2: Classification of C Identifiers

[ An identifier can name ... | Name Space |

LCL constant ordinary id

LCL abstract type name | ordinary id
logical variable ordinary id
LSL operator ordinary id

LSL sort ordinary id

Table 3: Classification of LCL Specific Identifiers

o member names of structure and union types—each type corresponds to a dis-

tinct name space,
o the remaining identifiers are classified as ordinary identifiers.

The name spaces attributed to the uses of identifiers shown in Tables 2 and 3 are also
given.
We will need to name entities unambiguously, hence we define {dNmSp to be an

identifier together with the name space to which it is meant to belong.

IdNmSp
id: Id
nmSp : NmSp

In our informal discussions we overload the term “identifier” by using it to refer to
members of Id as well as IdNmSp. The formal text should clarify which is being

referred to. We need to provide names only for the name spaces consisting of tags
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and ordinary identifiers—label names are not used in LCL and member names are

used in very specific (and easily distinguishable) contexts.

NmSp ::= OrdNmSp
| TagNmSp

Since ordinary identifiers occur so frequently, it is useful to have a function that

maps an ordinary Id into the corresponding IdNmSp:

ordld : Id — IdNmSp
ordld id' = (u IdNmSp |

id=1id A

nmSp = OrdNmSp)

A declaration in an LCL specification can introduce an identifier as an abstract
type, an LCL constant, an enumeration constant, a function, a logical variable, a

typedef name, a variable, or a tag. Formally!

ldKind ::= AbsTpldK
| ConldK

| EnumCIdK
| FunldK

| LVarldK

| TpDefldK

| VarldK

| TagldK

7.2 Types

LCL types are represented as LSL sorts in LSL signatures and as LCL type denota-
tions in ISig’s. Type denotations are discussed in Section 7.2.1 and sorts, as related

to LCL types, are discussed in Section 7.2.5.

'Only the kinds ConldK, FunldK, LVarldK, VarldK are used in the current version of the
semantic definition.
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7.2.1 Type Denotations

A denotation for an unqualified type name is called an unqualified type denotation,
and a denotation for a type name is called a type denotation (implicitly understood
as being qualified). A type denotation consists of an unqualified type denotation and

a set of type qualifiers.

TpDenG[XUTpDen)
tpQuals : F TpQual
utd : XUTpDen

TpDen = TpDenG[UTpDen)

| utd2TD : UTpDen — TpDen

| utd2TD utd = (let tpQuals == & @ § TpDen)

7.2.2 Unqualified Type Denotations

Each unqualified type has a denotation. Notice that the denotation of an array
consists of a denotation for the element type and an optional LSI, term: thus, the

optional LCL expression is represented as an LSL term.

OptTerm ::= NoTerm
| OneTerm{{Term))

UTpDen ::= VoidUTD

| BasicUTD{BasicTp))

| ArrUTD{TpDenG[UTpDen] x OptTerm))
| FunUTD{FunUTDSch[UTpDenl)

|

ImmUTD{userSN))

A denotation for a function type contains the denotation of the function return

type, parameter types and the types of the variables in the global variable list.
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FunUTDSchO[XUTpDen]
retUTD : XUTpDen
prmTDs : seq TpDenG[XUTpDen]

— FunUTDSch|XUTpDen|
FurnUTDSchO[XUTpDen]
prmlds,

guarlds : seq Id
gvarUTDs : seq XUTpDen

#prmlds = #prmTDs
#gvarlds = #gvarUTDs

7.2.3 Object, Function and Incomplete Types
In C, types are partitioned into [ISO, §6.1.2.5]:

e object types

e function types

e incomplete types

The object and function types are the types that objects and functions can have,

respectively. The incomplete types are:
® void,
e array types for which the array dimension is not given,

e structure or union types with unspecified members; this occurs when only the
tag is given for the type. Consider the following declarations for mutually

recursive structures,

struct S; /* (a) x/
struct T { struct S *ptr_to_s; ... };
struct S { struct T *ptr_to_t; ... }; /* (b) %/
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At point (a), the structure type ‘struct S’ is incomplete but it is completed
by (b).
All incomplete types, with the exception of void, can be completed and when this
is done, the result is an object type. Hence, the collection of incomplete types other
than void will be referred to as “incomplete object types”. Formally, objUTD is the
set of object types, and incObjUTD is the set of incomplete object types®.

objUTD,
incObjUTD : P UTpDen
T
objUTD =
ran BasicUTD U

{utd : ran ArrUTD |
second(ArrUTD™ utd) # NoTerm} U
ran ImmUTD

incObjUTD = {utd : ran ArrUTD |
second(ArrUTD™ utd) = NoTerm}

7.2.4 Type Denotation Components

We say that the unqualified type denotation utd, is an immediate type component
of utd if utd, is used directly as a part of the type definition of utd: formally, iff
(utd, utd,) € cptUTD. Only derived types have immediate type components, funda-

mental and abstract types do not.

cptUTD : UTpDen < UTpDen

(VoidUTD, utd) ¢ cptUTD
(BasicUTD tp, utd) ¢ cptUTD
(ArrUTD(td, optTm), utd’) € cptUTD ¢ utd' = td.utd
(FPunUTD(0 FunUTDSch, «!d') € cptUTD &
utd' = retUTD V utd’ € ran prmTDs
(ImmUTD nm, utd) ¢ cptUTD

The element type of an array type utd is the only proper component type of utd.

The types of the members of a structure or union type utd are the component types

2The given definitions are tailored to the current version of the semantics.
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of utd. The component types of a function type are the function return type and the
types of the parameters (hence, excluding the types of the global variables listed in
the function header).

In the usual way, we define the type component and proper type component rela-
tions as the reflexive-transitive and transitive closures of eptUTD respectively. That

is, utd, is a type component of utd if
o utd. is utd, or

e uld. is an immediate type component of utd’ and utd’ is a type component of

utd;

that is, if (utd, utd.) € cptUTD*. utd. is a proper type component of utd if it is a
type component of utd that is distinct from utd; i.e., if (utd, utd,) € cptUTD*. The
set of all type components of a given unqualified type utd is cptUTD*{{utd}).

7.2.5 Sorts and Types

For the purpose of defining a semantics for LCL, we assume that the set of sort names,

SortNm, is defined as if by the following free type definition3.

SortNm ::= {(UserSN))
| BasicSN {BasicTp))
| ObjSN {SortNm))
| ArrSN {(SortNm))

In (partial) imitation of this definition, we define

userSN : P SortNm

basicSN : BasicTp > SortNm
objSN : SortNm »— SortNm
arrSN : SortNm >— SortNm

disjoint (userSN,ran basicSN,ran 0bjSN,ran arrSN)

where

3The given free type definition is actually not legal Z since the first alternative does not have a
‘constructor’ name.
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o userSN denotes the set of all sort names that do not correspond to names

representing LCL exposed types,
o basicSN maps a basic type into its corresponding sort name,
e 0bjSN S is the sort name for objects containing values of sort S,

e arrSN S is the sort name for array values—not array objects-—with elements of
sort S.

We require that every sort name built with these constructors be uniquely decomposable --
hence basicSN, 0bjSN and arrSN are defined as injective functions whose ranges are

disjoint. Informally, we can define these functions as follows

basicSN IntTp = int
0bjSN S = 0bj[s]
arrSN S = Arr[S]

7.2.6 Sort Name Components

The sort name sort, is an immediate sort name component of sort—formally (sort, sort.) €

cptSN—if sort can be directly constructed from sort,.

cptSN : SortNm < SortNm

(sort, sort.) € cptSN &
sort = objSN sort, V

sort = arrSN sort,

Hence
cptSN = 0bjSN™ U arrSN™

As was done in Section 7.2.4, we define the sort name component relation as cptSN*
and the proper sort name component relation as cptSN*. The set of all sort name

components of sort is given by cptSN*{{sort}).
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7.3 Signatures

An LCL signature consists of two LSL signatures and an ISig. One LSL signature
(localLSig) contains entries for the declarations that are local to the interface. The
other signature contains information for all declarations that are part of the interface,

including those derived from imports and uses components.

Sig
isig : ISig

lsig,

localLSig : LSig

ISig’s are described in the next section and operations over LCL signatures are defined
g

in Section 7.3.2.

7.3.1 ISig’s

An ISig is a signature that holds LCL specific information about the components
in a specification. The main component of an ISig is a binding (b) from IdNmSp

identifiers to their attributes.

ISig
b: IdNmSp -+ Attr
types : F UTpDen

The types component is used to record the types that have been used in the speci-
fication. This component is necessary for ensuring that each complete type specifier
denoting a structure or union type is assigned a unique type. For example, the vari-
ables x1 and x2

struct { int i; } x1;
struct { int i; } x2;

have different types even though they are deciared with the same type name?.

The attributes associated with identifiecs in an ISig are:

See [ISO, §6.5.2.3] for more information concerning how types are assigned to structure and
union type names.
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o the use that is being made of the identifier (formally represented by an Idiind),
¢ the type associated with the identifier, and

¢ an indication of whether the identifier is spec or non-spec.

Attr
idKind : IdKind
td: TpDen
delQual : DelQual

For example, the specification

constant int N;

spec int a[N];
corresponds to the following signature

(nISig | b = {N— N_Attr,a — a_Attr} A
types = {int, int[N]})

where

N_Attr = (p Attr |
idKind = ConldK A
td = utd2TD(BasicUTD IntTp) A
dclQual = NotSpecQ)

a_Attr = (u Attr |
idKind = VarldK A
td = utd2TD(ArrUTD(int, OneTermN)) A
dclQual = SpecQual)

The empty ISig corresponds to the empty specification: no identifiers are declared

and no types are in use.

emptylSig : ISig

emptylSig = (u ISig | b = @ A types = @)
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The function mklSig constructs an ISig from a given identifier and attribute.

-

mklSig : [dNmSp x Attr — 15ig

mklSig(ip, attr) =
(1 1Sig |
b= {ip+— attr} A
types = cptUTD* ({attr.td.utd}))

The binding contains only the given identifier/attribute pair and the types are the
component types of the type denotation associated with the identifier.

Two [Sig’s can be joined: the resulting ISig has all of the types and bindings of
the two given signatures, unless some identifiers are bound by both signatures. If an

identifier is present in the bindings of both signatures, then the binding in the second

signature takes precedence.

addiSig : ISig x 1Sig — ISig

addISig = (A ISig'; ISig" |
types = types’' U types”))

ISig forms a ruonoid with emptylSig as unit and addISig as signature composition

operator.

Given an identifier ip that has a binding in isig’, then isigFzport isig’ ip is a new
signature that differs (if at all) from isig’ only in that the spec attribute of ip is set
to NotSpec().

wsiglzport : 1Sig — IdANmSp -+ 1Sig

isigExport 01Sig’ =

(Aip: IdNmSp | ip € dom V' e

(u 1Sig; Attr |
QAttr = b ip A
b=b & {ip—

(let dclQual == NotSpecQ o 8Attr)} A

types = types’ @
015ig))
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It is sometimes necessary to restrict the visibility of global declarations. Tor
example, when processing expressions in the body of a function specification, we
limit access to the global variables that are in the global variable list of the function
specification header. isigHideldNSs isig idNSs is like the signature isig but with the
declarations of the identifiers in idNSs hidden.

isigHideldNSs : 1Sig — F IdNmSp —+> 1Sig

istigHideldNSs =
(A1Sig'
(A idNSsToHide : F IdNmSp |
tdNSsToHide C dom b’
(u ISig |
b = idNSsToHide 9 b’ A
types = types')))

7.3.2 Sig’s
The empty LCL signature contains no entries.
emptySig : Sig

emplySig = (p Sig |
isig = emptylSig A
Isig = emptyLSig A
localLSig = emptyLSig)

Two LCL signatures can be joined by joining their corresponding component
signatures.

addSig : Sig x Sig — Sig
addSig = () Sig'; Sig" e
(u Sig |
istg = addISig(isig’, isig") A
Isig = addLSig(lsig’, Isig") A
localLSig = addLSig(localLSig’, localLSig"))
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We define sigResVar ips sig to be the LCL signature which is obtained from sig

by restricting the variable identifiers that it contains to those that occur in #ps.

sigRes Var : Sig — F IdNmSp - Sig

sigResVar = (A Sig' o
(A varsToShow : F IdNmSp |
varsToShow C dom b’ A
“All ip € varsToShow are variables” o
“let varsToHide == ...; opsToHide == ..." »
(nSig |
isig = isigHideldNSs isig' varsToHide A
Isig = IsigHideOps lsig’ opsToHide A
localLSig = IsigHideOps localLSig' opsToHide)))

where “All ip € varsToShow are variables” is
Vip : varsToShow e (isig'.b ip).idKind = VarldK
and “let varsToHide == ...; opsToHide == ...” is

let allVars == {ip : domisig’.b |
(isig’.bip).idKind = VarldK} e
let varsToHide == allVars \ varsToShow e
let opsToHide ==
“let id20pNS ==...” o id20pNS(varsToHide)

We define “let id20pNS ==...” as

let id20pNS ==
(Aip : [dNmSp o
let td == (isig’.bip).td e
let opSig == mkConOpSig(0bjSN(td2SN td)) e
ip.id — opSig)

7.4 Environments
An LCL environment consists of an LCL signature and a “special” trait body.
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__FEnv

Sig

TBS

sig : Sig
sig = 0Sig

Each Env is uniquely determined by its isig and b components since tb determines

the value of all Env components other than isig.
(A Env e (isig, tb)) € Env »» (ISig x TraitBody)
The empty environment has an empty signature and an empty trait body.
emptyEnv : Env

emptyEnv = (p Env |
istg = emplylSig A
th = ()

From a given identifier/identifier-attribute pair and a trait body, mkEnv yiclds the

environment constructed from these components:

mkEnv : (IdNmSp x Attr) x TraitBody — Env

mkEnv(ip — attr,tb') =
(1 Env | isig = mklSig(ip, atir) A th = tb’)

Two environments can be joined by joining their component signatures and trait

bodies.

addEnv : Env x Env — Env

addEnv = (A Env'; Env" e
(1 Env |
isig = addISig(isig’, isig") N
th = tb' ~ tb"))

If ip is an identifier in env, then envEzport env ip is the environment that differs (if at

all) from env only in the spec attribute of ip (which is guaranteced to be NotSpec@).
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envEzport : Env — [dNmSp - Env

envEzport = (A Env' |
(Aip: IdNmSp | ip € dom isig’'.b e

(n Env |
isig = isigEzport isig' ip A
th = tb'))
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Chapter 8

Semantic Rules and Semantic

Functions

The semantics of LCL is given principally by means of an inference system. The

inference rules allow us to establish the validity of elaboration predicates of the forin
ckta=> =z (2)

Such a predicate asserts that the syntactic object a corresponds to the semantic object
r under the context c; we will also say “a elaborates to z under c.” The context will
usually be a signature or an environment containing the declarations under which
elaboration is to be performed. The rules of inference, consisting of zcro or more

hypotheses and a conclusion, are written in the form

hypy hypa ... hyp.

concl

where ‘Name’ is the rule name. The conclusion will always be an elaboration predi-
cate. A hypothesis can be any predicate—including an elaboration predicate.

The inference rules define a proof system that can be used to present deductions
of elaboration predicates. It is also possible to view the meaning of an inference rule

as the predicate

Voyu: Vi oo;m Ve
(3w : Wi ... we: W e AL, hypi) = concl

where v;,...,v; are the free variables that occur in the conclusion, and wy,..., w;
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are the free variables that occur in the hypotheses excluding those already present in

the conclusion.

The elaboration predicate
ckhas>z
is actually a mix-fix representation of the ordinary Z predicate
(¢,a,z) € R

(Notice that in (2) we omitted the relation name. This will be done when it is clear
from the context which relation is being referred to or if the relation name is irrelevant
to the discussion.) An elaboration predicate is simply an assertion that a given triple

is a member of an ternary elaboration relation
R:P(Cx Ax X)
which will also be written in mix-fix notation as
CELA>X (3)

In the sections that follow, inference rules are used to define one or more elabora-

tion relations for each major syntactic class.

8.1 The Seq Metarule

Given a relation R
CHLA> X

that defines the elaboration of A’s into X’s under the context of C’s, then the relation

Seq R
C k. n seq A D> seqX

(which defines the elaboration of sequences of A’s into sequences of X's under the

same context as for R) is defined as follows.

Seg-b

¢Kn () 2 )
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ckaz>r
€Ky a8 IS .
= = Seq-i
¢ Kun (a) " as> (x) " s E

An example of the use of this meta rule is in the definition of the elaboration

relation for sequences of expressions into sequences of terms

Sig I seq Ezp = seq Term

eqExpr

from the elaboration relation for expressions

Sigk,, Ezp 3> Term

Xpr

8.2 Types

The principal semantic object corresponding to a type name is a type denotation.
Type names are represented as type denotations in ISig’s. There is a type denotation
for every LCL type.

Every LCL object type is additionally associated with an LSL sort. The semantic
functions that relate types to sorts are presented in Section 8.2.8. In some cases,
several types will correspond to the same sort (i.e. the mapping from types to sorts
is many to one). Thus, type information is “lost” when sorts are used to represent
types in LSL traits. To compensate for this loss of information, declared identifiers
must sometimes be subject to constraints which we will call type constraints. Type
constraints are expressed in the form of LSL predicates. For example, the following

array variable declaration

int a[3];

will be represented (in LSL) as the operator

a: — Arr[int]

This operator will be subject to the constraint that its dimension be 3

dim(a) = 3
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8.2.1 On the Form of the Elaboration Relations

In this section we define the elaboration relations

Sig Krowm, UTpNm 2> (UTpDen x LSLPred)
Sig boyme TPNm 2> (TpDen x LSLPred)

that associate a type name to a type denotation and a type constraint. Why define
relations that yield both a type denotation and a type constraint? Why not two sets
of elaboration relations? Because a simpler definition results if we elaborate the type
denotation and the constraint together. Furthermore, we generally need both the type
denotation and the constraint at the same time. Also note that we cannot derive the
type constraint from the type denotation—in particular because of typedef names
with constraints.

Why not define elaboration relations that relate a type name to a triple that
would also include the sort name? Because not all type names are associated with a
sort name—only object types have an associated sort. (Although it is also the case
that not all type names have type constraints, the absence of a type constraint is
conveniently represented by the predicate true.) If a type name has an associated
sort name, then the sort name can be derived from the type denotation using the

functions given in Section 8.2.8.

8.2.2 An Anonymous Logical Variable

When formulating a type constraint we are faced with a dilemma: we do not know
how to name the entity to which the constraint is being applied. For this purpose we
will make use of an anonymous logical variable that has a name that is different from

any user definable name

arnonLVarNm ;: LVarNm

If d is a declarator to which a given type constraint IsiPred is to be applied,
then anonSubst d IslPred is the predicate that results from the substitution of all

occurrences of anonLVarNm by d in IslPred. For example, if IslPred is

dim(anonLVarNm) = 3
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and d is ‘a’ then anonSubst d IslPred is

dim(a) = 3

anonSubst : Term — Term — Term

anonSubst tm tm' €
let anonLVarNS == (anonLVarNm,tmSort tm) e
let subst == {anonLVarNS — tm} e
appSubst subst tm’

If the (qualified or unqualified) iype name tn elaborates to the (qualified or un-
qualified) type denotation ¢td with the type constraint Is[Pred, then all occurrences
(if any) of the logical variable name anonLVarNm in lslPred will be of the sort of (n.
For example, the type name int [3] will elaborate to the type denotation int[3] and

the type constraint

dim(anonlVarNm:Arr[int]) = 3

The sort of the anonymous logical variable, which is shown by explicit qualification,
is the sort of int[3]—i.e. Arr[int]. Thetype obj int [3] will elaborate to the type

denotation obj int [3] and the constraint

dim(val(any,anonLVarNm:0bj[Arr[int]])) = 3

The sort of the anonymous logical variable, 0bj [Arr[int]],is the sort of obj int [3].
As this last example illustrates, type constraints may also make use of the “anony-
mous” state variable any of sort Store.

If there is no sort associated with a given type, then there will be no occurrences
of the anonymous logical variable in its type constraint since the type constraint will

be true.

8.2.3 Fundamental Types

Regardless of the context, fundamental types elaborate to their corresponding deno-
tations. There is no type constraint associated with a fundamental type (hence the

type constraint is represented as the predicate true).
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519 bpoum, VoidUTN 2 (VoidUTD, [true():Bool])

319 Fyronm, BasicUTN basicTp 3> (BasicUTD basicTp, [true():Bool])

8.2.4 Array Types

We define two rules for array types: one rule concerns array types with unspecified

dimensions and the other rule concerns array types for which the dimension is given.

8.2.4.1 Rule: ArrUTNO

The rule ArrUTNO concerns the elaboration, under the LCL signature sig, of the
array type

utn = ArrUTN (elemTN, NoExp)

with the element type elemTN and an unspecified dimension.

8.2.4.1.1 Hypotheses The array element type must elaborate under sig,
519 bonm, €lemTN = (elemTD, elemLSL Pred)

and it must be an object type.

elemTD.utd € objUTD

8.2.4.1.2 Conclusion The type denotation corresponding to the array type uin

is

utd = ArrUTD(elemTD, NoTerm)

133



The array type constraint, which we name IsIPred, is induced by the element type
constraint elemLSLPred: every array element must be subject to the clement type

constraint.

sort = utd2SN utd
anonLVarTm = LVarTm(anonLVarNm, sort)

The sort of the anonymous logical variable, sort, is the sort of the array type utd. The

set of indices of the array elements is inds(anonLVarTm). The array type constraint
IslPred is

V itint (i:int € inds(anonLVarTm):Set[int] = IslPred’)

where

elemSort = td2SN elemTD
tm' = [anonLVerTmi:int]:elemSort]
IsiPred’ = anonSubst tm' elem LSL Pred

Informally, tm’ is the LSL term anonLVarNm[i] which denotes the ith element of
the array value anonLVarNm. If elemLSLPred is true, then IslPred simplifies to

true.

8.2.4.1.3 Rule Summary

59 bonm, €lemTN = (elemTD, elemLSLPred)
elemTD.utd € objUTD

ArcUTNO
Sig hITme.- utn 3 (Utd, lSlPTed)

where

utn = ArrUTN(elemTN, NoEzp)

utd = ArrUTD(elemTD, NoTerm)

sort = utd2SN utd

anonLVarTm = LVarTm(anonLVarNm, sort)
elemSort = td2SN elemTD

tm' = [anonLVarT'm(i:int|:clemSort]
IslPred’ = anonSubst tm’ elem LSLPred

and IslPred is

VY i:int (i:int € inds(anonLVarTm):Set[int] = IslPred’)
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8.2.4.2 Rule: ArrUTN1

The rule ArrUTN1 concerns the elaboration, under the LCL signature sig, of the
array type

utn = ArrUTN (elem TN, OneEzp exp)

with element type elem TN and with a dimension specified by the expression ezp.

8.2.4.2.1 Hypotheses The hypotheses for rule ArrUTN1 include those of rule
ArrUTNO. Thus, the element type must elaborate (under the given signature) to an

object type denotation.

5tg boym, €lemTN 5> (elemTD, elem LSLPred)
elemTD.utd € objUTD

In addition, the expression specifying the array dimension must elaborate to an LSL

term under sig,
(NoCtz,sig) k5, exp 2> tm
and this term must be of sort int

tmSort tm = basicSN IntTp

8.2.4.2.2 Conclusion The type denotation corresponding to the array type utn
is
utd = ArrUTD(elemTD, OneTerm tm)

As is the case for rule ArrUTDO, we must impose the element type constraint on all of
the array members. Since we know what the array dimension is, we must additionally

constrain the array to be of the declared dimension.

sort = utd2SN utd
anonLVarTm = LVarTm(anonLVarNm, sort)

As before anonLVarTm represents an anonymous declarator of type utd to which the

type constraint is to be applied. The type constraint, IslPred, is
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dimCanonlVarTm) = tm A

Y i:int (i:int € inds(anonLVarTm) :Setlint] = IsiPred’)

where

elemSort = td2SN elemTD
tm' = [anonLVarTm[i:int]:elemSort]
IsliPred' = anonSubst tm' elem LSLPred

If elemLSL Pred is true, then IsiPred simplifies to

dimCanonLlVarTm) = tm

8.2.4.2.3 Rule Summary

5ig b onm, elemTN 2> (elemTD, elemLSLPred)
elem T'D.utd € objUTD
(NoCltz,sig) k;,,, ezp => tm
tmSort tm = basicSN IntTp
519 Ky prem, wtn > (utd, IslPred)

where IslPred is

dimCanonlVarTm) = tm A
Vi:int (i:int € inds(anonZLVarTm) :Set{int] = [slPred’)

and

utn = ArrUT'N(elem TN, One Exp exp)

utd = ArrUT D(elem TD, One Term tm)

sort = utd2SN uld

anonLVarTm = LVarTm(anonLVarNm, sort)
elemSort = td2SN elemTD

tm’ = [anonLVarTm[i:int):elemSort]
IsiPred' = anonSubst tm' elem LSLPred
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8.2.5 Function Types

We describe the elaboration of the function type

utn = FunUTN 0 FunUTNScn

under the signature sig.

8.2.5.1 Hypotheses

No two parameters can have the same name!.

prmlds € iseqld

The return, parameter and global variable types must elaborate under the given

signature.

819 Bopnm, TELUTN 2> (retUTD, retPred)
819 Koo rpnm, PTMTNs 2> prmTDPreds
prmTDs = first o prmTDPreds

519 B5,. urpnm, 9vaTUTNs 2 gvarUTNPreds
gvarUTDs = first o guarUTNPreds

Each parameter must have a type that is either an object, array or function type

[I1SO, §6.7.1].

(Vi:domprmTDs e
(prmTDs i).utd € objUTD U
ran Arrl/TD U
ran FunUTD)

The return type must either be void or an LCL object type that is not an array
type [ISO, §6.3.2.2, §6.5.3, §6.7.1].

retUTD € {VoidUTD} U
objUTD \ (ran ArrUTD)

liseq X is the set of ali injective sequences of X’s: each member of such a sequence has a unique
value.
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Each identifier in the global variable list must actually be declared in the global

signa.ure.

ran(ordld o gvarlds) C dom sig.isig.b
(let attrs == sig.isig.b o ordId o gvarlds e
(Vi:domatirs e
(attrs 1).idKind = VarldK A
(attrs i).td.utd = gvarUTDs i))

8.2.5.2 Conclusion

The result of the elaboration is the pair

utd_LSLPred = (FunUTD 8 Fun UTDSch, [true():Bool])

Since a function type is not an object type, there is no type constraint.

8.2.5.3 Rule Summary

prmlds € iseqld
819 Kyzonm, T€LUUTN = (retUTD, retPred)
819 Koo Tpnm, PTMTNs 2> prmTDPreds
prmTDs = first o prm TDPreds
519 koo urpnm, gvarUTNs = gvarUTNPreds
gvarUTDs = first o gvarUTNPreds
(Vi:domprmTDs e
(prmTDs i).utd € objUTD U
ran ArrUTD U
ran FunUTD)
retUTD € { VoidUTD} U
objUTD \ (ran ArrUTD)
ran(ordld o gvarlds) C dom sig.isig.b
(let atirs == sig.isig.h o ordld o gvarlds e
(Vi:domattrs e
(attrs i).idKind = VarldK A
(attrs t).td.utd = gvarUTDs t))
519 Kponm, utn 3> utd_LSLPred
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where

utn = FunUTN 0 FunUTNSch
utd _LSLPred = (FunUTD 0 Fun UTDSch, [true():Bool])

8.2.6 Abstract Types

The identifier used to name an abstract type must also be a valid sort name that does
not correspond to a sort name of an exposed LCL type, i.e., the identifier must be
what we have called a user sort narne. There is no type constraint associated with

an abstract type.

id € userSN
819 ronm, IMmUTN id 2 (ImmUTD id, [true():Bool])

ImmUTN

8.2.7 (Qualified) Types

A qualified type consists of an unqualified type and-a collection of qualifiers. We
define two rules: one deals with qualified type names without qualifiers and the other
deals with obj qualified type names?.

In both of the rules that we present below, the type denotation of the qualified
type consists of the type denotation of its underlying unqualified type along with the
same collection of qualifiers (if any). The rules differ in the definition of the type

constraint.

8.2.7.1 Rule: TpNmoO

We begin by defining the elaboration of qualified type names without qualifiers. Elab-

oration is of the qualified type name
tn = 6 TpNm

under the LCL signature sig.

In the current version of the semantics we do not provide the meaning of const and volatile
qualified types.
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8.2.7.1.1 Hypotheses The underlying unqualified type of tn must claborate un-

der sig
519 Kyronm, utn 2> (utd, IslPred)
and tn must not have any qualifiers

tpQuals = @

8.2.7.1.2 Conclusion The type name elaborates to
(6 TpDen, IsiPred)

consisting of the type denotation of utn and the same qualifiers as ¢n. Since utd and

6 TpDen have the same sort, we simply “pass on” the type constraint of utn.

8.2.7.1.3 Rule Summary

sig k= utn 2> (utd,IlslPred) tpQuals =

UTpNm¢

stg k= 0TpNm = (0 TpDen, IslPred)

Tmer

TpNmO

8.2.7.2 Rule: TpNm-ObjQual
We define the elaboration of the obj qualified type name
tn = 0TpNm
under the LCL signature sig.
8.2.7.2.1 Hypotheses The underlying unqualified type of tn must elaborate un-
der sig
5ig tyronm, utn 3 (utd, IslPred)
The only qualifier in in is obj
tpQuals = {ObjQual}

Since this is an obj qualified type, the underlying unqualified type must be an object

type or an incomplete object type

utd € objUTD U incObjUTD
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8.2.7.2.2 Conclusion Elaboration yields
td_LSLPred = (8 TpDen, Is|Pred’)

The type denotation 8 TpDen is the obj qualified type denotation of utn. The type
constraint IslPred’ is described next.

The type constraint of utn is expressed as a predicate over an anonymous declara-

tor of the sort of uin
sort = utd2SN utd

A declarator of type tn will represent an object containing values of sort sort. In
any state, the values contained in this object must satisfy the type constraint of utn.

Thus, the type constraint of tn, IslPred’, is simply

IslPred’ = anonSubst tm lslPred

sort’ = td2SN 0 TpDen = objSN sort
anonLVarTm = LVarTm(anonLVarNm, sort’)

tm = [val(any:Store, anonLVarTm):sort]

where anonLVarTm represents the anonymous declarator denoting an object contain-

ing values of sort sort. tm is the LSL term representing the value contained in this

object in an arbitrary state any.

8.2.7.2.3 Rule Summary
5ig Kyponm, utn 3> (utd, IslPred)

tpQuals = { CbjQual}
utd € objUTD U incObjUTD
5tg bowm, tn 3 td_LSLPred

TpNm-0ObjQual

where

tn = 0 TpNm

td_LSLPred = (0 TpDen, IslPred’)

sort = utd2SN utd

IslPred’ = anonSubst tm IslPred

sort’ = td2SN 0 TpDen = 0bjSN sort
anonLVarTm = LVarTm(anonLVarNm, sort')
tm = [val(any:Store, anonLVarTm):sort]
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8.2.8 Types to Sorts

The partial functions that we define next map object and array type denotations into
the sort names to which they correspond. Why not define a function from type names
into sort names? Because the same type name can correspond to different types and
hence to different sorts; this can be the case for structure or union types.

The function u¢d2SN maps an unqualified type denotation into its sort®. The
object sort of a type utd can be obtained by an application of 0bjSN to the sort of
utd.

utd2SN : UTpDen -+ SortNm

dom utd2SN = objUTD U ran ArrUTD

utd2SN(BasicUTD t) = basicSN t
utd2SN(ArrUTD(td, optTm)) = arrSN(td2SN td)
utd2SN{(ImmUTD sort) = sort

The sort associated with a type denotation ¢{d will be the same as the sort of its
component unqualified type denotation (¢d.utd) unless the obj qualifier is present. If

the obj qualifier is present, then the sort associated with td will be the object sort of

td.utd.

td25N : TpDen —+> SortNm

td2SN = (A TpDen | utd € dom utd2SN e
let sort == utd2SN utd e
if ObjQual € tpQuals
then 0bjSN sort

else sort)

8.2.9 Trait References for Sorts of LCL Exposed Types

In the semantic definition, we provide traits that define the meanings of the sorts on
which LCL exposed types are based. The use of an LCL exposed type in a specification

usually requires the inclusion of one of these traits. The function sort2Ref maps each

3utd2SN yields what Tan [Tan94] calls the value sort of the type. We call utd2SN utd the sort
associated with uid or, more simply, the sort of utd.
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nonuser sort into a trait reference which, if included, will define the theory associated

with that sort.

l sort2Ref : SortNm - TraitRef

' dom sort2Ref = SortNm \ userSN
The int sort is defined by the IntTp trait.
sort2Ref (basicSN IntTp) = traitNm2Ref IntTp

An array sort sort = Arr[S] with element sort. S, is defined by trait ArrTp(S for E).

sort2Ref(arrSN eltSN) =
(z TraitRef |
traitNm = ArrTp A
ren = (u Ren |
sortPRen = {E — eltSN} A
lvarPRen = @ A
opPRen = @))

The same trait reference is used to define 0bj [Arr{Ss]].
sorl2Ref (0bjSN (arrSN eltSN)) = sort2Ref (arrSN eltSN)

The object sort 0bj[S] of any non-array sort S’ is defined by the trait reference
SProjStore(S’ for S).

sort ¢ ran arrSN = sort2Ref(0bjSN sort) =
(1 TraitRef |
traitNm = SProjStore A
ren = (u Ren |
sortPRen = {S — sort} A
lvarPRen = @ A
opPRen = QJ})
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8.3 Expressions

We define the elaboration of LCL expressions into .SL terms under a context identifier

and an LCL signature.

(EzpCtr x Sig) & . Fzp = Term

xp

FEzpCtz ::= NoCtz | GenericCizr | PreCtr | PostCtr

Some LCL operators implicitly refer to the generic, pre-, or post-states. Hence we
must restrict the use of these operatoss to those contexts in which it is sensible to

refer to any one of these states. Details are given in Section 8.3.2.

8.3.1 Logical Variables

The elaboration of an expression consisting of a logical variable is the term denoting
that logical variable provided the logical variable is in the vocabulary of the LSL

signature component of the LCL signature. The ErpCtz is irrelevant.

tm = LVarTm lvarNS tm € wfTm lsig
(ezpCtz,08ig) &, = LVarEzp lvarNS 2 tm

LVarExp

8.3.2 Operators

The elaboration of an expression that is an application of an operator depends on
whether the operator is an LCL or an LSL operator. The LCL operators are given in
the first column of Table 4. This collection of operators is named LCLOpNSs. The
rule AppExp-LSLOp defines the elaboration of LSL operators.

opNmSig ¢ LCLOpNSs
ezpClz,05ig k
tm = AppTm(opNmSig,tms) tm € wfTm lsig
ezpCltz,0S5ig

ezxps o tms

eq Expr

AppExp-LSLOp

AppEzp(opNmSig, ezps) => tm

xpr

An expression consisting of the application of an LCL operator is translat:d into

an LSL term according to Table 4: if opNmSig is an operator that occurs in the first
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| LCL Operator {OpNmSig)

| Contexts | LSL Term Schema

depOn:0bj [S;],0bj[S2] — Bool all depOn(__,_)
indep:0bj[5],..., all indep(empty F __ F ... _)
Obj[S,] — Bool
—\pre, ..*: 0bj[S] — S pre val(pre,_)
——\activePre: O0bjl[S] — S pre —— € activeObjs(pre)
——-\wellDefPre: O0bj[S] — § pre —— € wellDefObjs(pre)
—-\post, __': 0bj[S] — S post val(post,)
--\activePost: O0bj[S] — S post —— € activeObjs(post)
—_\wellDefPost: 0Obj[S] — S post —— € wellDefObjs(post)
fresh: 0bj[S] — Bool post V x:0bj ((x € activeObjs(pre) A
x € activeObjs(post)) =
indep(empty F x F__))
trashed: 0bj[S5S] — Bool post —— ¢ activeObjs(post)
-\any, __*: 0bj[S] — § generic | val(any,_)
—-\activeAny: O0bj[S] — S generic | __ € activeObjs(any)
—_\wellDefAny: Obj[S] — S generic | __ € wellDefObjs(any)

Table 4: LCL Operator Translations

column of the table, then LCLOpCtzs opNmSig is the set of EzpCiz’s (from the second

column in the same row) in which it can appear and LCLOpTrans(opNmSig, tms)

denotes the term obtained from the third column (of the same row) by replacing

the occurrences of ‘__’ by the terms denoting the arguments of the operator. The

left-to-right order of the arguments is preserved.

opNmSig € LCLOpNSs

expCtz,0Sig k5 erps = tms

eqExpr

tm = LCLOpTrans(opNmSig, tms)

tm € wfTm lsig

expCtx € LCLOpCtxzs opNmSig

expClz,0Sig K

Xpr

8.4 Declarations

AppFEzp(opNmSig, exps) = tm

AppExp-LCLOp

We now define the elaboration relation for declarations

Env g, Dcl 3> Env
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It relates an “global” environment and a declaration to an environment increment,
that is an environment that contains only the given declaration (as opposed to the
global environment enriched with the declaration). Defining incremental, rather than
cumulative, elaboration rules make it easier to provide the semantics of local decla-
rations.

A declaration is a kind of specification component; recall from Section 5.5

Cpt ::= DclCpt{{DclQual x Dcl))

A declaration specification component (DclCpt) consists of a declaration qualifier
and a declaration. The declaration qualifier identifies whether the declaration is a
spec component or not. One of the attributes of a declarator that is stored in an
environment is the value of the declaration qualifier. Notice that a declaration (Dcl)
does not contain the value of the declaration qualifier. Consequently, we elaborate
declarations under the assumption that they are spec declarations. Elaboration of

declaration specification components is covered in Section 8.5.1.

8.4.1 Constants
The elaboration of the constant declaration
del = ConDcl0UDecl

under the LCL environment 8 Fnv is defined next.

8.4.1.1 Hypotheses

Since LCL constants are classified as ordinary identifiers, there must not already exist

an ordinary identifier with the name id.

ip = ordld id
ip ¢ dom isig.b

The unqualified type of the constant declaration must elaborate under the signature

of 8Env and the resulting type denotation must be an object type.

65ig K onm, utn 3> (utd, lslPred)
utd € objUTD
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8.4.1.2 Conclusion

The result of the elaboration is an environment increment containing only the decla-

ration del.
env = mkEnv(ip_and_Attr, tb)

An environment is uniquely determined by its ISig and trait body components: these

are defined next.

8.4.1.2.1 [Sig When defining an ISig increment, we need only define the value of
the binding in the ISig. The ISig increment contains a single binding for the declared

identifier
ip_and_Attr = ip — G Attr
with the following attributes

dclQual = SpecQual
idKind = ConldK
td = utd2TD utd

That is, ip is a spec LCL constant of type utd.

8.4.1.2.2 Trait Body For the trait body we must identify the included traits,
the declared operations and the assertions. Let sort be the sort associated with the
type of the declared constant. For each sort component of sort that is the sort of an
LCL exposed type, we must include the trait that defines it. For example, given the
sort Arr{int] we must include the traits defining Arr[int] and int. The set of all

trait references is refs.

sort = utd2SN utd
cptSorts = cptSN*({sort})
refs = sort2Ref |cptSorts)

The operator introduced is a constant operator named id of sort sort
id: — sort
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Formally, the declared operator is opNmSig
opNmSig = id — mkConOpSig sort

The only assertion to be made, which we will call IsiPred’ is mandated by the
type constraint: we assert that the type constraint IslPred applies to the operator
representing the declared constant. When used to form a term, the constant operator

is applied to the empty argument list.

tm = AppTm(opNmSig, ())
[slPred’ = anonSubst tm IslPred

Given that lvarNSs is the set of logical variables that appear in IslPred’, then the
trait body tb is defined as follows.

lvarNSs = tmLVarNSs IslPred’
tb € mkTB(refs, lvarNSs, {opNmSig}, {IslPred'})

8.4.1.3 Rule Summary

ip ¢ dom isig.b
05ig Kyronm, utn > (utd,lslPred)
utd € objUTD

8 Env e, del = env ConDcl
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where

del = ConDel 6 UDcl

ip = ordld id

env = mkEnv(ip—and_Attr, tb)
ip—and_Attr = ip — GAltr

dclQual = SpecQual

idKind = ConldK

td = utd2TD utd

sort = utd2SN utd

cptSorts = cptSN*({sort})

refs = sort2 Ref (cptSorts)

opNmSig = id —» mkConOpSig sort
tm = AppTm(opNmSig,())

IslPred’ = anonSubst tm lslPred
lvarNSs = tmLVarNSs IslPred’

tb € mkTB(refs, lvarNSs, { opNmSig}, {IsIPred'})

8.4.2 Variables

The elaboration of the variable declaration
del = VarDel 6 @QDcl

under the LCL environment 0 Env is defined next.

8.4.2.1 Hypotheses

Identifiers denoting variables are part of the name space of ordinary identifiers. Thus,
the given environment must not already contain a declaration of an ordinary identifier

with the name id.

ip = ordld id
ip ¢ domisig.b
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The type of the declared variable must elaborate under the signature of 8Env and

the resulting type denotation must be an object type or an incomplete object type.

05ig b xm, tn S (td, IslPred)
td.utd € objUTD U incObjUTD

Furthermore, in the current release of the semantics, we only define the elaboration

of unqualified variable declarations.

td.tpQuals = @

8.4.2.2 Conclusion

The result of the elaboration is an environment increment containing only the decla-

ration del.
env = mkEnv(ip_and_Atir, tb)

An environment is uniquely determined by its ISig and trait body components.

8.4.2.2.1 ISig When defining an ISig increment, we need only provide the value
of the binding in the ISig. The ISig increment contains a single binding for the
declared identifier

ip_and_Attr = ip — G Aitr
with the following attributes

dclQual = SpecQual
1dKind = VarldK

That is, ip is a spec variable of type td.

8.4.2.2.2 Trait Body For the trait body we must identify the included traits,
the declared operations and the assertions. The given variable will be bound to an
object containing values of the sort associated with td. Thus, sort, the sort of the

variable, will be the object sort of td.

sort = objSN (td25N td)
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For each sort component of sort that is the sort of an LCL exposed type, we must

include the trait that defines it. The set of all trait references is refs.

cptSorts = cptSN*({sort})
refs = sort2Ref (cptSorts)

The operator introduced is a constant operator named id of sort sort
id: — sort
Formally, the declared operator is opNmSig. When represented in a term, the oper-
ator is applied to ihe empty argument list.

opNmSig = id — mkConOpSig sort
tm = AppTm(opNmSig,())
We must make the following three assertions.

e The type constraint IslPred applies to the operator representing the declared

variable.

IsiPred' = anonSubst tm lsiPred

e The object to which the variable is bound is active an all program states. This

assertion, [siPred", is

tm € activeObjs(any:Store) :Set[sort]

e The object bound to the variable is independent of all objects bound to previ-

ously declared variables. This assertion, named lsiPred", is defined below.

The set of all previously declared variables, represented as LSL operators, is given
by varsAsOpNSs. The same set of variables represented as the corrasponding set of

LSL terms is given by varsAsTms.
varsAsOpNSs = { ip' : [dNmSp; Attr’ |
ip’ € dom isig.b A
1sig.b ip’ = QAttr' A idWind' = VarldK e
ip'.id — mkConOpSig(0bjSN (td2SN td')) }

varsAsTms = { opNmSig : varsAsOpNSs e
AppTm(opNmSig, () }
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IslPred™ is

indepUbjs(empty:Seq[0bjl  tm F tm; + ... + tm,):Bool

where each memb_r of the sequence tmy, tmy, ..., tm, is a unique member of
varsAsTms and the sequence includes all terms in varsAsTms. Finally, the trait

body is defined as follows.

asns = {IslPred’, IslPred", ls|Pred"'}
lvarNSs = |J tmLVarNSs(asns)
tb € mkTB(refs, lva: NSs,{opNmSig}, asns)

8.4.2.3 Rule Summary

ip € dom Zsig.b
0Sig by, tn > (id, IslPred)
td.utd € objUTD U incObjUTD

td.tpQuals = @

where [slPred" is

tm € activeObjs(any:Store) : Set[sori]

IslPred" is

indepObjs(empty:Seq[0bjl F tm + tmy + ... F im,):Bool
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and finally,

dcl = VarDcl 6 QDcl
ip = ordld id
env = mkEnv(ip_and_Attr, tb)
tp_and_Attr = ip — G Attr
dclQual = SpecQual
tdKind = VarldK
sorl = objSN (td2SN td)
cptSorts = cptSN*({sort})
refs = sort2 Ref {cptSorts)
opNmSig = id — mkConOpSig sort
tm = AppTm(opNmSig, ())
IslPred’ = anonSubst tm IslPred
varsAsOpNSs = {ip’ : IdNmSp; Atir' |
ip’ € domisig.b A
istg.b ip' = OAitr' A idKind' = VarldK e
ip’.id +— mkConOpSig(objSN (td2SN td')) }
varsAsTms = { opNmSig : varsAsOpNSs e
AppTm(opNmSig,()) }
asns = {IslPred’, IslPred", Is|[Pred"'}
lvarNSs = |JtmLVarNSs(asns)
tb € mkTB(refs, lvarNSs, {opNmSig}, asns)

8.5 Specification Components
The elaboration relation for specification components
Enviy,, Cpt= Env

relates a global environment and a component to an environment increment. In
the current version of the semantic definition, a specification component is either a
declaration or a function specification. Declaration components are described next.

Function specifications are covered in Section 8.6.
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8.5.1 Declaration Components

If the declaration dcl elaborates to the environment incremeut env’ under env, then
so does the spec qualified declaration component consisting of del.
env k. dcl > env'

Dl SpecDel
. DclCpt(SpecQual, dcl) = env’ il

env fem

This is because the elaboration rules for declarations assume that the declarations
are spec qualified.
On the other hand, if the declaration component is not qualified with spec, then

we must change its status from spec to non-spec.

’,
env k5, del 3 env’;

{ip} = domenv'.isig.b
env kg, DclCpt(NotSpecQ, dcl) 5> envExport env’ ip

NonSpecDcl

ip is the identifier being declared; it will be the only identifier in the environment
increment env’. In the current version of the semantic framework, we do not provide
a semantics for type declarations (abstract types or typedef’s). Hence all types are
non-spec. When type declarations are covered, a hypothesis will have to be added to
the NonSpecDecl rule that will ensure that a non-spec component does not contain

uses of a spec type.

8.6 Function Specifications
We define the elaboration of the function specification
FSCpt(0FSHeader,0 FSBody)

under the environment §Env. The definition of the elaboration of function spec-
ifications is quite involved. Consequently, it is not practical to present all of the

elaboration rule hypotheses in isolation from the conclusion.

8.6.1 Selected Hypotheses

Since function identifiers are part of the name space of ordinary identifiers. we must

ensure that there is no ordinary identifier in 8 Fnv that has already been declared
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with the identifier id.

ip = ordld id
ip ¢ dom isig.b

The unqualified tvpe name utn must be a function type. It is not sufficient to
require that the type denotation of utn be a function type since utn could be a
typedef name—in which case the function type category would be ‘inherited’ from

the typedef. This is not permittedin C [ISO, §6.7.1].
utn = FunUTN 0 FunUTNSch

The function type utn must elaborate under the global signature. Function types do

not contribute type constraints, hence the type constraint is true.

0.Sig br o, uin > (utd, [true():Bool])
utd = FunUTD 0 FunUTDSch

In the current version of the formal definition of LCL we do not provide a semantics

for qualified parameters. Therefore, all parameters must be unqualified.

Vi :dom prmlds ¢ (prmTNs i).tpQuals = &

8.6.2 Conclusion and Remaining Hypotheses

Elaboration yields the environment increment § Env’ which is uniquely defined by its

isig' and tb' components; these components are defined next.

8.6.3 ISig

Uses: ip (p.155), utd (p-155).
Defines: isig’.
The function specification declares id to be a (non-spec) function with type utd.

dclQual = NotSpecQ
tdKind = FunldK
td = utd2TD utd
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Thus, the ISig increment will contain this single declaration with the mentioned

attributes

isig = mkISig(ip, 0 Attr)

8.6.4 Trait Body
Uses: id (p. 154), opSig (p. 157), opDef (p. 157).

Defines: tb'.

The meaning of the function specification is captured in the form of an LSL trait
body containing a single operator declaration and an assertion defining the meaning
of this operator. It is also necessary to include the traits that define the theories over
the sorts of the LCL exposed types that are used in the function specification. The
necessary traits are derived from the LSL predicate used to define the operator. We
also obtain from this predicate the names and sorts of the logical variables that must
be declared in the trait.

th' € (let refs == sort2Ref (tmSorts opDef) U
{traitNm2Ref LCLAux};
ImarNSs == tmLVarNSs opDef;
opNmSigs == {id — opSig};
IslPreds == {opDef} o
mkTB(refs, lvarNSs, opNmSigs, IslPreds))

The trait LCLAux provides auxiliary operators needed to define the meaning of a

function specification. It is defined in Appendix D.

8.6.4.1 Function Specification Operator Signature
Uses: retUTD (p. 155), effRetSort (p.170), effPrmSorts (p. 168).

Defines: opSig.

If the function return type is not void, then the declared operator has the signature
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Sy, ..., Sn, Store, Store, R — Bool

where S, is the effective sort* associated with the ith parameter and R is the effective

sort of the pseudovariable result. If the function return type is void then the

operator signature becomes

Si, -..» Sn, Store, Store — Bool

Formally, the operator signature, opSig, is defined as follows.

maybeRetSort =
if retUTD = VoidUTD

then ()
else (effRetSort)

opSig =
(n OpSig |
opDom = effPrmSorts ~
(Store,Store) ~
inaybeRetSort A

opRan = Bool)

8.6.4.2 Function Specification Operator Definition

Uses: id (p.154), prmlds (p.155), effPrmSorts (p. 168), retUTD (p. 155), effRetSort
(p-170), precond (p.158), postcond (p. 159).

Defines: opDef.

The definition of the operation is derived principally from the function specifi-
cation body but it is also affected by the function type. This is because the type
declarations of the parameters and the function return type can contribute implicit

constraints. Given that

prm = (A{ : dom prmlds e
LVarTm(prmlds i, effPrmSorts i)

the operation definition opDef, is

4Effective types and sorts are defined in Section 8.6.4.4.1.
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d(prm1l, ..., prm(#prmlds),

pre:Store, post:Store, result:effRetSort) :Bool
== precond => postcond

if the function return type is not void. If the return type is void, then the result ar-
gument is not included as part of the argument list of id. The operation precondition

and postcondition are defined in Sections 8.6.4.2.1 and 8.6.4.2.2, respectively.

8.6.4.2.1 Precondition

Uses: prmlds (p.155), reqgEzp (p. 154), effPrmSorts (p. 168), eff PrmLSLPreds (p. 168),
preSig (p. 167).

Defines: precond.

The precondition is defined to be the conjunction of the requires clause predicate

and the implicit constraints derived from the parameter declarations.

precond = [reqTm A prelmpLSLPred]

reqTm is the LSL predicate corresponding to the LCL predicate in the requires clause.
regTm is obtained by elaboration under PreCtz and the signature preSig. preSig is
defined in Section 8.6.4.3.

(PreCtz, preSig) &, . reqEzp 2> reqTm
tmSort reqT'm = Bool

Elaborating under PreClz ensures that regFzp does not contain LCL operators that
make implicit references to the generic and post-states.
The implicit constraint imposed by the function parameters (prelmpLSLPred) is

the conjunction of the constraints contributed by each parameter

preImpLSLPreds 1 A prelmpLSLPreds 2 A
A prelmpLSL Preds(# prelmpLSL Preds)

The implicit constraint contributed by a parameter is obtained as follows. In each

parameter type constraint, effPrmLSLPreds i, we replace all occurrences of

e the anonymous variable by the parameter name (represented as a term),
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e the logical variable any (denoting an arbitrary state) by pre (denoting the pre-

state)

#prelmpLSLPreds = #prmlds
(Vi:domprmlds e
let subst == {(any,Store) — LVarTm(pre, Store)} e
let IslPred == appSubst subst (eff PrmLSLPreds i);
tm = LVarTm(prmlds i, effPrmSortsi) e
prelmpLSL Preds i = anonSubst tm IslPred)

As a concrete example, consider a parameter named p with the effective type obj

int[3]. The type constraint derived from this type is

dim(val(any:Store,anonLVarNm:0bj[Arr{int]]) :Arr[int]) = 3:int

Hence, the implicit constraint contributed by the parameter p will be

dim(val(pre:Store,p:0bj[Arr[intI]) :Arr[int]) = 3:int

8.6.4.2.2 Postcondition

Uses: prmlds (p. 155), ensEzp (p. 154), modLSLPred (p. 160), trashLSLPred (p. 164),
postImpLSLPred (p.165), retImpLSLPred (p.166), postSig (p. 167).

Defines: postcond.

The postcondition is defined in terms of the meaning of the modifies, trashes, and
ensures clauses, and the implicit constraints derived from the parameter declarations

and the function return type.

postcond = [modLSL Pred A
trashLSLPred A

ensT'm A
postImpLSLPred A
retImpLSL Pred]
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ensTm is described next. The other postcond conjuncts are described in the sections
that follow.
ensTm is the LSL predicate corresponding to the LCL predicate in the ensures

clause obtained by elaboration under PostCtz and the signature postSig. postSig is
defined in Section 8.6.4.3.

(PostCtz, postSig) L, ensEzp 3> ensTm

tmSort ensTm = Bool

Elaborating under PostCtz ensures that ensExp does not contain any occurrences of

the LCL operators that make implicit reference to the generic state.

8.6.4.2.3 modLSLPred
Uses: preSig (p.167), modEzps (p. 154).
Defines: modLSLPred.

Each expression in the modifies clause must elaborate under PreCtz and the sig-

nature preSig and it must denote an object.

(PreCtz, preSig) b modEzps = mod T'ms
Vitm : ran modTms ¢ tmSort tm € ran objSN

eqExpr

modTms is the sequence of LSL terms corresponding to the list of LCL expressions

given in the modifies clause. The contribution of the modifies clause to the postcon-

dition, modLSLPred, is defined as

modAtMost (ims,pre:Store,post:Store) :Bool

where
tms == mkSetDObjTm modTmns

The function modAtMost is described in Section 8.6.4.2.4 and mkSetDObjTm is defined
next.

For a given sequence of terms tm,,...,tm;, where each term tm; is of an object
sort objSN sort; (for some sort sort;), mkSetDObjTm (tm,,..., tm;) yields the LSL

expression
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empty \ins im; \ins ... tmy

representing the set of objects (of sort 0bj) denoted by the terms in the sequence.

The \ins operator is defined in Section 6.3.2.4.

mkSetDObjTm : seq Term > Term

dom mkSetDObjTm = {tms : seq Term |
Vitm : ran tms e tmSort tm € ranobjSN }

mkSetDObjTm () = [enpty():Set[0bj]]
mkSetDObjTm(tms ~ (tm)) =
[(mkSet DObjTm tms \ins tm):Set[0bj]]

8.6.4.2.4 Modified Clause The collection of objects denoted by the lvalues
listed in the niodifies clause is often called a frame. We will refer to it as a mod-
ifies frame to distinguish it from the trashes frame introduced in Section 8.6.4.2.5. In
the presence of dependencies, we define the modifies frame to be the set of all objects
explicitly listed in the modifies clause as well as all objects that are related to them
by means of the object dependency relation.

The meaning of the modifies clause is often informally given as follows: every
object that is outside the modifies frame must have the same abstract value in the
pre- and post-states. A few points are worth highlighting. Firstly, phrasing the
meaning of the modifies clause in terms of abstract values allows implementations of
function specifications to have benevolent side-effects [Tan94, §2.4]. For example, an

implementation of the following specification of member

mutable type intSet;

bool member(int i, intSet s) {

ensures result = (i € 8);

¥

would be permitted to changed the representation of s—e.g. to make subsequent
invocations of member more efficient—provided it preserved the abstract value of s.
Secondly, requiring that every object outside the frame have the same abstract value

is senseless because not all objects outside of the frame contain values—an object
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may be inactive, or it may be active but not well-defined. Hence, we must focus our
attention on objects that are active in the pre- and post-states. To make our final
point we rephrase the meaning of the modifies clause in more general terms as follows:
any object outside the modifies frame that is active in the pre- and post-states must
not have its state changed in any way that is visible to the caller (of the specified

function). Thus, if an active object outside the modifies frame is:

e not well-defined in the pre-state, then it must remain not well-defined in the

post-state

e well-defined in the pre-state, then it must remain well-defined in the post-state,

and furthermore, the abstract pre- and post-state values must be the same.

We formalize the meaning of the modifies clause, in Z, as follows.

modAtMost : F Obj — (Store < Store)

(pre, post) € modAtMost objs &
let frame = (depOn™ U depOn){objs) e
Vz: Obj |
z € pre.activeQObjs A
z ¢ frame A
z € post.activeQObjs e

(pre.val z, post.val z) € strongEq(sortAtir z)

If objs is the set of objects explicitly referenced in the modifies clause, then the
modifies frame is the union of depOn™ (objs), the set of objects whose values depend
on the objects in objs, and depOn({objs), the set of objects that the objects in objs
depend on. The LSL version of modAtMost is represented as the operator
(ModAndTrash opsig)=

modAtMost: Set[0bj], Store, Store -> Bool
and is defined as

(ModAndTrash assert eqn)=
modAtMost(xs,pre,post)
\A x: 0bj (
x \in activeObjs(pre)
/\ (x is outside the frame)
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If the object = is ... Then
active in active in in the in the T is
the pre-state | the post-state | trashed frame | modifies frame

no no - - inactive
no yes - - new
yes no no - not possible
yes no yes - trashed
yes yes - no persistent, unchanged
yes yes - yes persistent, may change

Figure 13: Modified and Trashed Objects in the Pre- and Post-states

/\ x \in activeObjs(post)

=>

(pre- and post-state values of x are strongly equal)) ;

This definition will be a part of the ModAndTrash trait (see Section 8.6.4.2.6). Another

way of saying that x is outside the frame is “x is independent of the objects in xs.”

(x is outside the frame)=
\A x1 (x1 \in xs =>
“depOn(x,x1) /\ ~depOn(xi,x))

(pre- and post-state values of x are strongly equal)=
strongEq(sortAttr(x), val(pre,x), val(post,x))

Also see Figure 13.

8.6.4.2.5

trashLSL Pred

Uses: preSig (p. 167), trashEzps (p. 154).

Defines: trashLSLPred.

The meaning of the trashes clause can be informally described as follows: any

client-visible object that is active in the pre-state must be active in the post-state if
it is outside of the trashes frame. The trashes frame is the set of all objects explicitly
referenced in the trashes clause as well as all objects that are related to them by

means of the object dependency relation. Each expression in the trashes clause inust
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elaborate under PreClr and the signature preSig and it must denote an object.

(PreCtz, preSig) k

Seq Expr

trashErps = trashTms
Vim :ran trashTms e tmSort tm € ran ebjSN

trashTms is the sequence of LSL terms corresponding to the list of LCL expressions

given in the trashes clause.

The LSL predicate capturing the meaning of the trashes clause, trashLSL Pred, is
defined as

trashAtMost(ims,pre:Store,post:Store) :Bool

where
tms == mkSetDObj Tm trash Tms

The function mkSetDObjTm is described in Section 8.6.4.2.3. If objs is the set of
objects explicitly referenced in the trashed clause, then trashAtMost objs is a relation
on pre- and post-state pairs that holds for those pairs that satisfy the constraint

imposed by the trashes clause.

trashAtMost : F Obj — (Store +— Store)

(pre, post) € trashAtMost objs &
let frame = (depOn™ U depOn){objs) e
Vz : Obj|
¢ € pre.activeObjs N

z & frame ®

z € post.activeObjs

Also see Figure 13. We define an LSL version of the trash AtMost operator.
(ModAndTrash opsig)+=
trashAtMost: Set[0bj], Store, Store -> Bool
(ModAndTrash assert egn)+=
trashAtMost(xs,pre,post) ==
\A x: 0bj (
x \in activeObjs(pre)
I\ (x is outside the frame)
=>

x \in activeObjs(post));
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This definition wili be a part of the ModAndTrash trait (see Section 8.6 +.2.6).

8.6.4.2.6 ModAndTrash Trait The trait ModAndTrash is used to hold the LSL
definitions of the functions modAtMost (Section 8.6.4.2.4) and trashAtMost (Sec-
tion 8.6.4.2.5). The overall structure of the trait is
(ModAndTrash.lsl)=
ModAndTrash: trait
includes
(ModlAndTrash include)
introduces
(ModAndTrash opsig)
asserts
\forall (ModAndTrash assert var decl)
(ModAndTrash assert eqn)
The theory over the Store sort is defined in he Store trait which we must include
(ModAndTrash include)=
Store, Set(0bj,Set[0Ljl)
Here are the variable declarations that are relevant to this trait.

{ ModAndTrash assert var decl)=
x, x1: Obj, xs8: Set[0bjl, pre, post: Store

8.6.4.2.7 postimpLSLFred
Uses: prmlds (p. 155), effPrmLSLPreds (p.168).
Defines: postImpLSLPrcd.

postImpLSLPred is the contribution to the function postcondition of the implicit

constraints derived from the parameter type constraints. It is defined as

postImpLol Preds 1 A postImpLSLPreds 2 A
A postlinpLSL Preds(# postImpLSLPrcds)

For the ith parameter, postImpLSLPredsi is derived from the ith parameter con-

straint, effPrmLSLPreds i, by replacing all occurrences of

e the anonymous variable by the parameter name (represented as a term),
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e the logical variable any (denoting an arbitrary state) by post (denoting the
post-state)

#postImpLSLPreds = #prmlds
(Vi:domprmlds e
let subst == {(any,Store) — LVarIm(post,Store)} e
let IslPred == appSubst subst (effPrmLSLPredsi);
tm = LVarTm(prmlds i, effPrmSorts i) o
postimpLSL Preds i = anonSubst tm IslPred)

8.6.4.2.8 retImpLSLPred
Defines: retlmpLSLPred.

If the function return type is not void then the type constraint of the return
type must be imposed on result. If the function return type is void, then the type
constraint is true—i.e., ther~ is no constraint. In the current version of the definition,
it is not possible for the function return type t> contribute implicit constraints, hence

we provide a simplified definition

retImpLSLPred = [[true():Bool]

8.6.4.3 Signatures

Uses: gvarlds (p.155), prmSigine (p. 168), retUTD (p. 155), retSigine (p. 170), 054y
(p. 154).

Defires: preSig, postSig.

The expressiens that occur in a function specification body can only contain vari-

able identifiers denoting either

e a variable that appears in the global variable list of the function specification

header,
e one of the function parameters, or

o the pseudovariable result.
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Only the ensures clause predicate can refer to result.
The elaboration of the expressions in the requires, modifies and trashed clauses is

done under the preSig signature which is obtained as follows:

e we obtain a restricted version of the global signature 8Sig by hiding the global
variables that do not apnear in the global variable list of the function specifica-

tion header

restrictedSig = sigRes Var 0Sig (ran(ordld o gvarlds))

o the resuiting environment is enriched with the function parameter declarations

preSig == addSig(restrictedSig, prmSiginc)

If a parameter has the same name as a globally declared ordinary identifier then the
parameter declaration will mask the global declaration (as is the case in C). That is,
a function <pecification opens a new scope.

Elaboration of the predicate in the ensures clause is done under postSig. If the
function return type is void, then postSig is preSig, otherwise postSig is obtained by

enriching preSig with the declaration of result.

postSig ==
if retUTD = VoidUTD
then preSig
else addSig(preSig, retSigInc)

8.6.4.4 Function Parameters and result

8.6.4.4.1 Effective Types The following discussion is phrased in terms of func-
tion parameters but the statements that are made also apply to the pseudovariable
result.

Function parameters are modeled as logical variables in both ISig’s and LSL signa-
tures. Within an LSL signature a parameter is usually given the sort of the parameter
type. There are two exceptions to this rule: parameters of array types and mutable
abstract types are associated with the object sort of the parameter type. Within a
given LCL signature sig, a logical variable of type td in sig.isig must be mirrored

(without exception) by a logical variable of the sort of ¢d in the LSL signature sig.lsig.
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Since parameters of array types and mutable abstract types are associated with the
object sort of the parameter type, we must change the type associated with these
parameters in the ISig. Thus arises the concept of the effective type, in contrast to
the declared type, of a parameter.

The effective type of an array or mutable abstract type T is obj T. The effective
type of any other type Tis T. td € dclTpIsEffTp is true if the effective type of the
type denotation td is td®.

dclTpIsEffTp : P TpDen

td € dclTpIsEffTp &
td.utd ¢ ran ArrUTD

The function addObjQ2TN can be used to add an obj qualifier to a type name,

addObjQ2TN : TpNm — TpNm

addObjQ2TN 0TpNm' =
(1 ToNm | tpQuals = tpQuals’ U { ObjQual} A
utd = utd’)

Note that in the protetype of a function specification we preserve the declared types
of the parameters. Effective types arz only relevant when claborating expressions

occurring in a function specification body.

8.6.4.4.2 Function Parameters
Uses: prmlds (p.155), prmTNs (p. 155), prmTDs (p. 155), 0S5tg (p. 154).
Defines: effPrmSorts, effPrmLSLPreds, prmSiginc.

The sequences of effective parameter type names is given by ¢ffPrmTNs. 'The
co.tesponding sequence of effective type denotation and effective type constraint pairs

is effPrmTDPreds.

SThe given definition is tailored for the current -ersion of the definition of LCL.
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effPrmTNs : seq TpNm

effPrm TDPreds : seq( TpDen x LSLPred)
effPrmTDs : seq TpDen

effPin.LSL Preds : seq LSLPred
effPrmSorts : seq SortNm

#effPrmTNs = #prmTNs
(Vi:dom effPrmTNs o
effPrmTNsi =
if prinTDs i € delTplsEffTp
then prmTNs ¢
else addObjQ2TN (prmTNs i))

0Sig k£ effPrmTNs = effPrm TDPreds

SeqTpNm;

effPrmTDs = first o effPrm TDPreds
eff PrmLSL Preds = second o effPrmTDPreds
effPrmSorts = td2SN o effPrimTDs

The effective type, type constraint and sort of the ith parameter are efPrmTDs ¢,
effPrmLSL Preds i, and effPrmSorts i, respectively.
For each parameter we define an LCL signature increment (prmSiglncs i) to hold

the declaration of that parameter as a spec logical variable with the appropriate

effective type.

prmSiglncs : seq Sig

#prmSigincs = #prmlds
Vi : dom prmlds; Sig; TBS |
prmSiglncs i = 0Sig e
(“let local prmSiglncs defs” o
istg = mklSig(ordld(prmlds i), 0 Attr) A
tb € mkTB(refs,lvarNSs, opNmSigs, 'slPreds))

Each LCL signature increment (prmSiglncs i) is defined in terms of its component
1Sig and LSL signatures. Each ISig increment contains the declaration of a parameter
as a spec logical variable. The LSL signatures are derived from a special trait body

defined in terms of a trait body tb. For the ith parameter, the trait body ¢b contains
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the declaration of the parameter as a logical variable of sort effPrmSort i and any trait
references necessary to define the theories associated with the sort of the parameter.

We define “let local prmSiglnes defs” as

let dclQual == SpecQual;

idKind == LVarldK;

td == eff PrmTDs i;

cptSorts == cptSN* ({effPrmSortsi}) o
let refs == sort2Ref |cpt.sorts);

lvarNSs == {prmlds i — effPrmSorts 1};
opNmSigs == &,

IslPreds == &

The LCL signature increment that combines all of the parameter declarations is

obtained by combining the individual parameter environment increments

prmSiglnc : Sig

prmSiglnc == foldLL addSig emptySig prmSigincs

8.6.4.4.3 Pseudovariable result
Uses: retUTN (p. 155), retUTD (p.155), 85i5 (p. 154).
Defines: effRetSort, effRetLSLPred, retSiglnc.

If the function return type is not void, then an environment increment containing
the declaration of the pseudovariable result will be needed. The eftective type name,

type denotation, type constraint and sort of result are defined as follows.
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retTN,

efflletTN : TpNm
retTD,

effetTD : TpDen
effltetLSLPred : LSLPred
effRetSort : SortNm

retTN = (u TpNm | tpQuals = @ A utn = retUTN)
retTD = wtd2TD retUTD
effRetTN = if retTD € dclTpIsEffTp

then retTN

else addObjQ2TN retTN

05ig B onm, effRetTN > (effRetTD  effRetLSL Pred)
effRetSort = td2SN effRetTD

The LCL signature increment (retSiglnc) is defined in terms of its component ISig
and LSL signatures. The ISig increment contains the declaration of result as a spec
logical variable. The LSL signatures are derived from a special trait body defined in
terms of the trait body tb. The trait body tb contains the declaration of result as
a logical variable of sort effRetSort and any trait references necessary to define the

theories associated with the sort of result.

retSiglnc : Sig

3 Sig; TBS |
retSiglnc = 0Sig o
(“let retSigInc local defs” o
tsig = mkISig(ordld result,0Attr) A
tb € mkTB(refs, lvarNSs, opNmSigs, IslPreds))
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where “let retSiginc local defs” is

let delQual == SpecQual,

idKind == LVarldK,

td == effRetTD;

cptSorts == cptSN*({effRetSort}) e
let refs == sort2Ref (cptSorts);
lvarNSs == {result — effRetSort};
opNmSigs == O;

IslPreds == O

8.7 Specifications

The elaboration of a specification is done against a global environment and it yields

the environment in<rement corresponding to the given specification.

Env E

Specy

Spec = Env

Either a specification is empty, in which case it corresponds to the empty environment,

increment,

Specl

env k5 .. () 3> emplyEnv
or, it contains at least one component c¢p¢ followed by the rest of the specification
spec.

Let env denote the global environment. if cpt elaborates to the environment
increment env’ under env, and spec elaborates to the environment increment eny”
under env enriched with the declaration of ¢pt, then the environment increment
corresponding to (cpt) ~ spec is the combined environment increments of ept and
spec:

env iz, cpt 3 end';

n ! "
addfnv(env,env’) b spec 3 env

Spec

env bper {€Pt) ™ spec 2 addEnv(env’, env”)
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8.8 Related Work

8.8.1 LCL

In his thesis, Tan rigorously describes the “interesting aspects of the semantics of
LCL” [Tan94, Chapter 7). Although Tan gives a meaning to some of the compone‘s
of a specification, he does not address the issue of the meaning of a specification in
its entirety. Constant and variable declarations are briefly covered. We treat two

problematic aspects of Tan’s formalization of function specifications next.

8.8.1.1 Implicit Pre- and Postconditions
Tan defines the meaning of a function specification by a predicate schema of the form®
R= (MAE)

where R and E stand for the requires and ensures clauses respectively, and M is a
translation of the modifies clause [Tan94, §7.4.1]. This definition is incorrect since
there may be implicit constraints due to parameters (Section 2.4.2) and, in LCL 2.4,
non-trashed objects (Section 2.4.3). The meaning of a function specification 1s in fact

of the form
(RAI)=>(MANEANJ)

where I and J represent the implicit part of the pre- and postconditions of a function
specification (Section 8.6.4.2).

Although Tan omits the implicit constraints from his definition of the meaning of
a function specification he recognizes two kinds of implicit condition associated with
function specifications. The first is the implicit condition, discussed in Section 2.4.3,
concerning the non-trashing, under certain circumstances, of some of the objects listed
in the modifies clause. The second concerns constraints that can be associated with
typedef names’ [Tan94, §7.4.2]. We have shown, in Section 2.4.2, that there are also
implicit conditions related to function parameters and the pseudovariable result. The

InitMod convention® contributes implicit constraints as well (although the convention

8In LCL 2.4 we see the introduction _f checks and claims clauses as a part of function specifi-
cations [Tan94, §7.4]. We do not consider the meanings of specifications that contain these clauses.

"Constraints related to typedefs are not formalized in this version of the semantic definition.

8The InitMod convention states that if a module M has a module initiaiization function named
initMod_M, then there is the implicit constraint that initMod_M must be the first function from M
to be invoked [GH93, §5.3], [Tan94, §7.5}, [Cha94].
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can be defined as a syntactic sugar).

8.8.1.2 Meaning of the Modifies Clause

Tan formalizes the meaning of the modifies clause as

V i: AllObjects ((i € domain(pre) A i ¢ modifiedObjs)
= i’ = iM) (%)

where “A110bjects is the d'sioint sum of the object sorts of the mutable types”, and
modifiedObjs is the union of the set of base objects (Section 6.6.1) of the expressions
listed in the modifies clause {Tan94, §7.4.3]. The expression domain(pre) represents
the set of objects visible to the client in the pre-state. There are two main problems
with this formalization. Firstly, A110bjects is only defined informally: Tan does
not show how this “disjoint sum” can be expressed as a part of the frimal model.
Secondly, the use of base objects does not adequately model object dependencies (as
related to the meaning of the modifies clause) as we illustrate next.

From the following specification

int af[10];
void f£(void) int a[10]; {
modifies a[1];

ensures a[1]" # a[1]';

¥

we can conclude that:

e the array a and its members are among the objects that a1 : visible to clients

{a, afo], af1], ..., a[9]} C domain(pre)

e f can only modify a[1]

modifiedObjs = {a[1]}

because a[1] is the only expression listed in the modifies clause and sincc the
set of base objects of a[1] is {a[1]}.
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Since a is active in the pre-state and it is not in modifiedObjs, by Tan’s formalization
of the meaning of the modifies clause (*), we may conclude that a, and hence all of

its member objects, must have the same values in the pre- and post-states. Formally,

a € domain(pre) A a ¢ modifiedObjs
a2t = 3 (By (#)]
= al1]" = a[1]’ [Since (a*)[1] = (a[1])*]

which contradicts the predicate in the ensures clause; no such contradiction should

exist. The problem is that a should also be in modifiedObjs.

8.8.2 LM3

The idea of defining the (part of the) meaning of a Larch interface language in terms of
LSL was originally proposed by Jones in his work on the semantics of LM3 [Jon92]. As
we have done, Jones represents LCL constants and global variables by LSL constant
operators. He also defines a representation for Modula-3 objects.

By means of an example (written in C), we briefly explain his representation for
function specifications followed by arguments stating that, although his translation is
suitable for type checking, it is inadequate for reasoning about function specifications.

In his LSL translation of the meaning of the (non-interface part of the) following

LCL function specification

int £(int pv) int gv; {
required 0 < pv;
modifies gv;

ensures result = gv A gv' = pv;

}

Jones would introduce the operators

f_Id: — Proc
f_pv: — int
gv: — int_loc
f_RESULT: — int

175



along with the assertion

0 < f_pv = (isMod(gv)
A £_RESULT = o(gv,pre)
A o(gv,post) = f_pv)

In our model, int_loc corresponds to Obj [int] and o (x,any) is wiitten as val(any,x).
The constant operator £_Id of sort Proc represents the specifi ' - .+ n. Unlortu-
nately, the Proc sort and the isMod operator arc not defined. i’ . . .d operator
is to be used to encode the meaning of the modifies clause; the absence of its defi-
nition is a major omission. Function parameters and the pseudovariable result are
modeled by constant operators. This makes reasoning about the meaning of function
specifications very impractical since, to prove properties of specific calls to a func-
tion, we must instantiate the function parameters. Since function paramecters are
modeled as operators we encounter difficulties when we must reason about two (or

more) instantiations, as would be required in the proof of the following claim?®

claims Property_oxy_f {
body {gv==£(£(gv));}
ensures gv’' = gv’;

¥

SThe given claim cannot be written directly, as it is presented, in LCL 2.4 since the body clause
can only contain a single function call but it could be written indirectly by using an auxiliary function
specification.

176



Chapter 9

Summary and Future Work

9.1 Summary

Formal methods have been described as the applied mathematics of computer sys-
tems engineering [Cra89]. Although immature in some important aspects, a judicious
use of formal methods has been shown to contribute to the timely production of
quality systems [BH94]. Underlying every formal method is a mathematically based
notation—usually a specification language. Specification languages can be used dur-
ing the entire software development process to document requirements, designs and
the interface specifications for modules and program components. The specialization
of a specification language to a particular programming language is an important
characteristic of module interface specification languages (MISL’s). The only MISL’s
are the Larch interface languages (among these LCL would seem to be the most de-
veloped and used) and an adaptation of the language used with the Trace Assertion
Method (TAM) [PW89).

Our efforts to elaborate a semantic model for LCL lead to the identification of
inadequacies and insufficiencies in the language and its informal definition. In par-
ticular, by introducing the concept of object dependency we illustrate, by means of
realistic examples, that theie is a need for LCL language constructs that would al-
low specifiers to describe and reason about object dependencies. We argue that the
meaning of a function specification is affected by implicit parameter constraints and

that these constraints have been poorly documented. The constraints are shown to be
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problematic—in particular. they are ambiguous and in some cases overly constrain-
ing. We show that the definition of the meaning of a function specification relative
to trashed and non-trashed objects leads to a violation of the principle of referential
transparency. We also argue that issues related to the trashing of aggregate and union
objects have not been fully defined.

The version of LCL described in this thesis is named LCL'. The LCL’ language
differs from its predecessor, LCL 2.4, principally in that:

® new operators have been added for describing object dependencies,

e the implicit constraints over pointer and array parameters have been dropped
and new language operators have been added that allow specifiers to assert

whether or not an object is active or well-defined,
¢ an optional trashes clause has been added to function specification bodies.

These changes increase the expressiveness of LCL' and allow us to overcome the iden-
tified shortcomings of LCL 2.4. In particular, we eliminate the instance of referential
opacity. One of our major design decisions has been to use LL, the logic underlying
LSL, as the logical foundation for LCL.

The main contribution of this thesis is a semantic model within which a core of
the stable aspects of LCL have been formally defined and the unseitled aspects of
the language have been highlighted. The formally defined core consists of constant
declarations, variable declarations and function specifications. The semantics of LCI,
is given in the form of a natural semantics [Kah87]. The meaning of the non-interface
part of an LCL specification is captured in the form of an LSL trait body. There
are significant advantages to this approach to the formal definition of LCL. Firstly,
since the semantics is expressed at a “higher” level of abstraction, it is considerably
simpler than would be, e.g., a rorresponding denotational semantics. Secondly, use
of LSL tc describe the non-interface part of LCL specifications should make the
semantics more accessible to the Larch community in general and to LCL users in
particular. Finally, the inference rules that are used to define the semantics can be
readily implemented. The result would be a tool that translates the non-interface
part of an LCIL. specification into an LSL trait. Such a tool would alluw specifiers to
capitalize on other Larch tools (such as the LSL checker and the Larch Prover). The

semantics is written in the Z specification language. We have chosen Z because it
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is an expressive and mature language that is in widespread use and for which tools
are available. Although our model of program states is conventional, our model of
the store is exceptional in that it supports the representation of object dependencies
in their full static generality and of objects containing undefined values.  Another
important characteristic of our storage model is that cach object has a fixed, state-
independent sort attribute (in contrast to C where objects are untyped). Our model
can none-the-less be used to represent an object that is referenced by lvalues of
different types. Such an object is modeled by a collection of mutually dependent
objects (where each object has a single typc).

To increase our confidence in the accuracy of the semantic definition we have
compiled and applied a suite of tests (Appendix A). Each test includes an LCL
specification along with the LSL trait that is meant to capture the meaning of the
non-interface part of the LCL specification.

We have argued that MISL’s are an excellent, way of introducing formal methods
into industrial settings. MISL’s can be gradually integrated at various levels of rigor
into new software projects as well as retroactively introduced into projects developed
without formal methods. Furthermore, automated tools can perform more checks
with the use of interface specifications than with the use of other kinds of specification.

Finally, we note that the utility of our semantic model extends beyond its use in
the formal definition of LCL. The semantic model (particularly the storage model)
can serve as a base for the formal definition of other imperative programining lan-
guages and MISL’s—especially the Larch inter{ace languages LCPP and LM3. In
fact, changes to LCPP have already been made in response to the research results

reported in this thesis.

9.2 Future Work

A natural succession to this work is the formal definition of the remaining LCL
constructs. This is likely to induce further changes to the language and may require
LCL user input to determine which language features are needed most. ven within
the bounds of the LCL constructs that are covered in the current version of the LCL

semantics, we take note of the following issues that require further investigation.
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e We have chosen to drop the implicit constraints on function parameters of
pointer and array types. Consequently, specifiers must explicitly document
whether or not the cbjects that can be referred to by function parameters of
these Lypes are active or well-defined. The explicit statement of these properties
unnecessarily clutters the requires clauses of most function specifications. The
use of parameter qualifiers (e.g. Ada-like qualifiers in, out, and inout) with
appropriately defined semantics would seem to offer an acceptable solution to

this problem.

e As we have noted in Section 3.2.1, we model static dependency relationships
between objects. Will the model be adequate in practice or will we need to
model dynamic dependencies too? If dynamic dependencies are to be supported

then appropriate language constructs will have to be devised.

e The role of LCL constants is not clear: are LCL constants values that are com-
putable at compile-time or run-time? In the Larch book, Guttag and Horning
claim that an LCL constant can be implemented by a const variable (GH93,
§5]. If this is true, then clients will not be able to use an LCL constant in those
situations where a constant expression® is required. It is also unclear what kinds
of restriction should be imposed on the types of constants. For example, should
array constants be permitted? Such constants can be given a meaning under
the semantics (as we have done), but does this meaning correspond to a prac-
tical need? Are there implementation limitations that need to be taken into

account? Another interesting question to consider is: should spec constants be

permitted to have obj-qualified types?

o We have in effect defined LCL expressions as LSL terms. As a consequence, LCL
operators are treated like LSL operators. Hence, users can redefine the meanings
of LCL operators (by imposing additional constraints) or they can make use of
operator overloading to define completely unrelated operations that merely use

LCL operator names. Is such freedom really beneficial?

Our long-term goal is to achieve the complete definition of a formal system within
which it would be possible to formally prove the correctness of implementations of

LCL specifications. Preliminary definitions of correctness have already been sketched.

'The value of a constant expression must be computable at compile-time.
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Finally, one of our short-term goals is to complete an SML implementation of the
semantic definition. In addition to performing type checking, this tool will generate
the LSL traits corresponding to the non-interface parts of given LCL specifications.

Eventually this functionality could be incorporated into I.CLint.
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Appendix A

Tests

A semantic definition cannot be verified but it can be validated. For this purpose,
we have created some simple tests. The tests are in the form of LCL specifications.
The expected result of each test is given in the form of the C header file and the LSI,
trait that are to be generated from the LCL specification. The C header file contains
a representation of the non-spec components that are a part of the [Sig of the LCI,
signature corresponding to the test specification. These tests have been checked with

LCLint and the LSL checker.

Test 002

LCL Code

(Test002.lcl)=
/* Test 002 */
spec constant int c;

C Header
Empty

LSL Trait

(Test002.1sl)=
Test002: trait
includes IntTp
introduces
c: => int
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Test 005

LCL Code

(Test005.1cl)=
/* Test 005 */
int gv;

C Header

(Test 005 Header)=
extern int gv;

LSL Trait

(Test005.1sl)=
Test005: trait
includes IntTp, SProjStore(int for S)
introduces
gv: => 0bj[int]
asserts
\forall any: Store

% gv is always active
gv \in activeObjs(any);

% gv is independent of
% every other global variable
indep(empty \apd gv);

Test 022

LCL Code

(Test022X.lcl)=
/* Test 022 */
constant int cA;
spec constant int cB[cAl;

C Header
Empty
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LSL Trait

(Test022.1sly=
Test022: trait

includes IntTp, ArrTp(int)

introduces
cA: -> int
¢B: ~> Arr[int]

asserts equations
dim(cB) == cA;

Test 025

LCL Code

(Test025.lcl)y=
/* Tast 025 */
int gv(];

C Header

(Test 025 Header)=
extern int gv[];

LSL Trait

(Test025.1sl)=
Test026: trait
includes IntTp, ArrTp(int)
introduces
gv: => 0bj[Arr[int]]

asserts \forall any: Store
gv \in activeObjs(any);
indep (empty \apd gv);

Test 026

LCL Code

(Test026.lcl)=
/* Test 026 */
constant int c;
int gvlc];
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C Header

(Test 026 Header)=
extern int gvlcl;

LSL Trait

(Test026.1sl)=
| Test026: trait
! includes IntTp, ArrTp(int)
| introduces
c: -> int
gv: -> ObjlArr[int]]

agserts \forall any: Store

gv \in activeObjs(any);
indep(empty \apd gv);
dim(gv) == c;

Test 027

LCL Code

(Test027.lcl)=
/* Test 027 */
constant int cA, cB;
int gv(cAl [cB];

C Header

(Test 027 Header)=
extern int gv[cAl [cB];

LSL Trait

(Test027.1sl)=
Test027: trait
includes IntTp, ArrTp(int), ArrTp(Arr[int])
introduces
cA,
cB: -> int
gv: => 0bjlArr[Arr[int]]]

asserts
\forall any: Store, i: int
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gv \in activeObjs(any);

indep(empty \apd gv);

dim(gv) == cA;

M i (i \in inds(gv) => dim(gv[i]) = cB);

Test 100

LCL Code

(Test100.lcl)=
/* Test 100 */
void skip(void) {
requires true;
modifies nothing;
/*trashes nothing;*/
ensures true;

}

C Header

(Test 100 Header)=
extern void skip(void);

LSL Trait

(T=st100.isl)=
Test100: trait
includes LCLAux
introduces
skip: Store, Store -> Bool

asserts \forall pre, post: Store
skip(pre,post) ==
true =>

modAtMost({}, pre, post)
/\ trashAtMost({}, pre, post);

Test 101

LCL Code

(Test101.lcl)=
/* Test 101 */
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void fp(int pv) {
requires 0 < pv;
modifies nothing;

/*trashes nothing;=*/
ensures true;

}

C Header

(Test 101 Header)=
extern void fp(int pv);

LSL Trait

(Test101.lsl)=
Test101: trait
includes LCLAux, IntTp
introduces
fp: int, Store, Store -> Bool
asserts
\forall pre, post: Store, pv: int

fp(pv,pre,post) ==
0 < pv =>
modAtMost({}, pre, post)
/\ trashAtMost({}, pre, post);

Test 102

LCL Code

(Test102.lcl)=
/* Test 102 %/
int fr(void) {
requires true;
modifies nothing;
/*trashes nothing;*/
ensures O <= result /\ result <= 9;

}

C Header

(Test 102 Header)=
extern int fr(void);

192



LSL Trait

(Test102.1sl)=
Test102: trait
includes LCLAux, IntTp
introduces
fr: Store, Store, int -> Bool
asserts
\forall pre, post: Store, result: int

fr(pre,post,result) ==
true =>
(modAtMost({}, pre, post)
/\ trashAtMost({}, pre, post)
/\ 0 <= result /\ result <= 9);

Test 103

LCL Code

(Test108.lcl)=
/* Test 103 x/
int gv;

void fg(void) int gv; {
requires 0 < gv~;
modifies gv;

/*trashes nothing;*/
ensures gv~ < gv’;

}

C Header

(Test 103 Header)=
extern int gv;
extern void fg(void);

LSL Trait

(Test103.lsl)=
Test103: trait
includes LCLAux, IntTp,
Test005 ), for gv
introduces
fg: Store, Store -> Bool
asserts
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\forall pre, post: Store

fg(pre,post) ==
0 < val(pre,gv) =>
(modAtMost({} \ins gv, pre, post)
/\ trashAtMost({}, pre, post)
/\ val(pre,gv) < val(post,gv));

Test 104

LCL Code

(Test104.lcly=
/* Test 104 x*/
int gv;

int fprg(int pv) int gv; {
requires 0 < pv;
modifies nothing;

/*trashes nothing;*/
ensures result = gv~;

3

C Header

(Test 104 Header)=
extern int gv;
extern int Iprg(int pv);

LSL Trait

(Test104.1sl)=
Test104: trait
includes LCLAux, IntTp,
Test005 ¥ for gv
introduces
fprg: int, Store, Store, int -> Bool
asserts
\forall pre, post: Store, pv, result: int

fprg(pv,pre,post,result) ==
¢ < pv =>
(modAtMost({}, pre, post)
/\ trashAtMost({}, pre, post)
/\ result = val(pre,gv));
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Test 205

LCL Code

(Test205X.lcl)=
/* Teat 205 */
int gv;

claims() {
ensures gvlactivePre /\ gvlactivePost;

}

C Header

(Test 205 Header)=
extern int gv;
extern void Claim205(void);

LSL Trait

(Test205.1sl)=
Test205: trait
includes IntTp, Test005
implies
\forall pre, post: Store
gv \in activeObjs(pre);
gv \in activeObjs(post);

Test 226

LCL Code

(Test226X.1cl)=
/* Test 226 */
constant int c;
int gvlcl;

claims() {
ensures gv\activePre /\ gv\activePost

/\ maxIndex(gv) = c - 1

/N \A i:int (i \in inds(gv) <=> 0 <= i /\ i < ¢)

/\ \A i:int, j (i \in inds(gv) /\ j \in inds(gv) =>
(i \neq j <=> indep(gv[il,gv[j1)))

/\ \A i:int (i \in inds(gv) =>
depOn(gv,gvlil) /\ depOn(gv[il,gv));
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C Header

(Test 226 Header)=
extern int gvlcl;

LSL Trait

(Test226.1sl)=
Test226: trait
includes Test026
implies
\forall i,j:Int, pre, post: Store

gv \in activeObjs(pre) /\ gv \in activeObjs(post);
maxIndex(gv) == c - 1;
0 <c;
VA i (i \in inds(gv) = 0 <=1 /\ i <¢);
\A i \A j (i \in inds(gv) /\ j \in inds(gv) =>

((i \neq j) = indep(empty \apd gv[i] \apd gv[jl)));
\A i (i \in inds(gv) =>

depOn(dwn(gv) ,dwn(gv[il))

/\ depOn(dwn(gv{il),dwn(gv)));

Test 405

LCL Code

(Test405X.lcl)=
/* Test 405 */
int gvA, gvB;

claims () {
ensures indep(gvB, gvA);
}

C Header

(Test 405 Header)=
extern int gvA, gvB;

LSL Trait

(Test405.1sl)=
Test405: trait
includes IntTp, SProjStore(int for S)
introduces
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gvA, gvB: -> Obj[int]
asserts
\forall any: Store

gvA \in activeObjs(any);

gvB \in activeObjs(any);

indep(empty \apd gvA \apd gvB);
implies equations

indep(empty \apd gvA \apd gvB);

Test 426

LCL Code

(Test426X.lcl)=
/* Test 426 */
constant int c¢;
int gvAlcl, gvB;

claims {
ensures indep(gvB,gvA)
/\ \A i:int (i \in inds(gvA) =>
(gvA[il\activePost /\ indep(gvA[i],gvB)))
/\ gvA\wellDefPost <=>
\A i:int (i \in inds(gvA) => gvA[i]\wellDefPost);

C Header

(Test 426 Header)=
extern int gvAlc], gvB;

LSL Trait

(Test426.1sl)=
Test426: trait
includes IntTp, SProjStore(int for S),
ArrTp(int)

introduces
¢: =-> int
gvA: -> 0bj[Arr[int]]
gvB: -> O0bj[int]

asserts
\forall any: Store
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gvA \in activeObjs(any);

gvB \in activeObjs(any);
indep(empty \apd gvA \apd gvB);
dim(gvA) == c;

implies
\forall i: Int, post: Store

indep(empty \apd gvA \apd gvB);
\A i (i \in inds(gvA) =>
(gvA[i]l \in activeObjs(post)
/\ indep(empty \apd gvA[i] \apd gvB)));
gvA \in wellDefObjs(post) ==
\A i (i \in inds(gvA) => gvA[i] \in wellDefObjs(post));
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Appendix B

Concrete Syntax

The LCL grammar given here is essentially that defined by Tan [Tan94] for LCL 2.4.
We have corrected a few minor errors.

interface = {import | use | export | private | claim } *

import = imports{ id|"id" |<id>} t,;

use ;= uses traitReft,;

ezport ‘= constDeclaration | varDeclaration | type | fen

private := spec { constDeclaration | varDeclaration | type }
constDeclaration ::= constant typeSpecifier { varld [ = term ] }*;
varDeclaration ::= [const | volatile ] lclTypeSpec { declarator [ = term | }*,;
traitRef = id [ ( renaming ) ]

renaming := replace®, | typeName*, replace®,

replace = typeName for { opld [ sortld*, mapSym sortld | | CType }
typeName ::= [obj ] ldTypeSpec fabstDeclarator]

Figure 14: Concrete Syntax for LCL: Specifications
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fen
global

fenBody

letDecl
sortSpec
requires
checks
modify
storeRef
ensures
claims

lelTypeSpec declarator { global } * { fenBody }
lelTypeSpec declarator® ,;

[ letDecl ] [ checks ] [ requires | [ modify |
[ ensures ] [ claims ]

let { varld [: sortSpec | be term }*,;
lelTypeSpec

requires IclPredicate ;

checks lclPredicate

modifies { nothing | storeReft, } ;
term | [ obj ] lelTypeSpec **

ensures lclPredicate ;

claims lclPredicate ;

Woon

- - - . . P R

Figure 15: Concrete Syntax for LCL: Functions
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type

abstract
exposed
constraint

lel TypeSpec
structSpec
structDecl
enumsSpec
typeSpecifier
CType

abstDeclarator :

param

declarator

parameterDecl ::

arrayQual

Wonow

i Wouwon

N

abstract | exposed

{ mutable | inmutable } type id ;
typedef lciTypeSpec { declarator [ { constraint} | }*,;
| { struct | union }id;

constraint quantifier ( lelPredicate ) ;
typeSpecifier | structSpec | enumSpec

[ struct | union ] [id ] { structDectt }

| / struct | union Jid

lelTypeSpec declaratort,;

enum [id ] { id*, }|enum id

id | CTypet

void | char | double | float | int

| long | short | signed | unsigned

= ( abstDeclarator )

| * [abstDeclarator |

| [ abstDeclarator ] arrayQual

| abstDeclarator ()

| [ abstDeclarator ] ( param®,)

[ out ] lcl TypeSpec parameterDecl

| [ out ] lelTypeSpec declarator

| [ out ] lciTypeSpec [ abst Declarator |

varld | * declarator

| ( declarator)

| declarator arrayQual | declarator ( param®,)
= varld | * parameterDecl

| parameterDecl arrayQual | parameterDecl ( param®,)

[ [term ] ]

Figure 16: Concrete Syntax for LCL: Types
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lclPredicate
lerm

equalityTerm
simpleOpTerm :

simpleOp2
secondary

bracketed
sqBracketed
open

close
primary

lclPrimary

cLiteral
quantifier
varld
fenld
sortld
opld

i T

T T R TR

TR IR IR

term

if term then term else term | equalityTerm

| term logicalOp term

simpleOpTerm [ { eqOp | = } simpleOpTerm |
| quantifiert ( lclPredicate )

simpleOp2t secondary | secondary simpleOp2*
| secondary { simpleOp2 secondary } *
simpleOp | *

primary | [ primary | bracketed [ : sortld ] [ primary ]
| sqBracketed [: sortld] [ primary |
open [ term { { sepSym | , } term }* ] close

[ [term { { sepSym |, } term }*]]

{ | openSym

} | closeSym

( term ) | varld | opld ( term%,) | lclPrimary
| primary { preSym | postSym | anySym }

| primary { selectSym | mapSym } id

| primary [ term™*, ]

| primary: sortld

cLiteral | result | fresh( term )

| trashed( storeRef)

| unchanged( { all | storeReft , } )

| sizeof( { lclTypeSpec | term } )

| minIndex( term )

| maxIndex( term )

intLiteral | stringLiteral | singleQuoteLiteral | floatLiteral
quantifierSym { varld : [ obj ] sortSpec }*,
id

id

id

id

Figure 17: Concrete Syntax for LCL: Terms and Predicates
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claim claims id ( param*, ) { global } *

{ [ letDecl ] [ requires ] [ body ] ensures }

| claims fenld id ;

body { fenld ( value*,) ;}

cLiteral | varld | ( value )

| [ value ] simpleOp [ value ]| fenld ( value®, )

body

value

Figure 18: Concrete Syntax for LCL: Claims
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Appendix C

General Z Definitions

The relationship between the pair, and the projection functions first, and second
is illustrated in Figure 19. The functions first and second are part of the standard

mathematical toolkit [Spi89].

=[X,Y,X', Y]
pair: (X x Y -5 X)—>5 (X xY —>5Y) > XxY -5 X' xV
pair Yrps =
(Az:X;y: Y e¢hi(z,y) = t2(z,9))

9

(27:!!)—-——-—-—-—» z’

p . p‘_lfffy | st

N
y H (z J,yl)
second

Figure 19: Relationship between pair, first and second.

Let ‘. ® __ be a binary function (which we will write as an infix operator), then
the value of foldLL ® b(z1,...,2,)is ((... (0 @) ®...) O Ta.

—[X]
JoldLL: (X x X ++ X)—> X 5 seqX + X

Vi: XXX X;0:Xe
foldLLf b () = b A
JoldLLf b ({z) ~ zs) = foldLL f (f(b,z)) zs
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For any set, X, Reflexive[X] is the set of all reflexive relations over X’s. Similarly,
Symmetric[X] and Transitive[X] are the sets of symmetric and transitive relations
over X's. The set of equivalence relations over X’s is given by EquivalenceRel[.X].

Reflezive[X]=={R: X e X |idX CR}
Symmetric[X] == {R: X o X |[Vr,y: X o
(z,y) € R = (y,2) € R}
Transitive[X]== {R: X X |[Vz,5,z: X o
(z,y) €ERA (y,z) € R=> (z,2) € R}
EquivalenceRel[X] == Reflexive N Symmetric N Transitive[ X

If R is a relation between X’s and Y’s, then relToFun R is a representation of R
as a function that maps every x in the domain of R into the set of Y's related to x

under R.

relToFun : (X <> Y)— (X -+ PY)

relToFun R={ z :dom R e z — R({z}) }
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Appendix D

Supporting Traits

The LCLAux trajt is meant to contain auxiliary definitions that are needed to support
the definition ¢l traits derived from LCL specifications.
(LCLAuz.lsl)=

LCLAux: trait

includes
(LCLAuz include)

Currently LCLAux contains only the definitions of modAtMost and trashAtMost which
are defined in the trait ModAndTrash given in Section 8.6.4.2.6.
(LCLAuz include)=

ModAndTrash
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Index

\apd (F), 103
\ins, 102
—-[--J,105

abs, 100

abss, 92
AbsTpldK, 115
activeObjs, 95
activeObjs (UStore), 87
activeObjsg, 93
addEnv, 126
addlSig, 123
addLSig, 68
addObjQ2TN, 168
addSig, 124
AppEzp, 78
appSubst, 67
AppTm, 52
Arr.1lsl, 109
ArrOps.1sl, 105
arrSN, 119
ArrTp.1lsl, 104
ArrUTD, 116
ArrUTN, 76
AsnCpt, 56

asns (TBS), 69
Attr, 122

b (ISig), 121
basicSN, 119
BasicTp, 76
BasicUTD, 116
BasicUTN, 76

compRen, 63
ConDcl, 80
ConldK, 115
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ConQual, 75
Cpt, 80
cptSN, 120
cptUTD, 118

Del, 80

DeclCpt, 80
DclQual, 80
delQual (Attr), 122
dclTpIsEffTp, 168
depOn, 87

depOn, 96

dim, 105, 109

dwn, 92

dwn, 101

Elaboration Rule
AppExp-LCLOp, 145
AppExp-LSLQp, 144
ArrUTNO, 134
ArrUTNI, 136
BasicUTN, 133
ConDcl, 148
FunUTN, 138
ImmUTN, 139
LVarExp, 144
NonSpecDcl, 154
Spec, 172
Spec0, 172
SpecDcl, 154
TpNm-0bjQual, 141
TpNm0, 140
VarDcl, 152
VoidUTN, 133

empty, 99

emptyEnv, 126

emptylSig, 122



emptyLSig, 68
emptyRen, 65
emptySig, 124
emptyStore, 90
ensFzp (FSBody), 80
EnumCIdK, 115
Fnv, 126
envEzport, 127
equal, 89

equal, 98
FquivalenceRel, 205
:quivI'm, 53

Ezrp, 78

FzpCtz, 144

foldLL, 204
FSBody, 80
FSChpt, 80
FSHeader, 80
FunldK, 115
FunUTD, 116
FunUTDSch, 117
FunUTDSch0, 117
FunUTN, 76
FunUTNSch, 77
FunUTNSch0, 77

GenericClr, 144

gvarlds (FunUTDSch), 117
gvarlds (FunUTNSch), 77
gvarUTDs (FunUTDSch), 117
gvarUTNs (FunUTNSch), T1

Id, 74

id (IdNmSp), 114
id (QDclG), 79

id (UDclG), 79
IdKind, 115
idKind (Attr), 122
IdNmSp, 114
ImmUTD, 116
ImmUTN, 76
InclCpt, 56
includes, 70
includes (TBS), 69
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incObjUTD, 118
indep, 88

indep, 96

inds, 105, 108
IntTp, 76
IntTp.1s1, 103
ISig, 121

isig (Sig), 121
isigEzport, 123
isigHideldNSs, 124
isRep, 98

LCLAux, 206
localLSig (Sig), 121
localLSig (TBS), 69
LSig, 67

Isig (Sig), 121

Isig (TBS), 69
IsigHideOps, 69
LSLPred, 52

IslPred (QntTmSch@G), 52
LSym, 51

LVarCpt, 56
LVarEzp, 78
LVarldK, 115
LVarNm, 50
LVarNS§, 50
lvarNSEcn (Ren), 60
lvarNSs (LSig), 67
LVarNSSym, 51
lvarPRen { PRen), 59
lvars (LSig), 67
LVarTm, 52

maxIndex, 105, 109
mkConQOpSig, 51
mkEnv, 126

mklSig, 123
mkSetDObjTm, 161
mkTB, 57

modAtMost, 162
modEzps (FSBody), 80

Nm, 49
NmSp, 115



nmSp (IdNmSp), 114
NoCltz, 144

NoEzp, 76
nolnclCycInTB, T1
nolnclCycles, T1
NoTerm, 116
NotSpec@, 80

Obj, 86

ObjQual, 75
0bjSN, 119
objsSameSort, 97
objsSameSort, 97
objsSort, 88
objUTD, 118
OneFEzxp, 76
OneTerm, 116
OpCpt, 56

opDom (OpSig), 50
OpNm, 50
OpNmSig, 50
opNSRen (Ren), 60
opNSs (LSig), 67
OpNSSym, 51
opPRen (PRen), 59
opRan (OpSig), 50
ops (LSig), 67
OpSig, 50
opSigRen, 60
opSigSorts, 51
OptEzp, 76
OptTerm, 116
ordld, 115
OrdNmSp, 115
OutQual, 75

pair, 204

PostCtz, 144

PreCiz, 144

Pred, 78

PRen, 59

PRen (Ren), 60

prmlds (FunUTDSch), 117
prmlds (FunUTNSch), 11
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prmTDs (FunUTDSch0), 117
prmTNs (FunUTNSch0), 77

®@Dcl, 79

@DclG, 79

@ntNm, 52

gntNm (QntTmSchQG), 52
@ntTm, 52

@ntTmSch, 52
@ntTmSchG, 52

gntVar (QntTmSch@G), 52

ref2TB, 70

Reflezive, 205

relToFun, 205

Ren, 60, 61

ren ( TraitRef), 57

renTB, 64

renTm, 62

ren TraitCpt, 63

repSet, 89

reqEzp (FSBody), 80
retUTD (FunUTDSch0), 117
retUTN (FunUTNSch0), 77

Segq-b, 129

Seg-i, 130

Seq.1sl, 108

Sig, 121

sig (Env), 126
sigResVar, 125
sortAtir, 88
sortAttr, 97
SortNm, 50, 88
sortNm, 100
sortPRen (PRen), 59
sortRen (Ren), 60
sorts (LSig), 67
SortSym, 51

Spec, 79

SpecQual, 80
SProjStore, 93
SProjStore.1sl, 99
SProjStore_AltDef , 93
Store, 90



Store.lsl, %4
StorePOps.1sl1, 95
strongFq, 89

Subst, 65
Surjective.lsl, 109
Symmetric, 205

TagldK, 115
TagNmSp, 115

tb (TBS), 69

th (Trait), 56

tb2LSig, 72

thincl, 70

TBS, 69

td (Attr), 122

Term, 52
tmFreeLVars, 56
tmLVarNSs, 55
tmQOpNSs, 55

tmSort, 55

tmSorts, 55

tmSyms, 55

tn (QDclG), 79
TpDefldIK, 115

TpDen (TpDenG), 116
TpDenG, 116

TpNm, 75

TpNmG, 74

TpQual, 75

tpQuals (TpDenG), 116
tpQuals (TpNmQ@), 74
Trait, 56

TraitBody, 56
TraitCpt, 56

TraitNm, 50

trastNm (Trait), 56
traitNm ( TraitRef), 57
traitNm2Ref, 57
TrastRef, 57
traitStore, 70
Transitive, 205
trashAtMost, 164
trashEzps (FSBody), 80
trtCpt2LSig, 73
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types (ISig), 121

U, 87

UDcl, 79

UDclG, 79
unsafeAppSubst, 66
up, 92

up. 101

userSN, 119
UStore, 87

utd (TpDenG), 116
utd2TD (TpDenG), 116
utn (TpNmG), 74
utn (UDcIG), 79
UTpDen, 116
UTpNm, 76

val, 95

val (UStore), 87
vals, 93

VarDecl, 80
VarldK, 115
VoidUTD, 116
VoidUTN , 76
VolQual, 75

wellDefObjs, 99
wellDefObjs (Store), 90
wellDefObjss, 93
wfTm, 72

wsTm, 71



Index of Noweb Chunks

(Arr assert eqn 109d)

(Arr assert var decl 109c)
(Arr implies trait 106b)
(Arr opsig 109b)

(Arr.lsl 109a)

(ArrOps assert egn 106a)
(ArrOps opsig 105d)
(ArrOps.lsl 105¢)

(ArrTp assert eqn 106c)
(ArrTp assert var decl 104b)
(ArrTp implies eqn 107c)
(ArrTp include 104c)
(ArrTp.lsl 104a)

(IntTp.lsl 103e)

(Seq assert eqn 108d)

(Seq assert var decl 108b)
(Seq tmplies eqn 108e)

(Seq opsig 108c)

(Seq.lsl 108a)

(sn 100d)

(SProjStore assert eqn 100c)
(SProjStore assert var decl 100a)
(SProjStore include 99f)
(SProjStore opsig 100b)
(SProjStore.lsl 99e)

(Store assert eqn 96a)
(Store assert var decl 95c)
(Store implies eqn 97c)
(Store implies gen/part 96b)
(Store include 95b)

(Store opsig 96¢)

(Store.lsl 94)

(StorePOps include 95d)
(StorePOps opsig 95f)
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(StorePOps.lsl 95a)
(Surjective.lsl 109e)
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