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ABSTRACT
On the Naimark Extension for a C¢immutative Positive Operator
i . Va ed Meagsure on a Differential Manifold:
. 4

Ute An;a Gehringer

K4

2 P

We cona{der a commutative ponitive-operator-valded (POV)-measure a

vhich asgigns to the Borel-eubaeés IP(M) of a dif(érential nani!bld M

positive bounded linear operators on L M, V), vhere v denoted a smooth

. .
Borel-measure on M. Assuming that the POV-measure a 15,1nformationally
equivalent to the canonical projection-valued (PV)-measure for M on { N

L (M, v) we deduce that the von-Neumann algebra generated by the family

{a(E) | E € & (M)} is maximal abelian. The operatots forming the POV-

measure are thbrefore found to be point—dipendent multiplication-operators.

1

Having thus eatabliahed the uecessary form of a, we perform the Naimark
extension of a to a projection—valued_measure on an extended Hilbert-

space H of which LZ(H, v) is a proper subspace, and dfscuss the stgucture
. |
of H . ' Conversely, we recover a POV-measure for M on LZ(M » V) in case

that we are given a PV-measure on Lz(T*H, A).
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CHAPTER 1 INTRODUCTION . 1

e

The thesis presented here deals with the Naimark extension of af
certain family of operators, a %p—called positive operator valued (POV)f
¥
measure based on a locally compact. space, more specifically a differential

n-manifold M. (In brief, a POV-measure is an operator-valudd map .

a: &0~ L) ’ -

2 1

where M) denotes the Borel-subsets of M, and L(!})+ denotes the
positive linear bounﬁed operators on some separable complex Hilbert
spaee 6.). The extension carried out here establishes a means for
recovering a projeéction-valued (PV) measure P (i.e. a mapping P :& (M)
{projection operators on 8.}) however living on a larger Hilbert-space H
such that E} is.a proper subspace of H, from the POV measure a, The

question dealt with is one of determining what the enlarged Hilbert-space

H looks like in a special situation, namely when all the operators,which

establish the POV-measure a commute. An additional restrictiop of

. '
e -

informational equivalence of the POV-measure a with the so-called™

- ;"‘

canonical PV-measure (which acts as multiplication by the charAgteristic

! y

function of the set) is imposed.

The origin of this question lies in standard quantum mechanics.
Thgre, one encounters the following aituatiog: Let S be a physical system,
say a particle., Then its cbnfiguragion space is normally given as a
differential manifold M which locally iooks 1ike R" for appropriately
chosen n.  Its states are considered as elements of a Hilbert-space, in
our case given as LZ(M, V) where v is a measure on M. One focuses

initially on giving a meaning to the statement, "The particle i{s localised

J |

o
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! ' 3\ 1;1 a region of M given that it is in a particular quantun state'. Math-‘

. % . .

~ C ot

ematically one introduces at this point a PV-measure P :&A(M) -, L(Lz(M » V) .
The square of the absolute value of an element Yy € LZ(H, V) at a given

point m is normally considered as a probability density and the quantity

W, P(E)Y) = I ¥ (m) (P(E)V) (m) d v (m)

) M

. . . v
is inte;preted as the p;obability of finding the particle localized in
ECM in the state v . F£om this interpretation one can easily deduce
that the family P be positive: the requiremént of the P(E)’'s to be projec-
tions only comes in when imposing von Neumann's repeatability postulate
‘(saying that the outcome of the position measurement should be the pame .
if one performs the same experiment a second time), If ome abandons this

+ postulate, one will only arrive at a POV-measure a, This seems to be in
éccord‘with physical reality, if one considers eg. a photon where for
determining its position the photon has to be destroyed, so that clearly
this kind of measurement is ADt ¥peatable. Mathematically, life becomes
a li;tle bit harder as well, since by replacing the requirement of the
localization operators to be projections by the requirement of them to be
positive one loses some convenient properiies, eg. the spectral theorem
cannot be exploi;ed any longer, so that eventually one is forced to answer
question; of the type: ' Will the operator JA d a()) be self adjoint?",.

- which formerly did not arise. If one still wishes to deal with POV-
measures rather that PV-measures, one way out of answering questions of
this type is given by extending the underlying Hilbert-space. This is

6 . the point where the Naimark-extension comes in.



The materialrin this égesis is organized as follows: Chapter 2
introduces some éeneralities on von Neumann -~ and C* - algebras, which are’
noed in later chapters (a general refe'x:ence is [ 2 ]:) as well as.gome
results on differential manifold; tog;ther with a decomposi&ion of ”
LZ(M, V) into an orthogonal direct sum (general reference is [ 4] ).

In chapter 3 we define the notions of a POV-and a PV-meashre.nnd
discuss the consequences of the requirement of informational equivalence
of a commutative POV-measure with the canonical PV-measure. As it turns
out this requirement leads to maximal aBelianness of the von Neumann-
algebra generated by the POV-measure a and to the deduction that.egch

one of the operators a(E) acts as %-point-dependent multiplication

operator. We then perform the Naimark extension of such a POV-measure for

- an arbitrary locally compact space X taking values in L(Lz( ﬁn, K)) .

The extendéd Hilbert-space turns out to be isomorphic to a direct integral
over certain Hilbert-spaces.

In chapter 4 we then abply the result obtained in chapter 3 to find
the Naimark extension of a commutative POV-measure a for a manifold M
based on LZ(M, v), using the specific decoﬁposition of L2(M , V) obtained
in chapter 2. 1In the most general case, the extended space will be a
two-fold direct sﬁm of Hilbert-spaces; in the most simple case, it turns
out to be the space of square-integrable fugctions on the cotangent
nanifoia T*M withrespect to a product-measure., For the latter case we
as well go the reverse way, namely starting with a PV-measure on
LZ(T*)d, A), we can recover a POV-measure on L2(M,'v) under specific

requirements on A .
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CHAPTER 2 MATHEMATICAL PRELIMINARIES ., . -
e

2.1 Hilbert-space, C*-Algebras and von Neumann-Algebrhs

. - .
In what follows § will always denote a separable %lcx Hilwlre-

space and L(%) the get of all linear bounded operators on 5 w'h{ch in a

natural manner is an involutive Banach-algebra with the usual operator

o ]
norm. *
4

. K] s
Definition 2.1.1 An operator A-€ L(‘} ) is said to be of trace-class
—_—

1ff \ ‘ §
< P -
Al = ) A< (1)
@ =1
o© + i
where {An} =1 c RO 1s the set of eigenvalues of |A| = (A*A)° arranged.

in decreasing ordef’and repeated according to their multiplicity.

The set T(}) of all trace-class operators on 8- is a linear space
vwhich is a Banach-space whtr endowed with l.ltr . Moreover, if
{x_ } ” 1s an orthonormal basis of$ , then the sum
n =l

=1

defines a linear functional tr: 7(3) <+ Con T(%-).‘ Furthermore, T(B)
is a closed ideal of L(s) and under the pairing '

N \
‘ = . L N
(A,X)= tr(A*X) vaeT(H), X € %) (3)

(-8

one can identify L(;) with the dual T*(g) of T(s).

trd = ] (x ,x) ¥a€T(B) (2) .

!

-

Y 4



P

L

+

, . ”
‘Definition 2.1;3 Let {An} =) D€ @ sequence of operatorsﬁ in L(%).

Then {An} n:l is said to converge to A € L(a)

) :
. - ,s th/e unifpm topology, 1iff .

e , )

m 1a -al=0 ' )

n-»w

-~

°

- 1in the strong topology, iff

1lim |(Au -A)xl=0 ¥ x 505, (5)

n-’ﬂ

- 1n the weak topology, 1iff

Ln (A% ) = Ux,y) ¥x,y€% (6)
n-® . .
For these three topologies, one has the following relation: The uniform‘
topology is fimer than the strong topology which is finer than the weak .
topology.

For a subset M of L(;J the collection of all operators in L(!})

commuting with each element in #¢ 1is called the commutant of € ,. denoted

R ’x =
by ¢’ . f

Definition 2.1.3 A von “Neumanin-algebra on g is a subalgebra” of Lu(s)

which is invariant under the involutjon (i.e. a, *-subalgebra) and such

-~

that . 1

mo- e -m ,

Cﬁ\e algebra M is called abelian, 1fA CM', it is called maximal
o~

abélia), M =T". A C*-algebra of operators on 6 is a non-degenerate
*-gubalgebra of L(%). which is closed under the uniform topology. '

.

1o~




More generally, a C*-algebra & is defined to %e an involutive Banach- e
A - . M 4
slgebra over C for which 1nvolu‘ion satisfie¥

A s
-

ﬁ;*xl = Ix*l « Ixi vXEON . - - . s
)
.~

For an. arbitrary locally compact space X, the set G (X) of all continuous
functions on X vanishing at © is a commutative C*-algebra under the sup-
norm with involution given by complex conjugation.
Trivially, L (5) is both a d*-algebra, as well as a von Neumann-algebra.
Let S denote the closed unit-ball of #¢. Then, by the von Neumann
density theorem, S is both weakly and str.ongly closed. Furthermore, the
weak closure of any *-algebra T with identity coincides with the
von Neumann algebra generated by T(.

Let X be an abelian C*-algebra of operators on 5 and denote by
Q(0L) the set of all non-zero homomorphisms of (X onto C. Then Q2(OL) is
contained in the unit ball S* of the conjugate‘ space (X* of QL and is.
locally compact with respect to the o(Qu*, ¢ ) topology.

If one defines for each X€ O a function X on 2(0) by setting
X(w) = w(X)  WwE QM) : )

then X : Q(A) -+ C is continuous. Furthermore, it can be shown that X
vanishes at «, hence e C(Q()). Let F: X~ Cm(Q(O()) denote the
mapping X - %. Then F is an isbmetr_ic isomorphism of (X} onto C_(R(OC))

which preserves the *-operation.

Definition 2.1.4 The space R(OL) is called the spectrum of OL and the

mapping F : O — C_(Q(CL)) is named the Gelfand isomorphism.




-7- .

] .
Via f&he Gelfand isomgphism it is thus possible to-identify any abelian

'

C*-algebra of operatd¥s om% with the C*-algébra C_(Q) for some - .°

appropriately chosen localfy compact space-{l,

]

Do , ‘
Definition 2.1.5 Let OL be a C*-algebra. A representation of Of is &

*—homomorphism T of (X into the‘C*-algeb‘;‘é L(‘5). ‘? is éalled the

representation space.

- .
-

For an arbitrary C*-algebra (L one has ) )
% . ’ A

v )

Lemma 2.1.1 Let OL be a C*-algebra and 7 a reprgsentation of (Con ‘6 .

~

Let M (1) denote the von Neumann-algebra m((()" generated by m(OL), then

_there is a unique linear map n of the second conJugate space (U ** of 0(.

onto T (1) with 3.3 following properties i »
\
(1) The-diagram ' A )
J s ) . : : -
. oL T, ()
+ L 4 ’

(8)

v

» ‘commutes, where 1 denotes the canonical embedding of

X into (W**,

(¢1) ¥ 1s continuous with respect to the o((R**, O(*)-topology"

ana the O-weak topology o'f ﬂC(ﬂ) (hencé the weak toi)ology'

of ML(M)), , . :
’ (111) ‘ %’maps the unit ball S** of OUL** onto the unit ball S of
¢ .
M.

Proof See [2] , pp. 121-122 7 ' ~ o,

=
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. . v

In case one considers a'commutative C*-algebra, which can be identi-

fied with C.(X) for some locally compact space X, the diagram (8) becomes:

" ce(x) T ™ ()
4 4
i -~ )
i ¥
CLP(X, A) ,

v

~ n
where A is a basic measure on X. The map 7 then is a homomorphism

(see [12], pp. 127 ); so that the Gelfand-isomorphism F extends to a

-

map

Fafl(m) = L7 (X, A).

For completing the list of notions and results needed from the ’
theory of operator algebras, we as well peéd to know what it means for a
li;'tear map ¢ : QL+ B, where X and &8 ére C*-Qalgebras', to be tompletely‘

’positive. 'For this purpose we define the set Mn((x) to be the set of

all n x n-matiices X={ with entries in . un(cx)

X4l 4,9=1,..,n

c,“is once agaih a C*-algebra and as usual an element X € Mr'l(OL) will be

called positive, if there is an element B € Mn(OL) such that

X = B*B ‘ (9)

r
|

Recall aMll that 3 linear map ¢ of a C*-algebra O into a C*-algebra
: +
& is called positive, if ¢ maps @ into 8
S -

Let d‘~and 8 be C*-algebras and % a linear map of QL into B . For each

n € N we define ¢n : Mn(OL) -+ %(8) by

On (8 =l OT (10)




-

Definition 2.1.6 $: Q,-'Q is said to be n-positive, if ¢n {s,po/s;tive.
. - '

1f ¢ 1s n-positive for each n € N, then ¢ 1is called completely positive.

-
If & is an abelian C*-algebra, then one has /

@ 1} 4

Proposition 2.1,2 Any positive linear flap ¢ of O( into another C*-

algebra 8 is completely positive.

° Proof See [2] , pp. 199 - 200

(]
the following form:

v

We will use propo;sition 2.1.2 4

Proposition 2.1.3 Any positive linear map ¢ of Co (X) into L(%)

is completely positive,
¢ s

/

2.2 Some Generalities on Differential Manifolds ‘ .

Let M denote a topological spate, which is Hausdorff and satisfies

[

the second axiom of countability,

- . /

Definition 2.2.1 A triple (U, y, V) where UC M is an open subset of
M, V is an open subset of R" for some n, and Y: U= V is a homomorphism,

is called a (local) chart of M.

An atlas A of M is a family of charts {(Ui’ Yy Vi) | 1 € N} such that

U U =M
. jey 1

The pair (M, A) 1is called a topological ma}zé. ‘It 1is 'calléd an_ ‘

n-panifold, 1ff ¥LEN v C R“/




=

Definition 2.2.2 Let (M, A) be an n-manifold. The pair (M, A) is

Cowg

called a differential u—mali;lfold. iff the mappings,

-1 n n |
o : - v . .
Yoo vy i 0 Sy @ty -

’

t

+ 9.
J“,‘

’

are Cm-mppings vhenever Ui Ny

Without loss of' generality one can assume the atlas A to be maximal, that

is, A is not contained in any other atlas as a proper subset. Thus, in

what follows we shall use the symbol M to specify a differential ! !

n-manifold without regard to the atlas. Taking into consideration that M

is a topological manifold, one has

Lemma 2.2.1 M is paracompact.
Proof See [ 3] ) ' oo

- )

Consequently, as a topological space, M is locally cmn'pact. Let & (M)

denote the O-algebra of all Borel-subsets of M and let v be a Borel-

‘measure on M.

Definition 2.2.3 A'Borel-measure V on M is called smooth, if for each

local chart (U, Y,V) of M there is a striétly positive, infinitely often
differentiable function k:V -+ R+ such that

onV

i

where )\n is the Lel;eséue-measure on R® and k -« An(G) = J k(x) d)\n(x)
. - G

for GCV,

&
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For a differential n-manifold one has

‘Theorem 2.2,2 a)

b)

c).

d)

Proof See [ 4]

AN

On ary differential n-manifold there exist smooth

Borel-measures,

"All amobth Borel-measures are o-finite.

Any two smooth Borel-measures v and Y on M are .
equivalent,
If v 1s a smooth Borel-measure on M and ¢ is a

dif feomorphism on M, then v° ¢-1 is a smooth

Borel-measure on M,

_If v is a smooth Borel-measure on M, then any two

continuous functions, which are equal almost

everywhere, are equal everywhere.

So that the definition 2.2.3 is non-void.

For a fixed Borel-measure v on M we set

I.z(M,v) = {y: M~ C I-I ¥ (m) m'dy(m) <w}
. ) M

4

L2 M,V) is a Hilbert-spa;:e in a natural way. Conside?ng a local chart

‘-—k

(U, Y, V) of M and restricting V to & (M) N U one has

Lz(U, vlu) ={y:U-C| I ¥(m) Y(m) d\)lu(m) <o}
" U

'E{W°Y‘1=V*5II

Vot v ) avly 6l <= )
v "

-

«{p:v~c| J W) W) k) ) < )
Vv

=12, ™)

¢
.
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1f oae looks upon k as a function on R which has support in V, bhe

1aometr1c 1somorphism between L (U \)I ) and L w, k)P) y:lelds

2
»

Iﬁw,vM)ﬁL%R",ka, ' (11)

-
< I}

By means ‘of ‘the atlas for M, one can construct a cover of M l;y disjbint

. . »
Borel-sets in the following way
¢ 1
Y " T
. \ k-1 ‘ ’
u =U (UR for k> 2 ,
k k =1 i

Expioitihg the smoothness of Vv, once can then represent »LZ(H, V) as

follows: - ’ . ‘ °
2 2
LM, v) = @ L°(U

v.) ‘ - (3)
k=1 :

k
) ¢
vhere v, = vid-(M) N Bk. .

By the same argument as used for deriving (11) we thus find

LZ(M,\)) a0 LZ(Rn, Kk)‘n) . . (14
k=1
where
N | ot ‘ PR, | ,
Kt R Ro » BUPP K c Yk(uk) CR ., (15)
(Note that K, € C (v, (0,)).) and
o ~ =1 o n ‘ Lo
Vi ® Yy Ky * A on Y (1) . (16)
for all k € N. “




e e e et R

: : |-
Noté however that the supports of the functions Ki in general Jgp not

disjoint, 80 .that the spaces Lz(Rn,ngn) in the decomposittpn (14) are -

not necessarily orfhogoﬁal as subspaces of LZ(RP, fﬁ, whereas this is

tﬁe case in the decomposition (13). In case the supports are disjoint,

(1{)'can be simplified to

4.
.

t2(v v) & 128, k) : o . an

where ‘ -, - LV '
) :.
]

K= (18)

Xo o Ky
1Y, k
L AU B

In the Qequel we will use the representation (14) rather thad’Lz(M, v)
itself, '

«

.2
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CHAPTER 3 PV - AND POV-MEASURES ‘ R

3.1 Localization in Quantum - Mechanics

Consider a physical system S whose configuration space is given by
some locally compact topological space X and suppose that the system is
a non-relativistic quantum' system.

One‘$ssumes then, that the set of all propositions of the type
"S has the property A"

gengrates an orthocomplemented O-lattice L(S) and that every state of S,

leads to a unique function
p:Ll(s)~[0,1]

such .that p(A) can be interpreted as the probability for obtaining tb:he
outcome "S has the property A". . . -

© One ther; requires p to have the following properties:

a) P =0, pX =1 '

B) p(Y Aap= ] p(ay)
€1 i€1

v

o

vhenever Ai < At i = k, where < denotes the partial ,
ordering in L(S) and L stands for the operation of taking
< v

the ortho-complement.

The function p is called a state of L(S).

An observable consequently is “defined to be a o-homomorphism from % (n)
into L(S), (see [ 5] ) which in quantum mechanics, where L(S) 1s realized

as the orthocomplemented O-lattice L(‘é) of projection operators on a

Hilbert space '6, can be represented as a self-adjoint linear oﬂpemtor bn

-

5. The states further on are identified with positive trace—class-

o

>
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' A s '

-operators of unit trace, so thas the probability that a meastrement of

+

the observable A in-the state T yields a result in A € B(R) 1is given by

tr(T » EM(8)) , .
. b v ; 1 !
vhere EA(A) is the element corresponding to A of the spectral-family of
A

>

If x € ‘5\“, x = 0, then the operator ’I‘x H '5 - '5,

. Txy= —15 (y, x) x
- 1x1

is & positive trace-class-operator of unit trace, and one has

% -

er(r, o EAQL)) = T%ﬁ . (EA(t)x, x).

By the spectral-theSrem for bounded self-adjoint operators one can

therefore conclude that the quantity

—Ly (Ax, %)
ix]

e
-

yields the expectation value of the distribution 'éorresponding to A in

« T M

X

The operator Tx is called a pure state of S.

" Note that ‘the set of all positive trace-class - operators of unit trace

-

forms a convex set, with the pure states being its extreme points. We
can thus identify it with the closed unit ball of ‘b, if necessary.
Our concern for the rest of this exposition will be the observatidm .

of the position of S on X. F¥or doing so, we assume a sufficiently large

.number of regions of X to be associated with physical observables,

"position observables”. & (X), the o-algebra of Borel-subsets of X,

will give us this sufficient amount.

a

oy
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From what has been'said above, each Borel subset B of X will th?an give
rise to a self-adjoint operator E(B) on ‘ . For a normalized v}actot

x € 3 the quantit

{ E(B)x, x) = M (B)
x

.

will then consequently be interpreted as the probahii:tty of finditlxg S in
the state Tx localized in B. ‘ ‘

This forces EH(B)' to be a bounded positive operator on 5 for a_ny

B €ELH(X). For fixed T, one assumes the map

+
Up * LX)~ R
x .

to be a probability measure on &(X).

Therefore one is led to impose the following properties on E(B):

a) IJE(B)! <=, E(B) >0 ¥ BE &H(X

b) E(@) = 0, E(X) = 1

© N
¢e) E(v Bi) = lim z E(B,) strongly for mutually disjoint sets.
i
1=1 N-wo {=1 ,

From what has been said so far, on sees that {E(B) | B €& (X)} forms a
positive-operapor valued (POV) measure (the justification of this term
will be given in the next chapter). .

" From repeatability arguments for measurements, one normally iﬁposes i:he
further requirement that the possible outcome of an experiment related
to position measurement be 0 or 1, i.e, each of the operators E(B) be a
projection operétor.

This leads to adding as a fourth property of E(B):

d) E(B) - E(B') = E(BNB').




A fanily {E(B) | B € & (X)} satisfying (a).- (d) is called a projection-‘
valued measure. ' )

In the following part of this chapte;-, we are éoing to derive the
justification of the term ''measure' for these families of operators and -

study theiz: interrelation.

3

3.2 PV-Measutes and POV-Measures and their Relation 5
t

Let once again X be-some locally compact space, #& (X) the G-algebra:
of Borel subsets of X, and 5. an arbitrary separable Hilbert-space.
Consider a family of operators.{E(B) | BE€ & (X))} C L(%) vhich has the

following properties

0L E® < tag : o

E($) = 0, E(X) = 1d ,
 w I ‘ ).
E(U B,)= J E(®) for B, MB ='¢, 1%k

=1 ¥ 4=y 1 bk

with the summation on thg right hand side being

understood as a weak limit.

I

For a fixed normalized vector x € 5, we will determine the prqpertiefﬁ of

the mapping ', ' .
B0 &
iy ! 0
< ' ) \.
defined by v

u_(B) = (E(B)x,x) @
First of all, for any B € & (X) one has that

™

0<u(B) <1 ' ’

and gecondly,




'sd
!\ . !
® ©
\ . u (U B) = u_(B,) for B,NB =¢, 1%k
1 : T 17 By

’

\ from the definition of the family {E(B) |B € & (X)}.
|
!

Fgrthermgre, for B = X one has‘
u (%) =1

Hence tl'fe map;kng My :&r (X)»[0,1] s a probability measure onds(X).
For a non-normalized vector y one will by the same reasoning always find
~a finite measure.

Making use of the polariz;tion identity in a compl;zx Hilbert-space, one

will thus find a complex "finite” measure ux-y for any two non-zero
. »

vectors by setting

1
= - + -
ux’y(n) T, (®) Moy F LU 4y (B) - 4 ux_iy(n)} (3)
Because of this relation the following definition makes sense.

Definition 3.2.1. Let X be a locally compact space, % a complex '

« separable Hilbert-space, and {E(B) | B € & (X)} a family of positive

operators on B satifying:(1). ‘ ) o

R (POV) -measure for & (X) on 5 .

1f furthermore, for all B and B' in &(X) the relation

; ' E(B) E(B') = E(B') E(B) (4)

is valid, {E(B) |_B € & (X))} 18 said to be a commutative, normalized

POV-measure. Y

Then {E(B) | BE€ &(X))} is called a normalized positive-operator valued L




-

if,
E(B) E(B") = 'E(B N B') - )
holds for all B, B' € &(X).

By t}e von Neumann density theorem the weak limit occuring in (1) can be
replaced by the strong limit of the sum. Hence we are back to the .
situation described in chapter 3.1.

A PV-measure for & (X) on %_ gives rise to a POV-measure for tr/(X) in a
natural way:

Let H C ‘5. be a proper subspace of 5, and let P denote the orthogorial

[3

projection of 5, onto H. For each B € & (X) set
L v _ a(B) := PE(B)P , (6)

Then one has’

a(X) = PE(X)P =P = 1dH

0<a(®) <P=1d, "
and . E N
a(V B)) = PE(Y B)P=P(] E®B))P

1=1 i=1 =1
, } ,
= ] PEGB)E
1=1
(- -}
= a(B
& Y o |

o

whenever B i~n Bk = ¢. Once aga~1n the sum is to be understood as the
. n
weak limit of J a(Bi).

1=1 ~
As, in general, the projection ® fails to commute with all of the E(B)'s,

@
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the family {a(B) | B € % (X)} turns out to be a normalized Pov-measu;g
for &»(X) on H.
On the other ;xand, starting out with a normalized POV-measure a for
& (X) on some Hilbert space ‘é , the Naimark extension theorem [ 6]
ensures the existence of an enlarged Hilbert space a into which 'b can
be isometrically embedded, and the existence of a PV-measure P on fq ‘fo;
3()(), su?:h that the composition of the pr&jection P: f;-"é, ~
with the PV-measure on Ff gives back the original POV-measure on ‘6.
Furthermore, f? can be chosen to bg minimal in the sense that f? is spanned
by ‘the set {P(B)x |BE & (X), x €% }. k
The main objective of this treatise will be to exhibit what the Naimark -
extension of a commutati\{:e normalized POV-measure for & (M) on LZ(M , V)
looks like (for the notation see chapter 2). TFor the time being however
the additional structure of a manifold caxlx be discarded. Only the Borel
structure is nee;led.

Consequently, we are going to restrict our investigation to normal-
ized, commutative POV-measurgs, which will be denoted by hd

{a(E) IE € & (X)} for the rest of this chapter.

For auxiliary purposes we shall as wellAneed a PV-measure on 3 , denoted

by {P(E) |E € & (X)}.
Let A(P) denote the von-Neumann-algebra generated by this PV-measure

y

and assume that A(P) is maximal abelian. By maximal abeliannessof A(P)

S
s

it follows that there is a unitary map ‘
u:g - Lix, N - (N
where A is a o-finite Borel-measure on X such that for all B € & (X) .
) »,

(WP U™ ) = x (0 ¥ (8)
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3

for -all ¢ € Lz(x, A), where Xg denotes the charateristic function of
the set B. (see e.g. [7] ). Therefore, we will from now on assume that
tf is realized as LZ(X, A) and that P(B) acts as multiplication by Xg-

-

The above defined PV-measure P is called the canonical PV-measure for

B(x) on L2x,n. ' .
We wish furthermore to c$n$1der only POV-measures which carry the
same "amount" of information 'as the canonical PV-measure. This additional

property is mathematéjflly incorporated in thé following definition

(stated for arbitrary POV-measuresg)-

Definition 3.2.2.  Let {a(B) |B € & (X)} and {a(B) [B €& (X)} be

POV-meaéureslfor J;(X) on !}. Then a and & are saidhco be informationally

equivalent iff for p € T(§) , .
tr(a(B)p) = 0 VB € B (X o
' - ' (10)
tr(8(B)p) = 0 ¥ B € & (X)

©N

‘,)‘

Following definition 3.2.2. we require the POV-measure {a(B) | B € £ ()} !

for & (X) on L2(X, A) to be informationally equivalent to the canonical

PV-measure for & (X). An immediate consequence of this requirement is

Lemma 3.2.1. The von Neumann-algebra A(a) generated by the family

&
{a(B) | B € &(X)} is maximal abelian. .
Proof . Let T*(a) denote the norm-closed linear span of the set

{a(B) | B € & (X)} and T*(P) the norm-closed linear span of {P(B)T B

4 .

€ & (X)), their elements being considered as lineay functionals on

T(iz(x, A)). Then T*(a) regarded as a sub-set of L(LZ(X, A)) is a
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sﬁbset. of A(a), and T#(P) = A(P) = A(P)' = A(P)". Let pE T(Lz(x’ A))
be' such that for all f € T*(a) < ’
e p,£)=0.

where ( ,') denotes the natural pairing between T(LZ(X', 2)) and its dual.

But then one has \

M -
fo, a(B)) = 0
)

FaS

for all B€ B (X): " .
The latter however by ;nforma‘tional equivalence (10) o’f a and P is'

eguivalent” to ) q
e R ‘ ) . ; ‘

» (p,P(B))=20"
¢ - ' . 1

fof~all B € &(X).

Hence one finds that for all g € T*(P) = A(P),

e . e
! {p,g?=0
l ' l 1
For a %losed sub~-space B C L(LZ(X , A\)) define B' to be, the annihilator

of B in L@’ (X, 2)* and 'B=B' N T(L2(X,2)). Thus the equations

»

above lead to '

L

Lra(a) c LT (P) = LA (P)

?

—_Exploiting the fact that (*T»\(a_))l = Th(a) and (*A(P))* = A(P) +
. (ag'ﬂf-g. [14] ‘) we arrive at
D 4

T™(a) 3 A(P) .

A}

,
so that ‘ Lo
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Aa) D A(P) .

A(a) 1s a commutative von Neumann algebra which is not equal to
L(LZ(X s A)). As A(P) is maximal abelian, one thus ccmciudes that A(P) =

A(a) which establishes the result. .

Let Cm(X) denote the C*-algebra of all continuous functions on X

vanishing at infinity and let Ac(a) denote the C*-algebra generated by

{a(g) J £(x) da(x) [ f € C_(X)}. The algebra Ac(a) is clearly
X

commutative. One then has

Lemma 3.2.2. The von Neumann-algebra A(a) coincides with the weak
closure of Ac(a), i.e. A(a) = A (a)", and A.(a) is contained denmsely in

El

A(a) in the weak operator topology.
Proof see 8] lemma 6. o

The most important result of this chapter is contained in the following

proposition:

’

Proposition 3.2.3. Let a be informationally equivalent to the

canonical PV measure for & (X). Then for each B € & (X) the operator '

aEB) is given as a multiplication operator on iz(x, A)

v (a(B)Y)(x) = ux(B)w(x) ¥x €X (11)
. "

where for fixed x € X,}ix G (X [0 4 1) is a probability measure.

Proof Consider the C*-algebra Ac(a) introduced above. Then by the

Gelfand isomorphism we have a mapping

FiAa) ~C (0




‘For y € X define a mapping uy of the abelian C*-algebra’ Cw(X) into

- 2 -

vhich can'be exterded to a bijective isometry
COF A LUK, ) : .

by the 'weak densepess of Ac(a) in A(a) (Lemma }2.1.1) . (A is a basic

measure on X.)
{

C by

: uy(f) = [F@E(E£)) ) (y) ..

3

By linearity of @:C_(X) » A (a) uy is linear-and for f > 0 one observes

that by the definition of a(f),a(f) >0, so that uy is positive,

4

Let {f }ceg -(X) be an increasing sequence converging pointwise to

'1 f A1, then ' . . / R

\ uy(fn)'i‘l .

‘ Therefore uy is a finite Radon-measure and is* furthermore normalized.

.. Let BES (X) be a fixed Borel set, then

a(B) = J Xg (X) da(x)
X

and by lemma'3.2.2 there is a sequence {fn} c C_(X) such that £ Pl Xg

and consequently N

o . 3(fn)“/" a(B) weakly .
: g
, \

By thg dominated convergence theorém (see e.g. [9] ) 1t follows that

Hy(£) A uy (xg) = ~uy(B)‘

!

for each y € X,




3
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A Thus for each y € Lz(x, )) one finds that

EW) () = U (B) - ¥(x)  ¥x € X

X

As furthermore the Borel-measure A lies in the same measure claspe as.

A we can conclude that .

-

@®WVE =1 @ ¥w  ¥xex, beiix,n

The measure H_ mow is a probability measure obtained from the Radon

measure Ux . . o

Altogether we have shown that by assuming the commutative normalized
POV-mefasure a tr be ipformationally equivalent to the canonical PV~
measure P for < (X), it is’ given as multiplication operators on L2 X, 2.
For a POV-measure of this type i;t is quite easy to deduce, what its
Naipark extension looks like.

As our main concern for ﬁthe next chapter will be to find the Naimark
extension of a commutative, normalized POV-measure on a mam:fold we
shall assume that we are gi\;en an isometric isomorphism ' between
Lz(x , A) and Lz( R® » K) where x is a Borel measuyre on R° which is

induced by a homeomorphism y:X - R".

That is, we have a one-to-one correspondence

-
-

vet?@,n » & L2, «)
given by Co ©(12)

Ve = T = piylx) ¥xe R°.

)
The commutative normalized POV-measure {a(B) | B 6.58' (X)} then gives

rise to a commutative normalized POV-measure { &(B) |B € (X))} on

-~
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L2(8", ) by

©

C(FEWG = (Ta®) I pytx)

.
= 0, (B) ¥(x)

b L]

\ @

for x € i{n, where for any x € Rn, px is.a ‘probability measure on

- & (X) .;md one has

L

+ Proposition 3.2.4. Let X be a locally compact topological space and

let a: & (X) - L(Lz()'iﬂ,r())+ be a cogmutative’ normalized POV-measure -

0 © ‘ » " P
given as . ' Co i

(a(B)Y) (x) = ox(B) v(x)

for Y € Lz(Rn, K) and all x € Rn, where px:.’fv(x) -[0,1] 1s a:
probability measure for -each x € Rni. Then there is’a PV-measure

P B (X) = L(H)" vhere

x . ,’H=j L%Lo>6Cddb - (14)
. o y. _ , S :

- amdnma ‘projection P : H = Lz( R® ,"x) sucl; that for all B € 3—(3)

{
f

»
6

a(B) = PP(B)P ,

Proof Let O( denote.the C*-algebra of all bounded A-méasurable
functions from X into C.
Define a mapping 1 : q,-»'L(Lz( R" ,K)) by

(wmwajjfm%mwmew )
R® X 7 l

.

for £ €Cland y € L2(&", ). >

T P (R T R € )

o

-
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' . v
L If f € Gf, (u{f) Y, ¥) > 0 for any V € Lz(Rn ,K), so that
. G -
U :0.+ - L(Lz( R" ,K)) , and u i8 clearly linear, hence y is completely
positive by pr;popition 2,1.3'. Llet G. ® L2( R" ;K ) denote the algebraic

tensor-product of Ot and,Lz( " , k) and define a mapping

¢, (e x.z(wR“,.c)) x (L@ L2(RY,x)) = ¢
by

(foy, g@d?:= (e*Hy,9¢)

foi‘ feuge tENe Lz( Rn‘_, K ). (Observe that the right hand side
is weliidefined by applying the polarization identity (see (3) of this
chapter) in Li( R", k) to the dei\{.ning"relation of u above and g*(x) = ‘
' .g_(;c_) ) As u is completely positive, (,) extends to a positive
sesquilinear form on N & 1.2(‘Rn , KD

Let ( . . , ’

" N {£€ OteL2(R", ) |(E,E) =0}
and get- . 2 : J
. . ('
> © K = aoLz(Rn,K)/N—.

)

K is a Hilbert-space in a natural way (see proof of theoteu; 3.6.
chapter IV in [2] )

_Define a *-representation .B of X in L(K) via | o “ ".
B(f)(z @ V) = fop @V +fEQ »8® Vv € Kf

‘ in facﬂt, for fl , fzﬁﬁ QX one has

é(flflz)‘(g o) = fifé' gey’

& S =B (s e W)
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B(E,) (B(E,) (5 ® ¥))

CBE) BUE) (g wY) <

(g ‘JP. B(f)(h @ ¢))

(B(E)*(g @ y), h ® ¢)

(goy, tha o)

(u((fh)*g)y , )

(u(h* £xg)Y , ¢) s
(f*g @ ¥, h @ ¢)

(B(f*)(g@ V), he ¢

-
]

" Furthermore, let {fn} € OC be & sequence converging to £ € (, then

(B(f ) (g @), h @) =[ j h(x) £ (x) 8(x) do_ (1) () ¥(y) dK(y)
. . n+X R

;::.,f J h(x) £(x) g(x) dp (x) d(y) ¥ (y) dxly)
. Rn X - y

=@(f)(g @), hoy)

by Lebesgue's dominated convergence theorem.

We now embed Lz( R" , K ) into K by setting

YW =1@y %y € L3R, «)

5

where 1k(x) = 1 for all x € X.

{ley|vE L?( R® , K)} is a proper subspace of K and ome has

1" g'w|2=fj j o W Jvm|?
K n ‘X Yy .

n

= f lw(y) 12 ac(y)
R , .
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’ ‘ ‘ » \'2
n . - —
: L2(g, k)

as py is a probability measure for each y € R". Hence Y, is an 1sometri§\
isomorphism between L2( R" » K) and the subspace 1l @ Lz( R® ,K) of K.,

Moreover, for each f € O, and ¢,y € Lz( R, k) one has’

(Y*B(£) y ,4) = (B(E)y v,y ¢)
) (B(H)lw ), 1L @)

L]

, =<fn“w,1c¢)
’ = Wy, 0)
go that }
Y*B(£)Yy = u(f) ¥ fEOL,

5

Define a mapping P : &&(X) = L(K) by

"P(B) = B(xg) . B E B

<

wh)ere Xp denotes the characteristic function of the get B.

Then
PCX)=1, () =0 Y
P(BNB') = B(Xy py go) = B(x) B(Xg:) = P(B)P(B')
P(B)* = B(xy)* = Blxy) = P(B)
and
P(V B.)=8(x_ )= 1lim -B(¥ | )f
=1 1 331 nve Gy
1=1 L=
Y . . ‘n 1)
: ) =lm . ] P(8) -

n-» oo =l
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f’ . - . . o

&' . .
= 10 P(B)  weakly
RN L3 U

' ¢ > °
forniﬂBk=¢§I§l#k. « o

Thus the family {P(B) | B € 200) is a PV-measure for &(X)' on K .

LS
J

[A]

Furthermore, Y*P(B)Y = u(xB), but

g

[0 L Q.

, h \ .
(u (XQ) v, ¢) = J Ix XB(!l;lOy(!) v (y) ¢(g) dx(y)
. n 3
R

3

J 0 (B ()8 (y)ax (y)
R“n |

(a(B) §, ¢) ,

therefore Y*P(B)Y = a(B).

Hence by identifying L2( R", k) with its image under y and defining

-
A

P = y* one has that

® P(B) P = a(B)

and -®:K - L3(R" k): -
Furthermore, since the characteristic functic;ns are dense in O(, one
sees that K is generated by {xB eu|y€ Lz( R" ,K) BE€ &(X)}, which
means that the extension is minimal. The functions f € Ol are square-
L integrable with ‘\respect to py for 'any y € R® by construction, so that
\ for any fixed y, the family%{f QY|fEM, y € L2( R",k )} generates

a Hilbert-gpace
L2(x »P )@ C=H
y y

The family { Hy |y € R® } of Hilbert-spaces is K-measurable in the sense

s t

© of Definition 8.9 in (2] , chapter IV:

i . " )




o
9 [

Ve ' ‘ 0
0" a
A countable,basis for K ds given by .
‘ \ o .
{Eij' fiﬁ ¢j Hfi}’ {¢J} orthonormal ‘bases in O and L?(Rn,t) respectively }
andha basig for Hy is given by {fi(°) . ¢j(y)}.
The mapping

vl
S —

Y"[ £, (x) fj(x) dpy(x)cbk(y) Opr (V)

[}

is clearly x-measurable for any i, j, k, k', as the functions ¢k ’ ‘pk' are

measurable,

Thus the set

-

= @ { n
M= eygkn_ Hy|jx E(x,y)fi(x)¢j(Y)dpy(x)< Vi,jy VWER }

together with the field {Hy |y € R®} constitutes a K-measurable field of

Q

Hilbert spaces.

For the norm in K one has

'E'z‘_’I ey} a(y)
R" ¥

so that letting y run thfough all of Rn, we hence find that

o )
K'v[ 12 x,p) @ C de(y) =: H
o " la y .

which establishes the result.

Corollary 3.2.5 ,

. Hoa L-2(I/(~x R®,p ax) iff : (15)




there is a probability measure p on X such that for:all y€X

2 . '
2,0 v P, o) | -
¢ .
Proof In this case one has

o,
H=[ L°X,p) ®C  dx(y)
Rﬂ y o

y ‘ ® 2 ‘ L
. :»_J L°(X,ps ®C dc(y) -

Rn

’

= Lz(x,o) n,LZ(R“,K) _'\_:_LZ(X x R%, Pa@K)
: ’ ‘L e
X :
The situation of corollary 3.2.5 occurs e.g. if the measures py have

support on all of X and lie within the same measpyre class. (see e.g.[10],

“

chapter 9). . r%
One might néte, that for,the construction carried out in proposition
3.2.4 the fact that'the POV-measure a is normalized plays quite an
important roletgorensuring isometry. 1If one drops this restriction, one
can't find an isometric embedding of th; Hilbert-space'Lz(Rn ,K) any
longer, unless é(X) is some multiple of the identity ;perator, this case,
however, restricts to the case of a normalized POV-measure apd is
therefore of no interest. If a does not act as an operator of multi-

plicatioi, the construction can still be carried out by definiag the

mapping

oL - LR, e,
by

(W, ¥) = J £(x) (a(dx)¥ ,0) .
X
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The mapping ok course still gives rise to a Hilbert-space K which "
however does not allow any f;qpher inhiéht ipfo its ﬂtI!EFE{F' except
that ;nce“again’the functions f € OL are square-integrable with respect
to\(a(')w ,¥) for any ¥ . (For this more general situation see [11] ,
. ;here fhé Naimark extension is carried out for a system of covariance.

The POV-measure is not required to be commutative any longer, however

the existence of a group action onm the locally compaét space is imposed).

In the given framework the "shape" of the POV-measure is determined

by physical reasons (see definition 3.2.2 and chapter 3.1). In the next

e

. chapter we will specify the locally compact space somewhat more, by

considering a differential manifold M and defive the Naimark extensipn in

\

this particular case.
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CHAPTER 4 THE NAIMARK EXTENSION 'FOR A COMMUTATIVE, NORMALIZED POV-MEASURE
BASED ON A DIFFERENTIAL MANIFOLD

We will now assume that the physical system under cgonsideration has
a ‘&ifférential—manifold M as its configuration space. We will adopt the
notation introduced in chapter 2.2, and assume that the underlying

Hilbert-space of the system is given as 1:2(M , V) where v is a smooth

Borel-measure on &-(M).
The qutative, normalized POV-measure for M is hence a mapping
2 + ‘ '
a: &M - LM, V) (1)

with the properties defined in definition 3.2.1.
Furthermore, we suppose that a is informationally equivalent to the

v

canonical PV-measure P: & (M) = L(L2 M, V) )+ given-as
(P(E)Y) (m) = xg(m) ¥(m) (2)

for all EE &H(M), mEM, ¢ € LZ(M,\)).
By lemma 3.2.1 it follows that the von Neumann-algebra A(a) generated by
{a(E) | E € 5’(}1)} is maximal abelian and therefore we conclude with

proposition 3.2.3 that for all mE M, E€ &5(M) and ¥ € LZ(M, V)
(@(E)0) (m) = u_(E) ¥(m) . (3)

where Mo ;& (M) * (0,1} is a probability measure for each m € M.

As A(a) is maximal abelian, we in particular(know that for all Borel-sets

E, FE &M

[a(E) ,P(F)]=0 . %)

" For a fixed Borel-set F € > (M) one sees that

“*
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.- PENLE0, v 1= O (v € 1208, )]

: W J | |2 avm) < =) | ‘
o F N

2
L(FtvlF) . i

where \»lF = v| & m) 0 F=v|&FE.

Because of (4)Lthis means that {a(g) IE € &) gives rise to a
commutative normalized POV-measur; on each subspace of LZ(M, V).

In chapter 2.2 we have constructed a disjoint covef&ng‘of M by Borel-sets

U, such that

K
2 =
L@, v) = @ L5 ,v) ‘ (5)
- k
k=1
and - . «
L@, v ) v LR A“)' "%k E N. ' (6)
k'K = » Ky
where k, : R°> RY , supp Kk, € Y. (0.), k. € C (v, (D)) and Y, : U, = R
K’ 0’ A L A" kK Yk ,

s 3 =1 _ n .
g0 that v, o _(ykl U= KA om Y (U).

-
@

i

As the direct sum in (5) is an orthogonal direct sum, we furthermore have

- - A A

) -V p(@,) = 1d “
=1 K L2, v) ' 7

(which, by the way, of course follows as well from the definition of a

-3 Y
PV-measure)
and for’all EE€ 3F(M)
a:c . . a
. a(E) = |} P(U,) akE) P(U,) . 4 (8)
k=1 '

Let -




e

-~y

-

for all k€ N.

If -

« >

with

36

ak(E) = P(Uk)

-~

&,

e
r
k 2

é

¥

v

a(E)

2

5
\

B = i 1Y

P (Uk)

2.~ n,
L, v) > LR, X))

(T 90 s 4E T ) :

¥

-

™~

”

(9)

- : 2~ 2 ..n
denotes the .isomet:ti‘c :Lsomorphism~ betwetan L.(Uk , vk) and L (R;!\}k)\ ) J

tben the follo&;ing diagram is commutative:

Y o

L2 %®
Fk . :
o
? . 8. (E)
& L2(x", <A™ kT

»

4

-

a commutative, normalized POV-measure a

-

. defined as

°

. which satisfies

o

L

4

a2 ‘-— . .
ak(E) = ,l"k‘ ak(E) l"k

™~

(& () §) () = -

4

g (%)

-

) *
2 -
L (Uk,\)k) N

¢
Tk -

2, n n
L°(R ,K‘k)\)

\

‘
on L(&", k") for $0)

-1

:

(E) ¥(x)

(10)

Hence for each k € N, the commutative, normalized POV-measure ak induces

#

. (11)

(12)

for all z‘l; € LZ(Rn . nk)\n), all x € gk(Uk) and £ € %(M), and for any x,

x

»

3
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: & (M) > R is a probability measure.

Herewith, we. are in the position to apply proposition 3.2.4: There

v +
is'a PV-measure P : & (M) - L(Hk) where

® °o
H _J LZ(M,u ) ® €k, (x)dP(x) g
k=] a L) k

R B

nd a projecti . v
a proj on ~ .

n
)

Pk:HL"L’Z,:'(Rn,K
£

\

(13)

such that Hk is the minimal extension space in the sense of Naimark and

. _ n,
ak(E) = Pk P(E) Pk

— . »r

for all E € &) . ' - -

For ak(E) one finds by using (11) -

, -1 n
Ak(E) i=! I‘k Pk P(E)‘ Pk T’k

- N

Note that, by construction, '13'(E) acts on Hk as m{xltip{ication by'.xE.

\

"following conclusion:

=

Theorem 4.1 Let {a(E) | E € & (M)} be a commutative, normalized

POV-measure for & (M) which is given as

(a(E)W) (@) = w_ (E)Y(m)

where um is a probability measure for each m € M.

"
Then there is a PV-measure P : &(M) = L(H) where
. )
4

(14)

. Having carried out this construction for any k, we arrive at the '
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‘ / " H= 0 £15)

0 - :

with‘Hk as in (}3), and a family of projections_Pk :Hk - Lz(Rn, Kkkn)
such that ' “ '

@ =3 rtl e ¥ (16)
8 = ’ \
C kel k k k.k

. ) -
the extension being minimal in the sense of Naimark in each constituent

.of the direct sum (15).

]

Written out in full, this direct sum reads:

\ > @, “ o
H= o [ o, ) ecxGafm. (1s")
k=1 N

v

& g (%) .
As in"Corollary 3.2.5, this representaeion can be simplified further to

°
N )

[- ]
H= & L%MxR", b @ AT , Coas™
k=1 *

provided that for each fixed k € N the condition

L)

Lz(n, u ) g_Lz(M, ) .

)

By
is satisfied for each x € gk(ﬁk).

Under certain circumstances, the spaces LZ(M x Rn, M ® Kkkx') “can
be given an interpretation which is interesting from the physicai point
of view:

Suppqgse that the cotangent-bundle T*M is globally trivialisable, (for

" the def. see [3] ) i.e.; T*M v M x R" and one has a measure Ak on

'

\

3 . -
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Ys (T*M) which 1is such that it can be expressed as a product measure:
. Ak(E x G) = P (E) * Ak(G)

where Py 18 a probability measure on & (M) and A,.a o-finite measure

' n ! -
on (R ), in case, pk is equivalent to My and )‘k is equivalent to

n
Kk)\ . wel find

ox e,y ® f AT & LA, ) (17)

which means, in physical terms, that we congsider functions depending on

position and momentum.

4

Supposing that (17) holds for all k one finds

!
[~ ]

Ha o Lo, n) (18)
' k=1 .

Analysing (15") a little bit more, one has

HY © .2 2, . n n
blL(M'uk)aL(R » AT
\

If the uk‘s bave support on all of M, and if they all lie in the same

measure class, we are led to

® /’
Koo L2, @ L2(8", k™)

=1 k
> 2
voe xR, pexd). (as™)
=1
If furthermore, the Kk's have disjoint supports Vk in R® , this

expression can be simplified to

-




Hf_\-_Lz(Man,ukan) .

-]

‘where k- 1s an abbreviation for ) Kk
. 1

With the same assumptions as used for derivingt(lB) we can then inter

k .

(19)

-

pret H as a Hilbert-space of  square iptegfable functions on the total

- 4

3

space T*M of the cotangent-bundle for M:

L

A(E x G) = (E) *» <(G)

A oo

H o~ L, ) Cs

with

and s

W, Rt

- . ~ ' =

‘It is well possible, that one asks for too much by assuming that
T*M be\homeomofbhic to M x Rn, this.requirement has only been adopted
for the sake of clarity. .
Apparently, as T*M in any case is locally trivial, one can arrive at
the same result by passing from i*M to a disjoint union’;f Borel-sets

Ui of T*M which can be identified with some V_ x R" for each i, and

i

(20)

then im%ose requirements on the measure while passing from LZ(Ui ,AIUi)

to L?(V1 x R" :Ki) where Ki is the image of the measure A[Ui .
As a matter of fact, for making an identification as done in (20) it
suffices that the spaces LZ(H x Rn, uexi®) and LZ(T*M, A) be
isometrically isomorphic.

As w& have already seen 1# chapter 3.2, there is ;lwaysathe )

?ossibiliiy of constructing a PGV-measure from a PV-measufe simply by

projecting onto a proper subspace of the Hilbert-space on which the

L |
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given PV-measure lives.

.8
We wish of course to recover a POV-measure on L2(M V)NV @ L2(Rn*|< An) .

; k=1
Given H as in (15') and keeping k fixed for the time being let P, denote

the projection of

3 0 2 -
I L (M,u_1

Y& C .ék(x)dx“(x) |
RD & '

(x)

13

onto Lz( R" . dekn) wvhere K, once again is supported in gk(Uk) given as

k

RIXABICE I du @,

: L (x)
= w0 ‘
k 14
as | M = 1. . : .
g1 (x)
k
Consequently ,

! )

(P P(E) P)(E ® ¥ ) (x) = (B = u ) (E) ¥(x)
' B (x %

ES

so that, locally, we get back to Lz(ﬁk . \)k) by using the isometric

isomorphism I‘k as defir;ed in (9) and setting

-1.~

a, (B) = T, a, (E) T

for arbitrary E € & (M).

p—

- ~ : .
As the sets Uk by éstructi,on are disjoint we can then define.

, .2 _'1
> a(E) := ) TI. & (E)T
oy kT

.

which gives us a commutative normalized POV—mgasure‘on LZ(M , V). «
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1

This construction will always work if L2(M » V) or equivalently

«©

] LZ( R" , Kk)\n) can be isometrically embedded into the given Hilbert-
k=1 . ‘ .
space H . However, in general, the resulting POV-measure might fail to

be commutative.

“ In the special case H= LZ(T!‘M Y L2(M x K , U@ a) one finds:

-

Pfoposition 4.2 Let P: @M - L(LZ(M xR%, 1@ OL))+ be a PV-measure

for M. Suppose that

UM ~[0,1]

is a probaility measure on &(M) and.

-

a : & (R") ~r

is a o-finite measure on R" which is. absolutely continuous with redpect
to Lebesgue - measure A" on R":a = kA" , Wwhere o is a version of the

Radon - Nikodym derivative of ¥ with respect to A Let {(v

be a cover of M which is such that V
N b
If « admits a representation Z K
k=1
C] +
Kk € C (U ,R ) for all k, then:

A o
There is a projection P : L (M x R",ua@a) - @ LZ(R®, ka’?) such that
{PP(E)P |E €EB(M)} is a commutative,normalized POV-measure for (M)

(3
o 8o Ul KEN]

N #: N = *
K Vi 0 and Uk U:l 0 for 1 k.

'C
wttere supp Kk Uk and

k

[+ oo
on @ LE(R®, k,A"). Furthermore, if T: 8 LZ(R™, v A"y~ LZ(M,v)
k=1 k k=1 k

o0
= . n (-] ,
where v = kzl (Kk ) - is #smooth Borel-measure on M, is ‘tt‘le

isometric isomorphism defined by

2, n n, _
r IL‘(R » KA )= T
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then
{repEP rml [ EE€ & (M} 1is a commutative, normalized POV-measure

for #&(M) on LZ(M , V).

Proof By the assumptions imposed on the measure ! one has that

(-] Al -
Lz(T*i{,A) v LZ(T*M,U ® rkx“)
=1 .
« ;) 2 v .
ol j LM, w) @ C K, (x) "
el
R

Let P :LZ(T*M. U ® nckl'?) - LZ(Ru . kan) be defined by

k

’

Pk(f ™ wk> (m, x) = lx(m) ® wku)‘

As the sum above is an orthogonal direct sum we thus get the required

result by setting )

[~
P = 20 Pk
=1
Defining . .
[- -}
r= Jor
_ =1 K
2 L2 v
where I' : L (Rn, Kk A") - L (V, , vV, ), the composition I ° P= 2 T p
k K k> Kk’ it &, koK
yields amapT°P: ® LZ(T*M, e Kk}\n) - 8 Lz(vk9 Vk)
k=1 a k=1 ’
and

J
a(E) = (T« P) P(E)P°T "L

for all E € & M).




- &b -

.\ fw,
Locally, a(E) thus defined acts as multiplication by u | (E) at m.
. : L g (m) e
One might note right here, t}_\at this kind of constructiox:“ depends highly
on the character of the ynderlying manifold M. In the given proof, one
actually has to assume that LZ(M s V) v I.z( R" , Kkn) vhich means that
what one doesqis‘donsidering Rn, that is M 15 an'n—-dimensional sub-
manifold of‘sdme m-dimensional real vector-space. Hence proposition
4.2.1._19 quite restrictive from a mgthematical point of view.
In as fai as ;ﬁe physical situation is concerned, this is rather common,
as nqrmaliy the systems under consideration (non—relativis:icf) have
.some sub-manifold of an m-dimensional real vector-space as their

configuration space.

~
-

4
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CHAPTER 5 POSTFACE

!

As has been shﬁwn in the previous.Z'chapters, the analysis of a
commutative normalized POV—measure/Bn § manifold M is quite satisfactory,
if one pairs the mathematical structure given vith the gdditional
condition of informational equivalence with the canonical PV-measure -on
%(M). This is reasonable from the point of view of standard quantum )
mechanics, as one thus ensures that the poéition observables obtained from
such a POY—measure are the same as the ones obtained in the usual approach.
Then one can, at least for the simplest case, nam‘ely H~ Lz(T*M, A)
summarize the result as follow. '"Given a commutative normalized POV-
measure a for & (M) on L?(M » V), the minimally extended Hilbert-space is
L2 (T*M, \) and there is a PV-measure on this space such that wﬁen

restricted to L2(M » V) which is isometrically embedded into LZ(T*M y A) 1t

yields again the POV-measure a. Conversely, 1if LZ(M, V) can be "

isometrically embedded into LZ(T*M , \) and one is given a PV-measure on

LZ(T*M , A) the family {PP(E)P | E € $(M) } 1s a commutative normalized
POV-peasure for & (M) on L2(M, v), where .

el n) > L2,y ¢

L 3

denotes the projection onto L2 M,Vv)."

B The construction carried out depends however strongly on the
maximal abelianness of the von Neumann-algebra A(a). This has aliowed
us to show that each a(E) is given as’ a multiplication operator vhere
one multiplies the function ¢ € LZ(M ,» V) by a probability measure um at

each point of M. In case one has instead of only a commutative POV-

measure a commutative system of covariance, which furthermore is
o
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©
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transitive (i.e. M= C;/H, vhere G is a topological group and H a cloged
subgroup of G.), then the requirement of A(a) to be maximal abealian is
. \.superfluous. Then howeve:: one will have to consider induced ;yst:ems
of covariance on Lz( rR" , Kkkn) instead, which would not make life any
simpler. For a treatment of this situation see { 8] .

The fact that we were dealing with a.differential manifold should
not be disregarded either. 'Like this we were permitted to locally
replace our Hilberb—;pace by an ordinary L2-space over R" with repect
to some Borel-measure. For doing so the "differential" in front of the
manifold was important, as it secured the existence of smooth Borel-
measures on M,

IAs has already been pointed out, in the concluding remarks of
chapter 3.2, neither the commutativity of the POV-measure nor the
representation as multiplication operators is essential, in the gsense of ‘
being able to carry out the extension.. Unfortunately, in either of these
cases one is stuck with the tensor-product shown in the proof of
proposition 3.2.5, which leads to a loss of information. Similarly: if
one can't identify the ;iven Hilbert-space with some L2( R ,K), K a

Borel measure on Rn, or a direct sum of spaces of this type, we are led

to

- ()
2
H~ Ol L°(X, 0)/N
which for the ‘same reasons as above is unsatifactory. Dealing with a
wanifold rather than an arbitrary locally compact space, enables us to
make this identificaiton without once again restricting our space.
The result in quotation marks mentioned above in any case will in

general not occur. Furthermore, the occurrence of the total space of

the cotangent bundle seems to fall upon us out of free space. It can




’

t -
not care too much about the topological structure of T®M. From this

point of view, the quoted 'result is not too surprising.t

' only happen, as we are only concerned with the Borel;structure and do
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