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YL~ ABSTRACT

- OPTIMAL VIBRATION ABSORBER

Tai—Cheong Pok

The investigation presented bere‘concerns with
optimization of Vibrating systems using Simple vibration )
absorbers. The crite(iiufor design of an optimum absorber
depend entirely on the requirements placed.on the absorber
function. Generally. an optimum absorber has to provide a

L] -

reduction of amplitude of vibration of the main mass over

a required fregquency range. Sometimep, an 0ptimum abBOrber.
" guch as those found in the milling and- cutting machinest
is also used for increasing the chatter-free machining
capability Such optimum absorbers are discussed in this
report Also the casgse of a Vibration absorber With both
viscous and hysteretic damping attached to both damped and
undamped main mass system is also investigated The'

‘.
technique of optimization of a mechanicatasystem with more
e

than one vibration-absorber which may b ttached at a point

.remote from the’point of action of the disturbing force is

(

alsd~investigated. ' ' J
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CHAPTER 1
INTRODUCTION

All engineering materials, mechanical systems
and structures are to some extent elastic and therefore
prone to vibrations, Unless'specifical}y needed, vibration
of an engineering structure is often detrimental tc its
function and life. Under certain _conditions, vibration '
can induce very hlgh stress in materials. cause fatlgue

fallure and temperature varlatlons. Asgemblies comprlslng

moving parts are subject to wear because of one part

_ impacting on another and due to the break-down of the

0il film, both as a result of vibration. Chip-forming
machines such as milling mschines may not be directly
affected by wear in the change wheels, but;the finish of
the machined part may be severly affected at certain oper-
ating speeds. The moving parts of all machlnes 1nherently
produce vibration, and for this reason the mechanical
designer must expect vibration to exigt in the product .
he designs. Vibration may be either free or forced.

A machlne element is said~"to have free v1brat10n if

. the perlodlc motion contlnues after the cause or the

orlglnal disturbance is removed, but if the v1bratory
motion pers1sts because of the existence of a disturbing
force, then it is called forced vibration. Due to the

damping, any free vibration of a mechanical system
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will eventually cease becauge of loss of energy. A heavily

damped system ig one in which-the vibration decays rapidly.
The merit in design 1ies in anticipating a vibration problem
and in minimizing sts undesirable effects during the life

of the machlne. Even after precautlons have been taken,
unexpected ‘vibratory motlons are often found after a mach-
ine has been designed and constructed. Amplitude of such
vibratior can be reduceo only by the addition of an absorber.
The dynamic vibration absorber has been found to be a very
useful component for limiting vibrations with excessive,
amplitude. An absorber is inexpensive, effective; and has
negligble effect on the other functions of the structure.

A vibration absorber, normally consists of a mass

‘coupled to the vibrating structure by spring and damping

elements. The‘addition of damping elementg to the dynamic
absorber makes %he absorber to be more effective over a
large range of forcing frequencies. The attachment may be
remote fro the actlon of disturbing force There may Dbe

more than one absorber'in’a complex englneering structure.

-

‘An optimum absorber is said to be tuned if the three

parameters representlng mass, SPring stlffness and damping

of the absorber have been properly chosen. The condltlon

for optimization depends entirely on the 1mposed requirements.

Generally. an optimumpabsorber ig one whlch reduces the main

msystem responses to the gmallest possible value,for the

entlre operatlng frequency range

LY



In this report, the optimization of a shock
absorber with a siﬁgle mass system in forced vibration urider
steady state con&itionkiXﬂ(BX#)* is discussed. A graphical
metﬁod for use on'idealizéd-system with reéfriéted damping
developed by Stone and simock (5) for optimal vibration
" absorber is dlscussed in the following chapter. In Chapter 3,
a method déveloped by Stone arid Andrew (6), which can predict
the effect of the_relative displaéement experienced b& the
* absorber when added‘at a point remote from the existing
. force - for complex structure is also discussed. The exferi-
"ments performed by Stone and Andrew .(6) prove that the
predicted results by the analytlcal method developed agree
with the measured results. The major assumptions for the
ideal system'considereﬁ hefe are that the mass is guided to
move only ‘in the vertical dlrectlon. %hé spring and the
dashpot are massless, the mass isg absolutely rigid and 11

the damping is concentrated in the dashpot

-

* Number in paranthesis refer to referehces at the end of

~

report
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: .+ CHAPTER 2

OPTIMAL VIBRATION ABSORBER
“ 2.1 SYSTEM WITH UNRESTRICTED DAMPING

When an absorber with a viscous damper is added

- .

to a simple undamped main mass system under harmonic
excitation, as representéd by the symbolic diagram shown

in Fig.1, the equation of motion for the main mass can.be

obtdéned as

Mx13+ Kx1 + X( x, - % Y + ¢f Xy - iz ) = Po(t)....(l)

where a dot reﬁresehteds differentiation with respect to

time. The equation of motion for the absorber mass is then

— -,

mx

5 + k( Xp. = Xy ) +.c( 5:2 - il .) jo R €9

For steady state response, the displacements x% Ehg X,
e(iwt7q_

~ )
can be represented in.general as x1=X1 .
x2=Xze(iwt'Q?) , and Po(t)=Poeimt . The impressed force

and the resulting displacement are having vectors of

magnitude P, and X , and the latter lagging thés former by

5\

the angle @ .
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' By letting i1=x1e‘i°1. 22=X2e_ 2, and rewriting equation (1)

T .
and (2) in complex form

P/\/A\&y——/r/ 2— = = = 3 X < =
? - =MW X, + le + k( X - %, ) + iwel( X, - %, ) = P

2

no
o

-( X+ dwe )R, 4+ (-me” + k + iwe )X

2

Solving these two simultaneous eguations, we get
- / . .

-
- -

T

Po LOK - md® ) + swe]

° El = .
B M + K )( ‘mw? 4+ X )'-mbzk]+ iwc(—sz-rx-mmz )
X1 ( k ~ mw? )2 + u@c2
and |- = - : ,
Po [(-M92+K)(-mw2+k)-mw2ka ’
! "
+ mzc?( -M02,+ K - m? )2

Transmissibility is the ratio of transmitted force to the

main mass and the impressed force. That is,

Transmissibility = =



x1 K[( k - mmz- )} o+ iu)c]
or = — :
Xst ( —Mw2+K ) ( —mm2+k ) -j:wzk + iwe( -Mu)2+K-mm

2

N

Transforming the above equation into a non-dimensional form

by defining

. {(Ja o _ m
=.. n H g = a H /U-— "
X, (2 —E—-"q)2 + (g% - %)%
1, co
X - c
st (2— 2)2(a® - 1 +pg®)? +[u2? - (& - 1(® - 27

i
e (3)

X

A graph of the amplitude ratio ( ——1— )

st
function of the frequency ratio is shown in Fig.2, and

as a

it can be seen that the peak' amplitudes occur at infinity
when ¢=0 and oo . Somewhere in between there must be an
optimum damping copt which brings the resonant peak of the
amplitude down to its lowest possible value, and that is
the object of adding an absorber ta the system.

The work done by the damping force is given by

the displacement through which it operates. In the present
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VARIOUS VALUES OF ABSORBER DAMPING

FIG.2



-

case, the displécementlithhé relative :motion between the
two masses. The reason for the peaks at 1nf1n1ty when c¢=0-
and c=o00, is that there is zero ‘energy dlssipatlon in the
system, When c=0, thefdamplng force is zero, no work is
done. When c=% , the two masses are locked to each other
so that their relative dlsplacement is zero resultlng in
a single degree of freedom. only if the damping force does
considerable work, much energy,woﬁld be disspated, |
consequently, the amplitude wiil remain small at resonance.
It may be observed that all curves pass through
the two points P and Q in Fig.2, and are independent of
the damping present in the-system. Fof optimum damping,
the curve shduld have a horizontal tangent through the
highest of the two fixed points P or Q. The best obtainable

"resonarnce amplltude will then be the ordlnate of that

point, The two fixed points can be shifted up and down the

&a
n

curve for ¢=0, by changing the . relative “tunfﬁg“ f=

of the damper with respect to the main sfstem. By

changiné £, one point will go up aﬁ? the other do;n. Clearly,

the most favourable case will be ' o |

(i) through a préper choicé of f the two points P and.Q are -
adjusted to remain at equal heights, and |

(ii) Through a proper choice of c/cc the curve is adjusted
to pass with a horizontal tangent through them.

The resonance curve for.the main mass fitted with: the most

favourably tuned vibration-absorber system is shown in Fig.3.

.

—



FIG. 3 SCHEMATIC DIAGRAM OF RESONANCE
CURVE FOR THE MAIN MASS FITTED WITH THE

MOST FAVQURABLY TUNED VIBRATION- ABSORBER
SYSTEM
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Now conslder the.expression under radical sign
in the dendﬁinétér of equatioh (3). This can be rewritten

in the form

. : c ' |
(92-1+};.q2)2[(2———q_ )2+‘A].
.- . . c

: C
where
(p2? - (2 -1 -2 N°
2 )2 S

(q®-1+pg

, .
Now, if - A were equal to q2 _ £2 )2, and substituting

this into equation (3), gives;

X N
8

2 2
X 4 (q° ~1+pg” )

and becomes indepéndent of %/cc . Equating the expression
‘ 2 42 | |

for A above equal to ( q2 - , “in order to make the

amplitude indepehdent of damping,

.[Pf2q2 - (" -1 )(? - 2 9]° ~
. —7

(PP )2
242

) . 2 » Fi
( q° - 1.+ Mg

or ' _ )
(2+ 4 Yo - [2(,1 4 )~f2 ¥ 2j @+ 2£% =0 ... (8)

-
-

i
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¢ Rearranging, this becomes .

T (1 +a)f% a2 2£2
at - a )qZ + — — =0 ....{k.a)

2 + 0 2+ M

Since the negative value of q2 is not acceptable, thefe
exists two values of q for which the transmissibility

ig independent of c/cc

If we choose c=00 and substitute this value into

equation (3), it.becomes the case of cofo . By emﬁloying;

L'Hopital's Rule, setting limit ¢-ce., and differentiating °

the numerator and denominator of eﬁuation-(B) with respéct-____

to ¢ , the following espression can be obtained.
’ /

X 1

Let qi,_and qg be-the two solutions of equation (&),

we can wrilte

1 1 | - 1
X . 1 -a(1+p) i 1 - 501 +pm)
ot qy M 2
12‘
2 2
Hence, qy *taq; = ceeees(5)
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‘Writing equation (4) in the form.
( q2 - qf )( q2 - qg ) = 0 , and expanding

qu - q? + qg )q2 + qiqg =.0 ., Comparing coefficients with

equation (k.a),

2('1,+f2+;lf2')
2 + M

2
q§+q2=

Combining this with equation (5) results in the

relationship

1

£ = ‘ ‘ o
1,’_» re s danrser e (6)

This is the optimal or most favourable tuning
for each absorber size. Since f= wa/n or f= ‘%E ,
the correct tuning of the system can be obtained by
ﬁdjusting the spring stiffness éf the absorber. When the
optimum tuning is determined, the optimum damping can be’
found. For optimum damping, the curve passes horizontally -
through either P or Q. In other words, the slope of the
curve at P or Q 1is equal to zero, i.e.

d X

(—f— ) =0
dq Xat '

Substituting equation (6) into equatioh‘(j),ahd

differentiating with respect to q , thus finding the
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glope, and equate that slope to zero for the polnt P, the

value of c/cc can be calculated._

° ul3 Ju/ipm +2) ]
e 8( 1+ 4)3

On the other hand, if the slope is set equal

to zero at point @, we get

c 2 ui3 4R/ +2)]
‘e | 8( 1 +p)°

The averdge value between the two gives the optimum damping
_for the most favourable tuning to achieve the optimum

amplltude of vibration for the main system.

2.1.1 SYSTEM UNDER RANDOM EXCITATION -

For system under random excitation, the optimal
absorbers are designed so as to minimize the mean square
fesponse of the main mass. The governing equations of motion
for the conventional damped dynamic absorber system shown
in Fig.4 is as follows: |

1

+°Kx1 + cf il - iz ) = F(%)

Mxl + Cxl
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mk, + e X~ X, ) + k(.xy - x, ) = 0
¢
By taking thé Lapiace transformation of the above
equations anﬁ solving simultaneously will yield the transfer
function G(s) relating the‘;idqpain response x(s) of the

Id
main mass to the applied*force F(s).

The transfer function G(8) = ;‘:
1fr et :n f= Wa ’ 5 = S '
k 2mk n - 2MN
then )
G(s) -~ 2+ 28Qfs + £2Q°
S MU St 2006 150+ p0) S0 (£ 4 4§6£ﬂ2'+m+fh7‘)sz}

+( 26£°Q% + 2410°)S + £20°
.++. [see ref.(7)(8)]

"For a stationary input, the power spectral density
of the response is related to that of the forcing function
by |

5_(©) = lG('S)\szjw'Sf(-“’) .

If the forcing function has a zero mean then 50
will the response, and thus the mean square response may

be obtained by integrating the power spectral density

function
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T

ox = 2w | 66w ® sp) o

-o0

If the power spectral density of the forcing

function, F(t), is idealized bj a white noise, that is

P

S, (J= | )
Gi = : j G(jw)G(w) djw
2N Jojeo

= S0 ( Blgj * B2§2 * ng T Py )...(7) see ref.(?)
ML _ A133 + Az‘;z + A5 + Ay
where |
| A1=l;nf26( 1 +4) , ‘ 131:1;11‘2( 1+ 4 )
a=gp + 4162 + 462 ( 1 4 p) © B e (14 )

CAgmb 6et( 1 +p)2 + 487£° - 2% B3=1-f2(2¥,¢)+f'*(1+ﬂ)2
3
Au=f36 2 | © U ustr?
. =3
By, =f b p

_ To minimize the mean square motion of the main
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mass, equation (7) is differentiated with respect to £,
and equated to zero. The nunerator of the resulting fraction
must vanish and thereby resulting in the following polynomial

to be solved for the optimal valueg of 4
I Y ' _ | -
£+ Cig + Qég + CBs'+ Cy = 0 ...see ref.(7)
where

(5/fl*)[1+f(1+p-) v 26282 282 + £ (2 + 1))

c, =

c, = £ 82 4 {2p( 2op ) + 4E( 158 ) - p At + 200107
Cy = ~fpd/2( 144 ) r

¢, = ~SCE AN 1ep)

The optimal absorber'gamping ratio as a function
of the main mass fatio,'for several values of the tuning
ratio f, and zero damping on the main mass are shown-in
Fig.5. The minimal mean. square motions obtained for the
optimal absorbers are given in Fig.6 for the same case
examined in Fig.5. As can be gceen fyrom graphs in Fig.5 and 6,
the higher the ratio of absorber freduency to natural
frequency of main mass system, higher the optlmum absorber

and higher the variance of motion of M. t

>

.gopt !
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2.2 SYSTEM WITH RESTRICTED DAMPING

) Sometimes,. the required optimﬁm damping cannot
be achieved in practice, and the effect of damping in the
main system cannot be neglected. Usually, damping in the
absorber system is regtricted and we can only vary the spfang
stiffness to obtain the optimum absorﬁer. _

Damping forces in a system can either be propor-
tional to the instantaneous velocity such as those existing
between a shaft and beari;g with oil in between, or that
the damping forces are harmonic and in quadrature with the
displacement, usually found in springs due to jmperfection,
with the magnitude being proportional to the displacement.

The first 1is known as the viscous damping while the second

is known as the hysteretic damping.

2.2°1 UNDAMPED MAIN MASS SYSTEM : ABSORBER WITH

VISCOUS DAMPING

An elastic system with an undamped main mass and
an absorber is shown ianig.7. It"is agsumed that 'all the
elements of the system are lingar and the response to &
harmonic force Feipt will be a harmonic d%splacement Xeiw¢.
This system can be considered as cqnsisting“Of two compon-

ents, the main system and the absorber. If Fl/X1 and

Fz/x2 are the dynamic stiffness of the main system and

c .
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absorber'respéctively when they are uncoupled, then the
dynamic stiffness, F/X of the coupled system at the point ~
. of coupling is the vectorial sum FI/Xl and F2/X2.

X X X crenesee(8)

The detailed pfocedure for calculating the dynamic
stiffness of the main system and the absorber and the coupled
system are outlined in Appendix.

Equation (8) holds for the.general case when the
stiffnessés K*(w) and k*(b) are themselves complex and’
frequency dependent. In this system k* has been reduced
to a simple spring of stiffness k in parallel with a viscous
damper having a damping coefficignt.c. Then K:(w) =IK
and k*(w) =k + icw .,

For the uncoupled system, the response are

F .
1 -‘—'K—Mb‘z l!.lll!lllll..l..'(g)
Xl ‘
and
F, ( ¥ + icw ) nw?
— 2 -naouoo--.o(lo)
X, s - ((k + ic ). ;

Thegse equations are derived in the Appendix.
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Combining equations (9) and (10)

P (x + icw )( mw® ) 2 ,
= 2 +K-MD o-.loou(li)
X mw~ - ( k + icw ) - #
L‘ v/ J— N PR

ABSORBER MAIN SYSTEM

. c W - Wa

Defining = —, f= , £ =
g 2 [mk ‘wa Iy

and dividing equation (11) throughout by k, equation (11)

takeg the non-dimensional form
F o ( 1+ 28i¢ )f?
+ n

1
kxzﬂfzﬂf* ge - (1 + 2i8¢ )

ceea.(12)

This eQuation describes the’coupled system
dynamic stiffness as a function of the exciting frequency,
"and it can be represented by a vector locus plotted as a
function of #. In the particular case, when §=0.2 and $=0.1,

the locus of

-7 (1 + 2i$g ) g°

— o+ .
P #f - (1 o+ 2itg)

-«

Aﬁfﬁd
&



25

is shown in Fig.8, The{éemaining term l/fuf2 is independent
of £ and is always a real qﬁéhtity. Thus the addition of
this term to the curve moves the locus bodily towards the
positive real direction by an amount depending‘on.the values
of/u and f. The value‘of/L is a known quantity and f isg
g01ng to be optimized. In achlev1ng optimum absorber tuning,
the magnitude of | F/kX1 must be made as large as possible,
since the smallest value of it corresponds to a resonance

of the non-dimensional system response. When a certain value

F on the real axis is chosen so that the origin is moved
a distance OF, two minimum values of IF/kxl can be found

to be given by FG and FH as in Fig.8. When F is moved to

¥ increase FG, FH will be decreased. It thus follows that in

the optimum case, FG and FH must be equal and therefore that

'

the point F is at A, the centre of the inscribed circle of
curve with centre on the real axis. Optlmlzatlon is

therefore effected by puttlng A0=1/p£% , ang the value

of £ thus obtained is the optimum value, fopt' Since the
radius r represents a particular value | F/kx1 and
A0=1/h12=K/k the corresponding value of IF/x] is given
by kr=( r/A0 )K. The amplitude and. phase of the dynamic
stiffness vectors are measured frﬁm the centre of the

optimization circle, and the amplitude mulfiplied by the

dimensional factor { A0 )K. Since f= t?a , ®é=!k7m ,

M =m/M where i, M, and 1 are defined quantities, the

)
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fopt can be obtained by adjusting the spring stiffness

the abSorber.

i
UNDAMPED MAIN SYSTEM : ABSORBER WITH HYSTERETIC

DAMPING

An ideal spring does not exist in reality. A
retic damping is often agsociated with a spring.
retic damping .involves a 10gs of vibration energy per

whiqﬁ ig proportional %o the amplitude of vibration

but independent of frequency . According to Bishop and

Johns

on (1), hysteretically.damped-spring can be treated

»*
as having a compleX gtiffness k =k+ih. Then for the uncoupled

absorber system\( see Appendix for details )

and

¥, (k+ih)mw2

5 T TP - (k4 in) eenesea(13)

or the complete system, from equation (g8), (9) and (13)

the dynamic stiffness

F 1 -ﬂfz (1 + i )ﬂz . (14)
= — " + P
KX Y g2 - (1 + i)
where &= —%— , known as the absorber hysteretic damping
ratio

. The optimization procedure and the conditions that

¢
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this must satisfy to obtain an optimal response F/X, are

"the same as that for a viscously damped absorber discussed

in section 2.2.1. For a particular case, when M=0.2, (=0.2,
the vector locus plot for equation (14) as a function of #

is shown in Fig.9: -

2.2.3 MAIN SYSTEM WITH HYSTERETIC DAMPING : ABSORBER
WITH VISCOUS DAMPING ‘

e —

»
Phe stiffness K (w) is now reduced to a simple
- \
gpring in parallel Q?th a hysteretic damper such that
* -
K (0) = K + 1H, Theq,for the uncoupled main system, the

dynamic stiffness bgcomes

P
1 _ g+ iH - Mo®

1

X

( see Appendix for details ). Considering the main system,
coupled to absorber with viscous damping, the coupled

dynamic stiffness in the dimensionless form can be given as

F 1+ ip @ (1+2i48) B
= - +
kX M £2 A @2 - (142588 ) ....(15)
wheré = —%—
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The second and the third terms in this expression for F/kX
are the same as that for the case considered earlier with
the main system undampea and with viscous damping in the
absorber. The first term of equation (15) contains not only
real quantiéy but it also contains a quadrature component.
If the origin is moved a distance 1/ﬁf2 in the positive real
direction, it has to be moved a distance oVPf? in the positive
imaginary direction too. Hence the transformed origin must
1lie on a line which cuts the prigin and making an angle oK
with the horizontal axis. This system can be optimized by
uéing +he same method as the one used in section 2.2.2. When
the centre of the optimized circle has been found on the
transformed axis asr shown in Fig.10, the real component of
OA is OD and is equal to 1/ﬁf2. From this, the optimized
spring stiffness can be calculated and hence the optimal
vibration absorber can be obtained. For particular case,
when ',u.=0.2'and §=0.1, the vector locus plot for equation

(15) as a function of @ is shown in Fig.10.

2.2.b MAIN SYSTEM WITH HYSTERETIC DAMPING t. ABSORBER
WITH VISCOUS AND HYSTERETIC DAMPING
_ N ‘
A schematic diagram 'of this ‘type of system is

shown in Fig.11. In this case the expression for the dynamic

stiffness of the uncoupled system can be obtained from the

Fl/X1 and.Fz/X2 ratios derived in section 2.2.1 and 2.2.2.
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. | . )it |
o KK+H T i

=

k() = k+icw+ih

i

FIG.11 MAIN- SYSTEM WITH HYSTERETIC DAMPING
'ABSORBER WITH VISCOUS AND

HYSTERETIC DAMPING
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In the previous case for a main system with hysteretic

»

damping uncoupled, the dynamic stiffness 1is

F

) _ .
= K + i1H - Mw~
X1 .

and for-%he absorber system uncaupled, the dynanic stiffness

L) . ]

is
: e 2 ’
F2 k' (@) mw
= ~ 2 ¥
X, ., = -k (©)

. . - ) -
In this case. k (@) = kX + ih + lce . The dynamic stiffness.
of the coupled system becomes

. F ' | > j\z ,moz(‘k+ih+_,icw)
_——=(K+-iH-Mw)-M + 5

) G . _ ' my - { x + 1h 4+ icw )

Dividing the entire equation by X, we obtain the non-dimensional:

form \
.. 2 L 2
F 1 + i@ g (1 + 2361 + i) @
wx M M g8 — (1 + i+ 2401 )
v o ] 1 ~— 1
MAIN SYSTEM ABSORBER- SYSTEM
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Transform the second and the third terms into a complex

( A+ iB ) form, it becomes

[‘ S L T R R ] . [ (e + 260 ) 3 ]
2

A (#2114 (o4 28 ) ( #°-1)% + (4288 )

pl
The graph of in—phése component plotted against guadrature
component f;om this equatioﬁ is similar to the previous cases.
‘We can éptimiie%he absorber by employing the same method
that has been used in section 2.2.1. The ceﬁtre of ;optimization
circle lies on the transformed axis and the projection of it
on the in phase component axis is‘equal to 1/();f2 ). The
“value f which is the optimum spring stiffness of the absorber
can be calculated. The radius of the circle represents a
particular value of F/( xX ), where X 1is the maximum

amplitude of vibration for the system.

‘e
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" CHAPTER 3

VIBRATION ABSORBER FOR COMPLEX STRUCTURES
The techniques that are discussed for the optim-
ization of yibration absorbers are limited to situations
where the disturbing force act on the ‘main system at the
gsame point and in the same direction as the relevant

resulting displacement and the attachment of absorber.
However, in.practice the absorber can rarely be attached

at the point of action of the disturbing force and the
relevant displacement of the main system is not necessarily
at the same position or in the same direction as this

' force. In particular if the absorber is to be applied to

a machine tool, certain other requiredents are to be
‘imposed, némély. the force is an internal force.between
the two p;ints on the main system ( e.g. the cutting edge
and work piece ) and the relevani displacement of the main
" system is the relative displacement between the same two
501nts but generally in a dlfferent dlrectlon from the
force. Further in machining operations, the increase of

the chatter-free machining capacity is often the criterion
for optimization; in this case the minimization of the

amplitude of the respoﬁse is not necessarily the condition
for the absorber to have been optimized. In this chapter
a method which can predict the effect of felative

dispiacement of & vibration absorber at a point remote

™
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from an internal force, due to fhe addition of a vibration -
absorber at a point away from the point of action of the
force is discussed . The method ouflined~in chapter 2 for
the optimization of.the absorber can also be extended to
two-dimensional abéorbers. j.e., two degree of freedom
abéorbera

Dynamic receptance Ry, is defined as Xl/Fz.

where Xl-is the displacement vector of the harmonic

displacement Xlelwt, resulting from the harmonic force erlmt.'

When a force applied to the main system B in the direction

and at the position denoted by 2 as-shown in diagram 12(a),

the relevant displacement is in the direction and at the

position denoted by 1. The additional sysiem ¢ is added to

the main system B in the direction and at the position’

denoted by 3. Each of this subscripts may refer to either
absoiute or relative quantitiés. For example, if 3 denotes
an absolute displacement then system ¢ may be an absorber,
or if 3 denotles a relative displacement then system C may
be insert of some form, such that equal and opposite
forées are applied to the main system. The subscript 1

denotes a given direction and position of displacement and

may refér to either an absolute or a relative displacemeﬁt.

The subscript 2 denotes a similar direction and position

for the force[;which may also be absclute or relative.
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The forces and displacements.relationship shown in Fig.12 are.

X, = Rygp Fp * Ryis Fb3 ..i.'..'..'(ls)
Xp3 = Bp3z Fa * Ryzz Fp3 ;oove

The motions resulting from F2 and F3 ray be superimposed,
since the system is assumed to be linear.

From the sub-system C

X R -3

c3 RCBB FCB

There is no external force at 3, so

F_+F .= 0 e (1)

be = xc3 -  esvesasenses(20)

Substitute for equation (18), (19) and (20) in equation (16)
and (17) gives .

R, =R, - Rp13 Roaz e (2)
alz2 12 R + R
: b33 c33

If more systems are to be added to the main system,

1t can be considered firstly as the addition of one system
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*
to form 2 new main system A , and then the addition of
* .
the other system to A , as shown in Fig.|3_ for the two
dimensional absorber. From equation (Z!)

2 _a  __ "v13 Pz
alz = "p12 R + R
' b33 c33 .

Similarly

* RblB'RbBQ

R ., = -

b33 33
- - Rpy3 Rp32
Rak2 T Tpsz T :
Rp33 * Res3
» ' é uz
_ b3
and Raty = Ry = ——— —
- b33 T %33

In the last expression, Maxwell's reciprocal thecren
is assumed, that is th = th'. The system D 1s therefore
»
added to the system A having the receptances defined

above. Thus the receptance of the combined system is given by

. _ * -

R _ R'A _ ' Ralh Ra42 ,

al2z = Tal2 R+ R ceraeaaa(22)
aby dish '
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For the chatter-free machine, the receptance to be optimized
is the chatter receptance. That is, the forced v1brat10n
receptance modulus requires to be minimized. We can employ
the graphical method that we have been 'used in the previous
cases to obtain the optimum absorber, but an jiterative
method using a computer is preferred due to the—complexity
of the receptance equation. It“is assumed that all terms in
the main system‘are defined, and only the rece;tanpe'of

the absorber ( R, Rd ) can be varied to cbtain the

optimum absorber.

~ -l
I L

-



CHAPTER 4

CONCLUSION

It is shown that different methods can be used to
optimize -an absorber. The mass of an absorber is usually
restricted, and®nly the spring stiffness and the damping
coefficient can be varied invorder to achieve the-bptimal
absorber.

The first method that has been discussed in this
report is to optimize an absorber which has restricted
damping. From Fig.3 and by calculation,' the most favourable
tuning for the ahsorber can be obtained. The most favourable
tuning of the absorber can be obtained by adjusting Fhe
stiffness of the absorber. After determining the correct
tuning{ the optimum damping of this syétem can be calculated.
then the absorber has the most favourable tuning and optimum
aamping, the maximum amplitude of vibration for the whole
frequency range will be reduced to the minimum. This kind
of absorber is usually féﬁnd in the landing device of an
aeroplane, .

When the absorber has only restricted damping in
the spring. a different mefhod is used to obtain the optimum

absorber. An expression is obtained with F/( kX ) in terms
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Li

+

of the other variables. .F/( kX ) corresponds to a resonance
of the non—dimensional response, and the absorber is optimized

if it is made as large as possible. A graphical method ig

used in achieving the correct spring stlffness for the

optimum absorber. The same technique is being used to optimize

the absorber with damped "and undamped main mass system, and

" the absorber with viscous, hysteretic or these dampers.

Sometimes, the reduction of amplitude of vibratien
of the main mass for +he whole frequency range is not the sole
purpése of an optimum atsorber. In cuiting and miiling
machines, the inc}ease of the chatter-free machining capacity
is often the criterion for optimization. An absorber is not

necessarily connected to the point of the disturbing force.

The- attachment can be remote from the position of interest in

jhe'main system. The optimization of one- dlmen51ona1 absorber

and iwo-dimensional absorber sttached to a complex svstem

are discussed in the last part of this report. For the
chat%er-free machine, the object of an optimum absorber is to
minimize the forced vibration receptance. Since the receptance
equation for the complex systeﬁ ie so complicated, an

jterative method using a computer, is to be employed to obtain

the correct stiffness of the optimum absorber.
/
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DYNAMIC STIFFNESS OF UNCOUPLED MAIN SYSTEM

‘When a force Flelut applied to the nmass M,

the response of the main mass system is

- % : X

Mxl + K (w)xl = Fle ...... .. {(a)
_ iwt

Put X1 = xle_ .

. ) 2 » : 3
then -Mxlwze-l“’t + X (a))xielmt - F-lel"’t eees (D)

Hence FL/Xi-= K*(w) - Mu? N €Y
. o M
T, K K
—— M
o

X
DYNAMIC STIFFNESS OF UNCOUPLED ABSORBER

The response of the absorber system to a force

erlwt applied.to the point of coupling is given by the
fellowing simultaneous equations

miy ¥k @) (x5 - xp ) =0 ......(a)



Ry .

k9

Xy
X —
mr. = Fe @t (e) E [‘_"2, |
3 2 . '..l".'-.l z m
st ¥ _
_ i S
Put xz = xze % n
‘\
1wt :
xX.. = X,e
3 .73 o
2 * ‘ .
- (A - = .
then MX_BQ + k (@)( XB X, )7 0 .o...(T)
2 _
—mXBw = F, R €2
From egquation (f) and (g), we obtain
F, X (©) mad
= = > - veeessoth)
X, m” - k (@)

DYNAMIC STIFFNESS OF COUPLED SYSTEM

The dynamic stiffness is obtained by adding

equations{c) and (h), gives

F F F
1 + 2 _
Xl x2 X
. Thus
»*
mm?k (w)

= K @) - Mw” #






