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e ABSTRACT ' .
Overall Network Reliability -
% and Chromatic Polynomials
i of Special Structures C
Sophocles Lee Katsademas Pl °

L

Let G=(V,E) be a graph whose edges may fail with
knéwn probabilities and let K a subset of V be specified.
The overall reliability of G, denoted by ROG) , is the
probability that all vertices in K=V communicate with

each other. We have two types of graphs, s-p reducible and
s-p complex, dependinq on whether after se;ies-parallel
reductions we end up witﬁ a single edge or not. A number
of s-p r%?ucible qr?phs are presented and expressions
that evaluate their overall reliability are introduced.
Chromatic polygomials of a number of s-p réducible graphs
are evalu;ted and with their help the domination and
parity, ﬁwo graph invariants, of these are calculated.
A number of results on another gragph invariant, extended

%

domination are proved.

b
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1

Our daily environmént is the unioﬁ of a numbe; of
systems. Each of thesé systems can be viewed as a network.
Measures can be evaluated on these networks with reliability
being the one most often referred to in to&ays "aim for
perfection'"” highly computerized society. Reliability of a
network given an event of 1nteres£ is the probability that
the network functiong, given this event. So if X is our
system, 1 or 0 are two states that denote functioning
and not functioning respecéﬁvely and U is an event of
interest, then

Reliability = Pr( X=1 | U )

s ~
The general network we are going to consider is an

LN

undirected graph G=(V,E) with a vertex set V={v1,...,vn}
and an edge set E:(e1,...,em) . The existence of an edge e
between vi ‘and vj implies that communication exists ,

between these two vertices. All vertices in the ﬂ%%work are
assumed to be functioning at all times. Each edge though may
eibhér function or it may not function, with probability

being pe for the former and qe=1—pe for the latter. The
: '

'%vent of interest mentioned above may be specified by a .set

-

K of distinguished vertices such that |K}] [Vl and K V
The network reliébility problem is then to compute the
probability that all vertices in K communicate with each
other. This is referred to as the K-terminal reliability
problem; denoted by Rx(G) . Special cases are: |

1. the source-to-terminal reliability problem, ;here

vy

K={v1.vj}‘ denoted by Rst(G) . Here the problem is to

5

¢ )
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1

calculate the probability that, say, vi designated as the
source communicates with' vj which is designated as the

¢ ' . T
terminal,- ‘ ' .

‘ii. the all-terminal or overall reliability problem.H
where K=V denoted by R(G). Here the problem is to
calculaté tﬁeuprbbabi}ttg that all vertices in the networ}otQ

communicate with each other. ,

This tﬁesis is stuctured as follows:

In Cha;ter 1 methods to evaluate network reliééility
ae presented along with domination, extended domination,
parity of a graph and claésical and extended chromatic
polynomials.

" In Chapter 2 recursive formulas are established for
thé overall reliability of a nﬁmber of s-p reducible
graphs. These are incorporated in an algorithm that '
ébﬁﬁutes the overall reliability of an s-p comglex graph.

In-Chapter 3 chroﬁatic polvnémia}s for some special
structures are e@aluéted. From these we evaluate;si?ned

dominations and parities of the special structur%?.

- In Chapter 4 some results are proved about extended

domination. . .
In Appendix I we calculéte theinumber of edges of a —
ladder and a wheel. e

In Appendix II a recursive formula for the number of
‘spanninq trees of a ladder is proved and from this a direct

formula is derived.

P
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A cutvllerj‘t‘:ex of g qrap%U is a vqr'iax of the graph that
wili‘cause the graph to be digfoqnec;éd‘if it were to be
removedl A qonseperablé graph is a connected‘gr;;h that has
go cutvertices. s 3
j‘ A success set is a minimal Set of edges of G sdch'that‘

the vertices in K communicate with each other and is min;mal’

/ A/N“w

in the, sense that the removal of any‘one single edge will
result in breakdown of communication between vertices in K:c
In terms of the graph of G t£§!*€¢;;siates to a tree of G

<

that contains all points of K."A tree of this kind will be

o

called a K-tre:i Edges of G that are in no k-treg_of G do
not contribute to the rélia;ility exXpression RK(G) and are
- therefore called irrelevant. We will concentrate our .
attention to relevant edges of G. If every edge of 'G is in
some K-tree of G with respect a}wa?s to some K, then we |
'shall gall this grarh a K-graph. A formation~of‘axx-qraph is
“ﬁrsetlof K-treés of G. the.uﬁion of which results in the
graph G itself. A formation is clasgifjed as odd or even if
the number of K-trees in the formafionois odd or even
_respeafiively. The sianpd domination. denoted by d.(G) . of
a K—%gaph’G is the number of od mfnus the‘number aof eve;
,formations of G.: The domination; denofed by D (G) ,oof a
K-qragpgc is tge absolute valueﬁéf tﬁg signed domination,
t.e. DL(G) = |dg(6)| |

i

0 L 3



1.1. Inclusion-Exclusion method
~

Manyxhifferent algorithms have been suggested to

: caicdlate network reliability and many of these are based on

X

success sets and/or failure sets. In qeneral it is ﬁeither

necessary nor desirable.to find the family of success or

5
r d

;failure seﬁs.
Now the ¥¥liability of a graph G with a set K of
distinquished'veriiqps is the probability R (G) ‘that all
edges of.at least one success set are functional. Let Ai
¥ denote the event that all edges in the i-th suécess set are
- * functional "and let § be the total number of success sets.

Based on the inclusion-exclusion principle the

ot reliability will be given by
S _ p - _ ) _
. Rg(G) = Pr (Ui=1 Ai) 'Zi=1 Pr(n) _
. = o] . . _ p-1
E i=1Zj<i PrA,A) + i S PrA,A,...A) (1)

,P-1

‘This expression has terms. It may happen though that

’

the intersections of different Ai's will topologically. wiéh

" respect to the graph, he the same event. Now if these,

. 1

intersections have different signs (or one has an even
v pumber of success sets Ai wh;le the other has an odd number
- of success sets A}) they wil} cancel each other.
When all the cancelations have bégn performed the
coefficiept to event Gp=A1A2...Ap . which may correspond to

a number of intérsections, is going to be the signed

domination. .

A forest H of G is called a K-forest if H contains all
$
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points of K and’ every point in H that has degree zero or one

N

is in K. Let F(G.K.,3j) be the collection of all K-forests

of G that have exactly j components. A.subset F of F(G;K,J)
- ’ ‘ ﬂ
kis called a j-formation of G if every edqe‘of G is in some

a

K-forest from F. A" j-formation is classifiea ‘as odd or even
.if the number of fofests is odd or even respectively.

The extended signed domimation, denoted by d(G.K,j) ,
of G with respect to some K and a‘numbcr-j, is the number of
odd minus the number of even j-formations of.é. Tﬁeaextended
domination, denoted by D(G.K.j) .is the aﬁsolute value of
the extended signed domip&;ion, i.e. D(G,K,j) = ld(G,k.j)I.

For j=1 we have the signed domination and domination
that Qe defined earlier. Therefore F(G;K,1) is the

collection of all K—tregs of G. Now let formations Fi be a

"

subset of F(G,K,1) such that the union of all K-trees in Fi

result in a K-subgraph of G that has exactly..i edges. There
exists a one-to-one correspondance between the terms in (1)

and all possible formations., Fi of K-subgraphs of G. Since

expression (1) has 2P~ ' terms. there are 2" ' possible

Al

F, formations. Let us call the set of all possible

i
formations H. ?rom any Fi we get one K-subgraph of G, so

A

it may happen that the K-subgraphs that result from two

different formations F11 and Fiz

are gifferent but neverthelé&s—have i edges. Let us take

are identical or they

partition 0 = { 61. e Bl‘ }) of H in such a way that
Fie ej ., j=1.,....h results ip the K-subgraph Gj of G.
Therefore G1 ¢ eee . Gh is the set of all possible .

L
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Kﬁsubqraphq qf_G and the reliability expression éan now be

written as

’
b

» o

<

*

. . h |
R (G) 2 Zw 4(6,. K, IPr(G,) (2)

. « Let S{ ={G, . ..., G, } be the set of all

e
subgraphs of G such that each subgraph do.si has axactly

o

.

+ 1 edges.
Satyanarayana and Khalilﬂintrodgced the following graph
invariant. The, i-parity, denoted by P, ,(G) , is the sum of

. . ‘ . ¥
j \ the signed dominations of all subgraphs Si ., 1.e.
N . pi(G)‘g‘a'z‘ f G‘ € S.H dK(G) = G e s. d(GpKa1)
v . : :E: b] i :E: 3 i

1.2. Pivotal decomposition or Factoring.method

——

-~

If Rg(Gle) is the reliability of G provided edge e ik

functional and RK(GIe') is the reliability of G provided

-

edge e is not functional, then applying the pivotal
) |

decomposition introduced by Barlow and Proschan we have

| R (G) idgeBK'(Gle) + (1-p )R (Gle') " (3)

a

To compute now the reliabilitg hx(G) of any graph G we can
apply (3) repeatedly. Topologically. ifsall vertices are .

, assumed to be functional, graph Gle is the same as G, -
where Ge is the graph obtained from G by omitting edge &
and coalescing its two end vertices. Similarly, Gle' is
the seme/as G-e , where G-e 1is the graph obtained from G -

ﬂgﬁy omitting que e. Therefore (3) can be rewritten as
Rk(G) = ?eRK(Ge) + (1-p°)RK(G-e) (4)
In this -form the decomposition is referred to as the

/
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Factoring Theorem. 0

1.2.1. Factoring for undirected graphs
Topologically after omitting edge e to create G-~e and

after coaleécina the end vertices of e to create Ge , it

may happen that these graphs have-parallel or series edges.
Two edges are parallel edges if they have the same end

vertices. Two edges that are not parallel are adjacent if
|
they are incident on the same vertex. If the common vertex

has deqree;z the edges are series edges. Replacing a pair of
parallel (series) edges by one single edge is called a
parallel (serieé) replacement. Now we may apply some simple —
reductions to graph G.

Parallel reduction: Let e1 and e2 be parallel

edges. A parallel reduction replaces edges e, and e,

with one single edge e such that p =1 - g gq and
e e, e,

Re(G) = RK(G') ., where G'=(V',E') is the new graph that

rasults after the parallel replacement and Nz v ,

.- - -
E'=E e1 ez+e |

Series reductio?: Let e, and e, be series edges

-‘ with w as their common vertex, where deg(w)=2 and w¢ K. A
series reduction réplaces edges e, and e, with one
single edge e which connects the noncommon vertices of e1

and e, such that pe=pe1pez and RK(G) = RK(G ) ., where

G'=(V',E') 1is the new graph that results after the series

I Ly
replacement and V'= V-w , E'= E-e1432+e

N\ - .
Degree-2 reduction: Let ® and e, be series edges



1

with‘w as their common vertex, where deg(w)=2 and all the
vertices they are incident to are K-vertices. A degree-2

reduction replaces edges e1 and ez with one single edge

e which connects the noncommon vertices of e1 and °2
such that PP, P, /(1-qe A ) and
: 1 72 1 2
RF(G) = (1—qe q, )RK.(G») . whére

1 "2

\

G'=(V'.E') is the new graph that results after the degree-2

replacement and V'z V-w , E'= E-e1-e2+e and K'z= K-w .

Now if a graph G can be reduced to a tree, withth
taking into consideration the set K., by successive series
and parallel replacements then it is called a series-

4
parallel graph. But now taking into consideration the set K

»

series-parallel graph may or may not take a simple reduction
1f by'successive-simplé reductions we end up with a sinlge
edge then the graph is called an s-p reducible graph. If it
is not possible to end up with a single edge the graph is

called an s-p complex graph.

1.2.2. Polygons to chains

Satyanarayana and Wood introduced the concept of chains
and ;olyqons in the context of network reliability.(14)

A chain of length n is a sequence of n edges and n+1
distinét vertices that alternate .in such a way that the
internal vertices have degree 2 and the erild vertices have
degree greater than or equal to 2.

A polygon is two chains that have the same end verticek

“
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v 2 :
' Polygon type Chain type
-v L ’
| Q .
(1),‘ . . °:: C . | :o
i .l c o. d
a b
(2) —r
C
(3)
(4)
()
(6)
r S {
7 ————

TABLE 1

Polygon-to-~chain reductions



. TABLE 1 (Continued)

Reduction formulas

°‘zqapch

(1) E:paqch

q q
- a,b
(2 2)

Py
“=qapch
p=p_a . q
(2) a’b’c 1, 9
Y=P_P, P (1+-—+—-)
abc pa pb

dzpaqchpd+qapbpcpd
(3) bpappay /

!
a
:é P,P P (1+—.+—+_..+—._)
X abcd P, Py pc\pd

- 13

—

New edge reliabilities

_ 3
pr'u+x
I |

Q- (t+y) - (B+%)
1

dzqaqbpcpd
b PPyt IaPpP 9y

‘8=Papchqd

SN CEN P *p';;s-) )

(4)

d=q_P P d,
(5) $=paqbpcha
g=papchqd

&:paﬁbpcpd(1+——+——+——+—_

o=
qapbpch

F=paqbpc(pdqe+qdpe)+

(6)

+ pb(qapcpdqe+pachdpe)

S?papchpdqe 2

(=3

Y

)
. (8
‘§}=(dfj) (;;1) (8+y)

4
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TABLE 1 (Continued) ) T
Y Q. Q. 9. 9.9\ .
- b ¢ . d e
(6):" y=p_P, P P.P (1+—5+—+—+-+—-) .
a’b'cid’e pa‘:'bpcpdpe
o =q P P_d4P,P¢ B : .
s S ﬁ=Paqbpc(qdpepfmdqepfmdpeqfi. p_ =T§'§'
+ papchpf(pdqe+qdpe) \
A1 + qp P, (q P +p _a.) 1==‘A
-- . a’blcd e f e’ f s b“&
"¥=p_pP, 9 _P,P 4d
. b d f
- * © ° 1 qa qb qC P :——L—
/ ~‘&‘-papbpcpdpepf( oot t T Py
- - a’"b ¢ ‘
*C_l_d*f!_e*k Q= (u"'x)(F"'u)(g"'K)
Pq Pe ;?f = ‘82
/
. .
b1
; »




- 18

.

A}

They prove the following propertyz‘

Property 1 : Let G with respect to some K be a ;raph on
which no simple reduct be performed. If G contains ;
polygon then it is one of the seven tyéés in Table 1.

So the replacement of a (polygon by a chain via the
polygon-to-chain reduction has as follows: v’

Theorem 1 .2.2.1.(14)

Suppose G with respect to some K contains a,type J
polvygon. Let G' with respect to some K' be the graph that
results after replacing the polygon ZBj ?y the chain Xj
with new edge probabilities and letS'Zj be’the multiplication
factor, from Table 1. Then R (G) = S?_jRK.(G') .o

Now for an s-p complex graph they show that:

Property 2 : Let G with respect to some K be ‘an s-p
complex graph. Then on G we must be able to perform eith;r a
s{mp}e reduction or one of the seven polygon-to-chain
reductions of Table 1.

This property shows: that RK(G) can be computed in
polynomial time for s-p complex graphs. In Chaﬁter 2 an

algorithm is presented that combines these results with some

new ones to evaluate the reliability.

A
1.3. Domination thegrv .

’,

o As mentioned earlier the dofination of a graph G with
respect to some K, is the number of odd minus the number
of even formations of(G.

A theorem proved by Satyanarayana and Chang showed:
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8

the analogy between domination and the Factoring Theorem.

Theorem 1 .3.1. (11) ,

/

_Lef‘ G be a K-graph with respect to some K. If G-e
is the graph obtained from G by omitting edge e and Ge
is. the graph obtained from G by omitting edge e and

coalescing its two end vertices, then /

|
!

Dg(G) = D (G=&) + D (Ge),

X

— where DK(G) is the dominattoh of G with respect "to some K.e¢

w

Recursive application of the Factoring Theorem leads

té the’ generation of 2™ ieaves,in a binary structure which &
éorrespggds‘to the enumeratioﬁ of the states of ‘the graph.
But by the appropriate choice of tﬁe edge used in the
' Factoring Theorem, graphs G-e and’ Ge may happen‘;o

. ’contain parallel and/or series edges, which can be reduced
using the appropriate reduction. This results in making
graphs G-e and Ge smaller and at the same time reducing
the number of leaves in tqs binary struptufe. Now because

A

the computations requireq{to generate the binary structure
are proportional to the qumber of leaves it has. the

x,
optimal binary structure would be the one with the

»

least number of leaves.

Prorosition 1 .3.1. (1)
¢ Suppose G is a K~graph with respect to some K. Then

for any edge i’ G, at least one of G-e and Ge is A K-graprh.e

i
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Proposition 1 .3.2.(011)

‘_pK(G) # iff G is a K-graph with respect to some k.

3 _
- AN

) .

I‘“,

e r'S
S

Sk . .
L= Proposition 1 .3.3.011) ‘ _

DK(G) remains invariant under series and parallel
t\l
reductions.e

Proposition 1.3.4.(11)
Let G be a K-graph with' respect to sope K
4 b
DK(G) =1 1ff G is either a tree or an s-p rég;;zzle

graph with respect to some K.¢
. ~—

;1‘r1eac>1rearn 1.3 .2.011)
Let G be a complex"K-qraph with DK(G) > 1 . Then G

has an edge e such that DK(G—e) # 0 and DK(G) 0 .o

Now according to the above when we pick an edge e

which satisfies Theorem 1.3/2. we are going to éenerate the
<,

binary structure with the least number of leaves. This

number is DK(G) ., the domination of the graph.

4.4. Chromatic Polynomials
A k-vertex coloring of a graph, referred to from now

on as k-coloring, is the éelection of k distinct colors and

° .

their application to the vertices of a graph. A coloring

is proper if, when the assignment of colors to the,vértices

is done, two vertices thatuaée_adjacent are not assigh

the same color. A éraph is k-vertex colorable or
k-colorable from now on, if it has a proper k-coloring.

N,
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The chromatic number of a graph is the minimum number:

N

k for which the graph is8 k-colorable.
If a graph is k-colorable, this means that we can
possibly color it in a number of ways, always using these
&4

k colors, simply because two colorings are taken to be,

different if at least one vertex in the graph has two 'ﬁ?

different colors in two colorings.

Birkhoff and Lewis (5] introduced the chromatic
Polynomial, denoted by P(G:x) .’It is defined as the number
of distinct x-colorings that we c;n possibiycassiqn to graph
G, given integer x, the number of colors available.

Here we give two elementary but important results about -

chfomatic polynomials. They concern Kn , the complete

A d

graph on n vertices and In . the empty graph (with no

edges) on n vertices®*
Proyrosition 1 .49. 1.

P
(x=1)(x-2) """ "(x-n+1) .

(a) P(Kn:x)

n
X  .e

(b) P(I :x)
We will now present two ways of calculating the
chromatic‘polynomial of a graph G , by calculating the
chromatic polynomial o; graphs with fewer number of edges.
Continu%nq in this fashioﬁ we_;ill sooner or later come to

a complate graph, an empty graph or a graph whose chromatic

polvnom{al has been .earlier calculated.

K Theorem 1 .4.1. {Two-Pieces Theorem)
. a " " Let'G be a graph that is composed of graphs G, and G,
N . & .
LY [ ]
- Je




<

such that G and dz have no vertex in common. Then

v

1-.

P(G:x) = P(G,iX)-PtG,ix)

Theorem 1.4 .2. (Fundamental Reduction) ’

P(G:ix) = P(G-e;x)-P(G,:ix) o
Here are soﬁe'of.the properties of.the chromatic ‘

— -

polynomial. . - -~

Theorem 1 .4.3. ';
Suppose G is a graph on n vertices and m eéqaaﬁgng\\
) = m 3P p-1 : L
P(G:x) = a x" + a, . x + ..o vax o+ a; .

|
(a) The.degree of P(G;x) is n', i.e. p =n-.

no

*

n '

. (b) The coefficiént of x~ is 1, i.e. -a =1

(c) The absolute value of the coefficient of x"~

number of. edges Bf G, i1.e. ab_1 = a 1 = m

n-
(d) The constant term is 0, i.e. a, .= 0 .

(e) Either P(G:x) = x™ or the sum of the coefficients in

X

P(G:x) is O . e

S Aheorem A1 - 3 i‘4,‘

/

-

. P(G:x) 1is the sum of consecutive powers of x the

coeffiéients of which alternate in sign, i.e,

n n71 L0 (-1)

R(G:x) = x - a,_,X
o ] , ‘ e —
Satyanarayana and Tindell showed that the following

n+1 7
X . ®

relationship exists between the chromatic polynomial and

domina;;on.

19
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J\ ,Prop‘osiytion 1.4 .2 .(13)-
| . 'P_(Q%L)luo,: DV(G/3 e
They also introduced the concept of the extended
chromatic polynon;d,al
Definition 1 4.1. Given a graph G and some K a
K-acyclic orientation of G is an acyclic orientation with
AN ;11 sources and sinks in K. K
. Definition 1.4.2. Given a q:§ph G and 'some K a proper
x—?olorinq of K wliglnnc is .a pair (D,a) where a:K [x) is
a c;aorinq and D is a K-acyclic orientation of G such that
if u and v are in K and there is a directed path in~D from
u to v , then a(u)ra(v)
‘Definition 1.4.3. biven a graph. G and some K, the’
" extended chromatic polynonial denoted by P(G,K:x) ., is
defined as the prodqt of (- 1)lVI IKI+1 and the mtmbe'r
of:distinct. ﬁroper ~colorings of K within G, where i is
the number of isolated points of G which are hot in K.

. The extended chromatic polvnomial is related to the

classical chromatic polynomial in the following way:

Prorosition N‘l -4 .3 .(13)
For any graph G :

P(G.Y;x) = P(G;x) .

They also showed that the extended chromatic l

polynomial is related to the signed domination.




2

. Theorem 1.4.5.13)

-
' If G=(V,E) is a graph and K is a subset of V, then ” .
Co- P(G,Kk;x) A EI
PIG. k;x) = (-
‘ % |x=0 (-1) d (G)
or equivalently ; : ’ ’ :
' _ (_+yhEl P(G.K:x) .
y
" 4
— e ) -
y+-3
_ V4
S ‘ ' .
"—“ | "‘4 v o ‘{
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CHAPTER 2
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2.1. Definitions | T

A ladder of order n . denoted by Ln . is a'chain of
lenqgh,n—1.such that each of the vertic§s communicate with
‘a common vertex. (Figure 2.1) "

Lét v1 and v2 be two vartices such that there are ~

‘k edges connecting them. The st;ucture is called a fan of

o

{
order k , dencted by F, . (Figure 2.2) . y@ o
Let v; . vz , v3 be three vertices such that
i. v1 is of degree 3 with one edge communicating with v2

and two edqes communicating with v3
”
ii. v2 is of degree k+1 with one edge communicating with

5

v1 and k edges communicating with v3 . C.

iii. vy is of degree k+2 with two edges communicating with

v1 and k edges communicating with v2

”~

This structure is ' called an extended fan of order k ,
denoted by EFk ., where Kk is the number of edges that

e connekt vertices v

2
A ladder-fan of order n.k , denoted by Lg , is a

\

and v, . (Figure 2.3)

ladder of order n such that between vertices v, and v2

instead of a single edge there exists a fan of order k
(Figure 2.4)

A wheel of order n , denoted by wn ., is Ejigdder of )

1

order n such that the end vertices in the chain are

. connected with each other. (Figure 2.5)

i

A wheel-fan of order n,.k . denoted by wk , is a wheel

of order n such that between vertices v, and v, instead of

a single edge there exists a fan of order k. (Figure 2.6)

“a
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2.2. Examples
Example 2:2.1. Let us ¢dnsider a ladder of order 3
(Figure 2.7). Using the Factoring theorem, deqreé—z and

parallel reductions we have °

R(L3) pR(Ge) f qR{(G-e)

2

p(1-9%) +,q(17q2)—3—5
' g 1-q
p(1-q2) + pzq ‘

Example 2.2.2. Let us consider a ladder of ofder 4
(Figure 2.8). Using the Factoring theggem. degree-2 and

parallel reductions. we have / ”

R(i.4> PR(G_ ) + aR(G-e,)

1

L 3

2) + qR(G—e,) )

)<} pR(GB ) + qR(Ge -e

122 _ 1
o ) + PaR(G, -e)) +\qf((-s-e1)
2 1 L

[+

pZR(G
ey

p2(1-q3) + pa p(1-q2) + g pR(L3) .

92(1—q3) + pzq(1-qz) +,qu(L3)

Example 2.2.3. Let us consider a ladder of order 5

(Figure 2.9). In the same way as above we have

R(Ls) = pR(Ge1) + qR(G—e1)
=P PR(G, , ) + aR(G, -e,) + arR(G-e,)
172 k| .
_ o2 - : _
172 1 .
_ o2 _ - vy
= p \pR(Ge o e ) +aR(G e3) +qu(G° °2) +qR(G d1)

122%3 ®1%2 1
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-
) + qu(Ge -ez) + qR(G—e1)
) ~ 1 .
q p(1-q3) + pq (1-q2)R(L3) + q pR(L4)

3 2
P R(G ) + P qR(G -e
513233 //3132 3

2

-

p3(1—q4) +p

p3(1—q4) + paq(1—q3) + pq(1—q2)R(L3) + qu(L4)

“2.3. Overall Reliability of lédders, fans and extended fans

Proposition 2.3.1. ’i
The overall reliability of a ladder of order n . n>2
is given by
_ .n=2,, “n-1 n-2_,,_  n-2 n-3 _i-1_,. i, _/ _
R(L )=p “(1-q97 ') +p a(l-q” T+ ) . 7 P a(1-a)R(L__.)

Proof : For n=3 , n=4 f n=5 from examples 2.2.1.

2.2.2. and 2.2.3. we have

R(Ly)=p(1-a?) +.p?

=p°2(1-

") + pap ‘
=p3-2 3 3-2001.4372)

(1-a°" ") + p

R(L4)=p2(1-q3) + pgq(1—q2) + qu(Ls)

p82(4 g1y 4 pd-2 3-2

(1-q ) q(1-q ) + poq(1—q)R(L3)

=4 2(1-a" Ny 4pt 2a(129%E) + Y103 PP NaC1-abiraL,

i)

R(Ly=p’(1-a") + p’a(1-a’) + pa(1-a®)R(L,) + paR(L,)
=p°"2(1-a> ") +p " 2a(1-a> B epla(1-a)R(L ) +pal1-a®IR(L,)
p°72(1-a%"") +p° 2q(1-a""%)+ ?;? pi'1q(11qi)R(L5_i)

Therefodre it is true for these values of n. Let it be true
for n=k an <k, i.e. . ! ’

. (p !
R(L,)= p*"2(1-q"" ") ip* 2q(1-g"72)+ f;? pr q(1-aHr(L

n-i)
Lat us consider I..k+1 (Figure 2.10). By successively applying

the Factoring Theorem, degree-2 and parallel reductions we

have
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k{k
-
b
.
5. e

@
v

R(Lk41)=pR(Lk+1,e1) + qR(Lk+1—e1)

=p R(L 1721 2) + qu(Lk+1.e1—ez) + qR(Lk”-'e1

. =p RLLk+1'°1°2) + pq
=

k+1)- 2( (k+1)-1

=p 1-q

- -

32
=p(pR(Lk+1.£z) + qR(L'k+1.e1-ez)) + qR(Lk+1-e1) .
b
2 )
(1-q )Rka_1) + quka)
k 2(p(1 -q )+qp(1--qk 1)) 2:1 1 p 1q(1-qi)R(Lk+1,r)
(k+1)—3 i-1 ;
f=1 P q(1-q )R(L(k+1)—i)

‘Since it is true for n=k+1

<
it is tﬁhe for all n, n>2.

o

, by the induction hypothesis,

?

The overall reliability of a fan of order k, as a

parallel structure is

R(F,) =

E=z~c>x>cis;d.t:i.c>r1 2.3.2.

== The overall reliabil

k>2 1is qiven by

k+1
‘_’/ R(EFk) (1 - a

3

+
=1 -q - qk

Proof:: Let us

+he previous observation P,

;eduction pb =1 - qz

By a degree-2 reduction pc

- 5

By a parallel redd;tion Pd

15 qk

!

ity of, anwextended fan of ordé? K,

w)(1 - q2(1 B p(1 - k+1))

a

1(1 + q - Zq )

consjger EF, (Figure 2.11).

k
= 1 - qk and by a parallel

n
|
+

n
1
4
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Therefore ‘
k+1 2 p{l - q)
(1 -4 )(1\7' (1 Ty ))

Q(EFR) =
i K+ 1 { - qk+1 . qz(1 _ qk+1 “p(1 - qk))
- (1 - q ) k+1
. 1 a
= 1 - qk+1 - q% + qk+3 R pqz - pqgtt?
= 1 _qk+1 _ qz . qk+3 . qz _ q3 _ qk+2 . qk+3
=1 -q -'"a**'1 +qa-29% e

<1
a

2.4. Overall Reliability of ladder-fans, wheel-fans, wheels
Proposition 2.4.1.

The overall reliability of a ladder-fan of order n.k .

n>3 is qiven by

k+1

R(LE) = PRALITD) o Q(1-qk)R(L

*’“ 3) I PR A )

i=0 n-i-1
Proof : Let us consider L: (Figure 2.12). Using

'
v

the Facﬁorinq theorem we have two new graphs, one being a

2 P 3R(L

ladder-fan of ord‘er n-1,k+1 and the other being a ladder

of order n-1 with a fan of order k attatched to it.

Therefore

k k+1
R“‘n)o R(L ) + qR(F )R(Ln 1)

pR(Ln-‘I) + p'(1 - a®)R(L

n- 1 (§)

The second part is proved by induction:

For n=4 using (5) we have

Ky _ k+1 . 4
R(LY) = PR(L, ;) + a1 - q JR(L, )
s p"3R(L“’4 %)+ p%(1 - d**DriL, gy
_ 4-3 x¢4 3 4-4 _ ke
= p R(L ) + =0 pq\(1 q )R(L4 1-17

# Therafore it is true for n=4\.€“ Let it be true for n=m and

.11 n<m , ’1-‘- * - - /




k
R(Lm)

Let us consider L

R(L

k
m+1

m-3

) *pR(Lk*1) + q(1 - qk)R(L

i=o P q(1

k

meq - Then by (5)

(m$1)

- m- 3 k+1+m 3
-p(p R(L )+Zi -0 P L2

m+1 -3 R(L k+m+1 3) 231 _a pi+‘lq

=nm+1-3

R(L"

+ q(

R -) 1+1q(1'

=pm+1—3R(Lk+m”—3)+Zm:: B+

k+m+1-3)* (m+1)-4
3 i=0

1

.35

) .
k41+1 )
JR(L _1_1))+.

1 - q )R(L(m*1) 1)

k+i+1
(1 q )R(Lm_i_1) +

k 1+1
)R“‘m (~1)-1"

q(1 - q’."'“')R(L )

m-1i-1

pra(1 - g**YHReL

m+1-i-1)

»

'Since it 1§';rue for n=m+1 , by the induction hypothesis,

it is true for all n, n>3.‘ .

n>3 i

R(Wn)

Proposition 2.4. 2.

The overall reliability of a wheel-fan of order .k .

s given bY

pR?ﬁk )+ qR(L ) v
n-3 n-4 i
R(EF,,, 3) + ) i.o PraR(LY®

Proof :

Let us consider wﬁ

L sl

i)

(Figure 2.13). Using,

the Factoring theorqm we have two new graphs, one being a

whell-fan of ordef

n-1.k+#? _ ‘and the other being a_

ladder-fan of order n,k . Therefore

k
R(W )

= pR(w""1

1

) + qR(L )

n

%
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The second part is proved by induction.

’For n=4 using (6) and the fact that W, = EFk we havel’
R(w’;) ='pn(w“*’> + qR(L ) '
= p473reEF,, ) + pPaR(LD)
= p4 e, )+ Y300 piqR(LZti) .

Therefore it is true for n=4. Let it be true for n=m and
all n<m, i.e.

m-3

R(W$) = p" PR(EF Yy« §om-d i

K+m-3 i=zo P qR(L

K
m+1

k+id
m,—i)

Let us consider W _ Then by (6)

k

R(Nm+1

) = pR(w Ty + qr(L * )

m+1

) + m-4 k+1+1

k+1+m-3 i=0 P qR(L m-1i )

m+1

= p(pm’3a(zr ))+ ar(L_®

=p(m+1) -3

{
b(m+1)-3
p

i+ k+i+1 0 k
R(EFk+(m+1) 3) *Zi =0 p aR(L. m-i Y+ P qR““m4-‘l

m-4 _i+1 K+ (1+1)
ke(me1)-3" * 2 i=-1 P IRy (ie))

(m+1) 3 i R+1
k+{(m+1)- 3) +Z P qR(L(m+1)-i)

Since it is true for n=m+1 , by the induction hypothesis,

R(EF

- p(m+1) 3R(EF

it is true for all n, n>3. o

Proposition 2.4 .3.
The overall reliability of a wheel of order n . n»>3.

is given by

pR(w ) + qR(L )

n-3 n-4 i i+1
P R(EF ) *:z:1=o P aR(L__.)

R(Nn)

&

Proof: .Let us consider wn (thure. 2.14). Using
1)

the Factoring theorem we have two new graphs, one being a

37.
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wheel-fan of order n-1,2 and the other being a ladder of

order n. Therefore
. 2 i .
R(W. ) = PR(W ") + qR(L_) (7).

From proposition 2.4.2. we have that

2+1

R‘”:EH = oM ReER,, gy g) ¢ (n11<)) e "R(L(n 1)-1) |
Rgp{acinq in (7) we get A ' f
R(wn)=p(p“'4R(EF ) + D0 g P Qszéilet;))+ qR(L1)
o T P Pl
) =p““3R(EFn_2) + ?=§1 Pi qR(Léf211:;) ",///
=p“‘3R(EFn_2) + Z;S-p;qR(L;:I) .o |

2.5. Algorithm for computing overall reliabiiitv

From what has been presented in Chapter 1 And what was ’
established here we can construct the following algorithm
for computing the overa;l reliability of an s-p complex

graph

Q; ’ o}

3




'S

&

OVERALL_RELIABILITY (G) :

]

. Begin

REL :=

1

While G contains a special structure do

begin

case

wWhile
begin

case

OVERALL_RELIABILITY :=

md.

special structure of

ladder

fan.

extended fan :
ladder-fan
wheel-fan :

wheel :

REL
REL

REL

REL :

REL

REL

>

:= REL

:= REL

REL

REL
:= REL

:= REL

G is not a single edge do

reduction of
parallel
series
-degree-2

polygon~to~-chain

REL :

REL :

u

REL :=
REL :=

REL :=

R(Pn)
R(Fk)
R(EFk)
R(LY)
R(WS)

R(wn)

REL @

REL *;

REL r(pa\ + pb - papb)

REL j

.
’

’

.
.

¢

R 4

B
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3.1. Chromatic polynomials of ladders and wheels
: é
Example 3.1.1. Let us consider a ladder of "order 3
(Figure 3.1). Using the Two-Pieces theorem and the

Fundamehtal Reduction theorem we have

P(F3;x) P(G-e1:x) - P(Ge1:x)

P(G-e1—e2:x) - P(G—e1e

2:x) - P(Ge1;x?

- h

x x(x-1) - x(x-1) - X (%=1)+

x(x-1)(x-1-1)

x(x-1)(x-2)

Proposition 3. 1T.1T.

The chromatié’polynomial P(Ln;x) of a"lgdder~"of

order n, n>2 is given by
; P(L_:x) = x(x-1)(x-2)"72
broof : For n=3 from example 3.1.1. we have
4 P(L3:x) = x(x-1)(x-2) "‘ . - | G
Therefore it is true for n=3. Let it be true for n=k, i.e.
P(L, %) = x(x-1Y(-2)% 2 .

Let us consider I..k+1

* theorem and the Fundamental Reduction theorem we have

(Figure 3.2). By the Two-Pieces

ﬁ(Li+1:x) = P(Gle;x)q- P(Lk;x) _
= x P(Lk:x) - R(Lk;x) - P(Lk:x)
= (x-2) P(Lk;x)
= (x-2) x(:-c-‘l)(x—z)k_2 '

x(x-1)(x-2)(k+1)'z

Since it is true for n=k+1 , by the induction hYPdthegis.

w——

it is true for all n. nj2. o

/ -
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éxample 3.1.2. Let us consider a wheel of order 4

=Y

(Figure 3.3). Using the Two-Pieces theorem; the Fundamental

Reduction theorem and Proposition 3.1.1. we have

P(w4:x) P(L4:x) - P(L3:x)

]

, x(x-1) (x=2)2 - x(x-1) (x-2)

X(x-1){x-2) (x=3)
\

Proposition 3.1.2.

. C
The chromatic polynomial P(wn;x) of a wheel of
Y
order n , n>»3 1is given by

0 xx=1) (=1 (x-3) + T 002 )P he(x-1) (k-2

(-1)Mx(x-1) (x-2) (x-3) + (-1)nx(z—x)3(1-(2-x)n-4);(“

P(wn;x)

n

N ]
Proof For n=4 from example-3.1.2. we have
P(w4;x) = X(x-1)(x-2){x-3)

Therefore it is true for n=4. Let it be «true- for n=k, i.e.

P(W, %) = (=1 Px(e-1) (x-2) (x=3) + 3572 - ¥ heqx-1) (x-20*
Let us consider W, . (Figure 3.4). By the Fundamental

k+1

Reduction theorem and Proposition 3.1.1. we have

P(wk+1:x) = P(Lk+1;x) - P(wk;x)
)(k+1)—2 -

x(x-1) (x-2 (-1)K%lx-1) (x-2) (x-3) -

k-2

- E2 R e (k-2

(;1)k+1x(x—1)(x—2)(x—3) +
(k+1)-2 y (ke 1) =4
i=3

(-1 x(x-1) (x-2)% .

Since it is true for n=zk+1 , by the induction hypothesis,

A
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it is true for all n, n»>3.

'we‘now have to show that
P2 CoM e et = G0z (120 P74)
Therefore taking the left hand side we have

?;g -1 e(x-1) (x-2)1 =x(x-1) 2:?;% (-1)P(-1) " (x-2)}

=" (x-1) Y022 (20t

=(—1)nx(x-1)(2-x)3} ?;g (2-'x)1

(n-5)+1
IR W 3. 1-(2-%)
=( t) x(x-1)(2-%) 1-(2-x)

i n-4 <
=(—1)nx(x-1)(2-x)3~1'(i:§)

=(-1)®x(2-0)3 (1-(2-0"7)

3.2. Signed domination, chromatic pgavnomials and network

reliability

Ll .
Based on the results of Satyanarayana and Tindell we

have the following. o .

'c:c:zrc:IL l.air-sf 3. 2.1.

4

For any grafth G=(V,E). \
_ IElI P(G:x)
ey = 17— x=0-

. Proof : Imnmediate from Proposition 1.4.3. and

Theorem”1:4.5. . o 3

J

cCorollary 3.2.2.

If =(V,E) 'is a graph and K is a subset of V , tgpn

Y

© -
5



2

; "P(G,,K:x)]| ¢t
_ _ _441El 3 —
P (G) = 2-:Gjesi (-1 — x=0

 Proof: Immediate from the definition of P, (G)

/
[ 4

and theorem 1.4.5. . Z\,r‘

\

-

d}( Corollary 3.2.3.

For any graph G=(V,E)

. L
P(G,:x) )
) - z: et 1 J
. Pi (G) - G ‘.S ( 1) X x=o R .
b I S
" Proof: Immediate from Proposition 1.4.3. and
) é

Corollary 3.2.2. . «

] \ ’
. Satyanaravana and Khalil showed the following.

Theorem 3.2 .1 .

The reliability of a graph G=(V,E) is given by
- .ot
R (G) = Zi P,(G) p

Based on this we have

N

/ C e -
Corollary 3.2.4.

' The reliability of any graph G=(V,E) is given by

: ‘ ’ P(G,,K:x)
- l - lz' -=£_.:.__ . i
Ry(G) = E :iZGjeSi (-1 X x=0 P
’ 3 5
Proof: Immediate from Theorem 3.2.1. and

Corollary 3.2.2. . e

Corollary 3.2.5.. —

Fo;f;anv graph G=(V,E)

o P(G,:x)|
., - - 2: (EI i !
” R(G) = 1ZG es (-1 x Ix=0'P
| 2

[
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n
4

Proof: Immediate from Proposition 1.4.3. and .

“ 'b '
COJQI}EYY 3.2.4. . o

- i
. N :
Now using these formulas we can come to expressions

k]

for the signed dominatipﬂ of ladders and wheels.

4 <

Efx‘c:;:c::s:L1::Lc:g1 3.2.1.
The ‘signed domination of a ladder of order n , n>2, is

given, by

>

_' n_n-2
d(Ln) = (- 1) 2

" Proof: By Corollary 3.2.1. we have 'L

. : P(L_:x)
1E] n'
_ " d(Ln) : (-1) = lx=0 .

s/ By Proposition 3.1.1.

-

P(L_:x) = x(x-1)(x-2)n-‘2 ‘
By Proposition I.1. |El=2n-3

Combining these we have
(_1)2n-3 x(x=1) (x-2)" 2 q
X x=0

d(Ln;x)‘

. = (-1)20"3

(-1)2P(-1)3(-1)(-1)"(-1) 222
' : - n,n-2

(-1 -2)"

(-1)72

¢

ProrFposition 3.2.2.

' The signed domination of a wheel of order-n,, n>3 is

o
1)

given by \ - Cod o .
AW ) = (-n"(2- z“’)' '

¢ »

\ E’x‘c:c:i?. By Cor&\larv 3.2.1. we. have

4 i
\ .
N

‘ f 4



2

O

P(wn:x)l
X

_ (4 EI
dW) = (1) =0

X

By Proposition 3.1.2.
£ N
P(W_ix) = (=1)Px(x=1)(x=2) (x-3) + (-1>"x(z-x)?(1—(z-x>"‘4)

By Proppsi}ion I.2. IEl=2n-2

Combining these we have
d(wW, )=(- 1)an-2

(-1) x(x 1)(x-2)(x-3) + (-1) x(2-x)3£j—(2 x)f1x=o

X

"

(-1P-1)(-2)(-3) + (:1)P23(1-2"7)

(- 1)"( 6+8-2""1)

n

(-1)P(2-27" 1) .

it

3.3. Parities of 1adder§ and wheels

Let us partition the 2n-3 - edges of a ladder of order

n . into threé'thes.(Fiqu;e 3.5) . -

For n>2 . we will call an edge of type a if it connects

two vertices, one of degree two and the other of degree at

»

» -
least two. There ‘are 4 such edges.

For n>3 , an edge will be of type b if it connects two
vertices, oné of degppe three and the other of degree at

least three. Therg are 'n-3 such edges.

-

For n>4 . we will call.an edge of type c if it connects

I}

two vertices that are of degree three. There are n-4 such

. edqes.ﬂ

We will now evaluate the chromatic polvnomials of

: laddors with one edge removed and combining them accordinq

to Corollary 3.2.3. we will estabish a formula for
- » /
' 4
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Pizn-3)-1 (k) -
3 - - -
LLet us tharefore denote by L2 5? b ., L © the
n n n
- <8 o
ladders of order n with one edge of‘tvpe a ., b . c removed

respectively.

Projposition 3.3.1.

The chromatic polynomial P(L;a:x) of a ladder of

order n ., n>2 with one edge of tvp§ a removed is given by

\ P(L;a:x) = x(x-1)2(x-2)""3 ~ v

3

Proof : For n=3 it is obvious that

P(L;%%0) = x(x-1)2

" Therefore it is qfue for n=3. Let it be true for nzk , i.e.

P(Lga;x) = x(x-1)%(x-2)k"3
Cet us consider L;31 (Figure 3.6) . By the Two-Pieces
theorem, the Fundamental Reduction theorem and Proposition

3.1.1. we haQe

P(L 1x) X P(Lk;x) - P(Lk;x)

-a
k+1

(x-1) P(Lk;x)

(x-1) x(x-1) (x-2)K"2 l

x(x-1)%(x-2) (K+1)-3 E

Since it is true for n=k+1 ., by the induction hvpotheSis.

it is true for all n. n>2. o

Prorposition 3 .3.2. <
"The- chromatic polynomial P(L1?:x) of a ladder of
order n ., n>3 with one edge of type b removed is given by

P(L;b:x) = xzxﬂ1)(x-Z)n-4((x-1)2-(x-?)) -

50
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+

Proof: Let us take L

qb, (Figure 3.7). By the
Fundamental Reduction theorem and Proposition 3.1.1. we have

-b

P(L4 :xX) = P(G-e;x) - P(qe:x) ’

x(x=1)3 - P(Ly:x)

x(x-1)3 - x(x-1)(x-2)

1}

xix-1) ((x=1)%-(x-2))

Therefore "it is true for n=4. Let it be true for n=k . i.ae.

PLIox) = x(x-1) (x-2) %74 (G- 1) 2= (x-2))

\ Let us consider L;?1 (Fiqure 3.8). By the Two-Piedes

theorem and the Fundamental reduction theorem we have

- —

-b._\ _ b, _ -b,
X P(Lk '%) P(Lk iX) P(Lk i %)
b

_b.
.P(Lk+1.x)

it

(%-2) P(L; 1X)

(x-2) x(x=1) (x-2)5 ((x-1) 2~ (x-2))

x(x-1) (x-22 ¥4 (1) 2 (x-2)) ’
Sincé it is true for n=k+1 , by the induction hypothesis.

it is true for all n, n>3. {

In the theory of chromatic polynomials we have thé

following theorem. v

Theorem 3.3 .1.
Let G1:(V1,E1) and G2=(V2.Ez) be two graphs, such
that v, v, = {v} one single edge. Thén{

P(G,:x) P(G,:x)
_ 1 2°° \
X)) =
2 X Y

- P'(c;1 G
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Proposition—3-3-3-

Cc

The chromaticopolvnomiaI’ P(L; ;%) of a ladder of

order n , n>4 with one edge of tyrpe c removed is given by

(o] n-3

P(L; X)) = %(x—1)2(x—2)

Proof: Let us take L%c (Figure 3.9). But L.°

5
is the union of two ladders of order: 3 whose intersection\

a

is vertex v1 . Therefore by Theorem 3.3.1. and Proposition

3.1.1. we have

c. P(L,:x)-P(Ly:x)

P(L5 P X) = =
- X(x-1)(x-2) x(x-1)(x-2)
X
"2 x(x-1)%(x-2)2

z

Therefore it is true for n=5. Let it be true for n=k , i.e.

1

P(L;:x) = x(x-1)2(x-2)%"3 -

, -c , -Cc i
Let us consider lLk+1 (Figure 3.10). But Lk+1 ?s the

union of two ladders of-order (s+1) :and (k+1)-s

whose intersection is vertex v, . Therefore by Theorem

A}

3.3.1. and Proposition 3.1.1. we have

P(L: :x) P(L 'x)
“C oLx) = s+1 (k+1)-s
PAL, [ ix) = =
_ xee1) (20 $50 72 (1) (-2 (RO 772
X ~ :

= x(x-1)2(x-2)%"2

]

Since it is true for n=k+1 , by the induction hypothesis,
L .

it is true for all n, n>4. e

-

33
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Propositioﬁ 3.3 .4.
For a ladder of order n . n>2

_ J_ _oyh-4
PZn—4(Ln) = (9-5n)(-2)

Proof: By Corollary .‘5"‘.2.3

‘ ' |E| P(Gj:x)
pZn—4(Ln) = ZG €S (-1 X x=0
N 3-"2n-4 -

“We are now taking one edge off a ladder of order n. so we

end up with L;a , L;b . L;c of which there are 4 , n-3

and n-4 respectively. Therefore with‘Propositions 3-.3.1. ,

3.3.2. gnd 3.3.3. we have

2n-4 x(x-1)2(x-2)""3 ’
%

+

(Ln) = 4 (-1?

P2n-4 x=0

(n-3) (-1)

-+

2n-4 x(x:1)(x-2)n_?(Sx—f)z-(x-Z))
x v

x=0

-+

-4 x(x-1)4(x-2)""3
. ,

(n-4) (-1) x=0

a(-D2-2)"2 + (n-3) (-2 ((-1r2-(-2)) «

"

¢ (n-4) (-1)2(-2)"3

a(-2"2 ¢+ @n-9 D™ e (o273

(-8)(-2)™ % + (9-3n)(-2)™4 + (8-2n)(-2)""4

13

(9-5n) (-2)™"4

Let us now partition the 2n-2 edges of a wheel of

»

_order n , into two types (Figure 3.11).

We'will call an edge of type r if it connects two

vertices that are of degree three. There are n-1 such
‘edges.

We will call an edge of type s if it connects two
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t

vertices, only one of which is of degree three while the
other is of degree n-1 . There are n-1 such edges.

- Qe_will now evalugte the chromatic polynomials of
wheels with one edge removed and combining them according
to Cd}ollary 3.2.3. we will establish a formula for.
P(2n-2)-1My)

r -s

Let us therefore denote by w; . W
} .

order n with one edge of type r , s removed respectively.

the wheels of

Proposition 3.3.5.
N

The chromatic polynomial/ P(w;r

;X) of a wheel of
order n , n>3 with one edge of type r removed is given by -

POW.T530) = x(x-1)(x-2)""2

\

It is obvious

2

Proof : Let us consider w;r

that - w;r = L, . But by Proposition 3.1.1.
P(L_:x) = x(x-1)(x_2)n—z‘\

and therefore

- 'P(W;r:x) = x (x-1)(x-2)P"2

Prorposition 3.3 .6.

s

The chromatic polynomial . P(W_~:x) of a wheel of

order n with pne edge o% type-s removed is given by

P(L4;x) , n=4
—s .
P(W, ":ix) = -a
‘ P(L ":ix) - P(W__,:x) , n>4 ‘
Proof : For n=4 it is obvious that w;S = L,
Let us consider w;s , n>4 (Figure 3.12). By the
¢

Fundamental Reduction theorem we have: . ;



4

PW-S:%) = P(L-2:x) = P(W__ ;x) -
c:c:ch:CL].aalrsr 3.3.1. v
—\ The chromatic polynomial R(w;s:x) os a wheel Of
o g{@er'n with one edge of type s removedsis given by
P(w-s;);) —{x(x-1)(x-—2)2 , . n=4
P e 2= 0 e1™x(x-2) ((2-x0™73-1) , noa

Proof: By Pf‘opos'itiops 3.1.1. and 3.3.6. it

is ,cl:bvious that
P(w;s;x) =’x(x-1)(x—2.)2 l ] '
Now from Proppsitions 3.1.2. , 3.3.1. and 3.3.6‘. we have
PO 550 =P(L7%00 < P(W__ox) |
T e (ee ) Ax=20"3 - P -1 (x-2) (x-3) -
- -1 %203 (1-(2-P"1"4)
=x(x=1)2(x=2)""3 "+ (=1)x(x-1) (x-2) (x-3) +

(-1)Px(2-x)(1-(2-x)"73)

+*

=x(x-1)2(x-2)""3 -

+

| +l(-1)nx(x—Z)((x—1)(x-3)+(2-x)2((2-x)n-5-1))
'=x(x-1)2(>~:--2)n-'3 .

o+ (-1 )nx(x—Z)(x2—4x+3+(z—x)n-a3'4+4x-—x‘2)

=x(x-1)2(x—2)n_3 + (-1)nx(x—2)((2'—x)n-3-1) °

Prorosition 3.3.7.

For a wheel of order n °
P W = .
2n-3""n 134 (n-1)(5-2"3-2) ., n>4

Proof: By Corollary 3.2.3.

57
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IEl P(G,:x)
P (W) = (-1) RS S
2n-3'"'n GJCSZn_3 i X %=0

!

"We are taking one edge off a wheel of order n, so we

r -8

end up with a W = , W of which there are n-1 and n-1
respectively.

Now for n=4 with Proposition 3.3.5. and Corollary 3.3.1.

we- have
4-2
e (A-13(_172°4-3 x(x-1)(x-2)
PZ‘4_3(W4) = (4-1)(-1). ; v <=0 *
2
2:4-3 x(x-1)(x-2)
+ (4-1)(-1) = x=0

3(-1)(-1)(-2)% + 3(-1)(-1)(-2)% = 24

]

Now for n>4 with Proposition 3.3.5. and Corollary 3.3.1.

we have . ) -
Pynoa (W) = (n-1) (-1)2n-3 xfx‘f;‘x'z’n-% o * |
) v (ne1)(-1)20-4 x0=1)%(x-2)"73 : D" xx-2)((2-x)" 3-1)x=o
= (n-1) (<1232, )
Ve (D2 ()2(2)P 3 )Py (223l
(-1)2“"3(11-1)((-1)(—1)""2:7_"'2 + (=1)P730-3
' » ™22 4 2 R)
= (-2 3(n_g) ((-1)P" 122 v (=071
' ‘ . (_1)n-1zn-2 . 2(_1)n)

=‘(-1)2“'3<nl1)(z“‘3(z(-1)““7(-1)““+z<~1)g¥1)+z(;1)")

-2 3(n-1) (2" 3. 5¢- )™+ 2¢-1)?)

2n-3 n-3_

(-1) (n-1)(~-1)"1(5.20"3.3)

= (-3 (noy(s-2"3-2) L,

—
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Boesh, Satyanarayana and Suffel proved a pivot

aquation for extended domination similar to the one that

-

holds for domination. 3

=
o Theorem 4.1 . (6]

D(G.K,3) = D(G,.K.3) + D(G-e.K.3)

4.1. A characterization of K-graphs o

Proprosition 4.1 . 1.
D(G.K.3)#0 iff G is a K-graph with respect to K. .

Proof: D(G,K,j)#0 implies that G has at least

one j-formation. Hence every édqe of G is in ' some K—féﬁpst
4
and G is a K-graph.

Conversely, suppose G is a K-graph. By induction on the

edges.of G. If G consists of (!Vi-1) edges D(G,K,j)=1
and the result is true.
. W

Assume it is true for all K-graphs with b> |Vi-1 édqes.

-~ & e
and Jj<b. Consider a graph with b+1 edges. For some

s L.

edge e 1in G, let G-e be the graph obtained from G by
omitting e and G, be the graph obtained by coalescing d
thehendixértices of e« . Both G-e and Ge contain b (
edqp;z”gnd at least-cne of them is a K-graph. Hence by

the induction hypothesis D(G_.K.j) + D(G-e,K.j) # 0

Therefore DI{G.K.3j) # 0 . e

0

4.2. Series and Parallel reductions . .
Prorosition 4.2.1.

Let G be a K~graph with respect to some K.

-

9 .y




]
] ! -

(a) Suppose e, and ¢, are pargglel edges in G . then *®
D(G-e,.K,3) = D(G-e,.K,3) = D(G.K.3)
(b) Suppose e, and e, are series e&qes in G , such that

their common vertex does not belong to K'. then .

P . ’ Y
.o . _— D(G_ .K.3j) = D(G_ .K,3) = D(G,K.J3) * >
e e :
LI 2
Progpf :  (a) Ge ,ahd Ge are not K-graphs ,
: 3 2 . ‘
because thev‘contain\self-loops e, and e, respectivaly.
By Progosition 4.1.1. we have - w” o
. . " 4] D(Ge 'K'j) = D(Ge .K.j) = 0 .
1 2 - -
and therefore by Theorem 4.1. we have . Q§ - '
. D(G-e1,K.J) = D(G-ez,K.J) = D(G.K., i) :
(b) . G-e1 and G—eZ are not K-graphs since e, is in ’
: no K-tree of G-e, while e, is in no K-tree of! G-e,
- respectively. By Proposition 4.1.1. we have
‘ N D(G-e,.K.3i) = D(G-e,.K.3j) = D(G.K.3j) -
’_‘_/ ~ 1 2 .
and therefore by Theorem 4.1. we have
‘ o ‘ D(G. .K.j) = D(G_ .K,3J) = D(G.K.3) e .
e a
' 1 2 = -
” r ) - 3 .
Corollary 4.2.1. 73

- . D(G.K.,3j) remains invariant under series and parallel

°

reductions. ) X
) . - .
Proof : Immediate from Proposition 4.2.1. .o #® .

-

kS
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Proposition ‘I . 1.
»o Consider a ladder of order*n. Then " |E|=2n-3 ,

-ﬁ>2 wheye {Vi=n. . -

Proof : For n=3 , i.e L -

i.e. 5 we have [VI=3 and
JE}=2%3-3=3 which is true. , '

Let it be true for n=k .,:i.e. for L IE|=2k~3 where

<K
IVI=K.

Let us consider Lk;{ . Now |Vizk+1 and-we have added

1

two edges to the number of edges of L,
Therefore |El= 2k-3+2 = 2(k+1)-3 .. ' L ,

Since it is true for nz=k+1 , by the iﬂduction hvbothesis.

it is true for all n, n>2. ¢ 4

3

Propositién I.=z=.

° Consider a wheel of order h. Then I|E|(=2n-2 , .

BY
n>3 where |Vi=n.

Proof: For n=4 , i.e. w4 ‘we have ‘|V|=4 Qnd .

|El=2%4-2=6 which is true.

1 . N -

Laet it _be true for nzk , i.e. for Wy |E|=2k-2 where

¢

IVi=k.
Let us consider wk*1 . Now [|Vi=k+1 and we have added

two edges to the number of ed@bs of wk

'Thereforg |IEI: 2k-2+42 = -2(k+1)-2

-

~
-, a,

Since it is true for nzk+1 , by the induction'hvpothesis, N

£

7 it i true for all n, n§3~o -

Y

LN



Y

-

.

~
Ve
.




© e _—
67
. ot -
Proposition II.1. : >
‘ Thg'number s, of spanning trees ofla ladder of
order n , is given by
s, = 38n_1 - Sp_o 7 "nd4
Sy =3 -
s, =8 l , /
Proof: Foﬁ, n=5 the reliabflity expression is
R(LS) = 21p4 - 4495 + 32p6 - 8p7 |
It is obvious that sg = P,_.(Lg) = 21 . But 21= 3:8-3 . =

Therefore it is true for n=5.

v

Let it be true*for n=k and all n<k , i.e. a ladder of

I’/

order k has s, = 3s,  _, - s, , sPanning trees.

Let us consider a ladder of order k+1 (Fiqure I1.1).

Let ST(i) and ST(iNj) denote the number of spanninng
trees that include edge i an&—both i and 5
respectively.

Now the total number of spanning trees of L will come

kK+1
© from adding to Lk

(1) edge 1 , with a contribution of s,
(ii) edge 2 , with a contribution of s,
(iii) edges 1l;nd 2 . By an inclusion-exclusion argument
on edges 1 , 2 , 3 , 4 (considering that 1 and 2 have io
,bg included and that 1, 2 , 3 cannot £e included
together because they form a cycle ) we have that the’

.contribution will be !

ST(1) + ST(2) + ST(3) + sTla) -
v ’ ’

‘ : . ’
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-ST(1a2) - ST(1A3) - ST(1n4) - ST(2A3) - ST(2n4) - ST(3n4)
+ ST(1a2n3) + ST(1a2n4) + ST(2n3n4) - ST(1n203n4)

ST(1n204) - ST(1n2)

= Sk T Skt
»ﬂ”f‘~T%érefore the total number of spanning trees for a ladder

]

of order k+1 is given by

+ S +S

Ske1 T Skt Sy Sk T Skoq T ISp 7Sy .
Since it is true for n=k+1 , by the induction hypothesis,

. . it is tr;e for all n, n>4..
- Corollarwy II. 1.
The number En’ of - spanning trees'pﬁ a ladder of
order n . is given by |
. - (15 . 7!5)(3 . /5)“‘3 . (15 - 7f3)(3 - IS)"'3 g
n 10 2 70 2 o f

Proof :  With loss of correspondance let us find

th solution of

S s T . kot
Sg = 3
‘ s, = 8
We have the characteristic polynomial
az -3a+1 =0
with roots a, = 2—131§ and ;2 = 2_:3£§

* N £
Therefore the general solution is

= A, a+a a

Sk 1 2 %2
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From the initial conditions we have

= = _ 15 +7/5
.80-3 A1+ A2-3 A1-_Tﬁ——

= .——2-—3*‘5 3=, - _15 - 1%
31 = 8 51 + 5 Az = 8 | AZ -; 5

Therefore

s, * (15 ;'07 f5)(3 +2/5)i' . (15 ;07. fs)(s -2/3)"

 which restoring the correspondance to the ladder is

transformed to .

s, = (15 :07 fS)(a +2/§)n'-3 . (15 ;07 5)(3 _zé)n-s‘ )




