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ABSTRACT

Pair Production and Decay of the Higgs Fields in the

Left-Right Symmetric Extension of the Standard Model

The Higgs sector of the (minimal) left-right symmetric
extension of the Standard Model is studied in some detail.
Using constraints coming from 1low energy phenomenology
certain vacuum expectation value scenarios have been singled
out as the most natural ones. Scattering cross sections for
Higgs pair productions through e'e” annihilation and the
renormalization group improved decay widths for the Higgs
fields 1in the left~-right symmetric theory are also

calculated.
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INTRODUC {'ON

One of the major triumphs of theoretical physics in the
20th century is the development of the Standard Model of
strong, electromagnetic and weak interactions based on the
gauge group SU(3)Cx SU(2)Lx U(l)y. The SU(3)C gauge theory
is now widely believed to describe strong interactions,
although some problems such as the proof of the hypothesized
confinement still persist. The SU(2)Lx U(l)Y is an
attempt to unify electromagnetic and weak interactions
through the gauu. structure of the theory. Among other
things, this requires considering gquarks and leptons on the
same footing as far as their representation properties are
concerned. This, however, is not totally realized in this
model since right-handed neutrinos are absent. Also, since
quarks and some of the leptons have non-zero masses, the
SU(2)L symmetry must break down. This symmetry is broken by
introducing certain scalar bosons in the theory which have
non-vanishing vacuum expectation values. It is found that
this model correctly describes weak interactions and the
agreement between experiment and some of 1its predictions
such as the existence of neutral currents and the W and 2
particles has been spectacular.

However, the model suffers from various problems. For
instance, there are 19 free parameters in the theory whose
values are put in by hand and there is no explanation from

the gauge structure of the theory to explain the assumed



handedness of neutrinos. Moreover the Higgs field remains
undetected and elusive, apart from being totally mysterious
from a purely theoretical point of view. (Except for the
fact that, so far, it is the only known way to give masses
to the weak gauge bosons and at the same time maintain the
renormalizability of the theory).

Due to these and other problems, and in the light of
general support for (quantized) gauge field theories,
physicists have been searching for higher and higher gauge
symmetries which would partially answer some of the problems
at the electroweak energy scale.

One of the most attractive theories beyond the SU(2),
U(1), theory is its left-right symmetric (LRS) extension
based on the gauge group SU(2)L~ SU(Z)R- U(l)yi. This
model relates the question of handedness to the
symmetry-breaking energy scale associated with the SU(2)R
part of the gauge group. Its structure is sufficiently rich
to include a mechanism to generate very 1light left-handed
and massive right-handed neutrinos consistent with
laboratory and cosmological data.

In this thesis an analysis of the Higgs sector of the
minimal version of the LRS theory has been made. In
particular, the Higgs potential is studied in Chapter 3 and
certain conseguences of it are analyzed. The
renormalization group improved hadronic decay width of the
Higgs field in the IRS thecry are calculated in Chapter 4.

In Chapter 5 the scattering cross sections for the




production of the LRS theory Higgs fields through e'e
annihilations have been calculated. The various bounds for
the masses of the underlying Higgs fields in the
calculations of Chapters 4 and 5 have been chosen by keeping
in mind some general constraints discussed in chapter 3.

For the sake of completeness, some background material
on the Standard Model and ite LRS extension are provided in
chapters 1 and 2. Also, some preliminaries on the QCD
renormalization group equations, related to the subject of
chapter 4, are given in appendix B. The notation and
conventions used throughout the thesis are given in Appendix
A.

The thesis is concluded with some remarks and future

prospects in the LRS theory.



CHAPTER1

THE STANDARD MODEL

1.1 Introduction

In this chapter the unified theory of weak and
electromagnetic interactions of Glashow, Weinberg and
Salam'"(GWS) will be described in some detail. 1In 1961
Glashow constructed a model of weak and electromagnetic
interactions of leptons which was based on the gauge group
SU(2) x U(l). This theory is based on the assumption that,

together with the photon, there evist also charged W and

neutral Z intermediate bosons. The masses of the W and 2
bosons were introduced 'by hand". As a result, the model
was unrenormalizable. In 1967-68 Weinberg2 and Salam’

constructed the SU(2) x  U(1l) model of electroweak
interactions of leptons with spontaneous gauge- symmetry
breakdown. In 1971-72 ‘'t Hooft' and others® proved that
models of this type were renormalizable. The model was
subsequently generalized to inciude quarks6 using the
mechanism proposed by Glashow, Illiopoulos and Maiani’. The
GWS theory is based on the assumption that there eaxist
charged and intermediate vector bosons and it is constructed
so that massless fundamental fermions ( leptons and quarks )
obey 1local SU(2) x U(l) gauge invariance. Then the
interaction ( again 1locally gauge invariant ) of Higgs

scalar fields, with both gauge vector bosons and fermions,




is introduced. As a consequence of the spontaneocus
breakdown of the underlying symmetry, leptons, gquarks and
intermediate bosons all acgqguire masses. In the following
sections these steps will be described. Further details can

be found in Refs.9-13.

1.2 Quantum Electrodynamics (QED)

A good starting point for a discussion of GWS tneory is
Quentum Electrodynamics (QED). QED is the first and
simplest gauge theory.

The Lagrangian L for the massless electroumagnetic field

,10

A“ interacting with a spin —%— field y of bare mass m is’

- _ 1 uy - T
L 7 Fqu + Y (i Dl~1 m) Y (1.1)

here, Fuv is the electromagnetic field tensor

where e 1is the unit electric charge and Q is the charge
operator. This Lagrangian is invariant under local gauge

transformations



Y(x) — U(X)y(x) ' Au(x) —_ A“(x) + Bua(x) (1.2)
with

U(x) = exp (-ie Q a(x))
and arbitrary function «(x). For infinitesimal o(x),
P(x) — (1 - ie Q a(x))yY(x) (1.3)

It is sufficient to discuss infinitesimal transformations
since finite transformations can be obtained from them by
integration. Retaining only terms of lowest order in a(x),
it can be shown that L remains invariant under the gauge
transformations (1.2) and (1.3).

Local gauge invariance demands that there be a gauge
field Au which interacts with fermions in a prescribed way.
Had one started from non-invariant y fields, the Lagrangian
would already have been invariant under global
transformations (U independent of x) but local gauge
invariance would have required the existence of Au fields

plus the interaction term

L =-eJ"a
int em [

where J5m= Y 7“Q Y is the electromagnetic current.

The Euler-Lagrange equation

6,0 8L / 8(3,0) 1 = oL / 89,




obtained from the requirement of stationary action for any

field ¢r, yields the following equations of motion of

electromagnetism
T oMy -
8, F I, + {¥D -my =0 (1.4)

JgH = 0, implying that the

As a result of (1.4), au o=

electromagnetic current and hence the electric charge q is

conserved, where

q = J ° @ (1.5)

em

This is an example of the celebrated Nother’s theorem,

stating that for each continuous symmetry ,
¢r — ¢r - 1i¢€ Arsq&s (1.6)

with € an infinitesimal parameter and Ars constant

coefficients, there is a conserved current
J(x) =~1i A ¢ 8L /3 (3,9) (1.7)

In the 1language of group theory, the QED gauge
transformations with scalar phase a(x) belong to the Abelian
unitary group U(l) and the full Lagrangian is said to have

U(l)0 symmetry, with the charge operator Q as the generator.



The QED minimal coupling of the photon A“ to spinors (see
(1.4)) 1is introduced through the covariant derivative Duw
and is determined purely by the transformation properties of
¥ under the U(l)0 gauge group. Other gauge invariant
couplings, however, can be constructed ( e.g., @ aqu“Vw )
but they are not renormalizable, as can be checked by simple

. . . -12
dimension countlng9 .

1.3 Yang-Mills Fields and the Unbroken SU(Z)LxU(l)Y

Model

Gauge transformations can also involve internal degrees
of freedom. For example, consider an internal symmetry
group SU(2) such as isospin under which spin —%— fields

transform as doublets. Their free field Lagrangian is
= 7 . o H
L-—w(ua“—m)w (1.8)

where Yy and Y are row and column vectors in the isospin
space, respectively. In analogy with QED, one can now
require invariance under the infinitesimal 1local gauge

transformation
W(x) — [ 1 - ig d(x)-T ] ¥(x) (1.9)

where z(x) is an arbitrary infinitesimal vector in the
isospin space and T = ( T1,7‘2,T3 ) is the isospin operator

whose components Ti are generators of SU(2) group




transformations. The Ti form a Lie Algebra“’12 with the

commutation relations

[T T, 1=4i¢g T, (1.10)
When operating on isospin doublets, the matrix
representation is T = -%;— T, where T, are the Pauli

matrices.
In order to make the y-field part of the Lagrangian
invarint one has to introduce an appropriate covariant

derivative Du. Thus

=V (i 7“0“ -m) v , D=4, +ig W“-T‘ (1.11)

L

Y

provided that an isospin triplet of Yang-Mills gauge fields
(1 =1, 2, 3) exists and transforms simultaneously as

W
14

Wu — W“(x) + au&’(x) + g ’&(x)xw’u(x) (1.12)

This transformation on the gauge fields is more
complicated than in the QED case, because of the non-Abelian
nature of the group SU(2). The gauge invariance of Lw is
evident upon inspection.

A gauge-invariant form for the W part of the Lagrangian

can be written as



where

Ay = 0,8, — a8, —g @, @

. (1.14)

v

In addition to the usual kinetic energy terms, this
introduces cubic and quartic self-couplings of the W“
fields. This is necessary to keep the gauge invariance of
the theory and Is a result of (1.10) and (1.12). An SU(2)
gauge model is a canditate for weak interaction theory,
(4]

since the isospin triplet W could consist of W', W, W

bosons to transmit the weak force, with

wi=7;—(wm:iw2u) , W= w (1.15)
where the field operators wi are defined to annihilate W
bosons, This model, however, 1is unsatisfactory for a
variety of reasons. Most importantly, the effective
low-energy form of weak interactions implies that the
charged bosons must be very massive, and alsoc implies a
left-handed structure for the charged-current couplings%lz
Also, it is desirable to unify weak and electromagnetic
interactions into single gauge theory. To generate the
left-handed structure of charged-current weak interaction,
an SU(2) gauge symmetry is applied to left-handed fermion
fields v only, where left- and right-handed fermion fields

are defined as

1

b= (- ¥, W= (1F )Y

10




The fermion mass term myy = m( JLWR + ﬁRwL ) 1is, however,
not invariant under SU(Z)L. Therefore, at this stage, one
takes the fermions to be massless.

The conserved gquantum number corresponding to SU(2)L is
the weak isospin ?L. In addition to SU(Z)L, an independent
U(l)Y gauge symmetry is introduced whose conserved gquantum
number Y is called weak hypercharge. The U(l)Y symmetry is
essential to incorporate conservation of the electric charge
Q and unify the weak and electromagnetic interactions in a
common gauge structure. The weak hypercharges are specified

according to the formula

_ 1
Q=T +—Y
in analogy with the Gell-Mann-— Nishijima formula. This
formula simply reflects the fact that the gauge group,

namely SU(Z)Lx U(l)Y is a direct product of two other gauge

groups. Right-handed fermions are assigned to transform
under U(l)Y only; this is to prevent introducing
right-handed neutrinos. Left-handed fermions transform

non-trivially under both SU(2)L and U(l)y. The electroweak
qguantum numbers for the first generatiorn of quarks and
leptons are given in Table 1 below. it is a mystery of the
Standard Model why Y takes values such that the lepton and
guark charges are obtained. With equal numbers of quarks

and leptons and three cguark colours, these quantum numbers

11



lead to the cancellation of divergent chiral anomalies''!’

(see Refs., 11 and 13 for details).

Table 1

T T, - 0
YeL _%~ —%_ - _%i_ ©
%L _é— - _;- - _%‘ -1
4 —%_ _%— _%_ 3
R e .
e, 0 0 -1 -1
u 0 0 - § -~ 2
d, 0 0 - _%_ - _g_

The massless gauge fields in this model are an
isotriplet Wu for SU(2), and a singlet Bu for U(1) . The

Lagrangian is

12




- 1 =suv, 1 uy - . U
L=— — W ﬁuv —— 8B, + ¥ idfD (1.16)
with a seperate fermion term for each field wL and wR. The

field tensor wuv is defined as in (1.14) and

The covariant derivative is

. . 1
=4 + . + ‘— B Y .17
Du " ig Wu 7 ig'— u (1 )
The Lagrangian is invariant under infinitesimal 1local
gauge transformations SU(2)L and U(l)Y independently.
Applied to the isodoublet field ¥ , the weak isospin

operator T can be represented as ?/2 in terms of the Pauli

matrices. One defines isospin raising and lowering
operators ¢ = (TltiTz)/x/i and hence, W7 = WT + WT +
WT.. For the electromagnetic interaction to be unified

with the weak interaction in this model, the electromagnetic
term ieQ must be contained in the neutral term i( ngT3 +
g’%—B“Y ) of (1.17). Therefore the W, and B fields must be
linear combinations of A and another neutral field Z; since
all the vector boson terms have the same normalization, one

can write this relation as

13



[ cose, sinaH ] [ V4 ]
= (1.18)

-sing cos8 A
W W

where 8, is the electroweak mixing angle (Weinberg angle).

Hence
ig WT + ig'—— B Y = ia I sing T. + —— ¢'cos8 Y ]
3°3 g2 9 W3 2(’ W
+ iZ | cos8 T - 1 ‘sinB Y ]
g9 W3 2 g W
For the coefficient of A to equal ieQ = ie (T, + —%—), one
needs
g = e/sinew . g’ = e/cose, (1.19)

and hence, 1/g2-+ l/g’2 = 1/e2. The Z term of the covariant

derivative can be written as

Du = 1gz44u ( 73— xHQ )
where
= € and x = sin®e (1.20)
9, sinewcosew W W .

The interaction of gauge bosons with any fermion field

¢ arises from the term @iz“Duw in L which can be written as

1 = egH g o+ - u
L' = el A + g5 (JTW, +ITW )+ g0 Z (1.21)

14




where

JH=vz gt Ty (1.22)
d=vt T, -xe1v (1.23)
7= 0 vy (1.24)

The angle 8, is a parameter of the model. For given 8,
all gauge couplings are determined by the electric charge e;
the weak and electromagnetic interactions are thereby
unified.

The deficiency of this model as it stands is that the
W' and Z bosons and the fermions are all massless. The
problem is to generate the required masses while preserving
the renormalizability of the theory. This 1is achieved,
subsequent to spontaneous symmetry breaking, by the Higgs
mechanism where the gauge symmetry of the Lagrangian remains
but is "hidden" by the appearance of a preferred direction

in weak isospin space, as described below.

1.4 The Higgs Mechanism

In the Standard Model an SU(2) doublet of scalar fields
¢ is introduced. 1Its self-interactions provide the (Higgs)
mechanism subsequent to spontaneous symmetry breaking (SSB),
thus giving masses to gauge and fermion fields. It also
gives rise to a new neutral scalar particle, the Higgs

boson. The Lagrangian (1.21) is thus modified through the

15



addition of L, and L' where

% ¢

_ 2 2
Ly = IDu¢| - V(I®17) (1.25)

Here, 1312 = ¢'® and Ly

coupling of ¢ to fermions, to be discussed later. The most

is the term representing the Yukawa

general renormalizable expression for the scalar potential V

is
v = p%1e1% + Vet (1.26)

and one specifies the isodoublet as
¢~0
¢ = (1.27)
0

where ¢° and ¢° are each complex fields with the following

guantum numbers

1
T T, ——Y Q
+ 1 1l 1
¢ 2 2 2 1
0 1 1 1
¢ = T~z Tz 0

-

In a classical theory with u?<0 the ground state of

occurs at 1%[® = — —%— Z/A. The guantum analog is a

1312

16




2 in the physical

non-vanishing expectation value of [&]
vacuum state. The appearance of this non-vanishing vacuum
expectation value (VEV) selects a preferred direction in
weak isospin space and thereby "spontaneously breaks" the
SU(2)x U(1l) symmetry.

Since conventional perturbation theory is formulated

for fields with zero VEV, it is appropriate to separate out

the VEV and redefine the scalar doublet ¢ as

o (x) = exp[ i géz) T ][ ” N H(x)) V3 ] (1.28)

where u/vZ = (-u2/22)'? and the real fields £,.(x), £,(x),
g3(x), and H(x) have =zero VEVs. By a finite gauge
transformation under SU(2)L with z(x) = ?(x)/u, one can
remove the phase factor from ¢(x) in (1.28), eliminating the
explicit appearance of E’(x) in the Lagrangian. In this
"unitary gauge" the 2 degrees of freedom seem to vanish but
essentially reappear as the longitudinal components of W
and Z when they acquire masses; the ? degrees of freedom are
said to have been "eaten" by the gauge fields.

The Goldstone theorem'’ states that massless spin-0
particles appear in a theory when a continuous symmetry is
spontaneously broken; physically they embody the zero energy
exitations that were previously described by symmetry
transformations. For global symmetry breaking such Goldsone

bosons are unavoidable but in gauge symmetry breaking by the

17



Higgs mechanism the situation is different. There are three
Goldstone bosons in the present case that one can represent
by the 2 degrees of freedom. These degrees of freedom are
gauged away from the scalar sector but essentially reappear
(with mass) in the gauge field sector, where they provide
longitudinal masses for W' and 2°.

The covariant derivative operation on an isodoublet

field expressed in terms of the physical A, W', and Z fields

is
. i et -
= + + W+ W
DIJ- 6u ieQ Au 72— g ('C u T u)
+ig (=T - xQ)Z (1.29)
z 2 3 W :
where
+ + o 1 - _ _ 60 O
T =V2 T = [ 0 0 ] , T =V2 T = [ 1 o ]

Since in the unitary gauge &(x) has only a neutral

component, one obtains

N S5~ g’ (s + H)
DHQ = 75 .
auH - 3 J.QZZ(&S + H)

which after substitution in (1.25) gives

18



! 2 1 2 4 = 2 1 2 2
Ly = —5— (8H)™+ ——~ gWW (s + H)" + —— g,ZZ (s + H)
SV [ = (s + DY (1.30)

2

The &° terms provide W and Z boson mass terms

2, - 1.2
MHWW + -—2——MZZZ
with
M
1 . = —2
Mw = —5— gv and M2 =——gms = cosew (1.31)
while the photon (A“) remains massless.
The kinetic and potential terms in Ly give
1 2 1 2, .2 1 22 4y’ il
T(BH)—T(—ZM)H +—4-u&9[—1+-——&9-3-+?:| (1.32)

describing a physical Higgs scalar boson of mass m, = VC;;E
with cubic and quartic self-interactions.

As one can see from (1.30), the field H has no
electromagnetic interaction and its interaction with the
other gauge fields are given by the cubic and quartic terms

(= g°W'W + —— g°ZZ ) ( H® + 20H ) (1.33)

all of which are completely specified by the gauge

19



couplings.

In physical terms, the final result of the Higgs
mechanism is that the vacuum everywhere can emit and absorb
a neutral colourless gquantum of the Higgs field that
carries weak isospin and hypercharge quantum numbers. As a
result, the fermions and the W and Z bosons that couple to
such a quantum effectively acquire masses, but the photon

and the gluons that cannot couple to it remain massless.

1.5 Parameters of the Gauge Sector
As has been described above, the parameters g, g’, and
s determine the gauge field masses and interactions in the

standard model. However, it is customary to work with other

more convenient sets of parameters. For 1low energy
2

electroweak interactions a = 62/4n ' GF = _12_%_ ( the Fermi
8 M“

coupling constant ) and shfew are commonly used because the

first two are very accurately known, leaving sixﬁaw as the
single parameter (characteristic of unificaticn) to be
specified. The basic parameters are related by ¢g = e/sinew,
g’'=e/cosé and

o =2M /g= ( V2 G )" = 246 GeV (1.34)

and the weak boson masses are

= i = / i
Mu A/ SJ.nGH and MZ A 51n6wcoseu

20




where

A= (noa/ V2 c-:F)"2 37.2810 * 0.0003 GeV
with G, determined by the mean lifetime of the W

particle within certain radiative corrections.

1.6 Lepton Masses

Spontaneous symmetry breaking will generate an electron
mass if one adds a Yukawa interaction term for leptons and
the ¢ fields to the Lagrangian. This term must, of course,
have the property of being both renormalizable and gauge
invariant under the SU(Z)Lx U(l)Y gauge transformations. It

is given by
- + s
L=-G, [ [ (2¢t)+ (L)L ] (1.35)

where Gc is a new coupling constant (£ = e, u, T are the

lepton-type indices) and

Substituting for &(x) in the unitary gauge (see

paragraph following (1.28) ) gives

L=—(Ge&9/1/'2-)§e-—(Ge/\/§)H§e (1.36)

21



Thus the electron acquires a mass
me=Geu/\/§

and also a coupling to the Higgs boson. Replacing G, by V2
m /s and using © = (V2 Gqum, the Higgs boson coupling to

the electron can be written as

m
e

Ay

Hee=-2"" v m_H e e
This coupling is very small, G = 2.9 . 107°.

One can apply similar arguments to second and third
generations of 1leptons to obtain the Yukawa interaction
terms

-2 VG (mH&e+ m“Hﬂ B+ mHTT) (1.37)

The Higgs Mechanism for generating masses introduces
an arbitrary coupling parameter for each fermion mass, and
hence provides no fundamental understanding of the various
mass values.

The neutrinos cannot acquire masses or couplings to the
H field in an analogous way, Since Ve do not exist in the
Standard Model. 1In the scalar interactions with leptons one
cannot consider couplings that mix generations because for

massless neutrinos mixing among the three neutrino states
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has no meaning. In this manner, v, is defined to be the

partner of e, V“ of u, and Vo of T.

1.6 Quark Masses and Mixings
Quark masses are also generated through Yukawa
couplings to the scalars. The fundamental quark field

eigenstates of the unbrokan gauge theory are

u .
Q, = [ 1] ' u. ' a . (r=1,2,3)

where Q. is an su(2), doublet with Y = 1/3 and u. and dm

are SU(2) singlets with Y = 4/3 and -2/3, respectively, and
i is the generation index.

In order to generate gquark masses for both u- and
d-type quarks one needs not only the doublet ¢ with Y = 1,

but also the conjugate doublet

¢0
5=i1:4>'=[ ] (1.38)
2 -
-¢
which transforms as a doublet with Y = —1. The most general

SU(2)Lx U(l)Y invariant renormalizable Yukawa interaction

term in the Lagrangian is then

~ = =t = ot
1[ ¢ 0. (30, +6 d (3 QJL)] + h.c. (1.39)
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where inter-generation coupiings are allowed. As before,
from the VEVs of the & and ¢ one obtains mass terms for the

charge 2/3 and charge -1/3 guarks

u
1
= = = u
( u .oy, u3)R M u, + h.c. (1.40)
/L
dl
- - - d ,
(d ,d ,d ) M |q|+n.c. (1.41)
3/L
where
P a - v
Mn T V2 Gx; ! ij V2 Glj

are quark mass matrices in generation space, each depending
on 9 complex parameters. These matrices are in general not
Hermitian. Moreover, since these are (non-degenerate)
complex matrices they can be diagonalized by bi~unitary

transformations. Then one has

u d d
1 1

= , d| =D
2 L,R 2 L,R
3/L,R t d3 b
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which simultaneously diagonalize M and M

U;MIJ = 0 m 0 (1.42)

, D, and

. . . -1,.d
and similar expressions for DRbdDL, where l%, U .

L

D are unitary matrices and the diagonal entries are the

u

(physical) guark masses. The weak eigenstates u, u, )

are linear superpositions of the mass eigenstates u, c, t

and likewise dl, dz, d3 are superpositions of d, s, b with

separate relations for L and R components.

In the charged-current weak interaction one encounters

& rHa , a yMa

the bilinear terms a yHa ,
i’ i 2L 2L 3L 3L

(see(1.22)) whose sum can be represented as an inner product

of vectors in the generation space

c
= -
(w)
-

I~
0

(1.43)

o

Therefore in general there will be generation mixing of

the mass eigenstates, described by the matrix

V=uU D (1.44)
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In the neutral-current interaction of the standard

model one encounters instead bilinear forms such as

u u
- = — - +
(ul, u,, 3)L u | = (u , ¢, t)L ULUL c (1.45)
t
3L L

Hence, there is no mixing in this case and the standard
model prohibits flavour changing neutral current (FCNC)
interactions.

Like the mass matrix itself, the mixing of quark
flavours in the charged-current weak interaction has no
fundamental explanation, though theoretical attempts to
predict the mixing angles have been made in extended gauge
models.

In terms of the above general mixing matrix V, the

charged weak currents for quarks are

J =(u,c,t) ¥V |s (1.46)

Usually (as a matter of convention), the mixing is ascribed

completely to the T, = -1/2 states by defining

d’ d
s’ =V
b’ b
L L

and therefore the (physical) quark weak eigenstates are
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It can be shown’ that for N generations the quark

mixing matrix contains (N—l)2 physically independent
parameters (after absorbing all the irrelevant unphysical
phases). Since a general N-N real unitary matrix (i.e., an
orthogonal matrix) has N(N-1)/2 independent parameters, the
mixing matrix generally contains (N-1)(N-2)/2 independent
phase angles.
Therefore a complex phase in L which can be realized in the
guark sector through V requires the introduction of three or
more generations. This complex phase can be taken to be
responsible for CP violation in K- K° system.

For three generations, a convenient parametrization

widely used is due to Kobayashi and Maskawa®' (KM)

-s C -s_s
1 1 3 '8 1 3 '8
= - +
VKM s, c, c,c.c, szsae“S C,C.8, szcae“S (1.47)
s sc_+ c.s -
1 2 c‘l 2c3 c2 3e CISZSS c2c3e
where s = sine1 and c,= cosé (i = 1, 2, 3). By suitably

choosing the signs of the quark fields, one can restrict the
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angles to the ranges

0=8 =m/2 , 0

1A
O
1A

2n

The phase & gives rise to CP-violating effects (see Re..9
for details and further references).

By using experimental data from processes such as K--
ey, charm production in neutrino collisions, v“N — u +
charm + X, and B — X, various bounds on the values of the
moduli of some elements of the KM matrix VKH have been
found®®. These can be combined with the unitarity property
of VKM to yield the moduli of other elements. The moduli of

the matrix elements lying in the 1o ranges are as follows

0.974-0.976 0.218-0.222 0.000~-0.012
|Vm”= 0.183-0.231 0.81-1.0 0.035-0.04°9 (1.48)
0.000-0.022 0.032-0.050 0.998-0.999

Information about the CP-violating phase & can be
inferred from theoretical calculations of the £ parameter in
the K°— R° system. These studies suggest that the phase &
is in the range 30°= & = 177°.

This concludes our brief review of the |Dbasic

ingredients of the standard model.
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CHAPTER 2
BASIC FEATURES OF THE LEFT-RIGHT SYMMETRIC MODELS

2.1. Introduction.

In spite of its many successes, the standard SU(3) x
SU(Z)LA U(l)Y model of particle physics, which provides a
fundamental theory of the non-gravitational interactions of
quarks and leptons valid up to energies of oxder 1 TeV,
leaves many problems unanswered. Included in its
shortcomings are the following.

s The model is not really unified as there are three
coupling constants, g_. g’, g, corresponding to the
respective gauge groups.

s Quarks and leptons are not really unified as they
appear in different multiplets. Because of this fact, there
is no a priori reason to expect the magnitudes of the
electron and proton charges to be equal, yet they are so to
many significant figures.

s The model contains at 1least 21 parameters- quark
masses, the © angle of QCD, CKM mixing angles, 8, etc.-
which are not predicted by the theory itself and must be put
in by hand.

s There is no explanation for the family structure of
three (or more) generations; as I. I. Rabi put it, "who
ordered the muon?" Moreover, so far as everyday life goes,

the first generation is all that we require. Related is the
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question of fermion masses; in the standard model the masses
are "dialed in" as Yukawa couplings.

m Why is the theory left-handed?

m» Where does the weak scale come from, why is it so
small compared to the Planck scale, and how is it to be
stabilized against radiative corrections?

s Where does gravity fit in?

m Why is the vacuum energy so small today (this is
inferred from the very small value for the cosmological
constant A=0)?

These shortcomings/questions clearly point to a grander
theory that goes beyond the Standard Model. 1In the search
for physics beyond the standard model theorists have
explored various possibilities, such as: compositeness,
left-right symmetry, grand unification, supersymmetry,
superstrings. Each approach addresses a particular aspect
of this search and is not necessarily in conflict with the
others. Our goal in this chapter is to present some of the
basic features of the left-right symmetric extension of the
Standard Model'. This condensed version will enable us to
present a rather detailed analysis of the Higgs sector of
the minimal L-R (left-right) symmetric model in the next

chapter.
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2.2, Why Left-Right Symmetry?

The original motivation for introducing the L-R
symmetric models based on the gauge group SU(3N¥ SU(Z)U
SU(Z)R/U(l)B_L was to provide an understanding of the origin
of parity violation in weak interactions®. Accordingly, one
starts with a weak interaction Lagrangian which prior to the
breaking of gauge symmetry respects all spacetime
symmetries, just 1like the strong, electromagnetic, and
gravitational interactions. Afterwards, the observed
violation of parity shows up as a result of spontaneous
symmetry breaking. In other words,in this model the
violation of parity is a result of the non-invariance of the
vacuum under parity. The most interesting feature of this
model is that it reproduces all the features of the Standard
Model of electroweak interactibns at low energies, and as
one goes to higher energies, new effects associated with the
parity invariance of the original L-R symmetric model are
supposed to appear.

There exist several other considerations, related to
the weak interaction, which are addressed naturally in a L-R
symmetric model. Among these a very important one is the
mass of the neutrino. Astrophysical and cosmological
considerations are easily understood if neutrino has a
non-vanishina mass’ in the electron volt range. If however,
m =0, and is in the electron volt range, a most natural
framework to understand it is in the L-R symmetric models.

Also, if weak interaction symmetries are the result of
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some more fundamental substructure of quarks and lepcons,
and if the forces at the substructure level are assumed to
be similar to those of QCD, then there are favourable
arguments4 indicating that the SU(Z)Lx SU(Z)Rx U(l)B__L is
the weak interaction symmetry rather than the SU(ZM} U(l)Y
of the Standard Model.

Another shortcoming of the Standard Model is the lack
of any physical meaning of the U(l)Y generator of the gauge
group. In the L-R symmetric models, this generator
corresponds to the B-L quantum number®, and consequently all
the weak interaction symmetry generators will have a
physical meaning. In fact, in the SU(2)Lx U(1)Y model, the
only anomaly free quantum number left ungauged is (B~L) and
once (B-L) is included as a gauge generator, the weak gauge
group becomes SU(2)Lx SU(Z)Rx U(l)&¢ and the electric

charge is given by5

(2.1)

As a final comment, we consider the status of
CP-violation in gauge theories. In the Standard Model, as
seen in the previous chapter, three generations are required
to have non-trivial CP-violation and all CP-violations are
parametrized by only one phase, SKH , the Kobayashi-Maskawa
phase. But the model does not explain why the observed

CP-violation has milliweak strength. The L-R symmetric

6,14~16
'

models  provide a more interesting alternative
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according to which the smallness of V+A currents can be

understood through the smallness of

2 .
m,_ = (ML/MR) sind (2.2)

where ML and MR are the masses of the left- and right-handed
gauge bosons (see below), respectively, and & is the
CP-violating KM phase.

If parity and CP-violation both owe their origin to the
spontaneous breakdown of gauge symmetry, then (2.2) can be
proved-"8 for three generations or more, and becomes valid
regardless of the contribution of the Higgs sector.

Having listed some of the motivations for studying L-R
symmetric models, we proceed to a discussion of the

minimal L-R symmetric model. This is the model used for the

phenomenological studies presented in the forthcoming
chapters.
2.3. The Minimal Left-Right Symmetric

SU(2) xSU(2) x U(1)_ , Model,

In the L-R symmetric models' the left- and right-handed
fermione transform as doublets under SU(Z)Land SU(2)R,
respectively. Defining the U(1) generator as in (2.1), the

gquark and 1lepton doublets transform according to the

following representations
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o, = (&) =0, (2.3)

Q, = (gi]m = (0, 1/2 , 1/3) (2.3%)
v, = [‘;i]u = (/2 , 0, -1 (2.4)
v, = [‘gi)m = (0, 12, -1) (2.47)

respectively. In (2.3) to (2.4’) the primes indicate that
the fermions are gauge group rather than mass eigenstates,
and i = 1,...,N is the generation index. In order to
generate masses for quarks and charged leptons one requires

at least one Higgs bidoublet, ¢, of the form’

4 .
] = (/2 , /2 , 0) (2.5)
¢

The most general form of the vacuum expectation value
(VEV) of ¢ that is invariant under the electromagnetic U(l)U

is
(2.6)

where k and k'’ are, in general, complex. In order to break
the symmetry down to U(l)0 additional Higgs multiplets with

,10

B-1#0 are needed. A very popular choice’ (see also

34




chapters 3 and 5) is to introduce Higgs triplets AL and Aw

transforming under the gauge group SU(Z)Lx SU(Z)Rx U(l)B_L

according to the following representations

with VEVs given by

(2.7)

(2.8)

(2.9)

To be more explicit, let us note that under the gauge

transformations UL and UR of the gauge groups SU(2)L and

SU(Z)R, respectively, the Higgs fields ¢, ¢ , AL, and AR,

where

transform as follows
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t t
A, —UAU . A — UAU (2.12)

Then, in order to have parity as a spontaneously hroken

symmetry, one requires the discrete symmetry

.‘.
l//iL > wm ' AL — AR , @ e—> ¢ (2.13)
which also implies that 9 =9, = 9. As a consequence of
this, the most general Yukawa Lagrangian for the

Higgs-Fermion couplings can be written as
L =fyoev +hyeéy +hooQ

+ h¥ ¢ w + ih ( wICrzaLwL +ylct Ay ) + h.c. (2.14)

2°R"R
where C is the charge conjugation matrix and due to
left-right symmetry the Yukawa coupling matrices f and hl
are all taken to be hermitian.

The gauge covariant derivatives for the left- and

right-handed fermions fLR of the theory are given by

pher = aMer v = (g W 4 gvBt ) £

L,R 2 L.R (2.15)

where t° are the Pauli matrices, g’ is the U(1l) gauge
coupling, and Wi , Wi , and B are the SU(2) , SU(2)_ , and
U(1l) gauge bosons, respectively. The covariant derivatives

of the fields AL and A are defined similarly to (2.15),
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with the t° matrices replaced by matrices of appropriate

dimension. Similarly, one has

pHy = ¢ + —%— (g r""wLa“ ¢ -g¢ W) (2.16)

The charged boson mass matrix can be read off, as

usual, from the kinetic term of the Lagrangian

- LU M A
L, = Tr [ (D,¢) D"¢ + (D,a)'D"A + (D,A) DA ] (2.17)

which in the Wl - w;.basis, is given by

. _ (M M e
M, = 2 _-id 2 (2.18)

M" e M

LR R

where
M= (v 1P+ kP K1)
M = —j— g (v I® + 1kI® + 1k 17)
Miaela = - % g2 k' "k
where a is the (relative) phase of k' , X .
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Since Mi is a hermitian matrix, it can be diagonalized
by a unitary transformation, which can be written in ternms
of one angle and three phases (cf. the discussion of the KM
matrix in ch.l). Since two of these phases can be absorbed
in the redefinition of the mass eigenstates an' the gauge

eigenstates can be written as

W cos( -sing W

W e'Ysint e'“cost W

where { is the mixing angle of the left- and right-handed

gauge bosons and w is a phase. The mass eigenvalues are

2 1 2 2 2 42,2 2 2|12
M = -5 [ M+ Mz [(MR ML) + 4IMLRt] ] (2.19)

tan 20 = ——— ; €'Y = ze (2.20)

where the two different signs in (2.20) represent two

physically equivalent phase conventions for Wzll.
(2

For [v.[" » Iklz,lk’lz,IvR(2 , Which is the physically

9,10
relevant case , one has
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M =—}—g (v 12+ 112+ k1) (2.21)

2 1 2 2
M, = 4 9 |VR| (2.22)
¢~ 3 2lk kl (2.23)
fv_1
R
Next, we consider the quark gauge- and mass-

eigenstates. 1In order to determine the quark mass matrices
after spontaneous symmetry breaking we have to use the VEV
of the field ¢. Then, by replacing ¢ with <¢> in (2.14) and

expanding the relevant terms, we obtain
1 —I I. ’ 1 -I 7 d ?
—5— U/ (£k + hk’")u; + —= & (fk’+ hk)d/ + h.c. (2.24)

from which the egnations for the quark mass matrices are

readily found

MY = 7-21— (fk + hk’") (2.25)
Md _ 1 ’ .

As we can see L-R symmetry alone is not sufficient to
make M’ and M® hermitian or symmetric. However, if k and k’
are real (which 1is not natural if there are explicit
CP-violating phases in f and h), then M“? are hermitian

(manifest L-R symmetry). Similarly, if f and h are real but

39



X and/or k’ are complex (spontaneous CP-violation) then Mo
are complex symmetric matrices (pseudomanifest L-R
symmetry) . Later on when we Wwill analyze various
possibilities for the Higgs sector of the minimal L-R
symmetric theory, it will become clear which choice for the
quark mass matrices is the most viable one. But for now,
we will proceed with the general case without making any
specific choices.

The gauge and mass eigenstates of the quark fields are

related to one another through the (bi)unitary
transformations
u '
uL,R = VL’R uL,R (2.27)
— d 7’
dL'R = VL,R dL,R (2.28)
where the matrices V:R , VzR constitute the biunitary

transformations required to diagonalize the mass matrices M

and Md,

viM vVl =D (2.29)
L R
AR vit = p (2.30)

The charged current interaction terms in the Lagrangian

can therefore be written as
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g = H+
+ 75—-u U d W  + h.c. (2.31)

where

q v (2.32)

are the left- and right-handed Kobayashi-Maskawa matrices.
Even though M“® in equations (2.25-26) are not the
most general complex matrices, there is no simple 1linear
relationship we can find between the phases in u and U,
There are N°- 1/2 N(N-1) = 1/2 N(N+1) phases each in UL and
UR. There are 2N-1 relative phases between 2N quarks that
can be used to remove some of the phases in Iﬁ_ and UR.
Therefore, one is left with 2:1/2 N(N+1)-(2N-1)=N°-N+1
phases . Note that there 1is originally a phase in the
charged gauge boson mass matrix (2.18), but this phase can
be removed by redefining the phase of Wi (or W:) so that
this phase will be combined with the overall phase of U, (or
UL). Alternatively, one may choose to move the overall
phase of UR (or UL) to the gauge boson mass matrix. If this
is done, there will be only N°-N phases left over in U and

UR. For N=2, this number is 2, and for N=3, this number is

6. Some of the interesting ways to place these phases are®
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-

cosd sind (e'“sz)cosﬂ (e"al)sim?
U = L L U= 5 R R
L . ! 1 . id
sunSL cosz?L (e 1) 51n19R (e "2) cosﬂR
18 . -14 .
cosyd (e "1)sing (e 2) cos¥ sinv
U= L L U= R R
- , .
- -(e la1)sinﬂL cosf}L -sing, (e"ﬁz)cosﬂn

and it can be shown that these are related by a change of
phase convention. It is worthwhile to note that, although
the discovery of a third generation of quarks makes it
possible to have a Kobayashi-Maskawa (KM) CP-violation
without an extension of the standard model, the small value
of the mixing of the third generation may raise the question
of whether the KM model is qualitatively satisfactory”. In
a recent work'® it has been shown that both a relatively

large Dn=10'25e cm '°

for the electric dipole moment of the
neutron and é:’/t:-~-10'3 (see Ref.20) can be obtained in a
left-right symmetric extension of the two generation version
of the standard model. This indicates yet another very
attractive feature of the L-R symmetric models, which is
totally absent in the Standard Model. Going back to the
left- and right-handed KM matrices v and U* , 'et us note
that for the special case of manifest L~R symmetry M*? are
hermitian, so that U"=U". For pseudomanifest L-R symmetry

UR=UL'K, where K is a diagonal phase matrix'’.

Transforming the gauge bosons into mass eigenstates and
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using the L-R KM matrices UL’R, the charged current

Lagrangian in (2.31) can be rewritten as

. cos - L i [.R L+
LCC = ﬁVf_ u ru[(U ¥+ tan{ e U 7/R)W1

+ (-tanz U" 7+ e'? UR7R)W‘:+]d + h.c. (2.33)

where vR'L = (1175)/2 . As indicated above, one can absorb
the phase e'“into the quark mixing matrix U". Once this is
done, the sign of ({ is fixed if one picks a definite
convention for the phase of W . The 1leptonic charged
current interactions is analogous to (2.33), with u — v and
d — e, and 1 AN VL’R, where V"? are the leptonic
analogues of the L-R KM matrices®.

This concludes our survey of some of the basic features
of the L-R symmetric models that will be needed for the
purposes of this thesis in the forthcoming chapters. Also,
some important matters that have been only pointed at, in

this chapter, will be elaborated on as we need thenm.
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CHAPTER 3

THE HIGGS SECTOR OF THE MINIMAL LEFT-RIGHT
SYMMETRIC MODEL

3.1. Introduction

As was pointed out in the previous chapter, in the
Left-Right symmetric extension of the standard model, parity
is an exact symmetry of the Lagrangian, and is only broken
spontaneously due to a specific form of the scalar field
potential.

The Higgs sector of L-R symmetric theories contains a

bidoublet field ¢ (see 2.5) which is used to generate masses
for the standard W and 2 through the vacuum expectation
values (VEVs) k and k’'.
Oon the other hand, since experimental constraints from K -K,
mixing force W, to be very heavy1 ( > 1.6 TevV ), an
additional Higgs representation with large VEV Vo h%>>k,kﬂ
for its neutral member that couples primarily to WR is
required.

In order to keep the full L-R symmetry of the unbroken
Lagrangian, there must be a corresponding Higgs field
coupling to W, but the VEV of its neutral member v must be
small (vL<<max(k,k')) in order to preserve the standard
model relation between the wL and ZL masses (see chapter.l).
If the additional Higgs fields are members of doublets, then

all the above criteria can be met, but the theory will fail
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to incorporate a natural explanation of the smallness of

neutrino masses. on the other hand, if these extra Higgs
fields are triplets, then v  can induce a large Majorana
mass term for the Majorana neutrino N, in addition to the
Dirac mass terms induced by the VEV’s of the bidoublet
fields that mix the N and the v (see Ref.2 for details).
Then, since the ratio of Majorana to Dirac mass terms is of
order vR/max(k,k’), one is led naturally to the standard
“see-saw" mechanism which yields a very small Majorana mass
for the left-handed neutrinos.

It is due to the attractiveness of the latter alternative
that we choose to investigate models containing extra
triplet Higgs fields, A and AL (see §2.3). The resulting
Higgs field has many exotic features, and our ability to
probe experimentally these features in the not too distant
future is an important issue.

The principal source of uncertainty in dealing with the
Higgs secto: of the L-R symmetric models is the exact form
of the scalar potential V. An important question regarding
a possible form for V is whether the phenomenologically

required hierarchy for the VEVs : v >> max(k,k’) >>v, is

natural. The most general form of this potential must
contain only quadratic or quartic termsl, in view of
renormalizability and gauge invariance of the theory. In

this chapter we to study the consequences of this
most general scalar potential (with some modifications) by

using the results related to very important constraints
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coming from bounds on the FCNC (Flavour Changing Neutral
Currents), K- K mixings, etc. After these considerations
we will find that there are two Higgs scenarios which are
most viable. The consequences of choosing these two
scenarios (one of which, as we will argue later, is the most
natural possibility) to be the physically relevant cases

will be discussed in the forthcoming chapters.

3.2, The Scalar Potential

The Higgs fields of the minimal L-R symmetric model, ¢,
AL, AR were given in the ©previous chapter in their
respective representations (see 2.5-8). In what follows, we
will use the convenient convention of writing a neutral
fiexd ¢° in terms of correctly renormalized real and
imaginary components as

0

9°= (1/v2) (¢7+ i¢”) (3.1)

We now discuss the form of the scalar field potential.

L-R symmetry requires, first of all, that the potential be
invariant under

A e A , ¢ — ¢ (3.2)

Furthermore, the most general scalar field potential cannot

have any tri-linear terms, due to gauge invariance. Because

of the non-zero B-L gquantum numbers of the AL and AR

46




triplets, these must always appear in the quadratic

combinations A:AL, A:AR, A:AR or A:AL. These combinations,
of course, cannot be combined with a single bidoublet ¢ in
such a way as to form an SU(2)L and SU(2)R singlet. Nor can
these bidoublets be combined so as to yield a singlet.
However, quartic combinations of the form Tr(A:¢ Ah¢*) are
in general allowed by L-R symmetry. But as discussed later
it is physically desirable’ to eliminate such terms in order
that the natural minimum of the potential have v =0. To

accomplish this, one imposes invariance under the additional

discrete symmetry

AL—> AL P AR—> —AR , @ > 1i¢ (3.3)
This discrete symmetry implies that terms which are linear
combinations of Tr($*¢) and its conjugate transpose cannot
be included in the potential either. This is in fact quite
desirable, since it offers a natural potential minimum which
4

avoids FCNC problems most economically.l

Putting all this together, the most general form of V

is then

vV = —ufTr¢*¢ + Al(Tr¢*¢)2+ AzTr(¢*¢ ¢*¢)

+ 2a_ (Tre™d + Trd'y

2 1
5 )

+ A (Tr"d - Trd’e)?

~t

+a,Tro’0 3% 5+ o [Tre’ 30T G+ it 0 3 9]
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- [ at t + 2 .2
M TrALAL + TrARAR] + pl[(TrALAL) + (TrALAL)]

[ pt + ' *
Trd, A A/ AL] + p (Tra A ) (Tra, A.)

4

+ + t
+ ozl(Trdb ?) (TrALAL + TrARAR)

ot ¥ t
+ @ (Trd_ ¢ ¢ A+ TrA ¢ ¢ A))

+ a;(TrA: PN A+ TrA: 33 ) (3.4)

As we can see, there are many more parameters involved
here than in the standard model. Since we are considering
the most general possibility, one does not know at first
whether these parameters can be taken to be complex or not
(in other words, whether the scalar potential is
CP-conserving or CP-violating). We will offer a simple
argument to Jjustify the generally assumed CP-conserving
scalar potential in the minimal L-R symmetric model.

If one takes the Higgs fields of the minimal L-R
symmetric model to be dynamical fields, then all the above
arguments and restrictions based on the various symmetries
of the theory and constraints from low energy phenomenology
still apply. The only difference that will arise will be
the inclusion of various radiative corrections (up to some

arbitrary loop order ) which would contribute to the
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scalar field potential. It would be a lengthy undertaking
to wrtite these radiative corrections for the L-R symmetric
theory in detail. We do not need, however, to go through
such details, and can draw very useful conclusions from
arguments analogous to the ones brought forth in the case of
the standard Model. In the Standard Model it has been shown
that the spontaneous breaking of symmetry can be understood
as having been driven by radiative corrections®. Moreover,
one of the most important features of this procedure of
dynamically driven spontaneous symmetry breaking is that it
makes it possible to set a lower bound for the mass of the
Higgs field, when applying the theory to the Standard
Model.® All these calculations are simply the result of
considering the effective potential ( which involves
radiative corrections arising from n-loop contributions, in
contrast to the ordinary situation in which the tree level
potential is used to the end ). Suppose now that we applied
the same techniques to the Higgs potential of the L-R
symmetric model. We would immediately discover that if the
potential parameters were allowed to be complex, it would
not be possible, in general, to set a real lower bound for
the masses of the Higgs fields in this theory. Therefore,
apart from an inherent inconsistency, the theory would not
allow us to determine the symmetry breaking scale in a
natural way.

Based on this argument, we will continue by assuming

that the potential is CP-conserving , i.e. we take all the

49



physical parameters in the potential to be real.

3.3. Higgs eigenfields and their corresponding masses

Since the vacuum expectation values of the Higgs field
can be taken to be real and non-negative, we have ( see
3.1-2 )

o. _ 1 or. _ 1 o, _ _1 or_ _ _1
<5R> = 75 <6R > = > vR , <6L> 75 <5L > To vL (3.5)

oL _ 1 or. _ k 0 1 or kK’
> =g <8 > =m0 = g <, > = 5 (3.6)

From the twenty real degrees of freedom of the Higgs
fields, six are absorbed in giving masses to the left- and
right-handed gauge bosons, wf ] Wi » 2 and Z .

In order to minimize the potential when all the neutral

fields are evaluated at their respective vacuum expectation

values, we must require that

6v__ 8V _ 8V _ 8V _ .
avL‘ avR' 3k 3k’ (3.7)

which after expanding (3.4) implies that

av _ - 2 2 2 ;2 2 2
_EV: = [ 2u, + p vy + oo (kK + kK'7) 4+ (a kT 4+ o’ k™)

+2 (p, ¥ pz)vi ]vL =0 (3.8)
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av. _ny2 2 2 ,2 )2 1,2
—6—VR_[2uz+p3vL+a1(k +k)+(a2k +a2k)

+2 (p +p,) vi ]vR =0 (3.9)

av _ - 2 .2 ’ 2 2

= = [ 2ul + 2 (A AA A+ ANKT + (ot al) (Vo + V)
2 (A, + Az)kz ]k =0 (3.10)

av. P 2 2 2

—x" = [ 2u1 + 2 (A1+ 4A3+ A5+ Ae)k + (a1+ az)(vR + VL)
+2 (A + A?)k’z :lk’ =0 (3.11)

Also, we must Kkeep in mind that, at a true local minimum,
all physical Higgs bosons must have positive squared masses
for a solution of equations (3.8-11). From these equations

we have aV/av‘ =V, fl(vl) for v =V v

Lot R,k,k'. Thus

the minimization condition for each v, can be satisfied
either by v, = 0 or fl (vi) = 0. We already know that v 0
so that constraints coming from low-energy phenomenoclogy,
namely, the standard electroweak theory will be nmet
satisfactorily. Adopting the non-restrictive convention k >

k‘’, k = 0, we will consequently be left with four possible
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scenarios for the remaining VEVs, v, and k’: (a) v o= 0, Xk’
20 ; (b) v, = 0, kX =0 ; (c) v o# 6 , k' =0 ; (4) v, = 0
, K = 0. Let us start our considerations with v, - From

equations (3.8-9) we realize that

2 2, _ =, 2 _ 2 -
(py=2p,-2p, )(vp = V) =p' (Vv =V ) 0 (3.12)

but since we clearly don’t want to impose vi = vi( which

would simply render the theory inconsistent ), a non-zero v,

would require p‘= 0.
On the other hand there is no symmetry in the theory which
would ensure such a relation among the parameters of the
Higgs potential ( where, of course, the renormalizability of
the theory is automatically taken care of , without any
reference to a more spcific choice of the parameters). So
we conclude that for all but the specific choice of the
coupling constant p‘= 0, we must have V= 0. This is
because if we take v, = 0, then the constraints (3.12) would
simply not arise in the first place. We will take this to
be a natural choice and consequently rule out possibilities
(a) and (c).

Next we have to consider the remaining two scenarios.
From equations (3.10) and (3.11) we obtain ( after taking
v=0)

L

2 ,2 2 _
(<A, + 4A  + A+ A )(K° - K'°) + Aav® = 0 (3.13)
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where Aa (0‘2' a’z)/2. This equation can be interpreted as
a constraint on the V.E.V’s k, k' and Vi which 1is quite
unnatural on the following grounds.

One can arqgue, from the point of view of dynamically
driven spontaneous symmetry breaking, that if such a
constraint among the VEVs existed at the tree 1level (i.e.
3.13), it would be quite hard to imagine just what kind of
argument could ensure similar constraints at any desired
n-loop order, so that the minimization conditions on the
effective potential would all be satisfied. 1In addition, it
can be shown’ that non-zero values for both k and k’ would
almost inevitably lead to the impossibility of a relatively
light Higgs boson without large FCNC.

On the other hand if we take v = 0 and k' = 0, the

equations (3.9) and (3.10) reduce to
2’ = (o + 2 )VE + 2(a + A K 3.14
M, = 1 2’ 'R 1 2 (3.14)
2u = 2(p. + pIVE + (a. + a’)K 3.15
H, P, P, Ve 1 2 (3. )

which, as we can see, for a particular choice of potential
parame’ ..rs uniquely determines the values of k and Vo
Also, when k'’ = 0, there is automatically no mixing between
the left- and the right-handed gauge boscus. Generally,
this mixing is given by the angle { where tan2{ = 2kk’/v§.

Such mixing might 1lead to phenomenological difficulties.
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Such mixing might 1lead to phenomenological difficulties.
For instance, for m(WR) = 1.6TeV one finds tan2{ = 0.005,
which comes quite <close to violating the present
experimental constraint s 0.0055 °. Substantial
improvements in this constraint would require that k’ be
significantly smaller than k. 1In addition, it is desirable
to have k significantly different from k'’ in order to easily
generate a large mass ratio for mL/mbloJl.

We are therefore led to choose the possibility (d): v, o= K'=
0 as the scenario with the most natural expectation value.

In what follows, we shall be using mainly this scenario
for phenomenological studies, although some brief studies on
the scenario (b) will be: discussed in chapter 4.

At this point, the first thing that has to be done is
to find the physical Higgs eigenstates and their
corresponding masses. This 1is achieved by the usual
diagonalization of the appropriate mass matrices that arise

from the Higgs potential. After some lengthy algebra one

finds the following mass matrices (see 3.20 for conventions)

Or

. or or Oor
(1) 1In the basis ¢1- ¢2- SR- 6L

( 2~ - 3
2Kk7A 0 kaa’
) 0 A 0
M= _ - (3.16)
kaa 0] 2va 0
-1, 2,
| 0 0 0 27 vp
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(2) In the 5;’- a:’ basis

-p vZ + Aak® 0
2 2R
M = (3.17)

0 Zqﬁ’vi + Aak®

(3) In the ¢l- ¢2- BR- BL basis

Aav? 0 2 v_k
R R
, 0 0 0
M2 = (3.18)
* 27 v x 0 27 %ha? 0
0 0 0 27(p'Vit Aak®))
Oi 0i 0l (031 .
(4) In the ¢1- ¢2— BR— BL basis
0 0 0
2 =12
M;= 0 AavR + Zk 0 (3.19)
0 0 0
0 0 0 27'p'v
where
A=A+ A, @ =atal, Ac = (a-al)/2 p = p,+ p,
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p' = P, 2(p*t P g = A= A= 4X - A (3.20)
o 2 - 2 - -,= _
A = AavR k (A, (4A_+ A+ Aé)] ) = AZ (4A3+ At +16)

The mass eigenstates can now be obtained by
diagonalizing the matrices (3.16)-(3.19). We find that the
doubly charged sector consists of 6:' and 6:', which are

unmixed mass eigenstates, with masses

2, o+t - _ 2 2
m (aR ) = PV + Aak (3.21)

mz(a;‘) + 2“5'v§ + Aak® (3.22)

The singly charged sector consists of 6; and h', given by

h' = (¢; + 27%ks )/ ( 1+ 27KV )7 (3.23)

with masses

mz(S:) = 273 E’vi + Aak® ) (3.24)

2

2+ 277 ) (3.25)

n’(h') = Aa (v

Oi

The neutral imaginary sector consists of ¢Zi and 6L with

masses
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m2(¢:’) = Aav: + k% (3.26)

n2(8%h) = 2715V’ (3.27)
L R

. or Oor 0 0

The neutral real sector consists of 6L ’ ¢2 , h , and H,
given by

h° = cosa ¢$r'— sina Sﬁr (3.28)

H° = cosa ag" + sina ¢f’ (3.29)

where tan2a = vnk&’/(viﬁ - X3). The masses of these

neutral fields are given by

-1=, 2

mz(af") = 27'p'v: (3.30)
m2(¢‘2’r) = Aav;‘; - k&’ (3.31)
m?(h®) = x% ( 2Xx - a’'?/2p ) (3.32)
m* (H°) = zviﬁ - 2K%X + X%a’'/p (3.33)

Although a detailed knowledge of the many parameters of
the Higgs potential simply does not exist, one is
nevertheless able to put reasonably realistic bounds on the
masses of the various Higgs mass-eigenstates. For example,

since FCNC interactions arise from couplings involving
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¢grand ¢g’ fields, one can use the results of Ref.l to
suppress sufficiently the masses of thes~ Higgs fields.
Thus, using (3.31) and (3.26) one finds that in order to
satisfy the FCNC constraints, one must have Aavi > (5 TeV)?‘,
which also implies that for the minimum value of v, * 3.3
TeV ( coming from m(WR) =~ 1.6 TeV ) one has Aa =z 2.3. As a
consequence of this, we learn that the singly charged h'
field is then also forced to be heavy and approximately
degenerate with qbg' and ¢(2“.

Regarding the field 6;', we first note that (see
(3.21)) e, must be negative or very small to avoid having
negative mass squared for 6;’. In the former case it is
probably natural for 6;* to be quite heavy. But on the

other hand, p = p, + p, must be positive (see (3.32)) in

1
order that both m°(H’) and m°(h°) be positive (for A > 0).
Since substantial cancellations are possible, p could be
much smaller than either p,or p,. This implies that H°
could be lighter than what one would at first anticipate
from (3.33). In general there 1is clearly considerable
uncertainty associated with both 6;* and H® masses.

A similar uncertainty arises when we consider the
+ [0} Or

) & . The main reason

masses of the fields cSL , SL e 8 4 8

for this is that, as was noted earlier, there is no natural
symmetry calling for p’= 0.

As for the mass of ho, it can be verified from
(3.28-29) and (3.32-33) that parameters are chosen in such a

way that h° and H° couplings to wLWL and ZLZL (through their
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¢?"components) will not cause any unitarity problems.

These bounds on the masses of the various physical
Higgs fields will enable us to estimate the decay widths of
the neutral and singly charged Higgs fields into hadrons.
This will be the topic of chapter 4, in which, by using
renormalization group estimates ( taken in conjunction with
QCD sum rules ), the decay width of the physical Higgs into
hadrons will be given up to second-order contributions. The
values of the physical Higgs masses can also be used in the
formulae for the total cross sections of processes e'e”—
(Higgs) (Higgs) in the minimal left-right symmetric model.
The calculation of the total cross sections for these

processes will be discussed in Chapter 5.
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CHAPTER 4

THE RENORMALIZATION GROUP ESTIMATE OF THE HADRONIC
DECAY WIDTH OF THE HIGGS BOSONS
IN THE MINIMAL LEFT-RIGHT SYMMETRIC MODEL

4.1 Introduction
In the previous chapter we learned that the masses of

+ Or

the Higgs fields h, ¢2 and ¢? fields 1lie 1in the
(multi)-TeV region. Since these heavy fields couple to the
guarks it is natural to estimate the total hadronic decay
widths of the Higgs bosons. This can be achieved most
elegantly and to a very good approximation by using QCD
operator product expansions and the renormalization group
equations. The result should be of some phenomenological
interest in the study of future experiments with very high-
energy accelerators and colliders.

After bringing the necessary arguments, we will apply
the results of ref.l to the minimal left-right symmetric
model under our scrutiny, using the left-right theory of
chapters 2 and 3. The authors of Ref.l use the techniques
of QCD operator product expansions and renormalization group
equations to estimate the total hadronic decay width of the
Weinberg-Salam type (heavy) Higgs bosons with mass = 1 TeV.
In the next section we review the essential and final

results of their work on the perturbative formulae for the

total hadronic decay width of the Higgs bosons. A short
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review of the QCD renormalization group equations is given

in appendix B.

4.2 Renormalization Group Method and the perturbative

decay width formula

We start with the Lagrangian of the Standard Model

involving the quark fields which is given, in renormalized

form, as

L=1L +1L + L (4.1)
QCh Higgs int

where

L = zzu';i?;

h_ =g
oCD ay Z 2 yDy

o miq) 2

+ zlu'c’af%uA“w + L

gluons

(4.2)

= ' t, 1
Higgs™ 1/2 23(8u¢) (87¢) — 1/2 zm

P 2
wZam () 6% (4.3)

L. = ~H%g¢3, (4.4)

here Zi are the renormalization constants and the scalar
currents J,  are defined in terms of the renormalized quark

field ¥y and the left gauge boson mass ML by
1
L

_ ' T nd
J, = Z, 3¢ YD (4.5)

with the diagonal gquark mass matrices D°%. In order to
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handle the ultraviolet divergences, the minimal
subtraction scheme®’ using the method of dimensional
regularization® in D-dimensions is employed This gives
rise to an arbitrary mass scale u and a parameter £ = 4-~D.
We emphasize that in what follows we are concerned with
QCD corrections to all orders in the QCD coupling f, while
restricting ourselves to the 1lowest order in the weak
coupling g. The total hadronic decay width is then

found by using the formula®

= 9 2 _
r = m Im UH(q =m) (4.6)

where the spectral function ﬂﬁ(qz) is defined by2
m(g’) = i J d’% '™ < T (3 (x)3 (0)] > (4.7)

When one considers the case of a Higgs boson much heavier
than the ordinary hadronic mass scale, one has to consider
large cf behaviour of the spectral function. In other
words, one is concerned with the short distance property of
the T-product of the two scalar currents in HH(qz).

Then one proceeds as follows.!'?

First, one applies
the operator product expansion to the T-product in HHuf).
Then, one derives and solves the renormalization group
equations satisfied by the coefficient functions in the

space-like q2 region. Finally , one makes an analytic
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continuation of the obtained solutions from the space-like

to the time-like q2 and takes the absorptive part at q2 =

2

m .
H

The operator product expansion at short distance is
given l::y2

iJ d’x '™ T[ 3 (%) 3 (0) 1 =3 cf(qz)(?ﬁ (4.8)

d,¢

where the 1local operators Of are classified according to

their canonical dimensions d and the additional suffix ¢

running over independent operators of the same dimension®.

Equation (4.8) implies that the large-q2 behaviour is

governed by operators of low dimensionality, e.g.

_ 1 _ =-q 2 _ a uy
0y =1, 0, =yD%W , 0, =6, G (4.9)
where G:W is the gluonic strength tensor. The orders of

magnitude of O: and 042 can be estimated by the standard
methods of Ref.4. The q2 dependence of the coefficient
functions is determined by the renormalization group
equations. The equation for C:#o is of the usual type
encountered in QCD 2.4 , Whereas the derivation of the

equations for C,, requires some care, since the two-point

function is not multiplicatively renormalizablez, i.e.

C,(a°) = w( sq® - 2 ) + cl(d’) (4.10)

63



where

-— - ’ 2 = - ’ P
S= (1 23 )/g” and T (1 Zm(ml3 )/9

are the subtraction terms corresponding to the wavefunction
and mass renormalizations of the Higgs boson,

and can be

' 4,9
expanded as Laurent series

k

S(f,m /M ,€) = L = S, (£,m /M) (4.11)
k=1 £

k

[+ ]
1
T(E,m /M M /M c) =k¥1 - T (£,m /M M /M) (4.12)

where m are the quark masses, and f is the QCD coupling.

Based on (4.11) and (4.12), the authors of Ref.1l
carry out a perturbative analysis of the total hadronic
decay width of the Higgs boson of the Standard Model and

find that, up to the next-to-leading order one obtains

2 2,,2
FH 33 s m.oy-8s7 208 1n1n(m"/A )
m_  8n Gé:nh n — 1= 373 2, .2
H 1 A In(m /A")
v ) } (4.13)
1n(mH/A)
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where

X 2 2,,2
m m -8/7 416 lnln(mH/A )
61 = -6 2 in 2 1 343 2,,2
m A In(m’ /A7)
H H
* 679 — } (4.14)
ln(mH/A)
where G_ = g%/ ( 4¢§Mi ) is the Fermi constant, ﬁi are the
constituent quark masses, and A is given by5
A— = A exp 2 ( In 4m - ¥ ) (4.15)
MS 2 E -
where ¥, ® 0.577 1is the Euler-Mascheroni constant, and we
take®
A— = 0.52 GeV (4.16)
MS

Since we are dealing with the gauge group SU(3) -
SU(2), - SU(2),- U(1), in the minimal 1left-right symmetric
model, and since there are heavy Higgs fields coupling to
the guarks, all the above results are applicable to the
minimal left-right symmetric model. The difference is that
in this case we have both charged and neutral Higgs fields.
Once the charged and the neutral current Lagrangians are
known, it is straightforward to read the couplings and
proceed as above. These tasks will be completed in the

next two sections.
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4.3 Estimates of the Hadronic Decay Width of the

Neutral Higgs bosons in the L-R Symmetric Model

We start with the neutral current Lagrangian involving
the quarks and the Higgs fields. We already know (see
(2.14)) that only the components of the Higgs bidoublet ¢
couple to the quarks. Now, choosing the neutral (physical)

Higgs fields involving the components of ¢ in a convenient

form® as
o = 27V k.¢? + k¢‘:° + k"¢2 + k’q)g' ] (4.17)
0, = 27 AV | (ke ko) - e (K6 + kel ]
(4.18)
c Am1/2,-1 k ,*,0 , ,0° <’ ., 0 oe
@3 = 12 \ [ITI(}( ¢2 -k ¢2 ) + I—'k_l(}\¢1 - k‘f’l )]
(4.19)
one can write the neutral current Lagrangian as
-L S ( uD’u_+ dDp’a
Yy~ TV il Ddg )
3 - u - .d
+ )_:f.ﬁi (uGu +dGd ) + h.c. (4.20)

where
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Gl = -i6! = -(|k|*~ [x|H 7 (2] kK DYV + e'“vutpiutT)
(4.21)

6l = ic? = - (|k|* |k |7 @|kk DYV + e VUt DR
(4.22)
. . 2 2 , 12 u d
In (4.17-22) V is defined as V° = |k|° + |k’'|°, and D, D

are the diagonal quark mass matrices (2.29) and (2.30). The
matrices U" and U" have been defined in (2.32). Let us also

note that from (2.19) we have

2 1 2 2 2 2. 2 2.2 , >
R A AR A VAT MIE RV ]
(4.23)

which in the physically relevant limit IVJZ << V¥ << |VR|2

gives
2 1 2 2 ;12 1 2,42
2 1 2 2 2
M= —— g (2]v |7+ V) (4.25)
so also V° = (VEGF)A. Using the expressions (4.17-4.19),

together with the relations (4.23-25), we find that for two
of the VEV scenarios discussed in chapter 2, namely

i) k" =0 , Vi K, v, 0

ii) v, o= o , k, k', v, = 0

one will obtain
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Case (i):

3 = 273y 'k (¢§’ + ¢f) = VZ Re(9)) (4.26)
¢, = 27k (9] + ¢2') = V2 Re(¢)) (4.27)
o =1 27 (el - ¢)) = V2 i Im(¢) ) (4.28)

3

the coupling matrices in (4.21) and (4.22) will

simplify to

Gl = -i gl = -k ¢ utpiutt ) (4.29)
G = i G, = -k ( ot (4.30)
Finally (omitting the h.c. part), the neutral current
Lagrangian can be rewritten, term by term, as
10 — g u 3 RAC
L 2ML Q: ( uLDu * dLD dR )
_ g = L.d R¥ ig - L d Rt
2ML tbz(uLUDU un)+——2ML ¢B(uLUDU uR)
_ g = 1t u R _ _ig - 1+ u R
oy ¢, ( duDUqd ) iy ¢, ( durpud, )
(4.31)

J, in (4.4) 1is now to be identified with the current

multiplying ¢1, and its analogs which couple to ¢, and ¢
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fields are, respectively

_ = ob.d R¥ = Lt _u R
J, = uUDU u +du DU (4.32)
J_ = aup®t™u - 3 u'pvta 4.33)
3 L R L R (4.
. u . d = .
Since D = diag ( n%,mc,mt) and D diag ( m,m_,m ),

and since m and m are much heavier than the other quarks,

-

the leading ccontributions arise through setting ﬁi = mwﬁk
in (4.13-14).

From (4.31) we see that the couplings are proportional
to g/2M , just like the Standard Model part of the neutral
current Lagrangian. So everything in (4.13) and (4.14) will
hold for the left-right symmetric theory but different mass
ranges of the underlying Higgs fields must be considered. As
a final remark, we emphasize that the presence of the
KM-type matrices U and U® need not worry us, since we do
not intend to address questions of CP-violation and quark
mixings here.

Next we have to consider case (ii), i.e. when k’=0.
Again using the general expressions (4.17-4.19) we find the

following:

Case (ii)

¢ = 2% Re (¢§’) + Re (¢g) ] (4.34)
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2, = 2”37 k Re (¢3) *+ k' Re (¢°) ) (4.35)

o = 12"V k Im (¢§) + Kk Im(e)) ] (4.36)

and the coupling matrices become (see (4.21-4.22))

GY = -igY = - 1 [ 2Kk DY + VUL.DdUR‘I‘ ] (4.37)
2 3 2 .2 \Y
k- k
¢ = ig? = - 1 2kk’ D¢+ VUL*D"UR (4.38)
2 3 kz_ k'2 v

from which we can read the coupling strengths

2kk’ \%

,  — (4.39)
V(k®-k'?) k%~ k'°
If we now recall® the approximate relation
LA i (4.40)
t
we can write
m m2 1/2 m2 1
2Kk’ . _2 [ b ][1+ b ]- [l- b )'
V(kz-k’z) k m, { mf mf
m
. 2 b
4 - (4.41)
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m 172 m -1
2V 2z }i [1+ : ] [1- 2 ]
k"= k m m
z____i (4.42)

m, m,
4[ > ]Gr and [ 1+ > )GF (4.43)
mt mt

in (4.13), respectively.

4.4 Estimates of the Hadronic Decay Width of the
Charged Higgs Boson in the L-R Symmetric Model
In this section we consider charged Higgs bosons of the
minimal left-right symmetric model which couple to quarks.
All the arguments concerning perturbative QCD expansions
etc., presented in the previous section for the
neutral-Higgs decay widths, remain valid in the
charged-Higgs boson case as well. Thus, all we have to do
is to find the coupling strength of the charged-~Higgs
fields to the gquarks and proceed as before.
From the Yukawa Lagrangian of (2.24) it can be readily
seen that from all the charged physical Higgs fields, only
those that involve the components of the multiplet ¢ couple

to the quarks. This leaves us with a single charged field
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. + - 2— Rk .
N | Kol + k/e) + 2 "2——'5%}‘—1— o | (a.43) A
R

o
"

where
5 5 5 2 -1/2
N = [ vV o+ [ (Ix1°=1k" 19) /V2 Vo ] ] (4.45)
and V2 = [kI® + 1k’ I°,

As we can see, for k’= 0, the expression (3.23) is
recovered. The corresponding Yukawa Lagrangian is then
given by

—LY = uLGRdR + uRGLdL ) ¢ + h.c. (4.46)
where
G, = ‘2/5 N - VD'UR - 2 k ke UNDY ) (4.47)
k™= 1k*|
6, = ‘2/5 N = (2 k k'DU" - VD' ) (4.48)
IkI“= 1k’

Thus, from (4.36) and (4.38) it follows that the couplings

that we have to consider are

{2-N sz , 2\/3 Nkk _ (4.49)
IkI®= |k’ IkKI®= Ik’ |
Now, as before, we can consider the two cases k'’ = 0, and k'
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# 0 and real.
iy k' =0
In this case the coupling is V2N which, using (4.45),

is given by

2
/§N=—‘]-§-2—[1—k2] (4.50)
4v
R
which, because of the VEV hierarchy IvLI2 << V® << IVRIZ

implies that in the estimate for I"H/mH one has to replace V2
G_ with 2v2G.
ii) Kk’ = 0, (real)

In this case

m
1 1 b
N'-k—[l‘T—T] (4.51)

where, again, we have used the approximate relation m/m =
K‘'/k (see (4.40)). The couplings in (4.49) are therefore

approximately given by

o n

V2 N
x*- k2

N
N

] + O mi/mf) (4.52)

B

and

VZ Nkk' _ _2V2 [ M ]
k2- k2 k m

t
As we can see, if we neglect the m /m contribution in

(4.53)
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(4.53) in comparison with (4.52), we will be left with 1/k,
which means that we have to retain v2 G. in (4.13) for the
corresponding decay width. This concludes our
considerations on the renormalization group estimates of the
total hadronic decay widths of the neutral and charged Higgs
fields of the minimal left-right symmetric model, which
couple to the quark fields.

These results enable us to make theoretical estimates
of the total hadronic decay widths which differ from the
Standard Model estimates. Thus, assuming that the top quark
will be discovered in the not too distant, future one can
infer the Higgs mass, or vice versa. This will serve as an
interesting testing ground for physics beyond the Standard

Model. We can now use the couplings in (4.43) namely

2 2
m m
4[ ]G and [ 1 + ]G
2 F 2 F
mt. mt.

corresponding to two of the (non-standard) Higgs fields in
case (ii), i.e. ¢5and ¢3 and calculate the decay width of
these fields by wusing the formulae (4.13-14). The
corresponding graphs are given 1in Figs. 4.1 and 4.2.
Similarly, we can find the hadronic decay width of the
charged Higgs field ¢' in case(i) is found by replacing G,
with 2G_ in (4.13-14). This is graphically presented in

Fig. 4.3.
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CHAPTER 5

HIGGS PRODUCTION THROUGH THROUGH ELECTRON-POSITRON
ANNIHILATION

5.1 Introduction.

Several accelerators have been constructed in different
laboratories around the world to study particle collision at
higher and higher energies. In quantum theory high energies
imply short wavelengths, which are essential for probing
small scale phenomena. The latest of these accelerator
projects are ‘'"colliders", based on the principle ot
colliding particle beams, which is now the most
economical way of achieving high energies. Future plans
such as the SSC are centered on colliders as the best way
towards new physics.

In the spirit of these future plans, and in pursuing
the phenomenological consequences of the minimal left-right
symmetric extension of the standard model, total
differential cross sections for various processes of the
type e'e™— HH, where H denotes the Higgs field, will be

calculated in this chapter.

5.2 Vertex factors
The first step for calculating total differential cross
sections for the processes e'e— HH is the collection of

all the vertex factors ( couplings ) in the Feynman diagrams
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associated with these processes. The underlying technique
for finding the vertex factors is the familiar one from the
Standard Model, which will be briefly reviewed below. In

the Standard Model, one starts with the neutral current

Lagrangian1
_ em, M O, M
me = e Ju A" + (g/coseu) JuZ (5.1)
. O 3 2 em [¢]
t J = J - .
with u u sin GH Ju Ju can be expressed

explicitly in terms of the fermion fields as

= 1 fF - £z _
= = g[gwau(l 7)) £+ g £ (1-7) £ ] (5.2)

where f denotes the quark and lepton fields. The weak

neutral couplings are given by

f
L,R

= - L2
g = T3( fx_,n ) Q( £ ) sin 6_'J (5.3)
where T and Q are the third component of the weak isospin
and the electric charge operators respectively (see
chapter 1). Thus, for the electron field for instance, one

has

= 1 : =
J —T( ——+51neu)ew(1-75)e
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1 . .
—— (sin®s, ) &7, (1-3, ) e (5.4)

+

which, when inserted in (5.1), gives the e’ e~ ZT vertex

factor as

1

1€ 7u 4 sinaH coseH [

(-1 + 4 sin28w ) + 15] (5.5)

In the left-right symmetric model the vertex factors
can be found in a similar fashion. In this case, the
neutral current Lagrangian is®

_ em, K g M 2 - ! F4
L, =R Ju A"+ _—_cosew { z, [ I n cos6, ( sin'g J

+ coszeu Ji ) ] o+ 1 Zﬁ
H v cos 26H
( sin°6 J° + cos’e J° ) } (5.6)
W LY W RU
. _ _ 2 z 13 _
where smew = e/g , n = ( ML/MR ) , and JL'n = JL'R Q
.2
s1in ew.
Here, JER are the diagonal generators of the SU(Z)lR gauge

groups respectively, and MLR are the physical masses of the
left- and right-handed charged gauge bosons. Using (5.6),
one can find the couplings to the photon A“ and the neutral

intermediate gauge bosons ZZ and ZZ. In terms of the
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operators J:R and Q, these are given by

aH: e Q (e is the positive unit electric charge )
L e 3 .2 - s 2 3
Zu' Sin6, cose, [JL Q sin’8 n sin"6 cos®  J

. 4 3 3 P 3
+ N Q sin 6w coseH - 7 CoSs BH JR + n Q sin 6H cos GH]

(5.8)
zR: € [coszeu Js + sin28u (JZ - Q)]
H sin8 cos8 V cos26
w W W
(5.9)
Ignoring terms of order n = ( M /M )2 in (5.8), the
coupling to Zz simplifies to
< ( Jz -0 s:‘mzew ) (5.10)

s1in68 cos8
W W

Using the general couplings (5.7) to (5.10), together with
(2.5), (2.7) and (2.8), all the required vertex factors for
the calculation of the differential cross sections for the
precesses e e — HH can be found. The relevant vertex

diagrams and the associated couplings are given below
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AU
-218( p_- p+)u

’ ) (5.11)
L (p_) 8 L(p+) \ o
ZL
. 2
g 1 -2 sin’g,
-16[ sineucoseu (p_- p*)u
2 [N
(5.12)
- ++
3 (p_) d (p,) L )
L L F4 = -1A ( P_-P,),

Z“ —tanew
e (2 ) oy,
vcos26
(5.13)
2 [
L U = -ial( p_- B,
éL (p—) bL (p+) 1 +'u
A
u .
é -le (p_ - p+)u
| ) (5.14)
N - = —irx ( p_- p,)
s (p,) 8 (p_) 5 Sy
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+
° (py)

Or,

(p,)

H
-sin’e
T1e [ siné_  cos@ ] (P_= P,y
_ (5.15)
é ., L
L (P-) = —ir ( P_-B,),
ZR
u
-sin’se
. W
-ie | (o= p,
r. sineu cosé \/coszeH
& (p_) e (5.16)
= -1 (P~ P,
zL
u
—ie -1 ( -
sineu cos,, P, px)u
or,i (5.17)
1) (p.) = _ iyt
L 2 = 1A3( P, - pl)“
ZR
H : -1
-ie ( sing cosé )(pz_ Py
LN
a (5.18)
50r,1(p) = —17\3( P,- pl)u
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H ~ie -1 - p,}
ZSinew cosew (p2 px)u
A K
. (5.19)
= —iA_ (P~ P, )
or, i or,i a 2 17 u
¢2 (Pl) ¢2 (P?_)
z" ) ]
H cos;8 - sin 8,
-te | — [EXEAN
= K 251n6w cosew \/coszew ‘
(5.20)
Or, i Or, i
¢ (p.,) ¢, " (p,) = _iaB -
2 1 2 2 = 1)\4( P, p1)u
A
u
-ie = —i
’I“ l)\?u
b} [
(5.21)
+
e
2, e .
g -1 4sind_ cos@, ¥, | "1+ 4sine + 7, }
2 < o L (5.22)
= 1ar“(c1 c, ¥ )
- +
e
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ZR
u
. e L2
-i vu[ -1+ 4sin ew— cos(zew)ws]
251n2eu¢coszeu
2 R . R R
) . = =1 7# ( <, + c, 75)
e e (5.23)

Now that all the vertex couplings are explicitly
collected, one can proceed with the calculation of the total
differential cross section for general cases and insert any
of the desired couplings. This task will be completed in
the next section and the corresponding expressions for the

total differential cross sections will be given.

5.3 Calculation of the total differential cross
section for the processes of the type e'e — Hil

The Feynman diagram corresponding to the process ete™

+ Or,i

HH, where H is any of the Higgs fields 6:’, 8, &,

¢gnl, is typically of the following form.
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e -
\ q - k + kl /// H
k’,s’ o}
>/\_/'\/\/\,< (5.24)
X,s A,z , 2%
r-/ ul u ’ u \ .
e

where k, X', p, p’ are the four-momenta of the incoming and
the outgoing particles respectively, and s and s’ are the
spins of the incoming electron and positron.

The underlying calculation is quite similar to the one
of the process ete™ n'n” in the no-structure differential
cross section approximation except that, since one is
dealing with very heavy Higgs fields ( in the multi-TeV
region ), even at very high energies the contributions
coming from the masses of the Higgs fields must always be
strictly retained. Using the usual techniques for
calculating cross sections' one estimates the scattering
amplitude for the process involving the exchange of ZL

which can be written as

d = =1 N N'N N’A';(Zn)464(p’+p-k’—k) ® (k’,s’)wu(c:- czwr)
v v 2
g"- oa"/m
u (k,5) [ = ———— ] -, (529
g°- M
L
where N, N’, N, N are the appropriate normalization

constants and At can be any of the numerical factors read
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from (5.11-21), excent (5.13), (5.16) and (5.20). v and u
are the positron and electron spinors respectively. One can
now read the invariant amplitude from (5.25), which in its

expanded form is

F,=F , + F°, +F , +F", (5.26)
58 SS sSS SS SS
where
uv
F! = a‘ctw(k’,s') 7, u(k,s) |—2——| (p - p’)
ss’ 1 ! [V ’ q2_ MZ v
L (5.27)
[V n %
2 — s L= ’ + q q - ’
P2 = adEae,s) v, uks) [ —L5—) - p),
M7 (- M)
(5.28)
uHy
3 — ’ L = ’ ’ g -— ’
Fogr = A u(ki,s’) v v, u(k,s) [- e ] (p - P),
- (5.29)
] L— a“q”
Flerw = A u(ki,s’) v 7, u(k,s) [ > > > ] (p - pP),
M (g°- M)

(5.30)
Now, in order to calculate the differential cross section,

one has to sum the scattering amplitude over initial spins

and average over final spins
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1
12

3 Y IF , (5.31)

, SS

which can be considerably simplified when one uses the
center of momentum (CM) reference frame, which is also the
most suitable frame for collider calculations. In the CM

frame one has

q(p - pP') =(p+p)(p-p) =0

which implies that F:g = F, = o. Consequerntly the

SS

differential cross section has to be found from

1 1t 3+ 1 3 _ 1 =
4 Z,[ Fss' + Fss' ] [ 1:‘ss;' + Fss' ] T4 ¥
S,S
(5.32)
The summation over spin states s, s’ can be carried out byv

using well known' trace formulae. This gives

(atch) el (k- my (K + m)y, |——2—(p - p)*(p - p")"”
i1 [ vl v] (q2- Mi)z

Py M4 WV
_ (ALCL)24[k,k + k'k __qgg.] (P =pP) (P -p)

i1 uwy v u 2 e’ (qz_ Mi)z
(5.33)
atetehTe| (B -m)y (¥ +m)y 7] -1 (p-p" )" (p-p")"
i 1 2 [ M V' s (q2_ M2)2

L
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kP p - p)Hp - pY
2 2,2
M)

oL Lo,
= }‘1C1cz 4160“1[31/ (-
(5.34)

— n' M -V
(7&1;02)2 Tr[(K'- m)"uvs(k + m”v"rs] (p - P ) (P - P,

2 2,2
(a- M)
2 PRy WV
= (abc)2a |k’ x - 4 2 (P -p') (P-p')
(a,c,) 4[kukv+ KoKe™ = 9wt 2n‘guv] 2_ 2.2
(a°- M)
(5.35)
1 1 1t 1 3t 3 .
forsZSI F_.F_, SZSI F_.F_, ! s,FSS,FSS, , respectively.

In (5.33-35) the following identities have been used

O = (k+ k)2 = (p+p)%=2m’ + 2kK
Furthermore, since p - p’ = 2p - ¢, and since
] =0 (5.36)

M , ' _ _a
a | kukv + kvku g

one obtains, after neglecting the m® (m is the electron

mass) term

, 2(p-k) (pk') - = M

F =16 [(A"cH?2+ (atchH
i 1 i 2 (qZ_ Mi)z
(5.37)

Next, using the CM frame kinematical identities
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s=(k+k')2=(p+p)%=4aE?
t=(k=-p)=(p-k)

u=(k=-p)=(p-¥x)°

( p'k)( pk) =E = Ip®kl* cos’e_,

where ( see the following diagram )

k = (E,k) , kK = (E,-k) , p = (E,p) , P’ = (E:"P)

and neglecting m’ terms, one obtains

’ ~ 1 2 - 2 1 2 2
(P-k)(P-kK') = —¢g s (1 - cos@,) + —— s Mcos 8.

(5.38)
which, after inserting (5.38) in (5.37), produces the
desired expression. The total differential cross section is

then found after integrating over the solid angle and
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PUICIEE e

Y

dividing by 64n°s

am m
1 J -[ = .
o = —_—— F sin® de d¢ (5.39)
total 647'[25 . d

So, for individual diagrams involving ZL and Z, gauge bosons

the total differential cross sections are respectively

L L,2 L L,2 s -4 Mi
o = [(Ac))™+ (A c))™]
total,z 11 12 48 m (s _Mz)a
(5.40)
L_R,2 L R, 2 s -4 M:
o = [(A'c.) ™+ (A c )]
total,ZR i1 i 2 48 n (S _M§)2
(5.41)

In order to find the total differential cross section when a

photon is exchanged one can use either of (5.40) or (5.41)

and set C?R =2, C = 0 , and MLR = 0. This yields

(Ar')? (s - 4M:)
= " - (5.42)
nm s

o
total, ¥y

To complete the calculation of the total differential
cross section, interference terms must also be included.
There are three Feynman diagrams contributing to the process
ete™— HiA ( see 5.24 ). Denoting the sum of the invariant

amplitudes corresponding to the photon and the left- and

right-handed gauge bosons symbolically as
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M=M,’+ML+MR
one can express the interference terms arising from #u as

the sum of the following terms

+ t

H M+ MM (5.43)
+ f

H M+ MM (5.44)
* +

MM+ MM (5.45)

After some straightforward but lengthyfyalgebra, and upon
neglecting contributions coming from the square of the

electron mass, expressions (5.43-45) are found to be

respectively
L L
fAA:A*°; (KK, + kik, = quv—%f] (e - p ) - p)Y
qa® (o~ 1Y)
(5.46)
R_R
iAA;Aici [k k, + Kk, - guv—%fl (e - p)Hp - p)Y
9 (q-M)
(5.47)
L,R, L _R, LR
8Aihl(c1cl+ czcz) 2

[k'k + k'k - g —=21(p - p)H(p - p)7
(- M) (- M) voooR T2 |
(5.48)

-
A

P

s

Next, as before, one has to integrate eacﬁ? of
(5.46)-(5.48) over the solid angle and use the previous

CM-frame kinematical equations, and finally divide by 64m°s.
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This will yield for (5.46)-(5.48), r-spectively

A AT .
7 (s - aM (5.49)
12m s (s - M:)
AAlA}:cT ,
> (s - 4MH) (5.50)
12n s (s - MR)
Ath?(ctc?+ c:c:) 5
(s - 4M)) (5.51)
H

3(s - Mi) (s —Mi)

One can now carry out some numerical analysis of the
total cross section for the Higgs pair production. However,
before proceeding to the numerical study of total cross
sections, a few comments are in order. First of all, since
the fields ¢? and ¢? are responsible for the FCNC
interactions, their masses must be sufficiently heavy (= 5
TeV) to be consistent with low energy phenomenology. This,
together with a minimum value of approximately 3.3 TeV for
v, will make the field ¢?~ also very heavy. These fields
are therefore not suitable for experimental studies in e'e”
colliders. But in contrast to the case of ¢?‘ and ¢Z“’
fields , there is considerable uncertainty associated with
the masses of the triplet fields. The uncertainty comes
from the various possibilities for the wvalues of the
parameters in the Higgs potential and the VEVs for the Higgs

fields. As was discussed earlier (see chapter 3), two most
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interesting possibilities correspond to the cases v, = k'=
0, k, v. =0 and v, k, v, = 0, k= 0 ( with v very small
in the second case ). When v, # 0 but very small, 62 turns
out to be exactly massless ( except for radiative
corrections which could produce a very small mass ) and
constraints from the deviation in the electroweak p
parameter, consistent with Ap = 0.01 result in an upper
bound of approximately 200 GeV for the masses of A: and A;+.
However, 1if ¢Z is heavier than the known lower bound of
approximately 5 TeV, then no upper limit on the mass of A:
can be inferred. In the case of v, o= 0 it is possible to
have all the scalar bosons except the standard model
Higgs-like h’ to have masses proportional to Vo and hence
very heavy. however, this need not necessarily be the case.
The reason for this is that the Ve terms in the masses of
these fields are proportional to a certain combination of
the potential parameters ( cf. 3.21-3.33 ) which can be
suitably adjusted to produce smaller masses for these
fields. These adjustments can give rise to masses between
200 and 1000 GeV for the fields 6:] 6; and 62 . In view of
these remarks a number graphs for o vs. MH and s are given
in Figs.1-6. As can be seen in these graphs, wide ranges of
masses for the underlying Higgs fields are allowed. Also, a
wide range of CM energy makes these results more suitable

for experimental studies.
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CONCLUSION

In this thesis the Higgs sector of the minimal

left-right symmetric model (MLRSM) has been studied in some
detail. 1In Chapter 3 it was found that although the Higgs
potential in MLRSM contains many more parameters than the
one of the Standard Model, it is still possible to discuss
mass ranges and vacuum expectation values of these fields
with an eye on the low-energy phenomenological data. Due to
the many parameters appearing in the Higgs potential, the
analysis remains incomplete.
Therefore one must calculate new dquantities which can be
measured in the forthcoming very high-energy experiments in
the TeV range. Thus in Chapter 4 we have produced the
(renormalization group improved) hadronic decay widths of
the MLRSM Higgs fields. 1In Chapter 5 the scattering cross
section for the production of Higgs fields through e'e’
annihilation was studied. Wide mass-ranges and
center-of~momentum energies have subsequently been used
to graph the results for the decay widths and
scattering cross sections. These were done in the hope that
new data from future very high-energy experiments would help
us test the validity of the theory; and if the theory turns
out to be valid, we could further restrict the ranges of
certain parameters to narrow down the arbitrariness in
choosing them.

More studies with respect to the Higgs sector of the

MILRSM must be done to widen our understanding of the
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structure of the theory. For instance, a great deal can be
learned through cosmological and astrophysical
considerations. In particular, to make contact with the
real world, MLRSM must be thoroughly reconsidered within the
framework of finite—}emperature field theories. Also, new
phenomenclogical and astrophysical data on the phenomenon of
CP-violation , both in the hadronic and leptonic sector
could provide valuable clues for more realistic

investigations. -
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APPENDIX A
NOTATION AND CONVENTIONS

A.1 Units
Throughout this thesis, unless otherwise stated, the
natural units h = ¢ = 1 have been used, where h = h/2m with

h the Planck constant and c the velocity of light in vacuum.

With 1 eV = 1.602 x 102 erg, 1 GeV = 10° Mev = 10° keV =

-24 3

10° ev, and 1 b (barn) = 10°* em® and 1 mb = 10° b, one

has 1 £ = 10 cm, 1 mb = (hc)?/0.624 (GeV)?

A.2 Metric and Four-vectors

The metric in Minkowski space { xM: g = 0,1,2,3 } 1is
given by g“v with
0 - 51 ' g“ = gaz: g33 = -1 , otherwise = 0

The contravariant vectors of the space-time coordinate and

energy-momentum are given by

x = (ct , r) , p'=(E/c, p)
where t and r are the time and space coordinates
respectively and E and p are the energy and moment .m. The

bold-faced symbols represent the three dimensional vectors.

The covariant vectors are
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o V— -
xu = g“Vx = (ct , -r)

—_— v - -
P, = 9P = (E/c ., -P)

and hence
= M u_v
. = = =Et— .
p:x = p X, 9P P p'r
Here it 1is understood that repeated indices are summed

(Einstein’s notation). The contravariant vector of space

and time differentiation is defined by

A.3 Dirac Matrices

I

The Dirac gamma matrices ™ (v , 71) satisfy the

relation

where (A,B} = AB + BA. The matrix c is defined by

. 012 3
I, =1 7777

and anticommutes with all 7“:

he hermitian conjugate of +# is taken to be

+ 0 o]
7“ =7 7“7
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so that according to the defining relation for ¥ one will

have

u

From the above definition of the matrices 7" it follows that

0,2 i,2 2

()" =1 : (7)° = -1 ; 7 =1
where the Latin index i denotes spatial indices 1,2,3. 1In
the representation where ¥’is diagonal, the explicit 4 . 4

form of the gamma matrices reads

(63
(o]
It
——
’_l
o
|
<KW
I
p————————
(=}
Ql

where 1 and 0 are the 2 - 2 unit and zero matrices
respectively and ¢ = (0, + 0, 03) with o, (Pauli matrices)
given by
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APPENDIX B
QCD RENORMALIZATION GROUP EQUATIONS (RGE)

B.1 The QCD Lagrangian

Strong interactions are described by a local
non-Abelian gauge theory of quarks and gluons. SU(3) is the
gauge group and gluons are the gauge bosons. Three colored
quarks of each flavor form a triplet in the fundamental
representation of SU(3) and eight gluons form an octet in

the adjoint representation (defined to have the same

dimension as the group). The QCD Lagrangian is then given
by
R | uy -, [T
L 2 Fa Fauv+ l{lJ(l‘JuDj Mjk)wk (B.1)

where the indices a,j and k refer to color and assume the
values a = 1,2,3. The covariant derivative acting on a

quark field is
Mo M ; M
ot =& 8" + ig (T G, (B.2)

where G‘:are the gluon fields, Ta are the SU(3) generators,

and g is the strong coupling constant; M_ is the quark mass

Jk

matrix. The gluon field tensor is

- oV
g fabc Gch

F*Y= gHg¥ - a¥H (B.3)
a a a
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where fabc are the structure constants of SU(3), defined by

the commutation relations among the SU(3) generators

[T,T ) = if T, (B.4)
The fabc are antisymmetric ier the interchange of any two
indices and are given by
f =] f = = f = f = f = = ._._:.1'__
123 ' 147 246 257 345 516 637 2
_ _ V3
ass 618 2 (B.3)

The Lagrangian (B.1l) is invariant under the infinitesimal

local gauge transformations
Y(x) — [ 1 - 1ig a (X) T, ] ¢¥(x)
¢H(x) — cl(x) + Ma (x) + g £ a (%) G (x)

The Feynman rules corresponding to the Lagrangian (B.1l) are

as follows

-igy'(T)) (B.5)
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q,b,v
r,Cc,A
p.a,u _ . cabc _ _ -
gt "[(p-q),9,,* (4-1),9,,* (¥=P) 9,,]
where p+ q + r =0 (B.6)
, 2 abc .cde
-ig"[f T f (gu,\gvp 9,0902)
ace .dbe
+£°f (gupgm- gwgkp)
ade .bce
+ff (gw,g;\p gu;\gvp)
(B.7)

In QCD calculations the following identities are frequently

used
a b, _ 1 ab abc,.c
(T, T ) = ~5— d + d T
amb 1 1 ab abc,C . pabc,,c
TT =5 (-—3—6 + d T+ if T )

Ty TaTch - ill. [ dabc+ i fabc ], Tr TaTbTaTc___ _ 12 6bc

fabb___ 0 , facdfbcd___. 35ab (B.8)

abc

The f are antisymmetric under interchanges of any two

R » b . . .
indices; the d°°° are symmetric. The non-vanishing d*°° are
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118 228 338 888 1
d 7= d7s de ds g
d146= d1s7= 256_  ;344_ d355= _d247_ _d366= _d377 - ;
448_ .ss8_ .668_ 778_ 1
d =d = = d 373 (B.9)

From (B.4-5) and (B.8-9) the color (group theoretic) factors

corresponding to the following loops are

o
8
a m b c El:-i acd bcecd = CZ(G) aab
d e
o
3
a b i 2):_1 (16) U(Ta)ij =Tr(TaTb)
= T(R) & b
(B.10)
where R denotes the fundamental representation. For G =

SU(3) and for a flavor SU(N{) group, the color factors are
C(G) = 3 C (R) = —— T(R) = —— N (B.11)
2 ! 2 3 ! 2 e ‘

Additional Feynman rules for ghost contributions (that

cancel unphysical degrees of freedom in loop diagrams) are

not included here since they will not be needed in what
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follows.

B.2 The Renormalization Group Equations (RGE)

In evaluating Feynman diagrams that contain 1loops,
divergent integrals over loop momenta occur. To make sense
of these quantities, the divergent expressions are first
made "“temporarily finite" by some regularization procedure
which introduces additional parameters ( e.g., a gluon mass
mg , an ultraviolet cut-off A, or a fractional space-time
dimension D=4-2¢c). In this way the divergences of
perturbation theory are re-expressed in a well-defined way
(though still with divergent limits). These regularized
divergences of perturbation theory are then removed by
absorbing them into the definition of physical guantities
through a renormalization procedurel. This is done by some
specified (but arbitrary) prescription which introduces a
new dimensional scale pu in the theory. Renormalized
quantities in the theory, such as mass m and the basic
vertex coupling strength g, will now depend explicitly on
u. Different renormalization prescriptions with different
i must all lead to the same observable amplitudes. The
n-dependent transformations of renormalized operators form a
Lie group,as first recognized by Stuckelberg and Peterman
and named by them the Renormalization Group. The equations
that express the invariance of the underlying physics under
changes of the parameter up are known as the Renormalization

Group Equations (RGE).
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Renormalization 1is done on the sum of connected
Feynman diagrams with external propagators removed
(including their self-energy parts). In more technical
terms, one deals with one-particle-irreducible Green’s
functions I' which cannot be disconnected by ~utting any
single internal line. One way to control divergences in T
is to introduce an ultraviolet cut-off A in the 1loop
momentum integrals, thus obtaining unrenormalized Green’s
functions I"U(pi,go,A) where P, denotes external particle
momenta and g, is the basic vertex coupling 1in the
Lagrangian. For renormalizable field theories, such as QED
and QCD, it 1is possible to define renormalized Green’s

functions 1“R by

TP, g,k) = Z, (g, A/M) Ty(p,,g,,A) (B.12)
which are finite in the A — o 1limit but depend on the
subtraction point (prescription parameter) u and a
renormalized coupling g. zu is a product of factors zZ,
one for each external particle i of the Green’s function TI.

Since FU does not depend on u, one obtains after

differentiation
ar
v _ d -1
du ~  du [Zu FR] -
az! (B.13)
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which is usually written
2 4+ B(g) 2+ 7. | T (p,g,m) =0 (B.14)
“au g ag r R'Fi77! '

where the beta function B(g) and the anomalous dimension
7 (g) have been defined by
ag 021

- _ M

Here, A 1is held constant in the differentiation and
subsequently the limit A — o is taken. The beta fuction
is universal (due to the universality of gauge
interactions), but the ¥ function depends on the Green’s
functions, that is, on the wave function renormalizations
of the external particles. If ZF is expressed as a product
of renormalization factors (such as those of the wave
function and the vertex coupling), then ¥ may be expressed
as the sum of corresponding contributions.

Now consider the case in which there is a single large
momentum scale Q. All momenta p, can then be expressed as

fixed fractions x, of Q. Introducing the variable

2
- 31 Q
t-—Tln ( > ] (B.16)
M
one has
= -0 et 8 - _ 8
du = -Q e dt » u ! 3t (B.17)
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and hence the RGE (B.14) can be re-expressed as

[' —gt + B(g) Zg + 7:(9) ] r'(t,g,x¢) =0 (B.18)

Defining a running coupling g(t) by the integral equation

g(t)=g(g,t)

t = 49’ (B.19)
B(g’) -

g=g(g,0)

the general solution to RGE (B.18) can be written as

g(t)

_ _ ¥r(g”)
C(t, §(g,0) , ) =T(0, G(g,t) , «) exp | dg’
) B(g’)
(B.20)

which can be checked directly by noting that
differentiating both sides of (B.19) with respect to t and g

gives respectively

Blg(t)) = 22 (B.21)
B(g(t)) = B(g) -2ZLEL (B.22)

Equation (B.20) is a very important result. It shows

that the whole Q2 dependence of I' arises through g(t).

B.3 The running coupling

In practice T, (A% and B can only be calculated in
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perturbation series in the coupling g = g (g,0) = g(0).
Let us denote by TI'™" the renormalized truncated QCD

Green’s functions with n gluon and m quark external legs.
0,2

The lowest order daiagrams contributing to rao’ r and
r? are
r*% ~rev + avnﬁzzhnnr-+:1;§2;w-+ dﬂu<::>mmm
. . + _
r'* X+ g + %
The perturbative expansions to order g2 are
2,0 2 13 4f g2 p2
"= (p,p,~ 9 P){l+[ C (G) —-———JWR)] ———-1n[ - ]
uv uy 6 2 3 16"2 “2
(B.23)
r”%=p + 0(g") (B.24)
1,2 3 g2 p2
I"=gvT[l———C(G)—————ln[_ ] (B.25)
[Y A 4 2 161!2 uz

with incoming momentum configurations (p,-p) for the

two-leg and (0,-p,p) for the three-leg cases normalized at

p2 = -uz, where u is the arbitrary subtraction point. In

(B.23-25) the Landau gauge has been used, in which the

. s 2 _ 4
gluon propagator is 16”(guvp pupv)/p . The

coefficient f is the number of flavors and the group

theoretical factors Cz(G) and T(R) were given in (B.11).
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Applying the RGE to the (truncated) Green’s functions in

(B.23-25) gives

( 8 8 2,0 _
e +B—a§‘+27’c]r =0 (B.26)
( 3 3 0,2

+ —_ + o= .
| B o5 27, ] r 0 (B.27)
[ s+ 42y +5 | TM?=0 (B.28)
{ Su ag Q G ‘

where Ve and ¥, are the contributions due to each gluon and
quark leg.
Then by using (B.23-25) in (B.26-28) it can be easily

verified that (in the Landau gauge)

2

13 4f : g 3
¥ [——C(G) -~ =L 7(R) ] + 0(g") (B.29)
G 6 2 3 16n2
v, = 0+ 0(g*) (B.30)
. 3
g = — [ 21 ¢ (6) - == 1(”) ] —9_ + 0(g") (B.31)
2 3 2
16m

This result shows that B(g) arises from the loop diagrams
and its expansion in powers of g begins, in general, as

B(g) = -bg*(1 + b'g® + ... ) (B.32)
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where, for the QCD case

= ——— (33 - 2f) (B.33)

QCD 487

In the one-loop approximation RB(g) = -— bg3 which

together with (B.20) yields, after integration,

2 ® (0)
g’(t) = —— (B.34)
1 + 2bg?(0)t

Similarly, the two-loop approximation (which 1is the

next-to-leading-logarithm approximation) yields

, 2
2 - — + pan [ RGO T ape (.35)
g (t) g (o) b’+ 1/g”(t)

From (B.34) it follows that with f = 16 flavors bomJ is
positive and gz(t) — 0 as t — . This important result,
that the running coupling constant going to zero as 0°—
is known as asymptotic freedom and allows RGE-improved
perturbative calculations at large Q° (short distances). It
is convenient to use

a (Q°) = 1 = 12n (B.37)

4mb 1n(Q%/A%) (33 — 2f) 1n(Q%/A%)

The parameter A (which has nothing to do with the
renormalization cut-off!) is a fixed parameter and is to be

determined from experiment. The theory is applicable only
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for @° >> A? for which o is small. The number f of
participating flavors depends on @°; in general, a quark i

of mass m, is expected to contribute to the loops only when

1% = 4mf .

As introduced here in the 1leading logarithmic
approximation context, A has a precise operational meaning
(it fixes asﬂf) with which we calculate) but its
theoretical basis is somewhat subtle. If we added a
non-leading logarithmic term, by changing the denominator
factor from ln(QZ/Az) to ln(Qz/Az) + X, it would be
equivalent to changing A — A’ = A exp (-1/2 X). Thus if
we determine A from a particular experiment, using leading
logarithmic formulae, the resulting empirical value of A
parametrizes, to some extent, the non-leading terms that we
have neglected. These non-leading terms arise from the
higher-loop contributions to gB(g) and ¥(g). Although 3(g)
is universal, the relevant 7 (g) depends on the experimental
measurements in question. Hence the empirical value of A
found from data fitting with 1leading logarithmic
approximate formulae will depend in general on the class of
data being used. To determine whether these different
values of A are consistent with a common QCcb
interpratation, one must consistently include non-leading
logarithmic terms in the formulae. In QCD the second

coefficient b’ is given by

b’ = (102 - 38f/3)/(16n°)° (B.38)
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and the two-loop correction to as(QZ) can be written as

’ 2 2
1 {1_ b’ In[1n(Q°/A%)] } (B.39)

2
4mb 1n{(Q°/A%) b In(Q"/A")

In QED there is no analog to the gluon loops, so Cz(G) =0

and T(R) = X ef, summed over all fermions (with charge ei)

appearing in the fermion loops. Hence

b = - ——— 7 ef (B.40)

This concludes our RGE preliminaries in this appendix.

More details can be found in Ref.l.
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