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ABSTRACT

Parallel Algorithu..
for
Handwritten Character Recognition

Melad Y. Ghabrial

A set of parallel algorithms is presented for (1) extracting
shape features from horizontally, vertically and diagonally
scanned handwritten characters, (2) sorting these features and
(3) classifying the scanned characters. A special parallel
architecture to implement these algorithms is designed. The
reliability of the algorithms/architecture is established through
simulation and experiments, and the s8cheme is shown to be
tolerant to writer style variation, rotation and distortion. The
architecture is cost effective and amenable to VLSI

implementation.
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1.1 Introduction

Pattern recognition algorithms are usually designed for a
sequential computer which processes information in a serial
manner. Although most of the well known pattern recognition
algorithms can be transformed into parallel ones, as
mentioned in [5,13], until now none of the above mentioned
references has solved the complete problem starting at
feature extraction and ending at classification. This is due
to the fact that most of the designs suggested in the
literature deal with a subtopic in pattern recognition such
as correlation, digital transforms, thinning, or
binarization. Because of the variety of applications, each
with special characteristics and constraints, it is hard to
apply a general architecture to most of these applications.
On the other hand, if we categorize those applications into
specific domains as handprinted character recognition,
handwritten character recognition and printed character
recognition we might reach a useful and effective

architecture for each category.




The purpose of this thesis is to design and simulate an
architecture for Handwritten Character Recognition (HCR),
specifically handwritten numerals, using cellular or systolic
arrays. This architecture has to be easily amenable to
implementation in current VLSI technoiogies. The real aim is
to build an integrated, reliable, cost effective, and very
fast system that will extract specific features from the
input patterns and classify them into their respective

classes.

1.2 Work organization
Chapter I includes a discussion on different algorithms

used previously in HCR problem, and a comparison between
those algorithms leading to the selection of the best suited
ones that:

i) are tolerant to pattern distortion, rotation,
translation and variation of writer style, and

ii) can be easily implemented using systolic arrays.
Chapter 1II, (HCR Applied Method), presents the overall
problem abstraction, and an explanation of the theory and
algorithms used for features extraction. Chapter III,
(Features Extraction Aalgorithms), is on the design of the
first phase in the system, namely features extraction and
storing phase. Chapter 1V, (Features Gathering and Sorting),
presents the design of the second phase: chain gathering and

sorting stages.




Chapter V, (Classification Phase), concentrates on the design
of the <classification phase, describes the simulation
experiment conducted and analyzes the results extracted from
the 1200 test samples. Chapter VI, (System Performance),
contains the system performance evaluation, conclusions and
future work to be explored. Appendix A contains a list of
references. Appendix B contains some samples from the 1200
digit and some samples of the rotated digits. Appendix C
contains the tables constructed during the simulation

experiment which are used during the classification phase.

1.3 Comparison between different. HCR methods
This thesis does not claim to introduce any new approach
for HCR. Instead it emphasizes on parallelization and
amelioration of some previous attempts, and on the design of
an architecture suitable for VLSI implementation. In this
section we include a concise review of the different
techniques used in HCR in order to appreciate the choice of
an approach that fulfill the following criteria:
i) Tolerant to pattern distortion and deformation.
ii) Suitable and practical for VLSI implementation.
Various HCR algorithms available in the literature can be
divided into two categories based on the type of features
extracted from the patterns. These two categories are:
i) Global and statistical features.

ii) Geometrical and structural features.




1.3.1 Global feature extraction algorithms
This class of algorithms involve (i) matching an input

pattern with stored templates using correlation [9], or (ii)
calculating statistical parameters such as the density of
black pixels within certain regions [7] and the number of
times a certain directed vector crosses from a white region
to a black one [4,17).

Although these techniques have abundant parallelism and
can be easily implemented on VLSI chips, they suffer from
their intolerance to rotation, translation, and high
sensitivity to distortion and style variation which are
inherent in handwritten characters. So this approach does not

usually work well in HCR.

1.3.2 Geometrical and structural algorithms

The second approach is based on the extraction of features
that describe the geometry or topology of the character
pattern. We can identify three different methods.

i) The first method uses Fourier descriptors [18,27] and
is complex. Although the features extracted are tolerant to
rotation, they are very sensitive to distortion and style
variation. It suffers from a serious drawback as its results
are affected by tiny details that may be attributed to noise,
binarization process, or writer style. These tiny details
reflected in the transform space often lead to confusion,

rejection, or misclassification.




ii) The seconi method is based on contour tracing, or
thinning and skeletonization [13,31,32,33]. It is very
sensitive to rotation. Often thinning algorithms introduce
other problems such as broken lines or loss of features.

iii) The third method [1,2] is based on detecting the
edges surrounding a pattern, and by defining a set of
relations between coincident edges (that is, edges meeting at
a common end point). These relations allow further shape
characterization. Higher order features can be constructed by
the association of two or more consecutive simple ones. This
method was found to be less complicated and more promising as
it is less sensitive to noise, and appears to accommodate
style variation rather naturally. Previous attempts using
this method [1,2] had some drawbacks in extracting the higher
order features and in classification. Some improvements are
suggested in this thesis in order to remedy these drawbacks
and to achieve tolerance to translation and rotation (-~15° to
+159).

A comparative study on different algorithms for HCR [16]
reported that geometrical and topological features appeared
to be superior to global and statistical features because of
their 1low sensitivity to distortion, rotation, and
translation. The problem confronting the former approach is
the apparently large amount of computation and storage space
required. This problem can be solved by parallelizing these
algorathms and directly implementing them in hardware, which




form the main scope of this thesis. OQur conclusion agrees

exactly with the study in [16]). It is not necessary, and even
undesirable, to extract exact shape features which may lead
to inflexible classification. We need to extract only
relevant features required for classification. The
effectiveness of any such algorithm hags to be judged by its

tolerance to style variation and distortion.




Chapter II
HCR Applied Method

Presented in this chapter is a complete discussion of the
method applied for our HCR parallel system. We will define
all the parameters and shape features that are of interest to
us. Included also are the enhancements we applied to the
method of [1] to be able to fulfil the two criteria mentioned

earlier.

2.1 Extracting Shape Features

Given a binarized and segmented pattern enclosed within a
frame of size MxN, where M is the number of rows and N is the
number of columns, we wish to extract the shape features
surrounding the black regions in the character pattern. Some

definitions are first introduced.

2.1.1 Edges

An edge is a transition from a white region to a black
region or vice-versa. Two different edges are encountered in
scanning across a body region which is the region containing
only black pixels. Figure 2.1 shows the different body
regions in a sample pattern and the edges surrounding them.
Figure 2.2 shows the start, end, split and merge points of

body regions. From figure 2.2 we can observe the following:




~- The start of an edge, called the head, is encountered
when a body region starts or splits.

~ The end of an edge, called the tail, is encountered when
a body region ends or when two body regions merge together.

- Each new body region encountered generates the start of
two edges of different types, el for the left edge and e? for
the right one.

- Each split in a body region generates the start of two
other edge types, ed for the left edge and e! for the right
one.

Figure 2.3 illustrates these different edge types that can
appesr in tracing the boundaries of any pattern. Thus we have
the following characteristics:

- An edge of type el corresponds to a left transition from
a vhite region into a body region.

- An edge of type e? corresponds to a right transition
from a white region into a body region.

- An edge of type e3 corresponds to a left transition from
a split body region into a white region.

- An edge of type et corresponds to a right transition
from a split body xregion into a white region.

- The head of an e3 and e? edge occurs at the point where

the body region split into two parts.



Edges, Start and End points

Figure 2.1

- In the figures shown on this page,
circles represent start points
squares represent end points

Figure 2.2 Figure 2.3
Body Regions B.R. Start and End Points
Start Start
of a B.R. of a B.R
2 el
ei
el
e3
ell




2.1.2 Edge relations

An edge relation can be established between two edges
which meet at their heads or at their tails. We will give the
symbol (x) for the relation generated when two edges meet at
their heads and the symbol (-) for that when two edges meet
at their tails.

Table 2.1 reveals all possible relations that can be
defined among the four edge'types el, e2, e3, ana et. In any
pattern, only ten different relations, namely R; to Rjgp can
be found. Two higher order relations are also defined. These
two are the concatenation of R; and Ry written as Rj;5 and
that of R and Rg written as Rj;. Figure 2.4 shows example

patterns for these twelve relations.

right
edges
el e? e3 el
el x,- -
e? - -
left
edges e3 - X,~
et - -
Table 2.1 Allowable Relations
2.1.3 Simple shapes

The 12 relations shown in figure 2.4 construct all the
primitive or simple shapes that will be used later. These

shapes can be classified as follows:
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Twelve Edge Relations
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1)

i1)

1i1)

iv)

v)

Beginning of a body region: Relation R; =elxe?
implies the start of a body region.

End of a body region: Each of relations Ry, R3, Ry,
and Rjp implies the end of a body region.

Simple cavity (type 1)s Each of relations Ry, Rs, Rg
and Rg implies the existence of a cavity open

from the top (cavity-1). This cavity is formed by the
merging of two body regions. We can classify cavities
of type 1 according to other information, such as the
relative rank (position) of the heads of the edges.
Specifically if the head of the left edge is higher
(lower) than the head of the right edge then
rightward (leftward) open cavity is formed. Figure
2.5 explains this point, where i and j represents the
row numbers at which the left and right edges,
respectively, start.

Simple cavity (type 2): Relation R9 implies the
existence of a cavity cpen from the bottom, (cavity-
2). It is created by the splitting of a body region.
Simple hole : Relation Rjj implies the existence of a
hole. This hole is formed by the splitting of a body
region into two regions and tl=n those two regions

merge together to enclose a hole.

12




sl Sl S2 2
S2 Sl

rovw(Sl) <1row(52) row(Sl1l) = row(S2) row(Sl) > row(S2)
R4

! ’ ’

Figure 2.5
Edge Ranking

e(k,1) s where k is edge type and 1 is edge rank
S(l) ¢+ start point with rank 1l

E(l) : end point with rank 1l

Chain 1: s1,E3,83,E6,S5,E2,S2,E1

Chain 2: S4,E5,56,E4 :

Figure 2.6 chains

13




2.1.4 Chains

Bach pattern might contain one or more inner chains which
trace the holes. Also each character (numeral) contains only
one outer chain along its outer contour. In other words, we
can define a chain as sequence of edges that form a closed
loop on the inner or outer contour of a pattern. The number
of chains for any specific pattern has to be equal to the
number of its inner and outer contours. The edges in a chain
are ordered in clockwise direction starting with the highest
edge on that chain. Figure 2.6 Shows a pattern containing two
chains. The list of edges forming each chain is also shown.
Depending on the context of usage, the chain can be
equivalently represented by the sequence of start/end points
traversed or the corresponding relations as depicted in

figure 2.6.

2.1.5 Complex/Simple holes

In figure 2.6 there exists a hole inside the pattern. This
hole is not a simple one as defined by an Rjj; relation. This
type of hole is actually constructed f£from the concatenation
of more than two edges. We can detect any hole, complex or
aimple,.by simply looking at the first relation in an ordered
chain. This first relation will correspond to the two edges
emerging from the highest start point in the whole chain. 1If
this relation is R; =e3 x e? then a hole exists. On the

other hand if this relation is an R; = el x e2 then the chain

14




does not correspond to a hole. The proof for the above
statement is included in [1). Referring to figure 2.6, we
find two chains available C; and Cj. Notice that chain Cj
does not correspond to a hole because the first relation is
R; not Ry. Chain C3 on the other hand constructs a hole.
2.2 Modifications to Ahmed and Suen's method

In their method, Ahmed and Suen [1,2] started the feature
extraction algorithm by scanning the digitized character
matrix from top to bottom and left to right. Upon discovering
a start point, their sequential algorithm followed the
character contour +to reach the end point. Then the relations
are extracted by ~omparing the edge types and the coordinates
of the start/end points. These relations are then combined
into circular chains and different features are extracted
from each chain as holes and cavities of different types.
They also extracted the coordinates of each feature by
calculating the upper-right corner and bottom left-corner of
the rectangle that best fits/enclose this feature. After the
edges, relations, features and the coordinates of these
features, are extracted, Ahmed and Suen start the
classification phase by searching through a very large
database, comparing each extracted (feature, coordinates)
tuple with the records stored in the database. If a match is
found the search continues with the rest of the extracted
features. If no match is discovered, then the pattern is

rejected.

15




This sequential processing requires a significant amount
of processing time and space. The implemented system is also
sensitive to rotation and translation, because exact location
matching is used. On the other hand some useful information
extracted has not been used to advantage. For example, during
classification, each extracted feature (relation) is treated
individually without paying attention to the seguence
ordering. The sequence information actually is very useful as

it will he shown later.

2.2.1 The novelty of the work
Three modifications to the work of [1,2] have been

introduced in this thesis. PFirst, we will not associate a
location attribute to each feature point. Second, an entire
chain is treated as & complex feature. As mentioned in
section 2.1.5 an ordered chain is formed by the sequence of
edges and their relations surrounding a shape and sorted in a
clockwise direction. Third, smoothing is applied to each
chain. The smoothing removes relations involving edges
shorter than some threshold. This leads to better recognition
results as the system can accommodate variations in writer
style and more noise created in preprocessing. These
modifications have resulted in better system performance as
illustrated by the simulation reported in detail in chapter
V.

16




2.3 Applied method sumsary

The method we have developed can be summarized as follows.
First the edges of a given character pattern are extracted
together with their types, relations and ranks. From the
extracted edges and their joint relations, the chains can be
constructed in clockwise direction. Each chain is further
smoothed to accommodate variation of writer style and
digitization noise resulting in a complex feature. The above
steps are repeated on three versions of the same character
pattern. The first version corresponds to scanning the
pattern horizontally, named H-scan. The second corresponds to
scanning the pattern vertically, named V-scan. The third
corresponds to scanning at -135°, named D-scan. All the three
versions are processed in parallel. Each resulting complex
chain will be compared with a pre-stored database. 1In each
record of the database is also stored a list of all the
character classes to which the associated complex chain may
belong. A successful search of the database returns the list
of classes for the given chain. From the 1lists of classes
obtained from the three scans, the intersection of the three
lists is obtained. A successful (unique) class is identified
when only one member exists in the intersection. Else the
pattern is either rejected or additional features will be

needed.

17




CHAPTER 111
Feature Extraction Algorithms

This chapter will present the parallel algorithms for
extracting all the edges surrounding a given pattern, start
and end points for each edge and edge relations. A problem
abstraction follows this introduction. The algorithms for

edge extraction and storing stages are then discussed.

12 11 10 09 08 07 06 05 04 03 02 01

X| X|] X Xl X 1

X| X} X| X| X| X| X| X 2

X| X} X X| X| X 3

X| X X| X 4

X| X X| X 5

X| X} X| X| X| X 6

X| X X 7

X1 X X| X 8

X| X X| X 9
X X| X 10
X| X| X| X| X| X 11

X represents one black pixel
Figure 3.1
Matrix of a Digitized Pattern

3.1 The HCR Algorithm
Starting with an input character of size MxN as

illustrated in figure 3.1 above, the steps that should be

followed in extracting shape features are:




a) Extract all edges that surround the character's inner
and outer contours. Each edge is identified by its start and
end point coordinates. An end point occurs whenever two edges
meet at their tails, whereas at a start point two edges
emanate (one tracing left and the other tracing right).

b) Build the chains of these feature points by ordering
them in a clockwise sequence, starting each chain with the
start point that has the highest rank (row number in case of
horizontal scan). Some smoothing is applied to merge short
edges in order to remove small features and ripples.

c) Process each chain containing a hole to derive the
smallest rectangle that encloses the hole. The chain is then
replaced with a hole feature and a rectangle enclosing it.

d) Merge all the remaining chains and hole features
obtained in (c) together to form one complex chain, called
feature string. This string when matched against the records
stored in a classification database identifies a set of
classes that may contain the feature string.

e) Repeat steps (a-d) on three separate and rotated scans
of the character image as discussed in chapter II. These
three scans are processed in parallel, each returning a set
of classes to which the image may correspond.

f) Take the intersection of the three output sets to
produce the final classification result. If the intersection

contains more than one choice, a rejection is necessary.
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The above steps will be executed repeatedly for a
continuous stream of input characters using a suitable
systolic architecture. Each stage discussed above will be
constructed c£ a finite nurber of Processing Elements called
PEs. Each PE has a constant number of storage registers and
all PEs in each stage execute the same instruction each
cycle. In each stage the PEs will be connected linearly. A PE
will be able to communicate only with its predecessor and
successor in the linear array. The reason this architecture
is called systolic is due to the fact that data flow into and
out of the column of PEs in a rhythmic way. During each cycle
a new data/pixel enters each PE, get processed and the result
is delivered at the end of the cycle. This scenario is
repeated for as long as there is input data flow. During each
clock cycle the PE process an input data and delivers an
output data the same as a heart pumping blood in and out
during each beat.

If the system is formed of a number of stages, as will be
shown later, then each stage has to finish processing a
character image before the following image enters it. Since
one complete column of a picture matrix enters the system
each cycle, the maximum number of cycles available for any
stage to process a character is equal to the number of
columns in the character. This criteria must be met in the

system design for achieving systolic processing.

20




The overall system design is divided into three phases and
each _phase is further subdivided. The architecture and
algorithms of the systolic array used in each phase will be
explained in the following sequence:

1- Edge extraction and ranking phase (chapter III).

2- Chain gathering and sorting phase (chapter 1V).

3- Chain smoothing, merging, and classification phase
(chapter V).

3.2 Edge Extraction and Storing Phase

During this phase all edges, their start points and end
points of a skewed pattern are extracted and stored inside
two columns of PEs. Each PE is responsible for processing one
row of the pattern, one pixel each cycle. The idea is that a
PE detects the start point of an edge by detecting a 0 to 1*
or al to 0" transition and then sends a message to the PE
beneath it to tracing this edge. The PE that receives the
message forwards it further down when it detects the same
type of transition and this process repeats until an end
point is encountered. Each feature point generated is passed
from the £first column to the next column of PE's, called the
unskewing and storing stage, to be accumulated for the whole
pattern. The pattern is skewed in order that an edge starting
at an angle bounded by +45° or -45° will be detected as one
single edge during the extraction.

* (that is, white pixel to black pixel)
** (that is, black pixel to white pixel)
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3.2.1 Pattern skewing

From the above description it is evident that an edge is
traced by vertical messages passing between the PEs from top
to bottom. Since there must be at least one cycle delay
between the time a message is generated at PEy and the time
it is consumed in PEy4), there is a chance that the
transition for the same edge has occurred in PEy,; before the
message from PE, reaches it. This problem can occur in case
of a vertical or -45° slanted edge, as exemplified in Figures
3.2 and 3.3 respectively.

In order to alleviate this problem, we chose to skew the
input pattern by delaying the input to each row by two cycles
relative to the row above it, as illustrated in Figure 3.4.
This skewing enables our first stage to identify horizontal,
vertical, and diagonal edges correctly and continuously
without breaking them into segments.

The start pcints and end points extracted in the first
column emerge in a skewed manner as well. To restore the
proper alignment, an unskewing network is needed after the
first stage. This is the second stage in phase 1. This
network reverses the effect of the skewing delay elements as
will be shown later. After the extracted points are aligned
by the second stage, they will then be stored in the second

column of PEs, and this is the third and final stage in phase

1.

22




message generated message generated

for V. edge for D. edge
x| x x
x | x x x | x ‘wb\r
x | x| x| x x | x| x §b\\
x | x| % x | x| x| x ik‘
C
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Figure 3.2 Figure 3.3
Vertical Edge Example Diagonal Edge Example

-

Diagonal edge in figure 3.3 after
it is skewed (each row delayed
by 2 cycles from its predecessor).

The arrows show that the messages
generated are sent below without
missing. The diagonal and vertical
edges are followed correctly when the
pattern is skewed.

Figure 3.4
Patter Skewing
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3.3 Edge Extraction and Ranking Algorithm [First stage]

During this stage the start and end points of a pattern
will be extracted and passed to the next stage. Each PE has a
register S (see figure 3.5) in which it stores the type of
transition it is expecting to detect. Initially this register
is met to detect a 0 to 1l transition, i.e. a white pixel
followed by a black one. Upon detecting the expected
transition, a PE generates a start point, tags it with its
coordinates, reverses its S register state, generates a left
cdge message and stores it in one of its registers, generates
a right edge message and passes it to the PE below it. After
receiving a message from its top neighbor, a PE is alerted to
anticipate another transition. If the transition occurs, then
the PE sends a new message to the next PE which will continue
to trace the edge. On the other hand if a PE is tracing two
different edges and a transition occurs then it will pass the
message corresponding to the transition to the PE below it,
and will reverse its own state (maintained in register S) to
continue tracing the other edge. The only case during which a
PE may generate an end point and terminate the trace is when
a PE has received two edge messages, but no transition is
detected during that cycle. This is due to the fact that any
two meeting edges either

i) end the body region (black pixels region) that they
surround, as in the case of Ry, R3, Rg and Rj;g relations in

figure 2.4 or
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ii) start the merge of two body regions into one single
region, as in the case of R4, Rs, Rg, and Rg in figure 2.4.
In case (i) above we should only have white pixels adjacent
to the point where those two edges meet and in case (ii) we
should only have black pixels adjacent to the meeting point.
In both cases no transition from a 0 to 1 or vice-versa
occurs. In this case the PE generates an end point and tags
it with its current column and row numbers.

A reset signal, end of frame signal, is included after the
last column of each pattern to separate consecutive

characters, and to reset each PE to its initial state.

3.3.1 PE Architecture

Figure 3.5 shows the registers, contents and signals, of
each PE in the edge extraction stage. Each PE contains two
registers ROW# and COL#, the first register stores
permanently the row number of the pattern which the PE
processes, and the second register is incremented each cycle
to keep track of the column coordinates of the pixel entering
the PE in that cycle. Whenever a PE discovers a transition it
reverses the S register's state. If the state is 0~-1 it
reverses it to 1-0 and vice-versa.
The other registers used within a PE are :

(i) El register: it is used to store the message passed
from the top PE or the left edge message generated within the

same PE when a start point is detected.
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(ii) SP# register: it is initialized to zero by the reset
signal and is incremented by one when the PE detects a start
point.

The signals entering and leaving a PE are:

(1) V4, Vo are two vertical signals. They carry edge
continuation messages passed between PEs.

(ii) Dy is a horizontal input data; it carries the input
pixel or the reset signal R.

(1ii) Dy is a horizontal output data; it carries the
generated start and end points to the next stage. The format

of Dy is shown in figure 3.6.

3.3.2 Pseudo code for extracting the edge features
Initially all the PE's in the first stage are set to detect
a 0 --=> 1 transition. The vertical (message) input to PE; is set

to null.

for 2M+N cycles do
for all PEj, 1 < i < M+1l, pardo
if the anticipated transition occurs
then
if PE; is receiving a message from PEj_3

then
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if PE; contains a message in E register
then
send message in E below to PEj.;;
store new message in E register;
else % no stored messages in E register$
% this transition corresponds to an
edge continuation %
send this message below to PEj;;
else % PE; is not receiving a message%
if PE; contains a message in E register
then
3end message in E below to PEj.;
else %this transition corresponds to
a gtart point %
generate the coordinates of this
start point;
generate two edges (of type el and
e2 if this is a 0--->1 transition
or of type e3 and e! for 1-->0
transition);
store the left edge message (e1 oxr
e3) in E register;
send right edge message below to
PEj+1;

output the point to next stage;
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else $ no transition takes place in PE;%
if PE; receives a message
then
if PE; contains a message
then % this case corresponds to an
end point wvhere two edges{messages)
are meeting at a PE while there is
no transition occurring %
generate the .nd point coordinates;
delete the messages received;
output point to next stage;
else
store the message in E register;

% end of algorithm %

3.3.3 Theorems of the first stage algorithm

Theorem 1: A PE will not trace more than two edges at any
given cycle.

Idea of the Proof: To prove theorem 1 we consider the
worst case when input pixels alternate between 0 and 1
consecutively in a row and prove that even in the worst case
no more than two edges will be traced within any PE as

demonstrated below in PEy.
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CYCLE NUMBER
4 3 2 1 0

d d 0 0 0 |PEg,

d means don't care
pixel
0 1l 0 1 R PE,

R is the reset
signal
d d R d d PEy41

During cycle 1 PE, detects a start point and sends a
message to PEy,1 to continue tracing the right edge. PE, also
stores the left edge in its El register, and changes its S
register to 1-0 state. During cycle 2 a 1-0 transition occurs
in PEx as anticipated by its S register. Because therzs 1is a
valid edge data in E1l, PEx will pass it to PEx4j; and will
then clear the E1 register and reverse its S register back to
0-1. During the same cycle PEy;) receives the right edge
message sent from PE, in cycle 1 and stores it in its El
register as no transition is detected. During cycle 3 PEy
detects another new transition while no edge is stored in its
registers. It then generates a new start point with two
edges, sends the right adge down, stores the left edge in El
and reverses its S register to 1-0. During the same cycle
PEy;1 receives the left edge message of the first start point

from PEy. It now contains two edge messages.
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If a transition occurs in it during this cycle, i.e. the
don't care pixel is a 1, then it will pass the edge stored in
El to a lower PE, take the new edge and store it in El and
reverse its S register to 1-0. In this case only one edge is
remaining in PEy4;. The second case happens if no transition
occurs, i.e. the don't care pixel in the above illustration
is a 0, then the two edges lead to an enc point and both of
the registers will be cleared, leaving no edge in PEy,;.

At cycle 4 and 5 the same process repeats proving that no

more than two edges will be contained in any PE.

Corollary 1l: No more than one start point or one end point
will be generated by any PE during any cycle.

Corollary 2: Signals V; and Vo, will never carry more than
one edge message during any cycle.

Corollary 3: The total number of start points extracted by
the column of PEs from a single pattern has to be equal to
the total number of end points extracted from the same
pattern.

Corollary 4: An end point can only be detected after the
two start points of the meeting edges have been detected.
Also the PE detecting it has to be lower to, or at the same

level as the PE that detected the lower start point.
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3.3.4 Edge detection examples

Figures 3.7 and 3.8 shows two examples of this algorithm.
They depict the space-time diagram of the messages passing
inside and between PEB.‘ The pattern has been skewed before it
is fed to the column of PEs. Alsc one column of R (reset
signals) is included at the end of each pattern. The
diagonal arrows appearing on the space-time diagram
correspond to the V; and V, messages passed between PEs.

Referring to point 1 in Figure 3.7 we notice that PEg sees
two edge messages in that cycle while a transition from 0 to
1 occurs. Accordingly the horizontal message is passed to the
PE below and the message it just received from it's upper PE
takes the place of the former. On the other hand, point 2 in
Figure 3.7 indicates an end point because no transition
occurs while PEg sees two edge messages in that cycle. Point
3 in the same figure shows a transition from 0 to 1 in the
absence of an edge message. This generates a start point with
el as left edg. and e2 as right edge. The right edge is
passed to the PE below. Point 4 is similar to point 1 where
PEjp sees two edge messages during that cycle while a
transition from O to 1 occurs. The PE passes the horizontal

message to PE;; below and new message replace the former.
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3.3.5 First stage performance

We will position all our characters so that they fit in a
standard matrix of MxN by simply including empty xrows or
columns. Then all our calculations for performance will be
done over the standard MxN matrix.

For any input pattern of M rows and N columns,

(1) Flush time, which is the time needed between the
arrival of the first pixel of the first row and that of the
first pixel of last row to the column of PE, is 24 ~ 2. This
time is actually the result of the two cycles skewing we
introduced earlier.

(ii) The delay between the first pixel to enter this
stage and the last processed point to leave the stage equals
the flush-time + N = 2M + N - 2,

(iii) In every N + 1 cycles the PE column in stage 1
extracts all the start and end points in one pattern's
matrix.

(iv) The number of PEs used in this stage is M. Those
PEs are only linearly connected (i.e. each PE is connected to
the one above it and the one below it) which minimize the

communications network complexity.
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3.4 The unskewveing and storing gctage [second stage]

During this stage the extracted points from stage 1 will
be unskewed to realign them. A delay element network is used
to perform this task. After the unskewing is performed the
start and end points extracted will be collected in a second
column of PEs as discussed earlier. The storing stage
eliminates message collision and interference between
consecutive patterns. It also helps in keeping the data
bandwidth between stages constant, as it will be shown in the
following chapters.

The following assumption will be made: "No morxe than three
start points and three end points can occur within any row of
a pattern". This assumption was found to hold during the
simulation experiment on the 1200 scanned digits from 0-9 and
enclosed in a [54x54] matrix. The maximum number of start and
end points in a single row had to be determined in order to
design a fixed architecture for the PEs used hereafter.
Although this assumption suits regularly sized handwritten
numerals, it may not be valid for completely unconstrained
handwritten characters. In such cases minimal changes to the
storing and tagging stages will be required to increase
registers and clock rates, but the algorithms used will still

hold.
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3.4.]1 Storing stage Procedure

Upon receiving a start or an end point, the PE will store
it in one of the empty registers. Each PE contains three
registers to store the start points and three other registers
to store the end points. Whenever the column of storage PEs
receives an R (reset signal) it then pumps its stored data
out to the next phase, namely, the chain gathering phase.
This means that the complete set of start and end points
extracted from any pattern will be pumped out from this stage
only at the end of every N cycles. Figure 3.9 shows the
points extracted from the pattern shown in figure 3.8.a. It

also shows how the pcints are stored during this stage.

3.4.2 The PE architecture of the storing stage

Figure 3.10 shows the contents of each PE in this stage.
The registers S1, S2, and S3 store three start points. The
registers E1, E2, and E3 store three end points. The input
signal D; delivers the start and end points extracted from
stage 1. Its format is the same as D, format in Figure 3.6.
The output signals DS, and DE, deliver one start point and
one end point, respectively, to the next stage. They are
activated only after receiving an end of frame, i.e. a reset
signal, in Dj. Starting at the cycle during which a reset
signal is received, and during the following two cycles, each
PE will pump the contents of its S and E registers to the

next stage.
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PE1l |(S/1,1,4,1/1,1,4,2)
L>number of the start point in row
PE2 |[(S/1,2,1,1/1,2,1,2)
[8/2,2'5,3/2'2'5,4]
PE3 |(E/1,1.4.,2/1,2,1,1/3,3)
left right L—>end point
edge edge coordinates
PE4
PES
PE6
PE7 |[S/1,7,7,1/1,7,7,2]
PE8 {[E/1,7,7,2/2,2,5,3/8,9)
L> number of the start point /7,7,2/
within the row where it's discovered
PE9 |(S/1,9,1,1/1,9,1,2]
(E/1,7,7,2/2,2,5,4/9,5)
PE10|([E/1,2,1,2/1,2,1,1/10,2}
[s/1,10,4,3/1,10,4,4)
[s/2,10,8,3/2,10,8,4]
[E/2,10,8,3/1,1,4,1/10,9)
PE11|(E/1,10,4,4,1/1,9,1,2/11,3]
{(e/2,10,8,4/1,10,4,3/11,7)
Figure 3.9
Data Sent to Storage Stage
DSo
Sl El jssnnms > s
Di
> 82 E2
DEo
s3 E3 s > w——
Figure 3.10

PE Architecture of Storage Stage
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CHEAPTER IV
Feature Gathering and Soxting

During this phase, phase II, the data extracted in phase I
will be processed to order all the start and end points on
each continuous contour of the pattern into a chain. Elements
in a chain are sorted in the clockwise order. This is
followed by smoothing of the list (by deleting relatively
small features; three pixels or less) and merging all the
chains into one complex chain, which will be explained in
chapter V.

Figure 4.1 shows a processed pattern at the end of phase
I. As could be seen, the pattern has two chains. What we want
to achieve at the end of phase II is to collect and order the
points of each chain. For the example pattern shown in Figure
4.1, at the end of phase II the £following lists should be

produced.

Chain 1 (Cl): (S1, E3, S4, E6, S5, E2, S2, E1).
Chain 2 (C2): (S3, ES, S6, E4).

Note that S1 has to be the first point in chain Cl1 because
it's the point with the highest (row) rank. Similarly S3 is
the first point on C2. Also notice the clockwise order in
which the c¢wo chains are written.

In order to accomplish the above, the design of phase II
is divided into the following three stages:

(1) Tagging stage.
(ii) Rerouting stage.

(iii) Sorting stage.
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4.1 Tagging stage

During this stage each point on chainCj, 1< i < n,
where n is the number of chains in the pattern, will be
tagged with the row number of a higher point on the same
chain C;. Only the highest point on C; will remain untagged.
From the format of signal D,, shown in figure 3.6, we notice
that the data contained in each end point Ey carries the
following information:

(1) The coordinates of the start point connected to the
left edge of Ey. '

(ii) The coordinates of the start point connected to the
right edge of Ey.

Where a right edge is defined as an edge whose slope is
between 0° and 45° at the end point. On the other hand a left
edge has a slope between -45° and 0° at the end point.

So by simply comparing the coordinates of these two
points, we can detect the higher start point of an end point.
Knowing that, the PE containing that end point sends a
message/tag to the lower start point so that the latter knows
which PE it may go to. This message/tag contains the address
of the higher start point. The same tag also applies to the
end point. At the end of this stage each start and end point
will be tagged with the address of a higher start point and

only the highest start point will remain untagged.
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4.1.1 Tagging algorithm

The number of PEs used in this stage is 3M. The triple
size is due to the fact that each PE in the storage stage in
phase I can hold up to three start points and three end
points. Figure 4.2 shows the interconnection between the
storage stage and the tagging stage. Only every third PE in
the tagging stage is connected to a PE in the storage stage.
The first set of start and end points is passed from each PE
in the storage upon reset to PE, in the tagging stage, PE,
sends them to PEy_s above through PEy_j. During the following
cycle the second set of start and end points will be picked
by PEy and sent to PEy_j. During the third cycle the third
set of start and end points are picked by PEy so that each PE
becomes responsible for storing the data and tags
corresponding to at most one start point and one end point.
This approach reduces the complexity of each PE, and the data
bandwidth requirement between adjacent ones, as well as it
improves the expandability of the architecture when more than
3 start and 3 end points may be encountered in each row of
the pattern matrix. (This case might happen if we use higher
scanning resolutions.)

The clock-rate during this stage,has to be 3 times that of
the previous stages because the PE column triples in size
while data rippling is done systolically between adjacent
PEs.
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Upon receiying an end point, PEy compares the coordinates
of its two start points, and identifies the PE number (xow
number) of the highest start point. The address tag is
obtained using the following formula:

Formula 1: This formula is used to calculate the address
at which a start and end point will be stored as mentioned
earlier and it is also used to calculate the addresses of
start points to which the tags are sent.

Address tag = (( row# ~ 1 ) * 3) + S¢
where: row# is the row number of the start or end point

S# is the number of the start point within the row

as shown in figure 3.6.

It then sends the tag message to the lower start point. It
also tags itself with the same PE number. A start point in
any PE may receive two tags from two different end points.
This case can only happen if the start point is the lower for

both end points it is connected to, as shown below.

S5i.2

Si+2

Ej+y
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Point S; is the lower start point for end points Ej;; and

Ej.1. So it will receive tagging messages from both end
points. Eventually (regardless of the arrival ordering of
these two tags), point S; compares the two tags and store the
larger one in its tag register. In the above example this is
the address tag pointing to the PE containing Sj.j. It then
sends a new tag message to Sj;.3. This tag message also points
to the PE containing point S;_5. It is thus apparent that the
tag register of a PE containing a start point may be

readjusted each time a new tag is received.

4.1.2 PE architecture of the Tagging stage

Figure 4.3 shows the registers and signals of each PE in
this stage. Following is a description of each register:

(i) PE# register contains the row number of the PE within
the column. Numbering ranges from 1 for higher PE to 3M for
lower one.

(ii) S register is used to store the data of one start
point.

(iii) E register is used to store the data of one end
point.

(iv) STAG register is used to store the address tag to
which the start point stored in S will be rerouted.

(v) ETAG similar to STAG but is used for the end point.

The signals entering and leaving each PE include:
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(1) DS;, and DE; carry start and end point data
respectively. This is the data passed from the storage stage
during the three cycles following the reset.

(ii) S35, So, BEj, and E, carry the start and end points to
their corresponding storage address.

(iii) TOj, and T0, carry the address-tag to a specific
start point.

(iv) DSy, and DE, forward the S register data with its
STAG and the E register data with its ETAG to the next stage,
the rerouting stage at the end of this tagging process
(flushed by reset).

The format of some of the above signals is shown in figure
4.4. Each signal is formed from two parts as follows:

1. The PE#, or the address, to which this signal is being
sent.

2. The message or the value to be forwarded to this PE#.
This message can be a rerouted address tag as in the case of
TOj, a start point data, or an end point data as in the case

of S; and E; respectively.
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TOo/ |\ so/ |\ Eo/ |\
PE #
DSi DSo
a— " jsovsmmse—" ) ssusm——"
S STAG
DEL DEo
——> s hos—— > vasmass
E ETAG
10i/ |\ si/|\ Ei/|\
Figure 4.3
PE Architecture of the Tagging Stage
Destination Contents
TO-PE# Start point data
Format of Si and So
Destination Contents
TO-PE# End point data Etag
Format of Ei and Eo
Destination Contents
TO-PE# STAG

Forma: of TOi and TOo

Figure 4.4

Data Format of Tagging Stage
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4.1.3 Peendo code of the tagging stage algorithm

After receiving a reset signal all registers inside a PE are

cleared.

n=20;
for the first 3 cycles after the reset signal do
increment n by 1;
for all PE;j 1 < i < 3(M+1l) pardo
if DS; carries a start point
then
generate message (PEj_34pn <-~-- DEj);
send this message upward to PE;j.j; through
So signal;
if ES; carries an end point
then
generate message (PEj_34+pn <---- DEj);
send this message upward to PEj._3j through
Eo signal;
tag this end point with min{j,k} (where
j and k are the numbers of the two
PEs that contain the two start points

whose edges are meeting at this end point)
tthis numbers are included within the end

point data when it was generated in the first

stage %
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generate message (PEpjn(4,k}<---= PEmax{j,k})
and send it to PEj_j; through TO, signal;

if S; carries message (PEy <~e=-- SD) (where SD
stands for Start point Data)
then
ifx =1
then %the start point reached its storing PE%
store SD in S register;
else
send S§y to PEj.;;
if E; carries message (PEy; <-~--- ED) (where ED
stands for End point Data)
then
ifx=1i
then % the end point reached its storing PE %
store ED in E register;
sto~z its tag in ETAG;
else

send nj to PEj_y;

ifn>3thenn=n+ 1: $where n j current cycle #%
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for all the cycles where 1 < n < 3(M+1) do
for PEj, 1 = i < 3(M+1l) pardo
if TO; carries message (PEy <e=-- PEy)
then
if i = 4
then %this message corresponds to this PE &
if STAG is empty
then
store k in STAG;
else
let 1 be the value in STAG;
generate the message
(PEmin{l,k}<-=-- PEmax{l,k})/
send this message to PEj.j; through
TOg:
store min{l,k} in STAG;
else fmessage does not correspond to this
PE %
send TO; to PE;_; through TO4,;
% end of algorithm %
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4.1.4 Theorems of the Tagging algorithm

Theorem 2: All the signals generated by any end point
would be directed vertically, from bottom to top.

Proof: From corollary 4 in section 3.2.3 which stated that
*an end point has to be lower than or at the same row as its
lowest start point", it follows that all the address tag
signals that any end poirit may generate have to be sent
either to the same PE or to a higher PE. This means that the
signals would be directed from bottom to top.

Q.E.D.

Another point has to be taken care of during this stage. A
new reset signal should not reach this stage until all the
vertical tag migrations have reached their final
destinations. In order to eliminate this overlapping problem
we have to adjust the width of the input pattern to be no
smaller than its height. In the worst case, this can be
gquaranteed by adding empty columns before or after the
pattern till M, number of rows in the pattern, become less
than N, number of columns in the pattern. This leads to the
following:

Implied Rule 1 : No overlapping will occur between two
consecutive input pattern frames if and only if M, the number
of rows, is less than N, the number of columns, in each

pattern entering the system.
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Validity of Rule 1 : Assume a reset signal is received at
cycle tg. On the following cycle, cycle t;, all the points
inside the PEs of the storing stage will be passed to the PEs
of the tagging stage. Puring the same cycle all the vertical
signals would be generated. The longest path a vertical
signal can take will be from the bottom PE3y to the top
PE;.The 1last signal will reach PE; at cycle tjy43m.), i.e.
t3am. Since the clock is three times faster during this stage
than in previous stages, and since a reset signal is included
after each N columns to separate consecutive patterns, the
next reset signal will be entering the tagging stage during
cycle t3yn. In order to eliminate the overlapping, tg3y has to

be greater than t3y, or N has to be greater than M (N > M).

4.1.5 Example for the tagging algorithm

Figure 4.1 shows a pattern after it has gone through phase
I. Figure 4.5 shows the space time diagram of the tagging
stage while processing the results of phase I for the
example.

At cycle 1.1 a message 7 <-- S3 is generated in PEg. This
means that start point number 3 is to be rerouted to PE
number 7. The number 7 is calculated using formula 1. Since
the row# of S3 is 3 and its SP# is 1 then :

address tag = ((3 - 1) * 3) + SP# = 7.
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Also a 1 <-- 4 message 1is generated. This message is
caused by end point El. When the two edges of El were
compared it was discovered that the 1left edge connected to
point S2 is lower than the right edge connected to point Sl.
The reroute tags are then calculated using formula 1 and the
1 <<~ 4 message that will tell PE number 4 to send its start
point data to PE number 1 is generated.

At cycle 2.1 (after three cycles from last reset) all the
start points arrive at their destinations and are stored in
their respective S registers.

At cycle 6.2, we notice that the message 10 <-- 11 reaches
PE;; and detects that the STAG register already contains a
value (4), that is less than 10. In this case a new message'
4 <-- 10 is generated telling PE number 10 to reroute to PE
number 4. This message appears on the figure at cycle 6.2 in
PE number 10. When this message reaches PEjg, it is converted
into a new one containing 1 <-- 4 for similar reasons. At
cycle 9.3 all the tag registers will contain their rerouting

addresses.
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PE#|Cycle 1.1|Cycle 2.1|Cycle 6.2|Cycle 6.3 |Cycle 7.1|Cycle 8.3|Cycle 9.3
1 S S1 Sy Si Sy Sy
2
3 1l <=§;

4 So So So S2 Sa| 1<-4 [S5y
- 1 1 1 1 1
5
6 4 <-Sj 1<-4
7 S3 S3 S3 S3 Sy S3
8
9 7 <-83 1<-4
1<-4
10 Sg S4 Sq| 4<~10]8S4 S4 S4
- 1 1 1 1 1
11 S S5 |10<-11{S S S S
23 3 3 3 3 3
12 10<-54 4<-11
11<-85
13 Sg Sg S¢ Sg Sg Sg
- 7 7 7
27 10<~11

* each cycle is split into 3 sub-~-cycles to accomodate the systolic data

passed. Also the end points are not shown for simplicity.
Figure 4.5
Time Space Diagram of Tagging Stage
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4.2 Rerouting stage

After tagging each start and end point with the address of
a higher start point, as explained in section 4.1, we now
want to collect the chains. Each PE containing a feature
point now can forwird it to the proper destination according
to its accompanying tag. When the feature point arrives at
its destination, it is either collected or rerouted again to
a higher PE. The latter situation arises when the receiving
PE is also tagged to forward such receipt to a higher PE. So
the start and end points keep on migrating upward until they
finally reach a destination which is not tagged. The later
should correspond to the highest start point in the chain,
according to theorems 1 and 2. In this stage also N has to be
greater than M and the clock is three times faster <than that

in phase I.

4.2.1 PE architecture of the reroute stage

Figure 4.6 shows the contents of each PE in this stage.

(i) PE# register contains the row number of the PE in the

column.

(ii) TO register stores the address-tag to which all points,

whose destination is this PE, should be rerouted.

The signals entering and leaving each PE are:

(1) S4, Sor Ej, and Ey5 carry the start and end points with

their destination tags.

(ii) DS;, and DE; carry information passvi from the previous

stage for rerouting

54



(1ii) DSy, and DE, carry the start and end points to the

next stage after rerouting for sorting.

4.2.2 Pasendo code of the rerouting stage
for all the n cycles where 1 < n < 3(M+1l) do
for PEj, 1 < i < 3(M+1) pardo
if DS; carries data
then
if this data has no tag
then % this PE is a chain collector$
% this means that all the start and end
points lying on the same chain as the
currently entering this PE will be
rerouted here for collection %
collect point and send it to the sorter;
else % received point (data) is tagged %
store this tag in TO register;
send point upward through Sg;
if ES; carries data
then % received end point (data) HAS TO BE tagged$
send point upward through Eg,;
if S; carries message (PEy <----- SD) (where SD
stands for Start point Data)
then
ifx=1

then % the start point reached its tagged PE%
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if TO register is empty
then $this PE is a collector %
collect point and send to sorter;
else (let 1 be the value in TO register)
generate message PE] <---- SD;
send point upward through Sg;
if Ej carries message (PEy <~---- ED) (where ED
stands for End point Data)
then
if x =1
then § the end point reached its tagged PE%
if TO register is empty
then $this PE is a collector %
collect point and send to sorter;
else (let 1 be the value in TO register)
generate message PE] <---- ED;

send point upward through Eg;

% end of algorithm %
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— ] S —

register contains
address to which data
will be rerouted

/|\ EL /]\ si

Figure 4.6
PE Architecture of Rerouting Stage

4.2.3 in example for the rerouting stage

Figure 4.7 shows the space time diagraa of the rerouting
algorithm for the same pattern shown in Figure 4.5. At cycle
1.1 start point S5 will start its trip from PE;; with a
destination toward PE number 4, according to its tag
register. At cycle 3.2 this point reaches PE number 4 and
detects that the tag register of PE number 4 is not empty,
and contains a reroute tag to PE number 1. So start point Sg
will continue its trip up until it reaches PE number 1 at
cycle 6.1 where it will be collected.
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Figure 4.7 Time-Space diagram for rerouting stage while processing
the pattern shown in figure 4.1, This stage is prformed

after processing the pattern in the tagging
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4.3 The sorting stage
So far, we have detected all the start and end points
that lie on the inside and outside contours of the pattern,
and collected all the points that 1lie on the same chain
through a single PE, which receives the highest point of that
chain. The latter has never been rerouted.
The third stage, namely sorting stage, of the second
phase will order these points in a clockwise direction for

subsequent classification.

4.3.1 PE architecture of the sorting stage

Figure 4.8 shows the contents of each PE in this stage.
The registers used are:

(1) S register: stores a start point data.

(ii) E register: stores an end point data.
The signals entering and leaving a PE are:

(1) Vi, and Vg: carry the data stored in E and S
registers.

(ii) Swap signal: exchanges the contents of PEj with
PEj+1-

(iii) Ej, and E,: carry the migrating end points.

(iv) Dot generated at the end of the stage carries the
data stored in E and S registers and passes it to the last

phase, namely the classification phase.
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Figure 4.8

PE Architecture of the Sorting Stage

4.3.2 Sorting algorithm

As mentioned earlier, the f£first point that enters this
stage has to be the highest start point. The first PE will
receive this point and store it in its S register. This point
is never migrated from that PE. Each chain in the input
pattern will be processed in a separate column. The first PE
tcts as a dispatcher and upon receiving a start point it
forwards it to its lower PE (except for the first start point
in the chain). The latter will store this point and forward
any old points, i.e. any start or end point that was already
stored in it, further down. The first PE also checks each end
point to see if its right edge is connected to the start
point it holds. If so, the first PE will tag this point with
(E) which means that this end point should reside in the last

PE at the bottom of the sorting column.
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Any end point entering the sorting stage will be guaranteed
to find its two start points below it as will be shown and
prooved latter. An end point keeps on migrating till it
reaches the PE containing the start point connected to its
left edge. While migrating and searching for its left start
point, the end point might pass through its right start
point. In such a case a data swapping takes place between the
PE containing the right start point and the one below.

Some start point of the chain may be connected to the left
edge of two end points, as illustrated in £figure 4.9. Start
point 85 is connected to the left edge of end points E6 and
E4. According to our algorithm and since each end point
entering the sorting stage is always searching for the start
point that is coanected to its left edge, both end points E6
and E4 will be searching for the PE containing start point
S5. Since any PE in this stage is allowed to store only one
start point and one end point, then the PE containing S5 has
to make a decision on which end point should be stored with
S5 and which end point should be passed below. To solve this
conflict the PE uses the following rule:

Implied Rule 2 :

"The end pcint that is kept in case of conflict is the one

that is connected to the LEFT EDGE of the start point, and

the other end point is passed below to the following PE."
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Figure 4.9

Example showing an end point hooked to the left edge
of it's two scart points
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4.3.3 Sorting Stage Theorems

Since corollary 4 in section 3.2.3 guarantees that any end

point will be detected in the edge detection stage if and
only if its two start points (i.e. the iwo start points
connected to its left and right edges) would have been
already detected, we can deduct the following:

Theorem 3: "Any end point entering the sorting stage is
guaranteed to find its two start points below it."

Proof:

Assume end point Ei was detected in tha first phase
inside PEi. Also assume the two start points connected to Ei
are Sj detected in PEJ and Sk detected in PEk respectively.
From corollary 4 we can deduct the following:

PEj and PEk has to be higher than PEi, i.e. i > j and

i> k.

Between the first phase and the second phase Ei will be
passed tc PE(3i) in the tagging stage, Sj will be passed to
PE(3j) and Sk will be passed to PE(3k). During the rerouting
stage all points migrate from bottom to top, and we can
conclude that end point Ei will be collected and passed to
the sorting stage after its two start points Sj and Sk are
both collected and passed to the sorting stage.

Q.E.D.

63




4.3.4 Pasudo code of the sorting algorithm

Initially all the PE's are reset at the end of each L
consecutive cycles, where L=3N (N is the number of
columns/pattern).

for PEl do

for L cycles do
if Di carries start point
then
if S register is empty
then
store Di in S register
elze
pass point below
else if Di carries an end point
then
if end-point is connected to left edge
cf start point in S register
then
tag end point with "g"
pass the point below;
for all PE;j 2 < i < L pardo
for L cycles do
during the first half of each cycle do
if Di carries start point

then
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pass data in S register to PEj .
store Di in S register
else
if Di carries an end point
then if end point has an "E' tag
then
if S register contains data
then
pass end point below
else § S register is empty %
store end point in E register
else $ end point has no "E" tag %
if end point is searching for start
point stored in S register
then if your E register is full
then % conflict rule 2 §
store the end point that is
connected to left edge of
start point stored in §
register
pass the second end point to
lower PE
else % no end points stored in E
register %

store Di in E register
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else ¥ end point not searching for start
point in § register &
if start point in S8 register is
connected to right edge of
incoming end point
then
generate a swap signal
pass end point to PE below
else

pass end point to PE below;

during the second half of the cycle do
if a svap signal was generated in PE;
then if end point that generated this signal is
looking for start point stored in PEj.j
then
ignore this swap signal
else
swap S and E registers of PE; with

S and E registers of PE;j.;’

% end of sorting algorithm %
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4.3.5 An example for the sorxting algorithn

Figure 4.10.a shows a sample pattern and the points
extracted from it at the end of the rerouting stage. Figure
4.10.b shows the space/time diagram of the sorting algorithm
while processing this pattern.

At cycie 5 PE; receives the end point 10. It retrieves the
left start point data from this end point and tags the end
point with this start point data generating the message
(10 --> 9), which means that end point 10 is to be sent below
to be stored with start point 9.

At cycle 6 this message reaches PE3 and the end point 10
is stored with start point 9.

At cycle 8 while the message 12 -~> 11 is passing through
PEj it detects the right start point 13 of end point 12. In
this case a swap command is generated causing the contents of
PE3 to be swapped with the contents of PE4 during cycle 8°.

At cycle 13 the message 8 ~--> 9 reaches PEg and detects
that start point 9 has another end point (10) stored with it.
Acccrding to our algorithm and using the conflict rule
discussed earlier, end point 10 will be forwarded to be
stored with its second start point (point 11) and end point 8
is stored with start point 9 (since 8 is the end point

connected to the left edge of start point 9).
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CHAPTER V
Classification Phase

In this chapter we will discuss the simulation experiment
of the HCR system described so far. We will analyze the
threshold value selected to smooth the chains, the
classification algorithm employed, the database used for
classification, and the simulation results.

The simulation was performed on a sequential machine and
we saimulated all the parallel algorithms described in
Chapters III and IV. We conducted the simulation experiment
on 1200 samples, 120 sample/numeric digit. The resolution we
used for digitizing each sample was 54 rows and 54 columns.
Some of the samples have been rotated by 10, 15 , -10 and -15
degrees before being scanned to test the system's sensitivity
for rotation. Appendix B shows some of these samples. No
preprocessing, noise elimination, or filling has been done on
the samples. We only assume that the characters are properly
segmented and no overlapping between two patterns was
allowed.

The objectives of the simulation ares

(1) Test system behavior on samples of hand written
numerals.
(2) Decide on the best threshold values to be used

for smoothing the chain of feature points.




(3) Retrieve the chains resulting from each
directional scan, (H-scan, V-scan, L=-scan), on the 1200
samples. This helped in determining the number of necessary
scans needed for correctly classifying the paiterns.

(4) Fine-tune the classifier.

The samples were first processed through H-scan and V-
scan. We first trained the system on a subset of the 1200
sample set. We gathered all the classes that were generated.
Then we started to augment the training subset gradually to
gee if there will be new classes added. Starting from 800
samples and above we reached a steady state in the number of
resulting classes, After processing the whole 1200 sample set
there were 31 resulting horizontal classes (table C-1 in
appendix C) and 40 resulting vertical classes (table C-2
appendix C).

We also found that the best classification resulted while
using a threshold of 3 pixels for smoothing. This means that
any edge having a vertical height less than 3 pixels is
merged with its predecessor edge in the chain. We had some
samples of digits 1 and 7 and some samples of digits 4 and 9
that were confused together, i.e. their H-scan and V-scan
resulted in similar compound chains. These confused samples
are shown in the following pages (figure 5.1).

In order to eliminate the above confusion we found it
necessary to process the samples through a D-scan following

which all the confused samples were properly distinguished.
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The system performed well with rotat' 'd characters (between

=15 to 15 degrees), and was quite immui) to translation and
writer style variation.
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Figure 5.1 Samples of the confused set of numerals
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5.1 Smoothing and merging stage

The smoothing is done within a column of PEs in which each
PE will delete an edge, if the edge is 1less than the
threshold. The gap generated by the deletion can be
eliminated by a shift 1left instruction. This is the sane
technique used in database machines when deleting an entity
13,23,25,26,30). In smoothing, we can also detect if a chain
encloses a hole or not. This is simply done by examining the
first start point. If it has an Ry relation then a hole is
detected. The minimum size of the rectangle that encloses
rhis hole is then obtained by detecting the left upper-most
and right lower-most feature points in the chain. The chain
that forms the hole is then replaced with a hole-feature
enclosed by the detected rectangle. All the remaining chains
are then merged with the extracted hole-features to form a
compound list of chain features that is passed to the
classification stage. The tables in appendix C are the final
compound lists of chain features extracted from the 1200
samples during the simulation for the H-scan and V-scan.
5.2 7] ] i ficati I

The compound chain features of the training set in each
character class in the H-scan is used to program the PLA used
for H-scan classification. The same thing is done for the V-
scan and the D-scan. Let us assume that class C; of the H-
scan consists of the following compound chain: Rj, R4, Rj, R2

and HBL, vhere HBL stands for (Big Hole on the Left).
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We say feature Ry in the compound chain is in level 1,
feature Ry in level 2, feature R; in level 3 and so on. The
PLA is set up such that vertical lines represent different
classes and horizonal rows correspond to 1levels. The
horizontal lines emerging from the first level represent all
the possible relations that may be extracted as the first
feature in any processed pattern. If a certain class contains
this feature in level one, then the corresponding horizontal
line will be connected to the vertical line representing this
class by an AND-gate. In our example the vertical line
representing class Cj; will be connected to the horizontal
line emerging from the £first level and representing feature
R; through a gate. The output of this gate will be fhe new
Cj's vertical 1line entering level 2. The horizontal line
emerging from level 2 and representing our second feature Ry
will then be connected to this new vertical line. The output
of this gate will be the new C; vertical line for level 3 and
so on.

Similar programming is done for the rest of the classes.
Figure 5.2 shows a portion of the PLA used for H-scan

classification.
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Match

NM: No Match

\l/ M \|/ ¥ \|/ ™
R12,2 ]
R2,2 c(1,1 , ' .o
o] R (1,1) c(2,1) c(3,1)
1st :
level
\|/ M/nm \|/ ¥/nm \|/ ¥/nM
HBL
HB C(1,2) c(2,2) C(3,2)] o
-—>-— HBU
2nd :
level
\|/ M/nM \|/ M/nM \|/ M/NM
null
R4,2 C(1,3) C(2,3) C(3,3)] ..
e ] .
3rd . I l I
level
' \[/ w/mm [/ wpwm [/ m/n
null i
R3,1 C(1,n) C(2,n) C(3,n)
— el .
nth :
level \|/ M/NM \|/ M/NM \{/ M/NM
digits digits digits
under under under
class 1 class 2 class 3 .
{0,8) {0} {9}

Each square acts as a logic gate between the vertical

signal entering it and one of the horizontal signals. If
those two signals are high then a Match signal is generated,
otherwise a No Match signal is generated
Figure 5.2
Horizontal Classifier Architecture
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Now let us see how the classification is done. Upon
extracting the compound chain from the input pattern we will
pass the features in the chain to the corresponding levels of
the PLA. The first feature will enter level 1, the second
enters level 2 and so on. The vertical lines representing all
the classes will be initially set to 1 (Match). The feature
entering each 1level will set the corresponding horizontal
line emerging from that level to 1. The gate whose two inputs
are set to 1 will correspondingly set its output to 1. At the
last level .nly one vertical line (class) will be set to 1.
Each class points to a set of character numerals (digits) to
which the processed character may belong.

The above sequence is performed in parallel for the H-
scan, V-scan and the D-scan and the set of characters of each
directional scan is extracted. The intersection of these
three sets will give the probable numeral(s). A unique result
is detected if and only if the above intersection yields one
numeral as its result. Table C.l1l included in appendix C shows
the compcund chain of each class for the H-scan. This table
is used to program the H-scan PLA classifier. The set of all
possible numerals falling in each class is also shown in the

table.

2.2.1 An example for the clasgification algorithm
Figure 5.3 shows the compound chain extracted from an H-

scan on a pattern and the set of numerals to which the
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pattern may be classified. As shown the gate between C;; and
Rz,3 in level 1 is set. Then the gate between C;; and Ry, 2 in
level 2 is set followed by C33 and R4 3 in level 3, C;; and
HMU in level 4, C;; and - (the empty feature) in level 5 and
finally followed by Cj; and -~ in level 6. The setting of Cj;
at level six leads to the extraction of the set that contains
only one numeral, {9}, as the only candidate to which the
pattern will be classified. Notice that only the vertical

line representing Cj;; will be set to 1.
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extracted chain: [R(2,3) R(1,2) R(4,3) HMU null null]
M: Match NM: No Match

\J/ M \J/ M \J/ ¥

2,3 | Ra3 c(1 c(2,1 11,1
R ’ R2, 'l ’ C ) s oo
(___>l_ R3'3 ( ); ( ) ( )
1st .
level
\|/ NM \|/ nu \|/ u
HBL
R(1,2)| R1,2 pduml C(1,2) puedeeed C(2,2) ped=eiC(11,2)| ...
—>— HBU
2nd :
level
\|/ ™ \|/ NM \[/ ¥
R(4,3)] R4,3 =i C(1,3) c(2,3) c(11,3)| ...
— .
null
3xd .
level
: \|/ nn \|/ M \j/ ¥
null R3,1 C(1l,n) C(2,n) C(1l1,n)
nth :
level \|/ NM \|/ NM \l/ ¥
digits digits digits
under under under
class 1 class 2 class 11 ...
{0,8) {0} {9}

Double 1lines shows the vertical/ho:rizontal set signals.
The result is that gate C(1l1,n) is set and a Match signals is
generated lesding to the input character to be uniquely
classified as digit number 9.
Figure 5.3
Classification Example
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System Pexrformance

6.1 The overall system performance

Figure 6.1 shows the complete HCR system with all its
phases and different stages. From the 1200 samples processed
during the simulation we found that no more than ¢
chains/sample occurs. So only 4 columns for sorting these
chains and 4 other columns for smoothing/merging are shown in
Figure 6.1.

To calculate the maximum delay time between the first
arrival of a pattern matrix and the final output, the
following remarks are applicable: Number of cycles needed in
edge extraction and unskewing stages is (2M+N), as determined
in chapter III. Then N cycles are needed for each succeeding
stage. Thus the total system delay time is (2M + N) +
6(N) = 2M + 7N,

The total system initialization time (flush time: the time
between the arrival of the first pixel at phase I and the
arrival of the resultant processed data at the last stage) is
equal to 2M + 6N. After the system is initialized, i.e. after
2M + 6N cycles, one pattern will be classified every N
cycles.

Each of the edge extraction stage and the storing stage
uses M(PEs). Each of the tagging stage and the rerouting

stage uses 3M(PEs).



The number of PEs needed for each of the sorting stage and
the smoothing stage is at most 3M(PEs). Thus the maximum
number of PEs used by the system for scan is 14M. The maximum
number of PEs used for the three directional scan is 42M.
Since all the PEs in each stage will be processing a constant
number of pixels each cycle, the area of PEs used in each
stage will be constant independent of M and N. The PLAs used
in the classification are very simple, cost effective and the
length of horizontal and vertical 1lines used will be
constant. This is ideal for VLSI implementatien.

6.2 Further work

The system has performed well in our simulation experiment
on 1200 numeric samples. The next step worth examining is to
expand the system to recognize alphanumerics. We expect no
major modification or limitation in the current system in
order for it to be adaptable for alphanumeric recognition.
However, we may need to expand the number of directional
scans in order to accommodate more (basically similar)
alphanumeric patterns. This expansion should improve
recognition as the geometrical or shape similarity between
different classes will diminish with multiple scans.

Another enhancement to our system can be considered by
including the curvatures (concave, convex, or straight) of
the edges during extraction in the first stage. This
enhancement could reduce the number of directional scans

needed.
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6.3 Conclusion
This thesis has presented parallel algorithms to extract

shape features of handwritten numerical patterns, to sort
these features, and to classify these ©patterns. The
recognition of these patterns is based on the approach
proposed by Ahmed and Suen {1,2] with some modifications. The
start and end pointas of edges in a pattern and the relations
between a pair of edges meeting at a start point or at an end
point are first extracted by the parallel algorithm of
chapter III. The chains formed by these edges are then
extracted and sorted by the parallel algorithms of chapter
IV. The simulation and classification are presented in
chapter V. An experiment was conducted on 1200 samples, 120
for each of the 10 numerals. It has been observed that using
the features extracted during H~scan, V-scan and D-scan all
the handwritten numerals are correctly classified. Moreover,
these numerals can be correctly recognized if they are
rotated by an angle between -15 and +15 degrees.

The system can be expanded to recognize handwritten
alphanumerics by increasing the number of directional scans
used. Finally, all the parallel algorithms given can easily

be implemented on VLSI chips using current technology.
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Appandix B
Sanples _of Digitized Numarals
The following (figures shov samples of the digitised
numerals used during the learning and test phases.
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Table 1: H-acan Classes
o Compound Chain List (features) Numerals
# in Class
1 |R)2,27HBL;HBR 0,8
2 R12'2;HB 0
3 R12'2;HBU 9
4 |Ry3,2/HML;HBR 0
5 Rj2,2HMU 4,9
6 |R12,2 1,2,3,5,7
7 |R12,2:HSD 2
8 |Rg,23Ry,2iRy,27HBL;HBR 0
9 |R2,37R;,2iRgq,3/HBL;HBR 0
10 Ry,2iR;,2iR4,2 0,4
11 R2,3;R1,2;R4'3;HMU 9
12 R1'2;R2,3;R1'2;R4,3 3,4,5
13 |Ry,3iRy,2iR¢,3iR7,25R10,1iR7,2iR3,1 3
14 |[R;2,2;HBU;HBD 8
15 |Ry3,3;HBU;HMD 8
16 |R12,2:HMU;HMD e
17 Rz,3:R1,2iRg,3iR7,2:R3,1 0,3,5
18 [R4,1iRy,2iR2, 17HBD 6
19 R4'1;R1’2;R2’1;HMD 6,8
20 |R4,1:Ry,2iR2,1 6,4,9
21 |R4,17R),2iRg,3iR7,2iR3,1 5

Vhere HWU represents Hole of Nedium size in Ypper half 105
HBR represents jole of fig size in Right half



Iable 1 (continued)

c Compound Chain List (features) Numerals
# in Class
22 |R4,1iR1,2/R2,1 7HMU;HMD 8
23 |R4,1iR1,2/R2, 1 7HMD 6
24 |Rq,1iR7,2iR3,1iR1,2:R2,1 6
25 |Rg,3iR7,2iR10,1iR7,2iR3,17HMD 2
26 |Rg, 3iR7,2iR10,1iR7,2iR3,1 2
27 |Rg,3iR7,2iR3,1;HMU 9
28 |Rg,3iR7,2iR3, 1 7HMU;HMD 8
29 R9'3;R7'2;R3'1 0,1,3,5,7

vhere HMU represents Hole of Medium size in Upper half 106
HBR represents jfole of Big size in Right half




Tabile 2: V-acan Classes

Compound Chain List (features)

Numerals
in Class

Ry2,27HBR;HBL
R12,27HB

R12,2/HML

Ri2,2/HMR

R12,27R1,2/R9,3/R7,2/R3 37R),27R4, 3
R12,2

Rj3,2;HBL

R12,2;HMR; HML

W O N N R W N =m0

Rp,27Ry1,27Rq,27HMR !

[
o

R2,2iRy1,25R4,2
R2,27Ry,2/R4,3;HBU;HBD

-
N e

R2,37R1,2iRq,37HBR

-
w
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Vhere HWU represents Hole of Nedium size in Yoper hatf 107
HBR represents jole of Big size in Right half




Table 2: (continued)

Cc Compound Chain List (features)
#

Numerals
in Class

23 |Rg,1iR;,27R2,1;HMR

24 R4'1;R1'2;R2,1

25 |R4,1iR1,27Rg,3iR7,2iR3 3

26 |R4 1iR),27Rg,3iR7,2iR3, 1;HSR

27 |R4,1iR1,27Rg,3iR7,2iR10,1/R7,2iR3,1
28 IRgq,3iR1,27Rg,37R7,2iR3,1

29 |[Rq,3iRy,2iRg,3;R7,2/R2,17HBR;HBL
30 |R4,3:Ry,27Rg,2iR7,2iR3,1

31 |Rg,3;iR7,27R10,37R7,25R3,1iRy,2iRg, 2
32 R9'3;R7,2;R3,1;HML

33 |Rg,3iR7,2R3,1/HMR

34 |Rg,3iR7,2iR3,1;HBL

35 |Rg, 3iR7,27R3,17HMR

36 |Rg,3iR7,2:R3,1

37 [Rg,3iR7,27R3,3iR1,2/Rq,1
38 |Rg,3iR7,27R3,3

39 |Rg,3iR7,27R3,1iR1,2iRq,2
40 |Rg,3iR7,27R3,17R1,2/Rg,3

-
(<}

-
0w 3

-

N S =N Y D W Wl W N DO O
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Where HMU represents Hole of Medium size in Upper hatf 108
HBR represents Hole of Big size in Right half




