.* National Library Biblioth
of Canada

Acaquisitions and

ue nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontano
K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the oiiginal thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
QOttawa (Ontario)
K1A ON4

Yous hle Volre roldience

Our e Notre éterence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec I'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a P'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

PARALLELIZATION AND GRAPHICAL USER
INTERFACE OF AUTO9%4

Xi1ANJUN WANG

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

JULY 1994
© Xi1ANJUN WANG, 1994

Bel e

Bibli ue nationale

du Canada
Acquisitions and Direction des acquisitions et
Bibliopraphic Services Branch des services bibliographiques
Sl s S
K1A ON4 K1AON4
Your hle Volre reMrence
Ow e Noire rélérence
THE AUTHOR HAS GRANTED AN L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE NON-EXCLUSIVE IRREVOCABLE ET NON EXCLUSIVE
LICENCE ALLOWING THE NATIONAL PERMETTANT A LA BIBLIOTHEQUE
LIBRARY OF CANADA TO NATIONALE DU CANADA DE
REPRODUCE, LOAN, DISTRIBUTE OR REPRODUIRE, PRETER, DISTRIBUER
SELL COPIES OF HIS/HER THESIS BY OU VENDRE DES COPIES DE SA

ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HISHER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROMIT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-315-97615-2

Canadi

Abstract
Parallelization and Graphical User Interface of AUT0O94

Xianjun WANG

Certain parallel algorithms arising in the numerical analysis of bifurcation prob-
lems are studied in this thesis. In particular, two sparse linear solvers are investigated
in detail. These two sparse solvers differ mainly in communication schemes. In ad-
dition, one of them uses a restricted row and column pivoting strategy, while the
other does not. The condensation of parameters and its associated backsubstitution
algorithms in the sparse solvers are almost fully parallelized. These mainly deter-
mine the parallel performance of the sparse solvers, particularly when the size of the
problem is big. This thesis stresses the communication schemes of these algorithms.
They have been implemented in AUTO94P, which currently runs on the Intel Delta
at the California Institute of Technology. All numerical timing results in this thesis
were obtained on the Delta. To simplify the use of AUTO94P and its sequential
version AUTO94, a graphical user interface (GUI), based on the X window system,
has been designed and implemented. The testing and verification of the GUI was
done on various Silicon Graphics and Sun workstations. This thesis also documents

the installation, functionality and extensibility of the GUI.

iii

Acknowledgments

First of all, I would like to thank my supervisor, professor Eusebius J. Doedel, for his
great patience and kindness in guiding and supporting my work for many years.

I would like to thank professors T. D. Bui, Lixin Tao and Tao Li for their advice.

Thanks to Mr. Quanlin Gu, Mr. Deming Li, Mr. Xinming Yu and Mr. Pankaj
Kamthan for their helpful discussions and friendship during my many years at Con-
cordia University.

Support for this work has come from many sources including the Centre de
Recherche Informatique de Montréal and the Center for Research on Parallel Com-

puting at the California Institute of Technology.

iv

Contents

List of Tables

List of Figures

1 Introduction

1.1

1.2

Parallel Programming
1.1.1 BasicConcepts
1.1.2 Overview of Numerical Parallel Computing
Description of the Thesis Work
1.21 The AUTO Package
1.2.2 The LinearizedSystem
1.2.3 The Graphical User Interface of AUTO%M
1.24 OutlineoftheThesis

2 Dense Matrix Computations

2.1
2.2
23
24

2.5

Overview o o i e e e e e e e e
LU-Decomposition Algorithm
LU-Decomposition Algorithm for Distributed Memory Systems
Parallel Implementation
24.1 DataDistribution
2.4.2 Pivoting Strategy
2.4.3 CommunicationSchemes
24.4 Backsubstitution,
Numerical Results.

xiii

OO0 OO0 QT & i 3 = = e

3 A Parallel Sparse Solver without Pivoting

3.1 Overview of Sparse Matrix Computations.
3.2 The Sparse Linear System
3.3 Direct and Iterative Method
3.4 The Parallel Algorithm
341 Overview i i e e e e
3.4.2 Partition Strategy o ...,
3.4.3 Condensation of Parameters
3.44 NestedDissection
3.4.5 Solving the Small System
3.4.6 Backsubstitution
3.5 TimingResults
3.5.1 Timing Results IncludingI/O Time
3.5.2 Timing Results Excluding /O time

4 A Parallel Sparse Solver with Pivoting

4.1 Introduction

4.2 The Parallel Algorithm,
421 Overview i i e e e e e e e
4.22 PivotingStrategy, oL,
4.2.3 Condensation of Parameters
424 NestedDissection
4.2.5 Solving the Small System
4.2.6 Backsubstitution for the Nested Dissection
4.2.7 Backsubstitution for the Condensation of Parameters
428 Mergingthe Solutions

43 Timingresults. i
4.3.1 Timing Results Includingl/O Time
4.3.2 Timing Results Excluding I/O Time

5 Some Implementation Issues of AUTO94P

5.1 Introduction

vi

16
16
17
17
18
18
18
19
22
27
27
28
30
32

34
34
34
34
35
37
38
48
51
53
54
55
56
61

66

5.2 Node Organization for the Implementation
53 1I/O Strategyof AUTO%MP
5.4 Interface Routines of AUTO94P

Graphical User Interface for AUT094
X Window Systermn e e
Overviewof the GUI

6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8

Setting Up the X Resources for the GUI
Features of the GUI.,

6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6
6.7.7
6.7.8
6.7.9

Equations Menu.
EditMenu..........,

RunMenu e e e
SaveMenu e e e e e

Append Menu oo
PlotMenu,

6.712 HelpMenu. i it i

Functionalities of Other Buttons.

6.8.1
6.8.2
6.8.3
6.8.4
6.8.5
6.8.6

The Equation Editor
Problem Button
Discretize Button
Tolerances Button
StepSizeButton
LimitsButton

vii

6.8.7 Parameters Button
6.8.8 Computation Button

6.8.9 Output Button . .
6.8.10 Previous Button .
6.8.11 Default Button . .
6.8.12 Stop Button
6.8.13 Exit Button
69 Demos

oooooooooooooooooooooooo

........................

6.10 Restrictions on NICP, NUZR, NTHL and NTHU

6.11 Keyboard Commands . . .
6.12 Updating the On-line Help

7 Concluding Remarks

References

viil

92
92
93
93
93
94
94
94
95
96
98

99

101

List of Tables

W 00 =3 O Gv e W o

B DD ket bt e ek b b e e ek e
8??'—‘0@@-«!0’01#@[0’—'@

Parallel LU-Decomposition Algorithm with Complete Pivoting
A= (a;)=(cos((z+1)(F+1)) 4i=12,---,256
Outline of the Parallel Algorithm without Pivoting

Neighboring Node Communications

..........

The Recursive Doubling Algorithm
Outline of the Condensation of Parameters without Pivoting
Without Pivoting 1: NDIM=12, NTST=64, NCOL=4, NMX=10
Withcut Pivoting 1: NDIM=24, NTST=64, NCOL=4, NMX=10
Without Pivoting 1: NDIM=48, NTST=64, NCOL=4, NMX=10 . .
Without Pivoting: Average /O Time
Without Pivoting 2: NDIM=12, NTST=64, NCOL=4, NMX=10
Without Pivoting 2: NDIM=24, NTST=64, NCOL=4, NMX=10
Without Pivoting 2: NDIM=48, NTST=64, NCOL=4, NMX=10
Outline of the Parallel Algorithm with Pivoting
Outline of the Condensation of Parameters With Pivoting
Nested Dissection Process 1
Nested Dissection Process 2
Solving the Small System,
Backsubstitution Process 1,
Backsubstitution Process 2 o o000
With Pivoting 1: NDIM=12, NTST=64, NCOL=4, NMX=10
With Pivoting 1: NDIM=12, NTST=128, NCOL=4, NMX=10
With Pivoting 1: NDIM=12, NTST=256, NCOL=4, NMX=10 .

ix

[
%]

—
e §

21
23
24
31
31
31
32
33
33
33
35
39
40
41
50
52
53
57
57
57

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

With Pivoting 1:
With Pivoting 1:
With Pivoting 1:
With Pivoting 1:
With Pivoting 1:
With Pivoting 1:
With Pivoting 1:
With Pivoting 1:
With Pivoting 1:

With Pivoting: Average I1/O Time

With Pivoting 2:
With Pivoting 2:
With Pivoting 2:
With Pivoting 2:
With Pivoting 2:
With Pivoting 2:
With Pivoting 2:
With Pivoting 2:
With Pivoting 2:
With Pivoting 2:
With Pivoting 2:
With Pivoting 2:

Primitives on the Gamma and Delta machines

Intel Touchstone Delta Configuration

NDIM=24, NTST=64, NCOL=4, NMX=10

NDIM=24, NTST=128, NCOL=4, NMX=10. . . .
NDIM=24, NTST=256, NCOL=4, NMX=10. . . .

NDIM=48, NTST=64, NCOL=4, NMX=10

NDIM=48, NTST=128, NCOL=4, NMX=10 . .
NDIM=48, NTST=256, NCOL=4, NMX=10. . .

NDIM=48, NTST=32, NCOL=4, NMX=10
NDIM=96, NTST=32, NCOL=4, NMX=10
NDIM=96, NTST=64, NCOL=4, NMX=10

NDIM=12, NTST=64, NCOL=4, NMX=10

NDIM=12, NTST=128, NCOL=4, NMX=10
NDIM=12, NTST=256, NCOL=4, NMX=10

NDIM=24, NTST=64, NCOL=4, NMX=10

NDIM=24, NTST=128, NCOL=4, NMX=10
NDIM=24, NTST=256, NCOL=4, NMX=10. . . .

NDIM=48, NTST=32, NCOL=4, NMX=10
NDIM=48, NTST=64, NCOL=4, NMX=10

NDIM=48, NTST=128, NCOL=4, NMX=10. . . .
NDIM=48, NTST=256, NCOL=4, NMX=10. .

NDIM=96, NTST=32, NCOL=4, NMX=10
NDIM=96, NTST=64, NCOL=4, NMX=10

58
98
58
59
59
59
60
60
60
61
62
62
62
63
63
63
64
64
64
65
65
65
67
67

List of Figures

O 00 =3 O Ot B W N =

DO DD BN DD b e e s s s b e e
W N = O © L~ G W~ O

N ComputingNodes 2
Structure of the Jacobian matrix J 7
Data Distributionof Matrix A 13
Data Distribution for the Sparse System 19
Communications between Odd and Even Nodes 20
Recursive Doublingfor 4 Nodes 21
The Jacobian J after Condensation of Parameters 23
Initial State of the Nested Dissection 24
Busy Nodes during Each Recursion Level 25
Initial Stateof Level 2 26
Initial Stateof Level 3 L. 206
Final State after the Nested Dissection 27
Broadcast Solution from the Small System 28
The Pivot Windowfor A; 36
The Pivot Window for Nested Dissection 36
Communication within the Pivot Window 37
The Jacobian J after Condensation of Parameters 38
The Initial StateinNodep; 42
The Intermediate Statein Node p; 12
The Final StateinNodep, 42
Enclosed in the Dashed-line Box is the Unfinished Part 43
Level 1 e e e 44
Level 2 o e 45

xi

24
25
26
27
28
29
30
3]
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Level 3 o e 46
The Final Result of the Nested Dissection Process 47
Send c; from NodepptoNodepz 48
The Square Matrix Enclosed in the Solid-lineBox 49
Broadcast of the Partial Solution from Node p; to All Other Nodes . 49
Busy Nodes for Eac. Level during Backsubstitute 51
Backsubstitution Level 1 53
Backsubstitution Level 2 54
Concatenation of the Solutions 54
The Graphical User Interface for AUTO94 71
The AUTO94 Directory Tree. 73
The Equations Menu 76
TheEdit Menu 76
The Write Menu 7
The Full AUTO-constants Panel 78
The Popup Windows for UZR, THL, THU and ICP 79
The Popup Menu for JAC in the Full AUTO-constants Panel 80
TheSaveMenu iiniee.. 81
The AppendMenu 81
ThePlot Menu 82
The Diagram for pp2.f 83
TheFilesMenu, 84
The Popup Windows for Copy, Append and Move 85
The DemosMenu 86
TheMiscMenu, 86
TheHelpMenu, 87
The Problem Window 88
The Discretize Window 89
The Tolerances Window 90
The Step Size Window, 90
The Limits Window y1
xii

55 The Parameter Window .
56 The Computation Window
57 The Output Window . . .

........................

........................

xiii

Chapter 1

Introduction

In this chapter, we first give an introduction to parallel programming, and then

describe the thesis work and structure.

1.1 Parallel Programming

1.1.1 Basic Concepts

In essence, the task of the programmer is that given a specification, develop a program
that satisfies the specification. A parallel program is simply a collection of cooperat-
ing programs that together satisfy a given specification[9, 10]. A sequential program
can be thought as a “parallel program” without any cooperation. Unlike a parallel
program, a sequential program executes its statements sequentially on a singlc pro-
cessor. However, a parallel program executes its statements concurrentiy on many
processors. A multicomputer([30, 69] is often referred to as a message-passing concur-
rent computer. Figure 1 shows a simple connection of a message-passing network. It
has n computers, called nodes, connected by a communication network. Each of the
n nodes executes programs concurrently, and coordinates its activities with the other

nodes by message exchanging, namely, sending and receiving messages. Distributed

MESSAGE PASSING NETWORK

Co Ci C: Cn-1

Figure 1: N Computing Nodes

memory systems, i.e., multicomputers, physically separate the memory for each node.
Unlike shared memory systems, distributed memory systems have no global memory
addresses, each node has its own local private memory which can not be accessed by
other nodes. The aim of the parallel programming on distributed memory systems
is to concurrently execute programs in each node efficiently. However, parallel pro-
gramming is extremely hard, much harder than sequential programming|29]. This is
because that it does not enforce deterministic execution. In addition, most message
passing systems do not enforce information hiding and provide a global name space of
processes. This makes it difficult to develop modular programs and reusable libraries.
But parallel programming can be “easier” if one works in the domain of the problem
to be solved, the specification domain, rather than on coding for some particular
machine. Currently many universities and institutions are currently commitied to
this research direction, for example, the Center for Research on Parallel Computing
(CRPC) {49, a consortium of Argonne National Laboratory, the California Institute
of Technology, Los Alamos National Laboratory, Syracuse University, Rice University
and the University of Tennessee. There are many research directions being focussed
at CRPC, two of them are Fortran parallel programming such as Fortran M[29] and
Compositional programming such as PCN[28] and compositional C + +[8).

1.1.2 Overview of Numerical Parallel Computing

Numerical parallel computing is playing an increasingly important role in computer
science and offers great promise for future progress of computer technology. Numerical
computations in linear algebra and differential equations pose important problems
in the field of parallel computing. Surveys of parallel algorithms for linear algebra
computations and for solution of differential equations are given in [31, 43, 44] and
in [60], respectively. In this section, we briefly outline the present status of a few
numerical methods for differential equations on parallel computer. We restrict the

overview to direct methods, in view of its direct relation to this thesis work.

Gauss Elimination: Gauss elimination is one of the frequently used methods for
solving linear systems. Its complexity is O(n®), where n is the dimension of
the matrix. Several early papers, for example [27, 52], considered in detail the
implementation of Gauss elimination. An important aspect of the analysis in
some of the above papers is the derivation of precise timing formulas which
show the effect of the start-up times for vector operations. An introduction
can be found in [44]. A detailed analysis of the computational complexity of
factorization algorithms can be found in [51]. Recent results can be found in

[16, 17].

Givens Reduction: The difficulties with implementing interchange strategies on
parallel computer suggest that orthogonal reductions to triangular form may
have advantages. It was first observed by Gentleman [35] that orthogonal re-
duction to triangular form by Givens or Householder transformations has a
certain natural parallelism. The algorithm for the Givens reduction is given in
detail in [68], where it is also shown that it is slightly more efficient in a parallel

environment than Householder transformations.

Tridiagonal System: Tridiagonal systems are often solved by a recursive doubling
method, a procedure which, in the simplest case, expresses the 2ith element in
a sequence in terms of the ith. Thus for N = 2%, the Nth component can be

computed in logN steps. Various methods for solving triangular system can be

found in (17, 18], and other related methods, such as block tridiagonal system,
can be found in [48].

Nested Dissection: Nested dissection for vector computers was first discussed in
[6] in the context of rather general rectangular finite elements, and estimates
are given for the number of vector operations required for the factorization, as-
suming dissection is carried to completion. The appropriate level of dissection
becomes an interesting question for a vector computer. Another result discussed
in [39] deals with the general problem of how effectively an algorithm translates
into vector operations. For parallel arrays, a careful analysis of nested dissection
has been given in [32], where the author considers an MIMD array with nearest
neighbor connections and assumes a processor for each node in the discretiza-
tion. The algorithm uses a pipelined version of Givens rotations as a building
block. it is shown that the nested dissection runs in C(N + rlogN) time for r
right hand sides. The constant C is fairly large and may result in the algorithm
not being competitive with other methods for a single right hand side. Other

nested dissection methods can be found in [57}.

1.2 Description of the Thesis Work

In this section, we formulate an ordinary differential equation (ODE) computational
problem that arises in the AUTO package [21]. A major part of this thesis concerns the
design and implement of two efficient parallel algorithms to solve the ODE problem
on distributed memory systems. We also introduce a network transparent graphical
user interface (GUI) for AUTO based on the X window system. The outline of this

thesis is given at the end of this section.

1.2.1 The AUTO Package

AUTO is a set of FORTRAN routines dealing with numerical analysis of bifurcation
problems. It can be used as a tool for investigating problems arising in various fields

such as applied mathematics, mechanical engineering, chemical engineering, biological

science, etc. AUTO was first written in 1979. It was based on a related program
written in 1976 at the California Institute of Technology. A first publication referring
to the package by its current name appeared in [20]. At this time AUTQ86 [21] is the
most widely distributed version. A useful tutorial appeared in [22, 23]. AUTOY%4P,
a new parallel version of AUTO developed by the author in cooperation with E. J.
Doedel, is an experimental parallel program that currently runs on the Intel Delta
system at the California Institute of Technology. It required significant changes in the
linear equation solver. AUTQY4 is the sequential version of AUTO94P. A graphical

user interface was added to simplify the use of the package.

1.2.2 The Linearized System

We consider the first order system of ordinary differential equations described in [21].

du
=))

where t € [0,1],u € R* and A € R™, subject to boundary conditions
b,-(uo,ul,A)=O i=1,2,"°,nb (2)

and integral constraints

1
/0 Gl Ndt =0 i=1,2--,n, 3)

In order for the above problem to be well posed, it is necessary that ny = ny+n,—n+1.
In this case there will be one free parameter, so that the equations will normally yield
curves of solution. Note that the boundary conditions are nonlinear, (see [64] for
linear boundary conditions and see [1, 3, 5, 50, 54, 65] for related methods), i.e.,
we are dealing with a very general ODE problem. An efficient sequential numerical
algorithm for solving the above ODE system can be found in [21]. The corresponding
algorithm was implemented in AUTO86. More precisely, define a mesh

{0=to<t1<"'<t]v=1}, AtJEtj+1—tj, (OS]SN—I) (4)
and for each j introduce the Lagrange basis polynomials
{wjs(8)} 7=0,1,2,---,N=-1 i=0,1,2,---,m (5)

5

defined by
m t—1t

w;i(t) = —m L=t —At (6)
* k=<l)-,{¢i Live ~ ik M T m
The collocation method now consists of finding
m
pi(t) = Zw.v.i(t)uj+-,-;'- (7)
1=0
such that
pi(zii) = f(pi(2i4),A) i=1,2,---,m j=0,1,2,---,N ~1 (8)

where in each subinterval [t;_;,t;] the points {z;;}%, are the zeros of the mth degree
Legendre polymonials relative to that subinterval. With the above choice of basis, u,
and u;, o are to approximate the solution u(t) of the continuous problem at ¢, and
tia respectively. The discrete boundary conditions are b;(p1(0),pn(1),A) = 0,1 =
1,2,--+,my, le,

bi(uo, un,A) =0 t=1,2,- - ,my (9)

The integrals can be discretized by a quadrature formula. In view of the discretization
of the differential equation (1), the natural choice is the composite quadrature formula
obtained by approximate integration over each of the subintervals [t,-;,1,]. This gives

N-1m
Zzwj-iqk(uj+#”\)=0 k=1,2,--,nq (10)

i=0 i=0
where the quantities w;; are the Lagrange quadrature coefficients. Apart from a
scaling factor these are independent of j. Since pseudo-arclength continuation, see

(22, 23, 47] for details, is used for the computation of branches of solutions to (1), we

need to adjoin the equation
1 .
6 /0 (u(t) — uo(t)) to(t)dt + B3(A — Jo)* o — As =0 (11)

where (uo, A¢) is the previously computed point on the solution branch and (1o, do)
is the normalized direction of the branch at that point. Upon discretization the
pseudo-arclength equation becomes

N-1m
02

2 S iy — (Uo)jp s) (i), s + 05— Do) o~ As =0 (12)

j=0 i=0

| [ai]
2] |
| [ad] |
[as] |
| [as] |

| [a7

=

7

(e e Te el ol | 0]

Figure 2: Structure of the Jacobian matrix J

The complete set of discrete equations for taking one step along a branch of solutions
therefore consists of solving the system of mnN + n, 4+ n, 4 1 nonlinear equations
(8)-(12) for the unknowns {u;, +} € RmnN+n X € R™. This is done by a Newton
or Newton-Chord iteration. After linearization (Newton method) [21], a linearized
sparse matrix J as shown in Figure 2 is obtained. The matrix J is structured and
sparse with borders at the bottom and on the right. The corresponding linearized

system has the form

Jz = f (13)

The above linearized system (13) is solved in AUTO several times during each New-
ton step when computing solutions of ordinary differential equations. Moreover, the
entire computation for a given problem can take many steps. When the problem size
is big, solving the linearized system (13) becomes the dominant computation of the
AUTO package. Practical results show that AUTO often spends more than 70% of its

total computation on setting up and solving the linearized system. This percentage

increases as the problem size increases. Thus efficiently solving this system is impor-
tant. One of the main contribution of this thesis is to study and develop efficient

parallel algorithms to solve the linearized system on distributed memory systems.

1.2.3 The Graphical User Interface of AUTO094

The purpose of the graphical user interface (GUI) is to simplify the use of AUTO.
It provides the user with a convenient computational environment on a wide ranges
of UNIX platforms. It is network transparent and has a three dimensional feeling.
Figure 33 shows the general frame of the interface. The design of the GUI interface
is based on the X window system [58] and the implementation is based on Motif
[58, 59, 61, 62, 67]. A detailed description of the GUl is presented in Chapter 6.

1.2.4 Outline of the Thesis

As pointed out in section 1.2.2, efficiently solving the linearized system is important.
in the AUTO package. This thesis will pay particular attention to the study and
development of parallel algorithms for solving the linearized system. Since the com-
munication between processors on distributed memory systems is one of the key points
in designing parallel algorithms, we will mainly stress the communication schemes of
the parallel algorithms studied in the thesis. The purpose of studying these parallel
algorithms was to develop AUTQ94P, a new parallel version of AUTQ. This thesis
devotes three chapters, namely Chapter 2,3 and 4, on the design and implementation
of the parallel algorithms. Chapter 2, which addresses dense matrix computation,
serves as preliminary study for Chapters 3 and 4. Both Chapters 3 and 4 focus on
the linear solver for the system (13). The major difference between these chapters is
that Chapter 3 focusses on the linear solver without pivoting strategy and Chapter 4
with pivoting strategy. Both parallel algorithms of Chapters 3 and 4 are implemented
in AUTO94P. Numerical timing results are included in Chapters 3 and 4. All numer-
ical results were obtained on the Intel Touchstone Delta, 512 Intel iPSC/i860 nodes
connected by mesh network, located at the California Institute of Technology. Chap-

ter 5 describes some implementation issues of AUT094P. A new sequential version

of AUTO called AUTO94, was also developed in cooperation with E. J. Doedel. It is
somewhat more convenient to use than AUTO86. In particular, it includes a graph-
ical user interface , which is described in Chapter 6. Chapter 7 contains concluding

remarks.

Chapter 2

Dense Matrix Computations

In this chapter, we focus on parallel dense matrix computations. The work in this
chapter provides an introduction to the problems studied in Chapters 3 and 4. It
includes a brief overview of dense matrix computations, outlines of both sequential
and parallel LU-decomposition algorithms, and a description of parallel implemen-
tation of the algorithm. Numerical timing results for the parallel algorithm are also

included.

2.1 Overview

Dense matrix computations are of such central importance that they are usually
among the first algorithms implemented in any new computing environment. The
need for high performance on common operations such as matrix multiplication and
solving systems of linear equations has had a strong influence on the design of many
architectures, compilers, etc., and such computations have become standard bench-
marks for evaluating the performance of new computer systems. LU-decomposition
is one of the important problems in dense matrix computations. Its complexity is
O(n?®), where n is the size of the problem or dimension of the matrix. The main

focus in this chapter is to design a parallel implementation of the LU-decomposition

10

algorithm. A survey of parallel algorithms for dense matrix computations is given in

[31]. Notable successes in attaining very high performance can be found in [4].

2.2 LU-Decomposition Algorithm

The LU-decomposition algorithm is based on a reformulation of the classical result[16,
17, 18, 41]:

Theorem 2.2.1 For any real M x N matriz A, there ezists an M x M permutation

matriz R and an N x N permutation matriz C such that

RACT = L),
where Ly is M x M unit lower triangular and Uy is M x N upper triangular.
From Theorem 2.2.1, we can obtain the following{16]:

Theorem 2.2.2 For any real M x N matriz A, there exists an M x M permutation

matriz R and an N x N permutation matriz C such that
A = LCTInyRU

where RLCT is lower triangular -.nd RUCT is upper triangular. Both L and R are
M x N matrices. The matriz Inpar is N x M identity matriz.

The above LU-decomposition is used as the mathematical basis for the parallel LU-

decomposition algorithms that we describe in the next section.

2.3 LU-Decomposition Algorithm for Distributed
Memory Systems

Parallel implementation of the LU-decomposition algorithin can be categorized by the
distribution of the coefficient matrix over the concurrent processes and by the pivoting

strategy. Various combinations of row and column oriented distribution with pivoting

11

{ Initialize the permutation index array }
for i =0,1,---,m — 1 do { concurrently}
fr(t) =1 { feasible row index}
fec(i) = ¢ { feasible column index }
end
fro = 0 {initial feasible row index}
fco = 0 {initial feasible column index }
for k=0,1,---,n — 1 do { concurrently}
{ search for the local pivot ai, at step k in each node }
aipin = maz(] a(fr(i), fe())) € (fro,m=1) j€(fepn—1)
{ find the global pivot by recursive doubling procedure }
Qgpiv = maz((alpiv)p) pP= 0’ l,--- ’P -1
if agpiy € P, then {i.e., agy, is in node p }
fro= fro+1 {in node P, only }
fco= feo+1 {in node P, only }
send pivot row to all other nodes { broadcast pivot row }
do Gauss elimination in node P,
else { nodes do not hold a,,, at step k }
receive pivot row
do Gauss elimination
endif
end

Table 1: Parallel LU-Decomposition Algorithm with Complete Pivoting

can be found in [7, 11, 33, 34, 56]. Here we present a design and implementation of
the LU-decomposition based on row oriented distribution with complete pivoting.
The implementation is done on the Intel Touchstone Delta system. The goal is to
develop an efficient linear algebra library for distributed memory system. Specific
design criteria are that the library components must be easy to integrate into a larger
user program and that the communication cost should be minimized. Assume a
n X n matrix A is partitioned into (Ag, Az,---,Ap_1). For simplicity, assurne that
Ap € R™*", where p = 0,1,2,---, P — 1. The parallel LU-decomposition algorithm

is outlined in Table 1.

12

Pe P P: Pera

Ae Al A2 s Ari

Figure 3: Data Distribution of Matrix A

2.4 Parallel Implementation

Here we describe data distributition, pivoting strategy, communication schemes and
the backsubstitution process after LU-decomposition. These are the main factors

that affect the performance of the parallel implementation.

2.4.1 Data Distribution

Our goal is to evenly distribute the data so that the task can be balanced over
all processors. We use row oriented distribution because it represents a family of
application problems. Assume the total number of processors is P, each processor
is identified by a unique number between 0 and P — 1. Partition the n x n matrix
A as (Ao, A1, -+, Ap-1)T, where A,,0 < p < P —1, is in processor p. This type of
distribution iz typical and useful. It can balance the loads over all processors and the

best performance can be expected. Figure 3 shows the data distribution graphically.

2.4.2 Pivoting Strategy

In order to prevent numerical instability, pivoting is often needed. It is proven that
only LU-decomposition with complete pivoting is numerically stable, i.e., for any
matrix the computed LU-decomposit’un is the LU-decomposition of a nearby matrix.

Complete pivoting searches all feasible entries of a matrix for the one that is largest

13

in absolute value, namely, during each elimination step, the pivot element of a matrix
A is obtained by searching all the feasible entries in the matrix. This strategy is
dynamic because the decision which entry should be the pivot in the k — th step
of the decomposition is postponed until the pivot is actually needed. For the sake
of efficiency, one can restrict the searching region to obtain row piveting or column
pivoting, but the drawback is that its the numerical stability is not as good as that
of complete pivoting. In our parallel implementation, a complete pivoting strategy is

used.

2.4.3 Communication Schemes

In the implementation, we organized all processors into a one dimensional grid. The
origin and destination of messages are identified by the processor identification num-
ber tog:ther with the type of the message. The determination of the pivot is done
by the recursive doubling procedure which will be described later in this thesis (sce
section 4.2.3). The sending and receiving of the pivot row at each elimination step is
done by a global broadcast. The partial solutions obtained during the backsubsitution

process are also sent to other processors via global broadcast.

2.4.4 Backsubstitution

To obtain the solution of a linear systemn after the LU-decomposition, backsubstitu-
tions have to be performed. The complexity of the backsubstitution is O(n?) com-
pared with O(n®) of the LU-decomposition. The parallel backsubstitution process
needs communications between different processors, because at step k of the back-
substitution, we need to determine which processor should do the backsubstitution
and broadcast the partial solutions at step k to all other nodes. The cost of the

communication is minor, since the entire backsubstitution process is of order O(n?).

14

Number of Nodes | Execution time | Speed-up | Efficiency ||
1 15.22 1 100%
8 2.14 7.11 88.90%
16 1.59 9.57 59.83%

Table 2: A = (a;;) = (cos((: +1)(7 +1))) ¢,7=1,2,---,256

2.5 Numerical Results

The performance of a parallel algorithm depends on many factors, such as the pivoting
strategy and the matrix behavior. For timing purpose, we hope that the pivot entry
is uniformly distributed. Thus we use the following matrix similar to the one used in
[16].

A = (ai;) = (cos((i + 1)(+1)))

where 0 < 1,7 < N. The symmetry of this matrix is never used in the algorithm and
the implementation. This matrix is easy to generate and behaves well numerically.
We tested the parallel algorithm on the Intel Delta. The timing results for N = 256
is shown in Table 2. Assume that the execution time for one node is Ty and T}, for
P nodes. We define the speed-up, denoted by w, and the efficiency, denoted by 7, as

follows
I
w = 'ﬁ (14)

15

Chapter 3

A Parallel Sparse Solver without

Pivoting

In this chapter, we focus on the design and implementation of a sparse solver
without pivoting on distributed memory systems. This parallel sparse solver has been
implemented in AUTO94P on the Intel Hypercube and Mesh architecture machines.

3.1 Overview of Sparse Matrix Computations

A large family of applications, when formulated as a mathematical model, leads to
sparse matrices. Different applications have different representations mathematically,
but a common feature is that most of the sparse matrices are structured. Exploiting
the structure of a particular sparse matrix is often very important, because it can sig-
nificantly speed up the computation [14, 46]. For example, some systems can have a
block-tridiagonal [45], almost block-diagonal [63}, banded [24, 25] or a positive definite
[40] structure. The LU-decomposition algorithm for sparse matrices does not differ
too much from the dense one, except that the access to matrix entries is considerably
more difficult. The address of an entry a;; is no longer computable with an easy

integer expression. Instead the entry is located by a search through a sparse matrix

16

representation. In sparse matrix representation, one has to distinguish between struc-
tured and unstructured sparse matrices. Often, exploitation of a particular structure
leads to simpler and more efficient representations {15, 53). However, even if the full
matrix A has a particular structure, the local matrices in A may not. It is possible to
construct a particular distribution for some matrices such that the local structure is

taken into account, but we shall study the case, where the local matrices are dense.

3.2 The Sparse Linear System
In this chapter, we consider the sparse linear system
Jr=f (16)

formulated in Chapter 1 (section 1.2.2). The structure of the Jacobian matrix J is
shown in Figure 2. An efficient sequential algorithm for solving this system can be
found in [21]. This system is solved many times in AUTO when computing solutions
of ordinary differential equations. When the problem size is big, solving this linear
system becomes the dominant computation of the AUTO package. Thus efficiently
solving this system is important. In the following sections of this chapter, we describe

a parallel algorithm for solving the above system without pivoting.

3.3 Direct and Iterative Method

Due to computer memory limitations, many iterative methods have been designed
and implemented for various types of problems. These methods typically use some
kind of iteration process to correct an initial approximate solution until a better one
has been found. We shall not use iterative methods. Instead, we use a direct method
based on Gauss elimination, because: a) Direct methods are generally more efficient
for computing solutions of ordinary differential equations. b) Direct methods are
much more robust than iterative methods. ¢) Our direct method produces stability

and bifurcation information as a by-product.

17

begin
Partition strategy
Condensation of parameters.
Nested dissection.
Solving the small system.
Backsubstitution process one.
Backsubstitution process two.
end

Table 3: Outline of the Parallel Algorithm without Pivoting

3.4 'The Parallel Algorithm

3.4.1 Overview

The parallel algorithm consists the following parts: partition strategy, condensation
of parameters, nested dissection, solving the small system and two backsubstitution
processes. We describe the parallel design of each part below. In particular, we stress
the communication scheme of the algorithm. We use a direct method as explained
above in section 3.3, and in this chapter we do not consider any pivoting strategy
for the Gauss elimination process. The pivoting strategy will be considered in the
next chapter. The main idea of the communication scheme will be presented in
graphic charts. Although the idea is illustrated by considering 8 processors, the
communication scheme has no limits on the number of processors. The outline of the

algorithm is shown in Table 3.

3.4.2 Partition Strategy

To achieve load balance, data should be distributed as evenly as possible, because the
performance of a parallel algorithm for distributed memory systems is largely inflv

enced by it. Consider the sparse linear system (16), whose Jacobian matrix J is shown
in Figure 2, with right hand side f = (Fy, Fy, -+, Fg, FC)T. Assume the total number

18

PO Pl P7

{A1,B1,C1,F1,D,FC} {A2B2,C2F2DFC) | * c** " {A8,B8,C8,F8,D,FC)

Figure 4: Data Distribution for the Sparse System

of processors is P, here P = 8. We define one data unit as {A;, B;,C;, F;, D, FC},
where : = 1,2,.--,8. Our partition strategy is given below. Similar to the dense
matrix LU-decomposition, we partition the Jacobian matrix J and the right hand
side f into P data groups. Each data group contains k (here k = 1) data units.
In the case where the number of data units is not divisible by P, some data groups
contain k+ 1 data units. In other words, the difference between any two data groups
is at most one data unit. The best case is no difference between any two groups. Of
course, we can not get perfect balance, because the initialization of the data groups
is not totally independent. The distribution of the Jacobian matrix J in Figure 2
and the right hand side f is shown in Figure 4. Note that the matrix D and F'C in
Figure 2 are shared by all the processors. This means that each processor keeps one
copy of D and FC.

3.4.3 Condensation of Parameters

After distribution of the sparse matrix J and the right hand side f, each processor
holds one part of the matrix J and of the right hand side f. Gauss elimination pro-
cesure to the Jacobian matrix J can be applied concurrently in each of the processors.
This is because ro communication occurs until at the bottom of the sparse matrix J
during the elimination process. At the bottom, we need two types of communications
to update the C;’s, D and FC in all processors. The first communication type is
for updating the C;’s, because the right part of C; in node p; overlaps with the left
part of Ciy; in node p;y1. The second communication type is for updating D and

FC, because they are shared by all nodes. Updating the Ci’s is done in two steps.

19

SN N N N TN
(a) (w2 03 " even odd

ﬁ
-
™
_

)
7~ O\ 7~ N\ ™ Y
@ - odd even

Figure 5: Communications between Odd and Even Nodes

In the first step, odd nodes send messages to even nodes; i .iie second step, even
nodes send messages to odd nodes. The communications between odd and even nodes
are indicated in Figure 5. Note that there are only two startup times for the entire
communication. This communication is scalable [42] since it is independent of the
number of nodes. The communication cost is the same, roughly two startup times,
no matter how many nodes are used in the computation. More precisely, assume the

total number of nodes is P, and define the following set

I = {0,1,2,---,P -1} (17)
Lp = {1,2,3,---,logF} (18)
and map My : Ip — Bp where set Bp = {odd,even}. M, can be formulated as

odd if mod(p,2)

even if mod(,,2)

Mofiy) = { X

where i, € Ip. Table 4 outlines the communication between neighboring nodes. To
update D and FC, a global sum is needed. This global sum is done by a recursive
doubling procedure which takes log? steps (see [19] pp95-108), where P is the total
number of nodes. The recursive doubling procedure is shown in Figure 6, where only
four nodes are used for simplicity. Depending on the outcome of the final sum, we
used two types of recursive doubling. One is where the left most node hold the final
results, as shown in the left part of Figure 6, where node po holds the final result.
The other is where the right most node holds the final results, as shown in the right

part of Figure 6, where p; holds the final results. To outline the recursive doubling

20

begin
if (Mo(ip) == odd && i, < P — 1) then
send the data to my right neighbor node i, +1
else
receive the data from my left neighbor node 7, — 1
endif
if (Mo(2,) == even && i, < P —1) then
send the data to my right neighbor node ¢, + 1
else
receive the data from my left neighbor node i, — 1
endif
end

Table 4: Neighboring Node Communications

CeD ®3) (0 (oD (2

NN
/

/

Figure 6: Recursive Doubling for 4 Nodes

21

procedure in our implementation, define the set B = {T, F'} and maps M,yen, Moda
such that

Modd:IpXLp—’B (19)
Mcven : IP X LP — B (20)

More precisely,

) if mod(zam,,2) =0
Modd(zp, lp) = (4) (21)
if mod(iam,,2) =1
) it mod(iam,,2) =1
Meyen(ip, 1) = (iam, ‘) (22)
F ii mod(tam,,2) =0
where iam, = ;1;,’;— N Ip. Further define maps
, iy 4 21 ifi, 420l
Noai(iply) = { 7 P EF (23)
] otherwise
) i, — 21 if i -2l Ip
Ncuen(zpy lp) = 7 P . (24)
0 otherwise

where § means undefined. Table 5 shows the outline of the recursive doubling in our
implementation. A special recursive doubling algorithm can be found in [26]. After
condensation of parameters, the Jacobian matrix J in Figure 2 become that shown
in Figure 7. The shaded areas in Figure 7 will be considered in the nested dissection

part. Table 6 is an outline of the condensation of parameters process.

3.4.4 Nested Dissection

After condensation of parameters, a nested dissection process is needed. For further
details on nested dissection, see [36, 37]. Related results can be found in [38, 55, 66].
The communication scheme in this process is different from the one when pivoting
is taking into account. The nested dissection with pivoting is described in the next
chapter. Here we consider nested dissection without pivoting. Extracting the shaded

areas in Figure 7, we obtain the matrix shown in Figure 8. Here A, A;,C,,C; and B

22

for |, :=1,2,.-+,logf do begin
if (M,da(ip, ;) == T') then
send data to node N,qq4(ip,)
endif
if Meyen(ip, lp) == T') then
receive data from node Neyen(ip, Ip)
do the summation
endif
end

Table 5: The Recursive Doubling Algorithm

=t
=
=
o

o
o
LD DDDDL

glllll.lg;

Figure 7: The Jacobian J after Condensation of Parameters

23

begin

{for each node p; € I» do in parallel}

set D and FC to zeroif p; >0

otherwise keep them unchanged

for k:=0,1,---, Maz(k) do begin

do Gauss elimination

end

update Ci’s via neighboring node communication

update D and FC by recursive doubling procedure
end

Table 6: Outline of the Condensation of Parameters without Pivoting

PO/Pl py/p2 PuP3 P3PA paPS PSP6 PePT P

Cor] [cee] [caci [eae] [eae] [eae] [[aoel] (] (2]

Figure 8: Initial State of the Nested Dissection

24

Figure 9: Busy Nodes during Each Recursion Level

are in one processor. The notation C,/C) in Figure 8 means that C; is in node p; and
C} in node p;4;, where z = 0,1,---,6. The idea is to reflect the fact that C; is the
same as Cy, but that they are in different processors. It needs to be mentioned that
the values of A,, A;,C;,C; and B are not the same for different nodes although we
use the same notations for all nodes. We use a recursive doubling procedure for the
nested dissection process. Thus, when the total number of processors is 8, the number
of the recursion levels is 3. Figure 9 shows the busy nodes for each recursion level. At
the first level, the communication is between two neighboring nodes. For example,
in Figure 8, A; in node py is sent to node p,, because the Gauss elimination of A, in
p1 needs information from Aj in py. A similar communication has to be done for the
B’s, Ci’s and F;’s. At the first level of the recursive procedure, all nodes are working.
After the elimination at the first level, the matrix is as shown in Figure 10, where
the shaded areas denote fill-in. At the second level, half of the nodes will be idle,
while the other half is doing eliminations. The situation is graphically illustrated in
Figure 9. At the second level, communication is not between neighbors only; instead
a group of nodes communicates with each other. The number of nodes participating
in the communication in each group is 251 4 1, where k is the recursion level. Figure
10 shows the communication scheme. After the elimination at level 2, the matrix is
shown in Figure 11. Level 3 is similar as level 2, except the number of nodes in each
communication group is more than before. The final state, after the nested dissection,

is shown in Figure 12.

25

Figure 11: Initial State of Level 3

26

Figure 12: Final State after the Nested Dissection

3.4.5 Solving the Small System

The shaded area in Figure 12 is a relatively small square n.airix. It is generally
nonsingular. This square matrix with the corresponding right hand side is solved by
Gauss elimination with complete pivoting. The solving of the square system is done
by one node, here node p;. The shaded area C) in pp in Figure 12 has to be sent to

node p7, before node p; can compute the solution of the small system.

3.4.6 Backsubstitution

After solving the small system, we can obtain the solution for the full matrix shown
in Figure 8 by a backsubstitution process. In order to do the backsubstitution, the
solution of the small system has to be sent to all other nodes. This can be done by a
broadcast from node p;. Figure 13 shows the broadcast. After the broadcast, we can
do the backsubstitution in each node concurrently, and hence compute the solution
of the nested system. In order to obtain the solution of the full system 16, another

backsubstitution has to be done. This final backsubstitution process does not need

27

Figure 13: Broadcast Solution from the Small System

any communication and can be done concurrently in all nodes. The full solution has
now been obtained, but it is scattered over all the nodes. Thus a concatenation is
needed. This concatenation process is identical to that in the pivoting case, and will
be described in the next chapter (section 4.2.8).

3.5 Timing Results

AUTO94P without pivoting has been tested on the Intel Hypercube and Mesh ma-
chines. The numerical timing results reported here are obtained on the Intel Delta;
512 Intel iPSC/860 nodes connected by a mesh network. The Delta system is located
at Caltech. The example used for the numerical experiments is tim.f, which is one
of the drivers in the AUT'094 package used solely for timing purposes. It defines a
simple first order system of ordinary differential equations with boundary conditions.
The dimension of the system is a variable. The parameter NDIM (dimension of

the system) may be assigned by any even value within the modifiable limit stated in

28

AUTO94 user manual. The system of the equations is

u'1 = Uy (25)
25 uti

w = A o (26)
=0 "’

where u; € R, u; € R*, n = NDIM/2 and) is the continuation parameter. The

boundary conditions are

Uy (0)

0 (27)
U](l) 0

(28)

The starting solution at A = 0 is uj(z) = uz(z) = 0, = € [0,1]. There are no
integral conditions except a pseudo-arclength integral, which is always there. The
computation is such that for each run of the problem, there will be 10 decompositions
and 10 backsubstitutions in the linear equation solver. We use the efficiency fcrmula
(14) defined in Chapter 2 and the relative efficiency formula (29) defined below to
measure the performance of AUTO94P without pivoting.

_ mTy,
T’ = nTn 7

(29)

where Trn, T;, are the execution times obtained by using m,n nodes, respectively.

29

3.5.1 Timing Results Including I/O Time

Timing results in this section include “I/O time”. Specifically, all execution times in
the following tables are taken from the first node (node pp). The first node does all
the 1/0 operations, thus its execution time is a little bit longer than that of other

nodes.

30

[Number of Nodes | Execution time | Speed-up | Efficiency ||

1 0.113E+03 1 100%
2 0.611E+4-02 1.85 92.47%
4 0.359E+02 3.15 78.69%
8 0.222E4-02 5.09 63.63%
16 0.138E+-02 8.19 51.18%
32 0.116E4-02 9.74 30.44%
64 0.103E+02 10.97 17.14%

Table 7: Without Pivoting 1: NDIM=12, NTST=64, NCOL=4, NMX=10

[Number of Nodes | Execution time | Speed-up | Efficiency ||

1 0.603E4-03 1 100%
2 0.316E+03 1.91 95.41%
4 0.168E+03 3.59 89.73%
8 0.944E+02 6.39 79.85%
16 0.558E+02 10.81 67.54%
32 0.332E+02 18.16 56.76%
64 0.268E+-02 22.50 35.16%

Table 8: Without Pivoting 1: NDIM=24, NTST=64, NCOL=4, NMX=10

[Number of Nodes | Execution time | Relative Speed-up | Relative Efficiency ||

8 0.562E+-03 1 100%

16 0.306E4-03 1.84 91.83%
32 0.176E4-03 3.19 78.83%
64 0.106E+4-03 5.30 66.27%

Table 9: Without Pivoting 1: NDIM=48, NTST=64, NCOL=4, NMX=10

31

3.5.2 Timing Results Excluding I/0O time

Timing results in this section do not include “I/O time”. The execution time in
the following tables is the first node’s execution time minus the “average I/O time”.
The average 1/0 times for all tables in this section are shown in Table 10. For
simplicity, we do not count the work-load difference between nodes, which also affects

the execution. The average 1/O time is calculated by the following formula

T, inimum + Tmum’mum
Taverage = 07 D) (30)

[In Table | Minimum I/O time | Maximum 1/0 time | Average 1/0 time ||

11 1.00 3.50 2.25
12 1.00 3.50 2.25
13 3.00 7.00 5.00

Table 10: Without Pivoting: Average I/O Time

32

[Number of Nodes | Execution time | Speed-up | Efficiency ||
1 0.111E4-03 1 100%
2 0.589E+02 1.88 94.23%
4 0.337E+-02 3.29 82.34%
8 0.199E+4-02 5.58 69.72%
16 0.116E4-02 9.57 59.81%
32 0.935E+01 11.87 37.10%
64 0.805E+-01 13.79 21.55%

Table 11: Without Pivoting 2: NDIM=12, NTST=64, NCOL=4, NMX=10

[Number of Nodes | Execution time | Speed-up | Efficiency ||

1 0.601E+4-03 1 100%

2 0.314E4-03 1.91 95.70%
4 0.166E+03 3.62 90.51%
8 0.923E+02 6.51 81.39%
16 0.536E4-02 11.21 70.08%
32 0.310E+4-02 19.39 60.58%
64 0.246E+4-02 24.43 38.17%

Table 12: Without Pivoting 2: NDIM=24, NTST=64, NCOL=4, NMX=10

[Number of Nodes | Execution time | Relative Speed-up | Relative Efficiency ||

8 0.557E+4-03 1 100%

16 0.301E+03 1.85 92.52%
32 0.171E+03 3.26 81.43%
64 0.101E+403 5.51 68.93%

Table 13: Without Pivoting 2: NDIM=48, NTST=64, NCOL=4, NMX=10

33

Chapter 4

A Parallel Sparse Solver with

Pivoting

In this chapter, we focus on the design and the implementation of a sparse solver
with pivoting on distributed memory systems. This parallel sparse solver has been

implemented in AUTO94P on the Intel Hypercube and Mesh architecture machines.

4.1 Introduction

In this chapter, we again consider a direct solution algorithm for the sparse linear
system (16) in Chapter 1 (section 1.2.2). To enhance numerical stability, we now use

a pivoting strategy. We use the same partitioning strategy as described in Chapter 3.

4.2 The Parallel Algorithm

4.2.1 Overview

The top level of the parallel algorithm is similar to that in Chapter 3. It is outlined
in Table 14. We describe the parallel design of each part of Table 14, except that we

34

begin

Partitioning strategy

Condensation of parameters with pivoting.

Nested dissection with pivoting.

Solving the small system.

Backsubstitution of the nested dissection.

Backsubstitution of the condensation of parameters.
end

Table 14: Outline of the Parallel Algorithm with Pivoting

do not repeat the partitioning strategy. Similar to Chapter 3, we present the commu-
nication schemes in graphic charts with emphasis on pivoting. To avoid duplication,
we do not repeat parts similar to those in Chapter 3, particularly for the condensa-
tion of parameters. Although the idea is illustrated by considering 8 processors, the

communication scheme has no limits on the number of processors.

4.2.2 Pivoting Strategy

To enhance numerical stability [2, 63], we use a pivoting strategy. The simplest
strategy is to have no strategy at all. In the k — th elimination step, entry a(k, k)
of matrix A; is chosen as pivot. The pivot is always the current entry or a preset
pivot. This type of pivoting, the static strategy, suffers from numerical instability.
In some cases this may be an acceptable risk, in other cases enough might be known
about the matrix to guarantee that the errors remain small. In a dynamic strategy,
the decision which entry should be the pivot in the k — th step of the elimination
is postponed until the pivot is actually needed. It is desirable to use a dynamic
strategy. It is proven that LU-decomposition with complete row and column pivoting
is numerically stable. For any matrix the computed LU-decomposition is the LU-
decomposition of a nearby matrix. We use restricted row and column pivoting in our

parallel algorithm. Complete pivoting searches all feasible entries for the one that is

35

A _,@&\g"» N o
LIS T g a0y L ek w@j? b
- .\:’A‘f\a}:g; JASE &;“sgz{:.;t*ﬁ&«\f‘m W ey
% ““‘&é“)‘y{*\lﬁﬁ*‘f"i&% SN Ao Loe
LA TR e L, DS RIAR N,

Figure 14: The Pivot Window for A;

Al A2 | /P

P+ | Al A2

Figure 15: The Pivot Window for Nested Dissection

largest in absolute value. This requires a search over (N — k)? entries, where N is
the dimension of the matrix being considered. Since the Jacobian matrix, as shown
in Figure 2, is sparse, it is reasonable to restrict the pivot search region to the region
where the entries are non-zero. During the condensation of parameters process, we
use a pivot search window at each elimination step. In Figure 14, the pivot window
for A; is the shaded area. The corresponding pivot window in nested dissection is
shown in Figure 15. It needs to be mentioned here that the pivot window in the
nested dissection does not reside in any node alone but resides either in two adjacent
neighboring nodes or in two nodes with distance of 2%, where k is the current recursion

level. Thus, during any recursion level of the nested dissection, say level k, message

36

]
t
)
[}
Ve mcemeccmcege == ; Pi not neighbor nodes
neighbor nodes T
1)

weeleocdeamecamccawana=

P. A A2

a~

.
N
|

-

Figure 16: Communication within the Pivot Window

passing between two nodes with distance 2* is needed. The information exchanges
are indicated in Figure 16. The efficiency of the above pivoting strategy is obviously
better than the complete row and column one, due to the restriction of the searching

region.

4.2.3 Condensation of Parameters

Starting from the initial state of the Jacobian matrix, as shown in Figure 2, con-
densation of parameters transforms the matrix into the form shown in Figure 17.
Similar to that in Chapter 3, the elimination process is done concurrently in each
processor, except at the bottom of the Jacobian matrix J. The communications at
the bottom have been described in the Chapter 3 (section 3.4.3). The difference here
is that, during the elimination process in each node, a local pivot within the pivot
window mentioned in section 4.2.2 is searched. In addition, the communications at
the bottom of the Jacobian matrix J are delayed until the nested dissection process
to improve the degree of parallelism or granularity. With the above communication
delay, we save two start-up times. More precisely, assume that T} is the start-up time
for each simple communication and that a global sum takes a factor of logf times a
simple startup time, where P is the total number of processors. We roughly save the

following communication time in the condensation of parameters process:

Taave = (log; + 2)Ta

37

J

11

I
}

I

N

N
i
N
[
I

\\DDDDDDDDDj

Figure 17: The Jacobian J after Condensation of Parameters

Here P is the total number of nodes. Table 15 is an outline of the condensation of

parameters process.

4.2.4 Nested Dissection

The nested dissection part plays an important role in the full algorithm. It is com-
plicated in the sense that both pivoting and elimination are not local. They both
require communication between specified nodes. Assume that P is the total number
of nodes allocated to a task. We know that each node p; has a unique processor iden-
tification number. We denote this node identification number by pid,. This pid, is
typically assigned by the operating system, depending on the system. Assume Ip, Lp
are defined as before and define the following set

B = {T,F) (31)
PID = {pid; | ielp) (32)
(33)

38

begin
{for each node p; € Ip do in parallel}
set C,D and FC to zeroif p; > 0
otherwise keep them unchanged
for k:=0,1,---, Maz(k) do begin
{Pivoting strategy and Bookkeeping}
do pivot search
do index exchange
do elimination
end
end

Table 15: Qutline of the Condensation of Parameters With Pivoting

It is convenient, and necessary in practice, to map the system assigned PID to

individually organized Ip, such as a linear mapping. One can define the map as
M, :PID — Ip (34)

One way to construct the map is to sort all pid; in PID in nondecreasing order
and renumber each element by an integer starting from zero. Depending on the
application, the construction of the map is often done differently. To better describe
the communication method, we need to define some maps. The first two are M;,: =
1,2 such that

Mi:IpxLp— B i=1,2 (35)

We define the two maps as follows.

T if mod(zam,,2) =0
Mi(ip, Ip) = l o (Z.GTnp) (36)

F if mod(iam,,2) =1

. : _1
Ma(ip,1,) = T Tf mod(z.am,,,2) (37)

F if mod(iamy,2) =0

where, as before, .

iamy = {221 N 1p (38)

39

begin
{for each p; € Ip do in parallel}
for k:=0,1,.--, Maz(k) do begin
{Pivoting strategy and Bookkeeping)
{Here pivot search is local}
do pivot search
do elimination
end
end

Table 16: Nested Dissection Process 1

Secondly, define N;,t = 1,2 such that
N,‘ : Ip X Lp -— Ip

We define N;,7 = 1,2 as follows.

Niiply) = 4 27 i 42miely
PP 0 otherwise
i, ~ 271 if i — 2=l g,
No(ip, 1) = P P
2{in) { 0 otherwise

(39)

(10)

(41)

where () means undefined. Now we can describe the algorithm in two parts. Part one is

outlined in table 16 and part two in table 17. Below we describe our communication

mechanism graphically. The nested dissection is carried out similar to the recursive

doubling procedure described before. During each level of recursion, half of the total

number of nodes sit idly. Assume that the total number of data uniis, defined in
Chapter 3 (section 3.4.2), is 24. After the data distribution over 8 nodes described
in Chapter 3, each node holds 3 date units We first look at what happens in any
one of the nodes, say in p,. This part of the algorithm is outlined in table 16. The

elimination in each node is sequential. For now, we don’t consider shared data, such

as matrix D and vector FC. The result of this elimination is shown in Figure 18

40

begin
{for each node p, € Ip, do the following in parallel}
{Here pivot search is not local}
for k:=1,---,maz(k) do begin
for I, := 1 to log} do begin
if (My(ip,1,) ==T) then
Search local pivot element PIV}
receive PIV; from node N;(ip, 1)
Determine PIV = maz(PIV;, PIV;)
if (P1V == PIV,) then
send pivot row to node Nj(ip,[p)
else
send current row to node Ny(ip, I,)
endif
do eliminations
endif
if (Ma(ip,1,) ==T) then
Search local pivot element PIV;
send local pivot row to node Ny(zp,[,)
if (PIVy! = PIV) then
receive pivot row from node N,(3,,1,)
else
receive current row from node N(ip, lp)
endif
do eliminations
endif
end
end
end

Table 17: Nested Dissection Process 2

41

<—pivot window

in Pionly ——
| (AL | [AZ]
T '

[AT]] 1l
-
next pivot windowé [Al | | A2 |

/
/R

Figure 20: The Final State in Node p;

42

<] BB unfinished part

Figure 21: Enclosed in the Dashed-line Bov is the Unfinished Part

to Figure 20. The shading denotes fill-in due to the elimination and pivoting. So
far, there is no communication yet. Now we look at part two of the nested dissection
corresponding to the outline in Table 17. After each node finishes the first part of
the nested dissection outlined in Table 16, extracting the unfinished part stown in
Fignre 21 in each node, we have the situation shown in Figure 22. Since we have
8 nodes, the number of recursion levels is 3. In Figure 22, we have also shown the
communications during level 1 of the recursion. Note that the communications from
condensation of parameters have been merged here in order to improve the degree of
the parallelism. All communications indicated by an arrow arc are done in parallel.
In other words, they only need one start up time 7, plus the time to send or receive
certain data between any two nodes. The pivot window covers neighboring nodes for
level 1 but not in levels 2 and 3, as one can see from Figures 23 and 24. In total we
need 3 startup times to complete the elimination for 8 nodes. The elimination result
and the communications are indicated for each level of the recursive process in Figure
22 to Figure 24. The final result is indicated in Figure 25. The shared data, such as
the matrix D and the vector F'C, are updated by a global sum similar to Figure 6.
Note that only the last node holds the global sum of D and FC, as will be explained

below.

43

PO ...
LAL] - [AZ7H) P
pivot window @. [r.vik P4
pivat window @C@ B
HALL [AZ]} P6
o Ched R TR P
pivot window - oot) N
PO HE LTy
e agi O
X -..{._.____._-_ ____ @j) pivot window
[T] P P2
ED<EZJ P3
PLe) [P e
PLL] [ke
@(Eﬂ P7
(el (<27

Figure 22: Level 1

44

Figure 23: Level 2

45

Figure 24: Level 3

46

.....

llllllllllll

t [
o ! t
T .

T L}
@ .
1 N
4]

_m: “ “
Vo e,
." " -
I !
. ' !

1 H]
H 3
' " ’

]
o L9
by
I : '
v ! [] '

v ! . [}
[1 '
P "

[}
pro Qoo
[. M -
[. .-

I . .
“" " + ".
i o
P Qo
N] 2 1 teeae
. ' oo !
[] " [H
P : !
) ' N '
. : ;
[' - H
: : o T
1 ¢ Ll (]
a0 . ey
T]] I
vt] [} X '

] ’ e
[] 1 “
R - I
[) e " |||||
T)
« ! [et}
o !] 1
[]]
v)]
0) []
~"] .
bEody ot
[[} +
." ' . -
[" "
o .]
v . .
: -_ -@-
[A)
v "
[t
] Lot

==
H 1
' '
L]

1]
1
' L]
N 9

L]
H L]
.

'

.

1
' '
['
) L}
I '
Vol]
) .
1 '
1} +
[-
1]
L}
L}

Figure 25: The Final Result of the Nested Dissection Process

47

Figure 26: Send ¢, from Node po to Node p;

4.2.5 Solving the Small System

After the nested dissection, we need to solve a relatively small square system described
in Chapter 3 (section 3.4.5). In Figure 25, we send C, from node pp to node p; as
indicated in Figure 26. We can extract the square system enclosed by a big dashed
line box as indicated in Figure 27 in node pg. The shaded area implicitly represents
the Poincaré map that we need to preserve in the AUTO package. This small square
system is solved by node p; using complete pivoting. Thereafter node p; broadcasts

the solution to all the other nodes as indicated in Figure 28. The outline for this part
is in Table 18.

48

...

N N
A s SO o
S I N N S
s A e
Sy s e
S s O I e
O e I e
N]}
e e

Figure 27: The Square Matrix Enclosed in the Solid-line Box

T

e v 2 W W e O (p7

N —

p0

; Pl

p2

v p3
] p4

pS

' pb

Figure 28: Broadcast of the Partial Solution from Node p; to All Other Nodes

49

begin
{ for each node i, € Ip do }
if (i, == 0) then
send data to the last node ip_;
endif
if (i, == ip-1) then
receive data from node g
Solve the small system by
Gauss elimination with complete pivoting
endif
if (i, ==1p-1) then
broadcast the solution
else
receive the solution
endif
end

Table 18: Solving the Small System

50

L__ level 1

Figure 29: Busy Nodes for Each Level during Backsubstitute

4.2.6 Backsubstitution for the Nested Dissection

After solving the small square system with complete pivoting, we need to do back-
substitution. There are two backsubstitution processes. The first one is associated
with the nested dissection process. The second one is associated with condensation of
parameters. The first one is a recursive procedure similar to the nested dissection. It
requires log} levels or steps. The number of working nodes here is reversed compared
with that of the nested dissection. The busy nodes are indicated in Figure 29 level by
level. Initially, only one node works. Thereafter the number of working nodes is dou-
bled with each increase of the recursion level. At each level some communications are
needed as will be illustrated by pictures. The algorithm is outlined below. Assume
the inaps M;(7y,1,),¢ = 1,2 are defined as in (36). Define sets Nb;(ip,1,) C Ip,2 = 1,2
such that

Nb(ip, 1) = {ip | Mi(ipl, —1)=T and 1, >1} (42)
Nby(ip,lp) = {ip | Mi(iply +1)=T and l, <P -1} (43)
The backsubstitution process is now outlined in table 19. The backsubstitution pro-
cess can be interpreted graphically as follows. After broadcasting the solution from

the small square system, we can solve part of the solution corresponding to the shaded

triangular area in node p3 in Figure 30. In order to solve the part of the solution

51

begin
{ for each i, € Ip do in parallel}
for I, :=logl,---,1,step — 1 do begin
if (M1(%5,0,) == T') then
if (I, < P —1) then
receive solution from nodes Nby(ip, 1)
endif
do local backsubstitution only in the last block row
if (I, > 1) then
send the solution to the
following nodes Nb; (¢, ;)
endif
endif
end
do the backsubstitution for the remaining block rows locally
end

Table 19: Backsubstitution Process 1

52

Figure 30: Backsubstitution Level 1

begin
{ for each i, € Ip do in parallel}
backsubstitution locally in each node i,
end

Table 20: Backsubstitution Process 2

corresponding to the shaded triangular area in nodes p; and ps, we need to send
the solution from node p; to node p; and to node ps; as shown in Figure 30. This
completes level 1 in the backsubstitution process. Similarly one can complete level 2

as indicated in Figure 31. No communication is needed for level 3.

4.2.7 Backsubstitution for the Condensation of Parameters

After the above backsubstitution process associated with the nested dissection, one
can solve the whole solution of the linearized system in parallel as indicated in Figure
2. This part of the computation does not involve any communication. It is a simple

backsubstitution that we omit describing here. The outline can be found in table 20.

53

Figure 31: Backsubstitution Level 2

4.2.8 Merging the Solutions

So far we have computed the solution to the system indicated in Figure 2. However,
the solution is still scattered over all nodes, and we need to concatenate them. This

is done by a global operation as indicated in Figure 32. It consists of two steps. The

@@ @ B 6 @ ¢ B
€)) ®)]
| — L —
(iE D
-

€]

@ & &® B & @& @

Figure 32: Concatenation of the Solutions

first step is to let node py collect all solutions from the other nodes, the second step
is to broadcast the full solution.

54

4.3 Timing results

AUTO94P with pivoting has been tested on the Intel Hypercube and Mesh machines.
The numerical timing results reported here are obtained on the Intel Delta. We use
the same example as in Chapter 3 for the timing purpose here. The efficiency formula
(14) defined in Chapter 2 and the relative efficiency formula (29) defined in Chapter
3 are used to measure the performance of AUTO94P with pivoting.

55

4.3.1 Timing Results Including I/O Time

Timing results in this section include I/0 time. Specifically, all execution times in
the following tables are taken from the first node (node 0). The first node does all

the AUTO I/O operations. Thus its execution time is a little bit longer than that of
other nodes.

56

Number of Nodes | Execution time | Speed-up | Efficiency ||
1 0.14816E4-03 1 100%
2 0.76882E4-02 1.92 96.36%
4 0.41966 402 3.53 88.26%
8 0.24917E4-02 5.95 74.33%
16 0.16852E+02 8.79 54.95%
32 0.12519E+-02 11.83 36.98%
64 0.11386E+02 13.01 20.33%

Table 21: With Pivoting 1: NDIM=12, NTST=64, NCOL=4, NMX=10

[Number of Nodes | Execution time | Speed-up | Efficiency ||

1 0.29486E+-03 1 100%

2 0.15434E+-03 1.91 95.52%
4 0.82070E+02 3.59 89.82%
8 0.46864E+02 6.29 78.65%
16 0.34325E4-02 8.59 53.69%
32 0.21596E+02 13.65 42.67%
64 0.19698E+02 14.97 23.39%

Table 22: With Pivoting 1: NDIM=12, NTST=128, NCOL=4, NMX=10

[Number of Nodes [Execution time | Relative Speed-up | Relative Efficiency ||

2 0.30752E+03 1 100%
4 0.16642E+03 1.85 92.39%
8 0.93223E+02 3.30 82.41%
16 0.62372E+02 4.93 61.63%
I 32 0.44666E+02 6.88 43.03%
I 64 0.36942E+02 8.32 26.01%

Table 23: With Pivoting 1: NDIM=12, NTST=256, NCOL=4, NMX=10

87

[Number of Nodes | Execution time | Speed-up | Efficiency ||

1 0.86821E+03 1 100% |
2 0.43959E+03 1.98 98.75% ||
4 0.22831E+03 3.80 95.07%
8 0.12090E+03 7.18 89.77%
16 0.69801E+02 | 12.42 17.64%
32 0.43812E+02 | 19.82 61.93%
64 0.33428E402 | 25.97 40.58%

Table 24: With Pivoting 1: NDIM=24, NTST=64, NCOL=4, NMX=10

[Number of Nodes | Execution time | Relative Speed-up | Relative Efficiency ||

4 0.45262E+-03 1 100%
16 0.13188E+403 3.43 85.80%
32 0.83715E4-02 5.41 67.58%
64 0.57496E+02 7.87 49.20%

Table 25: With Pivoting 1: NDIM=24, NTST=128, NCOL=4, NMX=10

| Number of Nodes | Execution time | Relative Speed-up | Relative Efficiency |

8 0.47475E+03 1 100%
32 0.16136E+-03 2.94 73.55%
64 0.11212E403 4.23 52.93%

Table 26: With Pivoting 1: NDIM=24, NTST=256, NCOL=4, NMX=10

58

[Number of Nodes | Execution time [Relative Speed-up [Relative Efficiency i

8 0.77154E+03 1 100%
16 0.40720E+03 1.89 94.74%
32 0.22908E+03 3.37 84.20%
64 0.14745E+03 5.23 65.41%

Table 27: With Pivoting 1: NDIM=48, NTST=64, NCOL=4, NMX=10

|| Number of Nodes | Execution time | Relative Speed-up | Relative Efficiency ||

16 0.79527E403 1 100%
32 0.43987E+J3 1.81 90.40%
64 0.26383E+403 3.01 75.36%

Table 28: With Pivoting 1: NDIM=48, NTST=128, NCOL=4, NMX=10

| Number of Nodes | Execution time | Relative Speed-up [Relative Efficiency |

32 0.84541E+03 1 100%
64 0.50268E4-03 1.68 84.09%

Table 29: With Pivoting 1: NDIM=48, NT'ST=256, NCOL=4, NMX=10

59

(| Number of Nodes | Execution time | Relative Speed-up | Relative Efficiency ||

2 0.14787E+-04 1 100%
4 0.75186E+-03 1.97 98.34%
8 0.39168E+03 3.78 94.38%
16 0.21482E+-03 6.88 86.04%
32 0.12844E+03 11.51 71.95%

Table 30: With Pivoting 1: NDIM=48, NTST=32, NCOL=4, NMX=10

[Number of Nodes | Execution time | Relative Speed-up | Relative Efficiency ||

16 0.15305E4-04 1 100%
32 0.88878E+03 1.72 86.10%

Table 31: With Pivoting 1: NDIM=96, NTST=32, NCOL=4, NMX=10

[Number of Nodes | Execution time [Relative Speed-up | Relative Efficiency ||
| 64 [0.10121E+04 | 1] 100% 1

Table 2: With Pivoting 1: NDIM=%6, NTST=64, NCOL=4, NMX=10

60

4.3.2 Timing Results Excluding I/O Time

Timing results in this section do not include “I/O time”. The execution time in the
following tables is the first node’s execution time minus the “average I/O time”. We
use formula (30) in Chapter 3 to calculate the the average 1/0O time. The average 1/0
times for all tables in this section are shown in Table 33. For simplicity, we do not
consider work-load difference between different nodes. This also makes the execution
time differ from node to node. The average 1/O times for all tables in this section are

shown in the Table 33 below.

[In Table | Minimum 1/0 time | Maximum I/O time | Average I/O time |

34 1.01 1.88 1.45
35 1.89 3.65 2.77
36 3.72 6.94 5.33
37 1.87 3.83 2.85
38 3.59 7.25 5.42
39 9.53 15.02 12.27
40 1.88 4.09 2.99
41 3.89 7.01 5.45
42 7.09 13.67 10.38
43 13.81 30.23 22.02
44 3.4 7.1 5.25
45 13.47 13.47 13.47

Table 33: With Pivoting: Average I1/O Time

61

| Number of Nodes | Execution time | Speed-up [Efficiency |

1 0.14671E+03 1 1006%

2 0.75432E402 1.94 97.25%
4 0.40516E+4-02 3.62 90.53%
8 0.23467TE402 6.25 78.15%
16 0.15402E-+02 9.53 59.53%
32 0.11069E4-02 13.25 41.42%
64 0.99360E+01 14.77 23.07%

Table 34: With Pivoting 2: NDIM=12, NTST=64, NCOL=4, NMX=10

| Number of Nodes | Execution time [Speed-up | Efficiency |

1 0.29209E4-03 1 100%
2 0.15157E403 1.93 96.35%
4 0.79300E+02 3.68 92.08%
8 0.44094E+02 6.62 82.80%
16 0.31555E+02 9.26 57.85%
32 0.188261:402 15.52 48.49%
64 0.16928E+02 17.25 26.96%

Table 35: With Pivoting 2: NDIM=12, NTST=128, NCOL=4, NMX=10

|| Number of Nodes | Execution time | Relative Speed-up | Relative Efficiency |

2 0.30219E+-03 1 100%

4 0.16109E+ 03 1.88 93.80%
8 0.87893E+4-02 3.44 85.95%
16 0.67042E+02 4.51 56.34%
32 0.39336E+02 7.68 48.01%
64 0.31612E+-02 9.56 29.87%

Table 36: With Pivoting 2: NDIM=12, NTST=256, NCOL=4, NMX=10

{{ Number of Nodes | Execution time | Speed-up | Efficiency ||

1 0.86536E+03 1 100%

2 0.43674E+03 1.98 99.07%
4 0.22546E+-03 3.84 95.95%
8 0.11805E4-03 7.33 91.63%
16 0.6704114-02 12.91 80.67%
32 0.40962E+-02 21.13 66.02%
64 0.30578E4-02 28.30 44.22%

Table 37: With Pivoting 2: NDIM=24, NTST=64, NCOL=4, NMX=10

{ Number of Nodes | Execution time | Relative Speed-up | Relative Efficiency ||

4 0.44720E403 1 100%

16 0.12646E+4-03 3.54 88.41%
32 0.78295E+02 5.71 71.40%
64 0.52076E+02 8.59 53.67%

Table 38: With Pivoting 2: NDIM=24, NTST=128, NCOL=4, NMX=10

{| Number of Nodes | Execution time | Relative Speed-up | Relative Efficiency ||

8 0.46248E+-03 1 100%
32 0.14909E+03 3.10 77.55%
64 0.99850E+02 4.63 57.90%

Table 39: With Pivoting 2: NDIM=24, NTST=256, NCOL=4, NMX=10

63

[Number of Nodes | Execution time | Relative Speed-up | Relative Efficiency ||

2 0.14757E4-04 1 100%
4 0.74887E+403 1.97 98.53%
8 0.38869E+03 3.80 94.91%
16 0.21183E+4-03 6.97 87.08%
32 0.12545E+-03 11.76 73.52%

Table 40: With Pivoting 2: NDIM=48, NTST=32, NCOL=4, NMX=10

[Number of Nodes | Execution time | Relative Speed-up | Relative Efticiency ||

8 0.76609E+-03 1 100%
16 0.40175E4-03 1.91 95.34%
32 0.22363E+-03 3.43 85.64%
64 0.14200E+4-03 5.40 67.44%

Table 41: With Pivoting 2: NDIM=48, NTST=64, NCOL=4, NMX=10

| Number of Nodes | Execution time | Relative Speed-up | Relative Efficiency |

16 0.78489E+03 1 100%
32 0.42949F.+-03 1.83 91.37%
64 0.25345E+4-03 3.10 77.42%

Table 42: With Pivoting 2: NDIM=48, NTST=128, NCOL=4, NMX=10

64

[Number of Nodes | Execution time | Relative Speed-up | Relative Efficiency |

32

0.82339E+-03

1

100%

64

0.48066E+03

1.71

85.65%

Table 43: With Pivoting 2: NDIM=48, NTST=256, NCOL=4, NMX=10

(| Number of Nodes | Execution time | Relative Speed-up | Relative Efficiency ||

16 0.15252E+04 1 100%
32 0.88351E+03 1.73 86.31%

Table 44: With Pivoting 2: NDIM=96, NTST=32, NCOL=4, NMX=10

|| Number of Nodes | Execution time | Relative Speed-up | Relative Efficiency ||
I 64 [0.00863E+03 | 1 I 100% I

Table 45: With Pivoting 2: NDIM=96, NTST=64, NCOL=4, NMX=10

65

Chapter 5

Some Implementation Issues of
AUTO94P

5.1 Introduction

The two sparse linear solvers described in Chapters 3 and 4 were inplemented in
AUTO94P. The initial implementation of AUTO94P was done on the Gamma ma-
chine, an Intel Hypercube machine with 64 Intel iPSC/860 nodes. Thereafter it was
ported to the Delta system, an Intel mesh machine with 512 iPSC/860 nodes. Both
machines are located at Caltech. The Delta has a peak performance of 32 Gflops.
Communication between the processors on both machines is done by message passing.
Communication can be either synchronous (blocking) or asynchronous (nonblocking).
Some of the basic communication primitives on these machines [12, 13] are shown in
Table 46. The detailed hardware configuration for the Intel Touchstone Delta [13] is
shown in Table 47.

66

[Type | Syntax | Description 1
synchronous | csend(Type,Data,Len,Node Pid) send a message and
wait for completion
crecv(Type,Data,Len) receive a message and
wait for completion
asynchronous | Msgld=isend(Type,Data,Len,Node,Pid) | send a message
MsgType=irecv(Type,Data,Len) receive a message
msgdone(Id) determine message
done or not
msgwait(Id) wait for message
to complete
Table 46: Primitives on the Gamma and Delta machines
Hardware:
Console:
80386,387 (16 MHz), 8 MB memory, 380 MB disk
60 MB cartridge tape, 1.2MB floppy, Ethernet
Mesh:
513 computational nodes
39 i/o nodes (80386 16 MHz, 8 MB/node)
i860 (40MHz) 4KB inst. cache
8KB data cache, 2-way set assoc.
16 MB memory/node (cache miss=10 ticks)
64 disk = 90 Gigabytes of total disk-space
2 SCSI disks/node (1.4 GB/disk), 14 Exabyte tapes
12 service nodes (80386 16 MHz, 8 MB/node)
2 Ethernet nodes (80386 16 MHz, 8 MB/node)
4 HIPPI nodes (i860 40 MHz, 32 MB/node)
Software:
UNIX Sys V 3.2, NX/M Rel 1.4
FORTRAN and C from the Portland Group (Release 3.0)
Express from Parasoft, PCN

Table 47: Intel Touchstone Delta Configuration

67

5.2 Node Organization for the Implementation

Assume that the number of nodes is fixed. Each node has a unique identifier, which
is used as an address in the exchange of messages. Tn our implementation, the nodes
are organized as a one dimensional grid. User identification for each node is then a
number p between 0 and P — 1, where P is the number of nodes. We assume that
the number of nodes is a power of 2, because the initial implementation was done on

the Intel Hypercube machine where the number of nodes allocated is always a power
of 2.

5.3 1I/O Strategy of AUTO94P

Since in our case, all nodes share one commeon 1,0 file and because the common file
can be very big for a large size problems, our policy is to let all nodes do the reading
concurrently. Each node has its own file pointer, so that they don't affect cach other.
For writing, we only allow one node to do the operation, simply because we only need
one output file. Here we assigned node py to do all writing. Thus the total execution
time for node po is longer than that of all the other nodes. More precisely, the 1/0
control is as follows. Each node maintains its own file pointer. File access requests
are honored on a first-come, first-served basis. If two nodes write to the same place
in the file, the second node overwrites the data written by the first node. Because the

nodes do not have to communicate with each other, the best performance is obtained.

5.4 Interface Routines of AUT094P

In order to facilitate porting AUTO94 to other systems, a set of interface routines is
provided. The idea is to separate the system dependent primitive calls, so that port-
ing can focus on the interface, assuming organization of the communication scheme is
preserved. In principle, one only needs to concentrate on this set of interface routines.
Depending on the particular multicomputer system, one may need to synthesize some

of the primitives in our implementation. Refer to the appropriate system manual to

68

find out how to do this. A possible simple case is that only the syntax of the primi-

tives needs changes, with little consideration of their semantics. Since multicomputer

systems, especially distributed memory systems, may differ significantly both in ar-
chitecture and in system software, an absolutely isolated interface is hard to provide.
But a least our interface separates the primitives that have to be changed when port-
ing to other systems. Depending on the network structure or the way the processor
elements are connected, the current communication organization may not be the best

suitable to that particular system, and hence the performance may be affected.

69

Chapter 6

Graphical User Interface for
AUTO94

6.1 X Window System

The X Window System is a hardware and operating system independent window
system [58). It was developed jointly by MIT and Digital Equipment Corporation, and
has been adopted by the computer industry as a standard for graphics applications.
X controls a bit-mapped display in which each pixel on the screen is individually
controllable. This allows applications to draw pictures as well as text. The unique
feature of X is that it is based on a network protocol instead of on system-specific
procedure and system calls. This network protocol enables X to be ported to different
computer architectures and operating systems; it also allows programs to run on one
architecture or operating system while display on another. Because of its unique
design, X can make a network of different computers cooperate. For example, a
computationally intensive application might run on a supercomputer, but take input
from and display output on a work station connected across a local area network. To

the user, the application would simply appear to be running on the work station.

70

quationa Ddit Yot o Defian Pun Save

Figure 33: The Graphical User Interface for AUT 094

6.2 Overview of the GUI

The graphical user interface (GUI} of AUTO094 is based on the X window system. It is
written in Motif [58, 59, 61, 62, 67]. The point-and-click access provides the user with
a convenient interface. It has a three dimensional feeling ana is network transparent.
The GUI interface has been tested on SGI and SUN platforms. It should, in principle,
run on any Unix system. For the GUI interface, the LEFT or the FIRST button of
the mouse is used most frequently, the RIGHT or the THIRD button of the mouse is
also used in some cases, however, the MIDDLE or the SECOND button of the mouse
is never used. Unless mentioned otherwise, use the LEFT or the FIRST button of

the mouse. The appearance of the interface is shown in Figure 33.

71

6.3 New Features of AUT094

AUTO9 inherits all capabilities of AUTO86. In addition, it: a) changed the internal
structures, b) eliminated the preprocessor, ¢) reduced the number of user-supplied
subroutines, d) replaced the eigenvalue solver by EISPACK [70], which is included in
the package, and e) repalced the linear solver for ordinary differential equations, the
new li: solver does Gauss elimination with a restricted row and column pivoting,

f) added a graphical user interface which simplified the use of the package.

6.4 Installation

AUTO94 is packed as a tar file called auto.tar.Z. After obtaining the tar file, the
following has to be done:

1. uncompress the tar file by typing

uncompress auto.tar

2. unbundle the tar file by typing

tar xvfo auto.tar

3. compile the package by typing
make sgi
for Silicon Graphics platforms, or
make
for SUN and other platforms

4. remove unnecessary files by typing

make clean

5. set the environment variable AUTODIR by adding
setenv AUTO_DIR $HOME /auto/94

to the .cshrc, assuming auto is the top directory which contains the package.

6. set AUTO aliases for keyboard commands by adding the following to the .cshre
file

72

source $AUTO_DIR/cmds/@auto.alias
Note that these keyboard commands are not used by the GUI interface, they

can be used if X windows are unavailable.

7. remove the tar file by typing

rm auto.tar

The AUTO94 directory tree is shown in Figure 34, where auto is the top directory.
Each directory contains a README file which briefly tells what the directory contains
and what can be done in the directory. Compilation can be done separately in each

directory, when applicable, by typing the command make in that directory.
aTlO
bi%w\m

I¢

rot tim wav

inl_ lin nag opt phs PP2 pp3

Figure 34: The AUTO94 Directory Tree

6.5 Setting Up the X Resources for the GUI

On a color monitor, the graphical user interface can be color configured. On a black
and white monitor, there is no need to set up the X resource file. In this case, the
appearance of the interface will be black and white. Included in the package, are two
X resource files, Xdefaults.! and Xdefaults.2, in directory SAUTODIR/gui. The

simplest way to get a color appearance is to type the command

cp SAUTO_DIR/gui/Xdefaults.1 $HOME/.Xdefaults

73

or

cp SAUTO_DIR/gui/Xdefaults.2 SHOME/.Xdefaults

depending on which color selection one prefers. In addition, one can set up a cus-

tomized .Xdefaults file by editing Xdefaults.1 or Xdefaults.2 to produce various

color appearances of the interface. Color names can be found in the file rgb.trt under
Jusr/lib/X11 on any UNIX system with Motif installed.

6.6 Features of the GUI

The features of the GUI are summarized below:

1.

10.

The entire set of AUTO-constants can be interactively manipulated in a popup
window (the full AUTO-constants panel).

AUTO-constants, according to their purpose, arc also grouped into sub-pancls.
Each of the sub-panels can be interactively manipulated consistently with the
full AUTO-constants panel.

A default AUTO-equations file aut.f and a default AUTO-constants file r.aut

can be loaded by a simple mouse click action.

Automatic or separate loading of a previous AUTO-constants file when an ex-
isting AUTO-equations file is loaded.

An AUTO-equations editor is provided to create or modify the AUTO-equations
file.

. Recompilation of the executable is done only when necessary.

Computational result can be plotted in a popup graphics window.

. Reset restart files interactively.

Interactively inanipulate output data files.

Run AUTO demos by point-and-click access.

74

11. On-line help on all AUTQ-constants, browsing of demos, their help files, and
the full AUTO user manual.

12. On-line activation of the editors xedit and emacs.

13. Terminate any computational run by pressing a Stop button.
14. Network transparency.

15. Ability to port to any UNIX platforms.

16. Convenient clock for timing.

17. Easy installation and setup of the package.

6.7 Functionalities of the Menu Bar

The menu bar of the graphical user interface contains the pull down menus Equa-
tions, Edit, Write, Define, Run, Save, Append, Plot, Files, Demos, Misc
and Help. Some of these contains further sub-pull down menus. All are described

below.

6.7.1 Equations Menu

The Equations pulldown menu contains the menu items Old, New and Default
as shown in Figure 35. Selecting item Old will popup a file selector in which one
can select an existing AUTO-equations file. These are called name.f where name is
the equation name. The corresponding AUTO-constants file, called r.name, will be
loaded automatically if it exists. The AUTO-equations file, when selected, will be
loaded into the AUTO-equations editor for further modification and its r.name file
will be loaded into the AUTO-constants panels described below. Selecting item New
will popup a prompt window in which one is asked to enter the abbreviated name
of the equation. The AUTO-equations file will be saved later as name.f. Selecting
item Default will automatically load the default AUTO-equations file, called aut.f,

75

Figure 36: The Edit Menu

and the corresponding default AUTO-constants file 7.aul. No matter which item one

selects, the equation name will be used as the current name from then on.

6.7.2 Edit Menu

The Edit pulldown menu contains the menu items Cut, Copy and Paste as shown
in Figure 36. Selecting item Cut will delete the highlighted portion of the text, which
is put into a buffer for later pasting. Selecting item Copy will copy the highlighted
porlion of the text into a buffer for pasting. The highlighted portion of the text

76

remains where it is. Selecting item Paste will copy the text in the buffer to the

location where the mouse cursor is pointing to.

YA A NN P N S NP NN N NN AR A NP,

Figure 37: The Write Menu

6.7.3 Write Menu

The Write pulldown menu contains the menu items Write and Write As as shown
in Figure 37. Selecting the item Write will save the AUTO-equations file in the
AUTO-equations editor in the current directory as name.f, where name is the current
equation name. Selecting item Write As will popup a prompt window in which one
needs to enter a new name. Once the new name is entered, the AUTO-equations file
in the AUTO-equations editor will be saved as the new name.f and neme becomes

the equation name.

6.7.4 Define Menu

The Define menu contains no items except itself. It is a cascade button. Pressing
Define will popup the full AUTO-constants panel in which one can manipulate all
AUTO-constants. There are 36 text fields in the full panel as shown in Figure 38.
Each has a label to indicate to which AUTO-constant it corresponds. Most text fields
can be aclivated by pointing the mouse cursor to it and clicking. When activating
the text field for ICP, NUZR, NTHL and NTHU, another separate window will

popup in which one can enter or mnodify certain data. They are shown in Figure 39.

7

[Z2ARIRS]

Figure 38: The Full AUTO-constants Panel

The values of the AUTO-constants JAC, NCOL, ILP, ISP, ISW, IPS and IID
are restricted. To prevent incorrect user choices, their text fields are not editable.
In these cases, one has to press the RIGHT button of the mouse to activate an
asociated popup menu in which a value can be selected by releasing the RIGHT
button of the mouse on it. Figure 40 shows JAC as an example. At the bottom of the
full AUTO-constants panel are four push buttons labeled Ok, Apply, Cancel and
Help. Pressing the Ok button will save the current AUTO-constants in the panel and
popdown the panel. Pressing the Apply button saves the AUTO-constants without
panel popdown. Pressing the Cancel button will popdown the panel. Pressing the
Help button will popup an item selection window in which all AUTO-constants are
selectable. After an item is selected, one can press the Ok button at the hottom of

78

Figure 39: The Popup Windows for UZR, THL, THU and ICP

the selection window to display the requested information. To popdown the window
containing the help information, press the Cancel button. The uk, Apply, Cancel
and Help buttens in the popup windows of ICP, NUZR, NTHL and NTHU have

the same functionalities.

79

O AM
O

Figure 40: The Popup Menu for JAC in the Full AUTO-constants Panel

6.7.5 Run Menu

The Run menu contains no items except itself. It is a cascade button. Pressing Run
will generate the AUTO-constants file as r.name where name is the current name,
and start execution. If the AUTO-equations file has never been compiled or if it
has been modiiied, then compilation will be done first. Before starting execution, the
AUTO-equations file has to be written (Write button) and all AUTO-constants have
to be defined.

80

Figure 41: The Save Menu

6.7.6 Save Menu

The Save pulldown menu contains the two menu items Save and Save As as shown
in Figure 41. Selecting the item Save will save the ATUUTO output files fort.7, fort.8
and fort.9 as p.name, g.name and d.name, respectively, where name is the current
equation name. Selecting the item Save As will popup a prompt window in which
one will be asked to enter a name. After the name is entered, fort.7, fort.8 and fort.9

will be saved as p.name, g.name and d.name, respectively.

T AR AT A A R Y YA AT L

Figure 42: The Append Menu

6.7.7 Append Menu

The Append pulldown menu contains the two menu items Append and Append
to as shown in Figure 42. Selecting the item Append will append the AUTO output

81

Figure 43: The Plot Menu

files fort.7, fort.8 and fort.9 to p.name, g.name and d.name, respectively, where name
is the current equation name. Selecting the item Append to will popup a prompt
window in which one will be asked to enter a name. After the name is entered, fort.?,

fort.8 and fort.9 will be appended to p.name, ¢g.name and d.name, respectively.

6.7.8 Plot Menu

The Plot pulldown menu contains the menu items Plot and Name as shown in
Figure 43. Selecting the item Plot will activate the plotting program PLAUT for
the data files p.name and ¢.name, where name is the current equation name. For
example, Figure 44 shows a diagram for the demo pp2. Selecting the item Name
will popup a prompt window in which one will be asked to enter a name. After the

name is entered, the plotting program PLAUT will be activated for the files p.name
and g.name.

6.7.9 Files Menu

The Files pulldown menu contains the menu items Restart, Copy, Append,
Move, Delete and Clean as shown in Figure 45. Selecting the item Restart will
popup a prompt window in which one will be asked to enter the restart name. For
example, if one enters zzz, then the restart data for the immediately following run
will be read from g¢.zzz. Selecting any one of the items Copy, Append and Move

will popup a prompt window in which one will be asked to enter two names, say.,

82

-0,2§
| L | 1 | | | | I

0.00 0.10 0.20 0,30 0.40 0,50 0.60 0.70 0.80 0.90 1.00

max Ui

3
:
H
H
H
e
3
$
H
g
%
3
3
3
H
3
:
:
:
;
H
3
§
§
3
¢
H
H
i
$

Figure 44: The Diagram for pp2.f

83

Figure 45: The Files Menu

namel in the left text field and name2 in the right text field, as shown in Figure 46.
For convenience, the current name is always displayed as name! in the left text field.
This current default name can be changed. Once name! and name2 are entered, the
AUTO data files p.namel, g.namel and d.namel will be copied, appended or moved
to p.name2, q.name2 and d.name?2, respectively. The AUTO-constants file r.namel
will be also copied or moved to r.name2 for Copy or Move, respectively. Selecting
the item Delete will popup a prompt window in which one can enter the name of
the AUTO data files to be deleted. Once name is entered, p.name, q.name and
d.name will be deleted. Selecting the item Clean will clean the current directory.

More specifically, the files *.0, fort.* and *.eze will be deleted.

6.7.10 Demos Menu

The Demos pulldown menu contains two menu items as shown in Figure 47, namely
Select and Reset. Selecting the item Select will popup a selection window in which
one can select one of the demos. After selection, one can either run or browse the
selected demo by pressing the Run or Browse button at the bottom of the selection
window. Pressing the Browse button will popup a window in which the source code
of the selected demo can be paged. On-line help for each of the demos is given by
pressing the Help button.

84

Tonce

A AR AN PO i A NP AN 8 SRS - AN P NP,

Figure 46: The Popup Windows for Copy, Append and Move

85

Y i Lt ALV VE S EEVR)

{;
1

3 v
P (P ARPPAPPAP NP PRAN NP PARARANIAS G

Figure 47: The Demos Menu

Cquetinnc By Rt Bedoae hoo Seve Apprad Dot Fles Droes '_le"

ok

Figure 48: The Misc Menu

6.7.11 Misc Memu

The Misc pulldown menu contains the menu items Tek Window, VT102 Window,
Emacs, Xedit and Print as shown in Figure 48. The items Emacs and Xedit con-
tain sub-menus New and Open. Selecting Tek Window or VT'102 Window will
popup a Tektronix window or VT102 window, respectively. The Tektronix window
can be used to run the AUTO plotting program PLAUT which requires a Tektronix
window, the VT102 window can be used to issue commands or invoke the vi editor.
Emacs and Xedit can be selected to invoke emacs and rzedit, respectively. One
can either edit a new file or an existing file by selecting the New or Open item in

86

the sub-menus. Selecting the item Print will send the AUTO-equations file in the
current AUTO-equations editor to the printer connected to the syst: The printing
command is defined in the header file GuiConsts.h under $AUTO_UVIR /include di-
rectory. This printing command may need to be changed for different systems. Files
other than the AUTO-equations file in the current AUTO-equations editor can not
be printed by selecting this Print item.

Figure 49: The Help Menu

6.7.12 Help Menu

The Help pulldown menu contains the menu items Parameters and User Manual
as shown in Figure 49. Selecting Parameters will popup on-line help on AUTO-
constants as already described in section 6.7.4. Selecting User Manual will allow
the user to page through the AUT(094 user manual.

6.8 Functionalities of Other Buttons

On the main layout of the graphical user interface, there are a number of other push
buttons in addition to those on the menu bar, namely, Problem, Discretize, Tol-
erances, Step Size, Limits, Parameters, Computation, Output, Previous,
Default, Stop and Exit. In addition, there is an equation editor in which the

87

AUTO-equations file name.f can be edited. Their description follows below.

6.8.1 The Equation Editor

The equation editor is a full screen editor for editing the AUTO-equations name.f,
the user-file containing the Fortran subroutines that define the equations. One can
use the mouse to move the cursor around. Text in the editor can be paged up or down
by pressing the key <PageUp> or <PageDown>, respectively. There are two scroll
bars for the editor, namely, the vertical and the horizontal one. One can use them to
scroll the text in the editor. Any portion of the text in the editor can be highlighted
by positioning the mouse cursor at the beginning of the text and dragging the mouse
to the end of the text while holding the LEFT mouse button. Text highlighted can

be cut, copied or pasted by selecting one of the items in the Edit pulldown menu on

the menu bar. In addition, the highlighted portion of the text can be cut or inserted

by pressing the <Delete> or <Insert> key.

TNDIH

ARG ARAAR A AAA A AT AR AN VAR S AN AR A A S AN A S ANV ANAA AL AR A S

Figure 50: The Problem Window

6.8.2 Problem Button

Pressing the Problem button will display the popup window shown in Figure 50, in
which the AUTO-constants NDIM, NBC, NINT and JAC can be manipulated.

88

Pressing the Problem button by using the RIGHT button of the mouse will display
a popup menu which shows what AUTO-constants can be modified by the popup
window. The functionalities of the popup window are similar to that of the full
AUTO-constants panel described in section 6.7.4, except that the current popup
window can only manipulate AUTO-constants NDIM, NBC, NINT and JAC.

Figure 51: The Discretize Window

6.8.3 Discretize Button

Pressing the Discretize button will display the popup window shown in Figure 51, in
which the AUTO-constants NTST, NCOL and IAD can be manipulated. Pressing
the Discretize button by using the RIGHT button of the mouse will display a popup
menu which shows what AUT O-constants can be modified by the popup window. The
functionalities of the popup window are similar to that of the full AUTO-constants

panel described in section 6.7.4, except that the current popup window can only

manipulate the AUTO-constants NTST, NCOL and IAD.

6.8.4 Tolerances Button

Pressing the Tolerances button will display the popup window shown in Figure 52,
in which the AUT'O-constants EPSL, EPSU, EPSS, ITMX, NWTN and ITNW
can be manipulated. Pressing the Tolerances button by using the RIGHT button

of the mouse will display a popup menu which shows what AUTO-constants can be

89

Figure 52: The Tolerances Window

modified by the popup window. The functionalities of the popup window are similar
to that of the full AUTO-constants panel described in section 6.7.4, except that the
current popup window can only manipulate the AUTO-constants EPSL, EPSU,
EPSS, ITMX, NWTN and ITNW.

Figure 53: The Step Size Window

6.8.5 Step Size Button

Pressing the Step Size button will display the popup window shown in Figure 53, in
which the AUTO-constants DS, DSMIN, DSMAX, IADS, NTHL and NTHU

90

can be manipulated. Pressing the Step Size button by using the RIGHT button
of the mouse will display a popup menu which shows what AUTO-constants can be
modified by the popup window. The functionalities of the popup window are similar
to that of the full AUTO-constants panel described in section 6.7.4, except that
the current popup window can only manipulate the AUTO-constants DS, DSMIN,
DSMAX, TADS, NTHL and NTHU.

E
%
|

1

Figure 54: The Limits Window

6.8.6 Limits Button

Pressing the Limits button will display the popup window shown in Figure 54, in
which the AUTO-constants NMX, RLO, RL1, A0 and A1l can be manipulated.
Pressing the Limits button by using the RIGHT button of the mouse will display
a popup menu which shows what AUTO-constants can be modified by the popup
window. The functionalities of the popup window are similar to that of the full
AUTO-constants panel described in section 6.7.4, except that the current popup
window can only manipulate the AUTO-constants NMX, RLO, RL1, A0 and A1.

91

Figure 55: The Parameter Window

6.8.7 Parameters Button

Pressing the Parameters button will display the popup window shown in Figure 55,
in which the AUTO-constants NICP and ICP can be manipulated. Pressing the
Parameters button by using the RIGHT button of the mouse will display a popup
menu which shows what AUTO-constants can be modified by the popup window. The
functionalities of the popup window are similar to that of the full AUTO-constants
panel described in section 6.7.4, except that the current popup window can only
manipulate the AUTO-constants NICP and ICP.

6.8.8 Computation Button

Pressing the Computation button will display the popup window shown in Figure
56, in which the AUTO-constants ILP, ISP, ISW, MXBF, IRS and IPS can be
manipulated. Pressing the Computation button by using the RIGHT button of the
mouse will display a popup menu which shows what AUTO-constants can be modified
by the popup window. The functionalities of the popup window are similar to that
of the full AUTO-constants panel described in section 6.7.4, except that the current
popup window can only manipulate the AUTO-constants ILP, ISP, ISW, MXBF,
IRS and IPS.

92

Figure 56: The Computation Window

6.8.9 Output Button

Pressing the Output button will display the popup window shown in Figure 57,
in which the AUTO-constants NPR, IID, IPLT and NUZR can be manipulated.
Pressing the Output button by using the RIGHT button of the mouse will display
a popup menu which shows what AUTO-constants can be modified by the popup
window. The functionalities of the popup window are sirnilar to that of the full
AUTO-constants panel described in section 6.7.4, except that the current popup
window can only manipulate the AUTO-constants NPR, IID, IPLT and NUZR.

6.8.10 Previous Button

Pressing the Previous button will popup a file selector in which one can select any
existing AUTO-constants file (r.name). The selected file will be loaded in all panel

windows that manipulate AUTO-constants.

6.8.11 Default Button

The functionality of the Default button is similar to that of the Previous button,
except that in this case, the default AUTO-constants file r.aut is loaded.

93

Figure 57: The Output Window

6.8.12 Stop Button

Pressing the Stop button will terminate the execution of the running program.

6.8.13 Exit Button

Pressing the Exit button will popup a question window with a Yes or No choice for
exiting from AUTO%.

6.9 Demos

In the Demos pulldown menu on the menu bar, pressing the item Select will popup
a demo selector window. After selecting, for example, ezp.f, press the Run button

to execute all runs of the demo ezp. The screen output is

£77 -0 -c exp.f
£77 -0 exp.o -0 exp ../../lib/*.0
Demo exp.f is started
exp.f : first run
BR PT TY LAB PAR(1) L2-NORM MAX U(1) MAX U(2)

94

1 1 EP 1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
1 9 UZ 2 9.999996E-01 3.388826E-01 1.404988E-01 5.493525E-01
1 12 UZ 3 3.000000E+00 1.521270E+00 6.401164E-01 2.319603E+00
1 14 LP 4 3.513831E+00 2.781940E+00 1.186263E+00 4.000000E+00
1 16 UZ 5 3.000000E+00 4.554630E+00 1.975141E+00 6.103383E+00
1 22 UZ 6 9.999999E-01 9.157868E+00 4.089818BE+00 1.084694E+01
1 S50 EP 7 2.239591E-05 3.677775E+01 1.723320E+01 3.720814E+01

TOTAL TIME 0.751E+01
exp.f : second run
BR PT TY LAB PAR(1) L2-NORM MAX U(1) MAX U(2)
1 G560 EP 8 1.191140E-22 1.245716E+02 §5.939144E+01 1.215573E+02
TOTAL TIME 0.192E+02

Demo exp.f is done

After execution, one can clean the selected demo by selecting the Reset item in the
Demos pulldown menu in the menu bar. This will reset the selected demo to its

original state. One can run the other demos similarly.

6.10 Restrictions on NICP, NUZR, NTHL and
NTHU

AUTO94 has modifiable maximum values NDIMX, NCOLX, NTSTX, NBCX,
NINTX, NPARX, NBIFX and NUZRX. for the AUTO-constants NDIM, NCOL,
NTST, NBC, NINT, NPAR, NBIF and NUZR, respectively. These maximum
values are defined in the header file auto.h under directory $AUTO_DIR/include. To
change these maxima one should edit the file auto.h and recompile AUTO094. In ad-
dition to the above, the graphical user interface of AUTO94 independently has mod-
ifiable maximum values for the display of AUTO-constants NICP, NUZR, NTHL
and NTHU. These maxima are defined by constants MAX_NICP. MAX_NUZR,
MAX_NTHL and MAX_NTHU in the header file GuiConsts.h under directory
$AUTO-DIR/include. The default maximum value is 10. To change this, one should

95

edit the file GuiConsts.h and recompile AUTO9%4. In some application, the value
of NICP, NUZR, NTHL or NTHU may be large than can be accommodated in
the corresponding display windows. In such a case it is recommonded that the user
A'vactly enter these values in the AUTO-constants file r.name, rather than by using

the graphical user interface.

6.11 Keyboard Commands

A set of keyboard commands is also provided for terminals on which X windows are
not available. These commands are defined in the file @auto.alias under the directory
$AUTO_DIR/cmds. Their functionalities are described below. It is assumed that the
working directory contains an AUTOQ-equations file, here pp2.f, and a corresponding

AUTO-constants file, here r.pp2. These commands are described below.

@r - used to run AUTO94. For example, to run pp2.f with AUTO-constants file
r.pp2 and restart data file q.pp2 if needed, type
Q@r pp2
- to run pp2.f with AUTO-constants file r.pp2 and restart data file g.zzz, type
@r pp2 xxx
- to run pp2.f with AUTO-constants file r.yyy and restart data file g.zzz, type

@r pp2 xxx yyy

@sv - used to save the AUTO output data files fort.7, fort.8 and fort.9. For example,
to save the output data files of pp2.f, one can type the command
@sv pp2
This will save fort.?, fort.8 and fort.9 as p.pp2, q.pp2 and d.pp2, respectively.

@ap - used to append the latest AUTO output files fort.7, fort.8 and fort.9 to pre-
viously saved outputs, respectively. For example, to append the latest output
files of pp2.f to previous output, one can type the command
@ap pp2
This will append fort.7, fort.8 and fort.9 to p.pp2, q.pp2 and d.pp2, respec-
tively.

96

- to append the existing output data files p.tmp,q.tmp,d.tmp, to p.pp2,q.pp2.d.pp2,
respectively, type
@ap tmp pp2

@p - used to plot the output files. For example, to plot the contents of the output
data files p.pp2 and ¢.pp2, type the command
@p pp2
- to plot fort.7 and fort.8, type
@p

@cp - used to copy output data and AUTO-constants files. For example, to copy
from pp2 to tmp, one can type the command
Q@cp pp2 tmp
This will copy p.pp2, ¢.pp2, d.pp2 and r.pp2 to p.tmp, ¢.tmp, d.tmp and r.tmp,

respectively.

@mv - used to rename previously saved output and AUTO-constants files. For ex-
ample, to rename pp2 to tmp, type the command
@mv pp2 tmp
This will rename p.pp2, q.pp2, d.pp2 and r.pp2 to p.tmp, q.tmp, d.tmp and

r.tmp, respectively.

@d]l - used to delete saved output files. For example, to delete the output files pp2,
type the command
@dl pp2

This will delete p.pp2, ¢q.pp2 and d.pp2, respectively.
@df -used to delete fort.* files.

@cl] - used to clean object, executable and Fortran output files. The command @cl

will delete *.0, *.eze and fort.*.

@dm - used to copy AUTO demo files to the current directory, for example, type
@Qdm pp2

97

to copy pp2.f and r.pp2.* from the AUTO demo directory to the current di-

rectory.

6.12 Updating the On-line Help

All on-line help for the AUTO-constants and demos are defined in the header file
GuiGlobal.h under directory $AUTO_DIR/include. These help messages can be up-
dated. The graphical user interface has a modifiable maximum length for the help
message. For Silicon Graphic platforms, the maximum message length is set to 10k or
10240 bytes. To change the maximum message length, for example, from 10k to 20k,
one can simply replace the following line in the Makefile under $4UTO_DIR/gui
CC = cc -Wif,-XNI110240 -O
by
CC = cc -Wi,-XNI]20480 -O
For other platforms, the maximum message length is restricted to the system defined

maximum string literal length.

98

Chapter 7

Concluding Remarks

In this thesis, we studied two parallel algorithms for sparse linear systems in direct
connection with AUTO94P. We stressed the communication schemes of these parallel
algorithms. We also discussed some implementation issues. These two sparse linear
algorithms were implemented in AUTO94P. More precisely, the condensation of pa-
rameters and its associated backsubstitution algorithms are almost fully parallelized,
the nested dissection and its associated backsubstitution algorithms are implemented
by recursive doubling procedures, and the relatively small system after nested dis-
section is solved sequentially. The parallel performance of AUTO094P is mainly de-
termined by the algorithms for sparse linear systems. More precisely, the efficiency
of AUTQ94P increases as the dimension of the system increases, because when the
size of the problem is big, the condensation of parameters algorithm dominates the
total computation time, while the communication time remains relatively small. The
parallel performance of AUTO94P also increases as the number of mesh or colloca-
tion points increases, since the number of mesh or collocation points determines the
degree of parallelism or the granularity of the package. The performance of AUT094
slowly decreases as the total number of computational nodes increases, because the
nested dissection and its associated backsubstitution processes in the sparse solver

are implemented by recursive doubling procedures, so that the number of messages

99

in the communication is logarithmically increasing as one increases the number of
computational nodes. AUTQ94P has been implemented on some distributed mem-
ory systems. Since the total necessary memory is distributed over many processors,
one can investigate much bigger size problems than before in an efficient way. The
numerical results obtained on the Intel Delta support the above conclusion. For a 24
dimensional system of ordinary differential equations with 64 mesh points and 4 col-
location points, the efficiency of AUTO94P is 80.67% for 16 nodes and 66.02% for 32
nodes on the Delta. To further enhance the parallel performance of AUTG94P, future
work could aim at the scalability of the nested dissection process and its associated
backsubstitution process, as this is one of the major factors that slowly decreases
the parallel performance of AUTO94P. Other work could include optimizing memory
management, I/O enhancement, pipelining and parallelizing the less critical parts of
the package. The graphical user interface (GUI) of AUTQ94 simplifies the use of
the package. It provides the users with a convenient computational environment, in
particular, it allows the users to run AUTO94 on a powerful remote machine and
displays the results on a local workstation. Further developement of the GUI could

aim at 3D visualization of numerical results.

100

References

(1] U. Ascher, J. Christiansen, and R. D. Russell. “Collocation software for boundary
value ODE’s”. ACM TOMS, 7(2):209 pages, 1981.

[2] U. Ascher, R. M. M. Mattheij, and R. D. Russell. Numerical Solution of Bound-
ary Value Problems for Ordinary Differential Equations. Prentice Hall, Engle-
wood Cliffs, NJ, 1988.

[3] U. Ascher and R. D. Russell. “Reformulation of boundary value problems into
standard form”. SIAM Review, 23(2):238-254, 1981.

[4] J. Browne, J. Dongarra, A. Karp, K. Kennedy, and D. Kuck. “1988 Gordon Bell
Prize”. IEEFE Software, 6:78-85, May 1989.

[5] R. Bulirsch, J. Stoer, and P. Deuflhard. “Numerical Solntion of Nonlinear Two
Point Boundary Value Problems”. Numer. Math. Handbook Series Approz., 1976.

[6] D. Calahan. “Complexity of Vectorized Solution of Two Dimensional Finite
Element Grids”. Technical Report Systems Engineering Laboratory Report 91,
Univ. Michigan, Ann Arbor, 1975.

[7] R. M. Chamberlain. “An Alternative View of LU Factorization with Partial

Pivoting on a Hypercube Multiprocessor”. In M. T. Heath, editor, Hypercube
Processors. SIAM, Philadelphia, PA, 1987.

[8] K. Mani Chandy and Car! Kesselman. “Compositional C++: Compositional
Parallel Programming”. Technical Report Caltech-CS-TR-92-13, California In-
stitute of Technology, Pasadena, CA 91125, July 1992.

101

[9] K. Mani Chandy and J. Misra. Parallel Program Design, A Foundation. Addison
Wesley, 1988.

[10] K. Mani Chandy and Stephen Taylor. An Introduction to Parallel Programming.
California Institute of Technology, 1992.

[11] E. Chu and J. A. George. “Gaussian Elimination with Partial Pivoting and Load
Balancing on a Multiprocessor”. Parallel Computing, 5:65-74, 1987.

[12] Intel Corporation. “Touchstone Delta Fortran System Calls Reference Manual”.

Technical report, Intel Corporation, 1991.

[13] Intel Corporation. “Touchstone Delta System User’s Guide”. Technical report,
Intel Corporation, 1991.

[14] Germund Dahlquist and Ake Bjorck. Numerical Methods. Prentice-hall, Inc,
Englewood Cliffs, New Jersey, 1974.

[15] D.Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Prentice Hall, Englewood Cliffs, 1989.

[16] Eric F. Van de Velde. “Experiments with Multicomputer LU-Decomposition”.
Technical Report CRPC-89-1, California Institute of Technology, Pasadena, CA
91125, April 1989.

[17] Eric F. Van de Velde. “Multicomputer Matrix Computations: Theory and
Practice”. Technical Report CRPC-89-2, California Institute of Technology,
Pasadena, CA 91125, March 1989.

[18] Eric F. Van de Velde. Introduction to Concurrent Scientific Computing. Califor-
nia Institute of Technology, DRAFT, 1992.

(19] Henk A. Van der Vorst and Paul van Dooren. Parallel Algorithms for Numer:-
cal Linear Algebra (Volume I). North-Holland, Amsterdam,New York, Oxford,
Tokyo, 1990.

102

[20] E. J. Doedel. “AUTO: A Program for the Automatic Bifurcation Analysis of
Autonomous Systems”. Proc. 10th Manitoba Conf. On Num. Math. and Comp.,
pages 265-284, 1980.

[21] E. J. Doedel. “AUTO: Software for Continuation and Bifurcation Problems
in Ordinary Differential Equations”. Technical report, Applied Mathematics,
California Institute of Technology, Pasadena, CA 91125, May 1986.

[22] E. J. Doedel, H. B. Keller, and J. P. Kernévez. “Numerical Analysis and Control
Of Bifurcation Problems, Part I". Int. J. Bifurcation and Chaos, 3:493-520,
1991.

[23] E. J. Doedel, H. B. Keller, and J. P. Kernévez. “Numerical Analysis and Control
Of Bifurcation Problems, Part II". Int. J. Bifurcation and Chaos, 4:745-772,
1991.

[24] J. J. Dongarra and L. Johnson. “Solving Banded Systems on a Parallel Proces-
sor”. Parallel Computing, North-Holland, 5:219-246, 1987.

[25] J. J. Dongarra and A. H. Sameh. “On Some Parallel Banded System Solvers”.
Parallel Computing, North-Holland, 1:223-235, 1984.

[26) Omer Egecioglu, Cetin K. Koc, and Alan J. Laub. “A Recursive Doubling Al-
gorithm for Solution of Tridiagonal Systems on Hypercube Multiprocessors”.
Journal of Computational and Applied Mathematics, 27:95-108, 1989.

[27] K. Fong and T. Jordan. “Some Linear Algebraic Algorithms and Their Per-
formance on the CRAY-1". Technical Report LA-6774, Los Alamos National
Laboratory, Los Alamos, NM, 1977.

[28] Ian Foster and Steven Tuecke. “Parallel Programming with PCN”. Technical Re-
port ANL-91/32, Argonne National Laboratory, Argonne, IL 60439, September
1991.

103

[29] Ian T. Foster and K. Mani Chandy. “FORTRAN M: A Language for Modular
Parallel Programming”. Technical Report Preprint MCS-P327-0992, Argonne
National Laborary, Argonne, IL 60439, June 1992.

[30] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W.

Walker. Solving Problems on Concurrent Processors. Prentice Hall, 1988.

[31] K. Gallivan, R. Plemmons, and A. Sameh. “Parallel Algorithms for Dense Linear
Algebra Computations”. SIAM Review, 32:54-135, 1990.

[32] D. Gannon. “A Note on Pipelining a Mesh-connected Multiprocessor for Finite
Element Problem by Nested Dissection”. 1980 Int. Conf. Par. Proc., pages 197-
204, 1980.

[33] G. A. Geist and M. T. Heath. “Matrix Factorization on a Hypercube Multipro-
cessor”. In M. T. Heath, editor, Hypercube Processors. SIAM, Philadelphia, PA,
1986.

[34] G. A. Geist and C. H. Romine. “LU Factorization Algorithms on Distributed
Memory Multiprocessor Architectures”. SIAM Journal on Scientific and Statis-
tical Computing, 9(4):639-649, 1988.

[35] W. Gentleman. “Error Analysis of the QR Decomposition by Givens Transfor-
mations”. Lin. Alg. Appl., 10:189-197. 1975.

[36] A. George. “Nested Dissection of a Regular Finite Element Mesh”. SIAM J.
Numer. Anal., 10:345-363, 1973.

[37] A. George and J. W. H. Liu. “An Automatic Nested Dissection Algorithm for
Irregular Finite Element Problems”. SIAM J. Numer. Anal., 15:1053-1069, 1978.

[38] A. George and J. W. H. Liu. “The Evolution of the Minimum Degree Ordering
Algorithm”. SIAM Review, 31:1-19, 1989.

[39] A. George, W. Poole, and R. Voigt. “Analysis of dissection algorithms for vector
computers”. Comput. Math. Appl., 4:287-304, 1978.

104

[40] Alan George, Michael Heath, Joseph Liu, and Esmond Ng. “Solution of Sparse
Positive Definite Systems on a Hypercube”. Journal of Computational and Ap-
plied Mathematics, 27:129-156, 1989.

[41] G. H. Golub and C. F. Van Loan. Matriz Computation. Johns Hopkins Baltimore,
MD, 1983.

[42] Anshul Gupta and Vipin Kumar. “Scalability of Parallel Algorithms for Matrix
Multiplication”. Technical Report Technical Report TR 91-54, Department of
Computer Science, University of Minnesota, Minneapolis, MN 55455, November
1991.

[43] Michael T. Heath, Esmond Ng, and Barry W. Peyton. “Parallel Algorithms for
Sparse Linear Systems”. SIAM Review, 33(3):420-460, 1991.

[44] D. Heller. “A Survey of Parallel Algorithms in Numerical Linear Algebra”. SIAM
Review, 20:740-777, 1978.

[45] Jorn Hofhaus and Eric F. Van de Velde. “Multicomputer Programs for Solving
a Large Number of Block Tridiagonal Systems”. to appear.

[46] Fritz John. Partial differential equations (4th edition). Springer-Verlag, New
York, Heidelberg, Berlin, 1982.

[47] H. B. Keller. “Numerical solution of bifurcation and nonlinear eigenvalue prob-
lems”. In Applications of Bifurcation Theory, pages 359--384. Academic Press,
New York, N.Y., 1977. P. H. Rabinowitz, ed., Mathematics Research Center
Publication 8.

[48] Herbert B. Keller. “Domain Decomposition for Two-point Boundary Value
Problems”. Technical Report CRPC-90-7, California Institute of Technology,
Pasadena, CA 91125, August 1990.

[49] Ken Kennedy. “Center for Research on Parallel Computation: An Introduction”.

Parallel Computing Research, 1:1-6, January 1993.

105

[50) M. Kubiéek and M. Marek. Computational Methods in Bifurcation Theory and
Dissipative Structures. Springer Verlag, 1983.

[61] S. Kumar and J. Kowalik. “Parallel Factorization of a Positive Definite Matrix
on MIMD Computers”. 1984 Int. Conf. Par. Proc., pages 410-416, 1984.

[52] J. Lambiotte. “The Solution of Linear System of Equations on a Vector Com-
puter”. PhD thesis, Univ. Virginia, Charlottesville, Viginia, 1975.

[63] F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures:
Arrays. Trees . Hypercubes. Morgan Kaufmann Publishers, San Mateo, Califor-
nia, 1992.

[54] M. Lentini and V. Pereyra. “’An Adaptive Finite Difference Solver for Nonlinear
Two Point Boundary Problems with Mild Boundary Layers’. SIAM J. Numer.
Anal., 14, 1977.

[55] J. W. H. Liu. “Modification of the Minimum Degree Algorithm by Multiple
Elimination”. ACM Trans. Math. Software, 11:141-153, 1985.

[56] C. B. Moler. “Matrix Computation on a Hypercube Multiprocessor”. In M. T.
Heath, editor, Hypercube Processors. SIAM, Philadelphia, PA, 1986.

[57) Mo Mu and J. R. Rice. “A Grid-based subtree-subcube assignment strategy
for solving partial differential equations on hypercubes”. SIAM J. Sci. Stat.
Comput., 13(3):826-839, May 1992.

[58] Adrian Nye and Tim O’Reilly. X Volume 4: X Toolkit Intrinsics Programming
Manual. O’Reilly & Associates Inc, 1990.

[59] Adrian Nye and Tim O'Reilly. X Volume 6: Motif Programming Manual.
O’Reilly & Associates Inc, 1993.

[60] James M. Ortega and Robert G. Voigt. “Solution of Parallel Differential Equa-
tions on Vector and Parallel Computers”. SIAM Review, 27(2):149-237, 1985.

[61) OSF. OSF/Motif: Programmer’s Guide. Open Software Foundation, 1991.

106

(62]

[63]

[64]

[65]

[66]

[67]

[68)

[69]

(70]

OSF. OSF/Motif: Programmer’s Reference. Open Software Foundation, 1991,

Marcin Paprzyck and lan Gladwell. “Solving Almost Block Diagonal Systems
on Parallel Computers”. Parallel Computing, North-Holland, 17:133-153, 1991.

Marcin Paprzycki. “A Parallel Chopping Algorithm for ODE Boundary Value
Problems”. To appear.

V. Pereyra. “Deferred Corrections Software and its Application to Seismic Ray
Tracing”. In K. Bohmer and H. Stetter, editors, Defect Correction Methods,
volume 5, pages 211-226. Computing Suppl., 1984.

D. Rose. “A Graph Theoretic Study of the Numerical Solution of Sparse Positive
Definite Systems of Linear Equations”. In R. C. Read, editor, Graph Theory and
Computing, pages 183-217. Academic Press, New York, 1972.

Rand J. Rost. X and Motif Quick Reference Guide. Digital Press, 1990.

A. Sameh and D. Kuck. “On Stable Parallel Linear System Solvers”. J. ACM,
25:81-91, 1978.

Charles L. Seitz, Jakov Seizovic, and Wen-King Su. “The C Programmer’s Ab-
breviated Guide to Multicomputer Programming”. Technical Report Caltech-
CS-TR-88-1, California Institute of Technology, Pasadena, CA 91125, January
1989.

B. Smith, J. Boyle, J. Dongarra, B. Garbow, Y. lkebe, Klema, and C. Moler.
“Matrix Eigensystem Routines: EISPACK Guide”. Technical report, Springer-
Verlag, 1976. Lecture Notes in Computer Science 6.

107

