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ABSTRACT

Parametric Study of

Rotor-Bearing-Pedestal System
Using
Component Mode Synthesis

Aliakbar Amini

The thesis is concerned with a study on the dynamic
response of rotors supported on flexible pedestals. After a
brief rev.ew of the current literature, the component mode
synthesis method is selected as the appropriate method for
studying the response of the rotor-bearing-pedestal systen.
To enable this study, a computer program SETSA is developed.
The accuracy of the results obtained by the program is
established with respect to standard examples. The computer
program is then employed to perform a parametric study of
the influence of pedestal stiffness on the rotor dynamic
response. Some useful conclusions are obtained from the

study and suggestions for future research are indicated.
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CHAPTER 1

INTRODUCTION

1.1 General Objective

Whenever power is transmitted from one point to
another, for example, in industrial machines such as steam
and gas turbines, turbo-generators, internal combustion
engines, compressors, transmissions, etc., rotating shafts
are used. Flexible rotors are generally composed of
concentrated masses such as disks, impellers, rotor segments
with distributed mass and elasticity and bearings. Generally
ball, roller, or journal bearings are used. High speed heavy
rotor systems such as generator rotors are normally

supported on fluid film bearings.

Fluid film bearings commonly used in heavy rotating
machines are in fact nonlinear in their mechanical behavior.
Since the rotors operate well beyond their critical speed
regions, the response behavior of the rotors can be
predicted using a linear model. It is, therefore, reasonable
to consider linear models of the bearing supports to analyze

the rotor-bearing behavior.

Due to the increasing demand for improved performance
of high speed rotating machinery in various fields such as

those used in process equipment, auxiliary power machinery,



helicopter technology and nuclear applications, the engineer
is faced with the problem of designing a unit capable of
smooth operation under various conditions of speed and load.
In many of these applications of rotor-bearing systenms,
achieving an acceptable performance with stable, low level
amplitude of vibration is extremely difficult. Therefore
while designing a rotor-bearing system, several aspects such
as critical speeds, peak unbalanced response, regions of
change in whirl directions, and instability must be

considered.

The bearing support has a significant effect on the
behavior of the system. A support model is complete if it
includes such pedestal properties as mass, stiffness and
damping. An analysis technique which can appropriately
include all these factors 1is, therefore, an essential

component of rotor design.

Finite element techniques are convenient and widely
used to model complex rotor-bearing systems consisting of
several disks, impellers or mechanical couplings. The finite
element method may need a large number of degrees of freedom
and require the solution of a large order set of 1linear
equations. In addition to this, the solution of these
equations may require the use of time consuming algorithms
which may not be economically feasible. There exist a few
reduction methods such as Guyan reduction, modal

condensation, and component mode synthesis (CMS) by which
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the size of the system matrices can be reduced. In this
thesis the component mode synthesis reduction method is
adopted. This technique permits significant reduction in the
size of the overall system problem while retaining the

essential dynamic characteristics of the structure.

The objective of the present investigation is primarily
to develop an efficient and economical method to obtain
certain characteristics describing the dynamic response of
rotor-bearing-pedestal system based on component mode
synthesis reduction technique. Employing this procedure the
size of the matrices for the state variables can be consi-
derably reduced without affecting the dynamic characteristic
of the system response. The focus of this study is directed
towards the development of the digital computer program
SETSA to perform such an analysis for rotor-bearing-pedestal
system based on component mode synthesis. The program SETSA
is formulated to provide a quick evaluation of the natural
frequencies of the system. Finally the computer program
SETSA is employed to perform a detailed parametric study of
a number of system properties of the rotor-bearing-pedestal
arrangement. The thesis is also examines the effect of
truncation of modes of different orders on the accuracy of

the solution through specific examples.

1.2 Literature Review
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Dynamic analysis of rotor-bearing system analysis began
in early 1919 with the pioneering work by Jeffcotte [1], an
English physicist who provided a clear analysis for a
particular simple idealization of flexible rotors. He was
the first person who successfully explained the whirling
phenomena which is probably the most important common type
of vibration in rotating shafts caused by unbalance. The

resulting equations of motion were solved by direct method.

In 1945 Prohl [2] extended this method and presented
the first calculation of synchronous whirling of complex
shafts consisting of variable shaft sections with multiple
disks. Prohl’s method, which is sometimes referred to as the
Myklestad-Prohl method, is still considered as one of the
best in the general class of transfer matrix method and also
one the most practical and widely used solution schemes for

today’s complex rotor-bearing systems.

Lemke and Trumpler [3] used Prohl'’s rotor to
demonstrate the significant effect of coupling on the
response characteristics of the rotor set. Bishop and
Parkinson [4]) provided a comprehensive review of flexible-~
rotor analysis based on Jeffcotte’s formulation with an

emphasis on flexible-rotor balancing.

Modal analysis 1is another solution procedure which is
widely used today to study the behavior of rotor-bearing

systems. Lund [5] used biorthogonality relation to study the




dynamics of flexible rotors in fluid film bearing. Bhat,
Subbiah and Sankar [6] applied modal analysis to determine
the dynamic response of the rotor supported on dissimilar
hydrodynamic bearings. The dissimilarity occurred due to

different clearances and different loads on the bearing.

Finite element method is also a convenient technique to
model complex rotor-bearing systems, which may consist of
several disks, impellers or mechanical couplings, etc. Ruhl
and Brooker [7] used finite element method to evaluate the
“vnanic characteristics of the rotor. Their approach was
based on the consistent mass formulation of Archer (8] which
provides for a more accurate modeling with less degrees of

freedom.

Nelson and McVaugh [9] included the effect of rotary
inertia, gyroscopic moments, and axial load to Ruhl’s finite
element model to calculate the natural whirl speeds and
unbalance response of a typical overhung system. They also
presented a coordinate reduction procedure to model elements
with variable cross-section properties. In addition, the
finite element equation of motion is presented in both fixed

and rotating reference frames.

Subsequent studies [10,11,12] included the effects of
internal damping, axial torque, hysteresis damping, etc., in
modeling the rotor-bearing system using finite element

method. Guyan’s [13] reduction technique was used to reduce



the size of the assembled finite element matrices, since it

was difficult to handle them on digital computer.

Past research has shown that modal analysis of the
structural finite element model is a vital part of the
dynamic analysis of structure. Large structures such as
airplanes may consist of several components, each of which
may be manufactured by different organizations. The analysis
of each component may require a large number of degrees of
freedom finite element model. The assembled structure may
therefore contain so many degrees of freedom that it cannot
be economically handled on the largest of modern computers.
It is, therefore, essential to seek a method to overcome

this difficulty.

Utilizing the component mode synthesis technique, each
component is analyzed separately and the size of the
matrices is reduced by truncating the unwanted degrees of
freedom. The reduced components are then assembled to form a
complete structure which can be handled more easily by
modern computers. Component mode synthesis allows for
substantial reduction in the size of the overall system
while still retaining the essential dynamic characteristics.
This reduction accounts for reduced computer time and

reduced cost for analysts.

Component mode synthesis has been extensively developed

over the past 25 years. The trend in structural analysis




towards the modeling of structural systems by component mode
synthesis or substructure coupling started by considering
the dynamic analysis of lightly damped system with symmetric
property matrices. The solution of such a system as
airframes, buildings, bridges, etc., leads to real eigen-
value problem. More general analysis is required for
structures such as those with rotating parts or
non-proportional damping which leads to complex eigenvalue

problem.

The development of the component mode synthesis
technique was first credited to Hurty [14,15). The technique
was highly suitable for the analysis of structural system
with redundant interfaces. The structure may be divided into
several components. The displacement of the components is
defined in terms of generalized coordinates that are related
to specified sets of normalized displacement modes such as

rigid-body, constraint and normal modes.

Gladwell [16], who can also be considered an early
pioneer in the component mode synthesis, proposed branch
mode analysis to calculate the natural frequencies and
principle modes of free undamped vibration for a system with
many degrees of freedom. In this method each component of a
complex continuous vibrating system is replaced by an

appropriate lumped mass model.

A comprehensive survey (culminating in 1975) was




conducted by Craig and Chang [17])]. This paper reviewed the
majority of methods presented in the literature. The main
objective of the researchers was to improve the results of
the undamped symmetric component mode or substructure
synthesis which, in fact, raised two important questions:
(i) how to select a set of component mode, and (ii) how to
enforce the geometric compatibility at the interface between

the two components.

Hurty’s method [15), 1later modified by Craig and
Bampton [18], was formulated for lightly damped symmetric
coefficient second order component mode system. Hurty
neglected the damping term in his analysis and this resulted
in real eigenvalue and eigenvector. The full modal
transformation method suggested by Craig and Bampton is a
superposition of fixed boundary mode plus component
constraint mode. Hurty improved the analysis by adding the
structural damping factor in the normal mode response

equation of motion.

Robin {19], Kuhar and Stahle [20], and Hintz [21)]
improved the component modal representation by suggesting
many different procedures which permit valuable information
from truncated high frequency modes to be incorporated into
the retained mode in an approximated way. For example, Robin
included free boundary modes and residual effects including
inertial and dissipative contribution; whereas, Kuhar

introduced dynamic transformation into the formulation. He

8




believed that fixed boundary plus constrained modes tend to

have the best convergence.

Complex modal analysis to the second order system was
first developed by Hasselman and Kaplan [22]. The analysis
accounted for any arbitrary constant coefficients which lead
to complex eigenvalues and eigenvectors. They did not
include constraint modes in their study. Therefore, contrary
to Craig and Bampton [18] it does not provide a full modal

transformation.

Glasgow [23] presented a significant study on complex
mode synthesis allowing for a full modal transformation. The
modal synthesis is valid for a broad range of second order
constant coefficient differential equations which may
involve general nonsymmetric velocity and/or displacement
dependent terms. The equations of motion were solved for

whirl mode, stability and general forced motion response.

Craig and Chung ([24] improved Hasselman and Kaplan’s
initial work by using Hamiltonian first order differential
equation incorporating Rayleigh dissipation function to

formulate a procedure for damped system.

Vibration analysis of multiple component synthesis
method was also reviewed by Massaki and Akio [25]. In this
investigation, which is an extension to the method of

Banfield and Hruda [26], the authors substantially reduced



the size of matrices and compared the results of the
analysis with those of finite element method. The accuracy
of the calculation was as high as that of finite element
method but with less CPU time. In this analysis damping was

neglected.

Subsequent study by Meirovitch and Hale [27,28]
presented a different procedure, other than component mode
synthesis, to improve discrete substructure representation
in dynamic synthesis. Meirovitch and Hale suggested that in
the presence of the Rayleigh-Ritz method, the motion of each
component mode can be replaced by a complete set of
admissible function and the component modes need not be
developed. Admissible function can be selected from 1low
order polynomials which are computationally easier to
handle. Components are coupled by imposing approximate
geometric compatibility by means of the method of weighted

residuals.

A method of calculating eigenvalues for gyroscopic
system was also presented by Meirovitch [29]. The analysis
dealt with transforming the skew symmetric matrices which
can be easily used in modal transformation. This can be well
adapted to either symmetric undamped or purely gyroscopic

rotating structural systens.

Zheng [30] and others reviewed the gyroscopic mode

synthesis including such aspects as the effect of

10




nonlinearity and asymmetricity of bearings, gyroscopic
moments of shafts and disks, and damping. By extending the
Meirovitch [29] analysis, the authors concluded two
important advantages of the gyroscopic mode synthesis: (i)
real mode programs can be used for the calculation of
gyroscopic modes in component mode synthesis without the use
of biorthogonality relation to decouple the equation of
motion. This in effect saves computer time and memory, and
is in contrast to the analysis conducted by Glasgow and
Nelson [31] and Nelson and Meachsm [32]; (ii) the synthesis
equation of the system is an asymmetric matrix equation with

real coefficients.

Craggs [33] has contributed substantially to the
dynamic analysis of turbo-generators. Component mode
synthesis was used to reduce the size of the finite element
matrices. In a similar procedure suggested by Morton [34]
the components included rotor assembly, bearing and
foundation. The approach presented two advantages: (i) each
component can be analyzed separately and important
information can be retained, and (ii) the components are
related to an actual physical entity so that predicted

properties can be compared with the measured ones.

Rotor-bearing foundation system was analyzed by many
other researchers using component mode synthesis. Gong [35],
for example, neglected lateral damping anrd gyroscopic effect

to analyze the dynamics of large steam turbine-generator

11



rotor-bearing- foundation system. The structure was divided
into two components, the rotor and the foundation. The oil
film bearing was used as a connector between the rotor and
foundation.

Kramer [36] applied a different procedure to calculate
the unbalance vibration of rotor-foundation system. The
author reduced the computational expenses to an acceptable
level by first calculating the dynamic stiffness of the
foundation, then incorporating the influence of the
foundation on the rotor by the dynamic stiffness of the

foundation at the connecting points to the rotor.

Subbiah [37] included pedestal mass in his finite
element rotor-bearing-pedestal system to calculate the
response of the system. In his study, modal condensation was
used to reduce the size of the matrices and the effect of
damping was neglected. As is clearly reflected in the
literature, there arc three different mode synthesis methods
that can be applied to mode synthesis development. Depending
on the boundary condition imposed at the interface between
the two components, these methods can be classified as: (i)
fiied-interface mode synthesis, (ii) free interface mode
synthesis method, and (iii) loaded interface mode synthesis

method.

1.3 Scope And Layout of Thesis

12



From the foregoing it is clear that the component mode
synthesis method is very appropriate for the analysis of the
rotor dynamic problem. In addition to the advantage of
significant reduction in computational effort, it is also
consistent with the physical reality that the total response
of the system is composed of the responses of the individual
components. Therefore, in this thesis, the component mode
synthesis method is developed to perform the parametric

study of rotor-bearing-pedestal system.

In chapter 2, the component mode synthesis method as
well as all the relevant equations are formulated. Based on
this formulation a digital computer program named
SETARAH-SAHAR, herein referred to as SETSA is developed.
Chapter 3 contains a complete description of the computer
program for implementation of component mode synthesis
method using Cyberl computer system followed by program
flow-charts and subroutine descriptions. The accuracy of the
program is established with the use of several examples. The
computer program SETSA is employed in chapter 4 to provide a
detailed analysis of Jeffcotte’s rotor supported on
flexible pedestuls. Detailed numerical study of the
influence of rotor-bearing-pedestal characteristics on the
critical speed of the rotor is presented. Finally, the
thesis ends with a discussion on some of the conclusions
presented and some recommendations for future research

endeavours.
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CHAPTER 2

COMPONENT MODE SYNTHESIS

2.1 Introduction

The successful design of structures requires a
comprehensive study of dynamic analysis before the structure
is placed in its operating environment. A vital part of this
effort is the modal analysis of structural finite element
models. In the classical approach, it is usual to determine
normal modes and auxiliary static analysis directly from the
finite element model. However, modern structural systems
have become very complex and major components are often
manufactured by different organizations. It is, therefore,
often difficult to assemble an entire finite element model
in a timely manner. In addition, many finite element models
may contain so many degrees of freedom that they cannot be
directly handled on the largest of modern computers. For
these reasons, it 1is desirable to develop methods for
analyzing substructures of a finite element model. Such an
analysis has come to be known as component mode synthesis in

dynamic analysis and substructuring in static analysis.

Component mode synthesis allows for significant
reduction in the size of the overall system problem while

retaining the essential dynamic characteristics. The
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coordinates of the component are classified as boundary

coordinates if they are common to two or more components and

interior coordinates if they do not interface with any other

component. It is desirable that component mode synthesis

techniques for the dynamic analysis of structures have the

following characteristics:

Computational efficiency: the component mode
representation should contain a minimum number of
dependent degrees of freedom or modes for each
component.

Interchangeability: the component mode set should
be independent of the 1inertial and stiffness
properties of adjacent components. Such a component
mode set may be used interchangeably in different
structural systems with compatible interface.
Component flexibility: the method should pernmit
optional interface degree of freedor .n a component
mode set that may be used or discarded at the time
of synthesis.

Synthesis flexibility: the synthesis technique
should not be constrained to a particular type of
component mode set. The synthesis technique should
be amenable to accepting different types of
component mode sets, for example, fixed interface,
free interface, inertial loading, etc.

Modal acceleration analysis: static solution for
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the synthesized system, which may be required for
modal acceleration forced response analysis, should
be available. Such static analysis should be
available regardless of the complexity of component
interfaces, without requiring the assembly of a

system finite element model.

The constrained normal mode 1is found by fixing all
boundary coordinates and determining the free vibration
modes of the constrained component. It is these modes that
provide for the reduction of the number of degrees of

freedom systemn.

The constraint modes are determined by giving each of
the boundary coordinates a wunit displacement, in turn,
fixing all other boundary coordinates and allowing the

internal coordinates to displace.

When the constraint modes and constrained normal modes
are obtained then each component is transformed in terms of
its constrained normal mode and assembled into a lower order
set of system equation. This reduced order set of system
equation is then used to obtain system free and forced

response.

2.2 Analytical Development

The analytical development here will cover the complete
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development of the system equations of motion using
component mode synthesis. This technique allows each
component to be restructured in terms of two types of
component modes, namely constraint modes (static) and
constrained normal mode (dynamic). It is the constrained
normal mode which 1is responsible for the reduction size
matrices of the system. By this method the influence of
pedestal flexibility on rotor critical speed will be
analyzed. The typical rotor-bearing to be simulated as
illustrated in Fig.2.2.1 is modeled as an assemblage of
discrete disks, rotor segments with distributed mass and
elasticity, and discrete bearings. The rotor can be divided
into several components, each component may be composed of
several finite elements. It is often difficult to assemble

the entire finite element model in a timely manner.

Utilizing the component mode synthesis technique, each
component 1is analyzed separately, and the size of the
component matrices is reduced by mode truncation. The
reduced size of all the components are then assembled to
form the system assembly, which is economically feasible and
easy to handle. The finite element egquation of motion,

constant coefficient of component (x) can be written as:

(K):(RK)  (K):(K)  (K)_(K) _(K)
M X +¢c %X +K X =F (t) (2.1)

To establish component mode development, first the

displacement vector X is partitioned into boundary X° and
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interior X'

coordinates. The superscript «(x) 1is omitted
for simplicity. Then the coordinate reordering trans-

formation «a is applied to the equation (2.1) such that:

X =a X, (2.2a)
where
B
5 P
X = {ﬂ} (2.2b)
xP

Substituting equation (2.2a) into equation (2.1) and pre-

multipling by gT to obtain:

gMaX +oCak +aKaX =aF (t) (2.3)

which in partitioned form, the equation (2.3) will become:
MBB MBI .5'(8 CBB CBI 5:'(8
) . 1 '-5}1’ + ~IB i el
r_@”’ Ijl %! c gu X:

gm gm %® 7B
[ 1B Kn]{i:} = gt{~:} (2.4)
K P F,

or
gpip+g$’< + KX = F_(t) (2.5)

The component mode development can proceed directly

using first or second order form. Though the two techniques
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are equivalent, it is wusually more convenient to write the
equations of motion in first order, or state space form. In
the following formulation the first order development is

adopted in detail.

2.2.1 First Order Development

The displacement vector of equation (2.4) can be used
to construct the related state vector. Using this state
vector the component equation of motion (2.5) can be written

in first order form as follows:

Y . M, 0 o Y
h + h={_ (2.6)
M,oC 0 K F,

~ P X,
h = % =<)_EBL (2.7)

For simplicity the subscript p will be omitted and by using
a transformation to equation (2.6), all boundaries and

interior terms can be collected such that:

=t

]
R|
1

(2.8a)

where
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and

Substituting equation (2.8a)
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(2.8Db)

(2.8¢c)

and premultiplying

the equation (2.6) in expanded form will become:

(2.9a)
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which is simplified to:

rg EBB 0 gax' "ig‘ --ljBB 0 _ggl 0 T (~g) '6‘
el el e o c®o E[FE |F
0 ljmg yu*'s-'{l*"' ‘M!BQ _yng 1,};{1L=16 L (2.9Db)
M® B gudkéa 0 k%o (¥ 5

or

~BB éBI ;B gas gm i;g 63
2 2§ 7 e e le T I (2.9¢)

or

e
<
<+
tw
<
I
o1

(2.9d)

2.2.2 Constraint Mode

Constraint mode 1is obtained by unconstraining the
interior coordinates and by allowing a unit displacement to
boundary coordinates in turn with all the other boundary
coordinates fixed. The constraint modes are included to
treat redundancies in the interconnection system. These
modes will exist only if the system of constraints on the
component is indeterminate. The number of constraint modes
is equel to the number of redundant constraints. The
constrairt mode can be developed by considering the static

problem of equation (2.4); disregarding subscript p for
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simplicity, the static mode is shown as follows:

K% P11 (%P . 58
[x“’ xHx} - {o} (2-10

The interior coordinates can be obtained by considering

the second row of the above equation which can result:

K% + k1'% =0 (2.11)
=1 11) "} 1B=s
¥= - [5 ] K'®% (2.12)
or
=y X (2.13)
nY"! 18
g =~ [I.S ] K (2.13a)

The displacement constraint mode can be shown as:

x® 1.,
= X (2.14)
X Y
and the velocity constraint mode is:
X 1],
X Y

Then the component constraint mode in state space form can

be constructed using equations (2.14) and (2.15) such that:
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Yy = (2.16)

o [¥
Y = 1., (2.17)
X

Collecting the boundary and interior coordinates together

such that:

# [ o

. ;B ;(B 9 .I iB

-l et e olled o
%) lo g

they can be written in forms of boundary coordinates only

~B

- Y I,

Y=1_,t= y (2.18b)
Y ¥

as:

where

9
] (2.18¢)

2.2.3 Constraint Normal Mode

The constraint normal mode of the component defines the

displacement relative to the connections. It describes the
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motion of the interior coordinates with all constraints
fixed. The constrained normal mode is often called the
“"fixed-constraint normal mode" or simply the "normal mode"
for brevity. It is obtained by setting all boundary
coordinates in equation (2.9c) to zero and obtaining the
free vibration response. It is this constraint normal mode
that is used for the reduction of the system matrices.
Considering equation (2.9¢c) and setting the boundary

coordinates to zero, the remaining terms can be written as:
A'y+By=20 (2.19)
Assuming the solution of the above equation in the form:

At

Y=Y e (2.20)

and substituting this into equation (2.19) and simplifying

results in

[A Al + g”]{zo =0 (2.21)
or

)™ 1)~ ~

[[g ] Al + ...A_;]yo =0 (2.22)
or
A ~ ~

[Q - o ;]yb =0 (2.23)

where
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D= - [g"] At (2.23a)
4 = _____i (2.23Db)

For nontrivial solution the coefficient of the determinate

(2.23) must vanish, therefore:

ID-& I|] =0 (2.24)

~

The solution of the above equation provides 2n
eigenvalues A, and corresponding 2n displacement right
eigenvectors ﬁ& where n is the number of component
coordinates in second order form of equation (2.1). The 2n

eligenvectors can be shown as:

! U

3 Asﬁx
Y = - where i=1,...2n (2.25)
i

or in matrix form as:
ulk
Y = (2.25a)

Therefore, the interior coordinates can be written in terms
of these constrained normal modes of the above eigenvector

expression so that:
~x i
Yy = E Yo (2.26)
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or in matrix form

~I -~ -~ ~
where
Y «on = Matrix oi constrained right vector
Uion = matrix of constrained right displacement U
R = diagonal matrix of eigenvalues
2nXan
ﬁ = vector of modal coordinates 7 associated

2nX1
with right vectors ¥

2.3 Superposition of Component Modes

To obtain the complete modal transformation of the
component physical coordinates, it is necessary to superpose
the two modes, namely the constraint mode and the
constrained normal mode, together to form a full nmodal
transformation. From equation (2.27) the velocity cons-

trained normal mode can be obtained so that:

(2.28)

<
il
U
3

and

~

Therefore, the superposition of equations (2.29) and (2.18a)

<t

i
A
“{L “ﬁé
~———

]
—
1o
< o
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will give:

N 1 oY
~[)-6
Y ¥ o o¥Y]ln

or

y=84g (2.31)

where

(2.31a)

™

I
| Synm—
ve -
! 1o
| SRS

2.3.1 Mode Truncation

The purpose of mode truncation is to eliminate the
excessive unknown degrees of freedom, and hence to reduce
the size of the system matrices without affecting the
dynamic characteristics of the final system. Therefore all
degrees of freedom of the system can be extensively reduced
by retaining the low frequency mode and truncating a number
of higher constrained normal modes determined from the free
vibration analysis of interior coordinates. This can be
considered as one of the most important aspects of the
component mode synthesis technique. Based on the literature
survey, researchers have not as of yet found any systematic
way for mode truncation to guarantee convergence. One can,

therefore, conclude that it 1is necessary to base mode

28
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truncation on prior experience.

At this stage, the entire degrees of freedom of the
component can be reduced by eliminating the insignificant
mode. Truncation can be established by partitioning Y of
constrained right vector and 7 vector of modal coordinates

in equation (2.27) such that:
Y = [y y] (2.32)

and

m
n = {:}3} (2.33)
n'r

Substituting the retained part of equation (2.32) and
equation (2.33) into equation (2.30) results in the

truncated modal transformation matrix g as shown below:

- oe1(¥
y = {~} (2.34)
v v |7,

or

(2.35)

<t
[
£
Q

where

(2.35a)

w
=<
I
—
e I
< 10
g —
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and

q= 4. (2.35b)
n

The final truncated reduced component equation of
motion is obtained by substituting equation (2.35) into

equation (2.9d) and premultiplying by Q: to obtain:

énrééna + QRT§§R§ = ERTQ (2.36)
or
Agq+Bqg="0 (2.37)

In order to assemble each truncated component with its
adjacent component at interface, it is necessary to apply
the & transformation to the equation (2.37). This will
assure connectivity between the two component coordinates.
This transformation could have been avoided if proper care
had been taken when constructing the modal transformation
right vector (2.31a), since it would not have otherwise
eased the computational efficiency. Therefore, the final &
reordering transformation to the truncated component is

adopted such that:

il
]

>

o}

(2.38)

substituting the above equation into equation (2.37) and
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premultiplying by &T, the final reduced component can be
written as:

4 q, + B q, = ?R (2.39)

Finally the response of the system in generalized
coordinates E(R can be back transformed to obtain the
relative physical coordinate through the transformation of
equations (2.38), (2.35) and (2.8a), which combined together

results in:

o

I

I
IR
m

o

e
Qe

(2.40)

from the bottom half of equation (2.40) and (2.2a) the
(K)
original coordinates X <c¢an be determined.

2.4 System Equation of Motion

When all the components are analyzed by the
aforementioned formulation and the truncated component
equations are obtained, the truncated components are then
assembled together to form the complete truncated system
equation. If the system has only one component then the
equation (2.39) will be the final system assembly. The next

step is to include fluid film properties at bearing
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locations. The bearing has four degrees of freedom (two
translations and two rotations) into which the fluid film
damping and stiffness will be added the 4 and B8 of

~

equation (2.39) respectively.

To incorporate pedestal into the system assembly, it is
necessary to transform the pedestal properties into 2n
form as cited earlier in equation (2.6), and then increase
the size of the matrices of equation (2.39) (d.o.f of one
pedestal in 2n form multiply by the number of pedestals)
to accommodate the pedestal influence on the vibration

response of the rotor.

To clarify how these properties are added into the
assembly, a structure is considered to be composed of three
components supported on two bearings as shown in Fig.2.4.1.
The truncated components of the structure are obtained and
assembled to form the three component assembly. The fluid
film damping is added to the lower right quadrants of the
two grids as shown in Fig.2.4.2, and the fluid film
stiffness is added to the same location in Fig.2.4.3 The
pedestal properties are then added to the assembly and the
fluid f£film bearing is used as a connector between the
pedestal and rotating assembly as clearly shown in Fig.2.4.2

and Fig.2.4.3.

To formulate the system assembly, assume «x to be the

number of truncated components. The system coordinate vector
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Fig. 2.4.2 Three component assembly matrix

Legend

Bearing fluid film damping
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Fig. 2.4.3 Three component assembly matrix

Legend

Bearing fluid film stiffness
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Yy, can be shown in terms of boundary and interior

coordinates as:

§s=<‘n S (2.41)

~(K)
n
\ R

/

The geometric constraint Z(” is then related to the

component’s coordinate vector to the system vector by the

following expression:

ar((x) _ Z(K)§s (2.42)
and by rewriting the equation (2.39) for  «kth component

results in:

~ (K -~ ~
A(K)q( ) + B(K)q;(‘x) — ?;K)

~ R o~

(2.43)

The system assembly can be obtained by substituting the
transformation matrix of eguation (2.42) into equation
(2.43), premultiplying by (Z)r and sum over all

components. Hence:

"-gs y, * f§s Y, = ?S (2.44)
N
E (K), T ,(K) _I(K)
s_gs = (% ) s_gR 4 (2.45a)
K=1
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(R){ T 5(K) (X)
§s=§ 1" 8" g (2.45b)
K=1

N

s (K), T 35(K)

?S_E (x™H' B (2.45¢)
K=1

where » is the number of components.
2.5 System Solution

The equation (2.44) can be decoupled by using the
orthogonality property between normal modes if sgs and f§s
were symmetric. Since 4 and B_ are not symmetric due to
pedestal and bearing influence, decoupling the system
equation of motion by conventional normal mode analysis is
no longer possible. Therefore, it is necessary to use the
biorthogonality principle between the right and the left
eigenvectors of the system to decouple the system equations
of motion. Right eigenvectors are the modes of the original
system and the left eigenvectors are those of the transposed
system. Right eigenvectors Y are obtained by considering
the free wvibration of the system equation (2.44). The left
eigenvectors are obtained by considering the free vibration
of the transpose of system equation (2.44). To proceed by

the above technique let the solution of equation (2.44) be

of the form:

y =§° e (2.46)
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then

A A ~ -~
(g -al yo] = 0 (2.47)
and
A -1
D =-B "4, (2.48a)
A 1
as-— T (2.48]‘3)

For nontrivial solution the determinant of equation (2.47)

must vanish.
ID-4.1)1 =0 (2.49)

The solutiocn of the above equation leads to j eigenvalues A

and ) eigenvectors Y, where 3 is the size of

equation (2.44).

Left eigenvectors Z are obtained by solwving the free

vibration of the transposed equation (2.44) such that:

~1f. =T o

z, (Asgs + sgs] = 0 (2.50)
This eigenvalue problem will result 1in identical ;
elgenvalues A, as in equation (2.44) and ) left
eigenvectors corresponding to each eigenvalue. Let wus

consider Eo to be the left eigenvector of the following

equation, therefore:
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~ T -1 il ~T
z, [gsgs + TI] =0 (2.51)
For nontrivial solution the determinant of the above

equation must vanish. Hence:

ID-@&.I| =0 (2.52)
where
-1
D=-4d 8 (2.53)

The left eigenvectors zZ, resulting from equation (2.51) in
matrix form and the right eigenvectors Y, resulting from
equation (2.47) can be used to decouple the system equations

of motion by considering the following transformation:
7, = [x] @ (2.54)

substituting the abo/e equation into equation (2.44) and

prenultiplying by gST to obtain:

T ~ T ~ T3
gs 'gsgsq + Zs ? qu - “Z'S ?s (2'55)
(455 [#15- 5%

Then both sides of the equation are multiplied by the
inverse of ﬁ which results in the final system equation of

motion,

¢g==-hg +C (2.57)
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where

T3 (2.58)

't
I
1Zo

Hiny]

Any prescribed ground motion can now be applied to the
system and the result can be back transformed to the

original coordinates.
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CHAPTER 3

COMPUTER IMPLEMENTATION

3.1 Introduction

A computer program has been developed to perform the
analysis by the component mode synthesis method described in
chapter 2. This program can handle any number of bearings,
and pedestal, and their flexibilities. It can yield natural
frequencies and critical speeds as well as the response

against any prescribed forced excitation.

3.2 Description of Computer Program SETSA

3.2.1 General

Free vibration response of rotor-bearing-pedestal
system is analyzed by the computer program SETSA. The
program is written in FORTRAN Language. It is based on the
finite element method which can handle rotor-bearing system

analysis in the linearly elastic range.

The computer program SETSA is specifically organized to
handle the response of the system by component mode
synthesis technique based on the formulation described in
chapter 2. The response of the system is obtained by

numerically integrating a set of generalized decoupled



system equations of motion. It is also possible to obtain
the response of the system by finite element method alone
provided that the size of the matrices does not exceed the
computer capacity and other resource 1limitations. The
program will bypass finite element technique unless it is

specified.

Since the formulation of system motion (chapter 2) is
based on fixed reference frame to describe the systenm
motion; nonsymmetric support characteristics such as damping
and stiffness can, therefore, be easily accommodated by the

program.

The rotating assembly may contain up to four components
each of which may be composed of several finite elements of
different length and diameter; this will, therefore, allow
reasonable flexibility in modeling the system with several
geometric discontinuities. The bearing-pedestal is
considered to be fixed in a rigid frame foundation whose
translational and rotational motion may be specified by the

user.

3.2.2 Sequence of Computation

The steps involved in the calculations performed by

the computer program SETSA are as follows:

1. The program accepts the user input data such as
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element diameter, length, modulus of elasticity, density,
mass, stiffness and possibly structural damping of element

and prepares the output to verify the input data.

2. Analyzes the internal precessional mode of each
component. Output includes the internal damping or undamped
whirl mode and frequencies. This will help the user to
obtain more information about each component as well as the
number of mode truncation. The optional plotting of these

modes can also be obtained.

3. Provides the steady state and transient response of
the rotating assembly relative to the rigid base due to the
specified base motion (e.g. sinusoidal and impulsive) with
constant spin speed restriction. The output contains the

displacements and rotations at each finite element station.

3.3 Flow Charts and Subroutine Descriptions

The flow charts for the computer program SETSA are
shown in Appendix A and the description of the sub-programs

used are outlined below:

3.3.1 Program MAIN

This program will execute the sub-programs in a sequen-
tial order and the important information will be recorded on

different TAPE. For example the output of the first
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sub-program will be inputted to the second subprogram and so
on. It will always record the important information such as
eigenvalues and eigenvectors of each component and also the
system assembly in damped and undamped situation. Finally
the program MAIN will record the response of the system
subjected to any base sinusoidal excitation although it is

not pursued in this investigation.

3.3.2 Sub-Program CMS1

This sub-program prepares the element mass, stiffness
and damping matrices from the input data, and assembles the
number of elements to determine the component mass,
stiffness and damping matrices. The component stiffness
matrix is then recorded on the output unit TAPE4. The
component matrices will then be reordered to first order
form component equations of motion. The first order matrices
are recorded on the output unit TAPE1l and TAPE2. Finally,
the transformation matrix which can reorder the first order
form into boundary and interior subset is developed and
recorded on TAPE3.

Called Subroutines: BUILD, ASSEMBLY

3.3.3 Sub-Program CMS2

This program will read TAPE1l,2,3,4, and obtain the

static mode as shown in equation (2.13) and record the
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transformation matrix [(v] on TAPE9 as indicated in
equation (2.13a) and also record the matrices of the
interior coordinates on TAPE21 and TAPE22.

Called Subroutine: (IMSL Subroutine - DLINRG)

3.3.4 Sub-Program CMS3

This subroutine will read the interior coordinates from
TAPE21 and TAPE22 to determine the rotating assembly
component precessional mode with fixed boundary coordinates.
The precessional mode and frequency are then recorded on
TAPE17 and TAPE1l0 respectively. It is in this subroutine
that interior truncation is performed.

Called Subroutine: ARRANG, CMPOS, (IMSL Subroutine -

E2CCG, LINCG)

3.3.5 Sub-Program CMS4

This subroutine will read TAPE7,9,11,12,17 to determine
the transformation matrix by supermosing the static and
truncated dynamic mode. This transformation is then recorded
on TAPE15. Using the above transformation matrix to
component equation, the reduced component matrices can then
be obtained. The reduced component equation is recorded on
TAPE41,42.

Call Subroutine: None
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3.3.6 Sub-Program CMS5

This subroutine will read TAPE3, 15, 19 to perform back
transformation of truncated reduced component to original
coordinates and record the back transformation matrix on
TAPE45. Thus it is concluded that for one component assembly
TAPE41, 42, 45 are the most important records needed to
proceed further. For two, three, and four component assembly
the sub-program CMS1, CMS2, CMS3, CMS4 and CMS5 will repeat
2, 3, and 4 times and record the important information on
TAPE41, 42, 45, TAPE51, 52, 55, TAPE61l, 62, 65 and TAPE71,
72, 75.

Called Subroutine: None

3.3.7 Sub-Program CMSASS

This subroutine will read the information for each
component, for example TAPE41,42, TAPES1,52, TAPE61,62, and
TAPE71,72. Then assemble them in such a way as shown in
Fig.2.4.2 and Fig.2.4.3. The assembled matrices are recorded
on TAPE23,24. The fluid film and pedestal properties are
then added to the system and the results of matrices are
recorded on TAPE25,26 for further analysis of the system
reponse.

Called Subroutine: None
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3.3.8 Sub-Program CMSUND

This subroutine will analyze the undamped response of
the assembly by reading the information of the component
assembly matrices from TAPE23,24 and calculate the undamped
natural frequencies and mode shape of the system and record
them on TAPE10 and TAPE66 respectively.

Called Subroutine: ARRANG, CMPOS, ELIM, (IMSL subroutine-

E2CCG, L2NCG)

3.3.9 Sub-Program CMSDAM

The sub-program CMSDAM will read TAPE25 and TAPE26
component assembly matrices to obtain the left and right
eigenvectors by calling the IMSL [38] routine, then by using
biorthogonality relation will decouple the equation of
motion. Here TAPE10 will record the diagonal eigenvalue of
damped system and TAPE200 will have the forcing coefficient
matrix.

Called Subroutine: ARRANG, CMPOS (IMSL subroutine-

E2CCG, L2NCG)

3.3.19 Sub-Program CMSRES

This program will read TAPE10, and TAPE200 with

specified time step to calculate the response of the system

in local coordinates. Then by back transformation matrices

47



S L

e

A AT G aart ~

B

which are provided by reading from TAPE45,55,65, and TAPE75
will transform to original coordinates. The modal response
of the system is recorded on TAPE400. The plotting of
response is then possible. Since the forcing response is not
included in the present analysis, therefore, the flow chart
of the sub-program CMSRES is not included in Appendix A.

Called Subroutine: None

3.4 Validation of the Program

3.4.1 General

The computer program based on mathematical development
in chapter 2 is tested with the use of two detailed examples
in the following section to provide a clear insight into the
accuracy and limitations of the method. In the following
examples the natural frequency of the rotor is calculated
and the variation of error against different levels of

truncation is described.

3.5 Example Analysis

3.5.1 Rotor System 1

i) The first example discussed here is a simply

supported Lund [39) rotor shown in Fig.3.5.la. First the

entire rotor is considered as a single component. The rotor

48



L2Tm

[———————  0.635m ~—————————=

'.— 0.127m

fo——— 042331 ——o=] t

0.0847m

- om75m —] |

l—— 0.0835m

(b)

(c)

(d)

Fig.3.5.1

Simply supported undamped Lund rotor
composed of: a) one component, b) two
component, ¢) three component and

d) four component assembly.
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is modeled with 5 equal length finite elements (6 stations)
each with four degrees of freedom per station. The degrees
of freedom in each station are represented by two
translations and two rotations in Z and Y direction. The
total number of degrees of freedom is 24 or (N+1)*4 where N

is the number of elements.

The rotor supports at station 1 and 6 are assumed to be
rigid and unyielding against translational displacements;
however, rotation about the two bending axes is permitted.
Damping at the bearing is neglected. The rotor, therefore,
has four constraint modes which are identical to rigid body
modes and the rotating assembly contains 20 degrees of
freedom (total degrees of freedom minus number of
constraints). The rotor is modeled symmetric about its mass
center. The natural frequencies of the system are obtained
by eliminating the rows and columns of those coordinates
associated with translation in support points. The result is
tabulated for different levels of mode truncation as shown

in Table 3.1.

ii) The rotor is considered to be composed of two
components, as shown in Fig.3.5.1b, each component contains
five equal 1length finite elements. First, each component
will be analyzed separately, and the size of the component
will be reduced for different levels of mode truncation. The
truncated reduced components are assembled to form the

system assembly. The tabulated results for different levels
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Table 3.1

Natural Frequencies of One Component Assembly
at Different Levels of Mode Truncation
No. Retain Retain Retain Retain Retain
4 Mode 8 Mode 12 Mode 20 Mode All Mode
1 126.864 126.864 126.855 126.855 126.855
2 641.096 505.186 505.186 504.849 504.835
3 1546.611 1546.615 1130.324 1128.645 1128.521
4 | =emem——e 2850.855 2850.855 1999.210 1995.453
5 | ==remcen | e 4525.956 3119.284 3111.106
6 | mmmmmmmm | memwmeee | eemecaae- 6517.288 4748.115
7 | ==wm——mee | emesee—ne | cece—eee 8073.554 6279.373
8 | —=mmmmmm | memcmeen | mmmmcmee [ e 8410.807
9 | mmmmmmme | memmmmem | e | e 11030.337
10 | ==mmmmmm | mmmmmee [ mmmmmee | e 14091.646
Lund rotor
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of mode truncation are shown in Table 3.2. The accuracy of
the results monotonically decrease by increasing the levels

of mode truncation.

iii) This time the rotor is divided into three and
finally four components Fig.3.5.1¢c, and Fig.3.5.1d. The same
procedure is adopted as in part (i) and (ii), and the result
of the assembly for different levels of mode truncation is
shown in Tables 3.3 and 3.4. The results obtained here are
similar to those observed in Table 3.2; however, it is more
accurate due to the increase in the number of components,

which in turn depend on the number of elements used.

3.5.2 Rotor System 2

The second example presented here is a typical overhung
industrial rotor. The rotor is divided into four components
wherein each component consists of several disks, couplings
and bearings. The rotor is also supported by two identical
bearings as shown in Fig.3.5.2 and it possesses four degrees
of freedom per node (two translations and two rotations) in
Z and Y direction. The number of constraint degrees of
freedom is four (two constraints degrees of freedom per
support), the rotor support is assumed to be undamped with
infinite stiffness properties. The total number of degrees
of freedom precessional mode is (N+1)*4 minus constraint

degrees of freedom. The numerical data for this rotor is
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Table 3.2
Natural Frequencies of Two Component Assembly
at Different Levels of Mode Truncation
No. Retain Retain Retain Retain Retain
4 Mode 8 Mode 12 Mode 20 Mode All Mode
1 126.860 126.852 126.8497 126.849 126.849
2 504.525 504.525 504.4824 504.481 504.481
3 1156.426 1125.603 [1125.2418 1124.732 1124.692
4 2503.101 1977.040 [1977.0402 1975.581 1975.504
5 4112.930 3166.255 (13046.9970 3043.671 3043.305
6 5851.553 5851.553 (4321.1765 4315.612 4315.145
7 ———— 8104.688 |6013.3910 5789.229 5780.586
8 ——— 10356.494 [10356.494 7448.477 7431.932
9 ——— ———— 13073.519 9267.640 9254.835
10 —_——— ———- 15687.175 |11962.114 }11922.512

Lund rotor
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Table 3.3
Natural Frequencies of Three Component Assembly
at Different lLevels of Mode Truncation
No. Retain Retain Retain Retain Retain
4 MHde 8 Mode 12 Mode 20 Mode All Mode
1 126.850 126.849 126.848 126.848
2 504.645 504.468 504.445 504.438
3 1124.335 1124.335 1124.216 1124.212
Size of
4 2004.106 1973.675 1973.641 1972.966 matrices
5 3169.379 3039.555 3036.034 3034.020 exceeded
6 5422.612 4292 .800 4292.800 4288.749 the
computer
7 7280.533 5861.691 5722.816 5718.428 capacity
8 | m——m————— 7697.238 7320.881 7305.872
9 | emmmeeee | ceeaceee—- 9047.626 9032.991
10 | ===——-=m | mmmmeeem | cemeeee- 12881.762
Lund rotor
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Table 3.4

[

Natural Frequencies of Four Component Assembly
at Different Levels of Mode Truncation
No. Retain Retain Retain Retain Retain
4 Mode 8 Mode 12 Mode 20 Mode All MNode
1 126.848 126.848 126.848
2 504.477 504.444 504.432
3 1125.007 1124.240 1124.166 Size of Size of
4 1972.734 1972.734 1972.465 matrices matrices
5 | 3066.721 | 3033.196 | 3033.188 | €¥ceeded | exceeded
the the
€ 4402.052 4287.346 4286.428 computer computer
7 6007.132 5721.932 5711.647 capacity capacity
8 9182.582 7289.425 7289.425
Q9 | m—meme———— 9153.271 8993.439
10 | ==—==——=- 11198.397 }110817.150

Lund rotor
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taken from reference [2). The natural frequency of the
system assembly is tabulated for different levels of mode

truncation which is shown in Table 3.5.

3.6 Discussion of Results

It can be seen from the results presented in Table 3.6,
Fig.3.6.1 and Fig.3.6.2 that the accuracy monotonically
increases with the increase in the number of components
chosen for analysis. When a fewer number of components
and/or elements are utilized, only the higher mode frequency
is affected more by the truncations. However, the lower mode
frequencies are not significantly affected by truncation.
The calculated result obtained by this method is in accord
with those achieved by Lund [39] and by Prohl [2]. The
accuracy of the method and the computer program SETSA is

thus established.
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Table 3.5

Natural Frequencies of Four Component Assembly
at Different Levels of Mode Truncation

No. Retain Retain Retain Retain Retain
4 Mode 8 Mode 12 Mode 20 Mode All Mode
1 2158.956 2158.869 2158.820 2158.820
Size of
2 4235.044 4234.570 4234.205 4234.203 matrices
3 11130.943| 11108.881} 11106.726 11106.679 | exceeded
4 21387.542| 21367.080] 21363.811| 21361.816 the
computer
5 27390.719) 27380.412} 27379.491] 27378.579 capacity
6 36980.788| 36873.249| 36831.039 36830.644
7 68122.308| 57825.075] 57235.564 57137.098

Prohl rotor
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Table 3.6

Error at Different Levels of Mode Truncation
No.| % Error % Error % Error % Error
4 Mode 8 Mode 12 Mode 20 Mode
Retain Retain Retain Retain

1 0.00939% 0.00282 0.000938 0.000638

2 0.01836 0.01836 0.009805 0.009610
3 2.86960 0.1278 0.0956 0.05035
4 26.9020 0.2319 c.2319 0.15795
5 35.597 4.386 0.4550 0.3455
6 36.51 36.517 0.8106 0.6807

Lund rotor
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CHAPTER 4

PARAMETRIC STUDY OF
RoToR-BEARING-PEDESTAL SYSTEM

4.1 Introduction

In chapters 2 and 3, a component mode synthesis
reduction method based on biorthogonality relation is
formulated and adopted to decouple the system equation of
motion. Based on this formulation the computer program SETSA
is developed in chapter 3 to obtain the response of the
system. In this chapter the computer program SETSA is used
to perform a detailed parametric study on a single disk
rotor-bearing-pedestal system mounted on flexible support.
Even though the analysis procedure discussed here is
confined to a single disk rotor system model which can be
well represented by a few finite elements, the same
treatment is equally applicable for a large practical rotor

system with several disks, couplings and bearings.

A typical flexible rotor-bearing-pedestal system in a
deformed state is shown in Fig.2.2.1. The rotor is composed
of symmetrical rotor segments with distributed mass and
elasticity properties, a symmetric rigid disk and the two
bearings situated at each end of the rotor. The rotor of

Noriaki et al [40] is chosen for the study here. The Noriaki
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rotor configuration with a single disk mounted at three
different locations is illustrated in Fig.4.1.1.
The influence of the following parameters on the critical

speed of the rotor is investigated:

1. Rotor Stiffness Parameter EI/Z3
2. Rotor Material Density

3. Disk Thickness and Disk Location
4. Support Stiffness

5. Support Damping

6. Pedestal Mass

4.2 Influence of Rotor Stiffness parameter I:‘.I/Z3 on

Critical Speed of the Rotor

The computations are performed for different values of
the rotor stiffness parameter EI/Z3 (Appendex B) ranging

5 > N/m in steps of 175x10° N/m. The

from 57x10” to 162x10
single disk rotor for this study consists of six equal
length finite elements. The disk position and disk thickness
remain constant throughout the analysis (&4 = 0.533m and &
= 0.266m) as shown in Fig.4.2.1b and 4.1.1b. The response of
the system is obtained for two different rotor configura-
tions: namely, a) simply supported on rigid supports
(undamped) and b) simply supported on hydrodynamic journal

bearing (damped). In the case of the undamped rotor, the

stiffness and damping of fluid film and pedestal properties
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Fig.4.1.1 Simply supported damped rotor with a single
disk mounted at three different locations
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Fig.4.2.1 Simply supported undamped rotor with a single
disk mounted at three different locations
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are neglected; whereas, in the damped rotor these properties
are all lumped together. In both cases the pedestal mass is
neglected and the same levels of mode truncations are
employed. In each case the resonance frequency of the first
four modes are obtained and presented in Tables 4.2.1 and
4.2.2. A plot of the critical speed vs the rotor stiffness

parameter is shown in Fig.4.2.2.

It is clear from the result obtained for both the
damped and undamped situation, that as the stiffness
parameter EI/I’.3 is increased the natural frequency of the
system also increases monotonically. This behavior is more
pronounced in the undamped configuration in that the natural
frequency of the undamped response for a particular
stiffness parameter is higher than in the damped rotor.It
is, therefore, possible to control the response of a system

by changing the stiffness parameter of the rotor.

4.3 Influence of Rotor Material Density on Critical Speed

of the Rotor

The computer simulation is performed for the different
material densities of the rotor. The rotor material
densities are listed in Table 4.3.1. The rotor is assumed to
be simply supported with a disk mounted on its mnid-section
(f = & = 0.4m). It 1is composed of six finite beam

elements. The thickness of the disk remains constant
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Table 4.2.1

Influence of (EI/Z3) Coefficient on the
Undamped Critical Speed of the Rotor
No.| Mode 1 Mode 2 Mode 3 Mode 4 EI/ e’
(CPS) (CPS) (CP5) (cps) (N/m)
1 69.0795 254.078 425.7783 1095.,084 57.13E5
2 78.9625 290.428 486.6935 1251.755 74 . 65E5
3 87.7393 322.709 540.7900 1390.889 92.16E5
4 95.7146 352.043 589.9467 1517.318 109.67E5
5 103.0747 379.114 635.3113 1633.994 127 .18E5
6 109.9431 404.376 677.6458 1742.876 144 .69E5
E = 2.068E11 N/m’
p = 7800 Kg/m3
£1= 0.533 m
£2= 0.266 m

AN R S MIPEY -




Table 4,.2.2

Influence of (EI/¢>) coefficient on the
damped Critical Speed of the Rotor
No.| Mode 1 Mode 2 Mode 3 Mode 4 EI/¢°
{CPS) (CPS) (CPsS) (CPS) (N/m)

1 48.7634 | 113,9670 | 212.8807 | 439.8154 57.13E5
2 51.6954 | 116.0418 | 231.1330 | 499.6345 74.65E5
3 53.7704 | 117.3581 | 247.9575 | 553.2198 92.16E5
4 55.3151 | 118.2669 | 263.6902 | 602.1415 109.67E5
5 56.5089 | 118.9317 | 271.5780 | 647.4210 127.18E5
6 57.4587 | 119.4390 | 285.7341 | 689.7594 144 .69E5
7 58.2320 | 119.8388 | 299.2854 | 729.6606 162.2E5

E = 2.068E11 N/m°

p = 7800 Kg/m3

¢ = 0.533 m

L= 0.266 m

Kzz = 981E3 N/m

Kyy = 981E3 N/m

Czz = 981 N-sec/m

Cyy = 981 N-sec/m
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Table 4.3.1

Material Properties of the Rotor

Material Densigy Modulusaof E
kq/m RN/m

Cast Iron 7200 2.068x106
Stainless 7700 2.068x10°
Steel (430)

Steel (4150) 7800 2.068x10°
Stainless 7900 2.068x10°
Steel (302)

Cobalt 8850 2.068x10°
Nickel 8900 2.068x10°
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throughout the simulation and is assumed to be 0.01 m. The
rotor configuration is shown in Fig.4.2.1la. The results are
obtained by varying the density of the rotor from 7200 to
8900 kg/m3. Tne selected materials have the same modulus of
elasticity of 2.068x1011 N/mz. The results of the
simulations are then tabulated in increasing order of
frequency as shown in Table 4.3.2. Finally a plot of the

response vs the different material densities of the rotor is

shown in Fig.4.3.1.

Material density of the rotor also influences the
response of the system. As the material density increases
the rotor critical speed decreases. The decreasing rate is
more rapid in the higher mode. It is also observed that the
third and forth mode behave almost identically throughout
the density range. It is, therefore, important to consider
material density in the dynamic analysis of the rotor

bearing system.

4,4 Influence of Disk Thickness and Disk Location on

Critical Speed of the Rotor

The result of the computer simulation is obtained for
the different values of disk thickness and disk location.
The rotor is assumed to be simply supported and consists of
six equal distance finite elements with a disk located on

three different 1locations (&1 = € = 0.4m, &1 = 0.533m and
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Table 4.3.2

Influence of Material Density on the Undamped
Critical Speed of the Rotor
No.| Mode 1 Mode 2 Mode 3 Mode 4 Densityau
(CPS) (CPS) (CPS) (Cps) (Rg/m™)
1 95.87 339.18 963.03 966.33 7200
2 92.7 327.9 931.24 934.40 7700
3 92.1 325.86 925.22 928.5 7800
4 91.52 323.8 919. 38 922.5 7900
5 86.47 305.92 868.59 871.56 8850
6 86.23 305.07 866.18 869.15 8900
E = 2.068E11 N/m’
p = 7800 Kg/m3
el= 0.4 m
£2= C.4 m
td= 0.01 m
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& = 0.266m and & = 0.666m and €& = 0.133m) as shown in
Fig.4.2.1a, b, c. The natural frequency of the rotor is
obtained each time by varying the disk thickness ranging
from 0.001 to 0.01 m. For each disk location, the results
are recorded in increasing order of frequency of the rotor
which can be seen in Tables 4.4.1, 4.4.2, and 4.4.3. The
critical speed vs the disk position and disk thickness are

then plotted as shown in Fig.4.4.1 and Fig.4.4.2.

It is observed that the natural frequency of the rotor
is increased by decreasing the disk thickness regardless of
disk location. Fig.4.4.2 shows that the natural frequency of
the rotor second mode is constant when the disk is located
at the far right end of the rotor. When the disk is located
at two different disk 1locations, the natural frequency
corresponding to the second mode increases as the disk
location advances from the far right end to the mid section
of the rotor. This conclusion 1is partly correct for the
first mode of the rotor as is shown in Fig.4.4.1. Here, as
the disk thickness decreases from 0.001 to 0.0lm the
frequency of the first mode for each individual disk
location is increased monotonically. If the disk thickness
and the disk location from the far end to the mid-section of
the rotor decrease simultaneously, the natural frequency for
each disk position will increase relative to each other up
to 112 cps which corresponds to 0.03m disk thickness. Beyond

this disk thickness the behavior of the system will be
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Table 4.4.1

Influence of Different Disk Thickness on
Natural Frequency of Undamped Rotor
No. Mode 1 Mode 2 Mode 3 Mode 4 4
(CPS) (CPS) (cPs) (CPS) (m)
1 91.9202 325.2014 923.3311 926.4951 0.01
2 96.5660 325.2014 923.3311 945.4964 0.008
3 105.0651 325.2014 923.3311 986.0824 0.005
4 112.1441 325.2014 923.3311 1026.8684 0.003
5 118.4899 325.2014 923.3311 1070.1338 0.0015
6 120.8531 325.2014 923.3311 1088.1447 0.001
E = 2.068E11  N/m°
p = 7800 Kg/m>
£1= 0.666 m
22= 0.133 m
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Table 4.4.2

Influence of Different Disk Thickness on
Natural Frequency of Undamped Rotor
No. Mode 1 Mode 2 Mode 3 Mode 4 t
(cpPs) (CPS) (CPS) (CPS) m$
1 95.7146 352.0435 589.9467 618.2388 0.01
2 99,6925 357.4934 592.9484 1523.5198 0.008
3 106.6465 368.3134 599.5156 1535.5110 0.005
4 112.1090 378.1177 606.3011 1545.9732 0.003
5 116.7460 387.4461 613.6673 1555.5464 0.0015
6 118.4098 391.0313 616.7769 1559.1245 0.001
E = 2.068E11  N/m°
p = 7800 Kg/m3
£1= 0.533 m
£2= 0.266 m
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Table 4.4.3

Influence of Different Disk Thickness on
Natural Frequency of Undamped Rotor
No. Mode 1 Mode 2 Mode 3 Mode 4 t
(cpPs) (CPS) (CPS) (cps) (m$
1 105.3120 384.6105 é56.8689 997.7249 0.01
2 107.1136 393.6206 673.8302 1004.6517 0.008
3 109.9563 408.4960 709.7357 1022.5291 0.005
4 111.9493 419.1662 743.4778 1045.5464 0.003
5 113.4974 427.4194 774.8350 1076.3480 0.0015
6 114.0238 430.1941 786.2868 1091.1855 0.001
E = 2.068E11 N/m°
p = 7800 Kg/m>
£1= 0.4 m
L= 0.4 m

77




¢-0IX (w) SSIAW{IMYL ASIA

*

(w) GE€1°=27 ‘6999'= 13
(w) 699T°=CF ‘tceS=17
+ (w) $p'=27=12

| 5 1 1 .l 1 v 1

06

S6

001

cot

SPOJN ISIL] 1010 JO I'N UO SSIWDONYL, JSI JO 3ouUaN[A] [ H'p 3L

- (sdo) Aouanbaxg rermieN

78



e AT

g-01X (w) ssawjoryL, ¥sIq
01 6 8 L 9 S 4 £ (4 !
T T ™ T T ¥ 3 ¥ ONM
- {0¥E
LT S ~09¢
......... —
- T {osg
1 - 10/':1
{00
(W) SEET'=27 “§999'=17 lozp
0 (W) 6997=27 ‘€€5'=17
+ AEV @."NN"H@. //v
A 2. | 1 [} - | L 1 03

9POJA[ PUOIIS 1010 JO "N UO SSIUYOIYY, 3SI JO SOUSNPY] 74t Sid

(sdo) Aouanbar] rermeN

79



reversed. It is evident that when the disk thickness is
0.003m the rotor will vibrate at 112 cps for all disk
locations. Hence, the natural frequency of the system can be
altered and controlled by changing the disk thickness and

its position.

4.5 Influence of Support Stiffness on Critical Speed of the

Rotor

The influence of support stiffness on the critical
speed of the rotor is investigated. The rotor is considered
to be made up of six equal distance finite elements
supported on flexible pedestals as shown in Fig.4.2.la. The
disk is located at the mid-section of the rotor (&L = (2=
0.4m)and its thickness remains <constant during the
simulation. The pedestal and fluid film properties such as
the stiffness and damping coefficients are lumped together.
The pedestal mass of the rotor support in this analysis is
neglected. The result of the computations are obtained for
different values of the support stiffness in z direction
Kzz ranging from .2Kyy to 2Kyy in step of 0.2Kyy where Kyy
is equal to 981x103 N/m. The value of cross-coupled
stiffness Kzy 1is considered to be 0.1Kyv. The support
damping is included in the analysis and is equal to Czz =
Cyy = 981 N-sec/m whereas the cross-coupled damping is
neglected. The natural frequencies of the first four modes

of the rotor are obtained. The results are recorded in
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increasing order of resonance frequency as presented in
Table 4.5.1. A plot of the first four modes of the rotor’s
critical speed vs the different values of stiffness Kz is

shown in Fig.4.5.1.

One can conclude from the result that the natural
frequency of the rotor is increased by increasing the value
of the ratio Kzz/Kyy. The increasing natural frequency is
only pronounced when the value of the ratio K:z/Kyy is
increased from 0.2 to 1. When Kzz/Kyy = 1 the natural
frequency corresponding to the first, second, third and
forth mode of the rotor is recorded to be 53.14, 110.68,
265.76 and 449.32 cps respectively. Beyond the value of
Kzz/Kyy = 1 the natural frequency of the system remains
almost unchanged. Cne can, therefore, vary the anount of the

support stiffness to control the vibration of the systen.

4.6 Influence of Support Damping on Critical Speed of the

Rotor

The influence of support damping on the critical speed
of the rotor is studied. The rotor is supported by flexible
pedestal with a single disk mounted at the mid-point (& =
€2 = 0.4m)of the rotor. The mass of the pedestal for this
study is neglected. The thickness of the disk is assumed to
be 0.01 m. The confiquration of the rotor-bearing system for

the present analysis is shown in Fig.4.2.1a. The results of
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Table 4.5.1

Influence of Support Stiffness on the
damped Critical Speed of the Rotor
No. Mode 1 Mode 2 Mode 3 Mode 4 Kzz/Kyy
(CPS) (CPS) {CPS) (CPS) Coeff’nt

1 25.6889 20.5762 226.9754 438.7687 0.2
2 37.4928 61.9154 238.2127 441.5791 0.4
3 44.8508 84.0781 248.8318 444.4107 0.6
4 49.9560 100.1271 258.5016 447.1516 0.8
5 53.1404 110.6839 265.7688 449.3201 1.0
6 54.3098 114.6956 268.7202 450.2284 1.2
7 54.6504 115.8793 269.6112 450.5058 1.4
8 54.7895 116.3649 269.9793 450.6209 1.6
9 54.8629 116.6216 270.1746 450.6820 1.8
10 54.9079 116.7730 270.2945 450.7196 2.0

E = 2.068E11 N/m>

p = 7800 Kg/m3

£1= 0.4 m

22= 0.4 m

Kyy = 981E3 N/m

Czz = 981 N-sec/m

Cyy = 981 N-sec/m

Czy = Cyz = 0

Kzy = Kyz == 0

Mp = 0O
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the simulation are obtained for different values of support
damping in the direction Czz ranging from 0.2Cyy to 2Cyy in
steps of 0.2Cyy. The value of Cyy remains constant and equal
to 981 N-sec/m. The support stiffness cross coupling is
included in the analysis and is considered to be 981x10°
N/m. The cross-coupling of the support damping is neglected.
The results of the first four modes for different levels of
support damping are presented in increasing order of
resonance frequency in Table 4.6.1. A plot of the recorded
damped critical speed vs the different 1levels of support

damping is shown in Fig.4.6.1.

Increasing the ratio Czz/Cyy from 0.2 to 2 does not
show a significant influence on the response of the systen.
The maximum frequency fluctuation for the first and second
mode are of the order of 2 and 9 cps respectively. As the
ratio Czz/Cyy increases the natural frequency of the first
and second mode of the system first decreases and tben
increases back again; whereas, the frequency of the third
and higher modes decrease monotonically at a lower rate.
Support damping is, therefore, considered to be another
factor in controlling the 1:sponse of the system. It |is
important to mention that any change to the damping
coefficient has a significant effect on the stability of the
system. This effect 1is not addressed in the present

analysis.
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Table 4.6.1

Influence of Support Damping on the
Critical Speed of the Rotor
No. Mode 1 Mode 2 Mode 3 Mode 4 Czz/Cyy
(CPS) (CPS) (CPS) (cps) (Ret o)

1 54.8048 122.6856 270.6952 450.8894 0.2
2 54.4792 122.2988 270.6634 450.8945 0.4
3 53.5387 116.2097 270.5962 450.9046 0.6
4 53.1874 113.6443 270.3282 450.9135%0 0.8
5 53.1404 110.68139 265.7688 449.3201 1.0
6 53.3517 110.5530 264.0053 446.8212 1.2
7 53.8932 108.7584 256.4281 441.7036 1.4
8 54.9348 118.1553 246.6319 435.5542 1.6
9 55.4272 117.9498 234.2725 428.2687 1.8
10 55.3274 117.8362 218.5852 419.7953 2.0

E = 2.068E11 N/m?

p = 7800 xg/m3

l!u l?- 0.4 m

Kyy = Kzz = 9B1E3 N/m

Kyz = Kzy = 981E2 N/m

Czz = Cyy = 981 N-sec/m

Czy = Cyz = O

Mp = O
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4.7 Influence of Pedestal Mass on Critical speed of the

Rotor

The influence of pedestal mass on the critical speed of
the rotor is investigated by considering the flexible rotor
mounted on a flexible pedestal. The disk is located at the
mid-span of the rotor (&1 = 2 = 0.4m). The disk thickness
and disk location are held constant throughout the
calculation. The disk thickness is assumed to be 0.01lm. The
rotor bearing pedestal configuration for this analysis |is
shown in Fig.4.7.1. oOnly the pedestal stiffness in 2
direction is considered in this analysis and it is assumed
to be Kz, = 3.55x10° HN/m (20.272x10° 1b/in) (37]. The
pedestal damping is considered to be negligible. The fluid
film properties are taken as Kz = Kyy = 981x103 N/m and C/r
= Cyy = 981 N-sec/m and the cross coupling is neqglected. The
computations are obtained for the various values of pedestal
mass ranging from 0.68 to 462 kg. The properties of the
rotor material are listed in Table 4.7.1. The results of the
calculations are presented in increasing order of resonance
frequency in Tables.4.7.2, 4.7.3, and 4.7.4. Finally, a plot
of the critical speed vs the different values of pedental

mass are shown in Fig .4.7.2, 4.7.3, 4.7.4.

The result of the simulation for the three different
rotor material densities has clearly shown that the pedental

mass does not have any significant effect on the firnt mode
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Table 4.7.1

Material Properties of the Rotor

Material Densigy Moduluszof E
kg/m N/m
, 10
Aluminum 2700 6.895x%x10
Steel (430) 7800 2.068x1011
Brass 8500 1.103x1011
89
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Table 4.7.2

Influence of Pedestal Mass on the
Critical Speed of the Rotor
No. Mode 1 Mode 2 Mode 3 Mode 4 Mp /Mg
(CPS) (CPS) (CPS) (CPS) P
1 73.38 220.5 268.60 371.38 0.177
2 73.38 220.5 268.60 371.38 0.474
3 73.37 219.96 268.60 371.38 1.066
4 73.37 219.96 362.97 268.60 1.777
5 73.37 219.96 314.52 268.60 2.370
6 73.37 222.3 219.96 268.60 4.740
7 73.37 157.24 219.96 268.60 9.481
8 73.37 99.5 219.96 268.60 23.70
9 44 .50 73.42 219.96 268.60 118.51
2
E = 6.89E10 N/m
p = 2700 Kg/m3
= £;= 0.4 m
td= 0.01 m
Kyy = Kzz = 981E3 N/m
Kyz = Kzy = 0 N/m
Czz = Cyy = 981 N-sec/m
Cp= 0
z
sz--- 3.55E8 N/m

S0
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Table 4.7.3

Influence of Pedestal Mass on the
Critical Speed of the Rotor
No. Mode 1 Mode 2 Mode Mode 4 Mp /MR
(CPS) (CPS) (CPS) (CPS) v
1 55.0423 117.4055 270.78 450.8743 0.061
2 55.0421 117.4080 270.78 450.8743 0.164
3 55.0418 117.4133 270.78 450.8743 0.369
4 55.0414 117.4206 270.78 362.9920 0.615
5 55.0410 117.4276 270.78 314.2647 0.820
6 55.0396 117.4646 222.67 270.7871 1.64
7 55.0365 117.4232 157.34 270.7871 3.28
8 55.025 99.4247 117.42 270.7651 8.204
9 44.453 55.0915 117.42 270.7825 41.024
2

E = 2.608E11 N/m

p = 7800 Kg/m>

! =8¢ =10.4 m

1 2’

t= 0.01 m

d

Kyy = Kz2z = 981E3 N/m

Kyz = Kzy = O N/m

Cz2z = Cyy = 981 N-sec/m

Cpr= 0O
r 4

K%— 3.55E8 H/m
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Table 4.7.4

Influence of Pecdestal Mass on the
Critical Speed of the Rotor
No. Mode 1 Mode 2 Mode Mode 4 Mp /Mr
(CPS) (CPS) (cPs) (CPS)

1 46.51 112.46 212.9 321.44 0.056
2 46.51 112.46 212.9 321.44 0.1505
3 46.51 112.47 212.9 321.44 0.338
4 46.51 112.52 212.9 321.44 0.5646
5 46.51 112.47 212.9 314.9 0.7529
6 46.51 112.49 222.3 212.9 1.505
7 46.51 112.58 157.42 212.9 3.011
8 46.50 99.40 112.52 212.9 7.529
9 44.39 4€.54 112.52 212.9 37.64

E = 2.608E11 N/m?

p = 10150 Kg/m>

£1= £2= 0.4 m

td= 0.01 m

Kyy = Kzz = 981E3 N/m

Kyz = Kzy = 0 N/m

Cz2z = Cyy = 981 N-sec/m

sza-: 0

Kp ~ 3.55E8 N/m
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of the system. The increasing pedestal mass has also shown
little effect on the second mode of the system. Although
these changes are very small, a rotor with lower material
density is more susceptible to bring down the natural
frequency of the system. The pedestal mass has a significant
effect on the third, fourth and higher modes of the system.
Consider that as the pedestal mass parameter for aluminum
rotor increases from 0.06 to 10. as shown in Fig 4.7.2, the
resonance frequency of the rotor third mode decreases from
268.6 to 219.9 cps with the difference of 48.7 cps. These
differences are higher when material density increases. For
example, the third mode natural frequency of the system of
steel rotor is decreased from 270.78 to 117.4 cps with the
difference of 153.4 cps and brass rotor with the difference
of 100.4 cps. It is also observed that for aluminum rotor
the natural frequency of the first mode with pedestal mass
parameter of 0.177 1is equal to the natural frequency of the
second mode when the pedestal mass parameter is equal to
118.5. Similarly, the natural frequency of the second mode
with pedestal mass parameter of 0.177 1is equal to the
natural frequency of the third mode with pedestal mass
parameter of 181.5 and so on. These effects are also
illustrated for rotors with different materials as shown in
Fig.4.7.3, 4.7.4. It 1is, therefore, important to consider
the pedestal mass to improve the performance of the

rotor-bearing-pedestal system.
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4.8. Discussion of results

The parametric study of a single disk rotor-bearing-
pedestal system supported on hydrodynamic bearings is
studied using the component mode synthesis technique. Even
though a single disk rotor-bearing-pedestal with a few
finite elements is chosen, a large system with several
disks, impellers, mechanical coupling and bearings can be
treated equally. By this technique the size of the overall
finite element system matrices can be substantially reduced
without affecting the dynamic characteristics of the system

response.

The rotor mass and stiffness are represented by means
of Archer’s [8] consistent formulation. The model includes
the effects of rotary inertia only. The effect of gyroscopic
moment, shear deformation and axial torque are not included
in the analysis. However these effects can be included as
per the references [9,32]. In this analysis the rotational
fluid film coefficient is neglected. Also, only pedestal
mass and stiffness in Mp and Kp are considered in this

analysis.

The response of the rotor-bearing-pedestal system
depends on many factors some of which are examined in detail
in the previous chapter. The configuration of a single rotor
supported on hydrodynamic bearings at both ends can be

altered by adjusting the bearing properties and the location
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of the disk so as to have a specific load distribution on
the two bearings, varying the density of the rotor,
increasing the mass of pedestal etc. Consequently, the
response pattern of the rotor changes depending upon the

rotor configuration.

Significant response in the vertical direction can
occur when the rotor experiences changes in such support
properties as stiffness and damping. The parametric study of
rotor-bearing-pedestal system is an efficient tool for an
engineer designer to optimize the performance of
rotor-bearing-pedestal system so as to avoid critical speed

condition in the vicinity of operating speed.
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CHAPTER S

CONCLUSION

5.1 Concluding Remarks

The thesis has examined the general problem of rotor
dynamics. After reviewing the current methods available it
is found that there is a need for a computationally
efficient and accurate method which can handle all the usual
complexities like flexibility of bearings, pedestals etc. It
is recommended that the component mode synthesis method is
appropriate for this purpose and is developed to study the
rotor-bearing-pedestal behavior. With  component mode
synthesis method proposed in this thesis the size of system
matrices can be reduced considerably without affecting the
dynamic characteristics of the system response. A general
purpose digital computer program SETSA is developed and is
fully described. The accuracy of the method as well as the
program capability with reference to actual examples are
established. An extensive study of the influence of support
flexibility on the critical speed of the rotor is nade, and
useful practical conclusions are obtained. The computer
program has also the <capability to perform similar
calculations to study the influence of any prescribed ground

motion on the dynamic system.



T

A A T b ey vl T aN TIRRCTRES A W TR TrE et TR TR Tl v T 0 BN s 1 (R 2N RN T NIRRT MR AT AT T e ST

The digital computer program SETSA is developed in
chapter 3 to obtain the parametric study of rotor-
bearing-pedestal system based on component mode synthesis.
The user may bypass the CMS option and proceed directly with
the finite element method provided that the size of the
program does not exceed the computer 1limitations. The
structure may consist of a maximum of 4 components, each of
which may contain up to a total of 10 elements characterized
by different element length and diameter. This will allow
the user reasonable flexibility in modeling a system with
several geometric discontinuities. Non symmetric support
properties such as damping can be easily accommodated by the

program.

The accuracy of the program is tested with two actual
examples and the results of the simulation are obtained for
different levels of mode truncation. The percentage of error
resulting from mode truncation is then tabulated. The
computer program SETSA is finally used to study the
influence of such effects as: stiffness parameter, material
density of the rotor with constant modulus of elasticity,
different disk thickness and disk location, support
stiffness and damping, and pedestal mass on critical speed
of the rotor. Hence, the program developed may also serve as
an essential component of an active control system in which
the support dampings and stiffnesses may be conveniently

defined.
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The analysis is made on the basis of a linear elastic
rotor spinning at a constant speed and external viscous
damping is provided only at the supports. No high tempera-
ture effects are included. Although the program SETSA is
designed to handle linearly elastic supports, with only a
minor modification, an analysis with nonlinear support
properties is possible. It is observed in parametric study
of different disk thickness and disk location variation that
all the curves passes through one point when the disk
thickness is 3.1 mm regardless of disk location. Also a jump
is observed in the natural frequency of third and higher
modes in parametric study of pedestal mass variation. The
reason for these phenomena is not clear and need further
investigation. Mode truncation criteria should be
investigated specifically relating to the damped modes in
the complex normal mode development. There is still not
mathematically proven which mode should be truncated to get
better results and yet gquarantee convergence. This is also

requires further investigation.
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APPENDIX A

FLOW CHARTS

A. 1 Program MAIN

NC=N

CMSS

Yes No

e+l

CMSASS

Ugdumped CMSUND

ystem

CMSDAN CMSRES




A. 2 Sub-Program CMS1

input NELEM,
NDFEL D{I). E
Zl(l). Density ;

Call subroutine
Build to form the
mass, damplng
and stiffness of
ith element

Call subroutine
ASEMBLY to assemble
all elemenls and
form M, C, K of
companen! assembly

Record stilfness
Kof the assem-,
bly on lspe 4

Record the Zn/ Put M, C and K of Add mass and
form matrices component assem- inertia at the
on tapes 1, 2 bly tn 2n form disk location

Construct the re-~
ordering tramsfor-
mation malrix

Record the reorderin
transformation matri
on tape 3
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A. 3 Sub-Program CMS2

1 .
4 ‘ Start ,
1

Read ta
: E’?
>
Uee reordering transforme-
Record the re- '{Em ?&":‘:pnnu bou:gnry
ordered matrices and interlor coardinates of
on tape 1, 12 £n form matrices recorded
on tape 1 and 2
Separate the inte— Record malrices
rior coordinates of of Interior coord's
| reardered matrix on tape 2§, 22
Canstruct the
interior coord's Call IMSL routine to
of stiffnees lnverse the Interlor
matrix recorded coord's of stitfpeas
on tape 4 matriz
Construct the
, Record the dis-
boundary coord Construct the placement static
of stiffness displcement static constraint matrix
matrix recorded constraint matix on tape ¢
on tape 4
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A.4 Sub-Program CMS3

( Start )

Read
21,

Tape
22

Call IMSL routine to
find the eigenvalue
and eigenvector of

Interior coordinates

Record Eigenvalue Call ARRANG subroutine to
in increasing order arrange Eigenvalues and
On tape 10 corresponding eigenvectors

in increasing o

rder of freq

Record the trun- / Truncate the
cated eigenvectors Nof of unwanted
on tape 17 / Interior mode

Stop
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A.5 Sub-Program CMS4

§

( Start }

Construct the
{runceted modall e e modal
transformation tape 15
matrix eqn(2.85) / pe
|
Use modal transformalion o Construct the
2n forra meatrices of tape I reordering
and 12 o obtain reduced transformation
truncated component to truncated
componeal
Record flnal truncated Use reordered
reduced component {ranaformsation Record the reordered
malrices on tape meatrix o get transformatlion matrix
(1-1)*10+41). and tape truncated com- on tape 19
1-1)°10+42) ponent matrices
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A.6 Sub-Program CMS5

( Start }

Input: Tepe
315,19

Construct the Record the back
lzack transforma— | o}“ranasformatlon matrix
ion matrix t¢
original coord’s (1—1)‘?0+45]

Stop
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A.7 Sub-Program CMSASS

L vy

e e

T o 1)+41
-1)4
an:lpi(jlplh)n) )

Assemble jlh
component to form
complete structure

Yes
Record the undemped
assembled component
matrices Tepe 23, 24

Put pedestal
Into state
space form

Increese the size of the
assembly o accommeoedale
all pedestal degrees of
freedom

Record the assembly Add pedestal m,.c,.
matrices for damped k, and fluld thm
enelysis on Tape 25,26 ¢, K, to assembly
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A. 8 Sub-Program CMSUND

Q Start )
/ Read 'I‘apy
23, 24

Call subroutine ELIM to
eliminate rows and columns
of the assembly matrices
based on support condition

Record the
eigenvalues
on tape 10

Call IMSL routine to
calculate the un-
damped eigenvalue
and eigenvector

Call ARRANG sub-
routine to arrange
eigenvalues in
increasing order
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A.9 Sub-Program CMSDAM

( Start )
Read ta
25, 26 be
Record the right Call IUSL rou~ find (he transpose
eigenvector on‘ 31"}«:‘?;15.".“:5 of lh& inlfm pos
tape 66 taht vector equation of motion
Call IMSL rou~
Record the befl
:lnenl'&:h;::v:i:: eigenveclor on
left vector tape 87
g
- Using leflt end right efigen-
ArrigTinath s veclor and blorthagonality Record the moda
on tape 10 | relation to decouple the foreing matrix
system equations of motion on lape 200
Stop
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APPENDIX B

BEAM ELEMENT MATRICES

[ 12 symmetric

-6l 0 0 48

=36 0 0 -3¢ 36

-3 0 0 482

[ 156 symmetric
0 156

0 228 4¢?

226 0 0 4t
54 0 0 132 156

0 54 =132 0 0 156

0 13¢ =132 0 0 220 4¢
| -13¢ 0 o -322 2260 0 @ 4f
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