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Abstract

Partition Algorithm for the Dominating Set Problem

K. L. Ma

An algorithm to find the dominating sets of a specific size in a given graph was
developed. The algorithm will recursively select a group of vertices, called a cell, to
partition into several subcells and then partition the content of the cell among its
subcells. Two tests, namely the Coverage Test and the Wastage Test, were used to
cut down the search tree generated by the algorithm. A program was developed based
on this algorithm. Using the program, we confirmed that the minimum dominating
number of the 8 x 8 g.1d graph is 16, the minimum domination number of the § x 9
grid graph is greater than 17, and the minimum domination number of the 9 x 9 grid
graph is greater than 19. We also obtained the dominating sets of several grid graphs

and knight’s graphs in an m x n chessboard with various test sizes.
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Chapter 1
INTRODUCTION

T'he study of the domination number in various combinatorial problems dates back
to the 1800’s when questions concerning the optimum placement of chess pieces on
a chessboard were first published in [1,10]. Two earlier discussions can be found
in [3,24]. A more detailed discussion, which contains a quick review of results and
applications concerning dominating sets in graphs, can be found in [9]. Different
combinatorial problems such as the domination number of grid graphs {7], knight’s
domination aumber of a chessboard [14], and the football pool problem [18,19] can be
solved by representing the problem by a graph and obtaining its domination numbers.
Solving these combinatorial problems will contribute to areas like networking, VLSI,
and database management. For example, grid graphs have been used to model a
variety of routing problems in street networks and processor interconnections in mul-
tiprocessor VLSI systems. One can refer to [11,12,15,20,25,27,28,29] for some other
applications of grid graphs. In [21], the author discusses the application of the dom-
ination number to communications in a network, where a dominating set represents
a set of cities which, acting as transmitting stations, can transmit messages to every
city in the network. Some basic concepts concerning grapirs and the dominating set
problem are discussed in [2.4,5,13,22,26).

In this thesis we present a partitioning algorithm we developed to obtain all the
dominating sets of a graph with a specified domination number s. Our algorithm
was motivated by {19] in which the authors used a similar method, but in different

terminology, to prove that 27 bets are required for the football pool problem with 5



matches. Based on our algorithm, we implemented a program which takes a graph
and an integer s as inputs. The program will find all the dominating sets of size s for
that graph. Using the program, we have confirmed that the best known upper bound
of the minimum domination number of a 8 x 8 grid graph published in [7] is indeed
optimal. We have also confirmed that the minimum domination number of the 8 x 9
grid graph is greater than 17, and the minimum domination number of the 9 x 9
grid graph is greater than 19. Moreover, we have used the program to verify that
the knight’s dominating sets in a 3 x 11, a 4 x 6, and a 5 x 12 chesshoard published
in [14] are indeed complete. Theorems developed in [6,8,16,23] may be verified using
our program.

The layout of the thesis is as follows. Chapter 2 discusses basic definitions and
mathematical preliminaries for the dominating set problems. Chapter 3 talks about
the methodology used in the program to reduce the computational time. Chapter 4
discusses results obtained when we applied this program to find the the dominating
sets of a grid graph and the dominating sets of a knight's graph in an mxn chessboard.

Finally, Chapter 5 gives a conclusion and suggestions about further work which can

be carried out in this project.




Chapter 2

MATHEMATICAL
PRELIMINARIES

In this chapter some basic concepts and definitions about the dominating set problem
will be presented. The method used to solve the dominating set problem and the

theorems involved will also be explained.

2.1 Basic Definitions

Given a graph G(V, E), a vertex u is said to be covered or dominated by a vertex v if
and only if (1, v) € E or v = u. The extended edge set of E, denoted E’, is equal to
F U {(u,u) : Vu € V}. For all graphs, we work on the extended edge set. A graph,
G(V, F), is said to be covered by a set of vertices V' if and only if the union of the
sets of vertices covered by each vertex in V' is equal to V. V' is a dominating set
of ;. The domination number of G is the number of vertices in V’. The minimum
domination number is the cardinality of the smallest V' that covers G. Given a graph
((V,E), onc of its domination numbers is [V| and all its domination numbers are
less than or cqual to |[V|. Figure 2.1 shows an example of a 4 x 4 grid graph. The
minimum domination number is 4 and the largest domination number is 16. One of
the dominating sets with domination number 4 is {b, k, ¢, o}.

Our approach in solving the dominating set problem is to use a partition algorithm
to partition a graph recursively until all the solutions are obtained. A solution is a

dominating set of size s, where s is an integer input to the algorithm. The vertices
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Figure 2.1: A 4 x 4 grid graph.

of the graph are partitioned into cells where each cell is a set of vertices. The size of
a cell, size(C), is the number of vertices in the cell C. Initially, all the vertices are
in one single cell. The refinement of a cell is the partitioning of the vertices in the
cell into subcells. If a cell C' is refined into a set of subcelis, {C,,...,C,}, we call ¢
the parent of Cy,...,C,, and C,,...,C, are called the children of C. T'wo cells are
siblings of one another if they have the same parent.

In the dominating set problem, a vertex is cither in or not in the dominating set.
We say a vertex is on if a vertex is in the dominating sct, otherwise it is off. The
content of a cell is the number of vertices in the cell that arc on. We use o((7) to

denote the content of a cell C. Clearly
0 £0(C) < size(C).

It is also clear that when a cell is refined, the total content of the subeells is equal to

the content o the original cell. This will lead us to the following theoremn:

Theorem 2.1 If a cell C is refined into subcells Cy,...,C,, then

n

ZO’(C.) =a(C).

1=1

We will call the theorem above the Conscrvalion Rule.




2.2 The Partition Algorithm

The partition algorithm will take a graph G(V, E) and an inweger s, called the fest
size, as its inputs. Starting with V as a single cell and s as its content, the algorithm
will recursively refine the cell and partition its content. A solution can be obtained
only when the algorithrn comer to a complete refinement. A complete refinement is
the last refinement of the cells which leads to |V cells each of size 1 and the total
content of all the jV| cells must be equal to s.

In order to cut down the amount of computation time, before each refinement of
the cells one has to check whether further refinement will lead to a solution. T'wo
tests were developed to achieve this purpose. The first test is called the Coverage
Test and the second one is called the Wastage Test. They restrict the possible
partitions of the parent’s content among its children cells. The two tests guarantee
that those partitions which are not considered will never lead to a solution. The idea
of partitioning the vertices was used in [19], and the Coverage Test is a generalized

version of the method used there.

2.2.1 The Coverage Test

Before we discuss the Coverage Test, we have to first introduce the following defini-
tions. A cell C, is said to be a neighbour of a cell C; if there exists an edge (u,v),
where (u,v) € E' with w € C; and v € C,. We use C; ~ C; to denote C, is a
neighbour of €, and C, #£ C, to denote C, is not a neighbour of C,. We will call C,
the neighbour cell and C, the master cell. As we work on the the extended edge set
E', cach cell Cy is a neighbour of itself. The Coverage Test can be informally stated

as follows:

The content of a cell C and its neighbours must be large enough to cover

all the vertices in C.

To be more formal, we need to state clearly the interaction between one cell and
the other. With every ordered pair < G, C; > of cells, we define the upper influence

function of (', on C,, with a parameter m, to be the upper bound on the number

5



of edges (u,v) in E' with u € C;,v € C; and the number of distinct u cquals to m.
The upper influence function is denoted as Uc,c,(m) or U, (m) in short, where 1
is an integer between 0 and size(C;). If o(C,) = m, then the maximum number of
vertices in C, covered by m vertices in C; is U;;(m). One way to compute U;,(m),
is by sorting the vertices of C; descendingly according to the number of edges in the
extended edge set going from a vertex u € C, to the vertices in C, and then counting
the total number of edges going into C; in the first m vertices.

Let us consider an example using the 4 x 4 grid graph in Figure 2.1. Assume
Ci={a, bc d, e f, g h}and C; = {3, 3, k, I, m, n, o, p}, then the descending
order of the vertices in C; according to the number of edges in the extended edge set
going from a vertex u € C} to the vertices in Cy is e, f, g, h, a, b, ¢, and d, with the
number of edges equal to 1, 1,1, 1, 0, 0, 0, and 0, respectively. Using these data, we
can generate Uyz. The following will show some examples of different upper influence
functions:

ta= 015540 g 04" tn
and

U_012345678 ~U
=104 8 12 16 19 22 25 28 |~ "%

The upper row in the array represents the parameter m in the function and the
lower row in the array represents the value of the function, U,,(m). In general, 1/,,
is nonlinear, but one can approximate the function by letting U,,(x) < U,,(1) x «
where z is any integer from 0 to size(C,). In this example, U,;, = U,,, but in general
they are not equal. Consider the following example. Choose C) = {«, d, m, p} (the
four corners), C2 = {b, ¢, e, h, i, I, n, o} (the vertices on the four edges except the

corners), and C3 = {f, g, j, k} (the rest of the vertices), then

012 3 4
U”'[o 2 4 6 8]‘””2’
012345678 -
U“‘[o 1 234567 8}"“”‘””"”’
0123 4
U13'—[0 0 0 O 0]—11317



01234
U“=[01234}’

0123 4
U”“[oaegm]'

Notice that the largest m in Ujp(m) is different from the largest m in Uy (m). This

and

is because the former m is size(C) while the latter m is size(Cs).
Suppose that there are n cells. The Coverage Test requires that for each cell Cj,
w1 Uy (0(Cy)) 2 size(Cj). Notice that this is not a linear inequality. In addition,

if C, and C; are not neighbours, then Uj; is the zero function. Hence this lead to the

following theorem:

Theorem 2.2 For cach ccll C,, the necessary condition for C, to be covered is

)" U,(o(C)) 2 size(C)).

C,~C,

Unfortunately, while we are trying to find a dominating set, we seldom know exactly
what the o(C,) are. Quite often, we only know the upper bound and the lower bound
of the content of a cell. Based on these bounds, there inay be several ways tc partition
the content after cach refinement of a cell. The partition algorithm will try all these
ways and sce if any of them will lead to a solution when it comes to a complete
refinement.

In order to apply the Coverage Test in the partition algorithm, we have to further
refine Theorem 2.2, Let us define the upper bound of the content of a cell C as
(C') and the lower bound of the content of a cell C' as g(C). In short, we will
call (C') as the upper content of C and g(C) the lower content of C. Obviously,
a(C) L o((") £7(C). Fina"ly, we will define S,, the S-slack of a cell Cj relative to
a cell Cy, by

Sky = Uxy(G(C)) = Uk, (2(Cx)).

Notice that if F(Cy) = o(Ci) = g(C}), then Sk, = 0. Using the S-slack, the Coverage

Test is defined in the next theorem.
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Theorem 2.3 For each cell C; and for all neighbour cells Cy of C,, in order for C,

to be covered, the following inequality should hold:

[ Y U‘,-w(c‘-))} — size(C,) 2 Si,.

C\~C,

Proof: In order to cover C,, the best case is when each edge from the neighbour
of C; covers one distinct vertex in C;. If all the neighbours except Cj have upper
content, then the lower content of Cy must be large enough to cover all the uncovered

vertices in C;. Based on this idea, we obtained the following inequality,

Ui(a(Cr)) > size(C) — > Uy(®(C)).
(Ci~Cy LK)

Subtracting Uy,((Cy)) from both sides of the inequality, we will get

Uiy (2(C)) = Uxy(F(Ch)) = size(Cy) = 3~ Uy(@(C)

C~C,

& =8y 2 size(C)) = Y U, (5(C))

C~C,

& [ ) U,-J(E(C,))} ~size(C,) 2 Sy,. O
CnC,y

If the inequality is not satisfied, g(Ci) must be raised so that U,,(g(C})) is greater
than or equal to the number of uncovered vertices in C,.

After a refinement, suppose there are ¢ subcells in total. According to The-
orem 2.3, for each fixed j, these ¢ subcells Ci,...,C,; will lead to ¢ inequalities:
[Zc.~c, U,-J(F(C,-))] — size(C,) 2 Skj, for k =1 to ¢. In the beginning, we initialize
a(7) to o(Cy) if it is defined, otherwise g(Cy) is initialized to 0. After applying the
Coverage Test, if any of the inequalities is not satisfied, the corresponding S-slack,
Sk, will be reduced by raising the lower content of Cx. Hence, by applying the Cov-
erage Test, one can improve g(Cy). If the application of the Coverage Test leads Lo
a g(Cy) which is greater than @(C}), this means that it is impossible to cover all
the vertices in C;, hence, further refinement will not lead to any solution and the
partition algorithm would backtrack to previous stage. The algorithm to implement

the Coverage Test is summarized below.



The Coverage Test algorithm
for cach C,
tolal upper influence « 0;
for cach C, ~ C,
total upper influence «— total upper influence + U;,(G(C5));
check value «— total upper influence — size(C;);
for cach Ci ~ C;
ezil — false;
repeat
work out Sj;;
if check value < Si; then
if 7(Cx) > g(Ck) then
increase g(Cy) by 1;
else
report no sclution in this partition of content;
return;
else
exit «— true;

until erit;

2.2.2 The Wastage Test

A vertex is said to have a wastage of t if from all its neighbours there is a total of
t + 1 distinct edges connected to this vertex. Again, we should remember that we
arc working on the extended edge set. The mazimum possible wastage of a cell C,,

W(C,), is defined by

]
W(C,) = [ Z UU(U'(C,'))j — size(C;)

C\~C,

where Yene, Uy (0(C))) represents the maximum possible coverage for the cell C,.

Henee, after subtracting the size of C,, one will get the maximum possible wastage.

9
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In order to work out the maximum possible wastage of cach cell, we have to reach
a state where the content of each cell is defined. Notice that the maximum possible
wastage is not conserved. Consider the 4 x 4 grid graph in Figure 2.1. Assume
C={a,bc, dye f,g, bt 3 kI, mn, o,p},Ci={a,b ¢ d e f, g, h},
Co ={i, j, k, I, m, n, o, p}, 0(C) = 6, a(C)) = 3, and o(C;) = 3. Then
W({C)=4dx5+2x4)-4x4=12, whereas W(C;) = (3 x4+3x1)-4x2=1
and W(C;) = (3x4+3x1)—4x2=17. Inthe process of working out W(C},), the
3 x 4 is Uj1(0(Cy)) and the 3 x 1 is Uy (0(Cy)).

Before we define the Wastage Test, we need to define a function to state clearly
the interaction between one cell and the other. With every ordered pair of cells
< C;,C, >, we define the lower influence function of C; on C,, with a parameter m,
to be the lower bound of the number of edges (u,v) € E’ with u € C,,v € C, and the
number of distinct u being m. The lower influence function is denoted as Le,c, (1)
or L,,(m) in short, where m is an integer between 0 and size(C,). Il o(C',) = m,
then the minimum number of edges between C,; and C, is L,;(m). First, the vertices
of C, are sorted ascendingly according to the number of edges in the extended edge
set that connect a vertex u € C; to the vertices in C,. L;j(x) is then oblained by
counting the total number of edges going into C, from the first z vertices in (.

Let us consider the 4 x4 grid graph example which is shown in Figure 2.1. Assume
Ci={a, b c, d,e f,g, h}and C, = {1, j, k, I, m, n, o, p}, then the ascending
order of the vertices in C; according to the number of edges in the extended edge set,
going from a vertex u € C; to the vertices in C, is a, b, ¢, d, ¢, f, g, and h, with
the number of edges equal to 0, 0,0, 0, 1, 1, 1, and 1, respectively. Using these data,

we can generate Lj2. The following are some examples of different lower influence

0 8
L12=[0 4]=1121,

01234 5 6 7 81]_
0 369 12 16 20 24 28| "~

The upper row in the array represents the parameter m in the function and the

functions:

O
oo
o w
=R
—
NN O
LW ~3

and

L= |

lower row in the array represents the value of the function, L,,(rn). In general, L,

10



is nonlinear, but one can approximate the function by letting L;;(z) > L,,(1) x =
where z is any integer from 0 to size(C;). In this example, L;, = L,,, but in general
they are not equal. Consider the following example. Choose Cy = {a, d, m, p} (the
four corners), C; = {b, ¢, e, h, i, I, n, o} (the vertices on the four edges except the

corners), and C3 = {f, g, j, k} (the rest of the vertices), then

01234
L‘2=[0 2 4 6 BJ‘L”’
whereas
01 2345678
L'“"[o 1 234567 8]‘1“”“‘[’23’
0123 4
L”‘[o 000 0]“”3"
0123 4
L“=[0 23 4]’

and

L]0 1234
BT10369 12

Notice that the largest m in Ly(m) is different from the largest m in Ly(m). This
is because the former m is size(C)) while the later m is size(C;). Also notice that,
Vi, j: L, (size(C,)) = U, (size(Cy)), Li,(0) = U,,(0) = 0, and C; # C, iff Vz(L,;(z) =
U,,(x) = 0) where r is any integer from 0 to size(C;). Hence in the last example,
Cy A Cs.

‘The unavoidable wastage of a cell C;, denoted by W(C,), is defined as fcllows:

_ 0
W(C,) = maximum of{ [ZC c L,J(Q’_(Ci))] —~ size(C)).

The term Eenc, Liy(2(C))) will give the best minimum coverage C, can get from
all its neighbours. Hence, if [Zc.~c, L,,(g_(C;))] —size(C;) is greater than or equal to
zero, it will give the the unavoidable wastage of the cell C,. Since [Zc.~c, L, (Q(C;))] -
size((’)) may be negative, one has to take the maximum between this value and zero.
Let us denote () as a child of C by C, 4 C. The Wastage Test can be stated in the

following theorem.

11



e TRV TR EEE———S—

Theorem 2.4 The necessary condition for a cell C to be covered is
Y. W(C,) s W(C).
C,4C
Informally, the above Theorem means that the known unavoidable wastage among,
all the children of a cell C cannot be bigger than the maximum possible wastage of

C. Based on the lower influence function, we will define Zx,, the Z-slack of a cell ('

relative to a cell C, to be

Zi; = Li;(@(Cx)) — Li;(2(Ck))-

By choosing a cell C to have the upper content, or equivalently by defining

0
[Zc.~c, Lij(g_(ci))] —size(C)) + 2y,

then the Wastage Test can be restated in the following theorem:

W(Cy) = m{

Theorem 2.5 Let the cell Cy have ils upper content, then the necessary condilion

for a cell C 1o be covered is

Proof: If the upper content of the cell Cy is used, then by the definition of the
unavoidable wastage,
W(C,) ;
= mar ' : , —e
A [Z(C.NC,)A(x;l:k) L,J(Q(C,))] — stze(C)) + Ly, (5(C)))
0
= m‘””{ [Scime, Lif(a(C)] = size(C,) + Zi,.
When the upper content of the cell Cy is used, W(C)) will become W'(C)), henee,
Theorem 2.4 can be rewritten as:
> W/(C,)sw(C).o
c,-c

Suppose we are at a stage where a refinement is just finished, and theie are ¢

subcells in total. Each time when we choose a different subeell € 1o have the upper

12



content 7(Cy), it will lead to ¢ unavoidable wastage, Wy'(C,), where j varies from
1 to q. Tracing back the parents of all the subcells, different inequalities can be set
up. In the beginning, we initialize G(Cy) to o(Cy) if it is delined, otherwise 7(Cy)
is initialized to the minimum of size(C)) and o(C), where C; -1 C. After applying
the Wastage Test, if any of the inequalities is not satisfied, the Z-slack, Zy,, will be
reduced by lowering the upper content of Cy. If this leads to a (Cy) which is smaller
than g(C}), then it means that at least one of the parents’ maximum possible wastage
is less than the known unavoidable wastage among all its children. Hence, further
refinement will not lead to any solution. The partition algorithm would backtrack to

previous stage. The following is an algorithm for the Wastage Test.

The Wastage Test algorithm
for all C, after the latest refinement, work out the wastage of its parent W(C);
work out all the W(C));
repeat
select a new k;
repeat
pass — true;
work out all Zy,;
work out all W,/(Cy);
for cach parent C
if 2,40 Wi'(Ch) > W(C)
then if 3(Cy) > a(Ck)
then decrease 5(Cy) by 1;
pass + false;
else report no solution in this partition of content;
return;
until pass;

until no new k;

13




Chapter 3
IMPLEMENTATION DETAILS

Based on the theorems in Chapter 2, we have developed a program to find the domi-
nating set of a graph G(V, E'), with a given test size s. The program is implemented
using the language C. C is chosen because it is closely associated with the UNIX
operating system on which the program is run. In addition, it can support some
frequently used operations like dynamic array allocation and logical operations.

We define a depth as a group of cells. It is numbered starting from zero. Depth
zero is the cell which represents the whole graph. The program recursively selects
a celi and partitions it into subcells. Once a cell is selected and partitioned, all its
subcells together with those cells in the current depth which are not partitioned form
a new depth. This new depth becomes the lafest depth. The latest depth indicates
how close the program is from a complete refinement. The depth number shows the
level of the recursion. When the program reaches a new depth, it try to partition
the available content amongst all the newly gencrated subcells. Besides using the
Coverage Test and the Wastage Test to reduce the number of ways to partition the
content, special designs are used in the program to reduce the computational time
of the frequently used operations. The rest of this chapter talks about some of these

special designs.

3.1 Data Structure

The data structure of a cell is implemented as a structure to store all the frequently

referenced information. In order to save memory space and facilitate the partition



of a cell, the set of vertices is represented by an array of bits, and is named a bit
array. The existence of a vertex is indicated by setting its corresponding bit to one.
We will number the vertices starting from zero. If a graph contains r vertices and
a computer word has w bits, then the bit array uses [5] words. From now on, we
will use the word word to mean a computer word. For example, if a word is 32 bits
long, and the graph contains 40 vertices, then the bit array is two words long. Given
a cell containing three vertices 0, 5, and 34, the bit array representing the cell will
have positions 0, and 5 of the first word and position 2 of the second word set to one
and the rest set to zero. The following is the data structure of a cell defined in the

program and Figure 3.1 shows a pictorial view of such a cell. Notice that each cell

contains an array of words to indicate which vertex in the graph is in this cell.

struct cell_node

{
struct cell_node *parent; /* parent cell’s address */
struct cell_node *sibling; /* next sibling’s address */
struct cell_node *first_child; /* first child’s address */
unsigned *vertices_set; /* an array of computer words
used to represent the
vertices in this cell */
int prev_upper_content, /* previous upper content */
upper_content, /* current upper content */
prev_lover _content, /* previous lower content */
lower_content, /* current lower content */
actual_content, /* content of the cell */
total_children, /* number of children */
total_vertices, /* number of vertices */
max_poss_wastage; /* maximum possible wastage */
}s

To understand why the data structure of a cell-node is made as such, let us look

at some of the ways the different fields are used. The parent, sibling, first.child, and
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cell node data structure

parent pointer to cell_node

sibling pointer to cell_node

first_child pointer to cell_node
vertices_set bit array
prev_upper_content integer
upper_content integer
prev_lower_content integer
lower_content integer
actual_content integer
total_children integer
total_vertices integer
max_poss_wastage integer

Figure 3.1: The cell node.

max-poss.wastage fields are used in the wastage test. The verticesset field, which rep-
resents all the vertices contained in this cell, is used to find the neighbours of this cell.
When the program backtracks, the prev_lower-content and the prev_upper.content
fields are used to remember and then restore the values of the lower and upper
contents of the cell. The total_children, upper-content, and lower.content ficlds are
used by the program to generate all the partitions of the parent’s content. The ac-
tual.content field is used to work out the maximum possible wastage of this cell.
Finally, the total_vertices ficld is used when the program is generating the lower and
upper influence functions.

When a cell C is partitioned into n subcells, Cy,...,Cp, a new depth is reached,
and this depth is one level deeper than the last depth. The subcells contained in this
depth are the cells in the last depth except C, which is replaced by Cy,...,C,. Since
the lower and upper contents of each of the newly created subcells will be improved
by using the Coverage and Wastage Tests, all the subcells at this depth should be
stored in a way that they can be easily accessed. The data structure of the depth is

designed in a way that all the subcells in the same depth can be casily accessed. The
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depth_node data_structure

—
depth_entry pointer to depth_entry_node
next_depth | pointer to depth_node

parent_depth pointer to depth_node

Figure 3.2: The depth node.

following are the data structures defined in the program. The pictorial views of a
depthinode, a depth_entry_node, a neigh_info_node, and an influ_func_node are given

in Figure 3.2 to Figure 3.5.

/* Depth node is the header node of each depth. */

struct depth_node
{
struct depth_entry_node *depth_entry;

struct depth_node *next_depth, *parent_depth;
}

/* Depth entry node contains a pointer to the master cell

and a pointer to the neighbour information node. */

struct depth_entry_node
{
struct cell_node *corr_master_cell;
struct neigh_info_node *neigh_info;
struct depth_entry_node *next_entry;

H



depth_entry_node data_structure

corr_master_cell pointer to cell_node
neigh_info pointer to neigh_info_node
next_entry pointer to depth_entry_node

Figure 3.3: The depth entry node.

neigh_info_node data_structure
corr_neigh_cell pointer to cell_node
other_neigh_info pointer to neigh_info_node
influ_func pointer to influ_func_node

Figure 3.4: The neighbour information node.

/* The NEIGHbour INFOrmation NODE contains a pointer
to a neighbour of the master cell, a pointer to other
neighbour information node, and a pointer to the

corresponding influence function. */

struct neigh_info_node

{
struct cell_node *corr_neigh_cell;
struct neigh_info_node *other_neigh_info;
struct influ_func_node *influ_func;

};

/* The INFLUence FUNCtion NODE contains a sorted list of
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influ_func_node data_structure

sorted_edge_to_master array of integers

LIF_to_master array of integers

UIF_to_master array of integers
array_size integer

Figure 3.5: The influence function node.

the number of edges from each vertex of a neighbour to the
master cell. Based on this list, a list of Lower Influence
Function and Upper Influence Function are also kept.
Notice that in SUN 4, an integer contains 32 bits, hence

it can be used to represent 32 vertices. */

struct influ_func_node

{
int *sorted_edge_.to_master, /* an array of integers */
*LIF_to_master, /* an array of integers */
*UIF _to_master, /* an array of integers */
array_size; /* the size of the array */

}

We design the data structure corresponding to a depth to facilitate the calculation
of the Coverage Test, the Wastage Test, and the working out of the maximum possible
wastage of each cell. It is implemented to make backtracking easy. Figure 3.6 shows
how the data structure of the cells and the depths are 1-lated after a 2 x 2 grid graph
with test size two is partitioned into two subcells of two vertices with each subcell

having countent one. Notice that a negative value in the prev_lower.content and the
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prev.upper_content fields means that these values are undcfined.

The depth nodes are the header nodes for each depth. They arc linked as a
doubly linked list using the fields next-depth and parent.depth. The latter field is
used for backtracking. The depth_entry field of the depth_.node points to the first
depth.entry_node in this depth. There is one depth_entry.node for cach cell in this
depth. This depth_entry_node is linked as a single linked list by the next_entry field.
The corr-master_cell ficld points to the cell in this depth associated with the given
depth-entry.node. The neigh-info_field points to the first neighbour’s information of
this master cell. Since we are working on the extended edge set, a cell is a neighbour of
itself, hence, the first neighbour of the master cell is itself. The other neighbour cells
are linked as a singly linked list via the other_neigh-info ficld. The corr_neigh-cell ficld
points to its actual cell. The influfunc field is used to point to the influ_func_node
which contains all the influence functions whose master cell is the cell pointed to by
the corr-master.cell field in the depth.entry_node and the neighbour cell is pointed
to by the corr.neigh_cell field in the neigh_infonode. In the influ_funcnode, the
sorted_edge_to_master field contains an ascending array of integers, according to the
number of edges going from a vertex in the neighbour ccll o the vertices in the master
cell. The LIF-to.master and the UIF._to_master are two arrays of integers. They
represent the lower influence function and the upper influence function respectively.
The array_size field contains the size of the neighbour cell which is also the size of all

the arrays in the influ_func_node.

3.2 Table Look-Up

While we are generating the information for a new depth, we often encounter the

following operatious:
1. Given two cells C, and C,, determine whether C, is a neighbour of ).

2. Given a vertex v and a cell C, determine the number of distinct. edges from o

to C.
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cell_node: C

parent: null cell_node: C1 cell_node: C2
sibling: null «
first_child: — parent: parent:
verlices_set: 1,1,1,1 sibling: # sibling: null
prey__upper_content: 2 first_child: null first_child: null
upper_content: 2 vertices_set: 0,0,1,1 vertices_set: 1,1,0,0
prev_lower_content: 2 prev_upper_content: -1 prev_upper_content: -1
lower_content: 2 upper_content: 1 upper_content: 1
actual_content: 2 piev_lower_conten:: -1 prev_lower_content: -1
total_children: 2 lower_content: | lower_content: }
total_vertices: 4 actual_content: 1 actual_content: 1
Max_poss_wastape: 2 total_children: 0 total _children: 0
A total_vertices: 2 total_vertices: 2
max_poss_wastage: | max_poss_wastage: 1
depth_node depth_entry_ndde neigh_info_mlde influ_func_node
- depth_entry:—1—9»] corr_master_cc. corr_neigh_ce]l:l sorted_edge_to_master:
next_depth: neigh_info: ————————# other_ncigh_info: null 3333
parent_depth: ful next_entry: null influ_func: ———————® LIF_to_master: 3,6,9,12
UIF_to_master: 3,6,9,12
array_size: 4
deplh_nodv depth_entry_ndde neigh_info_ndde influ_func_node
depth_entry: —1—¥ corr_master_cell: corr_neigh_cell: sorted_edge_to_master:
neat_depth:nul ncigh_info: ~————+—® other_neigu_info: 2,2
parent_depth: neat_entry: influ_func: —t—p»1 LIF_to_master: 2,4

UIF_to_master: 2,4

array_size: 2

Figure 3.6: An overall structure between the cells and the depths.
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In order to speed up these operations, we need one special representation for the
graph and another one for the vertices in a cell. The representation of the vertices in
a cell have already been explained on page 15. Before explaining the data structure of
the graph, let us look at another definition. The adjacency matrir A of an undirected
graph is a matrix with the following properties. If vertices ¢ and j are connected,
then A[t,j] = Alj,i] = 1, otherwise A[z, j] = A[j,i] = 0. Given a graph of r vertices,
the graph will be represented by an adjacency matrix A of r rows, where each row 7
is represented by an array of computer words to indicate which vertices in the graph
are connected to the vertex i. The vertices of the graph will be numbered from 0 to
r—1. We use the notation Az, 7] to indicate the 7-th row and j-th bit of the adjacency
matrix, whereas, A[i] will mean the i-th row of the adjacency matrix. Notice that
the representation of the vertices in a cell is exactly the same as the representation
of a row in the adjacency matrix. Since we are working on the extended edge set, the
following result should hold: A[i,i]]=1,Vi=0tor —1.

The following algorithm will determine whether C, is a neighbour of (7).

An algorithm to determine the neighbourhood of two cells
for each vertex u € C;
if (((Afu]) and (the vertex set of C,)) # 0)
then return true;

return false;

The and operation in the above algorithm is a logical ‘and’ opcration. ‘To nse the
above algorithm, one has to find an efficient way to pick the vertices from a cell one
at a time. One way to achieve this is to use a look-up table.

The method of table look-up uses an array where cach clement tablei] is a struc-
ture with two fields, the first field specifies the location of the first one (an ‘on’ bit)
in the binary expansion of ¢, and the second field contain number of ones in
this binary expansion. Let us number the right-most bit of a  srd as position 0. To
initialize this table, the first position of one can be determined by shifting cach bit

of the word one position to its right until position 0 is ‘on’ or if the left-most bit of
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the binary expansion of ¢ has been shifted to position 0. A similar idea can be use
to find out the number of ones in the binary expansion of 7. We call this array the

table. The data structure of the table is as follows.

/* Data structure of the table. This

table is used for table look-up. */

struct table_node

{
int first_position; /* the first position of the
word which is equal to one */
int numberofones; /* the number of
ones in the word */
¥

If a word is 32 bits long, then the maximum size of the table has 2% entries.
Because 232 entries will require too much memory space, we only create a table with
216 entries, indexed form 0 to 2'€ — 1. We will split a word into two parts, the lower
sirteen bits, which are the bits from positions 0 to 15, representing the lower half
of the word, and the upper sirteen bits, which are the bits from positions 16 to 31,
representing the upper half of the word.

Using this look-up table, we can compute the number of ones in a word by two
steps. The first step is to obtain the number of ones in the lower and the upper
sixteen bits. The second step is to sum up the two totals. The number of ones in
the lower sixteen bits can be obtained by setting the upper sixteen bits to zero and
then performing a table look-up. The number of ones in the upper sixteen bits can
be obtained by setting the lower sixteen bits to zero, shifting the upper half of the
word to the lower half of the word, and then looking up the table.

To obtain the first position of one in the word, we will try to find the first position
of one in the lower sixteen bits. If the lower sixteen bits are all equal to zero, then

we try to obtain the first position of one in the upper sixteen bits.
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By looking up the table, one can obtain all the vertices in a cell C by the following

algorithm.

An algorithm to pick all the vertices in a cell
make a temporary copy of the vertex set of C;
while the temporary vertex set of C #
get the first position of one in the temporary vertex set of C;
report this first position of one;
set the first position of one in the temporary vertex sct of C to zero;

discard the temporary copy of the vertex set of C;

Given a vertex u and a cell C, we can determine the number of distinet edges
from u to C by doing a logical ‘and’ operation between A[u] and the vertex set of (V.

Then based on this result, we use the table to look up the number of ones in it.

3.3 Assumption On Neighbourhood

Since this work deals with undirected graphs, we use this assumption while generating
the neigh_infonode. When the program recognizes that C, is a neighbour of ', then
it will also assume that C, is a neighbour of C,. Hence, when generating the neighbour
information of C,, the program will only check those cells Ci, where & 2 j, and thus

saving some computation time.

3.4 Partition Content

When a cell C is partitioned into a number of subcells Cy,...,Cy, a new depth is
created. The actual content of C is then partitioned amongst Cy,...,C,. Based on
the lower and upper contents of each subcell, we generate all the possible partitions
of o(C). The generation of all the possible partitions is summarized in the procedure
Generate. It is a recursive procedure where each invocation Generate ((,) is

responsible for generating the content of the subcell C,. Based on the Conservation
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Rule, it uses a global variable available content to store the size of the content available
for the cells C; ... Cy. Initially, available content is set to o(C'). Before each recursion,
the procedure will make sure two conditions are satisfied. The first condition is that
the available content should be used up if all the remaining subcells are assigned
their upper contents. The second condition is that the available content should
he sufficient to satisfy the lower contents of the remaining cells. These two tests
depend on computing the sums ¥;,;3(C,) and ¥,5;2(C;). For fast access, the
summations, 3_,5,7(C,) for i = 1 to n, are stored in an array of size n, called upper
limit distribution, and the summations, Y_;5;2(Cj;) for ¢ = 1 to n, are stored in

another array of size n, called lower limit disiribution.

The content partition algorithm
procedure Generate (C,)
o(Ci) « a(C);
while ¢(C,) <5(C,) do
available content «— (available content — o{(C,));
if ((available content < (¥;5;7(C,))) and
(available content > (3,5;2(C,)))) then
if { = n then
if available content = 0 then
report a good set of partition is obtained;
return;
else Generate (C,,;);
else return;
resel available content;

increase a(C,) by 1;



Chapter 4

Results

Another important part of the program is how we partition a cell. Although the final
result will be the same, a different method of partitioning may require a different
amount of time. Since no method is the best for all graphs, we try to use a method
that is good for most graphs. In the rest of this chapter, we will use the word
‘partition’ to means the partition of a cell.

We used two methods of partition. Before we discuss these two methods, let us
discuss some of the common points about them. In both methods, a new depth { 4 1
is created by choosing a cell C at depth [ and partitioning it into subcells. A cell
will be chosen to be partitioned if and only if the total number of vertices in this
cell is greater than one. Just before it is partitioned, we store away its current lower
and upper contents. Later on, when the program backtracks to that depth [, we
restore back the last lower and upper contents of cell the C. Another common point

is the partitioning of a cell with zero content. Suppose we have a cell with r vertices,

where r > 1, and zero content. When this cell is selected for partitioning, it will be

partitioned into r subcells of one vertex each with zero content.

4.1 Partition By Half

The first method is to partition a cell C' by half. If size(C') = r, then the first [-:-J

vertices in C will be in the first subcell, and the rest of the vertices in C' will be in

the second subcell.



4.2 Partition From A Reservoir

The second method is to partition the vertices from a reservoir. A reservoir is a cell
with size greater than one. Its function is to supply suitable vertices for partitioning
into different cells of size one. The basic idea of partitioning from a reservoir is to
select some vertices from the reservoir based on certain constraints and then partition
them into discrete subcells. A discrete subcell is a cell with size one. We define
mazsubeells as a predefined value which is used to limit the maximum number of
subcells that can be partitioned from the reservoir. In the beginning, the algorithm
will look for any cell with size one which is not covered. If there exists such a cell C,
the algorithm will get all its neighbour vertices from the reservoir. After removing all
the neighbour vertices from the reservoir, each neighbour vertices will form a discrete
subcell. In the case where there is no neighbour vertex of C in the reservoir, this means
that C will not be covered when the program comes to a complete refinement, and the
program will backtrack to previous stage. If there is no uncovered cell with size one,
then at most marsubeells vertices with minimum degree among all the vertices in the
reservoir will be selected and partitioned into discrete subcells. It can be summarized
by the following algorithm. Initially, the reservoir is the cell representing the input
graph. Function Mindegree(C) will return the minimum degree among all the
vertices in the cell C and function Deg(v) will return the degree of vertex v. The
constraints used in this algorithm are to select at most maxzsubcells vertices which

have a minimum degree among all the vertices in the reservoir.

The partition from a reservoir algorithm
if 3 C such that ((size(C) = 1) A (Vv(v € C A v is not covered))) then
if the reservoir contains some neighbour vertices of C then
get and remove all neighbours of v form the reservoir;
partition each neighbour of v as a discrete subcell;
else
report no solution in this partition of content;

return;




else if reservoir exists then
totalsubcells — 0;
mindeg — Mindegree (reservoir);
while ((Fv(v € reservoir A Deg (v) = mindeg)) A
(totalsubcells < mazsubeells)) do
partition v as a discrete subcell;
remove v from the reservoir;

increase totalsubcells by 1;

Let us clarify the idea of the algorithm by an example. Suppose the input graph
is Figure 2.1, the test size is 3, and mazsubcells is 4. At the beginning, the reservoir
is a cell C' containing all the vertices in the input graph and it is the only cell in
this depth. When the partition from a reservoir algorithm is applied, it partitions C
into C, = {b,c, e, f, g, hyi,j, k,1,n,0}, Co = {a},C3 = {d},Cs = {m}, and C5 = {p}.
After the content of C is partitioned into its subcells, Cy to Cs, if any of the the
discrete subcells, say Cs, is not covered, the two neighbour vertices of a, namely b
and e, will be partitioned from the reservoir C; as discrete subcells. The cells in this
depth will be C} = {c, f, 9, h,%,3,k,0,n,0}, Ca,C3,C4,Cs, Cg = {b}, and (7 = {c}.
On the other hand, if all the discrete subcells Cy, C3,Cy, and Cs are covered, the
first four vertices b,c, e, and h, with minimum degree among all the vertices in the
reservoir Cy will be partitioned as four discrete subcells. The cells in this depth
will be C} = {f,g9,%,j,k,1,n,0}, C2,C3,C4,Cs, Cg = {b}, C7 = {c}, Cy = {¢}, and
Co = {h}.

4.3 Output

The program is tested and run on a SUN 4/280s SPARC machine at Concordia
University. Two kinds of graphs are tested. The first is the grid graph and the

second is the knight’s graph in an m x n chesshoard.
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4.3.1 Grid graph

An m x n grid graph has a vertex set V = {(¢,j)li=1,...,m, j = 1,...,n} and
vertices (3,7) and (¢, j') are adjacent if and only if they are consecutive on a row or
column, that is tosay,ifi=4and j =j+tlori=¢=x1and j = j. An example
of a 4 x 4 grid graph is shown in Figure 2.1.

In {7], the authors gave a list of minimum domination numbers of some m x n
grid graphs where 2 < n,m < 12. In order to decide whether s is the minimum
domination number for a graph G, we have to make sure that firstly s — 1 is not a
domination number of G and secondly s is a domination number of G. The CPU
tite required to decide whether s is the minimum domination number of G is the
sum of the CPU time needed to finish running the program with the input graph G
and test sizes s and s — 1. Of course, in the case of test size s, we can stop once
a dominating sct of size s is found. It had taken the authors in (7] approximately
20 hours of CPU time using an IBM 3081 computer to decide that the minimum
domination number of the 7 x 7 grid graph is 12. Besides the 7 x 7 grid graph, the
authors did not mention timing results in other grid graphs.

Tables 4.1 and 4.2 show some of the timing results obtained when the partition by
hall algorithm and the partition from a reservoir algorithm are applied to different grid
graphs. All the results obtained agree with those published in [7]. We confirm that
the minimum domination number of the 8 x 8 grid graph is 16, whereas the authors
in 7] can only give a lower and upper bounds for the minimum domination number of
the 8 x 8 grid graph. In addition, we confirm that the minimum domination number
of the 8 x 9 grid graph is greater than 17 and the minimum domination number of

the 9 x 9 grid graph is greater than 19.

4.3.2 Knight’s graph in an m x n chessboard

A knight’s graph in an 1 x n chessboard, or a knight’s graph in short, has a vertex
set Vo= {(¢,/)li =1,...,m, j =1,...,n} and vertices (¢,5) and (¢, ;') are adjacent
if and only if the square (¢, ;') of an m X n chessboard can be occupied in cne move

by a knight in the square (7, j).



test { CPU | number of stop at
m| n | size| time (s) | solutions | first solution
11721 24 9.883 1 no
5165 | 7 46417 22 no
T 7111 147.717 0 no
71 7] 12 | 1365.983 1 yes
8| 8| 14 [ 270.050 0 no

Table 4.1: Timing results of the partition by half algorithm on different grid sraphs.

stop at
test CPU number of | first

m | n | mazsubcells | size | time (s) | solutions | solulion
818 5 14 253.567 0 no
818 ) 15 4924.467 0 no
818 5 16 1188.200 1 yes
818 6 14 241.367 0 no
8|8 7 14 195.617 0 no
818 8 14 222.067 0 no
819 7 17 | 57905.800 0 no
919 7 19 | 183588.267 0 no

Table 4.2: Timing results of the partition from a reservoir algorithm on different, grid
graphs.
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test CPU number of stop at
m| n | size| time (s) | solutions | first solution
3111 | 8 |13822.983 20 no
4161 4 6.117 1 no

Table 4.3: Timing results of the partition by half algorithm on different knight’s

graphs in an m x n chessbhoard.

stop at
test CPU number of |  first

m | n | mazsubcells | size | time (s) | solutions | solution
416 6 4 4.850 1 no
41 6 7 4 4.800 1 no
41 6 8 4 4.783 1 no
416 9 Y4 4.950 1 no
5112 4 | 10 [ 68555.850 4 no

Table 4.4: Timing results of the partition from a reservoir algorithm on different
knight’s graphs in an m x n chessboard.

In [14], the authors developed an algorithm to obtained the minimum domination
number of some knight’s graphs in the range where 3 <m <10and 3 <n <12

Tables 4.3 and 4.4 show some of the timing results obtained when the partition
by half algorithm and the partition from a reservoir algorithm are applied to different
knight’s graphs. All the dominating sets we obtained agree with those published in

[14]. Since the authors did not mention any timing results, we cannot do any timing

comparison with them.
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Chapter 5
CONCLUSIONS

The program is fully developed. When we apply the program to find the dominat-
ing sets or to confirm the minimum domination number of certain grid graphs and
knight’s graphs in a chessboard, the results obtained agree with those published in [7)
and [14]. These results strongly indicates the correctness of the partition algorithin.
Because we cannot find any software package that can solve the dominating set prob-
lem for graphs, we cannot make many timing comparisons. When we compare it
with the only timing result of the 7 x 7 grid graph mentioned in [7], our program is
significantly faster.

The program has its drawbacks. As the size of the graphs incrcases, the time
required to obtain a solution becomes very long. In [17], the author stated that the
computation of the domination number for graphs is an NP-complete problen. We
tried to obtain the dominating set of a 9 x 9 grid graph with a test size of twenty.
Using the method of partition from a reservoir, the program was still runuing after
200 minutes and no solution has been obtained.

The algorithm may be improved in several ways. Other methods of partitioning,
can be used. Currently, when a cell is partitioned, all the contents of its children
will be defined. Maybe if we define some of the contents of the children later, the
algorithm may still have enough information to decided whether a solution is possible.
Finally, isomorph rejection can be added into the program to cut down the scairen

tree.
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