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All recor

statistical database.' are placed into small °*

disjoint gtdups. Qy provadlng Statistics only abb t entlre

produ es the- partitions by succe551vely*spixtting—the“' ire

. 4¢ on a simulated database show that partitioning can proﬁi e «

~ efféctive contrgl ,of statistical cémpron&se at low cost,
B .

while producing accurate statistics.
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. . CHAPTER ONE A .}'\

- INTRODUCTION o

- - v, . " . . .. , f
The use of ecomputexrs tc},stor.e personal information ' .
'for. research on social anq economic.issues is inéfeésing

rapidfy. As moderat_eiy sized c;aj:aba'ses become more commonl3}
available and very 'large databases. became accessible to ‘ ‘.‘,/’

large institutions, the social ifnpact of these systems

must be considex’:ed; Problems of segurity, o"f sa,feguarmg\
the pri'vacy: of the individuals yﬁose files are stored in
the computer and of-controlling access to thbfe files, are
now ‘proble'r:ns for the computer scientist as well .as social
policy makers. There is growiﬁg concern that ‘the confiden-

- ‘ ‘ Pl .
tiality promised ‘when individuils give information to
institutions suc;h a\s banks, hoséitals, census bureaus .and-
researchers ca‘nnot; ‘be guarantegd Aif that im;.ormation is
stored in on-line data banks. It is feared, somewhat
just;ifiably, that storing records 'in computers increases -

. \ ;
the ways in which an unauthérized ‘person can access tha&‘
information by circumventing the m'ogest security“ built irtto
most systems. — '
‘ This tﬂesis addresses one particw.ilar dat'abase

security problem. In a database 4n which any user can

obtain statistical summaries about subgroups of its

populafi.on, "the important, pfpblefn is'that of protecting . /

against inference of any individual's information. This d

» .
,is a particularly distressing security matter since there
)
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.
7

'is no question of unauthoﬁiz'ed access. ' Any user should be
Al N ’

‘able to obtain statistical summaries but should not be (

'

able to infer any individual data. If no restrictions

are placed on the statistics to be relessed it is’ very

easy to acquire information about anyone whose record is -

. . . o= 3 <
in the database., Certain obvious “restrictions. such as -

refusing to answer queries about very small groups make

such inferences.harder but still inference is relatively

easy to perform. We present in this thesis methods for

securing statistical databases which, by distorting, the

‘statistics fo a small degree, rénders information inferred

<

about an indi wvidual completeﬁ unreliab‘le.
1.1 The sta.tisfical -infexgéncé problem
N ).\ d.atabase which is primarily designed to provide
statistical summaries about sﬁbgroﬁpé. ‘in its population
w.i‘ll be called a’ "statistical database." M;adical information

in hospitals, - financial records kept by banks and  sociglogi-

cal information collected by the Census,Bureau are typical .

. instancgé-of statistical databases. .

\ e

"We can breadly describe two ‘categcries of users of

a statistical database. The first has authorization to
a . “

'-read, write and update data while the second can only

request statistics about the data. Effective database
security measures must prevent unauthori'se;i users 'f;om
tampering‘ with the data‘o:; accessS:ng confidential information
‘n<'>t': normally availdble t;) them. This prob lem hds - been

widely studied and encryption schemes and other protection

¢
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‘frightening.

. problem. : ' . )

-

|

- mechanisms can enforce these safeguards [11].

It'is the latter group of users which goncerns us

.

here. These 'users may request extensive statistics on

subsets of the atabase, and may thus be able to fairly
eas;.ly and completely)égally dlscover 1nd1v1dual J.nfor—

mation which was promised to be conf:.dentlal

©
‘o =

3

i This sectlon explores the problem of inference in
computerized ,stai:t/iﬂstical—'.reporting and research systems.

We will show how indiviéual information' can be deduced

- 9

and discuss the ;s‘ign ficance of the _problem,. not only ‘to

comiagter scientists but to soé;al policy makers and the

. , .
society as a whole. '

£

1.1.1 Storlng records on computers . '

Recent decades Nave seen a tremendous growth in

the"pov}er and availability.of computer systems. Even in

the 1nfancy of whe computer :Lndustry people were cgnceq:ned

1

about the adverse sffect\jf maintaining personal »

records in machines. " The process was seen: by some as .
b : ) &

; . . e

dehumanizing and uncontrollable. .. The prospect of a large

1

.central’;zed data bank with dossiers about everyone and

accessibility to a wide number of users was partlcularly

Othe}:s claimed that the computer itself was

. ‘ ! A ) ‘
harmless; it was the way people-used it that was the
- -
There are in fact problems which arise with the use

BN

. N

of computers to store records. These stem from the

’

following sources:

L

<Py
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/
- tﬁe“ abilit':y td store large amounts of ‘data;

"

~ easy, access to that data ‘ -t ¢ R
. . / . .
p - computer tec;hn:.c:.ans ser,v:.ng as record keepers;
- ) r -~ .
| - dlfflculty responding to the community. .

X . The first major problem is a result of the incxeasing

[y

ability to store 'large amotnts of.data both in largJe systems

v

and in mini-computers which are only now pecomingr‘economi—

. cally ﬁéasible foﬂ-_small.‘org%nizations to operate. Indeed,
‘the cost of .setting ¥p an automated record system may 5
compel a smaller organization/t'o stc)re ere data than it !
ré@lly needs. in ordsr to more fully utilize the system. X
This is a dangerous pollcy since 1t not only threatens

" the prlvacy oﬁ the individual but may obstruct the access

.

to more epertinent 1nformat10n. Not only 1s there a wealth

of information but that data is, by ;he very nature of o

the machine, somewhat rigiq\. Most systems cannot haf{dle
. « ‘ & :

unusual responses on input forms. Each questian has a

. P ) [ - )

limited number of response alternatives and some subjects

‘may not feel that any apply to them. .It‘isjmuch harder !

for a tomputer. to deal with the category "other" as a 4
- ] \ .‘/ [y

- , - .
response than a manual records system which may simply

attach an explanation.
’ ' ¢ 4

e ) - < k3 N 3 " . N
It is also easier to access data in a machine. This

is not a matter of securinl the system aghinst unauthorized -

access, Security in- that Sense can be enforced as well in

>

an aut’omated system as a manual one, if not better. It

®

.

» e \
. . , N
. .
.

is rather a problem of prohibiti‘ng aujghorized use for é‘ )
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unauthorized purposes. In the U.S. Department of Health,

4

Educatlon and Welfare 5 Report on Automated Personal Data

’

Systems [27] the - authors descrlbe what they call "dragnet"

I 2N -

behav10r. By this they mean "any systematlc screening of ’

) all members of a population in order to discover a few

, [

% »
members with sgecxfled characteristics.” l‘ Clearly this is
only feasible in a computerized filing system and is,

tempting because of the small 3mount of human labor

*

. ' I3 # o -
involved. . ' : i \
+

Another threat posed by ﬁsuch‘a ‘'system is the ease

with which one organization malntalnlng ante nsive set

[ ‘-

of regords can send 1nformatlon it has gathered from the
system to o,ther organizations. The controls on su.ch a A
trarsfer and responsibi]:ity for ensuring the proper use of
the information may not be at all clear. This would be of )
tremendous concern—if the government kept a large centralized
data bank which would be avallable to many dl\fferent types
of users. At present, however, s_uch a system:is not
jmminent. ' ) ‘ .

' The widespreac; use of automated record systems has
resulted in a new claes of record keepers who are, by trade;
computer technicians. Theu!' primary functlpn is to T -

fac111tate the use of the system. They. make no judgments

on- the validity of that use and 1ndied' their céntact ‘wfth

)

1 } :
. Records, Computers and the Rights of -Citizens, by

U.S. Department of AHE,W"(n.p.: the Colonial Press, }973)-.

. e —
. b
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the‘euppliers and users of the information in the .system

is minimaf. -
Finally, a computeylzed collecélon of records 1s:_
) \

somewhat immune to feedback from the co§m1ty. Bechuse

an v

of its highly technical nature, even whe everyone_concerned

! *

agrees to necessary changes in. the system, it may be hard
" :

%pd Eake?e long time‘to.implement. ‘ )

The probleme cited above support&i;e view that
concern over automated record keeping is justified. We
must not forget however, that there is a con51derable
benefit to.beirg able to store and ea51ly access large

amou ts-ofrinformation which would be impossible or

extrémely difficuit and time-consuming to operate manudlly.

.Automated medical records, for example, which could be

accessed by a hospital physician, family doctor or specialist
« -

.would eliminate much dupllcatlon of work and could save a

- /

nuﬁber of lives. - We must work toward safeguardlqg the
privacy of thé individUals whose records are ‘being kept _

so that we may take advantage of the increased facility

.

for data processing afforded by the comguter. ~——
, 7
1.1.2 donfidentiality assurances
The rlght of prlvacy is one whlch applles to all

automated personal record -keeping systems. Flles in most |

systems contain a unique identifier whlch is used to 3

_access the record. ?It is easy to see that such flles should

be protected from misuse. Records{éathered and kept solelyr

s
for generating statistics are fundamentally different i
, ; maa ‘ T
» . .
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that they have no identifiers or those iiﬁftifiers are
: : . N
hidden and only used internally., The threat to privacy

in, such a system is less obvious but is nevertheless very

real. i 4

- v

We have recently been obligated by law to participate

\

‘in the éanadian\census. Someone” from eévery dwelling filled'
oﬁt a/questionnairé which assured that the.infqrmatién
provided would be used "for statis;icai purposes only"
even though someone's name was asked for at least once on

'%the form. Even if oﬁe-believes that the government has
the be;t intentions and no one\at Statistics Canada who
sees the form will use that data to their advantage, how

can we be certain that when they release the statistics

\~Qﬁr privacy is assured? ?he statistics cpmpiled from t@g

census are released to government agencies to facilitate’
policy dgcisions. Any researcher in need qf data which
has been gathered in'the cenéusncan also request the
: appropriate~stat1§%ics. If a record coptains enough
-iﬁformatioq to uniquely}identify the sﬁbject, his.confiden- ;
tiality‘is‘i?(jeOpardy and §afeguard§ must be taken to
prevendt disclosure of any non-public data.
Thé census bureaus both here and in 'the Dnited
‘States, where the most extensive cqmpgterized census ever
undeftaken is now being compi)éd”.wefe among the first to
.recognize that there was a statistical inference prob}eﬁ
. p ' <

and to deal with it. We will discuss their methods and

other proposed safeguards in the next chapter.
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ta

" the transfer.3

-
¢ o]
D

o‘ ' . , A .’ .
The H.E.W. Report on Automated Personal Data Systems

. 1 T v . . - -

recognized ‘this problem but assumed that most statistical

%

data could not be traced to indiqﬁduals. They discqveréd,
however,.that "in many instgnceé files used exclusi&ely for&\
$tati§tical.reportinguand research dé contain pérsonally\
identifiable data, and that the data are often totally

vulnerable to disclosure through legal process.“2 They”

.proceed to recommend that before any transfer of individually

"

/
identifiable data takes place the organization.maintaining

-3 ~
such records -must specify the security requirements of the

data and determine that those raguirements.will be carriéd

out, unless the individuals have éngn‘prior consent to
This seems to be a reasonable suggestion

but it is questionable how well it can be enforced if

\

made into law. ‘

1.1.3 Ease of compromise - RN
: . N

! - .
We have recognized.the problem“of statistical’

Ainference in automated record-keeping systems and its

significance to anyone who participates "in a statistical
survey. There would not be’cause for alarm, though,

if it were difficult to perform such deductions on a

statistical database. -

<

1

2Reéords, Computers and the Rights of Citizens, by

3

.\ N N
U.S. Department of HEW (n.p.: the Colonial Press, 1973), p.91.

3Records, Computers and the Rights &f Citizens, by

U.S. Department of HEW (n.p.: the Colonial Press, 1973), p.98.

~
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Hoffmann and Miller [23] were the first to point

out hew, with enoughlgenerally public information, about a -

..
¥a
¥

person in the data bank, ®ne can infer sensitive information.'

ij i - .
The following is an example of their.reasoning. Suppose

+

we w1$h to find out John Doe's salary and we know the

following 1nformat10n ‘about him: that he is a Yeb®r leader

' ‘and that he is a delegate to the Republican Presidential

Convention. We then as% a-computerized data bank on the

U.Ss. 'Presidentiél Conventions "how many people are in the

data bank with the follOW1ng propertles. labor ‘leader

Republjcan delegate’"

If the system responds with +'one peréon" we have isclated -
John Doe's record. This actually was the case at the 1980

convention as was demonstrated by a CBS computer. We can

now ask "How many people are in the data bank with the

following properties: labor leader
Republican delegate
Salary over $50,0002"
\ .
If the answer is "ore person" we know John Doe earns over

$50,000. ;; the answer is zero we lower our estimate. 1In

fact, any attribute about John Doe which is in the data

bank can be determined by s%mply addiﬁg it as an xtra

condition. t ) .
The immediate response to this type.of attack is

to refuse to answer éueries about very émail grqups. The

problem is that the same pr1n01ple can be applied to larger

groups. Schlorer [301 devised a method of pad 1ng the

reepohse group so ‘that its size will always lile in the

] S
restricted range. By essentially adding unre

oy

ated records




\
i 10.
‘ to the isolated record we can then proceed ‘as before. P
3 ~ . =
Suppose we ask "How many people are in the data bank with
‘the following properties: labor leader and Republican
t S
\ © delegate, or female’" Let us say the answer is 751. . We
S suggequently ask for the number of people with the followlng foe

-

properties: labo; leader and Republican delegate and
convicted of a felony, or female. An aster of 751 means;
\gqhn Doe has been convicted of a felgny whereas the answer
‘750 means that he has not been convzcted.‘ Schlorer ca%led
| , ) . this technique "tracking}tjnd‘he called the formula which
a

defines the large group tracker". Denning [12,13] has

S - “
| extended Schlorer's work and shown that trackers are very

2%
-

o easy to find in almost any database.
‘Trackers are such a poWerful tool pf inference that
, - preventing disclosure by restricting the enswerable‘queries
becomes virtually impossible. Other@metheds are;needed' '
> which control the response to the queries so that the user
cannot be certain the record he is trying to isolate has
been included in a given query response. One such ﬁethod,
which we have impleéented, involves partitioning the data-
base into small groups. . Statistics are calculated on the
basis of the groups ratﬁer tyan individual records. This
l technique is*introdu&ed_ét the end of‘tﬁis chapter and

. . 4 .
- discussed in detail in Chapter Two. We now present a

2
-

formal model of a statistf@él database and define compromise

oo ' of the database.
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1.2 Basic definitions.

- This section presents a model of a statistical

. v

database including the types of queries which can be asked

of thékéystem.- The concept of compromise~in such a database

v

is alsd defined and the different levels of compromise are

¢ it
diScuss;d. ’ ' nox T
. \ * - )
1.2.1 Statistical database ‘model ‘ : ‘ '
Ou% conceptlon of a statlstlcal database is that of

a single relatlon over a fixed number of attrlbutes. A ' e

record R has k attributes and is defined as a k-tuplé

(rl...rk) where I the value in the ith attribute )

i3 -
comes from a\domain Di , 1 < i <k. If any one attribute
\ - .

uniquely identifies each record it is called a key, and

v

its corresponding domain a key domain. All the records must

have tle same aé;ributes and the same .number of attributes. :
) \

. Some of these may be qualibatiyé or descriptive attributes

while others may bg quantitative or data fields. For

example, the qualltatlve attrlbutes may be SEX, OCCUPATION

and MARITAL STATUS with.their correspondlng domalns (Male,
. A )

Female), (Professor, §tudent, Doctor, Lawyer) and (Single,

3
Married, Separated). In addition, there may be quantitative

)

attributes such as SALA%F and Previous - Psychlatrlc Admissions.
A sample database with ese attributes is given in Figure

1.1.

-
.

A
Statistics are obtained through querles of the data-

.base. These queries consist of a predicate expressxon .

which specifies one or more Yalues of one or more attributes

\

Ve

Y
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, No. Unique ,

Sex Occu-

'

" Marital Salary

No. Previous

. Identifier pation Status  ($k) Admissions
1 ! Adams .M Doctor Married 28 3
2 ' Baird M Student Single 5 1
3 ' Carney, F Lawyer Separated 20 5
4 Davies  F' Doctor ’Married 20 0
5  Eaton M ' Pro- Single 28 0
¢ _ fessor
6 ° .Finch F Student Married 5 0
7  Gagnon M Lawyer Married 50
. 8 Harris F  Doctor Single( " 50
‘9 Ibsen F Pro- Separated 15 ‘ 2 .
) : fessor
- 10 Jones M \Prp-- Married ~ 20 -0
) fessor
11 . Kapp ». M  .Lawyer Single ‘50
12 Lewis M  Doctor Separated 15 \
Figure 1.1 Sample Database for a Psyc&xiatric Hospital -
/ & .
} Q) ' ' ‘
¥
v . '
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o Sample database, may or may not be accessible to the
may or

- | 13.

: v . . i . 3
related by the boolean operatgrs AND (+), OR (+)- and NQ?‘(—).

e The subset of records whose characteristics match this

¢

o~

expression will be called the "query set".

The unique identifier., the patient's name in our

~—

gsef; If auquery is allowed to specify one or ﬁmie keys
it is called a "key-based" query. An example of a key;
‘based éuery of thé sample daéabase is: Average (Adams,
Eaton, Képp; salary) which requests the average salary
of Adams, Eaton and Kapp. If, on the Qpheg hand, the
unique identifier is‘hidden from the user only subsets of

the attributes may be used for retrieval purposes,

Queries of this type are called “attribute-specified"

gueries and their predicate expression is known as a
"eharacteristiq-formula". Count (M - Student) is an
example of such a query asking for the-number of male

students in the databas '

The type of alloi§>le guery is determined by the
user envifonment. Namgsjgn psyclriatric records wou}d'not.
normai%y be released to researchers requiring statistical
information. Key—baséd que;ies are generally used more in
small databases where records are easily.identif{able anyway.
The inference controls which we-will discuss in this thesis
are all concerned wifh-attribute-specified queries since
most statistical databases do not give out individual

information. If key-specified queries are allowed they

N\ must be in a highly restricted form, as we shall see later.

-
.
i
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@ Queries can be further classified by. the type of ~?
; .

étatisgic asked for.. A "count query" requgsté the number

of records satisfying the query's characteristic formula.

Clearly this type of query must be attribute-specified for

a key-specified query already contain® that information.

) .
- 'Sum" or "average" queries can be of either type and ask

for the appropriate statistic about the ‘records in the

quer& set for some'data field.

Our querying system permits only attributé—specified

gueries requesting counts, averages of data field values

and relative frequencies. Let us denote (after Denning

[10]) the characteristic formula as ¢’ and the query set

of C as X

gueries are then:

Cmmtm)=‘mch

AVG(C,j) = ) Vij/Count(C)

1EXC

-

Some examples 'of queries on our sample database are:

Formal Qﬁegx

Count (M« Lawyer)

Count (F* (Doctor + Lawyer))

Freq (F-married)

-
'S

Avg (F-Lawyer, admiss.)

"Answer
PSS, S

2
3

.25

o+ The general forms of the permissible

the size of X ..

c . . ‘

. ,
Freq(f) = ligl where "N is the total number of

records in the database-

where ¥.. 1is the
. 1]

value of data field 3§ 1in record ' 1i.

&
Informal Statement
number of male lawyers

number of .females who
are doctorg or lawyers:

'relative frequency of

-ynmarried females -

average no. of admissions
for all female lawyers

[y

"

4y
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. sample database of Figursg 1.1. Assume a user knows that

2§ . o, ’
Y

15.
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' Formal Query Answer Informal Statement °

t

Avg (Professor, salary) . ) 21k average salary of all
. - professorst 4

l.z.ék Compromise of the database ' ' L
Compromise ‘occurs when the user deduces con%idential

information from the responses to one o;‘more}queries. If

ﬁhe compromise reveals that an individual be;ongé to some

category or has a garticular data value it is calleq’

"positive compromise"”. It is also possible, however,~ to

.dedﬁcg that\an individual does not belong to some category

or does not have a particular dé@a value. - fhis is called ’

N

"negative compromise”.
" If a user deduces any information (positive or
A} EA
negative) preﬁiously unknown to him about an individual he

has achieved "partial local compromise" of the .database.

M -

If he deduces all the information in the database about any ‘
individual record we say he has achieved "total local ,
compromise". To illustrate this, let us refer again to the

<=

Ibsen is a female professor and is included in the bsychi;

atric database. 'Also assume there are“no restrictions on.

the queries which will be\responded to as long as they : ~gﬁ
conform to the types df'permissible gueries described ’ ’
above,‘&nd thét the responses givén are accurate. _The

user’ then asks the query: COUNT(F-prof) and receives the

answér 1. He now knows €hat Ibsen is the ohly female

professoé in the détabase, but has not deduced any infor; ‘ }

»

mation about Ibsen. He can then' pose the query:

. ’ |
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COUNT (F-prof-married) for which the response is 0. The

user has thus achieved a negative compromise: he has

learned that Ibsen is not married. He has also effeqgted a

‘ o

pattisal local compromise of‘fhe database. The user can then.
Léroceed to determine that she is separated in a similar
fashion. Subsequently, suppose he asks: AVG(F-prof,éalary)
and geés the res%oﬁse 15%k. He has now achieved a positive
compromise of the database. Finally, if he queries:
AVG(F-prof,admissions) and the system answers 2 he knows

she has bégn admitted twice for psychiatric reasons. At s
thié pdint he has achieved a total local compromise of
Ibsen's record.

It is clear from this example that if a system

respond; truthfully to ény allowable query, it‘can.be

easily locaily compromised by ényone who knows that an
individual's record is; contained in the’database and has

-~

enough preknowledge about that individual to isolate their
3 - .
record. -

t

We can describe two stronger levels of compromise of .
a databasgh ‘;f §ﬁy user,obtains partial local compromise
for a subset of records in the détabase we say there is
"weak glogbal compromise". A database is "strongly qléquiy
compromised" if evéry record is totélly locally compromised,
i.e., ewverything about the database has beenldeduced.‘
| A response strategy is a method of responding'to'_

queries of a particular type in order to make compromise

hard at any of the levels described above. The effectiveness \\*

i
A '
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one cell for each possible k-tuple. The number of records

9

» / .
]

of a strategy should be measured in terms of its prevention

of compromise at one of the levels and its ease of implemen-

tation. A database is strongly secure if partial local

compromise is either impossible or extremely expenSive to

implement.

1.3 Contribptions‘of this thesis '

We have implemented a strategy to secure statistical
databases based on partitioning the daﬁabase into small
disjoint groups. The stgéistics generated in response to
queries of the systemxare'calculatea using group summaries
inspegd‘of individual records. This way the individual

data is never used to produce qhé statistics. If a record

belongs to a particular query set, its small group is

substituted instead. This method provides secure statistics

by eliminating any possibility of isolating a record.
»

i’y

The accuracy of the statistics from a partitioned

database depends in part on how well the partitions are

formed. If all the records in a group are similar, the

group will more—accuratiely represent each pérticular record.
A : [}

Small gioups are‘also'desirable for the -same reason.

There are two, partitioning methods’ presented in -
this thesis. The }irst is a modification of the method \
propoéed by Yu and Chin [33]:

The, technique involves .mapping all the records in

the database onto a k-dimensional matrix consisting of

in each cell is examined and cells. are merged with their

[y

17.
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nelghbours until a group.is formed whlch contalns the’

predef%ned minimum amount of records needed to quallfy as

>

a partition. We '‘call this method rectangular partltlonlng

because the regions we form are rectangular parallelopipeds

" . U]
(for k¥ > 2) of minimum size. . .

o ‘&Fme facond method performs a hierarchical splitting

of the database. The attributes are ordered according to

some criterion such as size of the aomain.o All “the

4

records are then partitionegﬁinto disjdinﬁ eybgroups, one

for each value in the first attribute. For example,

suppose there are five values possible for the first . \N
attribute. All the records w;th the first value w1ll form

one subgroup,‘those with the second will form another and

N

o

4
80 on resulting in five disjoint subgroups. These are

Ay

further-split using the remainindeattributes, until no ’ !

more groups can be formed containing the minimﬁm number of
o S
records. A

\ %,
Both techniques were tested by posing 300 ranhomiy \\\ .

generated queries and calculating the relative error of

statistics based on .the partitions as opposed to the true

statistics. Databases of'size 100, 500 and 1000.were used

as well as two different minima for partition sizes,

namely three and five. In addition, tracker attecks on
§ ) ,

-

the system were made to test the actual security of the

computatlons. ' o

Our results show that the -query responses were ‘quite ’

accurate, for the most part differing from the true values N




\

~ . ] . ) > ) ' . . »
b ’ by less than 10%. The individual values inferred from* Y
) ) ] . e \ L \
- .- ‘ . tracker attacks, on the other hand, weretypically several
- [- N v - .

, * " - hundred percent off from the actual values. A small number

” »

of inferred values yere accurate to within 10% but it was
, impossible to predict which records or trackers would

N produce those results.

"The results were similar for both partitioning
! . N
techniques. The hiwrarchical method, however, provides a
. , mych simpler and f#ster way of obtaining the partitions. :

', The thesis is organized as follows:

A . history of the problem presenting recent literature

on the/subjeci of statistical disclosure and the various

forms of preventing it’is given in-the next chapter of this

A
o thesis. Chapter Three describes rectangular partitioning

v

while’Chapter Four presents the, hierarchical technique.
[ —a, - @

The details of the testing procedure and its results,
f . N

- including the tracker attacks, make up Chapter Five. A

1 Ny
final summary and c¢onclusions then form the last chapter.

’
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set sizes did not adequately protect the database as
: e _ ,
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CHAPTER TWO v

~

HISTORY OF THE PROBLEM N

2.1 ‘Introduction . '

It was Hoffman and Miller's article {23] which first.
demonstrated the sériousgess of the statistical inference
problem. By describing a subjectfs characteristics in as
ﬁubh detail as possibie, one cén usually isolate their
record and proceed tocfind out any.unknown information about

) . ® . .
the subject. Refusing to answer queries with small query
¢ e

trackers provide an easy method of circuﬁbenting such 1
controls [12,30]. | ./ / \ .
A number of researchers then tried to quantify the
compromisability of a database under certain specified
conditians.‘~Using combinatprial analysis, the pioneeriné
study of Dobkin, Jones and Li%tgn [16] derives a formula
for the least number of queries needed to comﬁromise a

- ¢
databas¢. Similar studies have alsd tested databases in °

this manner in an attémpt to define conditions which o
assure security agaifist inference [7,8,24,28,29,32]. These _ '

studies all use key-based gueries so their'results are

L]

not very useful, but they do give an Jinsight into the \\n

A 3

problem. = ) o . \B
As it became clear that réstriciipns on query set

size and maximum overlap among queries were ineffective, .

other methods started to be investigated. One of the most '

-
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promising of these was perturbation of the da#a either by
adding a randgm weight’to data values, randqmly.rounding.the
data or giving range;\instead of e%act‘answers. If care-
fullj done, these mgthods can be gffective'[l,3,4,18j.
Seve;al sﬁudigz’have suggested Ehreat—monitoring techniqgés
as a supplement to peréu;ﬁation [17,23,31]. By kéeping a
log of which queries are asked by which users it may be

possible to detect unauthorized intrusion. Effective

\ -

threat-monitoring is a complicated and almost ihposaible
, i : A

procedure, however, since collaboration between two:or

.~ Recently there has been more emphasis on response set
- (3 \ .

controls as a means ¢% safeguarding statistical databases.

-\‘ . )
more users is very difficult to determine. . ‘

These methodgbmake it impossible for a user to kriow exacgiy
whilch records are included in the query set. Notable
techniques of this type are r?ndoh sampling, which has beén
implemented by DgnningJ[lS] and,paréitioning which was
described by Yu and Chin [33] and has been imélemented gy

us as presented in this thesis. , T

This section describes the literature on the statisti-

: % - »
cal infer®e ?e\problem, Emphasis is placed on studies using

N

characteristic-specified querieé and thg ﬁethods:wh;ch v

have been proposed to secure databases allowing this tfpe
of query. Several good.survey papers:havé geep published
which provide a ge;eral description of the problem and a -

review of tﬁe literature to date 11,2,9,10,11].




- ' : .
- . .
g » . . /
- > - .

2.2 Query set sieze controls
It is a simple matter to compromise a database which
will answer truthfully any query regardless of how many

records it 1nvolves. All one-has to do is use enough.

characteristics descrlblng an 1nd1v1dual to unlquely 1dent1fy

\

him. These attributes can be added 'to the description, one
at a time, until the system responds that there is’ only

one such-individual. Once thdat happens, any unknown

\-characteristics can be included in the deScriptien. If

+

the system 1nd1cates there is still one person flttlng

that descrlptlon, we know the subject has that attrlbute.

7

Otherwise he doesn't. This is the method used by Hoffman
and Miller [23] and presented in ‘the previous chapter.

It was quickly perceived that placing a minimum

query set size restriction may make compromigse more difficult
. « ’

,ébut cannot prevent it. Karplnskl [25] realized that if

you "or" in some mutually exclu51ve set of crlterla whlch '

v ,\ o

“is knOWn to have a large count ‘the size restrlctlon can be
] v &

bypassed. This idea of "padding" the query set is the
basis of SChlBrer's tracker technique.: It is not necessary

\

to define a sﬁbgroup which consists of only one persoa to

compromise the dataease: If we can define two groups which
‘differ by only. one persan, this works as well. What was '
nde immediately clear was'how easy 'it would be to devise a o

formula which would bring about compromise in this manner.

" Schldrer [30] first introduced the ‘tracker in 1975
A . |

fer,use»with systeﬁs allowing charaoteristic-specified ' .

. 13 .
e N
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queries using the boolean operators AND. (=), OR (+), - S

+80T (~). The system is assumed to haIe minimum and

maximum query set size restrictions. he maximum size

\

control is necessary if the operétg; NOT is allowed to’

prevent compromise by taking the complement of the-

: chqracteristic formula. One method proposed by Schlorer is
'thisﬁ suppose we have a certain amount of preknowleage |
~about an individual's attributes. Let us denote this.
knowledge by A = al...ak . Al§q suppose thisrinformation
is‘enough to uniquely define the individual, i.e.,

COUNT(al'az'...'ak) = 1. We now separate our preknowledge

—r

into two sets A, = {a ...ai} and A&, = {a ...a such

1 ~l 2 i+l k}
that COUNT(a;-a,...a,) lies within the restricted range

of answerable queries. We can now construct a tracker

\ .

T = (-(a, cerq))o(agrag..iag) = (-Ay) A, . The

.a
i+l

iv2°
‘tracker is also answerable and the set of records defined
by it is all‘the‘records in-the query set’ of A; except.
that of the individual we are tracking. This rec6rq can
thé; be compromised by askiﬁg the query COUNT((T+x)-AlO '
where x is an unknown property of the record. If the.
answer to this query is the saﬁe as COUNT(Al) then the
‘individual has the property " x . If the individual lacks
the property the ansver is CQUNT(Ai) - 1= CO&NT(T)t‘ %
The reason for this is that if the igdividual has property

x he will Re included (with others) in the query‘sét of

(T + x) and the intersection'of this set with that of o a

Al will be preéisely the query set of Al' Figure 2.1a

)
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uses Venn diagrams to illustrate this point.

Another tracker building tech-nique propoded by
schlorer [30] us€s a mask M such that COUNT (M- (-3,) -A))
= 0. A tracker can then jae constructed having the

formula (—’(A2 + M))-Al . The mask adds a disjoint set

- of records to the query set of (-Az) ‘A, thus "padding”

the set to allow the query to be answered. The Venn

diagram for this method is given in Figure 2.1lb.

‘ The trackers presented above require some pre-
knowledge ébout an individuall In fact, they require enough
preknowledge to isollate an individual's record. We clan call
these "individuai trackers". A differe;1t individuall,
tré.cker is required to isolate each record: Denning,
Denning and Schwartz [12] extended Schlorer's work and
devised a so-called "general tracker". Let us call the
minimum que;y set size r_estr_iction Zmin and the maximum

- —

N~ Znin where n is the number of records in "the

database. A geheral tracker is any charactéris;:ic formula

. INT ( - 2.7 )
T such that\ 2 Zmin < COUNT'(-T) <n- Zoin " The databa'se
‘can be compromised in the following manner: suppose we

‘

N i -
have asked a query q(C) where C' ig some characteristic
- .

 formula and q *epresents. any queryetype (COUNT,AVG,SUNM,

etc.). If COUNT(C) <, Zmi this query will not be answered.

n

3

We can determine the answer using the equations:
- 1

Q= q(m + q(-1) (2.1)

y Pl
-

q(@ = (€ + ) +g(C + (=]) - Q. (2.2)

o ,

s -




’ ‘ ' 2.
!
) ! ¢
! .
1
- t
|
LY} ~ s
a) Method 1 ) ’
-
v
) ‘ L
{ | :
. -y N
_b) Method 2 using mask M
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h S(C) denotes the set of records satisfying the characteristic

) formula C. ~

1 ) .

,‘,';“ ’ §
b . ' L

' Figure 2:1 Tracker Compronlise

' “ * .

: ! | :

\‘ A & 5 \
’ L3



-

All the queries on the right-hand sic’le of these equations:'
are answefable since the tracker and its complement are
by defi“nition answerable and COUNT(C) < Zmin so
COUNT(C + T) or COUNT(C + (-T)) ‘wi.l"l be less than

n - 22, Similarly, if COUNT(C)

n * ?ngn«f/n " Zhmin -
> n —/Zmig'/{:he following equation will determine q(C) :
q(C) =20 - q((=C) +T) = q((-C) + (-T)) .  (2.3)

Th;a general ‘tracker works on the principle that the
récord defined by € will be included in the query set
eitherof T or =T s;ane they are disjoint and cover the
entire database. Let us sﬁppose, for insﬁance, that -the
query set‘of T, denoted S(T)‘ includes the record we ‘
are tracking, .defiﬁed by 5(C) .‘ Then S(T + C) = S(T)
but S((-T) +C) = S(-’l?) + 8(C) . The effect of equation
2.2 is to add the answer for S(T) and\ S((-T) + C) and
subtract S(T) and §S(-T) leaving the answer for s(c) .
For example, consider this instance of equation 2.2 and

assume COUNT(C) = 1: « ‘

8

COUNT(C) = COUNT (T + C) + COUNT( (~T) +C) - COUNT(T) - COUNT (-T) .

The equation then reduces to:

COUNT(C) = COUNT(T) + COUNT (~T) + 1 - COUNT (T) - COUNT(-T) = 1 .

i

Clearly the general tracker is a powerful inference.
technique. Its greatest advantage is that the same

" tracker can be used to compromise any record in the database.

26.




"that trackers are indeed a considerable threat.to statistiéal :

27.

Any formula with a query set size in the restricted subrange

[ZZm.

in'M " 27

] will suffice. In most databéses this can

min
be fulfilled by the formula sex = male.

.

One further result recently given by Denning and

SchlBrg: {13] concerns the amount of work needed to find

a tracker. They give an algorithm for finding a tracker in

O(logz'M) queries where M is the number of distinct records
. ] . .

possible. The only knowledge required of the user is what

the different values of each domain are. This study shows

1 .

database security and query set size restrictions are not
effective in preventing compromise. ' \ ‘-‘ d
2.3 Corlrtbixjxatorial studies

- Witﬁ the statis't'ical inference, problenm haviﬁg been
formulated and query sét size controls investigated, a
nﬁmber of-resgarchegs started to study the problem using
systems of nblinear eguations to solve for unknown vaiues. .
Most of ttvxesé studies attempted to quantitatively .define - j.
conditions which would assure thé security of a database. .

Inferring individual values from a series of queries is a
, P ‘

problem which lends itself quite naturally to the application

of linear systems.. Most of the studies'use key-based queries

.and simply change the keys in successive gqueries and solve

for the various unknown values.

‘The first paper to address the problem' in this manner

‘was written by Dobkin, Jones and.Lipton [16]1. They studied

key-based queries which consisted of éxactly m keys

®

] i
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and added the further restriction that no two querie's may.
) LT e N

overlap in more than r positions. Under such a systemn,

they investigated the behavior of the E;uantity S(n,m,r,) ,

the smallest number of queries needed to ‘compromise the

database. There n is the total number of records in

<

the database and ¢ refers to the number of records whose .

‘ values are already known to the user. The'following example

is given by Dobkin, Jones and Lipton to illustrate this

concept [16,p.101]:

Example. S(n,3,2,0) <4, n> 4,

Let the four queriesjbe:

’ 9 =X Xyt Xy |
Q, = X + X, + Xy
- Qy = X, * X5 + X,

Q4=X2+X3«+X4. -

The‘n )'(4 can be found as %—(-ZQJ_ +Q, + Q3‘-;- Q) -
The study then derives certain conditions which maximize S.

Similar studies usin‘g this nioqel have also gquantified
the amount of security qbtained under ' various .conditions
[7,29]. Alagar and Blanchard [1,4] icientified’ a "forbidden
query set" consisting of the smallest subsét of queries
without‘:wl}\ic'h coxﬁpronﬁ.se is impossible. Consequently
only gueries beionging to this set need to have their

responses perturbed to*protect the database. Reiss studied

P
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"+ median queries involving exactly m elements and,found - .
‘compromise was possible with O(logzn{) queries for some
"arbitrary element and in 0(m) for a specific element ‘[28].‘
Ram- and Ullman [24] used a somewhat unusual model where keys'
are represented by a seqﬁence of 'k bits and a qugry is
a specification of “ <k bits. They concluded that if ™
the range of valueé for a database is ,unrestrictea this '
type of query cannot coxﬁpromise any database. This is a
somewhat unrealistic vassumption.w If tfxe ra{nge ‘is restricted ’
to some finite quantity 4 , ',compr(c:)mise is possible, It
is not clear if this rather abstract model is applicable in
practic‘e‘. |
| Several studies on characteristicJSi)egified gueries
'havé also attempted 3:0 define criteria which assure the
confidentiality of compromisability of 4 database. Hag
[20’, 21] determined a numbexr of complex conditions which
provide a means-to c¢heck i1 £ a database is “secure . Thése
conditions include information aPOut the user's sﬁpplemen;cary
knowledge of the database, which 'is difficult if not imposs-
ibie to determine in pract_iée. Using a different approach,
Chin ([5] studied databases wh;ch\ refuse to answexr queries
.invoiving fewer than two reccords. He found that if t:he
exlstence Lof just one rgecoxrd is known, a user can determine

'

the existence of all the other records. Similarly, if

‘the data value for any record is known, values for all the

N

other records can be deduced. 'This is not at all surprising

sincé the database answgrs queries involving two records.
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» All the user ﬂas to do is ihclude the known record as one
of the fiwo. Chin then goes on to provide a graph-theoreti-—
'dal model of the database whereby each record is a vertex
and edges, exist between vertices if and only if there is a -
characteristic which. isolates those two\records. He proves
that compromise is possible if eithe;"the gr:apﬁ has at
leoast one odd cycle or there exists a éharafzteristic c
such that .COUNT(C) is odd and at least three. JThié is an
interesting approach. but suffers from the dr::awback of many
of these studies in that it provides a meané of checking‘ °
whether or not a datalpase is secure and not how.to secure
the database.

Finally it was shown by Demillo, Dobkin and Lipton
[8] that even if a database system does not respond with'
true answers it can be- céinpromi'sed. This rather su:prisj.ng
result should not be misleading. The database does give ~
an‘exact value from some record; it is not necessarily the
correct answer to the query, however. . The gueries studied
were key—bas'ed median queries which specify a éet of r
re‘};o;ds. Thus all., queries were of the'form: "What is O -
the median s’alary of .{s}?" where ,S denotes a setr of r
employees. Suppose this system does not respond.with the‘
value which is-actually the median of the r value/s, but

rather selects any value from the set at random. Demillo,

Dobkin and Lipton prove that even if +the overlap betwWween

. queries is limtited to one record, it is possible to

I

compromise the database. The method used involves asking

| .

_— o ¥
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m dqueries about the first m - 1 records, each query

over}.}apping énother by one record. Two of the queries

must.return tl;%‘e same answer by the pidgeon-hole principle ‘ , ’ v
(if p + 1 ‘objects are ’glaced in p containers, some
_c;ontainér‘ must have two objects). It remains merely to
inspec;t the two queries and find the one record common to
both. While this type of "lying" may not secure a database
aCtually distorting the values .to a small de\’gree can be
effectivey, as we shall see in the next section: ' N
The étudies',“ on combinatorial inference have provided

. ’

some insight into statistical database security. The

results of these studies, however, are largely negative
[ 4

in that jthey show how easily .compromisable various database

.

models are, or at least passive in that they provide a ¢

" means of checking the security of a system and not ensuring

it.. Most of the models are not of ‘much practical use
¢

either, espedially the key-based ones. Few real statistical

databases allow records to be queried by key, and forcintj

the user to specify a fixed number of records per query

-

A
is a very artificial constraint.:' Nonetheless, thHe studies

1

do have theoretical interest.

2.4 Perturbation ’ . , )

In light of the studies which showed how easily ! o

databases could be comprofnised.ever% with query set size

|
. 1 {

and 'oﬁrlap controls, distorting-.the responses is an ' |
attyactive method for securing statistical databases.

Statistics requested of the system are randomly perturbed

. or
. .
a, ~
. ! 5 ‘

s
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in such a way that,the expected values are the true values

but a degreé of uncertainiy is :Lntroduced. This leads to

Targe errors when inference techniques such as trac,":kers
- "4 X
. . P ,

and linear systems are used in an attempt to compromise

the. database. ' ‘ v

4 -
s

. ’I‘he first such metilod described in' the literature
- is called random-rounding. Nerguhdkap and Saveland [26]

proposed the technigye whereby statist{cs are rounded
. v (‘ v, N
to a multiple of ‘some "rBur;ding base".® The decision to

round any value up o. dowh is determined byf .random ~
nuxg'ber., For example, suppose theé true answer to a query »

is 57" and we have chosen a rounding bake of 5. We

v

then generate a random value Eetwee‘n‘ zero and one. . If oo

-

this value is greater than We answer to 60,
R . ) }

otherwise we round down to 55 . The user, Ipoh receiving

| ‘ ' X
the response 55, can only determine that ‘the true value
’ )

lies semewhere(between - 51 and “'59""7.__ Unfortunately}) — .\

true random roDLuijing cannot effectively sequre .the system
L

3
. slnce the samd value may be rounded up for one instange

(v

of the ‘query ‘and down when the query is asked again. By <
Javeraging a number of responses to Ehe same query, it may

[N

he ‘_p,ossible‘ to de{:ermine that vaLﬁ'e. , The techni_que of
pseudo—réndom roundlng solves this problen by determlnlng

" one nandom value for a glven character:.stlc formula or

by L

response set. Thus the answer to any glven query ~is—always
4 4’) . ® . . . . \' s

L

the same. . .

Fellegi and Phillips [18] outlined this and other
. ¥
v\: . . ;
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consid'erations, needed to produce safe “"‘s‘tatistic:s using
random rqunding. Their procegure ~was_ implemented on -c‘iata;
from the 1971 census. Jone such consideration is thata ‘
average‘s should be mai:ﬁt'a.ined. If the original ;iata shows
3 peoPle.earning a total'of $63,000 or an avei'age of
$21,000 each, we should nét round these figures separate}y '
resulting,. for .example, in 5 péoPlef'earning $60,000,

an average of $12,000 each. Instead, v%e fwou]jd 1i};e to

show either 5 gpeople earning $105,000'or 0 people
'earning $0. Another source of prob'lems is 'rounding"total‘s
and sqbtotals. If a series of wvalues are randomly rounded
and these figures then summed, the tdtal may be well outside
the desired range if we happen to round the ind;‘.vidual
values more often in one dir&‘ction. Let us consider an
exa;nple’ to illustrate this point. Suppose we have the
following unroundéd data: 12, 4, 15, 22, 9 .giving a total’’
. of 54. If we rounded these values and then totalled
wé might ‘get:‘ 10, 5, 5, 20, 5 for a total of 45. To ;
avoid producing large errors inlsubtotals and totals, these

ShO{lld {)e.rounded separately, giving either S50 or 55 for
our exalr:i:l\e'. Percentages mﬁst be given aczcording to the
rouncied vaiues i/nstead of the original ones. ‘Othe;v&_isq
they may reveal some information about the true wvalues,
Finally, Fellegi and Phillips note that the same gueries
should give the same answers, as we mentioried eérli,er. They

proceed to present measures which are designed to achieve

these objectives. This study shows éthat, if carefully done,

L]

~ ‘ ' . ".‘
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to COUNT queries and true responses are given to SUM

random rounding can be an effective"security method. . :

- ‘
Another similar technigue releases ranges in response

to C%UNT querles. The user cannot be sure exactly where /

in the range the ‘true response, lies in such a system. Hag

has shown that by ‘giying approximate answers to queries

compfomise is harder but still possible [22]. This is not :

an irrelevant result since the effectiveness of a security

method is-directly related to the amount of effort needed

to compromise the database. In this case the intruder

must try to ngrréw the7 ranges by asking a cle\{erly devised

sequence of queries. A.‘Lé.gar et. al’.l and Blanchard“[l,4] - ‘ : )‘

.

have implemented a scheme wh'ereby range responses$ are .given

gueries. He gives a formula for the probability that any -

range can be reduced, and shows that the chance of reducing

a range to a single point is extremely rare and requires
a large amount of work. ﬁapge responses ca:n be subverted
if dummy records are allowed to be added to the database
by simply adding records with the required charaétéristics
until the system responds with the next higher range. If
thefiﬁiumber of male lawyers, say, is glvzn as "50-60" and,
Tafter adding 4, dunmy male lawyer records, the‘::’esp\onée
|

P .
becomes "60-70" we know. there were 56 originally. Most )

databases do not allow this and range respgpnses dan then '

. provide a lﬁgh level of security without/producing misleading

statistics. . \ X — ¥ ' )

The final perturbation method 'which has been studied
. —_——

r . e



"weights with the position of a key and not the key itself.

‘altered to provide different levels of security. The effect

' \

~
. ~

>

is that of‘as$ociating some_random weight with data values
and thusldistorting them. Fof instance, one could choose a
random number between .7 and 1;5 fo} each value in the
query set and multiply each -value by its approﬁriate weight.
1f the‘quefy asks for the sum of the values, the system
produces a }weighted sum". Schwartz, Denning gnd-Denning
used this metﬂod,[32], but they chose to associate. the

Therefore by asking a key-based query with the same keys in

different positions, it is possible to determine the weights

and thus the data values if any of the values are known : i
beforehand. Recently Beck-[3] has implemented a much more
sophisticated model for distor%ing statistical data. He'

uses perturbation factors which are random but not necessarily

uniform. The variances of the weights are chosen to conform ' 1

with the known statistics of the data values, and can be

of this is to prevent the user from estimating a true value by -

asking a series of gueries and determining the variation

(perturbation) which\has\been applied to it. Beck's method

4

gives accurate results and can without much difficulty force

'ﬁ user to pose 10° gueries to infer information. There are

nolrestrictipns placed on,iﬁg queries regarding size, overiap,
or. t§pe. j | ' /.

Data pertﬁrbation h%é been sho%n to be a reasonably
effective means of proteq£ingAa statistical database. The '

“ EEN '
various methods presented in this section must be implemented oo

\
, -
L& ~
t . .
B ~
’
’ N
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- 'with great care, however, to prevent users from-determining

I3

values within an acceptable error tolerance.

%

2.5 Threat monitoring ) . ' : '

One‘méaﬁs of preventing unauthorized access of indivi-
” dual information.is to monitor tﬁe éuqries asked of the \
system in order to determine if any sequence of queries would
léad to statislical inference.
Hoffman and Miller IéB] first suggested the idea of
keeping a log of gueries to check for "bu£s£s’of activity"
or queries idenfifying small sets of records. Fellegi [17]
- showed that it is theoretically possible +to ccrrelate S new

- ] 4
query with all the previously released information and deter-

- mine whether disclosure of individual information could occur.
This is a rather monumental task which requires taking all
possible unions and intersections of the sets of information
given out by the system.

SchiBrer [21] suggested a scheme which sefs.up standard
'classifications for each variable. Each classification X; |
consists of one or more values in the doméin of that variable,
land is associated wi£h the&relaiive frequency of the recoxds
occurring under that classification, Py - One can then
determine the identifying power‘ofvany characteristic formula
byltéking the produciyof the pi's . ;f this falls below
some predetermined value the quér& is cancelled. Schlorer
also suggests monitoring only the "dangerous" variables,
meaning ones which'may be ‘easily de?ermined from outside |

<,

“sources and u to isolate records. Dangerous variables
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include sex, age, marital status, etc., whereas innocent

variables are those not likely to be used as pre.knéwledge'

about a subject such as laboratory finaings or polttical
contributions. o

-

Threat monitoring s;xffers from several drawbacks.

Primarily, it requires a lot, of overhead. Maintaining a

log of all inquiries made of the system necessitates using a

large amount of storage, which must be made available to '

L

the monitoring system. The log cannot be Ninfinite and sa will
, N

only monitor queries made over a certain period of time.

A clever user who kr%ows of the existence gf a threat monitor

may be able to ask qgueries over a longer period than that

for which the system can keep ﬁrack. A system will certainly

have to monitor queries f;Jr more than one job at a time.

Another reason f§r this is that two or more users may conduct

e

seemingly innocuous inguiries ahd later correlate their

results. It is nearly impossible to detect this type of -

threat. Another problem is that threat\monitors may restrict

the release of uséful' in‘formation.‘ If too many queries are

dénied bdcause they may potentially be us?d to infer indivi?

d‘}a.,l information, the system may no longer be. serving its

primary function - to release statistics about its population.
If a threat—moniforing device is to be used in g

]

statistical database, it cannot be too elaborate or it runs -~

\

‘the ris]; of hindering the flow of useful information.

Schldrer [31]..has suggested that such a system be used in

t

conjunction with random-rounding. Each provides some
<




"deterrent against ginference and will_increaselthe amount of
work and time needed‘to coﬁpronﬁse a database.
2.6 Respohsé set coqtrols
< The final type of inference control meéhanisp which
has been invegtigated is concerned with the set of records
relevant to a query. Two major methods.have been proﬁosed
.which'alter'the query set. The first uses a random sample:
of ﬁhe records in the quéry set to obtain the desired
statistics, while the other partitions the database into
c small groups which cannot be broken down funther.“ Both
methods control statistical inference by creating uncertainty
about the records used to generate the statistics queried,
Random sampling eliminates some récords from the query set

while partitioning generally adds records from paftitions -

where some but not-all of the members belong tc the query set.

[
-

2.6.1 Random sampling -
Taking a random sample frah a database for stﬁtistical

pufposes was first mentioned by Hansen who reported that
;////' the U.S. Census Bureau released detailed inforﬁation from -

a sample of’l in 1000 forms received in the 1960 census [19]. s

‘ Names, addresses and any geographié identification was

deleted except for broad city-size classes within nine
geographic divisions. Usipg information fromlsuch a ‘sample, '
i£ would be very difficﬁlt to acéuratgly identify anzindivi— ;
" dual. Even ifnone of the records matched all the preknowledge

. a user had, there is only a 1/1000 chance that the person

being locked for was actually included in the sample. The-

N ‘ dd.
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proBability of misidentification is great and a lot of work
is needed to identify,ét best a'smali percentage of records.
The system has apparently worked well, but unfortunately is
only applicable to very large dataggbes.

Denning has implemented a random sampling procedure
for small'databaées (15]. The sample is generated for each
query when éetermining ?he query set. A sampling probability
p is-fixed beforehand, indicating the proportion of records
included in the sample. Each record has an identifier
conéisting of several bits. When a record i is found to
be in the'qqéry set, a selection function £(C,i) determines
whether the record is to be kept in the sample. This function
matcheé the identifier for record i with another function
g(c) thch maps the characteristic formula into a sequence
of bits. if the two bit patterns match the record is
excluded from the sample. The function g(C) is desigﬁed
to match the recoFd identifieré at random with a probability
of L-p. ‘ | r ' ,

Denning shows that étatistics generated using this |
method are fairly accurate for p = .9375 .and databases of
size 100 and 1000 . Smaller p yields less accurate |
results, as would be expected. The major question is one of
security. Randoﬁ sample queries introduce an uncertainty

« about the composition of thé response set, out can this’

uncertalnty be reduced or ellmlnatedb i £,

-

.Random tracker attagks were made on the’ random sample

queries, but the results reported are virtually meaningless.
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_estimates from queries about disjoint subsets -0of a query

Mean relative erxors are given for values inﬁerred‘with the

'

trackers, and these are qulte large, from 200 ‘to over 700

. percent, Some trackers, however, may be off by a tremedéous

amount while others may accurately infer individual informa=-

tion. Denning gives us no idea how many. trackers inferred

values to within, say 10%. .

-

Qne problem qddreésed by Denning is that of small
guery set sizes. If Ehe query set is small there is a
chance that all the records will %F included in the- sample.
This chance, of course, increases with p since a large
value of p is needed to produce accurate statistics, small
query sets are particularly vulnerable. To combat this,
Deénning suggests lowering the va;uﬁ'of p for these qud@ies,
\which seems like an awkward technique and will produce_highly
‘innacurate result’s, or to make a minimum query set size

restriction.

Another major problem with this particulaf implemen-

tation is that the sample selected is based on the character-

/
istic formula C. Thus if an equivalent formula is queried

it will generate a different random sample of the same

3

records. Denning suggests that some-normal‘form‘for C

' could be used to-form the sample, but that the problem of

reducing logical formulas to normal form is intractable.'
Error removal is then possible by averaging responses to
queries which specify the same query set or by averaging

>

set. Denning shows that it would take a large number of

i
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3ueries to accurately, Qeterﬁine indiyidual values in this
manner. While  this would discourage a manual attack, it
certainly could be performed with a computer. She suggests
some form of threat monitoring to detecﬁ such«afrqffemoval
attempts. it seems to us that a simbler method for pre-

~

Venting this type of attack is to make the function g

<

dependent upon the query set size and not the characteristic

formula. Then any equivalent formulas would produce the

-

- same sample since they involve the same number of records.

It is not clear if this would prevgnt disclosﬁre by asking
quéries about'disjoint subjects, however. '

. Ehpirically, random sémplihg appears to prévide
eﬁfective inference.controls. It can produce accurate
statistics aﬁd the samples Qre.éenerated at respense time
providing ﬁp-to-date information. It is not clear, théugh,'

whether security can be_guaranteed under such a system.

. 2.6.2 Database partitioning ¢

The idea of separating a 'database into disjoint &
groups was introduced by Conway and Strip{6]. They suggested

. ! w . . )
using classes instead of values for the various at butes.

Each class would cbntain several records and it w d not

be pdésible to isolate any record within a class. For
example; let us consider the attribdke "salary". One class
for this a;tribute might be class 15,000, includiné all
gaiaries.in‘the’range;ls,ooo to 20,009. The condition

» '
"salary = 16,000" would be interpreted as true if the

class of "salary" is the same as the class to which 16,000

-

¢




4
\

belongs (namely class 15,000). This could be implemented

ipterpreéively,1involving a table look-up of the class

t

definitions for each access, or the class to which a value
belongs could be determined once and stored directly in the.
record. Conway and Strip do not give a detailed explanation

of the method, but are quite enthusiastic about its

'

potential for securipg statistical databases. They state

that "there does not appear to be any way, even with T,

repeated queries that unauthorized information could be o

extracted from a field»protected in this manner."é

A more détailed partitioning proposal was made by Yu -

and Chin [331. ﬁhereas Conway and Strip partitioned each
- attribute into disjoint classes, Yu and Chin propose
partitioning the entire database“into mutually exclusive
groups. The idea is the same: If aléuery refers to any
member of a group, it is answered for all members of the
" group. This way no recgrd may be isolated, h6 matter what

" queries are agked. The pritical problem is to ‘create
useful partitions, i.e., ones which contain records which

&

are as similai in nature as possible. ‘
Yp And Chin gtve an algorithm for producing the

pa;pitions. The algorithm and its drawbacks are discussed.

‘in detail in the next chapter. ?hey‘also_éive methods for

including new'daﬁé as well as updating and deleting old

4 . . . .
Conway & Strip, Selective Partial Access to a

Database .(ACM 76, Houston), p.89. )
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data in the system. These methods involve mgihly flagging
any changes but not using the new infbrmation until enough
updated data has accumulated to warfant redefining a parti-
tion.’ . o | ) | |
This fhesis presents the implementation of two
partitioning algorithms for securing a statistical database.
,Thé partitioning,teéhnique is the soundest one in theory
which exists t6 protect a ddtabasg égainst statisfical
disclosure. We will show that useful statistics paﬁ,be !

produced using this method and the partitioning can be

achieved at a low cost both’'in terms of time and overhead.
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CHAPTER THREE

RECTANGULAR PARTITIONS

N

The first method we have used to partition a”

database is derived from the 1977 paper off Yu and Chin [33L

In that paper they describe how a database can |be partitioned .
thr ugh an initial map%ing onto a matrix of all| possible ,

I

records. Thié matrix can subsequently be partiéioned
into disjoint rectangular regions, each off which contains
at least some minimum number of records. n this'chapter we

will first describe Yu and Chin's method and its drawbacks. -

Thenwe will present a superior algorithm EPat is almost

. P~ B

| ,
"optimal for partitioning a database. Complexity analysis is

-

. \
given and selected test results are presented. Y

, |
3.2 Yu and Chin's partitioning algorithm |

Let us assume that' we have a database\consistihg of

'

N records, each of which has values’in X dbmains or
attributes. Call - d; the size of the ith &oﬁain; that
is, there are di different values possible flor the ith

domain. For example, if the first attribute ijs SEX,

4

then dl = 2.,

//&t is possible” to construct a K-dimensipnal matrix

of size dlxd2 X ou dK '

one possible set of values that a record in e database

can have. Furthermore,, 6 any valid record can be mapped

each cell of which represents

onto a cell in this matrix. Consider a recor r.: with

]I
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values jltjz""jK . This record is associated with the

cell having coordinates [jl'jz’“"jK] in the matrix.
When all the N records have been placed in the matrix,

each cell will have a count representing the numbere of

u

’ " reécords at that position.

-
1

. We must now partition this database matrix into dis- '

joint regions so that each region containg at least some

A
’ minimum number of records given by our threshold, t > 2,
o
' Soﬁe cells may already contain +t« records, and these are’

0 valid partitions by themselves. Some cells may have no
L}

records associated w1th them, while others will contain o ‘

some records but ‘less than the threshold. The cells in the .
’ AN ‘4 .t

latter group must be mé%ged, somehow, with surfrounding cells

to create the desired.partitions.

’

The procedure .suggested by Yu and Chin is to merge

.\

a nonempty cell '(with less than t records) with one of its

neighbouring cells by combining all the cells with those

» two adjacent values in that domain. Thls process is repeated
' untll the cell has at least t records, .and is performed
for each nonempty cell with ldss than t records.
, . Considexr a‘rwo—dimensional example; that is) there
L. . . . e

are just two attributes per record. G Let Yyreeso¥y and

»

e v

—1 ! . C
zl""‘ém "denote the possible values in each domain. Thus,

' we start with a two dimensional matrix B containing nm

s

cells. Once the matrik is filled with all the records, any

% cell B(i,j) contains all recqrds (u,v) such that u = Ys
N . h Y s
and v = zj‘. If this region is nonempty and has fewer than '

R Y

E}

=
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t records, Yu and Chin's algorithm merges this 'region with
- . Al
4 7 o {
its neighbourS’inﬂthe.arbitrary order B(i,j+l) , B(i+1,3) »
. ’ »

B(itj—lg and B(i-1,3j) ﬁntil“the resﬁlting region contaihs
at least t récoggs: Suppose B(i,j) is$ merged with'

B(i,j+1) ~'and B(i+l,j) . The new domains then beéamg
D, f'{yl’f'x'yj m‘yj¥lf""yn} an§ D, = {zl;"!‘fi U zifl“
....zm}.. See Figure '3.1. This procedure combines entire .

. 4

Trpws or columns instead of,sim@lY’combininé the -cells needed"

to make a valid partition. A cell which in itself is a

valid partition (i.e., containing > t records) may be forced

PR

with its adjacent. cells to form a iarge; sized partition with

. “number of records much greater than “t. = This might also
S b 4 :

Anclude several empty cells in it thus introducihg laréﬁ
R [ N

3

" errors in the computed statistics. 'Furthermore, when carried

to,its completion, this merging process can'éause the virtual

coliapse of.the"database into a far fewer nuﬁbé% oﬁ;aarti;

tions than'ithe theoreté'.c‘al mafx i mum ,pf\ N/t . See Figure 3.2.
fu and Chin ;tate}that Epe complexity of the aléorithm

is proportional to the number .of initial régions in the

R

L L. o . s ! ' N
matrix, '‘since each region is examined once. We believe that,
s *

~although the algorithm is fast and.relatively simple, it is

° %

not very useful in practice as a partitioning .scheme. It is

[y

more desirable to héve an algorithm which priéariiy maximizes
,?29 ﬁumber of pagt%tions agd seéoﬁdanily miﬁimizés the farea
covered by thésé parfitiops (that is, includes'as few empty
cells as pcssiﬁle), even if it is more complex. It should

be noted th&t.Yu and,Chin did not attempt to implement their

~
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Figure 3.2 Merging a sample database by Yu and, Chin's method.

- Arrows indicaté which cells are being merged. = .
Brackets indicate which values are being merged. r
: . Each record is represented by an X. For this a
’ : example: k=2, t=2, N=15, d1=4 and d2=5. ’
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' the rectangular partitioning problem.

49.

algorithm nor test its performance.

however, the first and as far as we knOW‘the only paper which .

The article [33] was,

‘even proposes a database partltlonlng algorlthm for the

purpose of safeguardlng agalnst statistical inference.

3.3 Rectangular partitioning , T

We have designed an algorithm which partitions a

+ database into groups such that éach group contains at least ’

t records. If the database is mapped onto a k-dimens;onal

matrix, our algorithm obtains a disjoint set of rectangular

regions (rectangular parallelopipeds for k.> 2) which

[ hY

cover all the ' non-empty cells of the matrix. The regions _
are formed subject to the following constradnts:

1) each region has at.least t Trecords; ‘ }

.2)  the number of partitions obtained is maximum, and

Vd 3) the sum of the areas (volumes) of the pértiticns

is ‘minimum (i.e., the number of empty cells

-

included in the reqﬁaﬁglesiis minimumn).
The algorithm, consisting of two phases, partitions
a two-dimensional matrix into disjoint rectangular regions

subject to the above. restrictions.

'y

It can then be applied
repeatedly'for databases éf higher dimensions by taking the
rectangles formed in one appliéatiqn of the algorithm as one
axis of a new two-dimensional ma;rix, and the values of the

next domain as the other axis. This process will be

S . . >

' described in detail later in this chapter.

We have used a graph-theoretical ‘approach to solve

Thus, we consider

. ¥




vertices such that their edge has minimum weight.

‘3.4 Optimality considerations

2

each nonempty cell‘in‘the matrix'és a vertex of the graph.
Thé.first phase of the algorithm then defines ghe graph by .
constructing adjacéncy lists for’all the vertices. Two
vertices p and q are defined to be adjacent if and

only if a rectangle caﬁ be formed wﬁich encloses the two
‘cells‘correspondinq to p and g with‘no othér nonempty

cell included in this rectangle. See Figure 3.3. The

size (or area) of a rectangle so formed will be the weight

" of ﬁhe edge (p,g) . The set of all vertices found to be

adjaéent to p can be called the "nearest neighbours" of
p. It is these, vertices which are candidates to be
included in the rectangle ofswhich p is a member.

Once the adjacency lists have all been constructed,

the second phase of the algorithm forms the rectangles using

'a region growing process. It first selects the vertex which

B

has the most records assoQiated with it or two adjacent

:

The

aigorithmithen proceeds to gqrow a rectangular region of

y [y

minimum size until the total number of records enclosed by

¥ ‘

_that region exceeds or equals the thréshold, t. By

selecting a vertex not included in any .of the previously
fdrméd rectangles and repeating the 'process, we form more

rectangles until no more vertex'remains to be covered. \
»

i

o

. Obtaining an exact ‘solution meetiﬁg the reguirements

-

specified above, i.e., that each partition contains at

5

least t ;ecords,'the number of partitions be maximum and
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their total area he minimum, is hard in the sense that any
algorithm attempting to find such an optimal coveri'r;g will
invariably be required to do an exPonentia‘l” amount of work
proportionél to the input'size. We have -written,rex back-
tracking algorythm which illustrates this point. The .
algorithm assumes that phase I has been cormpleted, hence

the adjacéncy lists are formed for each vertex, The vertices
all have a; tag field, whereby they can be marked as used

in a partition or not. The function wt(x) returns the
number of records associated with a vertex x or the number'
of records included in a rec.tangl'e x- The ‘;ariables

. "bestsofar" and "bestarea" store the number of reétanglés

and the area c~overed by the begt\partitioning found by the

algorithm at any given ti e level of backtracking is

given by £ and the vertices to be examined at that
level is S, . ‘ ' R

Algorithm OPTPART

1. Unmarxk all vertiées’. L+ 0.

2. TFor each vertex v such ‘t‘hat wt(v) > €, mark (v)
and add & rectangle consisting of v tcs the set of
rectangles. S,V, « ¢, L+ 241,

-3, §, < {all v such that v is unmar]ted}.

4. If 3Iwk(v) forall v, in S5, < t then go to step 11 .
‘5. choose .an element from S, , call this v. Delete v
from. -5, . Mark (v}. Total weight « wt(v).

L+ a4l '

-

6. Ssz, < {all w such that w is in the adjacency list of

\
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v and w is unmarked}.

7. 1If SR, = ¢ execute step lI.

8.  Choose an element from S, "call this w . Delete w
from S, . Mark (w) . -

9. If total weight + wt‘(vi) <t ﬁen include w in 'the,g
current rectangle, set § « 2+l , v «w and return to
‘step 6. | |

10. (Total weight + wt(w) > t) .

Add current rectangle"including' w to the set of
rectangles( set % +« £+1 and return to step 3.%,
11. For each unmarked vertex, include it in the ne.qre\;’&
l re'ctangle. ’

12, If the number of rectangles > bestsofar or number of

rectangles = bestsofar and area covered < bestarea then .

save this set of rectangles and purge any previously

saved set.

- ‘ .
13. Unmark (v). 2+« 4-1. If ¢ >0 then return to
step 7.

Since algorithm OPTPART con51ders edch vertex in the set 8§

' p
for all levels g, 2\ it will eventuaily form all the

!

possible: sets of rec‘tangles and simply choose the best one

in step 12.

cost of this algorithm we realize that

.-,.—w

y
In analyzing th \

the -height of the ba ktracklng tree is m—l , where m

is the number of ver&ﬂ.ces found in phase I, since each vertex

e e

must be examned to getermlne a set of ‘rectangles which

defines a partitionin'g‘o_f the database.. Furthermore, at




each level i of the tree there have been i vertices

S

already looked at and markea, leaving m-i vertices which
may be included in the next set Si . Thus a node alt level
i will have at mos= m-i sons. The maximum size of the
tree, apd ‘i::onsequ'ently the cost of the aigorithm then
becomes m (m—li » {m-2) -+ ...+1 or m The algorithm is
there fore exponential with time cdmplexity of 0(m!) .

In an attempt to reduce the cost and yet obtain an

almos+t optimal solution to our problem, we have designed an

.algorithm which produces a "nearly optimal" partitioning

in time 0(x210g2x) for most input and in time O (x3) for

some rare kind of input database in which the distribution of

.
2

values is concentrated, where x is the number of groups
. ) .

‘formed.

- o \

3.5 —Gonstrgcting the adjacency lists ‘ , 7
The first‘phase o;.c' the matrix partitioning procedure

trar;s forms thre matrix into a graph. ~Thi‘s‘ involves scanning

thé neighbourhood around each nonempty cell to find all

the vertices adjacent to it. First we willk inf'ormally )

deg;cribe this process, then we give a formal description of

the algorithm. In the actual \implementé‘tion'of the - algori thm,

the adjacency' lists are kept as a linked list wherein each

node corresponds to a vertex and contains the identifying

N !

coordinates of the vertex (i and j)‘, the weight of the

. vertex (the number of records associated with the cell

(i1,3) ), a tag field to mark the vertex used or unused, a

pointer to its adjacency list, and a ldnk to the next node.

.
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‘The nodes in the adjacency list simply contain a pointer to .-

and a link field to the next list’

.the vertex they represent,

node. A

3.5.1 General ‘description{of the algorithm - for Phase I

v 1XD

are the number of different valueé in

We are given a two-dimensional matrix of size” D 5 v

D and D

1 2
two domaix;sof the database;

where
The value iq each cell is the
count for that cell, some npnnegative integer. For example,

suppose the value of cell |((i,j)- is 2. It means there are

two records in the database|with values i for the first

domain and j for the second.

Let us consider any honempty cell (i,3j) for which

we want to construct its ad

We must find all rec
one other cell only. ‘The £
) sca;n.ﬂ'le i-th row énd j~th
a nonempty cell or the edge
we ‘find fodr cells in this
(i—az,j) ’ (i,j+bl) ‘and (
maximum area to be searche
i-a2 < x < i+al and j-b2
includes (i,j) and some
must also include oné of t
rh

be adjacent to (i,]) .

jacency list.
tangles which include (i,j) and

irst step in this procedure is’ to

[

column in each direction, until

of the matrix is found. Suppose
manner. Ca/ll them (i+al,j) '
i,j—b2) . These cells define the

, namely 411 cells (x,y) where
<y <j+b; . Any rectangle which
onempty cell outside this region

ese four cells and, hence, cannot

gure 3.4 illustrates this point.

The area to be searched can be broken into four quadrants.

Each of these quadrants can then bé searched by rows starting

with the row nearest to

and'working away‘from (%,3) .

-




X
- {i-A2, ]
X X
. N L, A
11 oo x o "X '
(il5-B2) | : ] (3+81) |
X X5 X
X
| X |1V ; X
X
A
X X
(+A1,3)

’

.

Figure 3.4 Finding the four quadrants to be searched
for the adjacency 1ist of cell (4,4).
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As soon as a nonempty cell is encountered it is added to

the é§jacency list of (i,J), and it further limits the
area to be searched in that particular quadrant. The newlj )
found cell /eff‘ecti'vely "blocks" all cells beyond it from
(i,3) . Figure 3.5 shows thé areas blogked by a cell in R
each quadrant. Once all the guadrants hawve been searched 1n

;his 'manner , the adjacency list for .(i,j) is complete and

all the neighbours of (i,3J) have been found. This /proce‘ss'

i§ repeated for all m vertig‘es. Although we have tried \to‘

limi+ the areas to be searched, for each vertex, it can still -
o . 2
be rather costly, so we have introduced two modifications to . ‘
‘ 3 . 1
reduce the search time and to avpid searching the same area 4

too many times. ' o

) o~ - °
The fi'rst modification comes from the fact that, if a .

vertex (x,y) is found to be adjacent to (i,j) , then )

(i,3) should also be included in the adjacency list of
(x,y) . Thus, every time we ‘find a vertex which is adjacent
" to another,' we insert them both into each others' lists.

This eliminates the need to search two of the quadrants for

each vertex. The search starts at row 1, column 1 of the

nl1atrix and proceeds across the row until column D,, then
starts at the next -row and pioceeds as before, i.e., in a
top down ]:eft to right fashion. ‘When scanning the area
around a vertex (i,j) we neeéi never consider the two
gquadrants akbove (i,Jj) for adjacent vertices. Any cell
()'t,y) in those quadrants which is adjacent to (i,j) will

have found (i,j) during its own search and (x,y) will

+
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.already be in the adjacency list of (i,3j) .

Although this modification will reduce the segréh time
consideiably, it is still ;.Eossibility that each search will
take 0(D,D,) tdme. .This can happen if, for instance, all .
the nonemﬁty cells occur in the top right portion of Fhe
métrig; Thus the worst case time complexity is still

0(leD2) where m 1is the numbez?gf nonempty cells. In
order to further reduce the complexity we introdu¢e the
second modification described below.

The matrix can be préproceésed in the following
manher: the value of each empty cell can be cgangeq to
indicate where the nearest nonempty cell is, in either
direction along its row. Thus it is no longer necessary' to ‘v
search the rows from the cell in consideration downwards; o
but merely to inspect the cells of the column j by increas=-
\ .

ing rows until a nonempty .cell is encountered. All that

remains to be done is to test if the two nonempty cells

. pointed to by each empty cell in column j lie within thé

1

region of‘possible adjacent cells. .Determihiné this region
is'also an easy'process, requiring on%ysthat we inspect the
twg adjacent c%lls ip row i, " namely (i,j-1) and (i,j+l).
Thege cells’wiﬁ{ either be nonempty, in which case the area .
to b; searched is bounded by t?at co;pmn, or ythey will
}inQicétf”Ehe nearest nonempty gell in row i wﬁich’then
defines }he maximum area to be segrched; Each‘vertex‘fod;d' 
by inspecting\cé;umn j wh?ch is determined to be within

this region subsequently narrows the region as described
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. 0
2 3 4 2 b 7 8 9 10
B X 3 Yy %
2 X X X X
3 X . X X
4 , X T .| X :
5 X [-101 X <103 X
6| x |° T l-a03] X
7 X [-102| | X
8 X |-104 \ X
9 A X
N ' i 7 ] ‘ + » .
10 X )§> . . X
Cells searéhed in finqAng the ‘adjacency 1ist %or (5,5):
1. (5,6) - right:=9 (5,9) added to Mst :
2. (5,4) left:=3 (5,3) added to list
3.- (6,5) right:=8 (6,8) added to list .
, (6,1) not added to 1ist
4, (7,5) left:=4 right:=7 : _
"5, (8,5) © {8,4) and (8,9) not added to list
6. (9,5) (9,5) added to 13st -« -
Figure 3.6 The second.modificatidn for'\\Phasé( I. ‘ o
t ' ‘
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’ "éhrlier. v{e ha‘.ve chos{en the' following r;ode to represent the
nearest nonempty cells to an empty cell: the value of an
empty cell w’ill be (the distance +to the ,n‘earést vertex to

-»
the left) * 100 + (the distance to the nearest vertex, to the

. .right), all negated. 5o, if ‘there is a vertex at (3,2) and

one at (3,10) with 'empty cells in between, 84:hé entry for
cell (3,5} will be -305, indicating a nonempty cell three.
spaces to the left and anothex{ nonempty cell five spaces to
the right. Figure 3.6 presents an exéméale of this method
for finding an adjac‘ency list. The matrix is extended tpl
inclouc‘le columns 0 and D,+l which are used if there are
no nonempty cells to the left or right of an empty cell,

respectively. This modifictation guarantees that the worst

5 ‘case time for Ph‘gse I will be O(DlDz) . A detailed

-

|

v

analysiélwill be presented later in this section.
3.5.2 "Formal description of the Phase I algorithm -

Below is the formal algorithm for Phgse ‘I, which
determings the adjacency i"ists for all vertices. “\ Assume tﬁat :
initially the matrix consists of counts for each. c\)/e\ll“(z_ 0) .

\

cells in

\

A

Steps 1 to 8 perform ﬂié preprocessing of the empty\

-~ the matrix,

' ;ngorithm FINDADIJLISTS - —
1. rownumber +« 1 ’
2;» coll + col2 « 1 N |
3. i€ matrix[roynuzﬁ‘ber'célm nonempty then add it to

list of vertices - . .

- 5 N

4, advance col2.to next nonempty cell or edge of ;
. . .

~matrix
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10.

11.

12..

13.

14.

15.

ls6.

17.

18. -
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.

for each empty chell from coll to col'z,' éalc‘ulate.-
distance factors and assign to celly

if col2 < D, then coll « col2 and return to step 3
rownumber « rownumber + 1 \
if'rgwnumber_i\Dl then return to step 2

choose next vertex (i,j) in list of vertices; if

no more vertices stop

" if matrix(i,j+1]1>0 then right «j+1 - )

otherwise right «j+l+(matrix[i,j+l] mod 100)
2.

if righf < D, add (i,right) to’ adjacency list of

(i,3) and vice versa

if matrix([i,j-11>0 then left « j-1
otherwise left+fj—l+(matrix[i,j—l] div 100)

¥ R
. \
row+ i+l \

~ 5
if matrix[row,j]>0 Fﬁeﬁ add (row,3) tq)gdjacency
list of (i,j) and vice versa, éhd retufn Eo
step 9 \ : ‘ o ‘ )
if j+matrix[row,5] div-loo >Aleft then
add (rgw,j+matrix[row;j] div'lOO) io adjgcgncy
list of (i,j) and vice versa,
and set left4/j+matgix[row,j]'diV*JOO
if j4matrix[row,3j] mod 100 j right then
add (row, j+matrix(row,3j] mod 100) to adjacenéy'
list of (i,j) and vice versd,
and set fight*-j+matri£[¥ow,53 mod 100

A

row  row + 1

if row> D; then return to st p 9 ) ‘ : Z,\

1 = ) -
~

‘ . A“
- o .
N . \
' .
£ . N !
.
Ly o
N . i . -
. ~
' .
[ - bt .
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otherwise return no étep-lé
3.6 Fofming rectangular partitions
We are now ready to start the actual partitioning of
the matrix into disjoint rectangular regions. Our basic

strategy is to choose the pair of adjacent vertices which are

‘closest to each other to start a rectangle. We then continue

to build the rectangle by choosing the next closest vertices
until the rectangle contains at least ¢t records. This

process is repeated unti%:no more valid rectangles can be

'

formed. ' , .

A rectangle is stored as a record consisting of the

3

following fields: ’
1. TIts weight - the sum of the weights of all its
verticesQ This is the total number Oof records.contained

w1th1n the rectangle.

)

2. Its pa;ameters xmax, ymax, xmin, ymin, where

(xmln,ymln) and (xmax,ymax). are the coordlnates of the top
@

left and bottom right corners of the rectangle and any cell
@ v

(i,3) with min < i < xmax and ymin < j < ymax is in

the rectangle.

' ’

/

3. A liSt“of'the vertices contained in the reetangle.
There are sevéral functions made use of in the algorithm
to help flnd vertices to add te a rectangle whlch ig not yet
a complete partition.. The first, Rectsize(R,q) returns the -
size of the rec;angle‘forned by expanding the already formed

rectangle R to include the vertex g . Rectdist(R,q)

returns the minimum rectilinear distance from g to any of

—_ s




the vertices in R. The boolean function OverlapER,q)

' returps the value true if the rectangle formed by expanding
R to include q intersects with any other existing
rectangle (partition). )

" 3.6.1 Informal description of the algorithm
The nearly optlmal partitioning algorlthm uses .solely
the adjacency llStS created by FINDADJLISTS as input (as,
indeed, does the optimal algorithm OPTPARR, presented prex
oL viqpsly).“It produces a set of . rectangles défininé the
| ’partitioning oflthe database.
The first étep\in this process is_to select all ' |
‘\\\ \ ve}tides'with weight greater than or equal to the ;hreéheld
| t, 'es these are all‘valid rectangles already. Next the
adjacency lists of all the remaining vertices are searched
and each pair of vertlces is stored in another 1list accord-
ing to the size of the rectangle encloSLng them. Thus, if
vertex (i,j) 1is in the adjécency.lisf of vertex (x,y)
and the size of their enclosing rectangle, gi&en_by ' /
(|x-1i]+1)* (|y-3|+1) , is é , they 'will be inserted in£o
. the list bf'ali pairs of size s . Any.cell.with weight’ ‘ N
greater than onesis called a "pair"cof size 1. s
A new rectangle is' formed by selectﬁhg the smallest T '
%unmarked pair and creatlng a rectangle consmstlng of that
pair. The vertlces are then marked as being 1ncluded'1n a
partition. Then, 1f ‘the welght of the.rectangle is less
‘than- t, vertices are added one by one such that the size

'

o ‘ of the new rectangle‘is minimum, until the rectangle has

k - ' » | ’ 2 Q.A’ o
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"These points cannot form a rectangle themselvés, either:

to' be added to it. In this case, the rectangle is dismantled

regtangle later on, but the situation where a ﬁe;tangle must

* can be reused is‘rarer still. Furthermore, many rectangles

a total weight of at least t . Theoretically, the

function "Rectsize" should be hsed.to select these added
vertices, since thaf‘fﬁnctioh will fi;d the vertexlwhich
increases the size of the.rectangle minima}}y. In. practice,
howe&er} this tended to create long,~narrow rectangles,
which caﬂ isolate many other vertices, resulting in fewér
rectangles actually being formed. ‘Thus we foynd "Rectdist"
to give a better overall performance than "Rectsize”. l \
- Once a rectangle is ‘completed, the next smallest pair
is chosén, and the process repeated. When no more valid

rectangles can be formed, there will invariably be some - ‘ {

vertices which have\not been included in any rebtangle.

because fewer than -t ‘points remain or because no rectangie
can be formed with fﬂem without interseéting one or more
préviously formed fecténgles. We call these vertices "left-
overs" and éach one is simply included in the‘rectangle

nearest to it.

» . ./

One further note concerning this algorithm is in -order.

It may happen that a rectangle is .started but cannot be

completed, i.e., there are no more unmarked wvertices available

and all of its vertices become left-overs. It is possible . "

t some of these vertices ‘could be included in some other

4. .
be’ disman;led is rare -and that in which some of those vertices

V

may have‘;o be started and aborted in order to discover
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whether qQr not any,veftigea can indeed he included {n‘aﬁother
rectangle. Qur reéults show that this situation occurred in
less than five pef cent éf‘phe triais, and in each case the
total number of rectangles was reduced Ey one., Therefore, in
the interests of time efficiehcy we convert all vertices in ‘
dlsmantled rectangles into left-overs.
3.6.2 Formal descrlptLOn of the Phase II algorithm
Here we present the formal algorithm for produc;ng a

'neerly optimal partiﬁioning of a two-dimeneional maerix into
disjoint ‘rectangular regione, with cost 0(x210g‘x) where
x is the numbeér of regions formed.‘ .

A pair of vertices, v and u, is chosen in step 2. In
_ the casetaf,%;irs of size one, which consisf of only one
vertex, aseume that u. is a null cell with weigﬁt==0. Let

wt(x) denote the number of records associated with a vertex x

* or the’ total number of records included in a rectangle x

b

Algorithm NEAROPTPART o .

1. for each vertex v do

»

if wt(v) > t then mark (v) .and eutpﬁt rectangle

consisting of v

\
v

else if wt(v) > 1~ then‘insert v into size(l) list
else for each vertex.11 in the adjacenéy listref v,
insert v and u,K into list ofleppfqpriate size
2. Select the first pair of vertices v aﬁé u on the,
nonempty list of least size and delete from llst

if all llStS ‘empty go to step 9

3. if either vertex is marked, return tQ étep 2

>
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mark v and u and create a rectangle R

i
consisting of these vertices

if wt(R) > t then output R and return to

‘step 2
find the unmarked vertex' w such that

Rectdist(R,w) is minimum aﬁd NOT overlap(k,w);

1

if none. exists go to step 8 ,
mark (w) ; add w to R and return to step 5

call'all vertices in R left-overs and return to

&
.

step 2
for each left-ovér vertex, add the vertex to the

‘rectangle which increases size least and is of

minimum weight.

3.7 Cost analysis

. We will make use of the following variables in our -

analysis’
n

m

of the algorithms FINDADJLISTS and NEAROPTPART:
= number of records in the database

= the number of vertices (nonempty cells)

= the length of a side of the matrix (assume Dl‘#
D2 = D) . ‘

.= the number of rectangles formed

= the number of left-over vertices

= the number of re;ﬁangles aborted (in step 8)

the total number of vertices in the aborted

rectangles

We can show that the following relationships between these

variabies hold:




5 /
rl. = m< N .

o

This is clear from the fact that each vertex has a weight of ' -

at least one. Therefore ‘there can be at most n vertices.
r2. x < Ndiv t

Since each rectangle must contain at least ¢t records a
maximum of the greatest integer less than N/t recténgles
can be formed.

r3. - Yy < m=x

v -

The least number of vertices in a rectangle is one. If all
the rectangles contain only one vertex, there will beé m-x

left-over vertices. ‘ , . |

r4. ’ z <y

When a rectangle‘ié started but not enough vertices can be
added to complete it, it is destroyed and all its vertices

become l%ft—overs.‘ . ' \

rS5. z' < 2

: ‘2
This relation is true because each aborted rectangle must RN

have contained at least one vertex.
3.7.1 Analysis of FINDADJLISTS ‘ .
In order to preprocess the matrix, each row must be

scanned once to find the nonempty cells. Then the empﬁj cells

are assigned thé'appropriatewvalues. This requires at most

!
'

two visits to each cell. Therefore the total preprocessing

)
» . N 1
'



~ “matrix is finally encountered. Figure 3.7 illustrates this

69.

cost is 2*D2 .

-~

Once the preprocessing has been done, the column below

each vertex is scanned and one cell on either side of the
vertex is examinqd. Thus the total number of cells examined

is 2m plus the sum of all the cells scanned in the columns

/ below each vertex. Each column, however, ié'only inSpectéd

once altogether since a column is searched below each vertex ,‘

until another vertex is found. That vertex will then search

the same column below it, and so on until the edge of the

point. The number of cells searched in this manner, then,
. . , v

is bounded by D2 , making the total cost of the algorithm

2m+D2 after preprocessing. Since ' m ‘must be less than or

2

equal to D (there cannot be more’ than one vertex per cell)

‘this cost is proportionél to D2 , as is the preprocessing
cost. This gives an overall worst case cost of O(DZ) for
algorithm FINDADJLISTS.

'3.7.2 Analysis of NEAROPTPART

‘

Before proceeding with the formal analysis. of the

. second phase of the algorithm we must comment on the storgge‘

structure used for' the reqtahgles when they are formed.
| The rectangleé are storedtin a quaternary’treei that
‘ is; a tree with nodes of degree four or less. Since the -
rectangles formed are disjoint, any given rectangle must lie
completely to the right, left, above or below any other.

Thus a quaternary tree is a suitabl€ and spffidient data

structure for storing the recﬁanglgs. Rectangles are <
' . ' ! . . .
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X S0zl ] x| X

X |- Cl x| 102 X

x| x| | -303 ) X

X | -102 X

) x| -104 X
\ T : -

) :
) is not searched by any cell in column 5 .
) and (4,5) are searched by (2,5)
) is searched by (4,5)
Y, (7,5), (8,5) and (9,5) are searched by (5,5)
5) is searched by (9,5) ' :
the edge. is found by (10,5) , « -

is not searched L/

7.
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e

relative position of R, to .R

7L.

'inserted into the tree as they are created, according to

thelr position.with respect to the root rectangle and any
others they encounter until they reach a leaf node . 'The
branch taken at a ‘given node ‘depends on, the relative posiiion

of the test rectangle to the rectangle at that node. This

can be found with at most four calculations. Let us assume

we have a rectangle Ry in the tree and a new rectangle Ri

to be inserted. . The four tests required to determine the

are as follows:
{

0

.

If xmax(Ri) < xmln(RO)

then Ri is on top of RO
- If ‘xmin(R;) > xmax(R;) .then R, is below R,
‘ ‘If ymax(ﬁi) < ymin(R,;) then R, is to the left
of Ro ' ' ) ) h ) ‘ & ‘oﬁ:
. | , ’ .
If ymin(Ri) > ymax(RO) then R, is to the right
of Ry \
¢ A}
Note that at most two of these conditions can be true. For’
.exémple Ri can be on top and to the right of R0 . For

opr‘purposes either condition could:be used to determine

the proper branch to take., Figure 3.8 shows one such

insertion. q
‘ ; .
information must be stored in the tree

%

In addition,

 about whether a réctangle extends partially beyond the bounds

.

of another. The basis for the tree structure is the ielation-

éhip described above; that is, whether one rectangle is

=~




r B *
: Jectangle  x min ¥y min  x max _ y max
’ . I 5 3 5 5
11 6 1 6 4
4 - 2 4 3 6
o I 1 5 T 6
/ v 3 1 5 1
{. 3 ' VI 4 2 4 4
) o V11 1 1 2 3
. \\‘ . .
N
3
% Iv
™~
4 : . > ) » , - .
¢ ‘ . The insertion of VII inyolves testing with I where it is found to be
] on top, and testing with III, where 1t is found to be to the left..
%S \’ ¢ ll

T
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completely to the right, left, top or bottom of another. It °
is possible, for example, that a rectangle Ri which is ‘

completely to the left of énother,' RO’ could extend above,

Ao}

and/or below RO. ‘Thié information will be useful in
detecting overlap between new potehtial rectangles and ’
alréady existing ones. .These partial relationships are

tested at each node encountered when inserting a new rect-

angle. Thus, at most log(x) such tests are required for .

|

. insertion if the tree is height balanced. There are, again,

four tests for partial relationships, although once the

complete relationship is found at most two partial ones can

.exist, as illustrated above. The four additional tests are:

'If xmax(Ri) > xmai(RO) then Ri ~extends below R0 ’

!

If xmin(R,) < xmin(R,) then R; extends above R,

If ymax(R;) > ymax(R,) then R _- extends to the

. \
right of R0
If ymin(Ri) < ymin(Ri) then extends to the

1

left ?f R0

An example including these relationships\is given in

Figure 3.9. 4

%
1 & » ) a

In order to ensure that the maximum search time is
0(log x) the tree must be height balanced. :

For quaternary trees we have adopted a modified defi-"-

nition of a balanced tree. We consider a quaternary tree

a
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‘The quaternary tree for this example including partial relationships.
Partial relationships are shown in pargntheses at the leaf nodes.
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S qﬁeight halanced &;; for every nade, the height of the largest
£ .

\\

subtree differs from the height of the next largest subtree
& , by no more’ than gne. This asEures that the overall heiéht

h_ lof the tree will be no more than log,(i] where i is the
- numEe? of’igfernal nodes. This maximum height\occqrs‘if two
sons ' are empty for'each node. An'example of an insertion

- ‘

requiring rebalancing is giveq in Figure‘3.10.. further
investigation reveals two types of rebalancing, analagous to
. L the two cases for binary treef, onevrequiring a siﬂgle
' o roEation‘and the “other a gouble. Figure 3.11 st®s an
B vf, ‘ inseftion requiring a double rotation, This dcc;rs whenever
the insertion was in the left subtree of the right subtree

of the unbalanced node (or vice vérsa),‘or was in the bottom

)

a

subtree of the tép subtree of the unbalanced node {(or vice.
] vérsa).- The two general cases'for balancing-dua?ernary ?rees
arefgiven in Figuéésa3.%2a and b. .
"We are‘noé féa&y to analyze.algorithm NEAROPTPART." | ,%ﬁ
‘ Steb'l is\exéaute&neﬁgctly oncét\\ﬁeg“éach of the m _
oo oy .

" vertices a pair can be formed w%th dt most all of the m-1

s - b3
o

m? . Steps 2 and 3 are performed once for each .pair.in-the §

vertices. Therefore the cost of this step is proportional to
. 4

. pairs lists and éach'require a const;nt/cogt.iﬂbhg total cost  ©.
, 2 ‘of'thesg steps is also a(m?) . .
' t ‘ - E ?hé creation of a new potential rectangle in Step 4
'is done once‘for each rectanéle éventgally,oééput (x) and

once for each’ rectangle evenfual;y aborted’ (z') . The cost

"of t?is step is a constant since it consists of marking-two

\ N ‘o
' ) .
- .
< A
, .

-

e A ks e § ot sttt = Py A s £ RS e = L e e s ame
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c) Tree after reba*lanci‘né - single rotation.

Figure:3.10 Insertion of a reé:'taﬁg]e and reba]Zalncing: n
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Case:1 - Single rotation. In this example the ungalanced
subtree could have been BT'O" Bg - '

Figure 3.12a The\two general cases for balancing quatermary trees.
. ¢ . %

. ¥ ST, .
v N A ¢
s ™ N - o bt N e 2t .



2

"

79.

~— 1.8/ U R e,
t‘ “
\ L &
X /4 o\ s
Yoo | Y ‘
/8] L\ \R 7/ B| L\ \R
hel o ’ ‘ S
lh )
; | Bl |.P8 Bultvl.|or g YR{| %R
IS h-T
G !
h h h h  h. h
' %

Case 2 - Double rotation, In thts'examme thé unbalanced subtree
v could have been Yo YL O Yq Three other similar instances of

double_rotations can occur, namely RL, TB, and BT.

Figure 3:12b The: two general "cases fdr balancing quaternary trees.
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vertices, adding their weighté and entering the ma#imuni and
minimum row and column values of the vertices to the .infor-
mation about the rectangle. The maximum number of times this
step can be executed is m, since z' <2z <y <mx from
relations 15, r4 and r3, so z'+x < meX+x'= m . .
| Steps 5 to 7 comprise the~ p;ocedure for findi‘;lg the

next vertex to add to a rectangle once it has been started.
Steps 5 and 7 require only a constant amoun;: of time for

' testing the weight'; of th'e rectangle.(step 55 and marking a
vertex and updating the wgight and limits of tﬁe rectangle
ié,a new vertex is found .(step 7). The work done in step 6
is as follows: Any unmarked vertex which appea'rs in any of

-, the adjacency lists of a vertex 'in the rectangle being formed

must be considered. While this will be less tHan m, it

/ - is still of order m. For each of these eligible vertices,

rectsize (or rectdist) and overlap must be computed. Rect-
size takes a con;.stant amount of time requiring just the up-
dating of the limits c.:f the rectangle and a simple calcula-
tion of its size~ Similarly, rectdist requires calculatincvga

’ N

the rectilinear distance from the potential new vertex to

all thgé ;rertiée; in ;he rectangle, of which there are less
lthar\x the conétant t or else. the reétangle would be complete.
Over.'_l.‘ap, however, involves comparingb tbe limits of the
pot‘(ential new rectangle with each of the previously formed
rectangles, which could be as many as x . This search can
i:e performed in log(x) time using the quaternary tree in

which the rectangles are stored. The process is the same as
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o

insertion oﬁ a new rectangle, except that if a rectangle is
found for which the new potential rectangle is neither above,
below, to the left of right, then these rectangles overlé.p.
If a leaf node is found then no overlap existed and the new
;ectagg;e would be inserted there if it is complete,
Figure 3.13 shows such a search, where overlap is detected.
Tfms, for each of the order m vertices considered in f:his
step, 0(logx) calculations are needed.\ By rl and r2 tl}e |
cost of step 6 becomes 0(Nlogx) or O(N Idg X) since N
is proportional to m and x. |
The number of tir‘nes steps 5 to 7 are performed lS
equal to the number of vertiées in all the rectangle;_s s <
created (eitler finished or aborted).minus at 'least‘one
vertex in each rectangle which wa-s the initial vertex found

in step 4. The total number of vertices used in all the

;comple/ted rectangles, before left—overs are added at the ¢

end, is m-y . Subtracting one initial .vertex for each

rectangle gives' x;\—y-x . In all of the z' ‘aborted .

rectangles, there were z vertices, so z-z' wvertices at

most were added in steps 5 to 7. ‘Thus the total number ~0f'

times those steps are executed is m-y-x+z-z'. Since z <y

from ;:}l, this is less than m or N. Because step 6 has

a cost of N1logN, however, and can be executed 0(N)

times, it has a total cost of Nzlogﬁ and is the most

complex step in the al/gorithm. . g ‘
I\t‘must be noted that, because of the pai:‘tial' relation-

ships include% in the quaternary tree, the search time may
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rectangle. xmin  y min X

max Yy max
I 5 3 5 5 . .
It g 1 - 6 4
III 2 4 3 6
1y 1 5. 1 6
v 3 1 5 1
vl 4 2 a. ‘4
VvII - 1 1 2 3

Iv VI VII
Does R = 1, 3, 3, 4 overlap?

Test with I: max(R) <-x min(I)?  True -
Test with III: max(R) < 'x min(III)? False
min(R) > x max(III)? False
max(R) < y min(II1)? False
_ min(R) > y max(III)? False
.. overlap-exists between R and III

.

K< x x X
A

-y

Figure 3.13 Detecting overlap

take branch T

A
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not bhe 0 (log Xx) in all cases. 1Indeed, Figure 3.14'.gives a
"worst case" example where the data is skewed a.rlx'd 'th.e number
of adaitional comparisons nee@gd at some leaf nodes raises
the search_time to 0(x) . This makes the posf of this step
O(Nx) oxr 0 (\xz) by relation vr?., ‘and the owverall cost of
the algorithm O (x3) for this” worst case, Owur results on
random input data indig:ate, however, that this .situation is
guite rare.
A «

Finally, step 8 is performed =z' times at a constant
c;ost and step-‘9 requires calculating the distance between
each of -the y 1left-over vertices and each of the x regt-—
aing.les. The ,cost of this step, then, is x.y which by ré

and r3 is less. than or equal to (m—x) ;(N/E) < N~2 .

"3.7.3 Conclusions

14

The cost qf partitioniqg a databage using the algor-

ithms FINDADJLIST and NEAROPTPART has been shown to be 0(D?)

2

for phase I and O(Nzlog N) or 0(x"logx) in most cases .for

Phas'e II. This results in an ‘66erall cost of O(D2 -f_tlzlog N).)
We can easili; see that, in all but the very sparse cases ’
wﬁeré N << Di,» the “overz;xll cost will bé bounded by the
Phase IIggost. ‘btherwise, sginning the matrix in Phasé I
will be the g'réater cost. » ~
3.8 Perfo'rmance of tI;e algbrithm ~ T » /

We “ljlave tested the algorithm on randomly generated
databases of several different sizes, vérying the value of

the threshold, &t , and the sizes of the domains Dl and
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were found to exhibit the property of having an éxcessive I

D2 . The resul‘ts show that our algorithm is indeed pro-
ducing a nearly optimal par;:itioning, producing approxi-
ma'tely 80% of the maximum number. of region.svpossible for
the various values of N and t. The total area covered by
the rectangles is about 70% of the r'n;;ttrix for densities aof
Yess than 1.0. _Two examples of the partitidning produced by
our algorithm are given in Figure 3.15. '

By way of comparison, Fi.gure 3.16 presents three
different partitions of one samplé database. Thé figure
shows Yu and Chin's methdd, our method and an optimal

partioning for this database. The results of these methods

- .
are summarized in Figure 3.17. In over 50 test cases, none

number of partial relations in the leaf nodes of the quater:’

\

nary tree, supporting our contention that this is a rare

v 0

phenomenon.

3.9 Extending the algorithm to higher dimensions

We: have developed a scheme whereby databases with
more than two domains can be split into disjoint partitions.

The first step in this procedure is to partition the data-

‘base on the basis of the first +wo domains only. This yields

a: se\g\ of rectangles which can now bé used in further appli-
Xy .

‘ q"atiox?\*s Of thé algorithm. For all the remaining domains, we

set up a new matrix with the rectangles previgusly found as
one axis and the next domain as the other, All the’records
can be plogted o;u this new matrix as they all b;long to

some re'ctangle and ‘have .somg value in thé next domain. The
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" 12 3, % 5 6 V2 3 45
X1 X X X
1] X J X1 X X x | X
X X
X
2| X x| X 2| % X | x| ¥
Co3| x x| x 3l x x| x
"
40 x| x| x| x Calx | X p x| X
X X
\5 X X X 5[ X X o
X ' . X | |
L B Xy X 6 x | X, X
a) unpartitioned database __~ A b) Yu and Chin's method
N S <
. ) & : N
) 1 2 3 4 5 6 1
R B X
T 5 ER R 1] x
d 'lﬁ:il
2] X x| x| * 21 x
E o 4
3| x Padkis X | X 3| x
| sl xfxq{ x| x° a| X
. o
5| x &l x | 5| x
o
x | X X 6| X
6] X |y | ‘
o :"_cf our method L d) optimal partitioning

Kl

The thick Tines indicate the' boundaries of the partition.
. ' I

X

Y ’ 1
Figure 3.16 Comparison of. three methods for parhtmmng
a sample database. ., ' . \ h
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' algorithm then partitions this new matrix, producing a new

1set of reéions involving the added doma;ﬁ.~ The ﬁé;cess is . -

» . ‘. . . . |

. . - \ - . - \ .

14 o repeated\gptil all the\aomains have been 'used.- Hence, if

. / : . . ¢ . . -
)'a . © . the dimensionality of the database is k ,. the algorithm is -

applied k-1 vimes.. ~

. Kl

. ’ To illustrate this procedure, a sample database with
- , \ L
. ‘ ' . three domains is given in Figure :3418, and the rectangles

] produced using the first two domains are shown in Figure 3.19. '
P AN .

\ ! Figure 3.20 gives the new matrix with the third dokain as
cdélumns and the rectangles as rows, along wit® the regions !

- produced. - 4 oo R N

S v ' . i ' 'Y

\-_. "‘f, 2

. . The cost of each iteration is still - 0(N"log M) _since

‘there' are still at most n nonempty cells in each matrix
although the size of .the matrix and’thé/distribu;ion of. the .

vertices will vary with each pass. Therefore the overall
. AT ] ~ i’ N 1
cost for partitioning a database with k domains is

proportional to (k- l)(N logN) o : - 4

o d
. [

We have lmplemented several varlatlons of thls method -
= . for k=4. Tﬁe first perforﬁs two saparate partltlonlngs,‘one
using the first two domains and -the other the last two. This
{ o . results in. two sets of raaaanéles which ara~theﬁ aach con-
'ﬁideied as an akis of a 'third matrix, and this is-partitioned °

4 v N b} ‘ ’ 0 .
to give the final set of'rggioh§; Note that the same number .

_ of iterations are.still’needed for this method. This will
be true for any k. For example consider k=16 . - If we

.

- / do elght partltlonlngs u51ng two QOmaln@ at a time, we must
«© \ o - :

. do four more usang‘two of those sets of rectangles.each; then

) N ' . .
. . J
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record # | D1 D2 D3 record # | D1 b2 pﬂa'
o 111 14 4 1 2
2 1.5 1 15 .| 4 2 2
: N
3 1 5 3 16 43 &
4 16 2 17 4 4 %
5 1 6.3 18 5 1 3
6 21,1, 19 5°3 1
7512 3 20 4 5°5
8 2 4 2 21, | 5 5 4
9 24 3 22 "6 1 -1
10 2 5 2 .23 6 2 3
o] 31 24 6 2 4
12 35 2 25 6 4 4
13 36 2
' +
) 4

: Figure $.18 Sample database with three doma1~ns'.\'
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R2 X XX '
R3 | ‘O @Y .
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Cubic regions produced: =~ *
] 1501;2 1w§DZ_<_§ Dy =1
2 T<Dh=z1 5<Dy, <6 2<D3<3
) 3. 1Dy <5- 1<Dy<6 ' Dy=4
4. 25D <3 4<Dy<6  Dy=2
5. 22D, <6 "1<Dy<6  Dy=3
- 632D, <6 1_<_'DZA_<_5 . Dy—=1
7'3_<_D]£& 1<D, <4 Dy =2
8.55015_6'15_025_5 Dy = 4
)
. - %
Y
A
4 / i
L Figure 3.20 New matrix with third demain .
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two more iterations and finally one last pai'titiphing for a

total of fifteen. - :

P

»*

- Another variation combines the values of two.domains

to make one larger domain. In this way, four domains can

L]

‘Be used in one two-dimensional matrix. The method is sifnple;'

if one domain has“Dl different \posggtble values and another
has Dz', ‘we“create. a new doxya‘in with Dl'*D2 values, thase

being all the combinations of values, qne of which comesl from'

the firstdomain and the other from the second. Thus if
. )

Dy = _3"- and D, =2 the new domain:cbns,ists of (1,1)(1,2)
(2,1 (2,\2)_(3.'1) anci (3%2) . We can now set up a matrix .
v‘}hich" as tV;VO; combined attributes for one axis ‘and the other

" two ii:o‘rjthe éeconﬁ axis ana pérform a single ilteration of the
algorithm to produce the final pa—rtitionipg. The drawback’

of 'this mqtho& is that adjacent values of some attribute

might not be ix} adjacent fows‘or columns. Since.our aim is

to create partitioms which 'contain records 91a\t are as

Fra

’

-

e

-

#

‘similar as possible, this'method is less desirable theoreti-

e e - JRU————

caily. ' R * _— '
. A final variation concerned the order in which the

domains were coniside?:ed in our original method, whé.ther it
be.by décre?.sing or increalsiﬁg size ‘of the domain.

Our results showed that none Ai)f the variations‘pro-

' duced a better partitioning than nouzf" original me thod,

althoﬁigh'our test’é“ were by no means exlhaustive. The onlﬁ;
variat;oﬂ which may require less"j}nark than ‘the o?s—r' ' '

nethods is combining values. However, since we have theor-
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© " . CHAPTER FOUR S ’
! . ) . . @ '
. é " . . s - . i ) - ‘ . s
“ HIERARCHICAL PARTITIONING
4.1 Introduction = °
) »The partitioning algorithm presented in the previ‘éu's

3

chapter maps the database ontq a-matkix and builds partitions

. records and a node g is split on an attribute A; by

by combining neighbouring cells until they attain a.certain
. X} N . . '
size. It is essentially a "bottom-up" or merging process, -

L4

starting with many small groupé and creating fewer larger

groups. In this chapter we present-a "top-down" technigue
. - N .

which starts with the entire database as one group andt‘,"
4 v P

successively splits it up into smaller partitions. The

~ , - S~ »
process can be represented by a tree and, in fact, is,

implemeénted as a tree.' Each nqde contains a number of
§ : >

creating one child node for each possible value of A.i ,and -

\ A

allocating every record at gq to a child according, to the
value of XA; in the record. A node is split only if‘all its
children can have @t least t records. A . .

& .
. ° It is clear that this method is fundamentally differ- a
. . , 1 .
ent from the merging algorithm ‘discussed in the last chapter.
Thus the type of partitions produced will also be diffeir:ent

in terms .of the relationship of the records to each other.

We will ac_lﬁress this matter more fully in section 4.5 as

well as give the results of algorithms using the top-down - ‘ .
technique. Section 4.2 presents the algorithm, its refine-

ments and variatidhs. The formal algorithm is given in ‘!
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section 4 3;'“ an?i the 'cost is analyzed in section- 4.4

-
~

4.2 Informal deécr:.pt:.on of the’ algorithm -
‘ The' top-down partn.tlonlng algor:.;thm starts w:.th one;, | .
These- .

nede conta.l.n:.ng alI the records in the database.
/ .
- records are then sle.t on the basis of their values for some

Hence, the number of ch:.ldren created is the

attribute.
numbe:: of dlfferent possxble values, or size of that

If, after such a spllttlng, any of the children
recdrds, all - ’

attra.bute ..

€
‘hodes contaln fewer than the threshold ¢t .
i

the records are returned to: the parent node and the splitting
, is. atte’mpted using another attribute. If the splitting is
successful, the same process is applied tb all the children.

The algor:.thin proceeds recursively to split every node until
in’

each attribute has Been used,. either successfully or not

any given path from the root to a leaf node.
Let 'us consider a small example of partitioning using

As.sume the database consists of fifty

Al‘ to 'A3.

this technique.,
Q
records and there are three attr:.butes, " We

h wlli indicate the size of an attribute A, by d; . In our
2. This means

. example, let dl =5, c'i2 = 3 ‘and d3 =
there are fJ.ve possible values for . A three for A, and
1 7 o
t, will be set to 3. .

The threshold,

only two for “A3 .
Figure 4.1 gives a sample database with,‘these parameters.

-Rl““.' We will denote the
R I

- all 50 records. cCall this node
therefore

humbe¥' of records at a node ‘P as |P|;
" on’the basis of attribute A,

o
“ £50~. Now we split Ry

/ N .

’
e,
.

The first stéep is to construct a rbot node containing
» ‘J :

]
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.record in U, has values 2 for A

A /

thus creating five children since d; =+3.° According to

FRI

gt .y

. N ‘ :
our sample database the five children nodes, Sl to SS’

{ - ’ ’ o .
have the following number of records: | S;| = 10, |s,] =12,

. L]

|_S3lu=‘-9‘ r [%4[ = 7 and., }SS[_= 12. Next we consider sy

and try'tc‘) split on éttr.ibute A, The splitting is success-

3

ful, creating nodes T,, T, and T, with sizes 3, 4 and

3 respectively. Obviously, none of these nodes can be  split

further if each child is to have at least 3 records. These -

, . - |
three nodes, 'thep, are leaf nodes of our partitiohng\‘ie‘e
and each represents a partition of the database. The next

ed in this recursive procedure is S.

no::ie to be prbgess >

4

'whichhas 12 records. It is successfully split on attribute

5 6 Node T4, which

‘Az r Yielding nodes T4 ;, T. and T
. . ' h '
contains.six recoyds, can -be further split’ on -attribute A3

producing té’@o more nodes Ul and U2 with three records in

each. Note that all three a’ttr(ibutes have been used along ¢

2
A 1 for ?“2 and 1. for
. 5
Aj. Sipilarlycall the records in U, have values 2 for A

the ‘path from the xoot R; to U, and U, and each

17
1 for A, and 2 for A,. Although we éap attemp? te split.~
'I‘5 and{ T6 on attribute A3.'as well,b\it:_ will be unsuccess-
ful and‘.th_ey remain as leaf nodes. Our attention is now
turned to node 53 ~which contains nine records. The

attempt to split on- A, fails at this node since only two

of -its records have the'value l for Az. The records, then, )

are returned to S;. We try to split using attribute Aj.

This is successful and the two nodes T7 and 'I'8 are

/
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" Pirst, the higher an atfribute is in the order, the jreater

99, .

-

created containing 4 dpd 5 recordé each. No further parti-

tioning can be attempted for these nodes as’ all the attri-

butes have been consideréd, if not used, in forming the I

nodes. °Finally, nodes ‘Sqf and SB are splii: in the same

\

manner. Figure 4.2 shows the enfire partitioniflg tree for

.I" N

this example. J -

.

4.2.1 The hierarchy of attributes used for splitting
The order in which the attributes are used t;6 split ‘.
the nodes in ‘g:hé partitioning tree is of critical importance.

.

chanc& it has of successfully splitting a node. This is

Y

%
»

true becau'se. ::Lni‘tiailly, there are more records ip a node. ‘As

orie goes further‘déwri the tree, there are fewer records per' '

node and the éhance of splitting for a given :.:,ize 4, of . ‘
an attribute A, is less. Secondly, we would like to

arrange the attr:.butes in an order whlch will provide for

the greatest number of attributes to be used in, the %’Jee.

The records 113. a partition created iay this method are

related to each other (and, indeed, all have the same values)
only by the attributes used along the 'path from the root to

the partition. They are not likely to have the same valués

for the other .attributes. Thus a query specifying ]an'

'attribute which has not been used to form any partitions may

‘involve some of the records in many dlfferent partltlons,

gJ.VJ.ng less accurate results.

The question 1s, what is the ordering which will

Anvolwve the greatest number of attributes? It turns out
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: W1ll be used last and be the least. llkely to be. uséd’ in ..

"\ - . o ) -~ ' "101.

that if ‘we order tﬁe attributes-by decreasing size} i.é.ﬁ
. ” T
d; 2 d2 >, dK’ the number of attii;utes used will be :

. max1mlzed. By thls method the largest nodes, which octur in-

the hlghest levels of the tree, are split thé greatest p

N 7

: i
number of ways ~possible. Although the number of records per

'

node decreaseé rapidly, we agtempt to Spllt the smal¥er

nodes at lower levels in fewer ways, and t&ere is a better

. chance those Spllts w1ll be successful than if we used the

reverse ordering. Also, if a node cannot be split on} say

attribute, A. , 1t is more llkely +o be Spllt on A1+l .

4 P

s¢nce this attrlbute has fewer values, whereas if we ordered

- R

1
1

the attributes byihcreasim;size, it would become increasing-.
1yuhardervto split nodes 'as we go down the tree and less

1ik§ly as we go through'the attributesl

'Regarding the first consideration of.ordering attri-

§
butes’ (that the first few attrlbutes in the, orderlng are

[

more llkely to be successfuly used) we’%ould take into
. . . L]

account “the qﬁeiy probabilities of each attribute. We
; A - .
define an attribute's query probability as the probability

that a query will: specify a value (or walues) in that attri-
. , ' - *
.bute. If we have'statistics on past querying patterns, we - '

can calculate these probabilities and order the attrlbutes,

by éescendlng query probablllty. Thus the most querled -7

attrlbﬁte will be used flrst and the least queried attrlbute '

5

, 2

.#creating a}pattltlon. The quetles involving the rarely.' )

queried attributeés will be less acourate,'but will not be

[ v =

. . .
' - . ® .
L . r 9 .
. . ' .
. il
'




B s | e s «W.rﬂw\ T
.

102,
A\

asked often and the overall accuracy of. the statistics will

not be greatly affegtéd by those queries.
" Ordering the attributes solely on the basis of quéry
" . . 3

probability suffers from the drawback of not taking the s$ize

of the attributes into account. .\'I‘his may cause fewer
% - 2
attributes to be used altogether even though-the attributes

used in splitting are most probable. It is possible to use
. 1 - / .

) ~. . L . . *

a combination of the Ewo methods in the following ‘way: v,

X e ] ;1 \ .

define a tut-off for .query prob,ab/ilitiels; call this Ppin °

For ‘all the atﬁribgtesﬁwith' 'prot.mki)ility greater than min ’ o
or'de‘r then ‘by decreas ing size, ahd @e these attribﬁt-jes- ‘
first. Then .cibrde'r all the other -attributes by descending ;.
sizé.and use -them a‘i‘fter the first groups Mor;a formdlly,
suppose’ j of the k attribute have“query pr’ogz;tbilities

h ; - ' LJ -
P.> Ppin - ‘Cal’l thes.e A]1 Aj and .the others{ Ajit-]_,"‘AK‘

The ordefr of all the attributes will be:
: \ ; . .

Al’AZ Aj'Aj-Fl Ak\ v»'lhere
[oe 4

4, > d

12 z,,,_>_...dj1~and dj+l—>—dj+'2->—,"_‘ dg - '
_Also, _Pj > Ppin for l1<i < j and Py < Ppin for i
. y , .
j <i < K. This siheme allows, for the maximum number of -
-~ r ’ | LN

attributes to be .used for p7rtiti’0ning with the most likely
' . , ; - ' weo

gueried attributes used/,/fi'rst.ﬁf' We w!ll' disguss the stati-,
stics produced by these different va,riaf'_igns on the top-down

partitioning algorithm in section 5. |




kS

4.2.2. Refinements of the algorithm‘

/

j’ The partitioning algorithm described abQVe _may

produce some partitions with many more than t records in‘ '
\

them.’ This happens because, unlike the bottom— pirectangular

~ -

partitioning method whose regions are\merged until they

contain at least t records, the top-down technnque starts
Wlth !arge partitions and, tries to split them into smaller
ones. Sometimes it Will not be p0551b1e to sp;gt such a
partition due to a skewed distributlon of the records
values for some attribute. For this reason, we have devised
two more/passes which will decreasepif not totally eliminate
chances '0f creating partitions w1th large nunmers of
records. We have defined "large"” in this.context to be
greater than or equal to twice the threshold t . (
The second’pass simply groups together all‘the records
fro;'partitions containing at least 2t records, and re-
applies the algorithm to those records.' The order.of the
attributes may be’slightly different for this pass since we

will take. any unused attributes first, in the order ’

previously determined, then the other attributes in order.

7
This, and the fact that we are .starting w1th a different

group of records than in the first pass, results in a differ-

-~

« .
ent splitting ‘and different partitions- from the second pass

in most’cases.' It is possible, however, that som} of the
—_

new partitions have more thay’ 2t records. These pagtitions

are the ones.examined in the third pass.
. . o, kY

partitions remain the‘same,-and’it is 'likely that some of the -

4
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After two attempts tovsplixxthe da;abaée into small
partifidns by the above method, we are now ready to
examine more closely the larye partitions that still remain

f and apply a:heprisfic me thod to finally break them up.

3

. The‘third pass works sébgrgpély on each largeégrSup-
remaiﬁipg after the seggnd pass. ' The distri%ution of all
the records.infﬁuch a group is dbtaiﬁda according tqQ their
values for each attribute. Tﬁep the records with adjacent

* values are groupgd Eogether if need be 'to create pos%ible
pgrtitions.,'This is done for all the attrigutes and. the'
one which provideS'the‘Sést partitioning is chosen. |

Consider an exémplé where again we have three /

" attributes with sizes &, =5, 4, =3 aﬁd dq =2. X
‘Sﬁppbse,thére'are nine records in a leaf node of the tree
after the second pdss. The distribution of these records
by!véiues for each attributé is shew&’in Fiéure 4.3. Let
us.éxamine‘ggese distributions and form partitions according

to our heuristic. There are four records with value 1 in

B the first.attribute. These can form one partition. The,'

‘three records with values 2 or 3 can also form a paitition;

but (the two‘récords left out cannot,  so fhey'mUSt be
inpludediin,the prévious'par£ition. Thﬁs‘wé canlform two
‘partit;ons on attribﬁte ‘§1 . ‘one containing the recoxds
with value 1 and the pﬁher consisting of éll records witb‘
valueé 2 to 5. We now look at ghe second attribute. Onlf‘.

R .

wt‘wo‘rec‘:ords‘have value 1 so these must be combined with the

repor?s-having the'na£t¢value, 2.  There are five .of these,
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”,

* making a partition of seven records. Furthermore, theri are

3

i

eniy two redords with value 3 and these must be included in
the.one\partition‘bossible with this attribute. An important
aspect pof our heuristic is_iilustrated here., It would have
been 90551ble to make two partitions, ‘one con51st1ng £ the
five records w1th,value 2 and the other of the four r ords o
with values 1 6& 3. To search for combinations of valugs in
this way is a coﬁplicated procedure, however, and-we feel

- that it is not worth the increased amount of ‘time required.

o

It would not in this cese, for instante, fi?d a better
partitioning theu that found for' a,. Cousiderrng'thatitwo .
attempts have-already‘been.ﬁade to greate as smell partitions ' 7
as possible, %e prefer a simple heuristic which srmply scahns
the distributions one value at a time end combines adjecent
values if necessary. This method is also preferable in terms
. of the relationship of recoxds within a partition. It is
better to have'pertitiohs in each of which ‘records have

adjacent values than . w1dely dlspersed ones.

. Flnally, a scan of the dlstrlbutlons for attribute

3 ylelds only one pOSSlble partltlon. Sin e the records

can be spllt into the greatest number of par 1tlons ‘using

attrlbute l' /éé choose that splitting for/ this example. . *
all leaf nodes from the second pass with at least .
2t records w1ll be processed in this manner. The second
’.partitions and limit the'number,oﬁ large partitions, some- ' T

v , O .
times dramatically. Some results on these improvements will
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be given later in this chapter.
4.3 Formal description of the algorithm

The top-down tree splitting algorithm is ﬁresented
\formally below. It includes the second and- tiird passes.

Assume we have N records and .K attributes ypose sizes
are éi;en by 'dl ces dK . Each‘nodi/coﬁtains a list of the
records at that node, a field'indicating the number of those
records, aﬁd pointefg to as many';s dmax children, wheré

: . . s . . 7, B
dmax 1s a constant indicating the maximum number of values .

for any attribute. A sjtack is used which stores pairs

. (Q,i).. where Q points to a node and i contains an

attryibute number. The variable . "z" is used to indicate
the current attribute number, "P" is a pointer to the
current node, and "Pass" indicates the pass number (1, 2 or

3).

Algorithm TOPDOWNPART

. [sort ‘1. order the attributes Al,Az'...AK such

attributes] that d, >4, > ...4d

1 2~ Ag T ,
[initialize] 2. Create-a hode containing all N records.
Call this P. Set -z *+1, pass *1.

[split] 3. Create d, sons of node P and distribute
2

’ -

the records at P ‘among the sons aécording_
to the valué® of attribute Az in the records. .
[test split] 4. If each son has at least t records,lgo

. to step 6.
P .
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finvalid

‘split]

i

ﬂyalid

) sé\lit]

5.

[p&% stack]t 7.

[second

pass]

[third

pass]

11.

12,

v

13,

3

15,

‘onto the gtack.

H

Returh the records in all sons to ' P.’

If."z < K, set. z « z + 1 and return to

step 3, )
Otherwise go to step 7.
N ' -

If z < K then for each son 54 of P,

\

1.1 < dAz , push the pi}f (Sif z+1) |
.If stack not emptj, pop a pair (Q,i)
from tﬁe stack, set P «Q, z+i, and
go back to steb 3.

pass « pass + 1

If pass > 2, go £o step 13.

Create aﬁnéde containing all thé-récords
from leaf nodes having > 2£ recondé.

Set P ‘to,thié pode.

Redefine - Aj.. Ay such that any‘unusgd
|

attributes occur before used ones. — - —

”

Set z + 1 and go back to step 3.

Set P to the next leaf node from the

secénd pass tree haVing > 2t records. If

no more exist, terminate. - o

14, ~§or each éttribute, plot the”distribution

3; the. records at P by values.

‘108.

[

Fé;m as many partitions as poséib£;'for each

\
.attribute.

Vo :

' 1 , K [+ .
16. Selact the attribute which gives the best

partitioning and split P accordingly.

+
1

£+




17. Return to step 13. ' o
4.4 Cost analysisf' ‘

<’ Here we present an analysis of algorithm TOPDOWNPART

’

" and ohtain a cost fﬁnction. The,analysis is straightforward

and is based largeély on the partitioning tree structure,

rather than a step oy step analysis of the formal algoritim.

Let us.consider the tree produced by: the first pass

of the algorithm. The root node: contains all the recoids .

"before it is split, into some number of sons. In order to '

[y

pexrform this splitting each record has to be examined once
to determine which son it belongs to. Hence the amount of

work done'at this level is proportional to N . Before

'splitting, the total number of records contained in nodes at

.the second level is also NL ' Therefore the amount of work
needed to split all the nodes on the second level, regardless
of which nodes are split on which attributes, is also propor-
tlonal to N¢ 51nce all N recordtimust be examined once

to determine Which third level node they belong to. The

5

same Will be true for each subsequent level until leaf nodes

. are, created

Suppose all the splittings are successful for every¢

‘node in the tree. Then the tree 1s of max1mal size and all

the leaf nodes. are. in level K + 1, Each record has under-

gone . K splittings, once for each attribute. The cost of’

creating-the partitions is' O(N)‘ for each of the K levels
al which nodes are split, giVing a total cost of O(RN) if

o -

each Splitting is successful.
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what if some of the-splittings are'unsuccessfﬁlﬂ An

unsuccessful split still examines all the records in a node

P
before determlnlng that the split is invalid. It costs the

same to do an unsuccessful split_.as™a.successful one. If an

/
invalid spllt» ccurs, however, all descendant leaf nodes of-
\k\

" that node will be at least one- level hlgher. The crux f the

/
matter is thls. a record will be’ examined . for the purpose of
splitting.once for each attribute in the database. Whether
P ,

or not a valiJ split results from such an examination is
co , © 3 o

frrelevant.. Thiszcan«be discerned in the formal algorithm

from the fact that the terminating condition in step 5 (for

7
an invalid split) and step 6 (for a valid split) is a = K.

Therefore the cost’of partitioning the database 'in the .first _
- .

pass is O(RN) .

There is also a mlnor ‘cost in step 1 to sort the

v

-

attributes. This can be done in OU(logK) tlme. Since -

K' < N for.any but the most unusual cases, LogK << N -and

" the cost of this step does not increase the overall cost of

¢

the algorithm.
’ The second pass is merely a reappllca¥1on of the first.
It w;ll usually involve fewer. than N records, but the over—

all cost will be the.same as that of the flrst pass, namely .

!

Flnally, the third pass’ involves scannlng the K

O(KN).

fields in each record considered ln‘order,to plot the distri-
' 3

butlon of the records by value for all attrlbutes Again,

whlle this will 1nvolve less than N records most of the

te




, p@ﬁs (steps 14 _to 16 in.the algoritﬁh) is O(kedmax<N/2t) or
P

e .
. the algorithm TOPDOWNPART. "

" by the'number.of\possible‘different records, or N/ T d; .

'd, = 3 and d, = 2, ‘the density is 50/6-3-2)or 1.67.  We

111..

£a

# time, the cost is still Q(kN) since the fumher of records

[ -

involved in the third pass cannot be known to be much less
éhan. N and can éctua}iY‘equal N .in the worst case. Once
this step is performed we must look at the éounts f;; each
value of each ‘attribute and find the best partitioﬁing.

This requires ng-dméx) calcﬁlations for each partition

with at least 2t recorxds, wherg dmax is a constant
referfing to'the mﬁximﬁm number of values for an attribute. '
Thernu@ber of such partitions is less than N/it . Theregofé

the total cost for finding the best partitioning in the third

0 (kN)' since dmax and t are boéh,constants. This makes
éhe cost of the third bass also 0(kN) because plotting the .
distrihutions (stepvl3) has the same cost.. |

We have now shown that each pass of the algorithm has
complexity O0(kN) which is therefore the overall cgst of ' R :

/
4.5 Performance of the algorithm

Unlike the rectangular partitioning glgorithm, the
fypes of groups fo;med by top-down splitting, a£ legst’in
the first'pass, are dependéntxon ﬁbe’di3sity of the database.
We define density to be éhé number of a;tualﬂrecordsadivided‘
, : . ok .

i=1

~ If, for example, N = 50 and k=3 with 4, =5,




probabaiistic queries are less than those using random :

2%

z

' Qill arbitrarily call.any database sueh as this with density

greater'than one, a denée dataéase. The denser the database,
the more attributes will be-invélved in splitfiﬁg. The -
reason for this'is fairly obvioUs. With ;he restriction
that each partltlon must have at least ‘tb reeords,'the
density must be more than t for ‘the p0551b111ty to ex1st
that each gartitien is split on all the attributes. For )
densities(less than t, some partitions will not be sblit
oﬁ some attributes. As the densxty decreases, soﬁe attri-

butes may not be used at all When these attributes are

specified-in a gquery, the records with a given wvalue for an

unused attribute will be in many different partitions and,

worse yet, any partition may contain records with several

3

different values for such an”attribute.  We would expect the

-

statistics produced by sparser databases to'be worse than
those for denser ones, but only for the attribhtes ngt used
in Spllttlng. It is for this reason that we have lmplemented

a variation of the aigorlthm u51ng probablllstlc querles, as

1ntroduced prev1ously Prellmlnary results conflrm our

1

‘earller remarksy .and the relatlve errors resulting from

7

' queries for the' same database. All the statistical results

!

' will be digcussed in detail in section 5. -

? e effects of density on the number of partitions

. ) o : .
produced is: less clear, but also seem to favor denser data- -’

hases. As dense databases tend to involve more attributes,

there is more chance of a'large group being split into -

.



. left-overs are added at the end partitions formed ln thlS

13,
smaller ones. Moreover, the‘larger the group, the bhetter

are its'chances.of being split, and denser databases_hare
iar@ér groups. Very speree databases may produce poor splits
nicause’o? rhe sma;lﬂgrbups produced when splitting and £ne
‘greater chance of aisPlit.being unsuccessful. On rhe.orher :
hand, lt\maygheppen that a relatively sparse database pro- o (,_//
duces a good spllttlng because of the very fact that smaller

groups are made.

E Most. of these discrepancies are eliminated by the
secbnd and third pesees. In some cases the improvement is
dramatlc, more than doubllng the original number of partl-
tions. The number of partltlons produced after application
of’éll three passes-is approximately 70% of the total

possible in all our test results. Table 4.1 gives some.

sample results inclnding second and third pass improvements

. and comparisons with the rectangular merging algorithm.

’,

® We will conclude this section with a brief discussion

of the differences between' the merging aigorithm and the

splitting aldorithm.

o+,
« M

Aé'cen be seen from Table 4.1, the merging algorithm
usua) produceé more partitions‘for a given database.. The.
reason for this lies in the fundamental difference between
the algorithms; The merging procedure starts wi;h‘snall
>groups,'usually'less.than ‘t) records, and adds records until

there are just t records or more in the group. Before

manner rarely have more than t° records Thus the number<of.
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' Table 4.1 Number of Partitions Formed by Both Methods’ ’
. Merging alg. Splitting algorithm \
, o $ of & after . ' ,
N t # opt. ‘'pass 1 final # $ .
100 3 v 30 91% 20 27 82%
100 5 17 85% 14 14 70% L
500 3 137 82.5% 87 124 758 j
500 5 81 81% "61 70 70%
~ 1000 ° 3 ..278 °  83% 152 224 67%
1000 5 171 8ss . 71 143 71%
- \ .
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parﬁitions is close to maximum. This is not the case fof.\\:
Jthe splittfng alg%fithm, which. starts with one large group
s and succeséiﬁely makes smaller and smaller ones: We "have
added somedrgfinemenés to this method in order to prevent
. very iarge groups from existing im the final partitioning,
%vbut thatfcannoﬁ insure as many partitions as the merging
process produces. ~ .
) One major advantage of éhe splitting ‘algorithm is in
the composition aof ghe partitioﬁs. It has always been a
eriticism of the partitionfng method for protecting a stati:
stlcal .database that the groups may be 'ill-defined and the \\\
'statistics released thereln would be meaningless. The
group§ formed by our top—down algorithm are very homogeneous.
All the records in a pa{tition'ptoduced gy theifirst or :
secohd pasé havé exactly the same values for each attribute
on.which they were sélit. Groups made by Ehe thlrd pass

N

w1ll have’ the same values for all the attributes used in
splitting‘them-oh the second pass, and adjqcent.values for
the attribute founa in the"third pass. This 'is not the case ,
for the mefgingjaigorithm;,althgugh we have tried to make the
groups' as homogeneous as possible. The rectangles formed by
the first algorithm represent ranggé of vaiﬁeS'for ‘the .
attribute; used aé,opp05éd to speéific‘valués; Moreover,

- when the algorithm is feapplied for highei dimensions the
narrow ranges made initiallylmay'become expanded (see

Figures 3.19 and 3.20). We éxpect,-then, that.the statistics

produced by the. splitting method will be as good &s‘thosé
: ¥

g 0
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from the merging procedure, even though fewer:pertigions"

r

are maée. ~ * . ’ o -

Another adVantage of the splitting algorlthm is
51mp11c1ty and thereﬁe;;>speed It is much less" complex

+than the reg;on forming algorithm, having cost O(KN).’as
Oppbsed to O(KNziogrn . Actual implementation of the

3 [

algorithms shows that the splitting elgorithm does ihdeed

run in tiﬁe\iinearly‘pr0portionalAto N ,. whereas the

merging algprithm uses time proportional to Nz. This

A}

w1ll be shown in the next chapter.

-

 difference becomes rather substantial when N' is large as

116.
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_procedure we use to respond to a query. ' /,
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5.1 intreductien R l ) ' 'J"..l . —fj\:f

In this section we will describe the querying system

which we have implemented for statgstlcal databases, and

\

.the results of the experlmental trlals we have run.,

It should be empha51zed that the query answering ‘

~ system is independent of the partitioning‘method. The only

1‘ ‘ “ N ' Ve '
informatiQn about the partitions that is needed by the query-

ing system is the partition to whﬁeh each record belongs. -

-

How these partitions aré arrived at is irrelevant to the

’

The strategies of response to frequency, averageiand(

‘count queries based on the partitions are presented in

Section 5.2. The formulas given in that section define 'the .
. ‘ .
perturbed statistics as a fun¢tion of_fhe parameters

governing the underlying partitions. o

' p ~  We havé produced statigtics from randomly generated’

gueries, Pertufbed valﬁes, true values and the relative

s

errors were calculated These random tfialS‘are‘described

‘and the statistics which constltute the major results of the

’

project are- glven in Section 5. 3.‘ Settion 5.4 analyzes the

’

@

hY
results of these trials. Finall ¥, the results of s e‘>
atteémpts to compromise the database using trackerS‘:;e BN

presenfed in -Section 5.5; and the implicatiens of dynamically
¢ . N “w

‘changing databases due' to insertion and deletion of records

- :
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. datafield.

©a query Q belong to r

G,....G_. Let C.....C
s r r

is discussed in-Section 5.6.
5.2 Strategy of response

N

The basis of statlstical securlty by means of partl-

. _tioning is that statlstlcs are only glven for entlre parti-

tions rather than individual records. Exactly ‘how we .

formulate Such responses is shown in this section.

.5.2.1 Average querieé-

The first type of Query we will investigate is one-

whlch asks the average of values in a datafleld for all

‘

records w1th a characterlstlc formula c, wrltten AVG(C ).

S

'The response to this klnd of query is stralghtforward

Assume that for each partltlon we have.calculated the s

0average value of all the‘recordsvin that partition fqueach-

kThis can be done as soon as the partit;opé are .

'known. %e then simply substitute the partition averagevror
e true value of the record in answering the query.

Forﬁally stated, supéoae‘all the records in the éuery seﬁrfor

Qirfereht partit;ons; call these

1

be the number of records belonging
to the query set from each partition.

We can define 5i_=

\

i

o
4
3

¢, Then our?reéponse.to the query Q = AVG(C,j) is
2 , ' . . ’ '

"

-1 _B;A, where' A, is the average 6f'all,thelrec6rds in L
i=1 " ' ‘

partition G, ' for the. jth datafield.

¢ - . . ‘ , -

For example, suppose. there are eight records in the
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‘complete paftitions. This "does not compromise the database

/ o 119.

’qugry7set, two of whic'h.( beléng to 'partiti'on‘ Gl .,' fi\%e to

G, and one to G

5 1

- : 2 ..
Our response will be ghLt 3

3
The amount of error introduced by this’ method derends
,on how much the tJ:ue values in records differ from thelr
partltlon averages as wel,l as the proportion-of recokds ;n al
inen'partitidn which belong to the quéry set. The'greater,

this proportion is, the clo's‘er to the true average will be
e (S Y s :

- the partition average. True answers are given by this

~

strategy only when the query set consists of one or more

since we are correctly responding only to whole partitions,

not any subsets of pai‘titions.

We can derive a rough upper bound for the difference

" _between the true ‘average and our resi:onse to an AVG query in

\

terins of the maximum amount that any recofd pertaining to the
query dlffers from its partJ.tJ.onal average. Let us define

that quantlty to be € = max[ max {|A -V’ i}}x, where i
1 v ED, 4,
q ' ‘/r/,
varies over the partitions involved in the query set

- \ -
(1 <i < r) and Vq is a record belonging to the query set.

; )

.
\ N r
,

. The perturbed average is given by y C;A; while the
s ) N Z C. i=1 . '

i=1* o

1 r i _ :
true average ‘is = D) ( TV ) The absolute difference

z i=1 q:l q , .
k i=1 i ’
betweernl these quantities is, therr . S
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This éxpression will be maximal if each _absoltite difference
- ’ N

' ]Ai - Vql i‘e equal ta € . The expression then~becoxﬁes:
-C,
r i r
1 1
—~ I le=-— Xcl-e=e \ -
- i=1 * Coi=1t y

‘Thus we conclude that the. overall absolute error for an AVG
query will be at most the maximum dlfference between any

' particular value and its -partition average. - Foré \the’ rectangu- 0
lar par'titio'ning method, € will be less than the maximum | '
range covered by’ a .rectalngle‘ for the attribute' queri—ed.‘ '
5.2.2 Frequencquueries . |

Querles which concern the size of the,subgroup deflned
by a characterlstlc formula can be of two types. COUNT
querles ask for the actual /number of records in the subgroup
whereas relative. frequency queries ask only for the pen.rc\entage
of records pertaifning to the guery. Th:LS can be derlved from
the count simply by dividing by 'N. Frequencies are in
general less comproms:mg than’ counts because the user may' not

;

know the total number of records in the c:latabase.~ A‘
frequer}cy of—.Ol’may mean one record if- N =\106 or 10

‘records if N = 1000 . It' is for this reason that Dennlng

[14] only gives answers to frequency gqueries in her random

'
t
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sampling experiment. We answer count queries as well as

frequencies’ and these will be‘—discqssed in the fext section.
L ' | ‘ Let ‘us ass'qme, \Ias m the previous section, that the ' _ N
-records -’re‘levant to a q{ie:’y FREQ(C) bélongftO' r different
partitions. We will definé n, \to be the actual number of
records in the i?h partitidn. Recall that C; -denotes
B ‘ ' tI}é number .of records in the query set which belong to' tﬁe

'ith  partition. oOur response to the guery FREQ(C) is

. > * ¢ C | ’
N B r - |
' PfIEQ(C) = nl + l’l2 + ... nr S ‘

number of partitions: for the database.

’ T ‘ c, +¢C, + . _ . :
' ' . = where 5 is the total

4,

The true response to this guery can be written as

- ' 4 C. +C,+ ...C n. +n,+..%
, - .2 X 1 2 r

tfre_q(C) = A, F A, ¥ oin ‘ 5 ' . Therefore, !

the quantity pfreq(C) differs from the true response by a

r - : N o ‘ - -
facfjor of 5 - ny T n2’+, o, = P; Let ,Zq denote the . .

. average number of records per partition for the partitions
involved in the query set of ‘a query, g, and let ZZI\} be
the same ia'verage for ‘the entire database. By definitiopn.

’

L4

. n, 4+ 0, 4+ ... n co
' 1 2 : r ~
zq‘,—‘ = ‘ and ZN =

P 'can be related to thesé quantities by rewriting the -,

g . The perturbation ‘factor

equation as ZN F P'-Zq . . Clearly, if the average ‘number ‘of
‘records per partition in the guery set partitions is the 'same

. . o " . - N
as for thé entire database, P becgmes one and pfreqg(C) = - Ir

4

-

tfreq(C) ./ Otheryise P’ varies indirectly with Zq . »There-‘

i
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? fore if the variation in the size of the partitions is small" , . ) .

then the statistics released fox frequencies will be close c

‘to the true statistics. Furthermore, because not all the
. > . ' [

' partitions will have exactly the same number of records,.

1 L

there will be some error introduced by this (met':l:xod, a fact

‘which is essential to prevent statistical inference. It can.
' also be seen that as r increases, that is, more partitions

are involwved in the query set, P becomes closer to one.

1

This is due to the fact “that as r apprbachés §, L

q
approaches .%y+ When r is small, the-variatiofs in
' partition .size have a greater effect on the average Zq .
. - —

+ This is borne out bﬁr our results, as will be shown in the

‘next section.,
o . . W,
We now give an error analysis of the response to

.Erequency queries. Let. x be the absolute deviation in the

average ‘number of records per pértition,' i.e., x = zq - -Zﬁ
n, +n, + ... n o
or x= 1 2 r _

0 ’ . r

f

wjz

. _ Pfreq(C) can then be written

\ ,
e R I

N .. Wewill
(—s- + x)s o

in terms of x: pfreq(C) =

de‘fine the function: f(x)‘. to ‘be the absblute error

'pfreq(é)‘ — tfreq(C) related to the a'bsolu.te'deyiation x.

s

, C.+C, +u0.. C_ C. +Ci# o..C I
So f£(x) = l, N2 ’ r 1 .2N r : ‘ ‘
o ,(_¢+x)s , ‘ | :
’ s : N ,‘ N N * - v
= C \+’C +...l -\—-l-——-l - #
S 2. CI)[N-&-xs ’ﬁ] : b

. e \ . 1 * '
e = (c,'+ ¢, *... Clxs . o
' o N(N + xs) . L

YN
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+ errox divided by the true response, which is 1 2

relative error is either =2 or ms

L

Y

Let m denote the maximum number of records in any '
" partition. The minimum number is of course the threshold,
t. Then t ig < m, and the maximum deviation x will be

either x ="t - 3 °or. x=-m-

2
w =

, since f£(x) is strictly

. decreasing. —EValuating £(x) for these values we find:
— ! .

- L v ’ N ¢
f(t—g) _ —/;4(1C1+C~2+. . .Cr) S(tz) _ (C1+C2+. . .Cr)('s- - t)
s Nst TN t
and i

o A . ) . .
f(m-§-> _ = (Cy#Cy+...C ) S<m, E) _ (£1+C21-.,.‘.Cr>(m--s-)
s Nsm . ‘ ) N o

\ o -

. Since the relative error is ’equal. to ‘the absolute

C,+C +",'Cr
N

in this case, we find that the maximum absolute value of the

E—-’t:_ ' m—ﬁ , .
. It is not

t
immediately obvious which of these quantities is larger, but

N - -
. . . - =t . ' )
, . Nt S ; :
< '
it can be shown that if m Tstoy. then . 1is the

"N
. . L N s Y. m-t
maximum relative error. Since s <m, " = < el On the
. \ Nt m -3 O
" other hand; if m > >—>= then 2

iy is the’,maximum

‘' relative -error. Using a similar assumption, namely that.

(

T "lm_'lg' m-t .
> t we can show that < . Of these two

wl=z

- , -




' response to frequency queries is —/— or

: to identical queries will always be tfxe same, but different

L24,

quantities, clearly I—“—E—E is the larger. Thus we can say

. . . £
that the upper bound for the relative error of the perturbed

v

m-t -1, ' where m.

m
t
is ﬁhe maximum number of records in any query. : .
75l.2.3 Count gqueries o | | |

A r‘esp‘o‘nse to COUNT queries is simply the pertﬁrbed
frequency multiplied by N, where ' N is the number of

~

records in the database. In order to obtain an integer this .

quantity is then randomly rounded either up 6r_' down to the

nearest integer. The formula for determining the response to,

’

a query‘ count (€) can be formally stated as:’

pcount(C) = trunc(pfreq(c)-N + roundbit[tcount (c)l) .
. ) \ ) ' .

~

The function tfuhc (x) truncates the decimal part of the real

~

number x to give an integer result. One round bit is

’

gene:_:ate‘%l for each possible guery set size (1 to N) and

N ) .
fixed before any querying takes place. The round bits are Lo

" randomly generated ones or zeroes .and the round bit used to , "

determine the perturbed count is the one associated with the ‘
’ p . i . .
true count or query set size. ' This assures that the response

>

'quer'ies “with the same query set size may have different

responses if their values for the perturbed frequency are

differenf. Similarly; two queries with the same perturbed

frequency may ‘have different responses to count gqueries if
their query set sizes differ. Th’ié' ma}gés it hard to determine

\
'
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¢

which way a cqunt ‘has been rounded by examining the
‘\ '
frequency response.

L

Since the response to count queries is derived from

"the perturbed frequency,. 1t will have smllar prOpertles in

terms of” accur;cy and maximum relatlve error. -

| 5.3 ' Experimental results

. We have tested partitioned dat-ahases of size N = 100,
='500 - and N = 1000 ‘fer'statistical accuracy. Each

reccrd consisted of four attribute values and four data

vfilel\ds, and were created using a pSeudo—ranaom numbexr

generator. ' The data flelds were related %o their correspond—“

1ng attrlbute value in that they lie within an J.nterval -

defined by that value. For 1nstance, if the value for

at_tribute one of the . ith record is 3 then the value for- the

first data field.of that record is in the range [201,300] -

Three hundred randomly geherated characteristicA

’,forr'nulas were used to measure the error in the statistics

for each database. Two values of ¢t° were used'v3 and. 5. The

relatlve error of the partltlon-based statistics to the true

statistics were calculated for each query. Zll the quern.es

were classified into 10 intervals by quer.y set size and«mean

- rélative errors were calculated for each interval. These

3

results are summarlsed later in this section.

. 5 3. l Generatlng random gueries

r~ A charactenstlc formula cons:.sts of a number of’

spec:.f:.c values for each attribute related by the loglcal

-

‘operators and, or and not. If no value is specified for a
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glven attribute then we don't care about that attr:.bute the
other attrlbutes will specxfy whlchjrecords belong to the
query set. <
The first 'step 1n generating a random characteristic¢
formula is to choose the numher of ;7alues to be specified for
’each,attribute. ThlS ranges from 0 (don t care) ,i:o dl-l'w
for the -ith attribute, where d, ' is the number of possible
values for that -attribute. Once we know the number of values
'to be chosen for an attribute, we then‘pick that number. of
different values. If more than or(}e velue is chosen, we will
intérpret this to mean’ any of:those values’ caﬁ mzit,ch thle\
vlalue). of al record for the same attribute. This srnrply means
that we can insert the operator\ OR betweeﬂ .the different
values. Suppose',l for exampie, we havel chosen the values 1,
3 (axlld 4 for some,‘att!'il’)ute i . Then any record which has
value 1l or 3 or 4 will match this query at the ith attri-
bute. Clearly, since each: record has only one value per
lattrlbute there is no other way'of lnterpretlng thls

The final step in our characterlstn.c formula

generatlon is to choose the operators whlch go before each

b

) attr:.bute s set off values. We needn t concern ourselves

with the operator NOT since any negated set of values is

equiira‘lént to it’s‘complement - all the other val‘iles for that
‘attrlibute - and any set of wvalues is eque'lly likely . Any
a\t,trit;ute which has no values speci:fied' does not require a..n
, 6perator since we don't.care about it. ' For all the other

attributes we need si\gnply to choose the operator AND or OR.




K Let us consxder each case in turn. We will refer to the set

o

Then we have: (Al = S

('Al

127.
ﬁ ' < s A )
The interpretaticn of thesg operations is not as simple.

There are five general cases for four attributes,

correspondlng to the number of AND operators in the formula.

of values chosen for the ith attribute as S, . If there

are no AND's the interpretetion is straightforward:
(A =S ) OR (A =\Sz) 3

Suppose the flrst attrlbute only 1s assoc1ated with an AND. <

OR (A =s$dR(A=s)

1) A [(A2 = S,) OR (A= S3) OR

'(A4 = 54)] . A similar formula will occur if one of the

!
other attributes is, the only one associated'with an AND,

The ihter‘pre,{:ation‘ of a formula containing two AND
ope(rators is not as clearﬁ We have chosen the followir;g:“ ‘ \
=5)) MD (A, =5,) AW :[(A3 =8;) OR (A, =5,)]1 . This
follows logically fi:'om the' previous formula and is more.
restrictive, i.e., there will be fewer records satsif;'ing
this formula than the previous case,'given the 'eame‘ S;'s .

Next we consider the meaning of a formula with tl;ree
AND's., We will take this to mean ?:he' following: ’ B}
{E(Al = 5;) AND' (A, = S,) AND (A;=5,)] OR (A, =5/) . | 9) :
Finaily, if all the operators’ are AND we have, of course, the

1
The order of the attrlbutes in any of the formulas

© formula (A, = S) AND (3, = 5,) AND (Aj = §3) /AND (A, =5,) .

can be changed from the examples glven above depend;.ng on

which attributes heppen to be associated with an AND operator.
Figure 5;1: summarises the interpretations in a more general

manner.
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P, 4 each stand for the express:.on ,
(ay = i lS a different mteger
in th l1<ic<k,.
S LN
B A ’
. N N
formula o
™~
. p OR g OR r OR s - )
pAND[qORrORs] :
p -AND q AND Ir or s) -
e pOR[qANDrANDs]
p AND g AND r AND s -
Flgure 5.1 Interpretations of Characteristic Formulas |
. w:.th AND and OR Operators for k =4. - .
4
-
. of
Vj.
8 . .
[ ’ ' 4“ ’ 3
o ' *'
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- changed for all the situations except ‘one.

- the .queries. . , . : o '

?
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‘ . ,
i has no particular values chosen

\

.If 'any, attg:ibute
for it,-we can simply set S; to all the values for that B
attribute. The megm.ng of the formulas will remain un-»

If there are'

,three'.AND operators and each one is associated with a “don't

care" then the fourth{attribute is meanihgless and every
4

record will belong to the query set in effect,

We have,

the follow1ng s:.tuatlon- (Don't, care’{ or (Ai = Si) . This [

Qoy

formula is & -tautoloyy and 'to avoid 'this Wwe interpret this

. e N L
special case to be simply (Ai = 0si) . ’

‘ Clearly, not all loglcal formulae using AND and OR

o'perators are poss:.ble usrng thls‘query language.

To adnmit ¢

any conceivable queiy would reun.re 'a much more complex . 7

System, however,. and it is\not the purpose of tl_us 'thes:.s to.

. —

} -
design a comprehe‘n’sii’re query language and interpreter. Our

objective wds to be able to generate queries at random such

that the size of the query set &Mould be dJ.strlb ted as
i s pred as

unifofmly -as poss:.ble over’ the 1nterval [0,N] . and thls
has beeh accompllshed. ( . ' \
5.3.2 ’‘Statistics prodluced ) ’

. Each randomly generated characterj:etic formula C 1'was

posed as the queriee,FREQ(C)<§” A_}LG(C,j) for all data‘l‘.ields i,

and COUNT (C) Both the true va‘iues and the perturbed values

us:.ng the formulas glven in Sectlon 5.2 were calculated for

Vad

o

The relative error of the perturbed values based on the

partitions was determined for e‘ll'frequencY and average

- . ' !
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C
queries. Let tval denote the true answer to a query and

»

pval the perturbed response. The relative error is given

‘pval - tval ’ . :
by tval - , .

. Whén all tﬁe.queries were posed for a particulaf data-y
base, they were classified into.10 egqual intervals of -[0,N]

according to the number of records pertaining to the,queryﬁ

For each interval, the mean of the absolute value of the
d

relative errors was calcfilated for both query types.
5.3.3 Results | . - ‘ f

In the following tables the four digits in brackets
are the s;zes of the four domains. Rectangular partitioning-

is project 1 while project 2 is the hierarchical method.

Reshlts for N = 100 T = 3 (5342)
Project 1 \
Query set ‘ Number S Pfreqg Pavg
size " of queries rel. error rel. errqQr
, 1-10 ' 24 .083 .134
| 11-20 .21 .052 .077 )
] '21-30 28 .041 .060
31-40 ‘ 33 «025 .057 -
N 41-50 . 39, .024 .044
\_51-60 36 .021 ..035
. 1-70 27 .0l6 .018
‘ 7180 (’ 44 -.009 .015
- 81- Qh 31~ .007 .011
P . 91-10 17 .002 .004 .
thal, 300 <.026 .043
total partitioning time: 1346 msec

number of partitions: 30

L b4

(91%5‘
R
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|
P [
Project 2
Query set Number Pfreq Pavgl
size of queries rel. error rel, error ..
1-10 24 .094 117
11-20 21 .056 .081
21-30, 28 038 .055
31-40 33 , .037 ' .057
4150 39 T Loz 1041
51-60 36 .020. .033
61-70 27 .014 . .018°
71-80 44 .014 Lo£3
81-90 3 - .009, 011
91-100 17 | .002 ..005
_— —_—
. .029 040

ﬁtotal partitioning time: 163 mse&"

?

number of partitions: 27 - (828%)

131.
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\ ES . !
\ Results for N =100 T =5 (5342)
Project 1 ' ' -
{)uery 5et Numi:er‘ - Pfreq . Pavg
‘ - size of queries rel. eryor rel. error
1-10 24 .097 .288
11-20 21 .041 . .206
21-30 28 .033 147
- 31-40 33 030 oL 118,
. 41-50 39 .020 J o4
-51-60 36 .016 T 069 .
61-70 27 .015 .045
'71-80 .44 .005 .036
81-s0 - ' 31 .004 .024
91-100 - 17 .000 .~ .008.
' 024 097 .
, total partitioning time: 282 msec
number of partitions: 17 (85%)
Project 2 - , .
Query set\ Number Pfreqg Pavg . l
size of queries rel. error re':L. error
1-10 24 ) 064 222
11-20 21 4 .045 187 s
21-30 28 032 .09z
31-40, 33 .024" ,.086
41-50 .39 .015 T .092
. 51-60 .36 .016 . .052 .
‘si-70 - 27 . ,014 - .022 '
71-80 ' 44 ~.008 . .025
81-90 © - .005 .018
91-100- 17 . .001 .008 .

‘total parititioning ~tilme 86 msec
number of partitions: 14 .(70%)

-
0

{ -
. , N ~




T

L o

i

AR e T g, e

, -

(5425)

91-100

e

L

i

.total partitioping. time: « 151
_number of partitions: 27 (82%)

i

1

Results for N =100 T =3 .
A Project 1 | ) - : o )
Query set Numher ‘ Pfrg(j ~ Pavg. -
size . of queries rel. error | rel, error
1-10 25 .105 273
11-20 . 33 .056 096
21-30 27- .028 .098
31-40 34 .030 ©.053
41-50° 30 . .022 .041 -
51-60 .32 016 . .038
. 61-70 30 .014 .029.
71-80 26 .009 .020
8190 .37 ", .005 © 015
'91-100 26 .002 - .007
total par‘titioriifxg time: \4197 msec
number of partitions: 29 (88%) \
Proj‘ect‘ 2 ‘
Query set Number Pfreq Pavg
size of queries rel, error rel, error
1-10 25 .118 212
11-20 33 074 .084
21-30 27 .052 .090 -
31-40' < 344~ - .042 041
41-50 30 .026 .035
51-60 32 022 .039
© «61-70 30 .020 025
. 71-80 26 .014 .021 .
", 81-90 37 o 007 - .014
S 26 .01 .006
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' “ ) ’ . ; ARésults for N = 100 T =5 (5425)
- L Project 1 . ' C
. . Query set . Nutber Pfreq s . Pavg |
. size . of queries "rel. error |rel~, error
e 1-1¢” 25 L098 .269 T
P 11-20° )33 069 . 135
| . 2130 - 27 .048 .151
) 31-40 V' o 045 077
© 41-50 0. 030 . .067
‘ 51-60 32 , .026 BN LT:
' 61-70 30 ' 015 .043
71-80 . 36 . 009 . 032 f
, ) 81-90 37 * 002 .021 '
. coL .91-100 26 .000 .009
S ‘ - _
; total partitioning time: 360 ‘msec
number of partitions: 16 (80%)
Project 2
. . Query set Nurber Pfreq Pavg
’ size - of queries rel, error rel..error
- ‘ 1-10 25 110 185
11-20 , 33 .066 © 108
21-30 27 v .052 .127
. 31-40 . 34 ‘ 036 .045
‘ - ‘ 41-50 30 ©.019 033 ‘
51-60 32 021 ..031
( , 61-70 .30 C 015 © o .029
. 71-80 26 011 o .024 A
| ' 8190 W L L R
91-100. R T L0010 L0067
1 e : R . . LT
total partitioning timeg: 188 o - / .

number of partitions: 16 (80%)- | e
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Results for N =50Q T = 3 - (6295)
Project 1 ' ) L . ‘
‘Query set . Number Pfreq Pavg
' size ~.0of queries rel. error - rel. error
 1-50 ‘ 28~ . .059 ©.110
< 512100 - 35, Co.e32 . .029
. 101-150 28 . . .023 018
A51-200° - 29 .015 026,
201-250 o33 0 Tlour T L017
251-300 33 .00, - .016
©301-350 t23 . - 007 © 010 '
. 351-400 34 . .005 - .007
401-450 25 . .003 - .004 R
' 451-500 32 s .01 .002. ‘
total partitioning timé: 8087 msec 4 ‘ ' R
- number of. partitions: 137 (82.5%) | | l
~‘Prdject 2 R | | , ‘ | '
Query set Number Pfreq ¢ P.avg . ' .
size of queries rel, error rel. error ’
1-50 28", © .049 - .059
51-100 35 . .040 ©..033 -
101-150 28 .03 T .022
‘ i51-200 - 29 . .025 ©.030,
201-250 33. 013 - 016 C
251-300 - 33 . ° .06 .0l4 ,
301-350 23 010 .. . .006 ‘ -
351-400 34, T 009 . .006 "
7 401-450 . - 25 .. .007-  .003

» , N

' 451-500 ' 32 - .003 .002
total partitioning .time: 958 msec Y ’

number of:partitions':“ 124, (75%“5

I N - ' -~
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Projdct 1

Project 2

o S

. Results for N =500 T =5 (6295)

Query set - - " Number Pfreq - \ Pavg
size © of queries:. rel, error ' rel, error
1-50 28 g 053 237,
s1-1000 35 .035 ‘ 072
l01-150 28, 022 . © .04l |
151-200 200 . 019 . .068
'~ 201-250 o33 . .016 - . .039
251-300 ©  © ‘33 .. ,0l2 .037
° 301-350 . 23 . .008 - .022 .
1351-400 3¢ - - . 1,006 , w015 .
401-450° 25 ' ,004 .008 '
451-500 320 . 001 - - .004

total partitioningntime': ‘5,743 msec
number of partitions: 81 . (81%)

Query set ' Number - . Pfreq " ravg *
" size of queries . rel. errxor ‘rel. error
1-50 28 © 066~ 137
51-100 C 35 .042 g 072 -
101-150 . . - 28 , 025, .037
'151-200 - - 29, -~ .02l 073
201-250 33 . 017 - .041 .
. 251-300 " 33 . 009 .034
301-350 23 - .o14 .012
351-400 7 S -.008 ' 011
-401-450 - 25 - .008 : .006 K
| 451-500 32 . 001 - .004
total partitioning -time: 571 msec , . o ‘i '
number of partitions: 7Q ° (70%) C -
. ,
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o Results for N =500 T = 3 ' (9459) S
Pro‘ject 1 \‘ o ) ‘ , ' [ ‘ ,
*.Query set - Number ' Pfreq ,  _Pavg oo
© size -+ of queries . rel. error rel. 'error.
150 42 . .034 .071
51-100 - a1 - o .023 . .060
. ioi-150. -+ .31 ‘ .017 © L03g’
- 151-200 . .31 016 . - .029
©201-250 -© - -c23 0 . lol2 - - .028
251-300 ' 31 ‘ 4010 020
301-350 U 22 006 . .o0ls,
'351-400 26 ) . .005 " olo
. 401-150 . 31 . .003 007
| 4s1-500 - 21 - . .001 .003
total partit,i‘onin,g\ time: 11.718 sec , ‘ | ,
» number. of partitions: 143 ’(86%) ,
. - partit o
Project 2 \
Query set® Number Pfreg . 'pavg- ‘
size of queries. . rel. error rel. error
1-50 2 © 075 117
. 'si-100 41 044 L4 059
 1o1-1s0 - 31 L0290 - .041
151-200 31 . - l023 ., .036
201-250 23 ° . .022 ©.024 \
251-300 _ - 31 - . .04 . .  .026 - -
'301-350 22 . o2 L . .017-
. 351-400 26 .. .07 .013
401-450 31 . .o04 2009
451-500 21 Lol . .003
. total partitioning time: l 167 sec , ,
numbexr of_p'\artiti'ons:' 125 (75%) o > .
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| Results for N =500 T =5 (9459) "
Project 1 e 4 o
' Query sef ~ Number Pfreq .Pavg
sige* . oftquer;es rel, error rel. error
) ‘1-50 42 . .034 114
51-100 - - . 41 . .022 ©.091
, . .101-150 31 .018 .068
151-200 . . 3L .014 _.050_
201-250 - . 23 .010 .044 .
251-300 - . 31 . 006 - .035
£301-350 . - 22 .004 .022
.351-400. 26 . -, .003 .018 . .
o ' 401-450 N3 001 .012
: 451-500 o a1, .00 .004
.‘totalfpartitioﬂipg time: 10,303 msec |
. number of partitions: 82  (82%) '
. . ' r
Project 2 / ) | ‘
™ \Query set Nﬁmber,' : Pfreq o Pavé )
" size of queries- rel, error . rel. error
1-50 - -42 .058 141 .
51-100 . 41 .023 . ,.079
101-150 = 31’ .018 .051
" 151-200 - 31 015 044
201-250 © . 23 ©.012 .034
. 251300 - 31 Lo11 )
. 301-350 22 -.008
;. 351-400 .26 ~.q07 -
401-450 - 31 003 .011
., 451-500 . - 21 . Q01 - 004
total_pgrtitionih§ time: 861 msec . N T
. nuﬁﬁéf of 'partitions: 72 (72%). S :
= P o , h . o
: |
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" Results for N'=10Q0 T = 3

i

e

v

v
N1 7 g e e e O
-

¢

. = _ (9554)
©, Profject I . L B 7 '
" Query set Number ° Pfreq “Pavg
size of queries rel, error rel. ‘error
1-100 51 ©.053 ©.056
101-200 37 . 1.022.- .033
a 201-300 26 _ .017 . .023 |
301-400 25 . .013 023" |
'401-5Q0 21 ©.009 017 .
'501-600 20 .009. 013
601=700 23 008 .01
701-800 - 28, - :.004 .006
1801-900 33° ©.003 .007
" 901-1000 30. .001 .002
’ ) TI’I' T022 .
total partitioning time: - 42,176,mééc |
number of partitions: 278  (83%) )
Project 21 ' : ,
Query set Number Pfreq Pavg
. size of queries - rel. error rel. error
, . 1-100 51 T .067 .068
Sl 101-200- .37 .046 - .037
p \ ) 201-300 © 26 - .029 " .018
C 301-400 - 25 v .029 © 036
S 401-500 27 "L .019 .017
5012600 20 .ol .014
601-700 23 ' .Jol2 .011
701-800 28 .008 " .008
801-900 33 . ,006 006/
901-1000 30 - .003 . 1002
: , 027 025
total partitioning time: 1669 msec’ : \
humbef of partitions: 224 - (67%) :. .
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- Results for "N = 1000 T =5  ~(9554) -

Project 1° 2 o - o
Query set Number = - Pfreq - Pavg

size of queries rel. error rel. error
~ 1-100 51 L0471 125
'101-200 S A .21 . ..055
' 201-300 26 o023 055
301-400 25 .0l - .044
. 401-500 27 - 009 .029
. 501-600 20 ‘ .007 | 022
601-700 , 23 ©.006 o .020
701-800 28 ©.005 IR 1} § 1
801-900 33 ©.002 ,.010
" . 901-1000 . 30, .00L . .003
‘total partitioning time: 18,609 msec o
. number of partitions: 171 (85%) ' . -, . -

‘Préj\ec‘:t 2 ‘ : .

Query set - ’ Number . . Pfreq ° .- - ' Pavg
' size ' of qqer'i.es, rgl. error rel. error
S 1-100 .51 080 - .099"

. \ o , -
101-200- 7 . .033 .057
1201-300. 26 w027 . 7038
- 301-400 . - 25 | 024 064 ¢

_ 401-500 27 SN . .027
soi-600 -~ . 20 . . .0l2 020
601-700 23 .008 .015
701-800 - -2 006  .o0l2
841-900. 33 - 004 - .008

7 901-1006 30 . . .00l - .003

total -parﬁitibning' j:img: 1715 msec .
number of partitions: 143 (71%) ° : .

! . [ LY L] o . !
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5.4 Analysis of - the fesuits ‘ ' : , ) L

The statistics produced using partitioned databésés
can be analyzed in sey;ral wa?s. First, we will compare the
two'd;fferént\partitioning methodé, noft only in terms of the
actual ;tatistics in response to the same seé gf queries but

‘also the computing time taken to produce the partitions.

e will also examine the statistics in relation to N and
! : t °

the thresgoid, t.ﬁ Finally, we wili Lonsi er a var;atioh of
the hierarchical method which takes tje proﬁability of
‘querying a givén attribute into accounit.

5.4.1 Rectangular versus hierarchical partitioning

It is readily apparent that the hierarchical partifion— '
S oo .

ing method produces fewer partitions thhn the réctangular

bottom~up method. Whereas the number oﬁ partitions formed

v

by rectangular partitioning in project 1 is consistently
greater than 80% of the maximum nuﬁber péssible, the second
project produces roughl§;70%. This would\lead us to expect
worsé resulté from the second préject, eséeciglly the
'frequency statisﬁics.

As the number of partitions decreases, the variability i

in their size increases and this will lead| to greater errors

. in frequency response. This is in fact the case as frequency

e

"errors are consiétently siightly highér for the hierarchical

method. The difference is not -great, howeyer, and with one
7exception all the frequency'errors are less than 10%, and
decrease rapidly with incfeasing query set size. . ..

We may also expect the AVG query response to g worse E

* S

i

N~/
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for the seéondﬁproject simglf hecause of the greater numbher
of records per partition, leading to a'éreater variation in
the data valués within a given partition. The response to_
AVG qﬁeries, however, is also,depeﬁdent on thé’boqogeneity
‘6f the partitions. Even if there are more records in a
paftitién_on the average, if those records are similar‘to
e;ch other the variatign in the datagvalues may be less. We
havé hypothesized at the end of Chapter 4 that the statistics v
would be as good 'for the splitting- algorithm as for the
rectangular merging even though fewer partitions are formed.
The results uphéld this hypo?hesis. The errors fo; AVG
queries are.at least as lo& ébf the second‘projecﬁ as comp&red
to the firét if not lower. Again, 'the difference is not
great, but the fact that partitianings can produce better
stat;stics with fewer numbers of groups means fhatlfhese
_groups are well formed. This addresses’a major criticism of
partitioning as a method to protett statistical databases,
n;mely that groups can be‘il;-formgd}and thé statistics
produced thereby are not meanifhgful. Our hierarchical

partitioning method does produce meaningful statistics with

efrbrs generally less than 10%. -~ , )

A final means. of comparison between the two projects

—
is partitioning time. We have stated that the rectangular
partitioning method has a thoeretical worst case complexity

» 4

‘of O(kNZlogln whereas the "hierarchical method has complexity

of O(kN) . The results bedr these figures out and show
i ! ' , >

)

, o R .
N
. “ N
,
. . - . ) ,
~ + - . .
. ' ’ "

.the rather large difference between the two-as N. increases
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. P )
(see Figure 5, 2) ° The secong pro;ect is lnrtlally faster

. _than.the first for N of 108, by at least a factor of two.‘

As N increases’by a factor of five, the partitioning time

, ‘ L.
for project two- increases by nearly the same amount, indica-

ting that it’'is indeed linear. The rectanguldr partitioning L

L - .
trm%; on“the otﬁer hand, increesee by more than 28'times:

" When N is ;Octimes:the initial value, tﬁe first project: g
is orer 160 t%mes slower while the eeeend project is almost
exactly 10 times slower: Ihue’rhg first\érojeét is running \
.in time-proportional to- Nz.‘ This is a significant dirfer—
enee. as is evident by the fact that fer,identicel.databeses

with N = 1000, ‘ project 1 requires over 40 seconds more

CPU rimevthan projectlz. The overﬁhelming arscregency'in
partitiohing times in favor of hrerarcﬁical part;tieﬁing , R
, superceQes an& pthgr-criterionix1éhoosing the better metgod.
Not only is the hieierchicei~methedemuch faster, bet
the partltlons are more hemogeneous and the ‘AVG query errors

are slightly better. Only the pREQ query error‘sare worse
. than those using rectangular partltlonln% and these are
2 certalnly within a tolerable range. |

/ © 5.4.2 Effect on the statisgics of rhe number of 'recoxds .,

1

One would expect the statistics to improve as N )
increases bedause the size of the partitiohs stays the same.

\ ¢

Therefore the number of records in a partlt;on 'S‘a smaller :

Y, :
pr0portlon of N As the total number of partltlons X ' .

lncreases, the varlablllty in thelr sizes should decrease

! \ sllghtly and improve the freqhency statistics. Figure 5.3

] . N N ’ 4
¥ - . N ' ¢ - ' o



time in msec-

SRR 7 T

N

»
relative increase from N=100

:Fﬁroject 1 Project 2
S 0 .

N: Projeci 1 Project 2
374 163 . .
f 500 ‘8084 | 958 ~ 5 ; 21.62 . 5.87
&% 1000 42176 1669 10 112.77 10.23 .
8 ® , . .
S Figure 5.2  Partitioning CPU Times ..
J L o
! ‘j“"u
\ ¢ Pfreq Pavg
s ¢ N t '~ Project # rel. error rel. error
N ( : 2 il
/- o 100, 3 1 026 .043 *
100 3 2. .029 .040
. 1000, 3 1 017 .022
.. 1000 3 2 .027 025 o
| , 100 05 1 - .024 7094
® 100 5 - 2 .020 075 v
1000 5 - 1 .017 .044 e
1000 5 2 - .026 ,039
‘ ;Ej‘igure 5.3 Séiected mean errors for all queries '
1 ? ; . ’
Lo ¢ P
N . .
] | T




'FREQ queries improve less dramatically.

5.4.3, Choice of the partitioning‘threshold

. . . o 145.

\/

gives ﬁée average errors for all querles for some selected

databases. These flgures give an lndlcatlon of the overall

" accuracy of the statlstlcs. They show that response to AVG

queries does improve significantly with increased N and

!

Another important aspect of partitioning iS>the chaice

of a threshold or minimum number of- records per partltlon

- We want to pick a threshold whlch is large enough to ensure

securlty yet one whlchcdoes not cause overly 1naccurate

StatlSthS to be produced We have tested identical data-
bases‘with identical gueries for both projects using

. thresholds of t =3 and t =5. The results for t = 3

sﬂould be better’'in all cases because'of the greater number
of parritiOns for.fredhency qperies and rhe fewer number of
records per partition giving betcer dta averages for AVG
queries.. ) \ |

The results}show that response té AVG queries is

\

much better for t = 3 as'0pposed to.t.=5, ‘In fact, for

<

small N the larger threshold produced statlstlcs whlch were
not at all accurate.~ This is entlrely in keeping w1th our
N ~

.

theory * We would also expect the difference to be less

marked for larger N, and such is ;hé case. . ., 1 o
The frequency response showed something quite{;nek—

pected. leferences between the results for the two,

thresholds were much less. than we expected. In fact,

most cases they were minimal., This is surprising at first

~t




.because one would expect fewer partitionS'to have a greater

' varlatlon in size. Whlle this may he so, it 'need not be much

dlfferent but we must recall the theoretical maximum error
fcr frequencies’glven’in,Section 5.2.2.. The formula is
%-—I where ‘m is the nmximﬁm nuﬁber of records in‘any.
partitioh.' Thus while m wilkl certalnly increase when t
increases, it .will not necessarlly 1ncrease by a greater o
preport;on.than t. ,Th;s explalns the 1n1t1ally.puzzllng
decreased accurecy 'in frequency statistics‘ﬁith decreased t.
The other crlterLOnln.ch0051ng a threshold is the
degree of security prOVlded This will be dlscpssed in more
detall in the next sectlon. We have akread& stated the . v
theoretical security inherent in a partltlonlng system, apa
the results_of tracker attacks confirm thls. They d&so sﬁow,
however; that’there“is a difference\in the number of succesST
ful attacks for dlfferent values of t.. 7 -

' Choosing a threshold lS a dec151on whlch must be
carefully conSLdered There is a deflnlte tradecff between
accuracy of statlstrcs (éor averages) and compromisability.
Fer small N, the statlstlcs produced with- the larger
threshold are not very eccurate andlthis‘indicates;that‘a,
smaller threshold be used. This difference is not as.markéd '

N

for larger N, Dbut the statistics are nevertheless worse

.for the larger t . There is less ‘threat of compromisability

with larger t bututhat.threat is not great in elther case,m

b




spec:.f:.ed for an attrlbute i 'only if-a‘ random number was
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5.4.4 Hierarchical, partitiening using probabiiis‘tic queries
. We have tested the hierarehical splittiné me thod using
probabilistic queries as eicplained‘ in Section 4.2.2 There
afe two methods of ordering the attributes to be used for )
eplitting. One 1s ‘to use the p:;obabiiity that an aﬁf’ribute
}ae speciffied in a query as the jsole crif;eriori ("érob"
variation) and the other is to eeparate the ai-:tribute's irito
more probable ‘and less probable ones and then order them by

decréas;.ng size ("mlxed" var:.atlon.)

The probabilities were‘ randomly assigned to each

‘attribute, Thes® were then used to order the attributes..

Let us call p, the probability for attribute’ i (0 < p,

< 1) . Random characteristic for\mulaslwere‘ tﬁan generated
accor'ding. to.the Aprobabili‘ties. One or more values were .
greater than . P; - Otherwise a “don't care" *was generated.’
This was done for all k  attributes.. We can denote the
o‘lve\;‘all. quefy probab;lity for query qj as gpj= {3 -pi)rgpr
where i ranges over all attributes not specified and r
ranges over all attributes specified. '

| Three hundred such characteristic formulae were then
posed and the statlstlcs generated‘ When calculatlng mean
re;Latlve arrors welghlted sums were used. That is, if fi ie
the frequency error for query ' qj the mean, relative

x\
error for all queries qj whose query set size belongs in

o . zap.- £, . .
the same interval is given by --—3——-1-‘. A similar formula

igp. . )
QPJ '




was used for AVG quer:.e.s as we.ll Table 5, 4 g:we; the

results of one such trlal for hoth the "proh" a.ng "mixed"
variations with N =100 ‘and t = 3. . C
| . The results of tﬁesé trials show that. the freéﬁenc*j
errors s_e'exﬁ to be a bit worse than the. original method, but
the AVG errors are much better in both cases.

Again we find the situation where.the: number of
pa\rtitio'n_s' and variability within the partitions govern the
accuracy of. the freqﬁency ,statistics. .

¢

- These Earticular variations reorder the attributes

frohm the original method which was -dgsigneg' to c‘reate the
most pérti‘tion_s by ordering the attributes by - size. We
would thgn expect the "mixed" variation to be lbe.tt:.er in thi;
respec\t an_d‘ indeed it is, but Stlll wo.rse— than the original.

The main purpose of @hese variations is to dec\rease‘
the error for AVG querles. Both varlatlons succeed handily
at thls.‘ In fact, they both produce the best statlstlcs for
AVG querlés of any tridl at any level of N or t . There
is little dlfferépce fetween the two.

1 ' *

We cé,n conclude that, if the probabilities for specify-

.\ing attributes are known beforehand, using the "prbb" or

"mixed" variations of hie‘rarchical partitibnin‘g will give
highly accﬁrate statistics. The best méthod overall is the‘
"mxed" varlatl.on because 1t produces moxe partltlons and the
frequency errors. are lower than the variation whlch uses only

attribute probabilities to order_ the attributes.

/
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Tahle 5.4 Results for Project 2 using Probabilistic Queries -

N= 100 'T =3 (5342) © - .

1

"prob" wvariation

L

Query set Number Pfreq Pavg

size / of queries rel. error¥ rel. error.
1—10& 4 .103 .065
11-20) 12 . . .156, - .016
21-30 5 039 ' ..008
31-40 34 . .080 .001
41-50 30 041 ¢ .004
51-60 25 041  .004
- 61-70 ! 81 o~ ..039 :001
71-80 21 . la39 - - .004
81~90 42 " .015 .001 -
91-100 - 45 .001 .000 )

total partitioning time: 165 msec
number of partitions: 26. (79%)

"Mixed" wvariation ,
Query set " Number . Pfreq Pavdg

size . of queries rel. error rel. error
1-10 4 - .119 .012
. 1l-20 . 12 - .078- . .044

. 21-30 s .068" o Loia
31-40 .. 34 ' .o55 . .002
41-50 .- -+ 30 029 .005
'51-60 25 - . .028 . .036
61-70 8L = - 023 ' .004
71-80 o .018 .004
81-90 . 42 . ©.013- ..004
91-100, 45 _ 001 . 1000

total partitioning time: 182 msec

number of partitions: 27 (82%)

\
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5.5 . Compromise S

150.

Pa.rt;.twned datahases control compromse by preventlng

a quest:.onner from :Lsolatlng the 1nformat10n contained in an
individual record, Whether'it :LS\ queried directly or

-~ '/ ’ . . s - LY
- inferred from linear combinations of queries, the indivi-

) i ‘ i % ‘
.dual's sensitive data cannot accurately be determined. The

reason why no compromise is theoretically possible is that we

are generating the stat:.stlcs on the bas:.s of the partltlons

"instead of '‘the records themselves

When calculating the average of a set of records we
o ' °
“use each relevant partition’s average instead of the\ true

values. No amount of,querying,\ no matter how clever, will

be able to determine the true value since it was never used

in the first place. Frequencies are also derived using a

' . '

forniula’ based‘on the partitions. " This re5ponse can be

accurate if the number of . relevant records per partltlon is

‘

|
the san_\e as the total number of records divided by the total:

number of partitibns.* Since the user is unaware of .the

' .partitions \at least of wh:.‘ch records belong to whlch

e '

partitions, ehas no . way of know:.ng am accurate answer from

|

a ‘perturbed o'_e.‘ Furthermore, since the total number of '
‘records in Lr database is never released, a user cannot
translate rel\gtlve frequencies into actual counts. If we do

‘permit count \%ﬁerles it may be possible to determlne N ,

f 4.

but the countl,%?\

rounded up or\]tidown It is Stlll 1mpossxble, therefore, to

are derived from- the frequ'encies and randomly

.tel,l an accurate response from an lnaccurate one .



. ' ¢ co , ‘1151.

-~ N . : ' Y

In order to test: the secura,ty of ourxr Calculatlons

- whl.ch in theory will not pernu.t comprcmlse, we have attackedl
the database with randomly generaeﬁil general trackers. The
trackers attempt to isolate a single record and determine

' its\ data values.

5.5.1 Random tracker generationm.
by o o According te Denning; Denni'ng*a.nd Schwartz [1ll] a
/' A\ - . o general 'trecker‘ is any characteristic formila: T whose query
set size is in the ‘range [2k, N 2k] where , k is .the size of
. : the smallest allowable query set Although we have" Yno’
| ’ restr;\.ctlon on the query set smze as’ such, we will not
\release ‘a count if it is iess ,than the threshold t . We may
¢ " . then consider a generel tracker to be any characteristic’

formula whose query set size is in the range i»Z't,N—Zt]‘. It

~

P

is not hard to: randomly denerate such a formula. " The method

we. have chosen is given by the followmg algorlthm- . ’ .

~

- ALGORY T'HM TRACKQI:]N

l, Choose any two ’atvt.rib‘utes Ail and ‘Aj - N .
2. Select a lvalue,_ at ‘r‘andem for both A ~and Aj ; call
these Vv, and." Vj respectively. .
Tos. LFormulaté the characteristic formula T as (Ai = Vi) (
. OR (AJ = V ) for 1# 3.
The formula T is guaranteed to have a .query set size '
. in the desired range, and_ by choosing two different values
| o we have ayoided generating the same formula too many times."
Iyt‘ remains to find a target. The target ‘record must be

" a’'singleisolatable record. That means, it must be uniduely

N -
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7

identifiable by its characterlstlc formula, C. To. f:i;md
such a record we. suélply generate formulae of the type:
(Alr= Vl) AND (A2\= Vz) A{\]D (A3 = V3) AND (A4 = V4). ’
v;hjere each ’ Vi\ J.S a singlle "’value in the ‘range [1’di]
chosen at random. We then determine the number of records‘.l
which match this characteristic ‘fbrmuia. If the:ée is only

one, that is our target. If not, we fepeat the procedure

. until we do find an isolable recorad.

The tracker formula T and the target -formula C are

' nét, and should not be, related. 1t fnay happen ‘that tl';e

same tracker is gene:;atec"i for different, targets or different
trackers are generated for. the same target. -
‘Once the tracker and target. have been determined, we

pose the queries which are intended to infer the existence and

the particulai: data values of the target record. These

: quérie’s come from the tra’ckelr‘equation given in Chapter 2,

.namely . - _ ' o
q(C) = q(C + T) + g(C + T). = q(T) ~ q(T) .
Inferred valués for th'e frequehcy, count, and a&éra‘gés are
i ) , . 7y

calculated using the perturbed responses bgs'ed on the

' partitions.. These are compared with the actual values of
‘the f.;arget“record and relative errors determined.

'5.5.2 Results of tracker attacks

The results of attempts to compromise the database

‘ usn.ng ‘trackers are glven below. We/ héve counted the number

,0f times the J.nferred frequency is within, 10% of the actual

s t

frequency. -For those attacks Whlch,havg lnferred the




' projec{i

- project

‘project

L f - ‘ ,projéct
| .

|

|

v,v\":"ll,

pr’dject

T + project.l

project

- project 2

project 2

. project 1

. project 2

v . ' project 2

avg.,

Table 5.3 Tracker Results °

no. of . freq.- :
attacks. . within 10%  within 10%  count=1
100 ‘ 6 19. .
100 ° 3 ‘ . 18
a):. Results for N = 100, T =
- 100 2 13
100 2 2 .23
b) Results for N.= 100, T =5 .
© 50 2 1 4
50 o2 ﬁ 2
c) Results for N = 500, T =
50 0. 4
.50 -2 7 -7
d) Results for N=500, T.=35
50 2
50 1 o
e) Results for N = 1000, T =3
50 N 0 0
50 - o 0
f) Results for N = 1000, T =5 .
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true walue.

' the target record because he cannot tell for certain that

" there is only one record with that particular characteristic

‘and all the datafields to w(j‘.:c:h”in 10% although several trackers
inferred three of the four datafileds. Many timeés the

inferred values were negative and the relative errors reached !

©5.5.3 Ahalysis of tracker attacks ' ’

-values were inferred. Since there are four such values for

154,

i

.

fréquency accprately we count the number of datafield values,
as many as four per Are\cord, which are also within 10% of the
ff a datafield has been accurately infetred but.

not the frequency, then the user has learned nothing about

-

]

formula. Indeed, as we mentioned .previously, it may be hard

for ‘the user to determine the frequenéy which is equivalent . ’

to a count of exactly one. If this is the case then ftrackers
R ,

will’be of little use to him anyway. We have also included

n b

‘count queries using random rounding and have tallied the ¥ ‘

N

number of tracker attacks which infer a correct count of one.

’

There were no attacks which determined the frequency @

as much as 13008%.

~The tracker attacks infeérred very few correct fre-
qu'ency.values; less than 5% of these were accurately deter-

mined for nearly all the series of attacks.  Even fewer data

each r'e'cord, the actual percehtage of data wvalues accurately

inferred was less than 1% in almost all cases. ' E

‘With such a low number of successful inferences using' ) H
trackers, they become virtually useless. It is impossible to

tell ywhiéh records and which trackers will yield accurate

.
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information. A trackeér which infers the £frequency_and several

"data values for a record in one project does not .accuraely

" infer any information about the record in a differedt project

or for a different value-of t. Whethexr or not a particular

‘tracker compromises a pafticular record seems to be largely

due- to chance. ‘ : \ -

A more ‘distu‘rbing result is evident for counts,
especially with a low nunlbér of records. Almoét- 20% of the |
inferred counts equalled one for N =100 records. While
the results were much better for larger N, they were always
higher than the number of cgmbrémise,d freq’uencie‘s.‘ We must
éonclude ‘that random iro‘unding, ‘even when us;.d with the ‘per-'

' .

turbed frequencies, does not providé an adequate -means of,

protection. This is similar to a result given anecdotallé‘ by

. Denning [14'], who studied trackexr attacks using a "simple

rounding control”. Although Denning fails to- give any

figlires to substantiate it, Denning states tt;at- "... the

tracker attacks were more 1likely to subvert the rounding

24 - v .
control than the random sample control. In many Ccases, the
j:racker revealed the exact value despite the &:ounding '

control. nd

There appears to be little difference between the

. rectangular and hierarchical partitioning methods in terms of

T

¢

b.E. Denning, "Secure Statistical Databases with

Random Sample Queries", ACM TODS, 5 (1980), p.307.

e
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the number of values inferred. F,\ ! 1

-

We would expect the results. to be better for t =5~

l

as Opposed to t=3. This is indeed the casg as shown by

-

" the results. For N = 100 there were 9 frequencies

inferred for both projects at t = 3 while only 4 were’

inferred for t =5 . The difference is not as great for
.. N=500 (4 versus 3) but were,even more dramatic for N =
1000 where not one frequency value was inferred for either

project with t =5,

L]

The results also show a slight improvement with '
increasing numbers of records. While 13 freciuencies and 11
data values were inferred for N = 100, only 7 frequencies

and 6 data values were determined for N = 500, and 3 .

“

frequencies and 2 data values were compromised for N = lOOQ .

In summary, statlstlcs produced from a partltloned

"

database are theoretlcally secure in that they are based on . '

the partitions rather than the individual records. Our

random tracker attacks show that some trackers do partially-
i v ,

compromise some records, but at a: low rate, and it is imposs- "’

ible to predict which’ trackers or records will be involved in

- ¢ -

that compromise. Many s,uc_:h attacks yield results which are
off by several huadred percent and are completely .meaningletss.
Ia" fact, the average error fcr inferred frec_;uencies *Jvas 1.35
for . N.= 100, 3.72 for N -i 500 and 6.41 for' N ="1ooo\
\v;hile \fior data values the average errors were 9.95 for N =

100, 2.57 for N = 500 and 1. 74 for N - 1000 . Thus we

conclude that partitioned databases are secure from tracker

P NP R PEERPIS f e o . .=
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" is desirable to avoid reforming the partitions if possible,

N

attacks using frégquency and average queries.

5.6 Chéngés in the database

Sbméldatabases ?eingh&ept‘ﬁor étatist}cA% pﬁ;posés are -
static Qatabasesl Once'formed; insertibﬁs, deletions or
updates are neﬁer'performed on any records.: fhe.éenégs data-
base‘is.a p;ime,expmplé of a static database. Other staFi—
stiéal dat;bases‘such as medical or personnel databases»ﬁay
féduirg pé;iodig uﬁdating’of the recards. This can involve
changes to data values or attribuies within a‘record, insert-

ing entirely new regords or deleting records from the data-

L g

~

base.
In this section we outline the p;ocedures which can be
Eollowed to implement.changes in a partitioned database. It

LY

but we must maintain theISecurity and integrity of the data-

(\4

" base above all other considérations, \

’ B
»

"5.6.1 ‘;nsentions ' ' ;

Inserting i new record into the database involves | = -
determining which existing pgrbitibn should contain ihe
record. This is easily done‘wigh hierarchical partitions.
All we need do is follow the. appropriate path'to a leaf node

according to the attribute values of the new record. The

v .

' method is simple and requires at most .k comparisons.

. Rectangular partitions pose\more problems for inserting
* X ) R A

hew,records. Initially we must start with the first iteration
of the procedure inﬁolving the (first two attributes. Ih order
- . ¢ . " B »

to find the rectangle in which the new record'belongé, we have

. . .
). [ W J .-
o~
«
. . R .
.

' t g . ' o /
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to ln&?ect each re.ctang'le untJ.l we flnd the one which covers
Y the cell correspondlng to the record's values. If no.rect—
angle covers that cell we nust J.nsert _the record into the N
nearest rectang"le. ThiTS procedure ié repeated- for eachms
iterat‘ion, requiring Oz(ks) comoarisons where s‘ is the
number of rectangles formed' and is proportional to N. If
the ranges I_coverled by the final rectangles for each attribute
are kept we need only insp ct those rectangles, but k
-comparisons are still needed for each rectangle. Therel we
see another advantage of 'theAh‘ierarchical method.

Once the correct partltlon is found and the new record . ‘
inserted, we need only update the size of the partition and~ ’ \
‘i_ts data value ‘averages. Queriés are then answered just as T
. S
before. We may designate a maximum allowable partition size
such that if any partltlon grows larger than that size, we A 4
will repartltl.on ‘the'lantllre database. This w1ll prevent the
statistics from beconing too 'inaccurate.

5.(1.2 Deletions - v o o \ '

Deleting a record can be yaccorlnplishe.d simp’ly bv
‘eliminating 'it, from the partition to which it belongs and
‘updating the size and data value averages for that partition.
ThJ.s is just as easily accomplished in elthgr partitioning

me thod . .

The problem arises when-the deletion .0f a record causes

»

the s:.ze of a partltn.on to fall below t.

"

In order to av01d repart:Ltmnlng the database each

)

time this happens (and ‘possibly allow for an‘lnsertlon,,to o
. ' RN '
. J - 1 !

[t T T LD N SIS VOO ST Y SO Sy 37 P A
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/howeGer. If the numbexr of partltlons whlch have fallem below

'strategy. Only the data ayerages’of that record'sapartitionz

R T

_records, insertion@, deletions or upHates, is made”tb just’ one

153,

rectify'the situation) we propose the\following\scheme\for
producing statietibs‘wiﬁh undersized partitionsf Consider the
twb.cases of queries involving such a pagtition, which we wiil
des%gﬁate,as P* , In the first case, the qﬁeryiset is
entirely frem P*, while in the second case the query set
involves records fro;.other partitions as well. For case 1

we answer queries as. 1f the deleted record were stlll
1ncluded in P*. We conSLder the size to be t ‘and use the.

¥

orlglnal data Value averages. It is clear that this is

necessary to malntaln the securlty of the database.

If a query falls into the second category we can use

rﬁpdated data averages fori P* - based on the remaining records,’

e

‘but we will still consider the size of the partition to be

the minimum, t. This method does require some overhead of
: : | Y ‘ . , ,
maintaining two sets of data averages and discerning the two

. v
different cases. The statistics produced will ‘bt more current,

the‘minimum size bécomes greater than some *predefined

«

threshold we w;ll repartltlon the database. e

5.6.3 Updates. : | ’

‘If a record 9eeds to be updated, it is changed-without:
! a . '\ N ’ ' -

affecting the‘configuration of the partitions or the response

may have to be recalculated.

e

v

, It .should be noted'that~if a%; of these changes 'to '@

L

record it may jeopardize ‘the securit of the database. . This i
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is s:.mply because ‘the . same_query may glve dlfferent results .
before and after the change. Under our 5ystem of response it

sl}o.uld be very hard to determ;i.ne which record has been

‘ altered and by, how much, s:.nde data averages have been
changed and ‘it could be any member of the partltlon which
caused the change. Nevertheless it is generally safer to
perform a number of changes to records. at’ the same time.
This may also save time as:several changes may occur to
records in the same partition and the resulting .updates need
only be performed once. , v ' -
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. 'be small and the records within a group as similar as o

‘qpestionéble ébility to provide meaninéful statistics [9,10,

lel.

'

_ CHAPTER SIX St
CONCLUSIONS

6.1 Effectiveﬁgse of partitioniang to control inferenoe

We have shown partitioning a database into small dis-
joint ‘groups of records to be an effective methoa for securing
against statistical inference. ' The statistics generated using
pareitions are accﬁrete and there is eo possibility oﬁ\
\isolating any iﬁdividual record. Partitioning can provide
meaningful‘statietics at a low cost incurred pfimariiy when

setting up the database. ‘
. : 5, ‘ -
The ‘two partitioning schemes presented in this‘thesis" -

lelde the database into small groups, which helps to pr0v1&e

-accurate.statlstlcsm When statistics are calculated using

the groups instead of individual records, those gropps should
possible. . One major criticism of 'this technique is the . .

11,15]. We have proven that tﬁere is a eimple method for

produc1ng small homogeneous groups by succe551vely spllttlng "F\

the databasé on the basis of the. dlfferent values of: the
domains. The results‘of ou: query trials show\@hat,the ) h
statistics givenvoet are comparable to those produced by

random sample querles even though the}data flelds were . .
related to the attrlbute values, whereas in ;iSJ they were |
rendom values uniformly dlstrlbuted over a fixed interval.

Security against personal disclosure isoQuaranteea-

"j .
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.in our Syétem. It is iméossible to isolate a record and a
uSef/can at best guess the valug of aﬁ& individue; information
with no way of tell}ng when he is correct. Results‘of‘queiies
ipvelving few records cén be giﬁen at no risk, although they -
are‘proﬁe to belmore inaccurate than results from large query
sets. This is, in fact, desirableffrom the standpoipt:of
security since'these queriee afe the‘most fevealing of
individuel deta. ’ \

" Another advantage éf:paftétioning is that £here is no
additional cost in answering gueries once Ehe pérfitioning has
been,performedxand group averages calculated. The approPriate‘

. group average ievmerely sﬁbsﬁituted fof the actual valuelof'

"thé record when ahswering a dderf‘ ThlS contrasts greatly
with the random sampllng technlque used by Dennlng [15] whlch

‘calculates the sample upon answerlng a query for every query,

.~although it is a relatlvely fast procedure. H1erarch1ca1
partltlonlng prov1des a very fast method for splitting a
database in linear time proportional to ;he input size and
number of attriﬁutes; .

We h;Ve‘prdpoeed'e'meehod for using partiﬁiohs in a

' dynamic‘environment, another major crdticism dﬁ this technique.

'it‘cannot a}wa}s provide for instant integretion of new date;
especially when partitions fall below the\miniﬁﬁm nuﬁber'of o

Changes which can be introduced without

{‘ ) ‘ . . “® } B
affecting the partitions are done immediately.. Under such a
' system periodic repartitioﬁing ﬁay have to be'doﬁe}\but'this

should not be a major cost and could be performed as part of a

a
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This project is the first implementation of a ﬁarﬁi-
tioning scheme for use in statistical databases. We haye
éroven that partitioning is a viable method for segur;ng .
against statisticel inference, and caﬂ give meaningful

statistics to legitimate users.: We have 'designed a fast, .

~simple and effective algbrithm for generating the partitions"

by means - of hierarchical splitting. '

We have also implemented a modified version of Yu and

Chin's algorithm [33] which forms disjoint rectangular regions

which cover a two-dimensional matrix.’ This algorithm provides

for a hlgh percentage of the total number of partltLOns

.possible for a glven database. Unfortunately it is rather

costly, running in,time,proportional to the square of £he
lhpﬁt data size andehaviné a worst case time complexity of
O(ﬁ 5 . It is not. necesSary to have ¢hls complex an algorithm
for partltlonlng a database. The algorlthm may be useful in oo
the fields of picture segmentatlon and cluster analy51s,
however, We believe it is” a good region-growing,;echnique and
if made more efficéent'could be very useful';n that area.
6.3 Suggesﬁions‘forlfurther research

The partitioning method deserves much~more study. We

have shown that it can work in an artificial database with

randomly generatéd records. Further research should try to

" extend these results to real statistical databases, usuelly

containing many more attributes and having different relation-

»
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attributes4an&'data‘fields. ‘Very little

’
- .

ships among the
\ i et

‘research in thig area has been performed on actual databases

W1th the notable exception of Schlorer [30] The need for

\

such protectlon\ls real and 1ncrea51ng as more and more'

personal information is stored in computers.

\

Dynamic databases prov:i:ﬁispcial problems for

‘partitioned databsses aS‘it i e nature of partitions to

be statid. Changes in the system, partlcularly 1nsert1ng
and deletlng records, affect the pre—formed groups and may

requlre repartltlonlng Implementatlon of an effective

”dynamlc partltlonlng method lS a research challenge which

should be 1nVest1gated.

' . . i
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