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ABSTRACT

PATTERN RECOGNITION
BASED ON ENTROPY ANALYSIS
AND SHAPE TRANSFORMATIONS

Yuan Yan Tang, Ph. D.

Concordia University, 1990

Two new models, called multiple level information source (MLIS) and
entropy-reduced transformation (ERT), are proposed to analyze svstematieally the
changes in entropy which occur in the different phases of pattern recognition.
Also they provide a syvstematic way to design a pattern recognition system.

Image transformation is one of the most important entropy transformations.,
It has two completely different characteristics: entropy increased and reduced
characteristics. Both of these properties are frequently used in image processing
and pattern recognition.

In this thesis, several new theorems on image transformation are presented
and proved, and some new algorithms are also proposed. These algorithms can
perform the mapping and filling at the same time while preserving the connectivi-
ties of the original image. As a result, the transformations become more con-

sistent and accurate. The new algorithms can handle some problems which are




produced by other algorithms. A series of experiments are also conducted to ver-

ify the performance of the proposed algorithms.

Variance in size and orientation is one of the common intrinsic uncertainties
in pattern recognition. To solve this problem, this thesis proposes a new method
called Transformation-Ring-Projection (TRP). In this way, image transformation
technique is employed to reduce the entropy which is produced by the variance in
size and position. The Ring-Projection scheme is developed to cut down the
orientation uncertainty. This method requires only simple and regular operations.
Apart from being highly accurate, another merit of the proposed algorithm is that
it can be implemented by parallel techniques. In this thesis, many experimental
results obtained from a large data set including Chinese characters, Roman letters

and numerals fully support the algorithm developed for TRP.

Nonlinear shape distortions, such as perspective projection distortions, pro-
duce a considerable uncertainty in computer vision, robot vision and recognition
of motion. The correction of these distortions is a most difficult and challenging
topic. This thesis presents an approximation of some perspective projection dis-
tortions using the shape transformation theory under certain conditions. In this
way, bilinear, bi-quadratic and bi-cubic transformations are used to model the
nonlinear shape distortion problems. Some useful algorithms are presented. Also

inverse shape transformations are used in nonlinear restorations.
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CHAPTER 1

INTRODUCTION

1.1 ENTROPY AND PATTERN RECOGNITION

Entropy is a basic principle in pattern recognition as well as in the thermo-
dynamics and communication theory [Tou74, Watana69|. The concept of entropy
was originally used to formulate the Second Thermodynamical Principle by Clau-
sius in 1865 [Clausi87]. The definition of entropy was given purely in terms of

thermodynamical quantities. The idea is briefly described below:

The increment of entropy dHg is defined as

_AQ
dy = =

where A Q is the amount of heat energy given to the system at absolute tempera-

ture T.

Towards the end of the century, efforts were made by such physicists as
Boltzmann, Gibbs, and Maxwell to reinterpret the entropy from the standpoint of
the atomistic view of the physical world [Boltzm96, Gibbs02, Maxwel67]. As a

result, entropy is defined as the following:

H = log ( probability )

or
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=~ 3] p;logp; ,
where p; is probability. But, it is only used in thermodynamics.

Until 1932 this concept gained independence from thermodynamics owing to
Von Neumann’s effort to use so called microscopic entropy to demonstrate the
irreversibility of the process of the physical observation [Von32]. The first paper
which used this quantity as a measure of the structure of a system was written in
1939 by S. Watanabe to discuss the properties of nuclear matter [Watana39]. In
1948, C. E. Shannon successfully set up the modern communication theory by
using the concept of information entropy [Shanno48a, b], in which the entropy

function was considered as 2 measure of uncertainty.

However, this concept was not widely used in pattern recognition until the

last quarter of this century [Guiasu71, Landa62a, b, Watana64, 69a, b).

(1) The measure of interdependence in terms of the finite discrete entropy was
introduced and studied by S. Watanabe [Watana69]. According to this idea, a
strategy of classification was established. The basic principle is presented briefly

in the following paragraph.

Pattern recognition starts with an observation of selected, say n, variables
and ends with a single binary variable which decides whether or not a particular
sample belongs to a certain class. There exist many steps in which a set of pat-
terns is decomposed into several subsets to achieve the goal set above. Each such
step reduces the interdependence between the samples which belong to diflerent

classes. The measure of interdependence can be expressed as




O Ws's Wei, Wi, -, Wi )= 31 H( W' )— H( Ws')

fm]
where
(a) Ws' is a target set of patterns, W' ={ W, Wg!, -, Wi' L It

has been decomposed into some subsets, i.e. Wsl", WS:, I st :

(b) zr) H( Ws' ) is the sum of entropies of each subsets, and H( W;') is

t=]

the total entropy of target set of patterns.

(2) L. N. Landa proposed a strategy of recognition giving the "most rational”
algorithm of recognition and applying it to the problem of recognition of sen-
tences in Russian syntax [Landa62a]. A similar approach was independently given
by P. M. Lewis in the same year [Lewis62, Guiasu68, 71]. The main concept of
this entropic algorithm will be described below.

According to the entropic algorithm of recognition, it is necessary at every
moment to choose and to observe such a feature F¢ which carries the largest
amount of, from the features extracted. In other words, this process eliminates
the largest degree of uncertainty. The amount of uncertainty which is removed

by the observation of the feature F¢ will be given by the entropy

= — 3 Pe(i)log Pe(i)

gl

In the light of the entropic algorithm, we shall choose and observe the feature F,



such that

= H,
Hg, , e He

where N is the number of possible characteristics we choose.

(3) The minimum-entropy approach to feature selection given in [Tou74, 67,
Watana64, 67] is due to J. T. Tou, S. Watanabe and R. P. Heydorn. The
entropy concept was used as a suitable criterion in the selection of optimum
features. Features which reduce the uncertainty of a given situation are con-
sidered more informative than those which have the opposite eflect. If one views
entropy as a measure of uncertainty, a meaningful feature selection criterion is to
choose the feature which minimizes the entropy of the pattern classes under con-
sideration. Since this criterion is equivalent to minimizing the dispersion of the
various pattern populations, it is reisonable to expect that the resulting procedure
has clustering properties. In [Tou74], based on the assumption that the pattern
classes under consideration are normally distributed, a linear transformation
matrix T which operates on the pattern vectors to yield new vectors of lower

dimensionality was determined such that
F® =T, F"
where F" is an n-vector, F™ is an m-vector of lower dimensionality than F ",

When the assumption of normal distribution is not valid, the method of

orthogonal expansion such as Fourier, Karhunen-Loeve expansions offered an
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alternative approach to select the features. [Watana64, 67) made use of the
Karhunen-Loeve (IK-L) expansion in carrying out feature selection. The principal
advantage of this expansion is that it does not need to know the various probabil-
ity densities. In addition, the K-L expansion possesses a couple of optimal proper-

ties which can be used as meaningful criteria for feature extraction.

(4) The minimum entropy principle used as one of the general heuristics for
pattern recognition given in [Watana81] is due to S. Watanabe (1981). His
comprehensive textbook on pattern recognition published in 1985 was written
with the spirit of this heuristic principle [Watana85]. In 1088, S. Watanabe and
T. Kaminuma conducted a survey on different methods based on the heuristic
principle of entropy minimization, and introduced a brand new algorithm IMPRL
which decides the class-affiliation of a new input pattern when multi-class para-

digms are given in advance [Watana88§].

(5) In 1984, C. Y. Suen and Q. R. Wang first designed successfully a decision
tree based on entropic theory to recognize Chinese characters [Wangq84]. A new
clustering algorithm called ISOETRP has been developed. Several new objectives
have been introduced to make ISOETRP particularly suitable to hierarchicu! pat-

tern classification. These objectives are :
(a) Minimizing overlap between the various groups of pattern classes;

(b) Maximizing entropy reduction;



(¢) IKeeping balance between these groups.

The overall objective to be optimized is

Hp

Mo = Fop)

where Mg is the " Gain ", Hp presents entropy reduction, and F ( oy ) denotes a

function of the overlap.

This tree-like discriminator has been used in the recognition of Chinese char-
acters printed in different fonts by Y. Y. Tang, C. Y. Suen and Q. R. Wang in

1984 and 1986 [Tang84, Suen86].

(6) 1988, the first paper which proposed entropy-reduced transformation
model for pattern recognition was published by Y. Y. Tang et al [Tang88] and

subsequently in [Tang89a, Qu88] which are covered in this thesis.

This thesis presents a new theory of pattern recognition dealing with the
principle of entropy and information theory. In order to explain these ideas

clearly and conveniently, the elementary concept of entropy will be introduced.
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1.2 UNCERTAINTY AND ITS MEASUREMENT - ENTROPY

One of the most important contributions of Shannon’s theory is a quantita-
tive measure of the amount of information supplied by a probabilistic experiment
[Jeline68, Khinch57, MeMill62]. In this concept the amount of information is
inversely proportional to the amount of uncertainty, i.e. the information obtained
is equal to the removed uncertainty. [Shanno48a, b] made the first consistent
attempt towards the measurement of such difficult and yet abstract notions as

informatio, and uncertainty.

Definition 1.1

Let (00, B, P ) be a finite probability space. Where 1is a set, and some of
the subsets of {2 construct a Borel field ( o field ), denoted by 3. The ordered pair
(02, B ) is called the measure space. P is a set function defined on the Borel set
B such that 8 — [0,1] , i.e. the domain of P is Dp = § and codomain of P is

Gp = [0,1]. This finite probability space must hold the following conditions:
(1) P(0)=1;
(2) Yyep (0SSP (A)Z1);5

(8) ForVue ((AinA; =d)N(i#7)N(i7=12,---)) wehave

P(im)=iPu¢

fm]

The P is called probability measure defined on the § ; The elements A,
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Ay, '+ A, A of B are called events; The P(A;) is the proba-

g

bility of event A; [Stark86] .

Let wus consider a set of events A having n possible events
Ay,Ay, -+, A, with the respective probabilities p;, py, - , p,, satisfy-

ing the conditions

p; 20 ( t =1929---,n )v

We will denote also the probability of the event A ; by p (A ; ). The set of

events A can be represented in the following forms

, (4, 4, ... 4,
—Lpl P2 """ Pa
A, A, A,
= . A
2 (A1) p(4s)  p(4,) (1)

Of course, such representation contains an amount of uncertainty about the
particular event which will occur if we perform the experiment. We can see that
this amount of uncertainty essentially depends on the probabilities of the possivle

events of the experiment. For example, we consider two simple forms

Ay Ay Az Ay
D 1111
4 4 4 4

and




A, Ay Ag Ay

5 11 1
8

8 8 8

In the first case we can not predict which particular event will occur, while in the
second case we may say that event A, may possibly occur. Therefore, it is obvi-
ous that the first case contains more uncertainty than the second one. How to
measure the uncertainty? We will see that the entropy can se~ve as good measure

of the uncertainty of the form represented by Eq. (1.1).

Definition 1.2

Let us consider a finite probability distribution

p;, >0 (1=12,..,n ),
n

Y pi=1.

fm]

The corresponding entropy [Shanno48a, b] is the quantity

n
Hn = Hn (pI’ Poy """y Py )='—2 pi]ngi . (1'2)

f=1
The logarithms can be taken with respect to an arbitrary base greater than
unity. If we take 2 as the base we will write log,. Then the unit of uncertainty
will be " bit . If we take ¢ as the base, we will write log,, 2nd the unit of uncer-

tainty will be " nat . Similarly, log; and " tet " for the base 3, log;q and " det

for the base 10, etc. As the logarithm with base 2 is commonly used in informa-
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tion systems, in this thesis we take the base 2, and simplify log, by log.

The entropy has a number of properties which we might expect from a rea-
sonable measure of uncertainty in a probabilistic experiment. The quantity
H, (py, pey ", p, )is interpreted either as a measure of uncertainty or as a
measure of information. Both interpretations are justified [Shanno48a, b). In
fact, the difference between these two interpretations is whether we imagine our-
selves at the moment before carrying out an experiment whose n possible events
have the probabilities py, ps, *--,p, , in which case the entropy
H, (py,py '+, p, ) measures our uncertainty concerning the event of the
experiment. Or we imagine ourselves after the experiment has been carried out, in
this case the entropy H, ( p;, po, ** -, p, ) measures the amount of information

we got from the experiment.

It is necessary to discuss the properties which make entropy a measure of

uncertainty. The basic properties are listed in Section 1.3.
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1.3 BASIC PROPERTIES OF ENTROPY

Property 1 - Symmetry [Zhou83]

H, (p1, pos 3y " s P )=Hp (P2 P1sP3 * "1 Pn)
=H,,(p3,p2,p1, "'apn)
=Hn (pn’pn—ppu—m ,pl); (1.3)

This means that the change of the order of elements p; does not affect the

entropy.

Property 2 - Non-negative [Zhou83]

Hy (pypypa " "9Pp ) 205 (1.4)
Property 3 - Certainty [Zhou83|

Ifp;,=1 and p; =0 (1<:i<mn;i%#iy) then

Hn(plvPQv"',pn)=O; (1.5)

This is just the case where the event of the experiment can be predicted before-

hand with complete certainty, so that there is no uncertainty on the events.

Property 4 - Extension [Zhou83]

cl_i_’mOHn-H(pl’ Po - "pn’e):Hn (P1’p2, T Py ) (1'6)
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The extension of entropy illustrates that the number of possible events can be

increased, but the events with small probabilities could be omitted.

Property 5 - Additive [Zhou83]

H,n (91911 P1Po1y "' "y P1Pmbs
P2Pi12y PoP22y " s Po2Pm2s
PanPinsyPnPons ~ " " 2 PnPmn )

=Hn(P1,P2, "'spn)
n

+ 3 0 Hy i (PrisPois " 9P )
fe]

(1.72)

where

n

2 n; =1, p; >0
fm]
m
Vi X Py =1 Dj 20
J=1

Particularly, let ( X, Y ) be two dimensional random vector, and X and Y have

probabilities p; and g¢; respectively,

-.Tl To ... an
X =

| Py P2 Py )]

Y1, Y2 - - ymW
Y = :

| 91 92 Im |

And suppose that they are independent each other. We have

H(X,Y)=H(X)+H(Y) (1.7b)
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or
Hy, =H, (pyyPay """+ Pn )+ Hp (g15 920 """ 5 8 ) (1.7¢)
where
n
tm=]
m
V,‘ZQ.‘=1, Q|'_>_O

This property is very important, since it makes the information which we received

at different times can be added simply.

Property 6 - Limitation [Zhou83]

For any probability distribution

n
piZO (i=1129"')n)v Zpi=1

f=]
we have
1 1 1
Hn(php?’"'1pfx)SHn("?;'""sz‘)' (1.8)

Property 6 shows us that Shannon's entropy assumes its largest value for just the

uniform probability distribution.
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1.4 PRIMARY PRINCIPLE OF INFORMATION SYSTEM

There are a lot of common characteristics in both pattern recognition systems
and communication systems. In this thesis, new theories will be developed using
the mathematical theory of communication systems. In order to explain con-
veniently the essential and basic ideas in the following chapters, this section will

present the primary principles of communication systems.

A typical communication system consists of essentially five parts:

(1) An information source which produces a message or sequences of messages
to be communicated to the receiving terminal. Each message is a sequence of
letters or signals. Of course, the word " letter " must be understood in the

abstract form.

(2) A transmitter which operates on the message in some way to produce a sig-

nal suitable for transmission over the channel.

(3) The channel is merely the medium used to transmit the signal from the

transmitter to the receiver.

(4) The receiver ordinarily performs the inverse operation of that done by the

transmitter, it reconstructs the message from the sequence of signals.

(5) The destination is the person, or object, or entity, for whom the message is
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intended.

The information source selects a desired message out of a set of messages. In
the process of transmitting the signals, it is an unfortunate characteristic that cer-
tain things not intended by the information source are added to the signals, hav-
ing as consequences the appearance of the error in transmission. All these changes

of the signals may be called " noise "
A communication system is symbolically represented in Fig. 1.1 (a).

In comparison with a pattern recognition system shown in Fig. 1.1 (b), we
might find some similarities between these two systems as shown roughly in Fig.

1.1.

Now we pay our attention to information source. The information source
can be classified into two types : (1) discrete information source, and (2) continu-
ous one. Referring to the pattern recognition system, we discuss the discrete case
here. In probability theory of the transmission of information, the output of the
information source is regarded as a random process. The statistical structure of
this process constitutes the mathematical characterization of the respective infor-
mation source. In the disci: te case, the information source corresponds to a ran-
dom process with a discrete set which is either a function of the time or the space

or both of them. For example,

a) For speech signals, the information source is regarded as a function of

the time Ig (¢t );
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b) For two-dimensional images such as picture, character, ete. the infor-

mation source is considered as a function of the space Ig ( g, ¥ );
¢)  Similarly, I ( ¢, ¥0» 2o ) can be used for 3-dimensional image;

d) For moving 2-dimensional patterns, the information source is said a

function of both time and space I ( zg, ¥g, ¢ ) ;
e)  Similarly, For moving 3-dimensional objects, the information source is

Is (Zoy Yo 200 ¢ )

For more details about information theory and communication system, please

refer to references [Bell62, Dobrus72, Feinst54, McMill54].
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Information § . ’ . ’ .
Source Transmitter Receiver Destination

(a) Communication System

Target  ee . Featur
Data Set Digitization Preprocessing Extaction Classification

(b) Pattern Recognition System

Fig. 1.1 Communication System and Pattern Recognition System
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1.5 OBJECTIVES AND ORGANIZATION OF THE THESIS

As mentioned above, a lot of researchers have already investigated the use of
entropy in pattern recognition for more than 2 decades, and they have developed
many theories and methods to explain and solve problems in this area. But nei-
ther of them did analyze systematically the uncertainty which exists in each part

of the recognition system.

In recent years many new topics such as computer vision, robot vision, the
recognition of motion, etc. have evolved. They bring along more and more com-
plex and difficult pattern recognition problems. Also the pattern recognition sys-
tem itself becomes more and more complicated. In order to investigate efficiently
such difficult problems and such complicated systems, this thesis proposes a sys-
tematic way of analyzing the uncertainty in the different stages of a pattern recog-
nizer. It proposes a systematic scheme to design an appropriate pattern recogni-

tion system based on the proposed new models.

Since this thesis is concerned with vhe principle of entropy and information
theory, in order to explain clearly the proposed ideas, the elementary concepts

about entropy and information theories are introduced in Chapter 1.

Based on Shannon’s information theory, in Section 2, we first build a new
theoretical model called Multiple-level Information Source (MLIS) model to
analyze the internal structures of various information sources. Although the

number of levels in an MLIS formed by a pattern recognition system is problem-
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oriented, for a typical recognition system there are four levels in this information
source, i. e. IS1 to IS4, and they can be divided into two categories : entropy-
reduced and entropy-increased. Also a new theorem is presented and proved to
describe the necessary and sufficient conditions to determine the category of an
MLIS. Any practical pattern recognition system can be considered as an MLIS by
distinguishing the characteristics of different factors. Chapter 2 also analyzes the
various factors in the process of pattern recognition and presents the basic ideas
on the mapping of a pattern recognition system into an MLIS. In gereral, an
increase in the entropy in the different parts of a pattern recognition system can
be attributed to three factors : a) intrinsic distortion arising from the characteris-
tics of the target pattern set, b) distortions due to the transducer and digitization,
and c) information loss attributed to the feature extraction process. This chapter
shows that a theoretical analysis of a pattern recognition system can be modeled
by an MLIS, and in MLIS the entropy in the different parts can be addressed.
Consequently, the task of a pattern recognition system can be regarded as a

conversion of an entropy-increased MLIS into an entropy-reduced one.

To perform this conversion, a theoretical framework called Entropy-Reduced
Transformation (ERT) model is developed and described in Chapter 3. Two
important properties of the ERT i. e. the cascade and parallel properties are
presented and proved in Theorems 3.1 and 3.2. Based on these properties an algo-

rithm is proposed to build a practical pattern recognizer in a systematic manner.

Image transformation as one of the most important entropy transformations



-920-

has two completely different characteristics: entropy increased and reduced proper-
ties which have been used in many image processing and pattern recognition prob-
lems. In Chapter 4, both linear and nonlinear transformations are presented,
some new algorithms are developed. These algorithms can perform the mapping
and filling at the same time while preserving the connectivities of the original
image. In the proposed algorithms, complicated operations are not needed, result-
ing in not only a speed up in computation, but also a more meaningful and accu-

rate filling process.

Chapters 5 and 6 are devoted to the removal of uncertainty from the first

level and the second level of the multiple-level information source respectively.

One of the algorithms used to remove uncertainty from the first level of
MLIS, which is called Transformation-Ring-Projection (TRP), is developed in

Chapter 5 to handle the size-rotation problem.

Nonlinear shape distortions, such as some perspective projection distortions,
produce a considerable uncertainty in the second level of the information source in
the area of computer vision, robot vision and motion. Chapter 6 provides an
approximation to handle the perspective projection distortions using the shape
transiormation models. Several algorithms eliminating uncertainty from the
second level of MLIS are presented in Chapter 6 to restore the original shape

which has undergone these nonlinear distortions.

In order to illustrate the process of converting an entropy-increased MLIS

into an entropy-reduced one by the ERT, Chapter 7 presents two applications of
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designing the integrated discriminator, which includes many interesting practical
engineering algorithms. The experimental results obtained from a large set of
data and the restoration of distorted patterns support the theory developed for
MLIS and ERT and indicate that they provide an efficient way to solve many

difficult problems.

Conclusions of this thesis are given in the last Chapter. It indicates that,
similar to other information processing systems, entropy reduction plays a major
role in every step of a pattern recognition system. Based on this principle and the
use of MLIS and ERT models we may develop other new and efficient methods to

tackle more complicated problems.

Finally, it is worth mentioning that some materials from most of the
chapters of this thesis have appeared in our earlier works, and in the following

publications:

Chapter 2 and 3:

1. Tang, Y. Y. Y. Z. Qu and C. Y. Suen "Entropy-reduced transformation
approaches to pattern recognition of complex data set,” Proc. Int. Workshop
on Computer Vision (IAPR), pp. 347 - 350, Tokyo, Japan, Oct. 1988.

2. Qu Y.Z,Y.Y. Tang and C. Y. Suen, "Entropy-reduced transformation (I)
: Theoretical analysis and application in pattern recognition," Proc. IEEE

Int. Computer Science Conf., pp. 486 - 493, Hong KKong, Dec. 1988.
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Chapter 4:

1.

Li, Z. C., Y. Y. Tang, T. D. Bui and C. Y. Suen, "Shape transformation
models and their applications in patterns recognition," in press, Int. Journal

of Pattern Recognition and Artificial Intelligence.

Li, Z. C,, T. D. Bui, Y. Y. Tang and C. Y. Suen, Computer Transformation
of Digital Images and Patterns, World Scientific Publishing Co. Pte, Ltd.,
Singapore, 1989.

Li, Z. C., T. D. Bui, C. Y. Suen and Y. Y. Tang, "Nonlinear transformations

of digitized pattern,” Proc. 9th Int, Conf. on Pattern Recognition, pp. 134 -
136, Rome, Italy, Nov. 1988.

Cheng, H. D., Y. Y. Tang, and C. Y. Suen, "VLSI Architecture for image
transformation,” Proc. IEEE 1989 COMPEURO Con/., VLSI and Computer

Peripherals, pp. 2-124 - 2-126, Hamburg, May 1989.

Cheng, H. D., Y. Y. Tang, and C. Y. Suen, "Parallel image transformation

and its VLSI implementation,” in press, Pattern Recognition.

Chapter 5:

Tang, Y. Y., H. D. Cheng and C. Y. Suen, "Size-rotation-invariant character
recognition” Proc. Int. Conf, on Computer Processing of Chinese and.

Oriental Languages, pp. 161 - 165, Toronto, Canada, Aug. 1988.

Wang, K., Y. Y. Tang and C. Y. Suen, "Multi-layer projections for the

classification of similar Chinese characters," Proc. 9th Int, Conf. on Pattern
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Recognition, pp. 842 - 844, Rome, Italy, Nov. 1088.

Chaptcr 6:

1. 'Tang, Y. Y., Z. C. Li, C. Y. Suen and T. D. Bui, "Conversion of Chinese
characters by transformation models,” Proc. Int. Conf. on Computer pro-
cessing of Chinese and Oriental Languages, pp. 293 - 297, Toronto, Canada,

Aug. 1, 1988.

Chapter 7:
1. Tang, Y.Y. and C. Y. Suen, "Nonlinear shape restoration by transformation
models," in press, Proc. 10th Int, Conf. on Pattern Recognition, Atlantic

City, New Jersey, June 1990.

2. Tang, Y.Y. C.Y. Suen and Q. R. Wang, "Chinese character classification
by globally trained tree classifier and Fourier descriptors of condensed pat-
terns," Proceedings The IEEE 1-st Int. Conf. on Computers and Applica-

tions, pp. 215-220, Beijing, China, June 1984.

3. Q. R. Wang, C. Y. Suen and Y. Y. Tang, "Application of a statistical
equivalent block classifier in the recognition of Chinese characters printed in
different fonts," Proceedings Ini. Conf. Chinese Computing, pp. H2.1-H2.13,

San Francisco, U. S. A., Feb. 1985,



CHAPTER 2

MULTIPLE - LEVEL
INFORMATION SOURCE MODEL

2.1 INTRODUCTION

In recent years many new topics such as computer vision, robot vision, the
recognition of motion, etc. have evolved. They bring along more and more com-
plex and difficult pattern recognition problems. Also the pattern recognition sys-
tem itself becomes more and more complicated. In order to investigate efficiently
such difficult problems and such complicated S);stems, it is necessary to analyze
systematically the changes in entropy which occur in the different stages of a pat-
tern recognizer. In ‘his way, the different factors which affect the uncertainty in
different phases in the process of pattern recognition can be found. Furthermore.
corresponding methods might be found to handle the different problems and

redu~e the entropy in the different stages of a recognition system.

In order to study the effects of different factors in the process of pattern
recognition, we build a new theoretical model called Multiple-level Informatior;
Source Model (MLIS) [Tang89a] to analyze the internal structures of various infor-
mation sources based on Shannon’s information theory [Guiasu77, Jones?9.

R..>be63. Shanno48a, b]. To explain these developments clearly and conveniently,
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Section 2.2 gives primary concept of ordinary information source first.

Section 2.3 presents the definition of the MLIS. For a typical recognition sys-
tem, there are four levels, IS1 to IS4, in this information source, and they can be
divided into two categories : entropy-reduced and entropy-increased. Section 2.4
describes the necessary and sufficient conditions to determine the category of an
MLIS. Any practical pattern recognition system can be considered as an MLIS by

distinguishing the characteristics of different factors.

Section 2.5 analyzes the various factors in the process of pattern recognition
and presents the basic ideas on the mapping of a pattern recognition system into
an MLIS. In general, an increase in the entropy in the different parts of a pattern
recognition system can be attributed to three factors : a) intrinsic distortion aris-
ing from the characteristics of the target pattern set, b) distortions due to the
transducer and digitization, and c¢) information loss which is dependent on the
feature extraction method. Through theoretical analysis, a pattern recognition
system can be modeled by an MLIS, so that the entropy in the different parts can
be addressed. Consequently, a theoretical analysis of the entropy distribution in
the MLIS indicates that in order to improve the performance of a pattern recogni-
tion system, the entropy of the MLIS must be reduced in all the different levels.

Specifically, IS1, IS2 and IS4 must be converted.



2.2 PRIMARY CONCEPT OF INFORMATION SOURCE

In Shannon’s information theory [Shanno48a, b], an information source (IS )
is described by a probability space { W, By, P }, where W is the set of letters or
signals coming out of the IS; By, is the o - algebra generated by all the well-
defined subset of W ; and P is a probability measure defined on £y [Davenp70,
Eisen69, Parzen60, Stark86]. In general, the output of an IS is regarded as a ran-
dom process, which may be either a function of time, or space, or both. Therefore
IS’s can be categorized as either discrete or continuous by their time or space
characteristics. In the case of discrete IS, from [Zhou83] we know that the output
is a random sequence, that is

Wy Woy Wy W,
where n€ I .

If w; is a discrete variable, and let
w,€A ={ay,ay - ,aq } i =12,.,n
then the IS can be represented by the random vector
W=(w,wy, " ,w, JEA" .

Its probability distribution is

P(wlvw’zv"'fwn)
= P{wl=aal’w2=aai’""'wn=aan}
= P{W=al},

where ¢ = { Ay Qgoy 7 7 gy }’
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or denoted by

P(‘T)=P(aal’aa2v"'vaan)

=TL41,82...,6n

If w; ’s are uncorrelated, then

P(&)=TIP (v = wy)

fm]
n
= []Py
fm]

Obviously, the following condition is true

Y P(w)=P(W)=P(A")=1
aleA'...,a”EA

where the multiple sum is taken over the elements belonging to A .

To describe the information uncertainty of an IS, an entropy function is

defined as

H=- Y P (w )log P (w;).
0,€A, - - - ,0,EA

In order to analyze the internal structure of IS’s, in this work, we will adopt the

following definition wherever we mention an IS.

Definition 2.1

An information source ( IS ) is defined by an entropy space

ﬂ=(‘V’PWaHW)

where
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W={w |w€A={apa5  ,a}t i=12" " ,n, nell

Py is the apriori probability defined on W such that

(i) Pw(‘w,-)—_-p,-;

(i) 3 p; =1.

fel

‘ Hyy is the uncertainty measure of f1

Hw=}I(P1,P2,"',Pn)

n
=— 3} p; logp;.
tem]

In the real world, it is often true that an IS can be considered as a combina-

tion of several subcomponents each with distinct characteristics, that is given an

), then

we call {}; 's sub-entropy space or sub-IS’s. See [Guiasu77, Jones79, RaisheG3,

Young71] for details about ordinary information source.
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2.3 MULTIPLE-LEVEL IS (MLIS)

Of most interest is to find the relationship among §}; 's. In this work we
focus on one special case : all {); 's form a chain, ( i.e. the output of the }; is the
input of ), , and so on ). We call this kind of IS’s multiple-level i»formation

sources ( MLIS ) which is formally defined as follows.

Definition 2.2
Given an IS Q=(W,Py,Hy) . If there is no such IS, as
Q =(wW', Py, Hy' ), such that
Vij(w—w,w €W ,w W),

where w; — w; denotes a mapping of W " onto W , then Q0 is called a single

level IS, otherwise {1 is called a multiple-level IS.

Definition 2.3
Given two IS’s Q) =( WY, Pys, Hy:r ) , and Q= ( W2 Pyo, Hyo) . If
the following condition holds,
Vij(w—wj,w, €Wl w ew?),

where w; — w; denotes a mapping of W1 onto W2 | then {}, is called the
superlevel IS of £);. If {1, is a single-level IS, ), is called a 2-level IS. If (), is a

k-level IS, () is called 2 ( K + 1) - level IS as shown in Fig. 2.1.
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2.4 ENTROPY-INCREASED AND REDUCED IS’S

Considering the entropy function, the relationship between two IS’s of two
adjacent levels can be divided into two categories : entropy-reduced and entropy-

increased.

Definition 2.4

Given two IS's Yoy =(WFE L Py, Hyinr ) and
O =(W*, Py, Hyr ) . If Hyr > Hyia , we call 2, an entropy-increased
IS; if Hy: < Hy -, we call { an entropy-reduced IS ( Fig. 2.2 ).

The following theorem describes the necessary and sufficient conditions to

judge if an MLIS is entropy-reduced or entropy-increased. This theoretical model

will be used to describe the pattern recognition system in the next section.

Theorem 2.1
Given ﬂk__l = ( ”,k-l, Pwvt—l, H”/l—l ) ’ ﬂk =( Wk, P“/k, .H“;t ) ’

| Wit l=m,y ,|W* |=m, ,

(i) £ is an entropy-reduced IS,

iff there is a mapping
J: Wkt

such that

Vi 3icia m, (= wf € WET g k)



and

where w,-J‘ represents the i-th element of W *~! whose image is w; €W k
and it is also the l-th element in the j-th group in which all the elements
have the same image w; . P(. | . ) represents a conditional probability,

m ; denotes the number of elements in the j-th group.

(ii) (1 is an entropy-increased IS,

iff there is a mapping

I W1t
such that

ViJicig m (w =0 w, € W, w' € W*H)
and

m,

V”.m' ( P(w;' | w, ) >0, Y I’(w;‘ I w, )=1),

(=1
t=1,2 -, m,;_,.
mg,-,
Wl
mg,=nm;,;,
=]

where vy, € W k=1 has a group of m , images in W, v,' represents the |-

th image of w, in the i-th image group and it is aleo the jth element of W4
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Proof

(i)

(a) f=>

The given conditions mean that each w; € W ¥ is the image of a group of

w; €W k=1 i represents the i-th element of W ¥=1 w; 's in the same group

are denoted as w,-‘" , | represents the [ -th element in the 5 -th group. There-

fore we have

P(w}') =Py (w")

=Py (w; )

Since it is known that P( w; | w” )=1 ( which means that each w;

belongs to only one group and has only one image ).

Whereby

PW‘(wj)==P(wj)

This means that

Py (w; ) > Py ( w,-j’ ) for all {



-34 -

so that
— log Py (w; ) < —log Py e~ ( w,-j‘ ) forall l .
Let
Py (w, ) = max Py i ( w,ff‘ ) foralll
whereby
—log Pypins (w; ) < —log Py (wl')  foralll
then
£ i di
_2 Pwl—l( Wy )log P“/k-l ( Wy )
l=1
m, J.I ;
2 =3, Py (w0 )log Pyea(w; )
I=]
and

m .
—}:i Py ( w,?” ) log Py e ( w,-' )
1=1

= “[,2 Py ( w.'J' )]10& Py ( w." )
-1

From Eq. (2.1) we have

m, . ,
- [ Z Py ( wiJ’ ) ] leg Pyi-r (w )
=1

= —Pwk(w] )longc-x(w,-' )
> —Pwt (wj)log Pwt ( ’UJJ ) (2.2)

Since m  is the number of elements in W ¥ | then from Egs.(2.1) and (2.2)

we have

m; m,
> =25 Pyl w:" ) log Pyyi-a ( “‘,J' )

tw] [}
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m;
> - prk(wJ)lOg.Pwt(wj)
=1

That is
HW -1 > HW t
so that §); is an entropy-reduced IS.

Only if <=
( Proof by using Contradiction Method )
From definition 2.4, we know that if £2; is an entropy-reduced IS, then we

have
Hwb—l > Hu/t . (2.3)

Now we change the given condition to

J Ji e
Vjal-l,’z,..m,(wi‘_’wjvwl'l ew l’wje wk)

and

5w =m s,
J=1
Viym;2> 2

That is some w; may have more than one image in W* . For example, there

are {l; , {},_, as shown in the following and Fig. 2.3.



.Pwkl(w

P wk-1(w

Ju)_

121)_

3

Fig. 2.3 An Example for the Theorem 2.]
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k=1 _
wET =4 wy, wy, wyy

Wt ~{w;, w, t

-72

Py (1w, ) =Pw*-l(wx, )=Pwea(w, ' )= 5

7 J
Pwk—l( 'w’.2 ) =Pu,t_) ( w"22 )=Pwt-l ( wi:2 )=

J J
Py ( wi,) =Py e ( wi;s ) =Py ( w; )=

7 Je
P ( wjl | wil’ ) = P ( wjg I w!'ll
J J
P(uw, |w,?) =P (uw,]|w,
i, i
P ( wy, I wla ) P ( w l w":a

)= = o=

’

1
3
1
32’
30
32

is

-

-

-

3 j‘l j‘l
Pyi (w; ) = Z Pyea(w, ' )P ( w;, | w; ')

= 1xi g4 —x—— + —><—

32 2 2

3 J
Py wj,) = E Py i ( ws‘,2' )P ( wy, | wy,

=1xly —><— + —x—

32 2

Hwb'—‘-—(P“tt( Jl)]()bpwk(
1, 1
= — ( Elog—2— + ?log-é—)

= 1.000 bit .

1_1
2 2

Ja,

1 _ 1
L

) +Pwk(ﬂ)j2)1Ongk(wj2))
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3
Hyi=— 3] Py (w; ) log Pye (wy )
i=1

1 1 1 1
——(glog§5+-§l —+—-—] 30

= 0.340 bit .

That is
le > H‘Vk—l .

This contradicts to Eq.(2.3). Therefore we have to keep the given conditions. The

proof of part (i) is completed.

Pw*(wj)=Pw*(w;")
=P(w-nw':’)
=P ( '|w)1’( )

=P ( wj' | w ) Py (w, )
whereby

m, i i
_IXPW‘ ( w;' ) log Py ( w, )
-]

- —I'"z'l(P(w,f' | w; ) Pryims (1) (log (P (' | w; ) Pyacs () ) )

=—‘EP Iw,)Pwn(w)(]ogP |w)+longn( )
-

m, .
= —Ppe(w )3 P (w;’ | w, ) logP ( w;’ | w, )
Lo

— (5P (uf Ly )) (P (o, YogPyaa () )
|-




-39-

Since

m, , .
—Pwt-x(w,-)EP(w;’lw,-)logP(w;-‘|w,~)>0,
l=1

and

m, .
>, P (w;-’ | w; )=1 ( * given condition *).
lm]

Therefore we have

m, . .
— Y Py w}' ) logPyy+ ( “’;' ) > =Py (w; ) logPyyia (1w )

I=]
whereby
m ;) m, "l il
> (= XPw:(wy ) logPy: (w'))
fm] {=1
m g
> = Y Py (wy ) logPya (w; ),
f=]

or
m
— Y (Py: (w; ) logPy: (w; ))
J=1
m gy
> - 2 P‘Vk—l( w,- )lOng:—l( w,- )
)|
That is
‘HV/‘ > Hwk-l
so that

(), is an entropy-increased IS .
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(b) Onlyif <=
( Proof by using Contradiction Method )

Since {1, is an entropy-increased IS, we have

HW k > H‘V k=1 .
This means that

Vi (Pw:(w;)> 0)

and

S Py (w)=1. (2.4)
J=1

Now we change the given condition to

3,0 (P (wf |w)=0, ;V_J;(P(wf’ lu)< 0),

1 =1,2, - ,mp_y,
m -1
S mi=my,
f=]

This implies

5

F(Pys (w; )=P(w] |w ) Pyia(w)=0),

therefore

m;
EIP“/R('U.’J')< 1.
]—

This contradicts to Eq.(2.4). Thereby we have proved the only-if part. The

proof of (ii) is completed.
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2.5 UNCERTAINTY IN PATTERN RECOGNITION

2.5.1 MLIS in Pattern Recognition System

A pattern recognition system is illustrated in Fig. 2.4. The initial input is a
target pattern set composed of physical variables. A data acquisition subsystem
captures the analog data from the physical world by a transducer, and converts
them to digital information called measured data. The measured data are then
input into the data preprocessing and feature extraction subsystems and grouped
into a set of characteristic features called feature vectors as output. The last sub-
system is a classifier which puts the unknown input pattern into the identified
class based on its feature vector. Essentially, the process of pattern recognition is
one which removes uncertainty hidden in the input pattern. Normally, informa-
tion theory treats uncertainty as if it comes from only a single information source.
However a pattern recognition problem is better treated as one with a multiple

information source. This can be seen from Fig. 2.4:

(1) Of course the target pattern set is the primary information source already

denoted by IS1.

(2) The data acquisition subsystem combined with IS1 is considered as the

second level of information source and is denoted by IS2.

(3) The third level of information source consists of IS2 and the data preprocess-
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ing subsystem and is denoted by IS3.

(4) Furthermore, IS3 is combined with the feature extraction subsystems to con-

struct the fourth level of information source denoted by 1S4.

Distinguishing the information sources will help to analyze the factors result-
ing in the addition of uncertainty or entropy, and find solutions to reduce the

uncertainty.
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2.5.2 Uncertainty in MLIS for Pattern Recognition

IS1

Obviously the uncertainty comes primarily from the IS1, i.e. it is determined
by the intrinsic characteristics of the target pattern set, such as the categories and
numbers of patterns; sizes, fonts and directions of characters; and other types of
intrinsic noise shown in Fig. 2.5(a) - Fig. 2.5(d).

Fig. 2.5(a) illustrates several examples of the uncertainty in IS1 - categories
of pattern including (i) characters, (ii) medical patterns, (iii) concept cars, (iv)
fingerprints, and (v) parts. Figs. 2.5(b}(d) give some examples of the uncertainty

in IS1 including different fonts, rotations and sizes of characters respectively.

For example, the entropy of a set of only 52 standard English letters without
any size, font, and rotation variations is certainly much smaller than that of a set

which allows every letter to have ten sizes, five fonts and any degree of rotations.

1S2:

In IS2, the uncertainty is introduced by transducer and digitization distor-
tions. Compared with digitization distortion, which may confuse pattern samples
due to scanning noises, transducer distortion may create severe problems.  An
obvious example is the photograph taken by a camera at an oblique angle. In the
camera scanning system shown in Fig. 2.6, if the angle a between the plane which
contains the object to be scanned and the direction of the eamera is 90", a stan-

dard digitized image as <hown in Fig, 2.6(a) is produced. Obviously a standard

Y - 4
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image is easily identifiable by the recognition system. However, this ideal condi-
tion is not guaranteed. Consequently, nonlinear distortion arises [Tang88a). In
other practical examples, the documents with nonlinear shape distortion produced

by a camera scanning system are illustrated in Fig. 2.7.

Suppose the original target pattern set consists of both English letters and
Chinese characters and every sample has only one font, two size and one direction.
This means that our IS1 has a finite entropy. However, because of the transducer
problem, every standard sample can produce an infinite number of distorted

copies. Correspondingly, the entropy of I$2 becomes infinite.

IS3 :

In the IS3, some preprocessing techniques such as filling, thinning etc. have
been employed to remove noise from the measured data. The entropy in this level

is reduced.

IS4 :

As for IS4, although it is well known that a feature extraction subsystem
[Tou74] generally reduces the dimensions of the measured data, and hence the
entropy, yet on the other hand, the entropy may also increase for several reasons :
(1) sometimes it is difficult for the selected dimensions to contain the main
features which can distinguish the pattern samples; (2) because one orthogonal
transformation technique may not be able to take care of multiple categories of

intrinsic characteristics. The net result is that it may lose useful information

[
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leading to confusions of some patterns. In other words, losing useful information
is equivalent to changing the intrinsic characteristics of the target pattern set so

that it will add to the entropy from another aspect.

The factors which increase the uncertainty are summarized as the follows:

(1) IS1 : Intrinsic characteristics of the target pattern set.
(2) IS2 : Distortions due to the transducer and digitization.

(3) 1S4 : Information loss due to unsuitable feature extraction methods.
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Fig. 2.5 Examples of Uncertainty in IS1  (a) Categories of Patterns
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Roman 36 point font
Italic 36 point font
Bold 36 point font

TR R A KX T W

T R A A K i E §
TARE AEE b

Fig. 2.5 Examples of Uncertainty in IS1 (b) Fonts of Characters
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Fig. 2.5 Examples of Uncertainty in IS1 (c) Rotations of Pattern
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(a)

/ a #40

I

Fig. 2.6 An Example of Uncertainty in IS2
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Fig. 2.7 An Example of the Document with Distortion
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2.5.3 Examples of Uncertainty in MLIS

Clarifying the analysis of different factors of increasing entropy will help to
handle them separately. Furthermore, we find that all these factors can be
divided into two categories of variations: linear and nonlinear. For instance, in
character recognition, we assume the standard pattern sample set only has one
siz¢, one orientation and one font, and does not have any geometric shape distor-
tion. Then we can say that size, and rotation variations are linear, and some
kinds of geometric shape distortions are nonlinear [Li89c]. Now it is natural that
we can use various kinds of transformation theory to model these factors

mathematically.

Two examples are presented below:

Example 2.1 :

Size variation can be treated as a linear transformation of the standard size.
This is shown in the following formula [tang88bj:

x;1 [p;d o] [2
Y;|T {0 Dj/d| |y (2:5)

where ( z,y ) are the coordinates of a point of a pattern sample with the standard

size, ( X;,Y; ) are the coordinates of a point of a distorted pattern sample with

size j, d is the standard size, D; stands for size j.

This example indicates that size variation increases the uncertainty of pattern

set.
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Example 2.2 :

Under certain conditions, the perspective projection distortion produced by
scanning the data at an oblique angle, can be approximated by a simple shape

model, bilinear transformation model which is described by the following formula

-XA X, .

X [l—:c z] 0 :XB XCJ 1—y )

}r = 0 [l —r 1'] YA }’D y ("‘-6)
RERRLY

where ( X, Y ) are the coordinates of a point of a distorted pattern sample. (x,y
) are the coordinates of a point of the standard pattern sample. The eight param-
etersof X, ,Xp ,Xo,Xp,Y,y , Yg, Yo and Yp are used to determine four

convex vertices of the distorted shape.

Therefore the inverse transformations (if they exist) naturally become the
candidates of the tools to reduce the entropy which occurs at different parts of the
recognition system. Based on the above analysis, several transformation tech-
niques including shape transformation theory (linear and nonlinear) [Foley82.
Li89¢c, Tang88a, b] have been developed and many of them aimed at reducing
entropy. In [Tang88c, Qu88] we have set up a consistent theory framework
named as Entropy-reduced Transformation (ERT) which will be introduced in the

next chapter.



CHAPTER 3

ENTROPY-REDUCED
TRANSFORMATION MODEL

3.1 INTRODUCTION

As mentioned above, the task of a pattern recognition system can be
regarded as a conversion of an entropy-increased MLIS into an entropy-reduced
one. To perform this conversion, a theoretical framework called Entropy-Reduced
Transformation (ERT) model [Tang88c, 89a, Qu88] has been developed and

described in Section 3.2.

In Section 3.3, Two important properties of the ERT i. e. the cascade and
parallel properties have been presented and proved in Theorems 3.1 and 3.2.
Based on these properties an algorithm has been proposed in Section 3.4 to build

a practical pattern recognizer in a systematic manner.
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3.2 ENTROPY-REDUCED TRANSFORMATION (ERT)

First let us define the notations to be used. For a given data set
W={w, |i{=12,.n}, wecan define an entropy space 1= (W, Py Hy),
where P}y is the apriori probability defined on W such that

() Pw (w)=p
() 0< p; < 1, (3.1)
(i) 3 pi=1.

=1
H,, is the uncertainty measure defined on W according to Shannon’s entropy

theory [Guiasu77, Shanno48a, b, Jones79, Young71]

n
Hy =H (pypy - Pp ) =—3, p;logp;. (8.2)

{1

Generally a target pattern set can be represented as

U= G we (3.3)

i=]
In its entropy space, Py is determined by the relationships among the subsets

W* s (i = 1,2,..,m), and the uncertainty of U will have an upperbound

The concept of entropy-reduced transformation is defined as follows.

Definition 3.1 :

Let 2, =(W*, Py', Hy'), Q; =(WJ, Pyl Hy?), i #35 |W'] and
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| W7 | stand for the number of elements (i.e. pattern samples) contained in W'
and W/ respectively. Assume that Iwi] < |W7|. If afunction F i can be
defined such that

(7)) |Fa(wi)|=|w"],

(51) Hp (w.)=Hy', (34)
then Fj; is called an entropy-reduced transformation (ERT). We say that ﬂj is

normalized to {}; by Fj;. W " is called the reference set.

Example 3.1 :

Given a Q) = (W1, P!, Hy!'), such that
Wl={zl |i=12%;=12..8}
Pyiz))=1/(@2X8)=1/2" i{=127=12,..8,

16
Hy'==3% (1/2%log (1 / 2%) = 4 bits.
k=1

where the superscript 1 represents the size of the pattern samples and the sub-
script j represents the class the pattern samples belong among. That is z} is
similar to r{ except in size. Denote size 1 as d, and size 2 as d,. Now we select
all the elements in W ! with size 1 as the reference set W ©. That is

Wo={z} |j=12..8}

Pyozl)=1/6=1/2% j=12..8,

Hy° = —f}(l / 2%) log (1 / 2%) = 3 bits.
j=1

Let d be the size of an element in W !. F,,is defined as
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dlc if dk = dl;
Frolde)=1 ¢, x (¢, / do) it dy = dy.

This means that F,, groups two elements in W! into one cluster which

corresponds to one element in W©, whereby
| Fyg(Wh) | = wo |

On the other hand,
ProwfFio/ (V1) =2X — = =,
Hp (wy = Hy,

Therefore F 4 is an ERT.

Obviously the essential characteristics of ERT are:

(a) dimension reduction and

(b) the invariance of the entropy of the reference set.

This presents a consistent criterion to judge if a transformation technique is
an ERT or not. For example if an orthogonal transform F can reduce the dimen-
sions of W7 to that of W but cannot reduce Hy,, to Hy. then F is not an
ERT. This is why we cannot simply equate dimension reduction to entropy
reduction. It is worth while to note that the reference set is a relative concept.
Between any two or among more data sets generally we select one with minimum

elements as the reference set. Sometimes the reference set is a union of several
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sets its elements are still minimum when comparing with other sets.

According to the definition of ERT we can get a significant conclusion which

can be treated as a lemma as follows.

Lemma 3.1
Given Q,- =(1’Vi, Pwi,HWi), QJ =(WJ.9PWJ', HWj), ! #.7 and

lwil< | wi]. §); is normalized to §);, iff there is an Fj; such that

2 P = D, t =12,., I‘V‘ l’ (35)
we Fi(W?)

where Fi (W 7) stands for the t-th cluster of Fj,-(Wj) y D€ Py,yand p,€ Py ..

The proof of the lemma is straight forward so that it is omitted here.
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3.3 BASIC PROPERTIES OF ERT

Two important properties of the entropy-reduced transformation are given

by the following theorems:

Theorem 3.1:
Given Q‘- =(‘V", Pwi, Hwi), ﬂk =(Wk,Pwk, Hwk), and
;, =(w 7, Pw?, Hy') . If F; normalizes ; to 4, and Fi; normalizes £} to
(1;, then we have
Fii(W Ty = Fi(Fa (W ). (3.6)
Proof:
Since F; normalizes {1, into {1;, we have
| Fy(w¥) | = w7 | (3.7)

that is W ¥ is divided into |W 7| clusters by Fy; . Denote the r-th cluster of

Fi;(Wk) as FL(W k),

According to the Lemma above we have

p=p, r=12..,|W7] (3.8)
w€ Fi(W?*)

This means that F (j is a oneto-one mapping between sets
{F,{j(W") [r =1,2,..,|W7 |} and {w, [r =1,2,...,|W7 |}. Therefore we call

FL(W ") and w, as probability-equivalent images, and define them as

FL(Wk)«—p —uw, (3.9)
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They can substitute each other in the sense of probability equivalence.

Similarly, we have

2 P =nm, 4 =1,2,,,.,|Wk |v
W€ Ff](“")
and

Fitk(wi)‘_p — Wy,

where F} (W ') is the t-th cluster of Fy(W *), w, EW £,

On the other hand, we know that

FL(W*) ={u t,
Fi(W') ={u

where r =12,..., |[W7 |, t =1.2,..,|WF ], I=1,2,.,|W7]

Therefore, we have

w—p = FLWH) kw, —p — fu }
kw, «—p — {FL(W)}
L, —p — Hu b}

kw, «—p — FL(Fi(W))
whereby
| FE(F(VI)) | = 1 Wi
Because of (3.8) and (3.10) we can have
Hy' = Hp, (yy

twr|
=— > plogp,

re=]

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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IW’IIW‘I Wt
= — Z 2 Pt) log( 2 Pe)
re=] fam]
fwi jwr| W] [wh|
=— Y (X (X »))losg ( Z( sz))

r=l tem] [=]

= Hp, (ryw+)) (3.15)
Based on the definition of Fy;(W ¥), we know that
Fi(W ¥ ) =Fif Fa(W 1)) (3.16)

That is the theorem has been proved.

Example 3.2 :

An example which illustrates Theorem 3.1 is shown in Fig. 3.1. To normalize
2; to {l;, we use Fy first normalizing W ¥ to a smaller set W ¥, which will be

then normalized to a much more smallerset W/ by Fyj.

Theorem 3.2:

m . s .
Given Iy = . Q =(W', Py'\Hy') and the reference

fml

Q; =(W 7, Pyl ,Hy') are known , and | W/ | < min(| W*|), wherei =1,
2, ..., m. If for all £); we can find an entropy-reduced transformation which nor-

malizes {2; to {}; , then we can find an entropy-reduced transformation F which

normalizes {1y to £2; .
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Broof:
According to the Lemma above we know that for the £2,,1 = 1, 2, ..., m, we

have

Pk = Z Pi = pjk, k= 1,2,.., II/V J Ia (3'17)
wy € Flkl(wl)

where p;;. stands for the apriori probability of an element of W ¥ falling into the
k-th cluster of Fy; (W '), py; is the apriori probability of the !—th element of W,

pjr stands for the apriori probability of the k-th clement of W 7,

Then every element of U is examined from the global point of view. Because
after normalization U can be counsidered as a set of |W /| elements and the
apriori probability of the t-th element is determined by the following equation

m
Py = E Dy Py, (3'18)

f=]

. m
where p; stands for the probability of an element falling into W*, S p; =1, p,

1]
stands for the apriori probability of an element falling into the t-th cluster of

Fi; (W), which is determined by equation (3.17).

Therefore we can have

1w

Hy =— 3 plogp,
t=1
|W/ | m m
== 3, (X pie piylos( X pa py)
tm] fe} f==]
IW?| m m

== 3 (X pje pijog( vy piy

fm] fm=] f=]
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W2 | m m

=— 3 (3 piypjilog( X piypje
t=1 iml i=1
Ay

= pjtlogp;i
tm]

= HH/J. (3.19)

Obviously we can define F as a multiple branch complex function such that
F={F; |i=12,..,mt (3.20)

That is the theorem has been proved.

Example 3.3 :

An example which illustrates the principle of Theorem 3.2 is shown in Fig.
3.2. To normalize set { W1, W2 W3 1W1}tc asmaller set WP we use different

transformations F'1q Foo Fgg Fyo for the different subset 1 w2 wsd wi

We can call Theorem 3.1 the cascade principle and Theorem 3.2 the parallel
principle. They bring to light two basic ways to reduce the uncertainty of a com-
plex target pattern set. Obviously, if both of them are used together, more com-
plicated problems can be solved. Although these theorems impose some crucial
principle to design an efficient discriminator to recognize a complex target pattern
set, here we would lik: to stress another important consequence implied by these

theorems as follows.
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Theorem 3.3:

m .
Let U = Uw' . D is a well-designed discriminator for
=1

Q; =(WJ, Pyt, Hyt), where WIC Uand | Wi | =min(]| W']),i,j=1,
2, .., m. If 1y can be normalized to Qj by entropy-reduced transformation
according to either Theorem 3.1 or Theorem 3.2 or both of them, then {2 can be

discriminated by D.
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3.4 ALGORITHM FOR CONSTRUCTING A PATTERN RECOG-

NITION SYSTEM

According to the theorems listed above, a pattern recognition system in prac-
tice, can be constructed by two kinds of basic operations : cascade-union denoted
by V. and parallel-union denoted by Vp. The functions of them are shown in Fig.
3.3.

Two ERT’s can form a cascade component by using cascade-union if they
obey Theorem 3.1. Two or more ERT’s can form a parallel component by using
parallel-union if they obey Theorem 3.2. It is useful to stress that every parallel
component has a part called "switch" which is an algorithm determined by the
practical application. According to Theorem 3.3, cascade-union and parallel-union

can be used recursively and mixed.

Generally speaking, corresponding to the MLIS, there are three basic com-
ponents in a pattern recognition system : F; is the component consisting of the
ERT'’s for intrinsic characteristies (i.e. IS1), Fp is the component consisting of the
ERT’s for various kinds of digitization distortions and transducing distortions
(i.e. I82), Fg is the component consisting of the ERT’s for feature extraction (i.e.
IS4). All of them can be formed by using the operations above. If we denote the
classifier by F, the entire pattern recognition system for a given target set U,

which is denoted by Fy;, can be represented as follows :

Fy =F /N FpV . FgV Fe
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In practice it is possible to have multiple choices to decompose a given target
set in order to have multiple possibilities to combine ERT’s. Also it is possible to
have different ERT's for solving the same problem. Therefore a computer-aided
constructing algorithm is preferable. The following is a practical algorithm for
this purpose which is based on the principle of optimization through " maximum

entropy reduction ",

Algorithm 3.1:
{* Input U : a target pattern set .
Output Fy: a pattern recognition system architecture. *}
BEGIN
Step-1
: If necessary decompose U into two. For each of them do the following

steps.

Step-2

: If possible then choose a reference set 147 ® else Goto Step-1 to redecompose

U.

Step-3

: Distinguish U into m subsets if U/ has m kinds of intrinsic characteristics.

m .
That is U = | JW "', where W' is a subset corresponding to the i-th kind of

f=]

intrinsic characteristics. Then start to find Fyy's for 1V /s,




Fori = 1tomDo
Begin
If it can find an Fy,
Then Goto label
Else
If it can find a chain of Fiq, Foig s vy Fg
Then Fige—Fyuu V. * -+ V. Fayg
Else
If thereisa W9 O 1V 0 and F,y exists
Then
Goto Step-2 to reselect W %
label: End.
Step-4
: Begin
Forj = 2 Tom Do
Begin
Irwinw/! =g
Then F g+ F oV, F
Else Fig—F,, V. Fiq
Wl wlyw/,
End ;

Ue—~—Wwk
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Fr+Fy

End.
Step-5

: Find the appropriate ERT's to resist noise denoted by F.
Step-6

: Find ERT’s to recover distortions denoted by Fp.
Step-7

: Similarly find suitable ERT’s to extract features denoted as Fp.
Step-8

: Design a classifier F which is suitable for W ©°,
Step-9

:Fyr «— Fp V. F; V. Fg V., Fo
Step-10

s Fy «VYE(V, Fpp ).

END { Algorithm }



CHAPTER 4

AN IMPORTANT ENTROPY TRANSFORMATION
: IMAGE TRANSFORMATION

4.1 INTRODUCTION

Image transformation is one of the most important entropy transformations.
It has two completely different characteristics: entropy increased and reduced
characteristics which have been used in many image processing and pattern recog-
nition problems [Cappel86, Devijv82, Fu80, Gans69, Gonzal87, Stark82, Yarcsl!79,
Young86]. According to these properties it performs at least two different func-
tions. One of which uses the entropy increased property to produce a variety of
samples from a given image for different purposes, e.g. it can produce test images
to measure the performance of a proposed or existing image processing system,
and to train and test a classification system. By using an appropriate transforma-
tion, we can produce a huge number of test samples in a very short time. This
can not be done using type settings or hand drawings without a great deal of
effort. For example, we have used this method to produce more than sixty
thousand test samples in few days. Another function of image transformation is
the use of the entropy reduced property to convert a given image into another one

which can be processed more easily or with a better result. An example of this is
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image normalization which plays a major role in pattern matching, and is fre-
quently used in image processing and pattern recognition.

Image transformation may also be applied, potentially, to a great variety of

topics, such as

1) Computer graphics and animation [Foley82, Hearn86, Reicha72, Sal-
mon87|;

2) Computer Aided Design / Computer Aided Manufacturing (CAD/

CAM) [Barnhi74, Machov80, Prince71];
3) Computer vision and robot vision [Ballar82, Brady81, Critch8&5, Hall82];

4) Other applications such as digitization, preprocessing, filtering, restora-
tion, reconstruction, segmentation, feature description, approximation of

lines, curves and surfaces, etc [Li89c].

The basic concepts of entropy increased and reduced properties are given in
the next sections. Section 4.3 presents linear image transformation and its new
algorithms which have been done in our earlier work [Cheng89]. Five important
nonlinear transformations, bilinear, quadratic, bi-quadratic, cubic and bi-cubic,
are described in Sections 4.4, 4.5 and 4.6 respectively, and also refer to [Li89c,

Tang88al.
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4.2 ENTROPY INCREASED AND REDUCED TRANSFORMA-

TIONS

Let us consider the triple 1= (W, P,y Hy), an entropy space, where
W={w |i=12..,},isa given data set, Py is the apriori probability

defined on W such that

n
PW(wi) = Pi 0 < D < 1’ E Py = 1. (4-1)

fmm]

Hyy is the uncertainty measure defined on W [Shanno48a, b

n
Hy =H (py po, " py ) ==Y p;logp,. (4.2)

i=]

A pattern set can be represented as
m .
U=y W' (4.3)

In its entropy space, Py is determined by the relationships among the subsets

Wis(i=1,2,...,m).

Definition 4.1

Let ) = (W', Py', Hy'), Q; =(W7I, Pyl  Hy?), i #j |W'| and
| W | stand for the numbers of elements (i.e. pattern samples) contained in W *

and W/ respectively. Fj; is a mapping of W7 into W' such that

Winw' =g
(') VW;',W,'CW',W,’,W,’CW’,I#I: u/ljn”/kj=®

(i) |Fp(wi)|=|wi],
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(iii) Hp (wi)= Hy'. (4.4a)

If
lwil < [w7] (4.4b)

then F; is called an entropy-reduced transformation ( ERT ). We say that }; is

normalized to {}; by Fj;. W ! is called the reference set. Otherwise, if
[wi|> |wi] (4.4¢)

then F is called an entropy-increased transformation ( EIT ).

An important property of these transformations is presented below.

TLoorem 4.1

Let F be an entropy-increased transformation from W7 to W ¥, and assume

F is injective and surjective, i.e.

FW, 7 FW,7 for r #s

and
Viwew: wew: (F W =W).

If its inverse transformation F~! exists, then F~! will be an entropy-reduced one.

Proof

Since F is an entropy-increased transformation, so Eqs. (4.4a) and (4.4¢) are

satisfied. Suppose F maps W/ to W ¥, that is

Wi=F Wi
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If F-! exists, then we have

Wi=F1 wt, (4.5)
According to Eq. (4.4¢), | W' | > | W7 | . Therefore F~! is an entropy-
reduced transformation in Eq. (4.5).

This significant property will be employed to remove the uncertainty from a

recognition system which will be illustrated in the next two chapters.
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4.3 LINEAR IMAGE TRANSFORMATION

Translation, scaling, rotation and their combinations are the most common

types of transformations. Mathematically, they can be represented in the following

:

7,9,§ n€E€R(real set)yand A, B, C,D,E, F € R(real set)

form:

A B
C D

) (4.6)

where:

z, y - original coordinates of the x0y plane

€, n - new coordinates of the £ O 5 plane.

It will be one-to-one mapping, if

|7 ] = # 0

Cc D

In order to obtain the desired transformation, we have to find the parameters
A, B, C, D, E and F by solving six lincar equations. It means that we have to find

three pairs of corresponding points:

{(11 ¥1) (22 ¥2) (25 ya)}c xoy and [(E] m) (&2 M) (§a 773)]C §0n

We will have

£ z;, ¥y, 0010 7 n P
M 0 0 z, 9,01 B n
€ o Yo 00 1 0 C , e
|~ 0 0 1,9, 01 p|=T D (4.7)
&3 73 ¥y3 00 10 2 E
Ln3- L0 0 1393 01 - . F
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and

y 3

™
3}
N2
€3
_773 J

EEEREES

The necessary and sufficient condition for Eq. (4.8) to have a non-trivial solution
is |T *|+#0. By choosing some special point pairs, we can solve Eq. (4.8) more
easily by first simplifving T *

In Eq. (4.6), if A =D =1 and B =C =0, it will become a translation
mapping as shown in Fig. 4.1. f A =D =S and B=C =F =F =0, then

Eq. (4.6) will perform a scaling mapping as shown in Fig. 4.2 and Eq. (4.6)

-] [

In this case, either x( € ) or y( n ) will enable us to find the parameter s.s > 1

becomes

and s < 1 correspond to the magnification and reduction of the given image
respectively. In Eq. (4.8), if A =D =cosf, B =—sinf, ¢ =sinf and

E = F =0, then Eq. (4.6) represents a rotation mapping as shown in Fig. 4.3.

cos@ —snf| |x
sim@  cosf | |y

If we wish to find the parameter 0 , one pair of corresponding points (x y) and ( £

el

[P

K
1
!
'
b
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7 ) will be enough.

As indicated earlier, all of the transformations will be one-to-ciie mapping in
the real number domain provided |T | #0. This will no longer be true when
these transformations are applied to digitized images d .2 to the discrete nature of
their representations, In this case, we have to switch from the real number domain
to the integer domain. Many researchers have worked on this subject [Lee87, Lip-
kin70, Li89¢c, Pavlid82]. In this Chapter, we propose a new transformation
approach which can be performed in the integer domain with much better result

and much lower time complexity. The details will be presented in the next section.
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Fig. 4.1 Translation

Fig. 4.2 Scaling

Fig. 4.3 Rotation
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Fig. 4.4 Image Plane




4.3.1 New Algorithms

4.3.1.1 Preliminary Discussion

Let us define an image plane as shown in Fig. 4.4. Before presenting the new

algorithms, we first give the following definitions to facilitate our discussions.

Definition 4.2
For a binary image P and a pixel (x ¥) of the image plane, where x, y € 1, let
G(x ¥) be the grey level of the pixel, then

1 if (r y)€ P (1mage)

(l(.\ '\) = 0 ()th(-r“ .lf"(' (ll(l(’kf/’ Uﬂﬂd)

Definition 4.3

The d-neighbors of a pivel (x v) will be defined by the set of pixels {(x41 ¥)

(x-1 ¥) (x y+1) (x ¥-1)} and denoted by N (x v).

Definition 4.4

The d-dingonal-neighbors of a pisels (x yj will be defined by the set of pivels

{{x+1 y41) (x+1 y-1) (x-1 ¥4 1) {x-1 y-1}} andd denoted by N, (x y).

Definition 4.5
The adjacent veetor of a given pixel (x v), is deseribed by Vi(x y) which con-
tains the gray levels of its neighbors, V(o y) = (Gix-1 ¥) G(x-1 y41) G(x y+1)

Gix+1 v+1)).
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For the digitized images,
&, 1, %,y €1 (integer set)

A,B,C,D,E, F €R (real set)

1) Translation

A=D=1
B=C=0
N+2
'3 x E 2
n|= [y [F1T |~ +2 (1.9)
0

It is one-to-one mapping and causes no problem at all.

Where:

N is the size of the image,

N +2
2
N 49 | means that after mapping the image is moved to the origin of the

2

image plane which can be shown in Fig. 4.4,

2) Scaling

(s is the scaling factor)

N+2

€ s Ollx 2

7|~ [0 s y+ N +2 (4.10)
2

b
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When s < 1, it will become many-to-one mapping and will not produce any prob-
lem. There is no need to do anything other than mapping the pixels according to
Eq. (4.10). The same for s = 1. However, when s > 1, it will be one-to-one map-
ping with the possibility of breaking the connectivity of the pixels. This will pro-
duce undesirable "measles”" [Lee87, Lipkin70, Li8%c, Pavlid82] in the resulting

image which should be removed.

3) Rotation

(0 < 0<2r)

£ casll = an s B
nl™ sl cost) {1y + N+ 2 (4.11)

Depending on the vajues of v,y and # (it could he many-to-one mapping or one
to-one mapping. It may also destroyv the connectivity of the originally connected

pixels and ereate the "mende<" problem.,
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4.3.1.2 New Transformation Algorithms

1) Translation Algorithm

Translation can be done easily by using the following algorithm:

Algorithm 4.1
Translation Algcrithm

Forall (x y){(x¥) | G(xy) =1} do

begin
N+ 2
€ I E 2
n|= y|~ |F Ll DA
2

end

2) Scaling Algorithm

As mentioned earlier, if s < 1, mapping is simply done according to Ly.
(4.10). If s > 1, the "measles” have to be eliminated by using a one-to-many map-
ping approach, i.e., G(x y) should be assigned to more than one pixel to fill up the
positions occupied by the measles. The algorithm consists of sixteen subroutines
invoked by the value of V(x y) which can be shown in Fig. 4.5. Details are

described below.
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Algorithm 4.2

Scaling Algorithm

For all pixels € P, we examine their adjacent vectors and perform mapping and

filling at the same time.

Forall(xy){(xy) | G(xy) =1}do
begin
/ compute the adjacent vector /
compute V(x ¥) = ( G(x-1 v) G(x-1 ¥+1) G(x y+1) G(x+1 y+1) )

/ perform mapping /

N +2
s T + 5
1) N +2

2

/ Assign the gray level /

G(€n) = G(xv)

/ subroutine 1- S, invoked by V(x y) = (0001) /
/ mapping and filling the line as shown in Fig. 4.5 /
If V(x y) = (0001) then
begin

N+2

§p = [s (z +1) + —

for K= 0toép - € do
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G(E+K n+K)=G(xy)

end

/ subroutine 2 - S, invoked by V(x y) = (0010) /
/ mapping and filling the line as shown in Fig. 4.5 /

If V(x ¥) = (0010) then

begin
N +2
ne = |s (y +1) + T
for K= 0tone-ndo
G(E n+K)=0G(xy)
end

/ subroutine 3 - S invoked by V(x ¥} = (0011} /
/ mapping and filling the area as shown in Fig. 4.5 /

If Vi(x ¥) = (0011) then

begin
N 42
[En] sl 41 + =
= ‘\, 2
" s (y +1) + T

-

forl= 0to &, - € do
forJ= n+1 toy, do
/ Note Np — 1) == El) - £ /

G(E+T J)=G{(xy)
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end

/ subroutine 4 - S, invoked by V(x y) = (0100) /
/ mapping and filling the line as shown in Fig. 4.5 /
If V(x y) = (0100) then
begin

N +2
2

£B= [S ($—1)+
forK= 0to £-&p do

G(E—K n+K)=G(xy)

end

/ subroutine 5 - S5 invoked by V(x y) = (0101) /
/ mapping and filling the line as shown in Fig. 4.5 /

If V(x y) = (0101) then

begin
N+2
[EB] S (1‘ +1) + 5
= . o
g s (y +1) + 1\:—-

forl= 0to€- & do

or

forIT= 0to ng-n do
begin

G(€—-1 n+1)=G(xy)



G(&4+1 n+1)=G(xy)

end

end
;
E / subroutine 6 - S invoked by V(x y) = (0110)/
f / mapping and lilling the area as shown in Fig. 4.5 /
P
i If V(x y) = (0110) then
§
} begin
‘ N 42
§ [6“ ] S .T - 1) + 5
: C

-~

forl = 0to E* £n do
forJ = n+1ton, do

G(E=1 J)=G(xy)

: end
N
' / subroutine 7 - S. invoked by Vi(x ¥) = (0111) /
/ mapping and filling the arca as shown in Fig. 4.5 /
‘ If V(x ¥) = (0111} then
begin
' N+

¢ ] s{r—1) + ——

€y ( ) 2
: T N 42
f 8 | Py +1) + 20
} L1 < ]
; a4+ N
A ] +
g; 6[, AT ) o
: = N 42
;‘ L7”) J I3 (y 4+ 1 ) + ‘j- —

¥
§
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forT= 0 to€-€&g do
forJ = n+1tong do
G(&-1 J)=G(xy)
forl= 0 to§p-§ do
forJ= n+1tonp do
G(E+I J)=G(xy)

end

/ subroutine 8 - Sg invoked by V(x y) = (1000) /
/ mapping and filling the line as shown in Fig. 4.5 /
If V(x y) = (1000) tt.n

begin

forl= €4 -£to0 do
G(&E+T n)=G(xy)

end

/ subroutine 9 - Sq invoked by V(x y) = (1001) /
/ mapping and filling the line as shown in Fig. 4.5 /
If V(x y) = (1001) then
begin

N 42
2

€4 = [S(-'l«‘ —-1)+



for K= 0to€p -&do

G(§+K n+K)=G(xy)
fori= §4-€to0 do
G(E+1 7)=G (x)

end

/ subroutine 10 - S, invoked by V(x y) = (1010) /
/ mapping and filling the area as shown in Fig. 4.5 /
If V(x y) = (1010) then
begin

N +2
2

g = |s(z —1)+
[ !

N +2
2

ne = |s(y + 1)+
I ]

forl= 0to€-§, do
ford= ntones -1 do
GlE~1 J)=G(x)

end

/ subroutine 11 - S, invoked by V(x y) = (1011) /
/ mapping and filling the area as shown in Fig. 4.5 /

If V(xy) = (1011) then
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begin

€4 = |s(z —1)+ N;2

& = [ste +1)+ LE2
| 2 ]

N +2

ne = [s(v +1)+ :

N +2

np = |s(y +1)+ :-

forI= 0to€-&4 do

forJ= ntone -1 do
G(E—1 1)=G(xy)

forM= 0to&p-Edo

for N= n+Mto np do
G(&+M N)=G(xy)

end

/ subroutine 12 - S,, invoked by V(x y) == (1100) /
/ mapping and filling the area as shown in Fig. 4.5 /
If V(x y) = (1100) then

begin
& = [s(a: -1+ N;LQJ

forT= €g-€to0 do
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forJ= nton+ [I]do
G(&+1 J)=G(xy)

end

/ subroutine 13 - §,; invoked by V(x y) = (1101)/
/ mapping and filling the line and area as shown in Fig. 4.5 /

If V(x y) = (1101) then

begin
€p = s(.'z:—l)+N+2
i 2
T4 2
& = |s (e +1)+ 5E2

for I = €g-Eto0do

forJ= nton+ |I]do
G(E+1 J)=G(xy)

forK= 0to &p-€ do
G(E+K n+K)=G(xy)

end

/ subroutine 14 - §, invoked by V(x y) = (1110) /
/ mapping and filling the area as shown in Fig. 4.5 /
If V(x y) = (1110) then
begin
N 42

2
N 42
2

[eB] S(J“—l) +
1| sy +1) +
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forI= £ to £do
forJ = nto ng do
G(I J)=G(xy)

end

/ subroutine 15 - S invoked by V(x y) = (1111) /
/ mapping and filling the area as shown in Fig. 4.5 /
If V(xy) = (1111) then

begin
N +2

s (z —1)
] 2
l (y+1)+N+2

-!

forl= € to &do
forJ = nto ng do
G(I J)=G(xy)
forM= 0to £-€p do
forN= n+1tong do
G(E+M N)=G(xy)
end

end

The basic idea of Algorithm 4.2 can be explained more clearly by referring to Fig.

4.5. There we can figure out the following features of the above algorithm.



2)

3)

4)
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For any V(x, y), at most one subroutine is invoked.

All of the subroutines are very simple and the number of operations (N)

is quite small.

The algorithm will perform mapping and filling at the same time accord-
ing to the adj:‘.cént vector. It makes the filling more meaningful and the

computing faster.

Each subroutine can be implemented by hardware. The computations
are local and independent. Hence the algorithm is suitable for parallel
processing and VLSI implementation [Cheng 89]. The more details
about VLSI architecture for image processing and pattern recognition
refer to [Bowen82, Charot85, Cheng86, Fu84, Nudd85, Offern85,

Parker85, Siegel82].
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8) Rotation (0 <@ < 27) Algorithm

As mentioned before, the rotation transformation is quite complicated. Some
pixels may perform many-to-one mapping while others may perform one-to-one
mapping. Depending on the values of x, y and 8, it may produce "measles" under
some circumstances. Before discussing the rotation algorithm, we need to prove

the following theorem.

Tl.eorem 4.2

For any pixel (x y) € P and its four neighbors N,(x y) = {(x+1 y) (x-1 y) (x

y+1) (x y-1)}, after rotation, the upper bound of distance between (£ ) and the

1
corresponding mapped neighbor pixels will be 2 2.

Proof.

1) Consider (x y) and its neighbor (x+1 y).

According to Eq. (4.11), we have

[ ] zcos @ — ysin @ + N;—2
zsin @ + ycos 0 + N2+2
[E,] (r + 1)cos8 — ysin6 + N;- 2
* _
n (z + 1)sin 6 + ycos§ + N +2

Let

=1, +a (4.12)

zcos 0 — ysin @ + N:- 2



and

zsin b + ycosf + =1I,+f (4.13)

N +2
2

where I, and I, are integers,0 < @ < 1 and 0 < < 1 are real numbers. Then
§-¢= [Il +a+cos€J- [Il + a J:—_ lo + cost ]
p' - = [12+ﬂ+s'moj- [12+ﬂj= 18 + sind ]

Since -1 < a + cosf < 2,50 —1 < | + cos@_ls 1, and

‘1< B+sinf < 2,50 -1< |8 +sind]<1. We have

1 L
2 2

1
<(1+41)%2=22

d=(E =€+ -n?)
2) Similarly we can prove the other three pixels of N (x y) have the same
property.
Q.E.D.
From the theorem, we can conclude that the connectivity of the four neigh-
bors N, (x y) and (x y) will not be changed in the sense of the eight-neighbor con-

nectivity. Therefore, in rotation transformation, we only consider the 4-diagonal-

neighbors Np (x y) which may create measles.

Algorithm 4.4

Rotation Algorithm

For all pixels € P. We compute the adjacent vectors and only consider the

pixels € Np(x y) which may create measles.



- 100 -

Forall (x y) {xy) |G(xy) = 1} do
begin

V(xy) = {G(x-1y) G(x-1 y+1) G(x y+1) G(x+1 y+1)}

N +2

— n @
¢ zcos — ysin 6 + 5
1k N+2
2

zstn 6 + ycos 0 +

G(§n) = Gxy)

/ subroutine 1 - S, invoked by V(x v) — (0100) /

/ mapping and filling will be performed /

If V(x y) = (0100) then

begin

. N +2
[&-B] (z —1)cosf — (y + 1)sin 6 + 5
"B (z = 1)sinf + (y + 1)cos 8 + N;'2

CASEOfevn’£B1 773

1) §g > Eandng > 7:
forI= 0to§pg-& do
G(€+In+1)= G(xy)
2) g > Eandng < n:

forI= 0to g - & do
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G(E+1 n-1)= G(xy)
3) §p < Eandnp < N
forl= Oto&- €y do
G(&-17n-1)= G(xV)
4) ép < Eandng > 7

forI= 0to§-&p do

G(E-1 n+1)= G(xV)
5) g =CEandng > n:
forl= 0tong -n do
G(€n+1)= G(xV)
6) g =E€andng < 7N:
forl= 0Oton-ng do
G(€En-1)= G(x)
7) g > Eandng =10
forl= 0to€p-§ do
G(E+1 n)= G(xV)

8) g < Eandnp =1

forl= 0to - do

G(E-1 n)= G(xy)

end

/ subroutine 2 - S, invoked by V(xy) = (0001) /
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/ mapping and filling will be performed /

If V(x y) = (0001) then

begin

. 2
[ED ] (z +1)cosl - (y +1)sin8 + N ;-
b (z +1)sinb+ (y + 1)cosf + N;-2

CASE of £, 71, €p, tp

1) §p > €andnp > 7
forl= Otofp - € do
G(E+I n+1)= G(xy)
2) §p > €andnp < n:
forI= Otoép - € do
G(£+1 n-1)= G(xY)
3) p <€andnp < 7:
forl= Otof- &y do
G(&-1n-1)= G(xy)
4) €p < fandnp > 7n:
forl= Otoé-&p do
G(&-In+1)= G(xy)
5) §p =&and np > 70

forT= Otonp - n do
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G(&n+1)= G(xv)
6) §p =Eand np < 7
forI= Oton-np do
G(&n-1T)= G(xy)
7) €p > Eand np = n:
forl= 0Otoép -€ do
G(&+I n)= G(xy)
8) &p < fandnp =7:
forl= 0to€- €y do
G(&-1 n7)= G(xy)

end
/ subroutine 3 - S, ; invoked by V(x y) = (0101) /
/ mapping and filling will be performed /

If V(x y) = (0101) then
begin
Sr
Sro
end
end

Now let us proceed to discuss parallel transformation algorithms.
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Algorithm 4.5

Parallel Translation Algorithm

parfor all (xy) {(xy) |G(x y)= 1} do

- |-

G n) = G(x y)

begin

N +2
E )
FIT |N+2
)

end

Algorithm 4.6

Parallel Scaling Algorithm

parfor all (xy) {(x y) | G(xy) = 1} do

parbegin
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Algorithm 4.7 Parallel Rotation Algorithm

parfor all (xy) {(xy) | G(xy) = 1}do
parbegin
Se1s
Sra;
Sr33

parend

The advantages of the proposed algorithms are listed below:

1. All of the operations depend only on the local information - adjacent vector.

2. All of the pixels of the entire image nlane can perform independent opera-

tions in parallel.
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They do not need to distinguish the boundary pixels and the inside pixels
and can perform mapping and filling at the same time. Since finding the
boundary and the direction of boundary is very time-consuming [Lee87], the
new algorithms will speed up the computation considerably. Also it makes

the filling more meaningful. Further details will be discussed later.

The results obtained by a) performing scaling first and then rotation and b)
by performing rotation first and then scaling, are almost identical. This
means that the performance of the proposed algorithms is better than the one

described in [Lee87].

The proposed algorithms have no difficulty in processing multi-boundary and

complicated images, and in handling large scaling factors.

The proposed algorithms can be implemented using VLSI technology. This

will be discussed in [Cheng89, 90].
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4.3.2 Experiments and Results

A series of experiments have been conducted to test the proposed algorithms.
By performing the proposed transformations on a variety of images including the
alphabetic character, Chinese character, space shuttle and panda pictures, it can
be concluded that thc algorithms proposed in this section have much better per-

formance compared with others. Details are described below,

With different scaling factors s = 1.4, s = 1.8, s = 2.0, s = 0.8 and s = 0.6
respectively, Fig. 4.6(a) shows the results by applying the proposed algorithm to
the panda picture. Fig. 4.6(b) shows the results by applying the ordinary scaling
algorithm to the same picture. Fig. 4.6(c) shows the results of filling the scaled
images of Fig. 4.6(b) using the filling algorithm described in [Doyles0, Unger59).
From Fig. 4.6(c), we can conclude that the ordinary scaling and filling algorithms
fail to remove the unwanted measles when s becomes larger than 1, and when s
becomes smaller (s < 1), errors occur also. For instance, when s = 0.8 and s =

0.6, the hands and eyes of the panda are much distorted from the original.

Fig. 4.7(a) shows the results of applying the proposed algorithm to a circle
with the scaling factors s = 1.5, s = 2.0, s = 3.0, s = 0.8 and s = 0.6 respec-
tively. Fig. 4.7(b) shows the results of applying the ordinary scaling algorithm
without filling. Fig. 4.7(c) shows the results after filling. The measles problem can

not be solved whens > 1.

Fig. 4.8(a) shows the results of applying the proposed algorithm to a Chinese

character using the same scales of s = 1.5, s = 2.0, s = 3.0, s = 0.8, and s =
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0.6. Again, Fig. 4.8(b) shows tiie results of the ordinary scaling algorithm and Fig.
4.8(c) shows the results after filling. As before, it shows that when s > 1, the
filling algorithm will not work. On the other hand, when s < 1, the filling algo-

rithm can produce serious errors as indicated by the arrows.

Following the above procedure and using the same scaling factors, similar

results have been obtained in Fig. 4.9.

Fig. 4.10 shows the results after applying the proposed algorithm to the

space shuttle image with s = 1.4 and s = 2.0.

To test the rotation algorithm, the Chinese Character shown in Fig. 4.11
with § = 15°, 8 = 30°, 0 = 45°, 0 = 90° and # = -45°, we have obtained
Fig. 4.11(a). Fig. 4.11(b) shows the results by applying the ordinary rotation algo-

rithm to the Chinese character.

In order to observe the combination of rotation and scaling transformations,
the proposed algorithms have been applied to the the Chinese character with s =

2.0and 0 =15°,60 = 45° and § = 90° respectively as shown in Fig. 4.12.

The effect of the order in which the rotation and scaling are applied was also
investigated. The panda picture was first scaled with s = 1.5 and then rotated
30°. Similarly, the reverse order was made, i.e. rotation first and scaling next.
The results are shown in Fig. 4.13. Scaling the Chinese character with s = 2 and
rotating it by 30°, and vice versa produced the results displayed in Fig. 4.14.
From Figs. 4.13 and 4.14, it can be easily observed that the errors due to the

order in which rotation and scaling are applied are much smaller than those
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reported in [Lee87).

Hence we can conclude from these experiments that the proposed algorithms ‘
will perform more consistent and accurate mappings than those obtained by other
known approaches. The better results produced by the new algorithms come pri-
marily from the operations which always check the connectivity of the original
image and preserve it by performing mapping and filling at the same time. This
makes the filling more meaningful. Also, since the new algorithms do not have to
go through the very time-consuming process of finding the boundary and its direc-

tion, they are much simpler and faster than those described in [Lee87].
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Fig. 4.6 (a) Scaling Results Obtained by the Proposed Algorithm
(b) Scaling Results Obtained by the Ordinary Algorithm
(c) Scaling Results Obtained by Filling Results in (b)
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Fig. 4.7 (a) Scaling Results Obtained by the Proposed Algorithm
(b) Scaling Results Obtained by the Ordinary Algorithm

(c) Scaling Results Obtained by Filling Results in (b)
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Fig. 4.8 (a) Scaling Results Obtained by the Proposed Algorithm
(b) Scaling Results Obtained by the Ordinary Algorithm
(c) Scaling Results Obtained by Filling Results in (b)
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Fig. 4.9 (a) Scaling Results Obtained by the Proposed Algorithm

(b) Scaling Results Obtained by the Ordinary Algorithm
(c) Scaling Results Obtained by Filling Results in (b)
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Fig. 4.10 (a) Original Image of the Space Shuttle
(b) Result Obtained by Scaling 1.4
(c) Result Obtained by Scaling 2.0
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P g

Fig. 4.12 Chinese Character with 6 = 150, 0= 45°and 6 =90°
respectively first, and S =2.0 next

Fig. 4.13 (a) Original Image of the Panda
0
(b) Result for S=1.5 First and @ =30 Next
(c) Result for @ =30 First and S= 1.5 Next
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Fig. 4.14 (a)Result for S =2.0 Firstand @ =30° Next
(b) Result for 6=30° Firstand S =2.0 Next
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4.4 NONLINEAR IMAGE TRANSFORMATION

In last section, we have discussed the linear image transformation. However,
sometimes nonlinear image transformation is required for patterns such as the one
shown in Fig. 4.15, where nonlinear distortion has been produced by the bending
of the surface on which the letter " A " is written. Once the image in Fig. 4.15a
has been normalized into the standard one shown in Fig. 4.15b, the recognition
process can be carried out easily. Consequently, it is necessary to study nonlinear

image transformations

T:(&n)=—(=z,9), (4.14)
where

m=f(6977)’ y=g(€’7’)'

Assume that the functions f and ¢ have continuous derivatives with respect to &

and 7 respectively, then the Jacobian matrix exists in the form

85 a5

D(f,g)_|9% ©on

D(6n) |90 9| (4.15)
9 On

We then have [Lang (1987))

Lemma 4.1

The nonlinear transformation T : (& n )= ( z, y ) is one-to-one, if and if

the determinant of the Jacobian matrix, Eq. (4.15), is nonzero:

(/,9)

J(&n)= DD(&’,’)
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for all ( €, n ) through the transformation T'.

While the theoretical analysis of the one-to-one property is difficult for gen-
eral nonlinear transformation, we suggest that condition (4.16) be tested by a

computer, if necessary, from time to time during the transformation.

In this thesis, we will discuss the basic concepts for the following nonlinear

image transformations:
(i) Bilinear image transformation,
(ii) Quadratic image transformation,
(iii) Bi-quadratic image transformation,
(iv) Cubic image transformation,

(v) Bi-cubic image transformation.



Fig. 4.15 Nolinear Transformation
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4.4.1 Bilinear Transformation

Bilinear geometric transformation is the simplest type of nonlinear transfor-
mations. The definition of bilinear transformation using homogeneous coordinate

representation [Maxweld6, 61, Robert65] can be denoted as follows:

Definition 4.8

Let W = [E n 1], 7 = [X Y 1], the bilinear transformation T: W— 7 is

defined as
Z=WT. (4.17a)
ay +apn by+bpn o
T = (122 b22 0 (4.17b)

r s 1

where @y ajp @9y byy byo gy r and s are constants.

Egs. (4.172-b) define a bilinear transformation T , which applies to the
images in the standard coordinate system £On to produce the images in another

coordinate system XOY .

The Jacobian matrix of Eq. (4.17 b) is

o0X oX
E gy +a1n 8y + ap€

/= Y  OY |7 |by+bign by + 0196 (4.17¢)
9 I

The necessary and sufficient conditions of one-to-one correspondence for 7' is
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that the determinant of J is nonzero during the whole transformation procedure.
Graphic examples are given in Fig. 4.16 to illustrate shape distortion pro-

duced by bilinear transformation. In this figure, different bilinear shapes are

obtained due to the transformations T}, Ty, T3 and T, which correspond with

the choice of parameters a; ayp @y by by byp 7 and s.



Fig. 416 Examples of Bilinear Transformation
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4.4.2 Quadratic and Bi-quadratic Transformations

Quadratic and bi-quadratic image transformations belong to the nonlinear
transformations. The definition of quadratic transformation using homogeneous

coordinate representation can be denoted as follows:

Definition 4.7

Let W7 = [E n 1], 7T = [X Y], the quadratic transformation T: W— 7

is defined as

Z=T W (4.182)
wl o .
B -
1 1
fu iz o
1 1
'2—012 Goo —2'“20
1o Lo r
) |3 10 5 %20 |
T = | 1l (4.18c¢)
by b b
n % %o
1 1
ghz by by
1 1
. '2-” 10 ‘2-”20 $

where a9 a50a1; @12892 610820011, 012 092 r and s are constants.

Eq. (4.18a-c) define a quadratic transformation, which applies to the images
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in the standard coordinate system £0O 7 to produce the images in another coordi-
nate system XOY . The graphic examples are given in Fig. 4.17 to illustrate the

quadratic distortion formulated by quadratic transformation.

The details for bi-quadratic transformation model will present in Chapter 6.
Here, we only give some graphic examples in Fig. 4.18 to illustrate the bi-

quadratic distortion produced by bi-quadratic transformation.
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Fig.4.17 Examples of Quadratic Transformation
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Fig. 4.18 Examples of Bi-quadratic Transformation
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4.4.3 Cubic and Bi-cubic Transformations

The definition of cubic transformation can be denoted below:

Definition 4.8

Let W' = [E '/} 1], ZT = [X Y], the cubic transformation T: W— Z is

defined as
Z=TW, (4.192)
0 0 R

T = 0 6 T, (4.19b)

9=[62+6n+n °+ €&n+§ 1], (4.19¢)
@ @Gy 4ag
a; a5 ag
a7 ag r ]

T =7 1. 4.19d
b, bo by ( )
by bs bg
b7 b8 8

where a; — ag b, — bg r and s are constants.

Explicit equations are

X=084ae+(a,+a+ay)n+(ay+a,+a5)n°€+
(ag+ay)€ +(ag+ag)n® +(a; +a5+as )0+

(ag+a7)€+(eg+ag)n+r, (4.20a)
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Yom 5,8 405m° 4 (by4+by+04)En+(by+by+b5) 0’6 +
(bg+by)E+(by+bg)m+(by+by+bs)né+
(be+b7)E+(bs+bg)n+s, (4.20b)

Egs. (4.19) and (4.20) define a cubic transformation, which applies to the
images in the standard coordinate system £0% to produce the images in another

coordinate system XOY .

The details about bi-cubic transformation model will discuss in Chapter 8.
In order to give a basic idea, this section only shows some graphic examples in
Fig. 4.19 to illustrate bi-cubic shape distortion formed by the bi-cubic transforma-

tion model.

As mentioned in the beginning of this section,

T:(&En)—(z,4), (4.14)
z=[(&n), y=g(&n).

provides variant image transformations. All those transformation models are con-
tinuous; but the image pixels are discrete. How can we property apply the con-
tinuous transformations (4.14) to discrete image transformations? One trouble is
that some superfluous holes and blanks occur, this is called "measles” problem. In
Section 4.3, we developed a method solving linear image transformation, but it
will be fail in nonlinear cases. To handle the measles problems in nonlinear image
transformations, Li et al. have developed Splitting-Shooting and  Splitting-

Integrating methods. The key ideas in these methods are presented below:




(1)

(2)
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Establish the corresponding relations between a pixel image and a
matrix. In fact, any image can be represented by numerical quantities.
Therefore, the image transformations can be performed through

mathematical operations.

Calculate transformed functions, based on numerical integrations. Since
the current methods in numerical analysis [Burden81| are invalid for the
images produced by an optical scanner, [Li88a, b, 89¢c, 90] developed the
splitting-shooting method for the transformation T, and the splitting-

integrating method for the inverse transformation T 1.
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\

Fig.4.19 Examples of Bi-cubic Transformation




CHAPTER 5

REMOVAL OF UNCERTAINTY FROM IS1:
SIZE-ROTATION INVARIANT ALGORITHM

5.1 INTRODUCTION

As mentioned in Chapter 2, the intrinsic characteristics of the target pattern
set, such as the categories of patterns, number of classes, fonts of characters, vari-
ance of size and orientation etc., exist in the first level of MLIS. All of them
belong to the primary uncertainty in a pattern recognition system which
encourage a lot of researchers to develop a variety of methods to handle such
intrinsic problems. All these methods can be regarded as ERT. Its function is to

remove the uncertainty from the IS1.

In this chapter, we will deal with one of the common intrinsic uncertainties in
the IS1, the variance of size and orientation. In order to eliminate this uncer-
tainty, our earlier works [Tang88b, 89b] have presented an algorithm called
Transformation-Ring-Projection (TRP). The TRP will be discussed briefly in this
chapter.

Invariance in size and rotation will greatly facilitate character recognition
especially for texts mixed with graphics. Character readers with such capabilities

would find many applications in office automation, computer aided design,
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electronic publication, etc. However, this is one of the most challenging problems
in pattern recognition. Although some commercial OCR machines are available
which perform very well when the characters are fixed in size and rotation, the
recognition rate would drop drastically if the size is varied, and would be much
worse if the orientation is alsn changed. Many papers have been written on solv-
ing this problem. For instance, in [Kahan87), an approach has been described to
recognize printed text of various fonts and sizes for the Roman alphabet. Several
techniques, such as thinning, shape extraction, line adjacency graph, and shape
mapping etc., have been combined in order to improve the overall recognition
rate. An algorithm has been proposed by T. Antoine and C. Y. Suen [Antoin89)]
in which a descriptor is obtained. This descriptor is independent of the position,
orientation and size. References [Cormar63, 64, Hansen81l, Hsu82, Merser86,
Psalti77, Wu86] describe a rotation-invariant operation based on circular-
harmonic function (CHF). And some scale-invariant operations based on Mellin
transformation and Broadband dispersion-compensation technique have been
presented in [Merser86, Wu86]. Most of them are optical methods and quite com-

plicated.

In this chapter, a new method is proposed. The basic operations have been
carefully designed so that the proposed algorithm is very simple and regular. As a
result, the parallel processing and VLSI technology can be used to speed up the
computation [Tang89b]. This method is called the Transformation-Ring-

Projection (TRP) method. In this method, image transformation technique as
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mentioned in Chapter 4 is employed to ccnter the image and normalize its size.
This brings a reduction in entropy. The Ring-Projection scheme is used to handle
the orientation problem, and it reduces the entropy further.

In this chapter, Section 5.2 gives the basic concepts of the Ring- Extraction

Panel. Section 5.3 describes the proposed algorithm (TRP). Finally, experimental

results and discussions are presented in Section 5.4.
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5.2 RING - EXTRACTION PANEL

It is well known that pattern recognition is a process to reduce the uncer-
tainty of the target set to be recognized. An important source of the uncertainty
is the intrinsic characteristics of the target pattern set. For example the intrinsic
characteristics of a Chinese character set include categories, sizes, fonts, directions
etc.. The uncertainty from the intrinsic characteristics can be reduced consider-
ably based on the relative knowledge about the relationships among various kinds
of characteristics. Agair taking the Chinese character set as an example, suppose
we have a set of 5000 Chinese characters. If we treat each a Chinese character as
a pattern class we will have 5000 classes and each class has only one pattern sam-
ple. Ther if we consider the more complex situations such as each character may
have several sizes, say 10 sizes, and allow 360 degree rotations, there will be two
solutions to handle them. The first solution is to treat them as single pattern
sample classes, i.e. the same character but with different sizes or directions treated
as different classes. This means the uncertainty will increase considerably. The
second solution is that we only consider the categories of characters and don’t care
about the sizes or directions, i.e. the same character with different sizes or direc-
tions will be grouped into the same class. This means the uncertainty will remain
as large as that of the set with only 5000 classes. Obviously the second solution is
what we need. Now the question is whether we can find a method for the
machine to know which characters should be grouped into the same class? The

answer is positive. In this chapter we will present a method to pursue size
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rotation-invariant character recognition.

To describe the principle of this method we define the following notations.

Definition 5.1 :
A target pattern set W is denoted as follows
W={w1,w2, Cee wg, "'val'
where N € I, and w; is the i-th class which may contain finite pattern samples,
i.e.

w,-€A={al,aQ,---,aL} 1=1,2, -+, N

If a set of W, in which all w; are single pattern sample classes, we call W a
standard set.

One important aspect of our method is that we use a ring-extraction panel

defined as follows to extract the features of the target pattern samples.

Definition 5.2 :

A ring-extraction panel consists of n concentric rings and m spokes, as
shown in the Fig. 5.1, where n and m are integers. r; is the radius of the i-th
ring ( R; ), s; represents the j-th spoke (¢ =1,2, - n; j=1,2, --- m ).
Each cross point between a ring and a spoke is called a sample-point, p(7,7),

represents the cross point between the i-th ring and the j-th spoke.

After having been extracted by the ring-extraction panel, a pattern sample is

represented by a vector called ring-projection vector, defined as follows.
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Fig. 5.1 A Ring-Extraction Panel
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Definition 5.3 :

A ring-projection vector is

V=(pr,7pr2v ) ",P,-‘)
where
m - . 3
pr,=2p('a.7)’ 1=112,""n
J=1
and

o 1  owverlaps with the pattern sample
p(ig)= 0 otherwise

An apparent result of using ring-extraction panel is that all characters with
the same category but different directions will be automatically grouped into the
same pattern class because they have the same ring-projection vectors. Further-
more we can use a simple linear transformation to normalize all different sizes into
the one of ring-extraction panel to unify the sizes of characters. Concrete algo-

rithms are presented in the next section.
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5.3 TRP Algorithm

The following processing steps are included in the algorithm:

5.3.1 Position Invariant
Removing the shift of the position of the input character :

Once the character has entered the system, its center of gravity will be found

then be moved to the origin (0,0) of the image plane.

For a binary character in the 2-dimensional Cartesian system:

1 if(z,y) € P (image)
f(zy) = O otherwise (background)

(5.1)
(1<z,y M),
where M is the size of the input image.
The center of gravity (f ,?) for the character is given by
X = Mo / Moot
= (5.2)

Y =my; [ mog;

where

M M
m g = E 2 xpyqf(:rsy)

ITwm] ym=]

denotes the geometrical moments of the character [Wangl79).

5.3.2 Size Invariant
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1). Finding the largest size of the image :

The pixel of the input character image farthest away from the center will be
found. (Note there may be more than one pixel which have the same distance
value. Since we are only concerned with the distance, only one pixel value will be
used). Also there are several approaches available for finding the distance. To be
consistent with step 4, we will use the method that divides the image plane into
several rings. Take the distance between each adjacent pair of rings as 1 unit, i.e.
(r; = r;_; = 1). The largest non-zero ring distance ry will be assigned by the

value d.

2). Normalizing the size of the input character :

Let D be the standard size, then the size of the input character is normalized

X D/dJ 0 .'L'j
Y[=lo  Dpjd;] |y (5:3)

where (X,Y ) are the new coordinates of a point for a pattern sample in a stan-

by a factor of D /d;.

dard size, ( T;,Y; ) are the coordinates of a point for a pattern sample with size 7,

D is the standard size, and dj stands for size 3.

5.3.3 Rotation Invariant

Rotation-invariant operation - Ring Projection :
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After size normalization, the system will convert the Cartesian coordinate
system into the polar coordinate system. Then the pattern is transformed from
the image domain to the area domain using ring projection. If we consider the
area of rings, it would be invariant to rotation, i.e. rotation-invariant. In order to
reduce the rotation error and to emphasize the difference between characters, we
use the rings with the radii r; starting from the center with an increment 1 pixel.
Let p; be the number of pixels (pixels € picture and pixels € p, ). p; will be used

as the feature to describe ring R; of the input character, as shown in Fig. 5.2.

Using (;\-’-,}7) as the new origin of a polar coordinate system, i.e.

Zg= X y Yo = -}7, then the 2-dimensional character can be represented by

. 9 1 (for the black pizels) ]
fonb)= O (for the white pizels) (5.4)

(0<r<n, 0<0L2m).
where

1]~

w=(af +uf)
and

.'t,=Ma:r{;\T,M—~f};
y,=Mar {Y M-V}

Partitioning the character and projecting the black pixels onto annular

multi-layers of character give a projection value p, as follows:
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p; = i{‘ f°(460), (i=0,1.2..,n), (5.5a)
00

in order to reduce the error produced by the shift of the center of gravity due to

the noise, we take

P,=Y p;, (i =0120.n), (5.5b)

(5.6a)

or

P
P+ Po
Py +pot+p3

(5.6b)

_pl+p2+ +pn—l+pn‘

as the feature vector to characterize size-normalized input characters.

In this method, because of the sum of projections P; instead of the individual

projection of a ring p;, the system is more stable than that proposed in [Taza89),
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the details can be found in [Tang89b].

Now we can summarize the algorithm as follows:

Step 1: Find the center of gravity and translate it to the origin of the image
plane;

Step 2: Find the largest distance d;

Step 3: Scale the input image by D /d ;

Step 4: Find the feature vector using ring projection:
[Pl P2 A ‘Pﬂ ] T )

where
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e xgw’%w‘* et

Fig. 5.2 Ring Projection
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5.4 EXPERIMENTAL RESULTS

A series of experiments have been conducted to verify the proposed algo-
rithms.
Fig. 5.3(a) shows the Chinese character "Of" with
scaling 1.2 and rotation 15°;
scaling 1.4 and rotation 30°;
scaling 1.6 and rotation 45°;
scaling 1.8 and rotation 90°;

scaling 2.0 and rotation -45° respectively.

Fig. 5.3(b) shows the results after normalizing the size of the characters by

the proposed algorithm.

Fig. 5.3(c) shows the results after applying step 4 to process the characters of

Fig. 5.3(b) oriented in 6 different directions. We plot
. { 2" + . .
P@R)=X Y f"(+,60), (1=012,.,n)
im0 6m0
along the vertical axis and ¢ along the horizontal.

From Fig. 5.3(c) , it can be seen that different sizes and rotations of the given
character produce very similar feature vectors when processed by the proposed

algorithm. Hence it can be used for the purpose of recognizing characters.
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7/
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7

n
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Fig. 5.3 (a) Chinese Character "Of" with Scalings and Rotations
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Fig. 5.3 (b) Results Obtained by Normalizing the Size in (a)
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Fig. 5.3 (¢) Results Obtained by the Ring Projection in (b)
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Fig. 5.4 describes the results on two similar Chinese characters "Nine" and
“Ball" rotated 0°, 15°, 30°, 45°, 90° and 180°, respectively. From the figure

‘We can see:

1) For any given character, the curves representing different rotation lie

within a very small range.

2) At least for some p;’s, the two families of the curves for two similar
cuaracters are far apart from each other, and these features can be used

for recognition.

Fig. 5.5 shows the resuits after applying the proposed algorithm to two simi-
lar Chinese characters "End" and "No". The same conclusions as before can be

reached.
The features of 26 English alphabetic letters are found in Fig. 5.6. And the

results for several pairs of similar letters (U, V), (\W,M), (B,8), (Z,2) and (S,5) are

also described in Figs. 5.7, 5.8, 5.9, 5.10, and 5.11.
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P(i)

300 —
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Fig. 5.4 Results on Two Similar Chinese Characters "Nine" and "Ball"
Rotated 0° 15 ? 30? 45° 90° and 180 °, Respectively
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0°,15°*,30°,45°,90°*,180°
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Fig. 5.5 Results on Two Similar Chinese Characters "End” and "No"

Rotated 07 15° 30° 45° 90% and 1807 Respectively

32
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P(1)

The Features of

26 Engliah Alphabet

900
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l///r— b4
300

b 0 =
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Fig. 5.6 Features of 26 English Alphabetic Letters Extracted by
Proposed Algorithm
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P (i)
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0*,15°,30°,45°,90°,180°
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e

600
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Fig. 5.7 Results on Two Similar Letters ( U, V ) Rotated
Through Different Degrees
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P (i)

Sl
00—
4 0°,15°,30°,45°*,90°,180°

600 /

300

Fig. 5.8 Results on Two Similar Letters ( W, M ) Rotated
Through Different Degrees
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Fig. 5.9 Results on Two Similar Letters ( B, 8 ) Rotated
Through Different Degrees
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Fig. 5.10 Results on Two Similar Letters ( Z, 2 ) Rotated
Through Different Degrees
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Fig.5.11 Results on Two Similar Letters ( S, 5 ) Rotated
Through Different Degrees




CHAPTER 6

REMOVAL OF UNCERTAINTY FROM 1IS2:
NONLINEAR SHAPE INVARIANT ALGORITHM

6.1 INTRODUCTION

As mentioned in Chapter 2, one of the common information source uncer-
tainty is shape distortion which exists in the second level of MLIS. Shape distor-
tion uncertainty can be divided into two types : linear and nonlinear [Tang88b,
89b, Sawchu72, Pavlid82,.Lee87, Li89c, Gonzal87, Hearn86, Rogers76, Rosenf82,
Foley82]. Linear shape distortions such as size and orientation variances have
been solved by the previous chapter and other works [Suen80, Kahan87, Psalti77,
Wu86. Cormar63, 64, Merser86, Hansen81, H;u82]. The solution to correct non-
linear shape distortions is also a most difficult, significant and challenging topic in
the area of computer vision, robot vision and moving pattern recognition. It is

the purpose of this chapter to discuss these distortions.

Nonlinear shape distortions may introduce uncertainty to the pattern set, i.e..
the entropy of pattern set is increased, and may confuse the design of the recogni-
tion system. These distortions will been regarded as entropy-increased transfor-
mation (EIT) described in section 6.2. Several algorithms will been presented in

Sections 6.3 - 6.5, which were derived from the finite element method [Haber78.
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Strang73, Zienki77, Martin73, Norrie73], to perform the nonlinear shape transfor-

mations including bilinear, quadratic, cubic, bi-quadratic and bi-cubic models.

Finally, the proposed entropy-reduced transformation, i.e. nonlinear shape
restoration using the inverse nonlinear shape transformation algorithms will be

described in section 6.6.

The material of this chapter will appear in [Tang90].
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6.2 NONLINEAR DISTORTION

Definition 6.1

Let , =(W?*, Py?®, Hy®) represent an entropy space of the standard
data set and Q; = (W ¢, Py, Hy®) stand for an entropy space of the dis-
torted data set. Let W;® be a standard pattern in W*, and W; 4 be a distorted
pattern of W,;®in W ¢, This means that W, ¢ is a mapping of pattern W; ® from

space {1, into {2;:
Wi=F, W (6.)

We will call F,; the distortion transformation if the conditions of entropy-

increased transformation according to Eqs.(4.4a) and (4.4c) are satisfied in Fg; .

Definition 6.2

In Eq. (6.1), the distortion on the pattern W; 4 will be called bilinear distor-

tion if F; is a bilinear transformation.

Definition 6.3

In Eq. (6.1), the distortion on the pattern W; ¢ will be called quadratic distor-

tion if F,, is a quadratic transformation.

Definition 6.4
In Eq. (6.1), the distortion on the pattern W; ¢ will be called bi-quadratic dis-

tortion if F,; is a bi-quadratic transformation.



- 161 -

Definition 6.5

In Eq. (6.1), the distortion on the pattern W; 4 will be called cubic distortion

if F,q is a cubic transformation.

Definition 6.6

In Eq. (6.1), the distortion on the pattern W; 4 will be called bi-cubic distor-

tion if Fyq is a bi-cubic transformation.

In order to overcome nonlinear distortion, we have to discuss the correspond-
ing transformation. In chapter 4, the basic concept of bilinear, quadratic, cubic,
bi-quadratic and bi-cubic transformations has been introduced. Here we will
describe several algorithms with details. They can be employed in the area of
computer vision, robot vision and the recognition of moving patterns to remove

the uncertainty produced by nonlinear shape distortions.
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6.3 BILINEAR TRANSFORMATION ALGORITHMS

First, we will define some notations and terminologies commonly used in the

following sections.

The mathematical symbols are defined in the following list :

D¢ Element or cell;

P; The ¢** node in element D° ;

Py The middle node between the ' and j* nodes in ele-
ment D¢ ;

(& n) Coordinates representing the normalized image;

(X,Y) Coordinates representing the distorted image;

(Xp, Yp ) Coordinate value of node P;;

Fxy & e Entropy-reduced filter;

b, (P) Shape function which will be given in definition 6.7;

AP;P;P, Reference triangle wh ~h will be described by definition
6.8.

OP;P; P, P Reference quadrilateral which will be described by

definition 6.9.

Now, let us define the most important function, that is shape function

¢ (P )of element D° :



=
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Definition 6.7

Let &; ( P; ) be a polynomial in element D¢, ¢ =1,2,. - -+ , p. We call
®; (P ) the shape function of clement D€, if the following conditions are
satisfied:

() $®(P)=1

je=1
(ii) Any polynomial ®; ( P ) in element D¢ has the value 1 in node P;

but takes the value O in the remaining p~1 nodes, i.e.
Q?,-(Pj)=6~. (1,7=12, - ,p)

The shape function ®; ( P ) can represent those functions related to coordinates
(X, Y )or (& 1)

With a view to discussing this method conveniently we will introduce several
useful terminologies : reference triangle, reference quadrilateral and reference

point.

Definition 6.8
Let A P,P,P, and A P,P,P; be two triangles in XOY and €07 respec-
tively as shown in Fig. 6.1. The following three pairs of points are one-to-one

correspondences in transformations:
! i ]
Py+=— P Py Py P3P,

We define A P, P,P,and A PP, P, as reference triangles.
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The corner points Py, Py, P3, Py, Py, Pg of the two triangles are called

the reference points.

Definition 6.9
Let O P,P,P3P,and O P,P, P3P, be two quadrilaterals in XOY and €07
respectively as shown in Fig. 6.2. Four pairs of points are one-to-one correspon-
dences in transformations.
P,+—— P, Py+— P, Pg+— Py P,+—P,
We define O P,P,P;P, and O P, P,P,P, as reference quadrilaterals. The
corner points Py, Py, Pg, P, P|, Py, P,, P, of the two quadrilaterals are

called the reference points.
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Fig. 6.1 Reference Triangles and Points

‘§ /
] ? o t
P4 P3
Pl' Pz'
o S n
0O —p-

Fig. 6.2 Reference Quadrangles and Points
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6.3.1 8-Coefficient Algorithm

In order to obtain the desired bilinear transformation

T:(&n)—(z,v9),

zg=f(&n),
y=9(&n),
we have to find the eight coefficients ¢, a;, - - r,s in the following equations
r=/[(&mn)
=ap&+apéntanntr,
y=9(&n)

(6.2a)

The easy way is to find eight special points in the two coordinate systems £05 and
XO0Y. Here we choose four pairs of special one-to-one mapping points in €07 and
XoY.

To simplify the computation without loss of generality, we let the reference
quadrilateral O P{PéP;;P; be a unit square in the standard coordinate system

£0n, and the coordinates of their reference points be:
P, =(00), P, =(10), P; =(1,1), P, =(0,1). (6.2b)
Based on Eqgs. (6.2a) and (6.2b), we can easily obtain the constants in the bil-
inear transformation :

r = “"Pl ]

ay =Xp,— Xp,,
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ag0 =Xp, — Xp, , (6.3a)
3T =.Xp1 + JYpa - )(p2 '—.Xp1 y

and

§ = Ypl y
bll = YPQ— YP]’
bos = Yp, — Yp, (6.3b)

In terms of Egs. (6.2a,b) and (6.3a,b), we have now established a bilinear

transformation

T:(&n)—=(z,9),

6.3.2 4-Node Quadrangle Algorithm

In the above algorithm, the eight coefficients must be found to establish a bil-
inear transformation. Here another algorithm is proposed, it is based on the
finite element principle [Haber78, Strang73, Zienki77, Martin73, Norrie73] which

does not need to solve for the coefficients.

The shape function ®; ( P ) can be taken in the following formulas in the

case of unit reference quadrangle.

¢ (&n)=(1—-€§)N1-n)

b, (&n)=€(1-1n)

b3 (& m)=¢nm (6.4)
¢ (&n)=(1-E)n

’
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Because the coordinates £ and # of ( §;, #; ) at node P; in standard coordinate
system have values 1 or 0, the shape function can be generalized to produce the

following formula :

&, =(—1) (€46 —1)n+m—1) (6.5)
(1=1,2,3,4).

From shape function ®; ( § 1) we can get the relation between the coordi-

nates of the distorted pattern and those of the standard one.

X=%% (&)X

fm=]
4
Y =% & (&) Yy, (6.62)
fm]
or
(I)](Eyn)
x| Xp, Xp, Xp, Xp,| [Po(Em)
r|= ’ ’ i q, (G.Bb)
1 Yp, Yp, Yp, Yp [ |P3(&m)
(b4(€v77)

Substituting Eq. (6.4) into Eq. (6.6b) results the following formula :

Xp, Ap,
X X,
X [1—5 g] 0 P TP~y
1 4
Yp, Yp,
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6.4 QUADRATIC AND BI-QUADRATIC ALGORITHMS

6.4.1 Quadratic Model ( 6-Node Triangle Algorithm )

Let the standard reference triangle A P, P,P, in £0n be non-degenerate,
and any point P,-I be the coordinates ( €, 17 ). We can find three area coordinates

A1s A, Ag ( see Fig. 6.3 ) such that [Wangl79, Li89c]

[5} €p, &p, &b, M

n NMp, Mp, Np,

and
N+tX+M=1. (6.8b)

When A P; P, P, is non-degenerate, the determinant

¢, €p, &b,
A= |np np, np, |=2Area AP PPy #0. (6.9)
1 1 1

Consequently, we can see

E E I 1 1
)\ 1 6 Fe Py Area APIP2P3 (6 O)
=— |7 np, np, |= =TT -10a
A Po "Ps ™ Area AP, P,P, ‘
LI B
§ € Do
N 1 P C P Area A P P; Pgy (6.10b)
=-~ |7 nn s |5 Tl ! ! .
PA | 1 ? Area A P{P,Py
1 1



Fig. 6.4 6 - Node Triangle
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1 poEpog Area AP/ PP,

= — 7) =
A |" " 1 |” Area APIP, P,
1 1

A

, (6.10¢)

Suppose that A P,P,P; is another reference triangle in X0Y, whose vertices

( i.e., the reference points ) correspond to those of the standard triangle
A PP, P; under the transformation T, that is

P,«—P; Py+——P, P3+——P; (6.11)

Also we assume that A P,P,P3 is non-degenerate, then we can establish the fol-

low ng transformation [Wangl79] :

X Xp, Xp, Xp, i‘

r —3 r r n ’ 6-12

1 Yp, Yp, Yp, 2 (6.12)
A3

Besides Eq. (6.12), we can establish the gnadratic models based on the princi-
ple of finite elements [Haber78, Strang73, Zienki77, Martin73, Norrie73]. Denote
the midpoints of the boundaries P{Pé , PéPé . PéP{ by the reference points
Pi,, Pag, P3,. Accompanied with Eq. (6.11), we also assume the one-to-one rela-

tions (Fig. 6.4)
P12"——"P{2 st‘_"’les P31""—"P:;1 (6.13)

where Py, Py3, Pg; are the reference midpoints on the boundaries PP, P,Pj,
P3P,. Hence, the shape function ®; ( P ) can be represented in the following for-

mulas from the isoparameters element.
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=2 (N —5) (i=1,23);

From shape function ®; ( €, n ) we can get the relation between the coordi-

nates of the distorted pattern and those cf the standard one.

X=§‘I’.‘(€,77)XP.+ Y 0y (&) Xp,

fom] 1y=12,23,31
3

Y= ®(&n)Yp+ X &;(&n)Yp, (6.152)
1 ij=12,23,31

or
®,(&m)
Py(&,m)
[X Xp, Xp, Xp, Xp, Xp,, Xp,| | ®s(€m)
Y|T |Yp, Yp, Yp, Yp, Yp,, Yp, | [®ra(ém) (6.150)
$y3(€sm)
| a1 (6o7)
Substituting Eq. (6.14) into Eq. (6.15b) results the following formula :
i 1T i
Xp, Yp, N (2N —1)
Xp, Yp, M (2N —1)
X XPo Yf’a >‘3(2&3"'1)
Y] = |Xp, Yp, D, (6.16)
Xp, Yp, V9N
Xp, Yp, _ AN |

where A;, N\, A are given by Egs. (6.10a - 6.10c).
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6.4.2 Bi-quadratic Model ( 8-node Quadrangle Algorithm )

In 8-node method, eight nodes must be considered in each reference quadran-
gle. Apart from the four vertices P,, Py, Pz and P, of reference quadrangle
O P,P,P3P, , the middle points of each side, Py, Py3, P34 and P4 shown in
Fig. 6.5 are chosen. The choice of nodes in reference quadrangle of standard pat-

tern O P, P,P4 P, issimilar to reference quadrangle O P;P,P3P, .

Between the reference quadrangles O P,P,P3P, in coordinate system XO0Y
shown in Fig. 6.5 (a) and O P, P, P, P, in coordinate system £07 shown in Fig.
6.5 (b) there exists one-to-one mapping relation. To simplify the computation,
the standard reference quadrangle O P{P,P,P, is defined to satisly the follow-
ing condition :

0<E<1,0<n<1
shown in Fig.6.5(b).

The shape function ¢, ( P ) can be represented in the following formulas in

the case of unit reference quadrangle.

P (&n)=(1—-€)N1—-n)1—-26—27)

P (&n)=€(1—n)(26—-2n—-1)

Y3 (& n)=En(26+27~-3)

S (&m)=n(1-&)N2m—26—-1)
Pp(€n)=41-€)1—-1) (6.17)
Py (€n)=4En(1—1n)

Py (&)= 4En(1-§)

Pu(&n)=4dn(1-€)(1—n)
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From shape function ®; ( §, 7 ) we can get the relation between the coordi-

nates of the distorted pattern and those of the standard one.

X=38&(&m) X+ 5 & (60)Xp

i=1 ij=12,23,34,41
4
Y= % (&n)Yp+ X %5 (&n)Yp, (6.182)
iml ij=12,23,34,41
or
' ;
¢l(£an)
Po(&m)
$3(E,m)
[X] Xp, Xp, Xp, Xp, Xp, Xpy Xp,, Xp, | |®a(&m)
Y|T [Yp, Y, Yp, Yp, Yp, Yp, Yp, Yp, | |®1o(€m)
Py3(€m)
(1)34(6’77)
|P41(€:7) |
(6.18b)
Substituting Eq. (6.17) into Eq. (6.18b) results the following formula :
Xp, Yp,|” .
XPa ’p2 (1 - E)(l - 7])(1 - 26 - 277)
§(1 —n)(2§ — 29 —1)
Xp, Y,
ho b €n(2€ + 20— 3)
x| |Xr Yr, n(1 — €)(2n —2€ — 1) (6.19)
Y|© |Xp, Yp, 4§(1 — &)1 —n) '
Xp, Yp, 4€n(1 —n)
[ 4n(1 — €
Pu “Pul | 4n(1 = €)1 —n) ]
Xpy Yp,




o
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§
'
Py (01) Py P (11)
O O O
(o} P4i o} PZE«!
o o= O-
Py (0.0) P Py (1,0)

Fig. 6.5

8 - Node Quadrangle
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6.5 CUBIC AND BI-CUBIC ALGORITHMS

6.5.1 Cubic Model ( 9-Node Triangle Algorithm )

The standard reference triangle is given in Fig. 6.6 (a), where Pys, Pyq, are
located at one, two thirds on the side of P,P,, and so are Py, P, and
P, P4, on the other two sides. Let another reference element be given in Fig.

6.6 (b), and the relations of reference points be

i 1

Py =Py, Py — Py, Py +——7Py,
! D i

2a Pl’.’.a' P‘;’Sa ' P’.’lia‘ 1310 P-’ila'
] ! i

Proy == Py, Pogy «— Py, Py +—— Payy,

(6.20)

\We can get the shape function @, ( ) from isoparameter elements [Wangl79)

9 1 2 9
q)l:?kl(xl —?)(Xl_"{)_?xlx’l)‘l}

where A, are defined in Eqs. (6.10a-c¢),

From shape function ¢, ( £, 7 ) we ean again get the relation hetween the

coordinates of the distorted pattern and those of the standard one.

3
Y=Y ¢ (&n)Xp +

to]




2

1f=1223,31

2

1y =12,23,31

Y =% & (6&n)Yp +

=1

)3

ij=12,23,31

)Y

1j=12,2331

Substituting Eg. {6.21) into Eq. (6.22) results the following formula :

where

P (& m)Xp

- 177 -

s

P (& n)Xp,

b (& 1) YV

e

[51)

-

] ]

+

2750 (N

275 (0,

o7
2‘ AoNg (Ao

27

Mg (s

27
S (N

27

;XSXI (>‘l

My =1/3) (M —2/3)— 4
M (ho=1/3) (A —2/3)—4

MNMha—=1/3)(X—-2/3)—4

—1/3)+B
—1/3)+B
~1/3)+B
—1/3)+ B
—1/3)+B

~1/3)+B

(6.23)
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6.6 REMOVAL OF NONLINEAR DISTORTIONS

To overcome nonlinear shape distortions including bilinear, quadratic, cubic,
bi-quadratic and bi-cubic distortions produced in image processing in the areas of
moving pattern recognition, computer vision and robot vision, we have come up
with a transformation based on entropy reduction. It uses the inverse nonlinear
shape transformation which will be described in this section. In the previous sec-
tions, we have mathematically formulated the nonlinear shape distortions in the
nonlinear shape transformations. Due to nonlinear shape transformation, a stan-
dard image is distorted and produces a variety of images with different shapes.
This means that the uncertainty of patterns to be recognized is increased. On this
ground, the nonlinear shape transformation is called a kind of entropy-increased
transformation. According to theorem .1, their inverse transformation can be
used as an entropy-reduced transformation. Hence the inverse shape transforma-

tion is a suitable candidate for removing the nonlinear shape distortions.

6.6.1 Inverse Shape Transformation

Once the transformation T has been established, its inverse transformation
T~} can be obtained easily from the Newton iteration method provided that the
transformation T is one-to-one correspondence, i.e., |J | # O is satisfied. The
Newton method converges quickly for a good initial approximation [Ortega?0,
Hagema81]. On the other hand, if the Newton method is convergent, |J| #0

must hold true. Besides, the signs of |J | can be evaluated easily during the itera-
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tion procedure.

As an example of inverse transformation, we discuss the bilinear shape
transformation in some details in this chapter. The Newton iteration method is
not only a powerful tool for bilinear inverse transformation but also for other
nonlinear inverse transformations as well, such as quadratie, cubie, bi-quadratic
and bi-cubic inverse transformations. In case of the bilinear one, there is also a
simpler snethod - the quadratic equation method, We will discuss these two
methods below,

Neveral interestine experimental results of Bilinear, bi-quadratic and bi-eubie

inverse shape transformations will be given in this section,

6.6.1.1 Newton Iteration Algorithm
The inverse algorithin of bilinear transformntion using the Newton itoration
method enn be peadized in three <repa:

Step 1: Choose the referenee ondrangle O P PPy asin Fig, 6.2, and O
Popparyseonves and nonsdegenerate, their O P PP P vertiee
heing cne-tomone:

Ntep 2 The positive teape formation T ic establiched by the constants piver

i kg (6.3

-

Step 3 Forany point ¢ XYY 0gin XoY Cthe eorreponding poant « £ )i

(631 ean be obtained by the Newton Tterating Nt

/ARLEy Ay B Ny A e R ) ) o0,
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73]

and ﬁ(") is the residual error vector :

where

Ry =7r) _ T (&), pin)y, (6.26a)

and

n) n) pln)y _
on) rf [f(f( cnm)) :r] (6.26)

R = rén) =

Choose an initial approximation Z{© |, and perform the iteration

(6.25) until the errors
3+ =) ] < e

where the norm |9 || = (€2 + #*)"* , and ¢ is a small number. e.g..

e = 1078,

More concretely, take the bilinear model as an example, we have

a”-l-awn(") 022+012€(n)
buy + byon(™) bgg + b€ |

.,
o

3
N
i

ri") P“n ay “22] &

611 b2 boo

r —I
[y Y
s —yl| (6.28)

Substituting Egs. (6.27) and (6.28) into Eq. (6.25) results the following formula:
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6('8-0-1) rg(n)
g+t = ."(,,) -
[ 1-1
Ayt @l ag +aggn)
b” + bl‘.’”(n) bg-_) +b12€(")
Ty Ap2 A2 &) r—r
byy bro b grlafmi+ s —y (6.29)
a O ) i

Itis known from [Ortega70. HagemaS1-1] that when the determinant of J is
not zero and the initial value €9 ' i< approximate, the Newton [teration
Pl

Method (6.25 or 6.20) is convergent,

6.6.1.2 Quadratic Equation Algorithm

The Newton method is valid for all nonlinear models deseribed in this
chapter. In this sections we will fntroduee w <impler methad @ the quadratic equa-
tion method. Tt will be <uitable for the Lilinear model,

In this method, the firmt and <ceond <tops are the <ame as the Newton jtern-
tion methods bt the third ctep is different o <alving o quadreatic equation. Let us

introdues <tep 3 by the cubeteps given bolow,

Substep 1

We have from Fq. (6.24)

N —fa,,n+r) _
£ = - a, +a,,nes0 (6 30}
ay + a0
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Substep 2 :

Substituting (6.30) into (6.2a) yields a quadratic equation
am”+bn+c=0 (6.31a)

where the coeflicients are

bog  bys
a = ay ay | (6.31b)
bog by s —Y bp -
b= @y 4ay +lr-x ap, |’ (6.31c)
s —Y by !
c=lr—x ay | (6.31d)
Substep 3 :
If a =0, we have
c
N=— -, 6.32
] 3 (6.32a)
otherwise
ny = [_bi(b2—4ac)""'~’]/2a. (6.32h)

When Eq. (4.17) holds, the one-to-one property of T guarantees the existence
of the solutions 74 in Eq. (6.32). We note that only one of 7, and n_ is accept-
able. Then the solution of £ is obtained from Eq. (6.30). The solutions of neigh-

bour pixels ( £°,° ) can be employed to choose either 7, or 7_ as the solution.
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6.6.1.3 Experimental Results

Fig. 6.8 illustrates the results of inverse bilinear shape transformation which
normalizes the distorted images with different shape funections into a standard
one,  The results for both the bi-quadratic and bi-cubic inverse shape transforma-

tions are presented in Figs. 6.9 and 6.10 respectively.




-187-

Fig. 6.8 Examples of Inverse Bilinear Shape Transformation
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Fig. 6.9 Examples of Inverse Bi-quadratic Shape Transformation
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6.6.2 Entropy-Reduced Transformation for Nonlinear Shape Distortion

From Egs. (6.2), (6.25) or (6.30 - 6.32), an inverse bilinear transformation has
been achieved. We call it entropy-reduced transformation or entropy-reduced

filter, specifically bilinear distortion filter F )?1[;-—’67)’ such that :

X
H — Pl [Y] (6:33)

From Eq. (6.33) we can see that a distorted image passes through the filter
F ){3{%_,&7 , its bilinear distortion will be filtered away to produce a standard image.
The images with various bilinear distortions can be normalized into a standard
one by use of the bilinear filter with different parameters. That means the
entropy has fallen down. For example, given a £}, = (W1, Py, Hy!), such that
Wh={z | i =1234; j=12..8}
Py(zl)=1/(4X8)=1/2" i=1234; 7=12,...8,

Hy'= =330 / 2%) log (1 / 2%)
k=1

where the superscript ¢ represents the different shapes due to the bilinear distor-

tion of the pattern samples and the subscript j represents the class of the pattern

samples. That means z! is similar to x{ except the distortion. Next, let us

denote le as a standard pattern sample. Now we select all the elements z],

J

(7 =1,2,....8) in W1 as the reference set W©° That is
Wl={z! |j=12..8}
Pyozl)=1/8=1/2% j=12..8,

Hy®=—37(1 /2% log (1 2%).

J=1
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We define F , as follows

] 1 ! =
z; if T} =,

Fffagq of if af # 2.

1.
Fio(s)) =

This means that F,, groups four elements in the W! into one cluster which

corresponds to one element in W ¢, whereby

| Fio(W?) [=1w?°].

On the other hand,

1
25

; 1
Pp wy(Fo? (W1)) = 4X =

leo( W‘) = HWo’

Therefore F,; is an ERT. From this point of view we can see this filter belongs

to one kind of entropy-reduced transformation.



CHAPTER 7.

DESIGNING PATTERN RECOGNITION SYSTEM
BY MLIS AND ERT MODELS

7.1 INTRODUCTION

To demonstrate the application of the multiple-level information source
(MLIS) and the entropy-reduced transformation (ERT) models for the design of

practical pattern recognition system, two examples are presented in this chapter.

In the first example, a recognition system identifying the complex data set
which includes Chinese characters and English letters with size and orientation
problems has been designed. Some experimental results have been given

[Tang88c, 89a, Quss|.

A design for the system to recognize the object with perspective projection
distortion in the computer vision. robot vision., and motion has been presented in

the second example.

A approximate method which treats the perspective projection distortion as a
bilinear or bi-quadratic or bi-cubic distortion has L.cen presented in this chapter

also.
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7.2 RECOGNITION SYSTEM FOR COMPLEX DATA SET

7.2.1 Description

Our task is to design an integrated character discriminator. The major user’s
requirements are as follows. The target data set to be recognized includes 3200
Chinese characters, 52 Roman letters ( 26 uppercase plus 26 lowercase letters ),
and 10 numerals. Due to the necessity to process real life samples like those
shown in Figs. 7.1 and 7.2, all Chinese characters, Roman letters, and numerals
are allowed to have 10 different sizes plus a rotation of o degrees, where a = 1°,
2°,...,360°. The Chinese character set is also allowed to have the 3 major fonts,
Kai, Song and Bold. The input transducer is a MICROTEX - MS - 200 data cap-

ture system.

7.2.2 Analysis

(1) Intrinsic characteristics in the first level of information source IS1 :
(i) 10 sizes : for the j-th size, j = 1, 2, ..., 10 we have | W% | = (13200 X
3452 +10 ) X 360.
(ii) 360 rotation directions : for the j-th direction, j = 1, 2, ..., 360 , we
have | W™ | = (3200 X3 + 52 + 10 ) X 10.

(iii) 3 fonts for Chinese characters : for the j-th font, j = 1, 2, 3, we have

| W/ | = (3200 + 52+ 10) X 10 X 360.
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If each size or direction variation is treated as a variable, this target pattern
set will be a huge data set totalling more than ten million pattern samples (
(3200 X 3 + 62) X 10 X 360 = 34,783,200 = 3.5 X 107 ). The uncertainty of
this set comes up to about 25 bits if all the pattern samples with apriori probabil-
ity are counted. Such variations will make all the existing methods suitable for

single category data set either out of function or very inefficient.

(2) Feature Extraction IS4 :
It is hard to find a method suitable for both size variation and rotation vari-
ation. These variations have to be handled separately.

(3) Noise : can be omitted.

7.2.3 Design

Based on the analysis above, the architecture of the discriminator has been
designed as presented in Fig. 7.3. Here, a block diagram of the whole system is
shown, detailed design of each subsystem are presented in references [Li89c,

Tang88a, b, Wangq84, 85].
By using Algorithm 3.1.
Step-1 We don't need to decompose U.

Step-2 We select W 9 such that it contains only 3200-+62 samples wivh a stan-

dard size (one of 10 sizes is selected as the standard size).

Step-3  First we consider the complex data set to be composed of 10 distinct sub-




Step-4

Step-5

Step-6
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sets. Each subset contains all the samples with the same size. For each

subset W %/, we define a linear transformation as follows

X D/dJ 0 :L‘j
Y 0 DJd;| |y

where ( X, Y ) are the new coordinates of a point for a pattern sample

with the standard size, ( z;,y; ) are the coordinates of a point for a pat-
tern sample with size j, D is the standard size, d; stands for size j, j =
1,2,...,10. This is our Fj0~ After this the uncertainty of the original com-
plex data set has been reduced to the level of that of a set having
(3200 + 62) X 360 possible pattern samples.

Because all the W % s are disjoint we use the operation Vp to connect
all Fjo's. That is our F; = FoVpFooVp - - - VpF o These opera-
tions have reduced the uncertainty by about 3.32 bits.

A font selector Fp, which is based on the use of a Statistical Equivalent
Block ( SEB ) classifier shown in Fig. 7.4, is employed to recognize
different fonts F;, F, and F3 [Wangq85|. This further reduces the

entropy by about 1.59 bits.

Then a rotation-invariant transformation (RIT) defined in [Tang88b] is
applied to cluster all 360 rotations (an increment of 1 degree each time)
of a pattern sample into a unique reference pattern sample which belongs
to the reference set W0 That is our F is a rotation-invariant transfor-

mation. In this subsystem, the entropy has been decreased by another
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8.48 bits. Hence by now the uncertainty of the complex data set has

been reduced to the level of that of W?, i.e. about 11.7 bits.

Step-7  After all these 4 operations listed above, we can now apply the tree-like
discriminator F, [Tang84, Wangq84], which is suitable only for the
recognition of a data set of standard size, single font and without rota-

tion.

Simulation of the above design has been tried on a CYBER-835 computer.
The experimental results shown in the Table 7.1 fully support our theoretical

predictions.
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Table 7.1  Recognition Results
3262 Characters 3262 Characters
Tree Models with Different with Single
Fonts, Sizes Font, Size,
and Rotations without Rotation
Error Rate 1.5 % 14 %
Search I* Recognition Rate | 97.9 % 98.6 %
Speed 945 / sec. 958 / sec.
Error Rate 0.140 % 0.113 %
Search II* Rejection Rate 0.010 % 0.006 %
Recognition Rate | 99.85 % 99.88 %
Speed 868 / sec. 873 / sec.

* The details of Search I and II are in reference [Wangq84].
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7.3 RECOGNITION SYSTEM FOR COMPUTER VISION

This task is to design a recognition system for a distorted pattern set in a
computer vision system. The video camera is the most common producer to cap-
ture the input data in computer vision system. One of the common uncertainties
is shape distortion produced by the data acquisition system. These perspective
projections can be regarded as nonlinear shape distortion, and under some condi-
tions the perspective distortion can be either bilinear or bi-quadratic or bi-cubie,

ete,

7.3.1 Perspective Projection Distortion in Computer vision system

An obvious example is the problem associated with the scanning of an object
at an oblique angle. In the scanning system shown in Fig. 7.5, if the angle a
between the camera and that of the direction of object to be scanned is 90°, it
produces a standard digitized image as shown in Fig. 7.5(a), which can be easily
identified by computer. However it is often a practical situation that this ideal
set up condition can not be guaranteed ( i.e. usually the angle a is not 90° ).
Consequently nonlinear distortion occurs. As a practical example, a document

scanned by a camera at an oblique angle is illustrated in Fig. 7.5(b).
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——1

Fig. 7.6 An Example of Motion Pattern

Fig.7.7 Space-Variant Motion Degradation
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Another example is problems associated with the motion patterns. When the
object, for instance, a plate with square shape, revolves around an axis shown in
Fig. 7.6, the image of the object is degraded, it is called space-variant motion
degradation [Sawchu72]. The results are shown in Fig. 7.7. The distortions in

the above examples are called perspective projection shape distortions.

7.3.1.1 Perspective Projection

Let us consider a perspective projection as shown in Fig. 7.8, we project
points along projection lines that meet at the center of projection. In the case of
Fig. 7.8, the center of projection is on the negative Z axis at a distance D behind
the projection plane. Any position can be selected for the center of projection,

but choosing a position along the Z axis simplifies the calculations.

The transformation equation for a perspective projection from the parametric
equations describing the projection line from point P(X,Y,Z) to the center of
projection can be obtained [Hearn86]. The parametric form for the projection line
in Fig. 7.8 can be expressed below:

a=X-X¢6
B=Y—-Y$ (7.1)
Yy=Z2—-(Z+D)¢
where parameter § takes values 0 ~ 1, and coordinates ( @, f, 7 ) represent any
position along the projection line. When § =0, Egs. (7.1) yield a point at the

object coordinates ( X, Y, Z ). At the other end of the value 6 =1, and Egs.
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(7.1) yield a point at the center of projection of coordinates ( 0,0, — D ). To get

the coordinates on the projection plane, let v = 0 and solve for parameter §:

7
Z+D
This value for parameter § produces the intersection of the projection line with

§= (7.2)

the projection plane at ( Xp, Yp,0). Substituting Eq. (7.2) into Egs. (7.1), we

obtain the perspective transformation equations

P =X (——)

Z
-b-'i‘l
1
Yp=Y(—7—) (7.3)
Z 41
D
Zp=0

For further discussions of transformations based on the viewing angle see refer-

ences [Blinn78, Cyrus78, Foley82, Liang83, Michen80, Pavlid82, Salmon87).

7.3.1.2 Approximation of Perspective Transformation

Even though the perspective transformations are not bilinear, or bi-quadratic,
or bi-cubic models, under some circumstances they can be regarded as approxima-

tions of the latter ones.

Theorem 7.1

The perspective transformation according to Eq. (7.3) is a bilinear model if
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the following condition is satisfied:

Z<<D. (7.4)

The proof of this theorem can be found in reference [Tang90].

According to this approximation, we may tackle perspective distortion as a

bilinear one, and restore it using an inverse bilinear algorithm.

Apart from bilinear shape distortion, both the bi-quadratic and bi-cubic
shape distortions are encountered frequently. As shown in Fig. 7.9, the trade
mark " Coke " is printed on its cylindrical surface of the Coca-cola bottle. Due to
the cylindrical shape of the bottle, the trade mark has been changed from a square
into a quadrangle with quadratic curve. This kind of shape distortion can be
regarded as bi-quadratic distortion if Eq. (7.4) is satisfied. An example of bi-cubic
shape distortion is given in Fig. 7.10. The shape of the pages in an open book

have undergone distortion with cubic curve. See reference [Li89c] for details.
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Fig. 7.8 Perspective Projection




-209-

-

M I hhhIhIN|N

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
N

N

o
%//////////////////////////////////////////////////////////////%

Fig. 7.9 Bi-quadratic Model Approach for Perspective Projection



-210-

7

2

N\

N\

Fig. 7.10 Bi-cubic Model Approach for Perspective Projection




-211 -

7.3.2 Description

As shown in Fig. 7.11, the target data set to be recognized is similar to the
previous example. Additionally, a video camera data capture system CHORUS
DATA SYSTEM CA-1600U has been employed in our experiment (Fig. 7.12), it is
required that the angle of photograph capture has no restriction. Another
assumption is that there are two kinds of physical geometric entities on which the
characters appear : planar and cylindrical surfaces and the transducer distortion

occurs as shown in Fig. 7.13.

7.3.3 Analysis

The uncertainty in IS1 and IS4 is as same as Section 7.2.3. Additionally, it
is necessary to consider the photograph scanning distortion in IS2. As mentioned
in the previous chapters the capture of a picture taken at an oblique angle can

produce infinite uncertainty.

7.3.4 Design

The architecture of this system has been designed as shown in Fig. 7.14. This
is a cascade system. The first cascade is the camera system Fg which captures the
physical samples. The second cascade Fp is a parallel component which is used to
filter out various distortions due to the camera being placed at an oblique angle in
the first level of MLIS, i.e. IS1. Consequently,
Fp = Fiitinear VP Fiiquadratic VP Fpass- The details of the principle of Fijinq,

and Fy;_ 4usdratic have been presented in the above chapter. Here we only describe
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the working principle of the switch Sp, which is presented as an algorithm as fol-

lows.

Algorithm 7.1

Step-1 Choose eight reference points as indicated in Fig. 7.15. The i-th point is

denoted by (X; Y;),i=1,2,..,8.
Step-2 Initialize the line equations :

Ly + y =y =k(z — )

where

ky=(ys— 1)/ (25 — z4),

ko= (y6 — ¥2) / (z6 — 72);
k3= (y7 —ys) / (z7 — z3),
ky=(ys—y4) [ (28 — 24)
ks=(yo—ys) / (z2 — 7s),
ke = (y3— ye) / (23— T6)s
ky=(y4~y7) [ (24— 77),
ks =(y1— ys) / (z; — zg).

Siep-3 if (k; = ks) and (k, = k¢) and (k3 = k) and (k4 = kg)
then if (k,k, = —1) and (k3k, = —1)
then goto F,,,
else goto Fyincar

else goto Fiy;_ ysdratic

According to algorithm 7.1 the switch Sp selects automatically an appropriate




-213 -

entropy-reduced filter either Fyyieq, OF Fyi_guagratic OF just pass through Fi,,
doing nothing. Fig. 7.16 shows the experimental results of passing entropy-

reduced filters Fin.qr 20d Fyi_oyadratic TESPECEIVELY.

After second cascade Fp, we arrive at the position to deal with the intrinsic
characteristics which appear in the first level of MLIS (IS1). This is completed by
the third cascade F';. To solve the orientation problem, the fourth cascade Fj in
our system is used. This is a rotation-invariant feature extraction approach. It
clusters all 360 kinds (an increment of one degree per kind) of rotations of a pat-
tern sample into a unique reference pattern sample, which belongs to the reference

set WO, This data set has about 11.7 bits of uncertainty.

After all the above operations, we can now apply the tree-like discriminator

F. At last we achieve the required system design as shown in the Fig. 7.14.
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CHAPTER 8

CONCLUSIONS

In contrast with the single-level information source model of classical infor-
mation theory, MLIS allows us to address all the different factors which increase
the entropy in the entire pattern recognition system. As a result, a complete and
practical model for a pattern recognition system can be developed efficiently.
Generally speaking, although the number of levels in an MLIS formed by a pat-
tern recognition system is problem-oriented, the intrinsic distortions and those due
to other factors should preferably be handled at different levels, because the stra-
tegies needed to tackle them are different. For example, by using some known
knowledge about the relationships among the elements of the target pattern set,
e.g. the size, it has been shown that the use of MLIS can reduce quite efficiently a
lot of entropy due to the intrinsic characteristics. Then the orthogonal transfor-
mation theory, which is generally thought to have no direct relationship with pat-
tern recognition. can be used to solve some severe entropy addition problems due

to either the transducer or its movements.

The process of pattern recognition system can be considered as a task which
transforms an entropy-increased MLIS into an entropy-reduced one. Although the
methods to implement the entropyv-reduced tran<formations wt the different levels

may be totally different. they can be combined by udng the caseade and paralle)
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properties of the ERT model, a complete system can be built. It acts as a guide
to provide a set of problem-oriented solutions for the design of an application-
oriented system. This thesis shows that MLIS provides a systematic way to

design a pattern recognition system based on the ERT approach.

In this thesis we present two examples of designing the integrated discrimina-
tor, which includes many interesting practical engii eering algorithms. The experi-
mental results support the theory developed for MLIS and ERT and indicate that
they provide an efficient way to solve many difficult problems. The results also
indicate that, similar to other information processing systems, entropy reduction
plays a major role in every stage of a pattern recognition system. Based on this
principle and the use of MLIS and ERT models we may develop other new and

efficient methods to tackle more complicated problems.

Image transformation is one of the most important entropy transformations.
It has two completely different characteristics: entropy increased and reduced
characteristics. Both of these properties are commonly used in image processing
and pattern recognition. One of which uses the entropy increased property to
produce a variety of samples from a given pattern for different purposes, e.g. it
can produce test samples to measure the performance of a proposed or existing
image processing system, and to train and test a classification system. By using
an appropriate transformation, we can produce a huge number of test samples in
a very short time. This can not be done using hand drawings without a great

deal of eflort. The other one is the use of the entropy reduced property to per-
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form image normalization which plays a major role in pattern matching.

In this thesis, some new algorithms have been proposed. These algorithms
can perform the mapping and filling at the same time while preserving the connec-
tivities of the original image. In the proposed algorithms, there is no need to dis-
tinguish the boundary and the inside pixels and to compute the direction of the
boundary, resulting in not only a speed up in computation, but also a more mean-
ingful and accurate filling process. The proposed algorithms have no difficulty in
dealing with some long narrow objects. Also the order in which rotation and scal-
ing are done has minimal effect on the transformation results. Accordingly, they
can handle multi-boundary and complicated images. The principai idea of the
proposed algorithms can also be extended to process three-dimensional and gray

level images.

The essential parallelism of the proposed algorithms makes them easy to be
implemented by using VLSI architectures. The structure of each PE has been dis-
cussed in [Cheng89, 90]. The time complexity will be O(N) for the proposed VLSI
architectures and it will be O(N?) for the uniprocessor, where N is the dimension
of the image. The proposed algorithms and their VLSI implementation can be
applied in real-time image processing, pattern recognition and related areas.

It is necessary to emphasize that the image transformation presented in this
thesis is our primary work, and that the our recent development of this topic
appears in references [Li89a, b, ¢, 60a]. [Li89¢] deals with the subject of

geometric transformations of digitized images and patterns by computers to
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develop systematically various shape models and discrete techniques, in particular
for picture processing and pattern recognition. Transformations discussed in this
book include linear, quadratic, cubic, bilinear, bi-quadratic, bi-cubiec, Coons
models and other nonlinear forms such as harmonic and perspective transforma-
tions. They can be used in computer graphics, character recognition, pattern
recognition, computer vision and image processing. In [Li90a], a new discrete
technique for the realization of nonlinear shape transformation is developed. The
Splitting-Shooting method is developed to avoid superfluous holes or "measles" in

the transformed images. Error analysis and graphical experiments are presented.

Variance of size and orientation is one of the common intrinsic uncertainties
in the pattern recognition system. To solve this most challenging problem in pat-
tern recognition, this thesis proposes a new method called Transformation-Ring-
Projection (TRP). The basic operations have been carefully designed so that the
proposed algorithm is very simple and regular. In this method, image transforma-
tion technique and the Ring-Projection scheme have been employed. As a result,
the parallel processing and VLSI technology can be used to speed up the computa-
tion [Tang89b). This work is highly significant because invariance in size and
rotation will greatly facilitate pattern recognition especially for texts which are
embedded in graphics. Character readers with such capabilities would find many
applications in office automation, computer aided design, electronic publishing,

ete.

Nonlinear shape distortions produce a considerable uncertainty in computer
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vision, robot vision and recognition of motion. The correction of these distortions
is one of the most difficuit and challenging topics. This thesis uses the shape
transformation theory [Li89c] which includes vilinear, quadratic and cubic
transformations to model the nonlinear shape distortiun problems. Some useful
algorithms have been presented. It is worth pointing out that inverse shape
transformations are powerful and useful tools which can be used in nonlinear res-
torations. Nevertheless, by using all existing approaches, inverse transformations
are difficult to realize due to the necessity of solving nonlinear equations which
often produce multiple solutions. In references [Li88b, 89c], we provide new
efficient methods to carry out inverse transformations which bypass the need to
solve nonlinear equations. A method called the Splitting-Integrating method is
developed for this purpose. Furthermore, a combination CSIM in particular, is

designed for a study of the cycle conversion T ™! T of images and patterns.
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