INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6™ x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

®

800-521-0600

Signal Estimation Techniques Using Lp-Norm
Optimal Stack Filters with Applications to

Image and Video Processing

Cristian Emanuel Savin

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfilment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University

Montréal, Québec, Canada

July 1997

© Cristian Emanuel Savin, 1997

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et .
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
Our file Notre réfdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protege cette theése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-c1 ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-39787-4

ABSTRACT

Signal Estimation Techniques Using Lp-Norm
Optimal Stack Filters with Applications to
Image and Video Processing

Cristian Emanuel Savin, Ph.D.

Concordia University , 1997

The class of median-related operators called the stack filters are well-known for
outperforming linear filtering in many applications which involve restoration of signals
corrupted with impulsive noise, when sharp edges are to be preserved. Various subclasses
of stack filters, such as the rank order operators and the weighted median filters, show a
great deal of promise in finding commercial applications in image processing and image
sequence filtering for advanced television systems. Moreover, the stack filters being closely
related to morphological signal processing, the theory of their design and implementation
constitutes a very attractive framework for the development of algorithms for low-level
machine vision. This thesis, therefore, is concerned with the problems of efficient design
and implementation of stack filters. The focus is on exploring the possibility of using the
L, norm optimality criterion for the design of stack filters, and on the development of
hardware-oriented algorithms for the implementation of these filters.

The problem of designing optimal stack filters by employing a general objective
function given as the L, norm of the error between the desired signal and the estimated
one is addressed. This design problem is formulated as an optimization problem, in which
a positive Boolean function is determined such that the L, norm of the error in signal
estimation using stack filters is minimized. It is shown that the L, norm can be expressed

as a linear combination of the responses of the positive Boolean function to all possible

binary input vectors. Based on this error formulation, it is established that an Ly-norm
optimal stack filter can be determined as the solution of a linear program. It is shown
that for the specific problem of restoring images corrupted with impulsive noise, the L,-
optimal stack filters with p > 2 are capable of removing the noise much more effectively
and provide a better visual performance than achieved by the conventional minimum mean
absolute error stack filters.

The time-area complexities of the conventional parallel and bit-serial algorithms for
stack filtering depend on the number of grey levels of an input image (signal). In this thesis,
two new hardware-oriented algorithms for multidimensional stack filtering, for which the
time-area complexity depends on the size of the filter, are developed. The new algorithms
achieve significantly increased computational efficiency compared to the conventional al-
gorithms for stack filtering by evaluating the Boolean function at thresholds corresponding
to the sample-values within the filter-window and by taking advantage of the fact that,
in most image processing applications, many pixels appearing in a filter-window assume
non-distinct values. In one algorithm, the output of the filter is determined iteratively
by employing a divide-and-conquer strategy. This strategy is based on successively parti-
tioning the filter window into two sets with elements larger and smaller than the current
threshold level, respectively. The other algorithm uses a binary tree search method for
stack filtering in conjunction with a technique of compressing the dynamic range of the
window samples.

Motivated by the fact that in typical images, the details of the scene are locally
situated, a hardware-oriented design and implementation of locally optimal mean absolute

error rank order filters is developed and applied to the problem of intrafield deinterlacing

of video signals.

iii

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my supervisors, Dr. M. Omair Ahmad
and Dr. M.N.S. Swamy, for their guidance, support and encouragement, that made this
research possible. I am also grateful for their inspiration during the course of this work,
as well as for their careful and critical review of my thesis. I am also thankful to all
the members of the examination committee, Dr. A. Antoniou, Dr. T. Fancott, Dr.
E.L. Plotkin, Dr. A.K. Elhakeem and Dr. Y. Wang, for their valuable comments and
suggestions.

I would also like to express my profound gratitude to my parents, for their love and
dedication in shaping up my life. I owe special thanks to my wife, Daniela, and to my son,
George, for their patience and understanding for the entire period of this research.

Many thanks are due to all my close relatives and friends for their help, advice and

encouragement.

iv

TABLE OF CONTENTS

LISTOF FIGURES i,
LIST OF TABLESt .

1 Introduction

L1 General
1.2 An Overview of Rank Order Based Filtering
1.3 Scope and Organization of the Thesis _.........

2 Stack Filter Theory

21 Background,
2.1.1 Positive Boolean Functions
2.1.2 Stacking Property of Boolean Filters

2.2 Definition of a Stack Filter

2.3 Multilevel Representation of Stack Filters

2.4 Generalized Stack Filters

2.5 Minimum MAE Design of Stack Filters.
2.5.1 Derivation of a Binary-Level Expression for the MAE
2.5.2 Derivation of an LP to Find an MMAE Stack Filter

2.6 Parallel and Bit-Serial Architectures for Stack Filtering
2.7 Input Compression-Based Architectures

2.8 SUMMATY ottt e e e e e e e e

3 L, Norm Design of Stack Filters

3.1 Background and Notations.

3.2 MSE Optimal Stack Filtering
3.3 Ly Norm Design of Stack Filters
3.4 Formulation of the Minimax Design Problem
3.5 Design of Weighted Order Statistic Filters

3.5.1 Definition of a WOS Filter

3.5.2 L, Norm Design of WOS Filters
3.6 Experimental Investigation
3.7 Summary e e e e

A Bit-Serial Window-Partitioning Algorithm for Stack Filtering
4.1 Proposed Algorithm

4.2 An Architecture Suitable for Hardware Implementation of the

Proposed BSWP Algorithm
4.3 Complexity Analysis of the BSWP Algorithm
44 SUMMATYt e e e e e e e e e e

A New Compression-Based Algorithm and Architecture for

2-D Stack Filtering
5.1 The WSC Transformation
5.1.1 A Hardware Architecture for the WSC Transformation
5.1.2 Complexity Analysis of the WSC Hardware Algorithm
5.2 A WSC-Based BTS Algorithm
5.3 Architecture for the WSC-Based BTS Algorithm
5.4 A Pipelined Architecture for the WSC-Based BTS Algorithm
5.5 Complexity Analysis of the Pipelined WSC-Based BTS Architecture
5.6 Experimental Investigation
5.7 Further Discussion on the WSC-BTS and BSWP Architectures
5.8 Summary e,

vi

74
76

6 Design of Locally Optimal Rank Order Filters and Its Application to
Deinterlacing Problems 105
6.1 An Algorithm for the MAE Design of Locally Optimal Rank Order Filters . 106

6.2 An Architecture for the MAE Design of Locally Optimal ROFs 108
6.3 Application to the Deinterlacing of Video Signals 112
6.4 Summary e 115
7 Conclusion 116
7.1 Concluding Remarks, 116
7.2 Scope for Future Investigation 118
References e 121
Appendices e e 132
A Listing of Matlab Program to Determine the L, Norm 132

B Listing of the Function to Generate Boundary Conditions for Images 136

C Listing of the Function to Verify the Correctness of the Program for
L, Norm 139

D Listing of Matlab Program to Implement the BSWP Algorithm 143

vil

Fig.

Fig.

Fig.

Fig. 2.7:

. 2.1

ig. 2.2:

. 2.3:

2.4:

2.6:

LIST OF FIGURES

Stacking diagram of the Boolean filter f(z¢, z1,z2,Z3) = z; + ZoZ2 + Z273,
where a shaded ellipse representing a binary vector b; signifies that f(b;) =
1, and an unshaded ellipse indicates that f(b;) =0..
An example of a stack filter performing median filtering. (a) A median
filter of size M=3 operating on a multilevel signal with L=8. (b) A stack
filter that performs the PBF operation corresponding to the median filtering
shownin (a).
An illustration of the correspondence between (a) the binary-level and (b)
the multilevel implementations of a stack filter as stated by Theorem 2.2 . .
An example of a generalized stack filter with M = 4 and I = 1 operating
on a multilevel signal with L=4.
An illustration of the procedure of signal estimation using optimal stack
filters. (a) Estimation of a desired signal S(n) using an optimal stack filter
Sy¢-. (b) Design of the MAE optimal PBF f~..
An illustration of the errors incurred between the desired and estimated
samples in a stack filter architecture, for the two possible cases (S(n) <
S(n) and S(n) > S(n)). (a) When the desired sample is greater than the
estimated one, the binary errors at the various threshold levels can assume
values of only 0 or 1. (b) When the desired sample is less than the estimated
one,theycanbeonlyOor-1.
Block diagram of a parallel architecture for stack filtering. Note that the
operation of “summation” of the binary outputs is implemented as a binary-

tree search for the level where the transition from 1 to 0 takes place.

viii

18

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

2.8:
2.9:

3.1:

3.2:

3.3:

g. 3.4:

3.6:

3.8:

3.9:

4.1:
4.2:

Block diagram of a bit-serial BTS architecture for stack filtering.

The input compression-based architecture for stack filtering.

An illustration of the implementation of a square-law device at the output
ofastackfilter.
A 256 x 256 8-bit Peppers image. (a) The original image. (b) Noise-
corrupted versionof (a). L.
Processed images applying optimal 3 x 3 stack filters to the noise-degraded
image of Figure 3.2(b) . The stack filters have been designed by using (a)
MAE, (b) MSE, (c¢) L3, and (d) Lg criteria.
Processed images applying approximately optimal 3 x 3 WOS filters to the
noise-degraded image of Figure 3.2(b) . The WOS filters have been designed
by using (a) MAE, (b) Ls, (c) Ls, and (d) L criteria.
A 256x256 8-bit Lenna image. (a) The original image. (b) Noise-corrupted
versionof (a). L.
Processed images applying (a) MAE-optimal stack and (b) median filters
of size 3 x 3, to the degraded image of Figure 3.5(b)
Processed images applying (a) L4- and (b) Lg-optimal stack filters of size
3 X 3, to the degraded image of Figure 3.5(b)
Processed images applying (a) MAE WOS and (b) median filters of size
3 x 3, to the degraded image of Figure 3.5(b)
Processed images applying the approximately optimal (a) L4 and (b) Lg
WOS filters of size 3 x 3, to the degraded image of Figure 3.5(b)

Block diagram of the proposed bit-serial technique for stack filtering.
An architecture suitable for VLSI implementation of the bit-serial window-

partitioning algorithm.

ix

Fig. 4.3:
Fig. 4.4:

Fig. 4.5:

Fig. 5.1:

Fig. 5.2:

62 Be: s O B B
08 00 03 03 03 O
_o\ 9\ 9\ (33} (V)] ¥}
[v.2] -1 (o2} (9] o8 w

Fig. 5.9:

Fig. 5.10:

Structure of the control unit of the BSWP architecture of Figure 4.2. . .. 75
Waveforms associated with the operation of the BSWP architecture for

stack filtering. L 76
A test-imageof size 256 X 256., 79

An example of applying the WSC transformation F, to a 2-D sequence of

(a) An architecture suitable for a hardware implementation of the WSC

transformation. (b) An example of applying the WSC transformation using

the architectureof (a). L L. 86
Block diagram of a WSC-based BTS technique for stack filtering. 90
Block diagram of a WSC-based BTS architecture for stack filtering. 94
Waveforms associated with the architecture of Figure 5.4 94
Proposed pipelined WSC-BTS architecture for stack filtering. 96
Waveforms associated with the architecture of Figure 5.6. 96

Original test-images used in the experiments: a) Airplane, b) Bank, c)
Lenna, and d) Hat. All the images have a size of 256 x 256 and L = 256.. . 100
Noisy test-images used in the experiments: a) Airplane, b) Bank, c) Lenna,
and d) Hat. All the images have a size of 256 x 256, and are corrupted with
impulsive noise with a probability of occurrence of 10%. 100
An illustration of the computational-time efficiency 7™ of the proposed
WSC-BTS pipelined architecture over the ROSM-BTS or BTS architec-
tures for 2-D stack filtering. The curves illustrate the values of n* as a
function of N, where N x N is the size of the filter. The inputs to the filters
are the noisy test-images with the number of grey-levels (a) L = 64, and

(YL =256 . . . ottt e 102

Fig. 6.1: Block diagram of the proposed architecture for the MAE design of locally

optimal rank orderfilters., 109
Fig. 6.2: The proposed deinterlacing scheme. (a) A block B of 6 x 6 pixels of the

given image field (interlaced image), which is used as the training set for

the MMAE design of a locally optimal ROF. (b) A block of 8 x 4 pixels of

the deinterlaced imageframe. 113
Fig. 6.3: An illustration of the performance of the proposed deinterlacing technique.

(2) Interlaced image-frame of 170 x 160 pixels consisting of two consecutive

fields of 170 x 80 pixels. (b) Deinterlaced image-frame obtained from a field

of 170 x 80 pixels by line-doubling. (c) Deinterlaced image-frame obtained

by the application of the proposed technique for spatial interpolation using

locally optimal MAEROFs. 114

Table 3.1:

Table 3.2:

Table 3.3:

Table 3.4:
Table 3.5:

Table 3.6:

Table 3.7:

Table 3.8:

Table 4.1:
Table 4.2:

LIST OF TABLES

Errors in the restored images using the L, norm stack filters designed in

Experiment I.

Errors in the restored images using the L, norm WOS filters designed in

Experiment I: MAE, Ls, Lg, and Ljg errors, and RERIN efficiency.

Errors in the restored images using the L, norm WOS filters designed in

Experiment I: J;(w), </Js(w), ¥/Js(w), and *¥/Jio(w) errors.
Weights of the L, WOS filters (p = 1,5, 8, 10) designed in Experiment I. . .

Errors in the restored images using the L, norm stack filters designed in

Experiment II.

Errors in the restored images using the L, norm WOS filters designed in

Experiment II: MAE, Ly, and Lg errors, and RERIN efficiency.

Errors in the restored images using the L, norm WOS filters designed in

Experiment II: J;(w), &/J4(w), and dJg(w)errors.

Weights of the median and of the L,-WOS filters (p = 1,4, 8) designed in

Experiment II. e

Syntheses of the expression of the binary variable B;.

Experimental comparison of the execution times (in terms of the number of

iterations per output sample, N/S) of the proposed BSWP algorithm with

that of the BTS algorithm for stack filtering.

66

Table 5.1:

Table 5.2:

Table 5.3:

Table 5.4:

Chip-area and computational-time requirements of the WSC architecture

and of the input compression part of the 2-D ROSM architecture. 88
A comparison between the computational-time complexities of the WSC

and 2-Dinput compression architectures for applying an operation of window-
sequence compression to the specific noisy test-images of Figure 5.9 89
A comparison between the time-area complexities of the WSC-BTS and
ROSM-BTS architectures. 99
An illustration of the computational-time efficiency 7 of the WSC-BTS
approach over the ROSM-BTS technique for 2-D stack filtering. 101

LIST OF ABBREVIATIONS AND SYMBOLS

{6}
BSWP
BTS

E[lee(n)|]

fe

GS s}

MMAE
MSE
PBF

The set of all Boolean vectors of size M (j = 1,2,...,2M)
Bit-serial window-partitioning (algorithm)

Binary tree search

Mean absolute error incurred at the level £ of a stack filter
configuration, when the Boolean operator f is used at that
level

A Boolean function

Binary value at the level £ in the threshold decomposition of

the output of stack filter Sy at the instant n, Sf(x(n))

Window sequence coding transformation
Generalized stack filter characterized by a set of Boolean

functions denoted by {f}

K = log, L, where L denotes the number of quantization

levels of a signal

Generic notation designating a level of a stack filter:
£=1,2,...,L-1

Number of quantization levels (grey levels) of a signal. It is

assumed that L is a power of 2, i.e., L = 2K

Linearly separable PBF

Size of the filter window

Number of distinct grey level values of a sequence x(n)
Mean absolute error

Minimum mean absolute error

Mean square error

Positive Boolean function

ROF
ROSM
ROSM-BTS

S¢

Sy
S

WOS
WSC
WSC-BTS

z¢(n)

x(n)

X,(m)

x*(n)

x(n)

5(}(; - E)

Rank order filter
Rank order state machine
ROSM-based BTS

Binary value at the level £ in the threshold decomposition of
the desired signal S

Stack filter operator characterized by the PBF f

Desired signal in the context of signal estimation using
stack filters

Weighted order statistic (filter)

Window sequence coding (technique)

WSC-based BTS (algorithm)

Binary vector (threshold sequence) obtained by applying the

thresholding operator 4 to the elements of x(n)

Input sequence appearing in the filter window at the time

instant 7, x(n) = {Xq, X1, ..., XM~1}

A set obtained from x(n) by sorting the elements of x(n) in

decreasing order; x(n) = {X(0), X(1), - - -, X(M-1)}

A set obtained from x(n) by taking each element of x(n) at
its first occurrence, when the elements of x(n) are scanned

through from left to right

A sequence obtained from x(n) by applying the WSC trans-

formation to each element of x(n)

Threshold operator which decomposes a sample x; in the
multilevel window-sequence x(n) into L — 1 binary numbers;
0(x; — €) assumes a value of 1 if x; is greater than or equal

to £, and it assumes a value of 0 if x; is smaller than ¢

Chapter 1

Introduction

1.1 General

Linear filters have long been considered as the primary tools for signal and image process-
ing. They are easy to be implemented and analyzed, and they are well-suited for minimum
mean square error estimation of signals in the presence of additive Gaussian noise. De-
spite the availability of elegant tools of linear systems theory for the analysis and design
of linear filters, not all signal processing problems can be satisfactorily addressed through

the use of such filters [60], [61].

e Detection or preservation of edges. In many image processing problems it is very
important to avoid the edge blurring effect associated with linear filtering. This

effect can be effectively dealt with by employing nonlinear techniques.

e Suppression of non-Gaussian noise. Signals are often corrupted with noise due to bit
errors in transmission or processing, and are subjected to interference effects due to
the use of coherent imaging systems. None of these signal corruption processes can
be adequately modelled as additive Gaussian noise — very often, they are impulsive
and/or non-additive in nature. These situations again call for the application of

nonlinear tools.

o Modelling of the human perception system. The problem of building models for the
human perception system is a very difficult task. It has been found that certain
parts of this system involve nonlinearities [43]. For instance, it is widely accepted
that the human vision system employs logarithmic nonlinearities. Furthermore, it
has also been established that many high-level mechanisms of human perception
are decision-driven. Some of these decisions appear as hard nonlinearities, e.g..
maximum/minimum selection, thresholding, or comparisons. Therefore, suitable

modelling and analysis of such systems have to employ suitable nonlinear techniques.

While it is generally true that nonlinear systems are more complex than linear ones,
in view of the current advances in the area of microelectronics, the today’s technology
is more ready than ever before to face the challenges of complex nonlinear problems.
Encouraged by these technological advances, a large number of researchers have dedicated
their efforts to the development of the underlying theory and techniques of nonlinear
signal processing. Some of the widely accepted techniques falling in this domain are
rank order based filtering [29], [66], polynomial based algorithms [52], [42], morphological
methods [50], and homomorphic processing [55]. Among all these nonlinear techniques.
the rank order based filters are especially attractive, since they are expected to play a
very important role in the development of the emerging multi-media and communication
systems. As it is known, these filters are very effective for signal estimation in the presence
of impulsive noise when sharp edges are to be preserved. This thesis is an attempt to
broaden the theoretical understanding of rank order based filters and develop new and

efficient algorithms and architectures for their implementation.

1.2 An Overview of Rank Order Based Filtering

In the 1970’s, Tukey introduced the “running median” as a tool for smoothing discrete

data [82], [83]. Since then its name has changed to “median filter” and it has found many

2

applications in speech and image processing [38] [39], [61]. To compute the output of a
median filter, M input signal samples in a window are sorted and the middle (median)
value is chosen as the filter’s output. An immediate extension of the median filter is the
class of rank order filters [30]. These filters operate exactly like the median filter except
that they output the ith largest sample in a filter window, instead of the sample of the
middle rank.

The performance of median filters is often evaluated qualitatively. As it is known,
the performance of a filter is an expression of how well it can suppress the undesired parts
of a signal and, equally important, how well the desired information can be retained. In
the case of linear filters, the two objectives can be easily achieved when the useful and the
undesired components of the signal occupy different frequency bands. Unfortunately, in
the case of the running median, there is no simple way of formalizing the filtering problem
with these objectives and evaluating the performance using the frequency analysis or step
and impulse response! techniques. As a result, different tools, deterministic and statistical.
had to be developed to analyze and characterize the behavior of these nonlinear filters.
The basic descriptor of the deterministic properties of a rank order filter is the set of its
root signals; a root of a rank order filter is a signal which is invariant to further passes
of the filter. The basic statistical descriptor of a rank order filter is the set of its output
distributions, that are generally used to study the noise attenuation properties of these
filters.

Since the output of the median filter is always one of the input samples, it is con-
ceivable that certain signals could pass through the median filter unaltered. In [83] several
examples of signals have been given to demonstrate that successive passes of the median
filter of size 3 will eventually force a signal of finite length to a form which is invariant

to further passes of the filter. Later, Gallagher and Wise have proved that a signal of

1 The fact that the step response of a median filter is also a step 1s nevertheless an indication
that a median filter is capable of preserving stepwise abrupt changes (edges) in signals. Similarly,
the fact that the impulse response of the median filter is zero is an indication that this filter could
be very effective in suppressing impulsive noise.

finite length is a2 median root, if it consists of constant neighborhoods and edges only [30],
(84]. They also proved that repeated median filtering of any finite length signal will result
in a root signal after a finite number of passes. This property of median filters is very
significant and is called the “convergence property”. The understanding of the conver-
gence behavior of rank order filters has continuously evolved, leading to the development
of a theory for the “structural” behavior of median-type filters [19], [29]. The goal of this
theory is to determine the type and number of root signals, and the structures? that are
preserved, created or modified by rank order based filters.

The studies of the structural behavior of median filters complemented the results
known for quite some time in the statistics literature regarding the median and other
order statistics [29], [35]. For instance, the good performance of the median filter with
a Laplacian distributed noise is due to an important optimality property of the sample
median. Specifically, the sample median is known to be the maximum likelihood estimate
for the location parameter of the Laplacian density. Also, as shown in [80], the conditional
median at each time instant ¢ is the minimum mean absolute error estimator of the signal
value at time ¢, where the conditioning is on the past history up to time t of the noise-
corrupted observations of the signal.

As a result of this investigation on the properties of rank order filters, their success in
various signal processing applications is now well understood. However, this investigation
has also revealed a number of drawbacks of rank order filters, such as the effects of edge
jittering [12] and streaking [10] in image processing applications. The inadequacy of
the rank order filters in certain situations encountered in image processing led to the
investigation and consequent evolution of different types of rank order based filters. Two
main types of rank order based filters have been traditionally given a special attention.
The first type includes filters in which rank order operations are combined with linear
operations in some fashion [11], [48]. It has been shown in [25], that this type of rank

order based filters has a major drawback, in that the optimization over such classes of filters

2 A structure is any local or global variation of interest in the magnitude of a signal (e.g.,
constant neighborhoods, edges, impulses, oscillations, etc).

4

is mainly reduced to optimizing the linear part of the filter. The class of stack filters is
the second major type of rank order based filters [17], [86]. They perform nonlinear rank
order based operations, and have been shown to overcome the drawback of the first type
of filters.

The concept of stack filtering has been introduced as a result of a theoretical in-
vestigation on the realization of rank order operators using Boolean functions. In [23]
and [24]. Fitch et al. have shown that rank order filters possess a limited superposition
property, which states that the rank order filtering of an arbitrary multilevel sequence is
equivalent to the decomposing of the signal into binary sequences by thresholding, filtering
each binary sequence by a binary rank order filter, and then reversing the decomposition
process. This equivalence reduces the processing of multilevel sequences to that of binary
sequences. The configuration in which a multilevel sequence is reduced to binary sequences
has been designated as a threshold decomposition architecture [24].

In addition to the above mentioned limited superposition property of rank order
filters in the threshold decomposition architecture, another property, referred to as the
stacking property, was identified by Wendt et al. [86]. The stacking property is an ordering
property which refers to the fact that in the threshold decomposition architecture, the
outputs of the binary rank order filters have the structure of a stack of 0’s piled on top of
a stack of 1's.

The definition of stack filters was given by abstracting the properties of rank order
filters in the threshold decomposition configuration [86]. Specifically, in a stack filter
architecture, the binary rank order based operator is characterized by an arbitrary positive
Boolean function (PBF). An optimality theory for the design of stack filters under the
mean absolute error (MAE) criterion was developed by Coyle and Lin [17]. Based on
this theory, it has been possible to determine the stack filter that minimizes the MAE
between its output and a desired signal, given a noise-corrupted observation of the latter.

As shown in [17], the MAE-optimal stack filter can be determined by employing the

3 The concept of positive Boolean function is formally defined in Section 2.1.1.

technique of linear programming which in this thesis is referred to as simply linear program
[16]. Although the MAE criterion of designing stack filters has been extensively used
for image processing applications, higher order errors have been used only in some very
restrictive designs, in which the signal is assumed to be a constant embedded in white
noise [89], [90]. However, a solution to the general problem of designing stack filters using
higher-order error criteria remains an open problem.

Two types of architectures, parallel and bit-serial, have been traditionally used for
the implementation of stack filters [13], [49], [86]. The parallel architecture [86] uses
PBF circuits at each level in the threshold decomposition configuration, while the bit-
serial structure achieves a lower time-area complexity by employing a binary tree search
(BTS) technique and by utilizing a single PBF circuit. The time-area complexities of the
conventional architectures for stack filtering depend on the number of quantization levels
of an input signal (e.g., the number of grey levels of an input image). However, as pointed
out in [1] and [46], it is expected that more efficient stack filtering techniques, with time-
area complexities determined by the size of the filter, could be developed. Nevertheless, a

definitive solution to this problem is still lacking.

1.3 Scope and Organization of the Thesis

As discussed in the previous section, the stack filter theory constitutes a very attractive
framework for dealing with nonlinear filtering problems. Motivated by the recent successes
of using stack filters in image and video processing applications [94], [21], [65], [59], this
investigation is concerned with the problems of efficient design and implementations of
stack filters. The focus is on exploring the possibility of extending the MAE design of
stack filters to an L, norm-based design, and on the development of hardware-oriented
algorithms for the implementation of the filters designed using this general optimality

criterion.

The thesis is organized as follows. In Chapter 2, a review of the fundamentals of
stack filter theory and the relevant background material is presented. The problem of
designing stack filters that are optimal for signal estimation under the MAE criterion is
reviewed, and a new and direct approach for the derivation of the binary-level expression
of the MAE is presented. The conventional parallel and bit-serial architectures for stack
filtering are also described.

In Chapter 3, the possibility of designing optimal stack filters by employing an L,
norm of the error between the desired signal and the estimated one, is investigated. The
design problem is formulated as an optimization problem, in which a positive Boolean
function is determined such that the L, norm of the error in signal estimation employing
a stack filter structure is minimized. It is shown that the L, norm can be expressed as a
linear combination of the responses of the positive Boolean function to all possible binary
input vectors. Based on this error formulation, an L,-norm optimal stack filter can be
determined as the solution of a linear program.

In Chapters 4 and 5, the problem of developing new and more efficient bit-serial
algorithms and architectures for stack filtering is investigated. The proposed solutions
reduce the computational complexity of stack filtering by evaluating the Boolean function
at threshold levels corresponding to the sample-values within the filter-window, and by
taking advantage of the fact that, in most image processing applications, many pixels
appearing in a filter-window assume non-distinct values. In Chapter 4, a bit-serial window-
partitioning algorithm for stack filtering is proposed, while Chapter 5 is dedicated to the
derivation of an input compression-based BTS algorithm.

In Chapter 6, the possibility of employing stack filtering techniques to solve real-
world problems in image sequence processing is investigated. The success of median-
related operators in image filtering applications has stimulated an intense investigation to

understand their relevance in solving image and image sequence processing problems [7],

(8], [66], [96]. As a result, it is now clear that various subclasses of stack filters, such as
the rank order filters (ROFs) and the weighted median operators, show a great deal of
promise to find commercial applications in image sequence filtering for advanced television
systems [64], [85]. Motivated by the fact that in typical images, the details of the scene are
locally situated, in Chapter 6, a hardware-oriented design and implementation of locally
optimal mean absolute error rank order filters is proposed. The designed locally optimal
MAE ROFs are applied to the problem of intrafield deinterlacing of video signals.

Chapter 7 concludes the thesis by highlighting the contributions of this research.

Chapter 2

Stack Filter Theory

A stack filter is a rank order based filter whose output at each window position is the
result of a superposition of the outputs of a stack of Boolean functions operating on
thresholded versions of the samples appearing in the filter window. In this chapter, some
basic concepts of Boolean algebra, frequently encountered in stack filter theory, are briefly
reviewed, and the formal definition and the properties of stack filtering, as given in [86],
are presented. The problem of signal estimation using minimum mean absolute error
(MMAE) stack filters [17] is formulated, and the conventional parallel [86], bit-serial [13],
and compression-based [1] architectures for stack filtering are briefly described. In the
process of reviewing the fundamental concepts of stack filter theory, several questions
concerning some important issues in the design and implementation of stack filters are

also raised.

2.1 Background

In this section, employing the switching functions terminology as proposed by Muroga
[63], some basic concepts which are used in stack filter theory are briefly reviewed. The
definition of a positive Boolean function [53] is stated, and the stacking property of Boolean
functions, which is essential to the understanding of stack filtering, is described in terms

of the stacking relation between the Boolean vectors [23).

2.1.1 Positive Boolean Functions

To introduce the concept of a positive Boolean function, some basic definitions of Boolean

algebra are now recalled [53].

Definition 2.1 A literal is defined as a binary variable z, or its complement Z. A con-
junction (logical product) of literals in which a literal for each variable appears at most
once is called a term. Similarly, a disjunction (logical sum or alternation) of literals in
which a literal for each variable appears at most once is called an alterm. In a special
case, a term or an alterm may consist of a single literal. A disjunction of terms is called

a disjunctive form or normal form. A conjunction of alterms is called a conjunctive form.

For example, zg and Zg are the literals of the variable zg. Both the expression zoz;+zo+z)
and zo + Toz; are disjunctive forms which are equivalent to the Boolean function Zg+ 2.
However, the expression zg + z,(To + Z1) is not a disjunctive form, although it is also

equivalent to the same Boolean function, z¢ + z;.

Definition 2.2 If there exists a disjunctive form for a Boolean function f(zo,z1, ..., z;,
.- -2 ZM-1), such that the literal Z; does not appear in any term of this form, then f is
said to be positive in the variable z;. If a Boolean function f is positive in all its variables

Zg,Z1,-..,TM-1. then f is said to be a positive Boolean function (PBF).

To introduce a result due to Quine [62] suggesting a method to determine whether
or not a Boolean function is positive, we recall the concept of minimum sum-of-product

form of a binary function as given in [53].

Definition 2.3 Let f and g be two Boolean functions. If for every Boolean vector
(z0, %1, - - -y TM~1) for which f(zo, z1,...,ZM-1) = 1, we also have g(zq, z1,. .., TM-1) = 1,
we write f C g and say that f implies g. If, in addition, there exists at least one Boolean
vector (bo, b1, - - ., bp—1) for which f(bo,b1,...,bMm-1) = 0 and g(b, by, . . obvm-1) =1, we

write f C g and say that f strictly implies g. If an implication relation holds between two

10

binary functions f and g (i.e., fC g, fCg,9 C f,or g C f), then f and g are said to be

implication comparable; otherwise, they are implication incomparable.

Definition 2.4 An implicant of a Boolean function f is a term that implies f. A term
P is said to subsume another term Q, if all the literals of Q are literals of P as well. A
prime implicant of a binary function f is defined as an implicant of f such that no term

subsumed by this implicant can be an implicant of f.

For instance, zo, ToT1, ToZ1, and z;Z2, are examples of implicants of the function f =
Zo + z172. The terms z; and z; are implication incomparable with f. The term z;z-

subsumes both the terms z, and z;. The term z,z; is a prime implicant of f.

Definition 2.5 A minimum sum-of-product form of a Boolean function f is a disjunc-
tion of prime implicants, such that the removal of any one of these makes the remaining

expression no longer equivalent to the original f.

An important theorem given by Quine [62] shows that a PBF has a unique minimum
sum-of-product form. Thus, in order to determine whether or not a Boolean function f
is a PBF, one could simply find a minimal sum-of-product form for f: the function f is

positive if and only if this minimal sum-of-product form is itself positive.

2.1.2 Stacking Property of Boolean Filters

The stacking (increasing) property of a Boolean filter (function) is stated in terms of an
ordering (stacking) relation between Boolean vectors [23], [24]. This ordering relation,

which is commonly used in Boolean algebra, is now defined [53].

Definition 2.6 If two Boolean vectors a = (ag, a1,...,am-1) and b= (bg, by, - .., bM—1)
satisfy the condition that a; > b; for all j =0,1,...,M — 1, then we write a > b and say
that a is greater than or equal to b. In particular, if there exists an index k for which

ar > bi, and a; > b; for all k # 7, then a is said to be greater than b, i.e., a > b.

11

Definition 2.7 When for two Boolean vectors, @ and b, none of the stacking relations,
a2>bb>a,a>b orb> a, holds, then the two vectors a and b are said to be incompa-

rable. Otherwise they are said to be comparable (by the stacking relation).
The stacking property of a Boolean filter can now be stated as given below [23], [53].

Property 2.1 A Boolean filter f is said to satisfy the stacking (increasing) property if

and only if f(a) > f(b) for all possible pairs of comparable vectors a and b with @ > b.

The necessary and sufficient condition for a Boolean filter to satisfy the stacking

property was stated by Gilbert [32], [53].
Theorem 2.1 A Boolean filter satisfies the stacking property if and only if it is a PBF.

The stacking property of a PBF is highlighted by employing the Hasse diagram [53].
The derivation of this diagram is now briefly described. Let us denote by V a {b1,b,,...,
b,m}, the set of all 2M possible binary vectors of size M. In the Hasse diagram, each binary
vectorb;, j = 1,2,...,2M is represented by a vertex. The set V is partitioned into subsets
Vi, k= 0,1,...,M — 1, such that all Boolean vectors (vertices) belonging to a subset Vi

have exactly k entries which are equal to 1, i.e.,
Vi 2 {b|b-1py =k beB} , k=0,1,...,M, (2.1)

where 1nrx1 is a column vector of size M whose elements are all 1’s. Note that all the
vectors which belong to the same subset Vj are incomparable. In the Hasse diagram, the
vertices are arranged in M + 1 consecutive lines, such that the jth line, § = 0,1,..., M,
contains the vertices (Boolean vectors) in the set V\—;. Each vertex is represented by
an ellipse labeled with the associated Boolean vector. Each pair of stacking comparable
vertices (b;, b;) placed on consecutive lines (i.e., b; € Vx and b; € Viy1, £ =0,1,...,M - 1),
is represented by an undirected edge conecting b; and b;. The Hasse diagram of a set of

Boolean vectors V' can be formally defined as given below [53], [27].

12

Definition 2.8 The Hasse diagram of the set of all Boolean vectors of size M is the undi-
rected graph G = (V, E), where V is the set of all vertices, with each vertex representing

a binary vector, and E denotes the set of all edges, i.e.,
E2 { (b)) | beVi,bj€Vipy, bj>b;, k=0,1,...,.M-1} . (2.2)

The stacking diagram of a Boolean function f of size M is a representation of the
truth table of f employing the Hasse diagram of the set of all input Boolean vectors of
size M. Specifically, each vertex of the Hasse diagram correponding to an input vector for
which the output of f assumes a value of 1 is now represented as a shaded ellipse. The
vertices associated with input vectors for which f = 0 are left unshaded [34], [27].

Figure 2.1 illustrates the stacking diagram for the function flzo,z1,22,23) =z, +
ToZ2 + 223, which is a PBF, and therefore it satisfies the stacking property. Thus, for
each edge (plq, pOg) we have that f(plg) > f(pOg). For instance, because f(0100) = 1 we
also have f(1100) =1, f(0101) =1, and f(0110) = 1. Analogously, since f(1001) = 0, we
also have f(1000) = 0 and f(0001) = 0.

Figure 2.1: Stacking diagram of the Boolean filter f(zo, 21, Z2, T3) = z,+ZoZ2+ 273,
where a shaded ellipse representing a binary vector b; signifies that f(;) = 1, and
an unshaded ellipse indicates that f(b;) = 0.

13

The stacking diagram of a PBF can be efficiently used to determine the minimal
sum-of-product form of the PBF [95]. It can also be used to determine whether or not
a Boolean function is positive. Most importantly, the stacking diagram representation of
Boolean filters is a powerful technique for the design and analysis of stack filters, and it is
expected to play a role very similar to that enjoyed by the frequency domain representation

of linear filters [26).

2.2 Definition of a Stack Filter

A stack filter architecture has been defined by Wendt et al. in [86], as a filtering config-
uration in which an L-level sequence appearing in the input window is first decomposed
into a set of binary signals by thresholding, then a filtering operation is performed via a
positive Boolean function (PBF) f on each of these threshold signals, and finally, all the
binary results are added together to yield the filter’s multilevel output Sy.

Let x(n) = {xq,%1,...,XM-1} denote an L-level sequence appearing at the input of
a stack filter of window size M, at the time-instant n.! It is convenient to assume that L is
a power of 2, i.e., L = 2K. However, when this condition is not fulfilled, it is always possible
to assume that x(n) is an L;-level sequence where L; = 2Kt with K; being the smallest
integer greater than or equal to log,L, i.e., K; = [log,L]. Let 6(x;—¢) (¢=1,2,...,L-1)
denote a threshold operator which decomposes the sample x; (¢ = 0,1,...,M — 1) in
the multilevel sequence x(n) into L — 1 binary numbers, {8(x; — 1), 8(x; — 2),...,8(x; —
£),...,6(x;—L +1)}. Specifically, §(x; —£€) assumes a value of 1 if and only if x; is greater

than or equal to ¢, i.e.,

S(xi—) & £=1,2,...,L—1. (2.3)

0 if x;<¢,

In this notation, x;’s are really functions of n, i.e., X 2 xj(n), and x; € {0,1,...,L — 1} for
all j’s. However, for notational simplicity, dependence on n has not been explicitly shown.

14

A stack filter Sy is characterized by a PBF f, and it is defined by the following
input-output relation
2K—1
Ssx(m)) = 30 £(860 = 0,80~ 0) ., 801 =) - (2.4)
As an example, Figure 2.2(b) shows a stack filter which performs the operation of me-
dian filtering illustrated in Figure 2.2(a). The stack filter of Figure 2.2(b) performs the

operation of median filtering by applying the binary function
f(zo, 21, 22) = Zoz1 + 7122 + 270, (2.5)

on each threshold level of the input sequence.? If the function f given by (2.5) is changed
to f'(zg,z1,22) = 2o + 1 + z2, than the multilevel operation becomes one of selecting
the largest sample in x(n). Similarly, when f is changed to f”(zq, z1, Z2) = zoz122, the
multilevel operation is changed to that of selecting the minimum element of x(n).

It can be easily observed that the binary vectors obtained by applying the threshold-
ing operator § given by (2.3) to the elements of x(n) for each level-value £ =1,2,...,L—1,

i.e.,
ze(n) 2 (8(x0—£), 6(x1— &), ..., 6(xpmer ~€)) , €=1,2,....L—1, (2.6)

usually referred to as threshold vectors (sequences), are pairwise comparable by the stack-

ing relation. Specifically, we have
zi(n) 2 z2(n) > ...2zp_1(n) . (2.7)

Now, in view of this property of the threshold vectors, and since the Boolean filter fisa

PBF (i.e., f has the stacking property), we also have

f(21(n)) 2 f(z2(n)) 2 ... 2 f(zL-1(n)) . (2.8)

2Recall that the function f given by (2.5) is a positive Boolean function, which refers to the
fact that the expression zoz; + 122 + T2z contains no complements of the input variables (i.e.,
Tg, Z1, OF fg).

15

0 0 311537022 1-Spp Mdinfilerwith o, 4 77713538222

window size M=3
\L—_J_> Ve
—/
(@)
|12[11|-"o|_> _________________________
0) E f(xo x .12) =
o o 0000 10000—r>x0x1+x1;2+x2x0

0 0 00O0O0O0{1000 00— [S(xo*x.%)=

XgX) +X X9 +Xp Xy

flxg.xi.x5) =
xoxl +xl 12 +xzzo

o o 00 Of1

flxg.xy.x3) =
xoxl +x xz +xzx0

o o 00O

f(xovxl,xz) =
XX +X Xy +Xp X

o o(1j0 O

f(xg.x,.x5) =
ET I +xlx2 +XaXg

f(xo.xl.xz) =
xoxl +xlx2 +x2x0

Stack filter operator

Figure 2.2: An example of a stack filter performing median filtering. (a) A median
filter of size M=3 operating on a multilevel signal with L=8. (b) A stack filter that
performs the PBF operation corresponding to the median filtering shown in (a).

Thus, when employing a filtering configuration in which the multilevel sequence is decom-
posed by thresholding and the threshold vectors are placed on top of each other (with
z1(n) at the bottom and z441(n) above z,(n) for all £=1,2,...,L — 2) to carry out the
operation defined by (2.4), the binary outputs of the operator f have a structure of a stack
of 0’s piled on the top of a stack of 1’s.® It is due to this property that the operator Sy
defined by (2.4) has been called a stack filter.

Another important property of the filtering operation Sy(x(r)) defined by (2.4) is

that the output of Sy is always selected from the samples appearing in the input window

3 This structure can be observed in the example illustrated in Figure 2.2(b).

16

x(n). This can be easily proved by observing that in a stack filter configuration, the pile of
binary outputs at the instant n could switch from 1 to 0 only for £ € {xo, Xy, ..., XM—1}-
As a result, it can be shown that the instantaneous behavior of a stack filter can be
interpreted as an operation of selecting the rth largest element of x(n), with the value of r
itself depending on the relative magnitudes of the samples appearing in the filter window
x(n). Thus, we can state that a stack filter performs an operation of signal-dependent

rank order filtering.

2.3 Multilevel Representation of Stack Filters

The technique of defining a filter employing unit-weighted signals obtained by the threshold
decomposition of a multilevel input signal, allows one to perform the analysis and the
hardware design of rank order based filters at the binary level. This could be extremely
beneficial when a simple mapping between the set of binary stack filters and that of
multilevel filters is available. For instance, for order statistic (rank order) filters, a clear
understanding of both their binary and multilevel representations exists. As a result,
these filters enjoy increasingly efficient implementations in both hardware and software
[67], [63].

Although somewhat more complicated than in the case of order statistic filters, a
multilevel representation of the filtering operation of a general binary stack filter has been
also established [22], [51]. The next theorem, which is due to Fitch [22], summarizes this

multilevel representation of general stack filters.

Theorem 2.2 There is a one to one correspondence between rank order based filters
which have a max-min form, and filters defined using the threshold decomposition imple-
mentation with a logical sum-of-products as the binary operation. The mapping between
the two descriptions is accomplished by interchanging the maximum operator with the

logical OR, and the minimum operator with the logical AND.

17

An illustration of the correspondence between the multilevel and the binary-level
implementations of a stack filter as stated by Theorem 2.2 is shown in F igure 2.3 [81]. The
stack filter Sy is assumed to be characterized by 2 PBF f of size M whose minimum sum-
of-product form consists of T terms. The jth term of the minimum sum-of-product form
of f,P; = zj, zj, ... z;, (where j =0,1,..., T, and ji, jo, ..., jj are distinct numbers in
the set {0,1,...,M — 1}), determines a set of multilevel variables denoted by {x;}. At

the multilevel domain, the output of the stack filter Sy can be obtained as

S7(x(n)) = max { min {To}, min {X;}, ..., min {ZT}}. (2.9)

Sf(x(n))

x(n) | Threshold
——3 Decompo-
sition

Connecting
Matrix
(Depending on
the minimum

sum-of-product
form of f)

x(n) S (x(n))

(b)

Figure 2.3: An illustration of the correspondence between (a) the binary-level and
(b) the multilevel implementations of a stack filter as stated by Theorem 2.2.

As an example, we now determine the multilevel representation as defined by Theorem 2.2,

corresponding to the operation of a stack filter characterized by the PBF
f(zo, z1,22,23) = 21 + ZoT2 + 2223 - (2.10)

18

whose stacking diagram was illustrated in Figure 2.1. Now, by using Theorem 2.2, the

multilevel implementation of the stack filter characterized by (2.10) is given by
Sf(x(n)) = max { x;, min {xo,x2}, min {x2,%3} } . (2.11)

A similar max-min representation can also be derived for the operation of a stack filter
characterized by the PBF given by (2.5). However, it should be observed that the max-min
representation of the filter characterized by (2.5) is unnecessarily much more complicated
than the multilevel representation of this filter as an operation of median filtering. Thus,
although the result of Theorem 2.2 gives a general representation of an operation of stack
filtering at the multilevel domain of the signal, this representation is not always very useful

for the actual multilevel-implementation of stack filters.

2.4 Generalized Stack Filters

In Section 2.2, a stack filter Sy was characterized by a single PBF f, which is applied to
the threshold sequence appearing at each level of the filter configuration (see (2.4)). In
[45], the class of stack filters has been generalized by employing different Boolean functions
at different levels of the stack filter architecture, and allowing each Boolean function to
operate on the threshold sequences appearing at several adjacent levels. The new class of
filters has been designated as generalized stack filters [18], [45]. Let us denote the set of
Boolean functions that characterizes a generalized stack filter by {f} =) {fi, fay-+--y fL=1}-
As shown in (18] and [97], in order to preserve the characteristic structure of the binary
outputs of a stack filter architecture (i.e., the structure of a stack of 0’s piled on top of a
stack of 1's), the functions fi, f2,..., and fr—; should satisfy the implication relation (see

Definition 2.3) in an appropriate order. Specifically, we should have

i2fa2...2fe2...2 fui1. (2.12)

19

Thus, it can be observed that the restriction imposing the positivity of the Boolean func-
tion associated with a stack filter has been replaced in the case of generalized stack filtering
by the condition (2.12). As a result, in a generalized stack filter, the individual Boolean
functions fi, f2,..., and fL—; are not necessarily positive, as long as the ordering relation
(2.12) is satisfied [18].

A generalized stack filter GS{s}» characterized by a set of Boolean functions {f}
that satisfy the ordering relation given by (2.12), is defined by the following input-output

relation
GS (s (x(n)) = Igl fe({6(x(n)—+D)}] ... {8(x(n)~0)}| ... {8(x(n)—€-1)}), (2.13)
where {§(x(n) — £+ k)} designates the threshold sequence at the level (£ — k), i.e.,
{6(x(n) — €+ Kk)} & {8(xo— €+ k), S(x1 — £+ k), ..., S(xpe1 — €+ K)}, (2.14)

and the notation “|” implies the concatenation of the threshold sequences at the indi-
cated levels. As seen from (2.13), the binary input vector to each Boolean operator f;
is obtained by concatenating the threshold sequence appearing at the level ¢, with the
threshold sequences appearing at 27 additional levels, symetrically adjacent to . Thus, in
generalized stack filtering, in addition to thresholding at the regular levels £ = 1,2,L — 1.
the operation of thresholding is also carried out at the levels £ = — T +1,-71+2,...,0,
and {=(L-1)+1I,(L~1)4+ (I -1),...,(L - 1) + 1. These additional threshold levels
are required as boundary conditions. As an example, Figure 2.4 shows a generalized stack
filter of size M = 4 with I = 1, operating on a multilevel signal with L = 4. In this case,
the size of the Boolean functions is (27 +1) -M = 12.

As pointed out in [22], at the multilevel domain of the signal, the operation of
generalized stack filtering can be interpreted in terms of a max-min representation similar

to that given by Theorem 2.2.

20

X(n-3) X(n-2) X(n-1) X(n) S(n)

'"0| 3,0, 11 2[£._:.G3m(x(n))——>2

x(n)

Thresholding ¢ 3 T

L*3,%2 %1 ,%0

x4mp: 0 0 O O S :
wm: [0 0 0= 50 -> 0
xo(n): 1 0 O Q) —9

. 'Generalized :
fm: 1 1 1 1 iStack filter |

Figure 2.4: An example of a generalized stack filter with M = 4 and [=1 operating
on a multilevel signal with L = 4.

2.5 Minimum MAE Design of Stack Filters

The problem of signal estimation using optimal stack filters has been formulated in [17].
Figure 2.5(a) illustrates the procedure of signal estimation using an optimal stack filter
S+, where X(n) is a noise-corrupted version of S(n), and at each instant n, the output
of the stack filter, g(n), is an optimal estimate of the desired signal S(n). The procedure
for designing the optimal filter Sy- is illustrated in Figure 2.5(b). The desired signal S(n)
and its noise-corrupted version X(n) are used to determine a PBF f* which minimizes the
MAE between the filter output, S¢(x(n)), and the desired signal S(n). The filter size is
M, and x(n) denotes the sequence appearing in the filter window. The MMAE design of
stack filters is based on a binary-level formulation of the mean absolute error between the

desired and estimated signals. This formulation is described next.

21

N@) Stack filter
;—> Noise X@) - ; x(n) [S
@ corruption > Windowing | o Sex o
(a)
N@) Stack filter
Noise X@) - N x(n) Y f(x('l))
S corruption Windowing | S £ > MAE £*
Design [>
(b)

Figure 2.5: An illustration of the procedure of signal estimation using optimal stack
filters. (a) Estimation of a desired signal S(n) using an optimal stack filter Sy-. (b)
Design of the MAE optimal PBF f~.

2.5.1 Derivation of a Binary-Level Expression for the MAE

As stated in [16], the reason for the choice of the MAE criterion in the design of stack filters
has been primarily its mathematical tractability. Specifically, this criterion has allowed a
decomposition of the estimation error of the filter into a sum of decision errors incurred
by the Boolean operators at each level of the stack filter architecture (15], [17]. This
decomposition of the filter design problem is summarized below. Let MAE(Sy) denote the

cost of using a stack filter Sy characterized by the PBF [ie.,

MAE(Ss)=F [, S(n) — Sf(x(n)) H . (2.15)

Denoting the threshold sequences in the threshold decomposition of x(n) by z¢(n), €=
1,2,...,L -1, as given by (2.6), and the binary signals in the threshold decomposition of

S(n) by s¢(n), i.e., s¢(n) e 0(S(n) — £), we have

L-1 L-1
MAE(S)) =E[Y se(n) = 3 fze(n)) } : (2.16)
=1 =1

22

Due to the stacking property of the binary operator f, all the nonzero terms of the sum in
(2.16) have the same sign. Figure 2.6 illustrates an example of the errors incurred in signal
estimation using a stack filter for the two possible cases, $(n) < S(n) and S(rn) > S(n).
Thus, the operations of summation and taking the absolute value may be interchanged as

L-1
MAE(Sy) = E[> (se(n) — f(=ze(n))) H
=1

L-1
= E [Y Ise(n) = f(=ze(n)) l}
£=1

[l
|

1
= E [|se(n) — f(ze(n)) |] - (2.17)

1

(2.9
I}

The £th term of the summation in (2.17) is the mean absolute error E[|es(n) |] incurred
at level ¢, when the Boolean operator f is used at that level. Therefore, (2.17) can be

rewritten as

L-1
MAE(Sy) = 3 Ele(n)]] , (2.18)
£=1

where e¢(n) = s¢(n) — f(ze(n)) .

The problem of designing a stack filter which is optimal for signal estimation under
the MAE criterion is to minimize the function given by (2.18), under the constraint that f
satisfies the stacking property (i.e., it is a PBF). In order to solve the optimization problem
associated with the design of stack filters under the MAE criterion, an explicit expression
for E[|ee(n)|] of (2.18), as a function of the outputs of the Boolean filter f should be
derived. The derivation proposed by Coyle and Lin [17] uses the concept of a randomizing
Boolean function, and replaces the original MAE cost function with a weighted sum of
the decision probabilities at the binary levels. In this section, a simple derivation of an
expression for E[|e¢(n) |], using conventional Boolean functions, is proposed [69], [73].

A Boolean filter f of window size M is completely determined by the vector

FEL(fb), fba), ---y F(B)s ---y Flbon)), (2.19)

23

X(n-2) X(n-1) X(n) §(n) ' S(n) IS(n)-§(n)l§ S(n) 1S(n)=Sem)l !

02 7T 32 e —— 3 6 3 i1 2
x(n) E 5 l
'mresholqu > T ; i :
l 12 xl 10 I E § E i
_ s | 5 x '
. f(X1.X) =) H _— H H
x-,(n) " Y 1 0 -r>‘ xoxlxgxlizzxzxo — 0 E 0 ?q(") =0 E ' 0
. : E (xn.X1,X9) = : E (1) E E
wsws 014 0 >l JRAFSE= 0 I} Gw=Dio
) ; fGorrni) = L : i
zsm: 0 {1 0 —m SE btz T 0 |1 :5 0
Ay e e H ¥
x4(n): 0 1 0) x0%] gxliz-gxzxo 0 : 1 . E 0
=3m: 0 {1 xoj;(;rggil‘;\gﬁ)‘;o 1 e = 0 0
x5(n): 1 1 _';> xo(x(lxgxfé;zi;xo -‘;') é 1 eyfn) = 0 E 5 0
: fGozrx) = 1 : ¥ 5
xym: (1 {1 —> xgx] gxliz-%xzxo = e ! eym)=0: : @ '

Figure 2.6: An illustration of the errors incurred between the desired and estimated
samples in a stack filter architecture, for the two possible cases (5(n) < S(n) and
S(n) > S(n)). (a) When the desired sample is greater than the estimated one, the
binary errors at the various threshold levels can assume values of only 0 or 1. (b)
When the desired sample is less than the estimated one, they can be only 0 or -1.

24

where {b_,-lj = 1,2,...,2M} is the set of all Boolean vectors of size M. The jth entry
in (2.19) represents the output of the filter, when the binary vector in the filter’s input
window is b;. Let us consider the combined experiment of observing different realizations
se(n) €{0,1}, of the desired threshold process at level £ of a stack filter architecture at the
time instant n, and the corresponding realizations z¢(n) € {by, bs, - .., bym}, of the binary

input to the Boolean filter f at level £. The sample space of this experiment is given by

{(0,81), (0,85), ..., (0,B221), (1,81), (1,B2), ..., (1,8,m) }, (2.20)

where a pair (0,b;) denotes the outcome (s¢(n) = 0, z¢(n) = b;), while a pair (1,b;) cor-
responds to (s¢(n) =1, z¢(n) =b;). The absolute value of the decision error at level ¢,
| ee(n) |, can be regarded as a random variable which assigns a numerical quantity given as
[se(n) — f(ze(n)) |, to each element of the sample space specified in (2.20). The expected
value of | e;(n) | is given by 4

2M

E [|een Z (10— f(8) |- Plse(n) =0,ze(n) =b;] +

+ [1= f(8;) |- Plse(n) = 1,z¢(n) = b))

2
=D _[(P(0,8;0) — P(1,b;]€)) - f(b;) + P(L,5;10)], (2.21)

=1
where the notations P(0, b;/¢) and P(1,5;]€) imply, respectively, P [s¢(n) = 0, z¢(n) = b;]
and P [s¢(n) = 1,z¢(n) = b;]. Therefore, the expected value of the decision error at each
level £ of a stack filter architecture, E[| e¢(n)|], is a linear function of the outputs f(b;)

(G = 1,2,...,2M) of the filter f. Using (2.21), the cost function MAE(Sy) of (2.18)

becomes
2M

MAE(Sy) =) [a; - f(b;) + 551, (2.22)

7=1

4 The expected value of a discrete random variable X defined on a sample space with K possible

outcomes, is given by
K

E[X]=) x-P(xj),

j=1

where x; denotes a particular value of X, having the probability of occurrence P(x;) [57].

25

where L-1

aj = D _(Pe(0,5)) - Pi(1,8;)) = P(0,b;) — P(1,5)), (2.23)
=1
and L-1
B; = Z‘ Fy(1,b;) = P(1,b;) . (2.24)
=1

Based on the error formulation given by (2.22), a linear program (LP) which finds a

minimum mean absolute error stack filter is now derived [17].

2.5.2 Derivation of an LP to Find an MMAE Stack Filter

A stack filter which is optimal for signal estimation in the MAE sense is characterized
by a positive Boolean function f* which minimizes the cost function MAE(Sy) given by
(2.22), i.e.,

MAE(S¢-) = minse(ppr, MAE(Sy) , (2.25)

where {PBF\} denotes the set of all PBFs of size M. The solution to this optimization
problem can be determined by solving an integer linear program (ILP) which is stated

below.

ILP I : Minimize MAE(Sy), subject to the following constraints in the stacking diagram

of a Boolean filter f of size M: a) for each vertex b; , f(b;) € {0,1}, and &) for each edge
(plq, pOq), we have f(plq) > f(pOgq).

As shown in [17], it can be observed that the constraint equations corresponding to the

edges of the stacking diagram of f can be written into a matrix form as
A-FT<o, (2.26)

where F is defined as given by (2.19), and the entries of A are 0, +1 or -1 such that each
row of A has exactly two nonzero entries of opposite signs. Thus, the matrix A is totally
unimodular [27], [56], and as a result, a solution of the JLP I can be obtained by solving

the following linear program.

26

LP 1 : Minimize MAE(Sy) , subject to the following constraints in the Hasse diagram of
the set {bj[j =1,2,.. .,2M} : a) for each vertex b; , f(b;) € [0,1], and b) for each edge
(plq, p0q), we have f(plq) > f(pOgq).

Specifically, any solution of LP 1 is an integer (i.e., f(b;) € {0,1} for all j’s), and conse-
quently, it is a solution of ILP I as well.

As shown in [17] and [27], in spite of the theoretical importance of this result, the
number of variables and constraints of LP I increases faster than exponentially with the
filter size.> Consequently, the exact solution of the LP is generally sought only in the case
of filters with a relatively small window size, usually for M < 12 (e.g., 3 x 3 filters). For
filters with a larger window size, a number of heuristic (suboptimal) techniques to find an
approximately optimal solution of LP I have been used [20], [46], [47], [92].

Although the MAE criterion of designing stack filters has been extensively used for
image processing applications, some attempts to obtain more general results, based on
higher order errors, have also been reported [89], [90]. Specifically, in [89] and [90], the
higher-order error-based design is confined to the case in which the input signal is assumed
to be a constant signal embedded in white noise. In Chapter 3, we investigate the possibil-
ity to develop a sound mathematical framework for the general problem of designing stack

filters employing the L, norm of the error between the desired and estimated signals.

2.6 Parallel and Bit-Serial Architectures for
Stack Filtering

Two types of architectures, parallel and bit-serial, have been traditionally used for the
implementation of stack filters. The parallel configuration for stack filtering has been

introduced by Wendt et al. in [86], and it is illustrated in Figure 2.7. This configuration

S For a filter of size M, the LP has 2M variables and M -2M=! 41 constraints. T hus, for example,
for M = 13, there are 8,192 variables and 53,249 constraints [81].

27

uses a bank of (L — 1) threshold decomposition units and (L — 1) PBF’s [5], [31], [86].
However, as pointed out by Chen in [13], the parallel implementation of PBF’s at all
threshold levels is not an efficient way to use the hardware, since the time-area complexity
in this case is O(L). In [13], Chen has developed a bit-serial binary-tree search (BTS)
architecture for stack filtering, which uses only one PBF circuit, and whose time-area

complexity is O([log,L]).

X0 Threshold BE PBF
=1 decomposition =
X1 Threshold =]
21 decomposition = PBF — . Sf(x(n))
] — —————
: P =
[] []
X
M-1 Threshold E
=1 decomposition = PBF

Figure 2.7: Block diagram of a parallel architecture for stack filtering. Note that
the operation of “summation” of the binary outputs is implemented as a binary-tree
search for the level where the transition from 1 to 0 takes place.

The bit-serial BTS configuration for the implementation of stack filters is illustrated
in Figure 2.8, where djj denotes &(x; ~ ¢5), (i = 0,1,...,M ~ 1). The architecture of
Figure 2.8 realizes the algorithm

K
y= JEI f(8(x0— 1), 8(x1 =€), ..., §(xm-1 — £3)) - 2577, (2.27)

where the threshold levels £;’s are given by

¢, =2K-1 (2.28)

J-1
ZJ = [Zf(a(xc —ej),é(xl - fj), “eey

i=1

cor 8k = 45)) - 28] + KT for Je{2,3,...,K}. (2.29)

28

X1 Positive

d15 [_.] Boolean S.(x(n))
—a»{ function |.»{ Level _-.f___>
. — adjustment

f()

. 3
s jhorny] &

XM-1

Figure 2.8: Block diagram of a bit-serial BTS architecture for stack filtering.

It has been demonstrated in [13], that the BTS algorithm given by (2.27)-(2.29) is func-

tionally equivalent to the operation of stack filtering defined by (2.4), i.e.,

K
y=8s(x(n)) =D f(8(x0 — 1), ..., 8(xm1 — £3)) - 2877 (2.30)
J=1

The BTS algorithm realizes the operation of stack filtering through a recursive
binary-level processing at K different levels. With this approach, the number of threshold
or PBF operations is reduced to K (as compared to L — 1, which is the number of these
operations required in the parallel architecture of [86]). In the first step of the BTS method.
all input samples in the window, x;, (¢ = 0,1,...,M — 1), are compared to ¢; (= 2K-1),
By applying the PBF to the outputs of the threshold operators, the most significant bit
(MSB) of the output is obtained. Depending on this first output bit, the threshold level
£, in the second iteration assumes a value of 2K-2 or 2K-1 4 9K=2_ At level ¢, the PBF f
is evaluated to obtain the next MSB of the output. Then, the already known values of the
function f at levels ¢; and ¢; are used to evaluate the threshold level 5. This recursive
binary-level processing is repeated K times, and at the Kth iteration, the least significant
bit of the output is obtained. Thus, note that in the actual implementation of the BTS
algorithm, it is not necessary to perform the operations of (2.27) independently, as in each
successive determination of the threshold level, the evaluation of the function f provides

one bit of the output.

29

In the bit-serial BTS approach for stack filtering, the level adjustment is carried out
based on the result of the operation of positive Boolean filtering, and by using increments
which are powers of 2. Consequently, the bit-serial BTS algorithm of [13] does not take
advantage of the additional ordering information associated with the binary threshold
sequences. At each iteration, the threshold sequence can be interpreted as a partitioning
of the window samples into elements which are greater and elements which are smaller than
the current threshold level. By using this additional information available, it is expected
that a significant improvement in terms of the computational time can be achieved. This

possibility is investigated in Chapter 4.

2.7 Input Compression-Based Architectures

The time-area complexities of the conventional architectures for stack filtering (Q(L) for
the parallel structure and O([log,L1) for the bit-serial configuration) are determined by the
global dynamic range ([0,L — 1]) of the multilevel input signal. However, more efficient
architectures can be developed by taking advantage of the fact that the local dynamic
range spanned by the samples appearing in the input window at a time-instant n cannot
be larger than the window-size M.

In [1], Adams et al. have introduced more efficient parallel and BTS configurations
for stack filtering, by employing an input compression technique which maps the samples
appearing in the filter-window to the integers {0,1,...,M — 1}. The general structure of
the input compression-based architecture for stack filtering of [1], which is illustrated in
Figure 2.9, has been designated as a rank order state machine (ROSM). Note that with
the architecture of Figure 2.9, the operation of rank order-based (stack) filtering using
the level of the compressed input values, Rg, Ry, ..., Rp-1, can be realized by employing
either a parallel or a BTS architecture for stack filtering. The compressed values, Rg, R;,
.-+ RM-1, represent the ranks of the samples xq, x;, ..., XpM—1, appearing in the input

window. A rank of 0 corresponds to the smallest sample within the window, while a rank

30

RDER-BASED FILTER |

5hE &

Figure 2.9: The input compression-based architecture for stack filtering.

of M — 1 represents the largest one. The input compression algorithm can be described as

follows [1].

Algorithm 2.1

1.

Initialize the ranks Rg,Ry,...,Rpm—; to 0,1,...,M — 1, respectively. Note that,
assuming a causal signal, the initial input window contains all zero values.

At each time instant n, let R;j=R;_1,7=1,2,...,.M—1.

For the samples appearing in the input window at time instant n,x(n) = {xg, X1, ...,
XM-1}, if Xq is greater than or equal to c elements of x(n), then set Rg = ¢. Thus,
Ro is the rank of xo among the sample-values in the input-window.

The remaining rank values for the M — 1 input samples that were members of the
previous window, are not yet the correct ranks of the elements of the current window.
Adjust them as follows. If R; < Ry, where j € {1,2,...,M — 1}, then increase the
value of R; by one. If Rg > R;, then decrease the value of R; by one. Therefore, each

rank-element R; is either incremented by one, decremented by one, or unchanged.

31

In those applications where M < L, the input compression-based parallel and BTS
architectures for stack filtering achieve improved computational efficiencies over their par-
allel and BTS counterparts which do not use the input-compression technique. For in-
stance, if the ROSM uses a parallel architecture for stack filtering, the number of threshold
levels is reduced from L to M. This leads to an important reduction in the number of
binary filters, at the expense of only a few additional components required for the input
compression. When the input compression technique is used in conjunction with the BTS
configuration for stack filtering, the number of iterations in the BTS-loop is reduced from

K (in the conventional BTS approach) to [log, M].

The ROSM architecture keeps track of the relative ranks of the samples appearing
in the input window of the stack filter as the window slides along the input sequence,
by mapping each sample value to a different rank, even in the case when several samples
assume non-distinct values. This technique is well suited for the case of 1-D stack filtering,
where there is only one new sample appearing in the input-window at each time-instant.
However, in the case of a 2-D stack filter of size M = N x N, there are N new samples
appearing in the input-window at each time-instant. As a result, in the case of 2-D stack
filtering, the computational time associated with the ROSM architecture increases very
fast with M. Moreover, in the input compression-based BTS approach for stack filtering,
the number of iterations per output sample is always equal to [log, M], even for windows
with non-distinct elements. Further, in image processing applications where the number of
quantization levels of L = 16 or L = 32 is used, even a filter-size M = 5 x 5 is comparable
with L, and as a result, the input compression-based BTS algorithm for stack filtering
does not provide any computational improvement over the one using the conventional BTS
method. The possibility of developing an alternative input compression algorithm, that
would successfully overcome the above-mentioned drawbacks of the ROSM, is investigated

in Chapter 5.

32

2.8 Summary

In this chapter, a review of the stack filter theory and the relevant background material
has been presented. The definition of a positive Boolean function as given in [53] has been
stated, and the concept of threshold decomposition of multilevel signals has been intro-
duced. The stacking property of Boolean functions, which is essential to the understanding
of stack filters, has also been described. The formal definition of the operation of stack
filtering has been presented, along with the binary-level implementation of stack filters.
In this implementation, the multilevel input signal is first decomposed into a set of binary
signals by threshold decomposition, then a positive Boolean function is performed on each
of these threshold signals, and finally, all the binary signals are added together yielding
the multilevel output. A multilevel max-min implementation of the operation of stack
filtering developed by Fitch in [22] has been presented, and the generalization of stack
filters to allow different PBF’s to operate at different levels of a stack filter configuration
has been briefly reviewed.

As shown by Coyle and Lin in [17], the stacking property of PBF’s allows the
development of a theory for the optimal design of a stack filter based on the MAE criterion.
It has been shown that the problem of decomposing the MAE into a sum of mean absolute
errors incurred by the Boolean filters at each level of the filter configuration, can be carried
out by a simpler and more direct method then the one presented in [17].

The conventional techniques for the efficient implementation of the operation of
stack filtering, i.e., the bit-serial BTS and the input compression-based methods, have

been also described in this chapter.

33

Chapter 3

Lp Norm Design of Stack Filters

The problem of signal estimation using optimal stack filters has been formulated by Coyle
and Lin in [17], based on employing the MAE criterion. As stated in [16], the reason
for the choice of the MAE criterion in the design of stack filters has been primarily its
mathematical tractability. Hawever, in some practical signal processing applications, the
availability of stack filters designed using a higher order error objective function could be
more desirable. For instance, in applications involving restoration of signals corrupted with
impulsive noise, the use of the MSE criterion could provide improved results compared to
those achieved by using the MAE design. To illustrate this possibility, let us assume that
by applying two different stack filters characterized by the PBFs f; and f; to the same
signal, we get, respectively, the following sets of absolute errors: e; = {0,1,1,1,0, 1} and
e2 = {0,0,0,4,0,0}. It is easy to see that since Z;Ll ei(7) = Z?=1 e2(7), the two stack
filters are equivalent from the standpoint of an absolute error formulation of the design
problem. However, since Z?=1 e2(j) = 4 while Z?ﬂ e3(j) = 16, with a mean square
error design approach, the two stack filters are different. The filter characterized by fi,
with a smaller mean square error, would be preferred. Minimum MSE stack filters could
also provide improved results compared to the minimum MAE stack filters in applications
involving nonlinear techniques for predictive coding. Specifically, in such applications, the

objective in stack filter design should be to minimize the variance of the prediction error

34

(i-e., the MSE), as is done in the design of linear filters for predictive coding [37].

Another practical advantage of using a higher order error approach to stack filter
design is the possibility of obtaining a good engineering approximation to the solution of
the minimax optimization problem. In image processing, the benefit of the availability
of such a solution stems from the visual interpretation of the maximum absolute error
between the desired and estimated images. As mentioned in [25], this error gives a measure
of the “fidelity” of a processed image to the original one.

In spite of the benefits that could possibly be derived by employing an objective
function given as the pth order error between the desired and estimated signals in stack
filter design, so far, no attempt has been directed to develop a mathematical framework
needed for this design problem. The lack of such an analytical framework could possibly
stem from the notion that the problem of an L, norm-based design would be mathemati-
cally intractable. In this chapter, the possibility to formulate the problem of designing the
pth order error-optimal stack filter as a linear optimization problem is investigated [70],
[76]. As a first step, the problem of designing minimum mean square error (MSE) stack
filters is considered [4], [75]. It is shown that in the case of signal estimation using stack
filters, the MSE between the desired and estimated signals can be expressed as a linear
function of the outputs of a PBF to all possible binary input vectors. An investigation
into the reason behind this interesting property of stack filters, suggests a mathematical
approach for solving the general design problem of L, norm optimal stack filters. The
possibility of extending the conventional MAE design of an important subclass of stack
filters (defined by linearly separable PBFs), the weighted order statistic (WOS) filters, is

also investigated in this chapter [79].

3.1 Background and Notations

Let X(n) denote a process which is received at the input of a stack filter Sy characterized

by a PBF f of window size M (see Figure 2.5). The input process X(n) is assumed

35

to be a corrupted version of some desired process S(r). At each instant n, the output
of the stack filter is an estimate of S(n). This estimate is based on the sequence x(n)
that appears in the input window of the stack filter, and it is denoted by S r(x(n)). As
shown in Section 2.4 [17], in stack filtering, the instantaneous error at the time instant n,
e(n) a (S(n) — S¢(x(n))), can be determined as
L-1
S(n) = Sp(x(n)) = 121 (se(n) — f(ze(n))) , (3-1)
where L denotes the number of quantization levels of the input and output signals, and
se(n) and z,(n) designate, respectively, the binary values at the level ¢ in the threshold
decompositions of S(n) and x(n). To simplify the notations, in this paper, we denote S(n),
S¢(x(n)), se(n), f(ze(n)), and e(n) by S, Sy, s¢, fe, and e, respectively. Thus, in rest of
the thesis; we assume the dependency of these quantities on the independent variable n
to be implicit.
As an immediate consequence of (3.1), the mean absolute error between the desired

signal and the filter output is given by
L-1
Ellell=Y_FE[lse— fel] - (3.2)
=1

Thus, a minimum MAE stack filter f can be found as the solution of a linear program

which minimizes the MAE given by (3.2), subject to the constraint that f be a PBF (17].

3.2 MSE Optimal Stack Filtering

The objective of this chapter is to investigate the possibility of expressing a more general
objective function than the MAE given by (3.2), namely, the pth order error between
the desired and estimated signals, E'[|e|"], as a linear combination of the binary level
decision errors. As a first step, we begin this investigation by considering the problem of

stack filter design using the mean square error objective function, i.e.,

36

Ellef]=E[Is~57]. (33)

In order to derive an expression for the multilevel error e as a function of the errors at the
binary levels, one may attempt, as it is done for the design of MAE stack filters [17], to
simply substitute 5_";11 se for S and Zi‘;ll fe for Sy in (3.3). However, in the context of the
present formulation, it can be easily observed that this substitution leads to a complicated
expression for e?. Specifically, due to the presence of the terms S? and S% on the right
side of (3.3), such an expression would contain cross-product terms of the forms s; - s;,
f(=z:) - f(=;), and s; - f(z;). We should rather aim at obtaining an expression for €2 as a
function of f; (¢ =1,2,...,L — 1), so that the minimization process of the MSE given by
(3.3) could be carried out much more easily.

As illustrated in Figure 3.1, by multiplying the outputs of the Boolean operators
at each level £ of the stack filter Sy by the value of ¢ itself, we obtain a sequence of Sy

consecutive integers. Thus, as a consequence of the stacking property of f, we have

L-1 1
S tfe=551(Sr+1) (3.4)
=1 2
and therefore,
L—-1
§2=2>¢tfi-S;. (3.5)
=1

Similarly, as a result of the definition of the threshold decomposition of S, we can also

have

L-1
S2=2) ts,-S. (3.6)
£=1

Now, using (3.5) and (3.6), we have

e = 25(8-5p) - (s*-53)

L-1
= (2S+1)(S=Sf) — 23 €(se— fo)

=1
L-1

=2) [(S—€+05)(se~fo)], (3.7)

=1

37

Multilevel window
sequence (L levels)

x(n) Sf(x(n)) — ¥y = Sf 0.5y (y+1)
Thresholding ¢ p T z T
Threshold sequences

{=1-1: *q M I 0 —»xi—= o
f{=L-2: x5 (n) fF—— o x{— 0
teyel: =g o —=lxt— o
l=y: xy(n) f > 1 <L y
byl mt 72 -, B
i=2: %y (n) ‘J—] ! ,L > 1 xl—= 2
=1 x,(n) i x{—= 1

Figure 3.1: An illustration of the implementation of a square-law device at the
output of a stack filter.

and, therefore, the MSE can be determined as

E[Ielz]=2I;ZIE[(S—€+O.5)(Sg—fg)]. (3.8)
=1

Note that the term ej(n) 2 (S(n) — €+ 0.5) (s¢(n) — f(ze(n))), is a weighted expression of
the binary error es(n) 2 se(n) — f(ze(n))-

Now, to solve the optimization problem associated with the design of stack filters
under the MSE criterion, an explicit expression for E[]|e;(n) |], as a function of the vari-
ables f(b;) € {0,1}, where {b_.,-|j =1,2,..., QM} is the set of all Boolean vectors of size M,
should be derived. Let us consider the combined experiment of observing different realiza-
tions s¢(n) € {0, 1} of the desired threshold process at level £ of a stack filter architecture,
the corresponding realizations z¢(n) € {by, 8, ..., bom } of the binary input to the Boolean

filter f at level £, and the associated multilevel realizations S(n) €{0,1,...,L — 1}. The

sample space of this experiment is given by

38

{(0,51), (Oab2)1 sy (OvaM)a (labl)’ (1162)1 KRS (1’b2M)}
x {0,1,...,L-1},

where a pair (0,8;) denotes the outcome (s¢(n) = 0,z,(n) =b;), a pair (1,b;) designates
the outcome (s¢(n) = 1, z¢(n) = b;), and the multiplication operator denotes the cartesian

product. Thus, the expected value of ej(n) is given by

L-1 2M
Ee(n)] = > {D_[(k—£+0.5)P:(0,bjlk)(— £ (5;)) +
k=0 ;=1
+ (k= £+05)P(Lbilk)(1—- f®,)) | }P(K), (3.9)

where the notations P(0, b;|k), P(1,b;|k), and P(k) imply, respectively, P[s¢(n) = 0, z¢(n)
= b;|S(n) = k], Plse(n) = 1,z¢(n) =bj{S(n) = k], and P[S(n) = k]. Consequently, the
MSE in signal estimation using stack filters can be expressed as a linear function of the

outputs f(b;) (j =1,2,...,2M) of the Boolean stack filter f, i.e.,

2M
MSE(S)) = 3 3 (a4 ;) + 8], (3.10)
ij=1
where
L-1L-1
oy =D Y [(£—k—0.5)(P(0,bj]k) + Pr(1,b;]k)) P(K)] , (3.11)
k=0 £=1
and
L-1L-1
Bi=>_ 3 [(k~£€+0.5)Py(1,b;k)P(k)] . (3.12)
k=0 ¢=1

Now, based on this error formulation, it can be observed that the minimum MSE (MMSE)
stack filter can be determined as a solution of a linear program with the same constraint
matrix imposing the stacking property on f as the linear program that finds a MMAE
stack filter [17].

In order to have a better understanding of the reason as to why, in stack filtering,

it is possible to reduce the MSE to a linear combination of the outputs of the Boolean

39

filter, it is very useful to follow the derivation of the expression for Sf given by (3.5), when

?;11 fe was substituted for Sy directly, instead of using the relation (3.4). We have
L-1 \?2
= (&%)
=1
L-1 /L-1
(Z fef. A)

1 \a=1

1 £ L-2 L-1

feh+Y. D0 fefa. (3.13)

A=1 =1 A=£+1

L4

Il
o
|

o~
1
-

Now, since the Boolean function f has the stacking property, it follows that for any A < ¢,
we have f;fi = f;. Consequently, the terms containing cross-product terms of the form
fe(z:) - fa(z;) are actually linear terms in the design variable f(z;). Thus,

¢
ST ffr=tfe. (3.14)

A=1
Let us now evaluate the second double summation appearing in (3.13). Note that A €

[+ 1,L — 1] is greater than ¢, and therefore, fofy = fi. We have
L-2 L-1

SN fin=fot it fia

=1 A={+1

+fa+...4+ fo-1
+ ...
+fL-1

L—1
=> (-1)fe. (3.15)
=1

Now, by substituting from (3.14) and (3.15) in (3.13), we get

L—-1 L-1
S3=>¢tfi+)d (e-1)fe, (3.16)
=1 =1
which is the same as (3.5). It can be observed that the expression for S? as given by (3.6)

can also be obtained by following the same approach as above, based on the structure of

the threshold decomposition of S.

40

Based on the technique of decomposing the MSE in signal estimation using stack
Iters proposed in this section, we next investigate the possibility of deriving a binary-level
expression similar to (3.8) in the more general case of an objective function given by the

pth order error between the desired and estimated signals.

3.3 L, Norm Design of Stack Filters

The design of stack filters is generally carried out under the assumption of first-order
ergodicity (i.e., it is assumed that sample averages are equal to time averages), using
“training” sequences [47], [81]. In this thesis, by using the same assumption, the terms of
pth order error norm and L, norm are used interchangebly. The pth order error between
the desired signal and the filter’s output is defined as the expected value of the pth power

of the multilevel instantaneous error e = (S ~ §y), i.e.,
Eflef’]=E[IS-S¢P]. (3.17)

Now, in the case of training-based design of stack filters, we are interested to evaluate the
Ly, norm of the error between the desired and estimated signals, which is formally defined

as

N P
Ly(Sy) & [Z |e(n) I”J : (3.18)

n=1

where IV denotes the length of the training set.
The derivation of a binary-level expression for the L, norm of the error between
the desired and estimated signals is obtained using the results given by the following two

theorems.

Theorem 3.1 In stack filtering, the multilevel instantaneous error e raised to the power

D, that is, e? = (5 — §¢)P, can be expressed as
L-1
(S—=8,)P =D Ap(8)-(se— fo) (3.19)
=1

41

where

A ()2 (S—t+1)P—(S—0)r. (3.20)

Proof. We will prove this theorem by induction. It can be easily seen that the expression
(3.19) holds for p = 1 and p = 2, since for these particular cases, the relation given by
(3.19) reduces to those given by (3.1) and (3.7), respectively. We now assume that the
result is true for p — 1, i.e.,

(S—8p)F! Z Ap-1(8) - (se— f2) s (3:21)
where A,_;(f) = (S— €+ 1)P~1 — (S — ¢)P~1, and prove that it is also true for p. The pth

power of the error, (S — S§f)?, can be expressed as

(S—=81)P=(S=8p)P71(S-Sy)

L-1 L-1
=>" {Ap—l(‘f Z (se — fe)(sx — fA)]} (3.22)
=1 a=1
In order to evaluate the inner summation, let it be denoted by T, i.e.,
T2 E [(se = fe)(sa —)] - (3.23)

Observe that the general term in the above summation, £, 2 (se¢ = fe)(sx — fr), can be
written as

Ex = (sesa — fesa) + (sesa — fase) —sesx + fefr - (3.24)

Now, the summation T becomes

L-1 L-1
= S(se—fo) +s¢d (sa—f) = Llse~fo) = 3 (sr—fr)- (3.25)
A=1 A=f+1

42

Note that the quantities —£(s¢ — f¢) and — Z,\ —¢ H(s,\ — fa) in the above expression for

T have been obtained from — Z sts) and E =1 ! fofy by using the technique of decom-

posing the latter summations over the intervals [1,£] and [+ 1,L — 1], as done in (3.13).

Now, (S — S¢)P becomes

L-1

S-8)"=> [Ap1(OS - (st - f)] +U -V, (3.26)

=1
where U and V denote, respectively,

A L-1 L-1]
=Y [Ap_l(é) se Y _(sx—)],
=1 A=1 :

and .

A L-2 L-1
V= Z [Ap_l(g) Z (sx = fa)

=1 A=t+1

-

The expression for U can be simplified as

L-1 L-1
= [ZAP-I(K) S(} . [2(5,\ _fz\):l
=1

A=1

=1

- S (- fa).
A=1

Similarly, V' as given by (3.28) can also be expressed as

V= [T (S-17 {(2— fo) +(sa— fa) +

+ (s - (s -2 {(sa—fa) + ---

+

[(s L+3)""' —(S-L+27"].
L

|
-

(77 = (S—e+ 1] - (se - fo) -

=1

43

(3.27)

(3.28)

{Z[(s £+ 1P~ (S—e"-]} [Z(Sx-fx)]

(3.29)

. +(sL-1~ fo-1) }

+ (sL-1 — fu-1) }

(sL—1 — fL-1)

(3.30)

By substituting for U and V' as given by (3.29) and (3.30), respectively, in (3.26), we

obtain
L-1
(S=87P =3 [S~e+ 1P = (S — 0P (S~ (s~ fo) +
=1
L-1 L—1
+ ST 3 (se—fo) - DO [SPTP-(S—e+ 1Y (se- fi), (331)
=1 =1

and it can be easily seen that (3.31) is indeed equivalent to (3.19), as required.

(Q.E.D.)

Now, based on the result of Theorem 3.1, we state another important property of
stack filters, concerning the absolute value of the pth power of the multilevel error in stack

filtering.

Theorem 3.2 In stack filtering, the absolute value of the pth order error between the
desired signal and the estimated one can be determined as a summation of the absolute
values of the weighted errors, e, () 2 A, (€) - (s¢ — fe). appearing at the binary levels of

the filter, i.e.,
L-1
IS =S¢ =" 1Ap(8)] - Ise — fel - (3.32)

=1

Proof. We will prove this theorem by considering the following three cases.

Case (i): S = Sy. In this case, the relation given by (3.32) is trivially satisfied, since

both sides become zero.

Case (1i): S < Sy. In this case, sy = fy = 1 for £ = 1,2,...,S, s¢ = fe = 0 for
£=8;+1,5¢+2,...,L—1, and s¢e—fe<0for€=5+1,5+2,...,5;—1,8;. Therefore,

we can write

L-1 S
DA (se—f)== 3 Ax(0)-Ise— fel . (3.33)
£=1 ¢=S+1

44

Now, since S < &y, we can also write
S=S8s=(-1)1S-8¢l, (3.34)
and substituting from (3.33) and (3.34) in (3.19) we have that

St
(=1)P-|S=S;P=— > Ay(€)-|se— fel - (3.35)
{=S+1

Now, depending on whether p is odd or even, we can have two possible situations for the

sign of each coefficient A,(¢€), with £ € [S + 1,Sf]. We analyze each case separately.

a) When p is odd, and since (S—£+41) > (S - ¢), we have (S—£+1)? > (S - £)?,
and therefore each coefficient A, (£) is strictly positive. Thus, in this case, (3.35) becomes

S
~[S=8/P== > (A0 |se~ fel

€=S+1

L-1
== |Ax(O]-Ise— fel (3.36)
=1

and consequently, the relation given by (3.32) is satisfied. Note that in (3.36), it has been
possible to extend the summation interval from [S + 1, Sy] to [1,L — 1], since (s¢ — f7) = 0

for £ < S, and ¢ > S;.

b) When p is even, and since (S — €+ 1) > (S —£) and (S — {) is strictly negative,
we have (S — €+ 1)? < (S — £)P. Thus, in this situation, all coefficients A,(¢) are strictly

negative, and therefore (3.35) can be written as

L-1
[S—Ss1P =D 1A,0)]-Ise~ fel (3.37)

=1

and the relation given by (3.32) is again satisfied.

Case (iii): S > Sy. In this case, s, = fy=1for £ = 1,2,...,8;, s¢ = fr = 0 for
€=5+1,S+2,...,L~1,and s¢— fy > 0for £ = S;+1,57+2,...,S. Thus, we have that

L-1 s
DA -(se—f)= Y Ap(O)-|se— fel, (3.38)
=1

l:Sf +1

45

and since S > Sy, we can also write
S-8r=|S-54].

Now, substituting from (3.38) and (3.39) in (3.19), we have

s
|S—8slP= > Ap(®)-Ise— fel
l=$,+l
L-1
= 18O Ise - fil
£=1

and the relation given by (3.32) is satisfied.

(3.39)

(3.40)

(Q.E.D.)

As a consequence of Theorem 3.2, the expected value of the pth order error given

by (3.17) and the L, norm given by (3.18) can be determined, respectively, as

L-1

E[lelP]= ZE |Ap(O)] - |se = fel]

and
N L-1 :%
Lo(Sy) = {ZZIAp(enl |se(n) — f(ze(n)) l} :
n=1 =1

where

Ap(€,n) = (S(n) — £+ 1)7 — (S(n) - €)7.

(3.41)

(3.42)

(3.43)

Thus, in stack filtering, both E[[e|”] and L5(Sy) are linear functions of the decision

errors at the binary levels of the filter. Following an approach similar to the one used

in the derivation of the expression for the MSE given by (3.10), it can be shown that

E[|Ap(€)]| - |se — fel] can be expressed as

L-1 2M

E[Ax(O]-1se— fell =D {D _[1(k =€+ 1)" ~ (k—)7 - Ps(0,b;]k) - f(B;) +

k=0 j=1

+ {(k=€+1)7 — (k= 0P| P(1,blk) - (1~ £(8;))]} - P(k) .

46

(3.44)

and therefore, we have

2M
Ellel] = Y [ap(d) - f(6)) + Bo(i)], (3.45)
=1
where
L-1L-1
op(7) =3 Y [I(k— €+ 1)~ (k—&)P]|- (Pe(0,b;, k) — Pe(1,b;,k))] , (3.46)
k=0 é=1
and
L~-1L-1
Bo(@) =D [I(k—€+1)P ~ (k— &)P|- Py(1,b;,k)] . (3.47)
k=0 ¢(=1

As a result, a stack filter which is optimal for signal estimation in the sense of the L, norm
can be determined as the solution of a linear program with the same constraint matrix
imposing the stacking property on f as the linear program that finds a minimum MAE
stack filter [17].

It is interesting to emphasize here that by letting S = 0 in the expression for the
pth order error given by (3.19), an expression for the pth order moment of the output of

a stack filter about the origin can be obtained as

L-1
B[S} = L ELE - (e-1P) £l (3.48)

Note that in [90], an expression for the moments of the output of a stack filter has been
derived, based on a formula for the filter’s output distribution. Thus, (3.48) gives an
alternative derivation of the output moments of stack filters, based on their responses at
the binary levels. This, in turn, suggests that in addition to the immediate application of
Theorems 3.1 and 3.2 to the design of stack filters, the results of these theorems could

also provide a new insight in the statistical analysis of stack filters.

Based on the expression for the L, norm as given by (3.42), we next investigate the

possibility of formulating the problem of minimax stack filtering.

47

3.4 Formulation of the Minimax Design Problem

Apart from being more general than the MAE or MSE design techniques, the L, norm
approach to stack filter design also offers a sound mathematical framework to formulate
the design problem of minimizing the maximum absolute error between the desired and
estimated signals (i.e., the minimax design problem). It should be pointed out that a pre-
vious attempt to formulate the minimax problem of stack filter design has used a heuristic
technique, in which the original Lo, problem of minimizing the multilevel maximum ab-
solute error has been replaced by a simpler problem of minimizing the maximum average

error between the output of the filter and its input [25], [28].

In this thesis, in order to formulate the L., design problem, we use the general
expression for the L, norm as given by (3.42), and follow the commonly used approach of
multiplying and dividing the L, norm by the maximum absolute error, and then taking
the limit as p — oo [6]. In the specific case of our problem, it can be observed that the

maximum absolute error between the desired and estimated signals can be expressed as

em & max max Anpm(e,n) , (3.49)
where
Apm(,n) & ey(€,n) -max {[S(n) — £+ 1], |S(n) — €]} , (3.50)
and
es(£,n) £ |se(n) — fze(n)) | . (3.51)

By multiplying and dividing the right side of (3.42) by e, we obtain
1
N L-1 P
A Z n) P
Lo(Ss) =em - {Z > | (lse(n) f(ze(n))l} - (3.52)

n=l1 é=1

Note that, by definition (see (3.49)-(3.51)), enrs is a positive constant, and thus, |epm| =
em > 0. By taking the limit of both sides of (3.52) as p — oo, all the terms of the

double summation become zero, except those for which Axq(¢,n) = earr. Each of the

48

nonzero terms assumes a value of 1, and their summation is a finite integer k. Thus,
since limp_;o0 kP = 1, the minimax stack filter can be determined as the solution to the

following optimization problem:
mfm max max Am(é,n), (3.53)
where A¢(¢, n) is given by (3.50).

The exact solution to the minimax problem given by (3.52) requires a combinatorial
search over all possible PBF filters of size M. However, it is known that the total number
of PBFs of size M is greater than 22"/ [27]). Thus, in practical engineering problems, it
is convenient to approximate the minimax solution by chosing a large value for p, and

minimizing the cost function L} with L, given by (3.42).

3.5 Design of Weighted Order Statistic Filters

The complexity of the linear program to find an optimal stack filter increases faster than
exponentially with the size of the filter window. This has led to the development of an
alternative approach of designing stack filters. Specifically, in [91], it has been proposed
to restrict the design problem to those subclasses of stack filters of well-known practical
significance in signal processing. One such example is the subclass of stack filters defined
by linearly separable PBFs (LSPBF's). These filters perform the operation of WOS filtering
at the multilevel domain [2], [34], [71]. The problem of designing a WOS filter which is
optimal in the MAE sense has been solved in [91]. In this section, based on the formulation
of the pth order error between the desired and estimated signals in stack filtering, as given
in Section 3.3, we extend the MAE design of WOS filters of [91] to the L, norm-based

design.

49

3.5.1 Definition of a WOS Filter

As shown in [34], the output of a WOS filter at an instant n can be obtained by the

following procedure:

(2) replicate each input sample, X(n —j) (f =0,1,...,M — 1), appearing in the filter’s
input window (which is denoted by x(n) = {X(n),X(rn - 1),...,X(n — M+ 1)})!

at time n, by a given positive integer w; called the weight:

(b) sort the resulting vector of 25’1:'[,1 w; elements;

(c) choose the wt-th largest value (wT denotes a positive integer called the threshold)

from the sorted vector.

Therefore, a WOS filter is completely determined by a set of positive integer weights,

Wo,W1,...,WM-1, and wr, and it is defined by the following input-output relation:

WOS(x(n)) = wr-th largest value in the set

wo times wyp—) times

N

X(n),....X(n),....X(n =M +1),...,X(n =M+ 1)

A WOS filter is a special type of stack filter, which is characterized by a linearly separable
PBF [34], [54], [88]. A PBF f(z) is said to be linearly separable if it can be expressed in

the form
M-1
1 if E Wj-Zj 2 WT
f(zo,z1, -y 2M-1) = =0 (3.54)

0 otherwise ,

1In this thesis, the samples appearing in the filter window x{(n) are interchangebly denoted
either by {X(n),X(n —1),...,X(n = M + 1)}, or by {xo,x1,...,Xp-1}. The latter notation
is more compact, since the dependency of the variables designating the window samples on the
window-position (time) n is assumed to be implicit.

50

where all w;’s and wt are positive real numbers. A WOS filter characterized by the
weights %o, W%1,...,WM—1, and Wr, is said to be normalized if W; = w;/ (Z?’I:Bl WJ'),
t=20,1,...,M—-1, and ¥t = wp/ (Z?-’I:Bl w_,-). Thus, for a normalized WOS filter, we
have 3"M7! &; = 1. The operation of normalizing the weights w of a WOS filter is used
in the experimental investigation described in the next section to compare the weights of

the WOS filters designed using different error criteria.

3.5.2 L, Norm Design of WOS Filters

The L, norm design of a WOS filter requires the determination of the weights w =
[wowy ... wn-—1], such that the L, norm given by (3.42) or the pth order error of (3.41), in
estimating a signal S(n) from a noise corrupted observation X(n) of the same, is minimized.
In order to derive algorithms for this design, it is noted that E[|e|?] given by (3.41) can

be equivalently expressed as

L-1
ElleP]=3 E[IA(0]-(se- fo)?] - (3.55)
=1

Thus, the L, norm design of WOS filters involves finding a PBF f(z) which minimizes
(3.55), subject to f(z) being linearly separable. In order to overcome the difficulty of
imposing the constraint of linear separability, we follow an approach commonly used in
WOS filter design [91], [93], in which a linear approximation of f(z) is employed. With
this approximation, the L, norm design of WOS filters is carried out by minimizing a cost

function given as

L-1
Jo(w) =3 E[14,(0] - (se - w-2])"] - (3.56)
=1

One may notice that after replacing the function f(z) appearing in the expression for
E[|ef?] given by (3.55) by a linear function, the WOS filter becomes, in fact, a linear
FIR filter. That is, the design problem reduces to finding an optimal linear FIR filter with

nonnegative weights. However, in contrast to the traditional LMS linear filtering [87], this

51

optimal FIR filter minimizes a weighted sum of squared errors incurred at the levels of
the threshold decomposition architecture.
The positive weights w= = [w(‘, Wi ... wg,,_l] that minimize (3.56), determine a

LSPBF f= given by

f(zoyz1,...,oM—-1) = =0 (3.57)
0 otherwise .
Following an approach similar to the one given in [91] for the case of designing an ap-
proximately optimal MAE WOS filter, it can be shown that Jp(w™) is close to the L,
norm achieved by an L,-optimal stack filter, in spite of the fact that Jp(w) of (3.56) is
not identical to E'[|e|?] given by (3.55).
Now, using the cost function J,(w) given by (3.56), nonadaptive and adaptive al-

gorithms for the L, norm-based design of WOS filters are derived.

(i) Nonadaptive Design

The gradient vector of the cost function J,(w) of (3.56) is given by

VJ, = —2L§E [;Ap(e)l + (se(n) —w-z}) z}]. (3.58)
=1

Thus, when the positivity constraints are not imposed on w, a WOS filter which is ap-
proximatley optimal in the sense of the L, norm can be obtained as the solution of the

following set of linear equations

R-w"=c, (3.59)

where R is an autocorrelation matrix given by

L-1
R=YFE [|A,,(e)| 2] -z,] , (3.60)
=1

and c is a cross-correlation vector given as

L-1
c=Y E[lA(0)] s -z7]. (3.61)

=1

52

The entries of the autocorrelation matrix can be easily evaluated at the multilevel domain

as

LR (@)
R(i,j)=F [Y I(S(r) — €+ 1)? - (S(n) - E)PIJ) (3.62)
=1
with
Lg (i, j) = min{X(n — i), X(n - /)}, (3.63)

and 4,7 = 0,1,...,M — 1. Similarly, the entries of the cross-correlation vector ¢ can be

determined as

c(?)
c(i)=E | > (S(n) — £+ 1)? — (S(n) — em} : (3.64)
=1
with
L¢(7) = min{X(n — 7),S(n)}, (3.65)
and ¢ = 0,1,...,M — 1. Note that in the special case of p = 1, R and ¢ become equal

to the morphological correlation matrices appearing in the conventional MAE design of

WOS filters developed in [91], i.e.,
R(¢,7) = E[min{X(n -), X(n - 7)}]. (3.66)

and

c(@) = E[min{X(n — i},S(n)}]. (3.67)

With linear inequality constraints of imposing the positivity of the weights, the L,
norm-based optimization problem can be solved by a gradient projection method similar

to the one used for the design of MAE WOS filters [91], [93].

(it) Adaptive Design

When the statistics of the observed and desired signals are not available, the fol-
lowing adaptive algorithm can be used to estimate the weights of the L, optimal WOQOS

filter:

L-1
w(n+1) = w(n) + p Z [IAP(Z, n)| (S((n) - w(n)- z;r(n)) z}(n)] . (3.68)
=1

53

An alternative adaptive design algorithm can be derived by using a sigmoidal approxima-
tion for the linearly separable PBF f(z) appearing in the expression given by (3.55) for
the cost function E[|e[?], instead of the linear approximation which has been used for
the derivation of (3.68).

While nonadaptive algorithms are known to yield good results when the observed
and desired signals are jointly stationary, an adaptive algorithm can track the time-varying

statistics of the signals and it is suitable for low-cost implementations [93].

3.6 Experimental Investigation

The fact that it is possible to design stack filters using a large variety of error criteria is
an important analytical result, broadening the theoretical understanding of these filters.
In addition, this result is expected to be useful in practical engineering problems as well.
For instance, as suggested in the introduction to this chapter, in applications involving
restoration of signals corrupted with impulsive noise, the use of the L, norm design with
p > 1 could provide improved results compared to those achieved by using the conventional
MAE design. To investigate this possibility, a typical application of restoring images
corrupted with impulsive noise is next considered. Experiments employing two different
test images are carried out. The Matlab programs used in designing the stack filters of

these experiments are listed in Appendices A—C.

Experiment I

Figures 3.2(a) and (b) show, respectively, a 256 x 256 8-bit Peppers image and its
noise-corrupted version, which are used in this experiment. The noise-corrupted image
of Figure 3.2(b) has been generated by adding positive impulsive noise to the noise-free
image of Figure 3.2(a). The impulsive noise has a probability of occurrence of 0.45, and a
magnitude of 255. By considering an example where the additive impulsive noise is purely

positive and has a high probability of occurrence, we expect that the filter with best per-

54

Figure 3.2: A 256 x 256 8-bit Peppers image. (a) The original image. (b) Noise-
corrupted version of (a).

55

formance in terms of removing the impulsive noise should be close to a rank order filter

selecting the smallest element within the filter window (i.e., the minimum filter).

Figure 3.3 illustrates the processed images obtained by applying the L,-optimal
stack filters of size 3 x 3 with p = 1,2, 3, and 4, to the degraded image of Figure 3.2(b).
The Ly-optimal stack filter is the minimum filter and, as seen from Figure 3.3, it is capable
of removing more impulses compared to the conventional MMAE stack filter, as well as
compared to the L- and Lj-optimal stack filters. By carying out the L, norm designs
with p=15,6,...,9, and 10, we have also observed in this experiment that not only the L,-
optimal stack filter is the minimum filter but also the L,-optimal filters with p = 5,6,...,9,
and 10 are minimum filters. This leads to a conjecture that, actually, in this example, the
minimum filter is the L-optimal stack filter, but a value of p > 4 is large enough for the
L, norm design to yield the minimum stack filter. The values of the MAE and the L,

errors, with p = 2,3, and 4, of the restored images of Figure 3.3 are listed in Table 3.1.

Figure 3.4 illustrates the processed images obtained by applying the L, WOS filters
of size 3 x 3 with p = 1, 5,8, and 10. The values of the L, errors, with p = 1,5, 8, and 10.
of the restored images of Figure 3.4 are listed in Table 3.2, while the corresponding values
of {/Jp(w) are given in Table 3.3. The weights and threshold values of the normalized L,
WOS filters with p = 1,5,8, and 10, are given in Table 3.4. All these WOS filters have
been designed by using the nonadaptive approach. As can be seen from Figure 3.4, the
Lio WOS filter, which is actually the minimum filter (see Table 3.4), provides a better
visual performance compared to that provided by the conventional MAE WOS filter, as
well as compared to the visual performances provided by the Ls and Lg WOS filters.
Finally, it should also be observed that, as indicated by the results in Tables 3.2 and 3.3, a
MAE WOS filter which is optimal in the sense of the J;(w) error but only approximately
optimal in the MAE sense, can actually achieve MAE-values that are larger than the

MAE'’s provided by the L, WOS filters with p > 2.

56

Figure 3.3: Processed images applying optimal 3 x 3 stack filters to the noise-
degraded image of Figure 3.2(b). The stack filters have been designed by using (a)
MAE, (b) MSE, (c) L3, and (d) L4 criteria.

57

Figure 3.4: Processed images applying approximately optimal 3 x 3 WOS filters to
the noise-degraded image of Figure 3.2(b). The WOS filters have been designed by
using (a) MAE, (b) Ls, (c) Lg, and (d) Lo criteria.

58

| Filter | MAE | L, Error | Ls Error | Ly Error | RERIN[%] |

MMAE stack 7.79 23.17 42.71 60.95 —

MMSE stack 8.41 20.62 36.57 52.42 58.38
Lz-optimal stack | 10.01 21.33 35.67 50.02 78.80
L,-optimal stack | 12.11 23.56 36.79 49.24 94.44

Table 3.1: Errors in the restored images using the L, norm stack filters designed in
Experiment I.

| Filter | MAE | Ls Error | Lg Error | L1o Error | RERIN[%] |

MAE WOS | 21.12 | 111.35 141.47 154.79 —
Ls WOS | 12.17 92.57 125.74 140.72 65.91
Lg WOS 8.58 68.90 103.10 119.64 92.90
Lig WOS | 12.11 60.33 86.73 100.48 99.14

Table 3.2: Errors in the restored images using the L, norm WOS filters designed in
Experiment I: MAE, Ls, Ls, and Ljq errors, and RERIN efficiency.

Filter Ju(w) | §/Js(w) Y Ja(w) Y/ Jio(w)
MAE WOS | 26.88 | 118.20 | 145.94 | 158.36
Ls WOS | 27.82 | 117.45 | 144.44 | 156.60
Lgs WOS 31.35 118.53 143.72 155.14
Lo WOS | 36.26 | 120.85 | 144.19 | 154.75

Table 3.3: Errors in the restored images using the L, norm WOS filters designed in

Experiment I: J,(w), \"’/Js(w), \’/Jg(w), and Y/Jio(w) errors.

59

MAE WOS Filter

Ls WOS Filter

0.0902 0.1073 0.0940
0.1149 0.1906 0.1127
0.0954 0.1070 0.0881

|

wr : 0.6334

|

|

0.1140 0.11531 0.1110

0.1104 0.1112 0.1101
0.1119 0.1101 0.1063

wr : 0.6972

Lg WOS Filter

LlO WOS Filter

0.1119 0.1117 0.1106
0.1141 0.1143 0.1095
0.1130 0.1103 0.1047

|

0.8077

Wt :

|

|

0.1125 0.1125
0.1144 0.1146

0.1132 0.1105

0.1105
0.1090
0.1028

0.9256

wT .

Table 3.4: Weights of the L, WOS filters (p = 1,5, 8, 10) designed in Experiment I.

60

The performance of the L, stack and the WOS filters with p > 2 designed in this
experimental investigation, has been also evaluated in terms of a heuristic measure of their
efficiency to remove impulsive noise, compared to those achieved by the conventional MAE
stack and WOS filters. Let us denote the number of residual impulses which are left in a
processed image obtained by applying a stack filter Sy to a given noise-corrupted image
by NRI(S¢). In the special case of applying the MAE stack filter MAE S to the given
noise-corrupted image, the number of residual impulses is denoted by NRI(MAE S 7). A
measure of the efficiency of an L, stack filter Sy, relative to that of the filter MAE Sy, in
removing the impulses that appear in the given noise-corrupted image, can be defined as

a NRI(MAE S¢) — NRI(Sy)

RERIN(S/)[%] & NRIMAES)) x 100, (3.69)

where RERIN stands for “relative efficiency in removing impulsive noise”. The RERIN
efficiencies of the L,-, L3-, and Ls-optimal stack filters designed in this experiment. are
given in the last column of Table 3.1. Similarly, the values of the RERIN efficiencies
(relative to the efficiency of the MAE WOS filter) of the approximately optimal L, WOS

filters with p = 5,8, and 10, are provided in the last column of Table 3.2.

Experiment II

A 256 x 256 8-bit Lenna image, shown in Figure 3.5(a), has been used in the second
experiment. The noise-corrupted image of Figure 3.5(b) has been generated by adding
“salt-and-pepper” impulsive noise to the noise-free image of Figure 3.5(a). The impulsive
noise has a probability of ocurrence of 0.2, a magnitude of £255, and the positive and

negative impulses appear with equal probabilities.

61

4

b
N
3

Figure 3.5: A 256 x 256 8-bit Lenna image. (a) The original image. (b) Noise-
corrupted version of (a).

62

Figures 3.6(a) and (b) show, respectively, the processed images obtained by apply-
ing the MMAE 3 X 3 stack filter and the 3 x 3 median filter, to the degraded image of
Figure 3.5(b). Note here that the median filter has been applied solely on the basis of the
heuristical observation that, in this experiment, the impulsive-noise is approximately sym-
metrical (i.e., the positive and negative impulses have equal probabilities of occurrence).
However, as can be observed from Figure 3.6, in this example, the median filter itself is
capable of removing the impulsive noise more effectively compared to the MAE-optimal
stack filter. By employing higher-order error objective functions, it has been observed
that in this experiment, the results of median filtering are actually very close to those
of the L,-optimal stack filtering with p > 4, both in terms of the visual performance as
well as in terms of the Ly-errors. The processed images obtained by applying the L4- and
Lg-optimal stack filters of size 3 x 3 to the degraded image of Figure 3.5(b) are shown in
Figure 3.7. The values of the L, errors with p = 1,4, and 8, of the restored images of
Figures 3.6 and 3.7 are listed in Table 3.5, together with the RERIN efficiencies of the

corresponding filters.

Figures 3.8 and 3.9 illustrate the processed images by applying the MAE WOS,
median, Ly WOS, and Lg WOS filters of size 3 x 3 to the noise-corrupted image of Fig-
ure 3.5(b). The values of the L, errors with p = 1,4, and 8, of the restored images of
Figures 3.8 and 3.9 are listed in Table 3.6, while the corresponding values of m
are given in Table 3.7. The weights and threshold values of the normalized median filter
and L, WOS filters with p = 1,4, and 8, are given in Table 3.8. As observed from Fig-
ures 3.8 and 3.9, and from the results of Tables 3.6—3.8, the L4 and Lg WOS filters of

this experiment are very close to the median itself.

63

Figure 3.6: Processed images applying (a) MAE-optimal stack and (b) median
filters of size 3 x 3, to the degraded image of Figure 3.5(b).

H
3
X
3

”

@) ®)
Figure 3.7:

Processed images applying (a) L4 and (b) Lg-optimal stack filters of
size 3 X 3, to the degraded image of Figure 3.5(b).

64

(a) (b)

Figure 3.8: Processed images applying (a) MAE WOS and (b) median filters of size
3 x 3, to the degraded image of Figure 3.5(b).

(@) ®)

Figure 3.9: Processed images applying the approximately optimal (a) L4 and (b)
Lg WOS filters of size 3 x 3, to the degraded image of Figure 3.5(b).

65

| Filter

| MAE | L, Error | Lg Error | RERIN[%] |

MMAE stack 4.92 43.77 88.92 —
Median 6.13 34.15 76.39 81.84
L4-optimal stack | 6.11 33.37 74.12 80.27
Ls-optimal stack | 6.37 33.57 73.07 81.84

Table 3.5: Errors in the restored images using the L, norm stack filters designed in

Experiment II.

| Filter [MAE | L, Error | Ls Error | RERIN[%] |

MAE WOS | 5.31 42.46 87.89 —
Median 6.13 34.15 76.39 77.25
L, WOS 6.13 34.15 76.39 77.25
Lg WOS 6.13 34.15 76.39 77.25

Table 3.6: Errors in the restored images using the L, norm WOS filters designed in

Experiment II: MAE, L4, and Lg errors, and RERIN efficiency.

Filter Ji(w) | Ja(w) | Y Ja(w)
MAE WOS | 8.12 | 66.733 | 111.258
Median 11.55 73.264 115.654
Li WOS | 862 | 65.257 | 109.907
Ls WOS | 8.67 | 65.275 | 109.893

Table 3.7: Errors in the restored images using the L, norm WOS filters designed in

Experiment II: J1(w), /Js(w), and &/ Js(w) errors.

66

MAE WOS Filter Median Filter

0.0840 0.0909 0.0946 0.1111 0.1111 O.1111
w 0.1157 0.2323 0.1154 w 0.1111 0.1111 O.1111
0.0941 0.0901 0.0830 0.1111 0.1111 O.1111
wr : 0.4677 wr : 0.5555
Ly WOS Filter Lg WOS Filter
0.1102 0.1113 0.1118 0.1139 0.1137 0.1139
w 0.1125 0.1135 0.1131 w 0.1101 0.1091 0.1113
0.1101 0.1096 0.1079 0.1093 0.1103 0.1083

W 0.4686 wT 0.4713

Table 3.8: Weights of the median and of the L,-WOS filters (p = 1,4, 8) designed
in Experiment II.

67

3.7 Summary

In this chapter, the problem of designing optimal stack filters by employing an L, norm
of the error between the desired signal and the estimated one has been solved. It has been
shown, for the first time, that in stack filtering, the pth order error between the desired
and estimated signals can be expressed as a linear function of the decision errors incurred
by the Boolean operators at each level of the filter. Therefore, an L,-optimal stack filter
can be determined as the solution of a linear program. Based on the derived expression
of the L, norm, a rigorous formulation of the problem of minimax design of stack filters
has also been developed. The conventional MAE design of WOS filters has been extended
to the L, norm-based design. It should also be pointed out that the proposed L, norm-
based framework of designing stack filters is not restricted to the case of using the same
Boolean operator at all the binary levels of the filter. Specifically, the results stated in
Theorems 3.1 and 3.2 are valid in the more general case, when the Boolean operators are
allowed to change with each threshold level (i.e., for the class of so-called “generalized
stack filters”, defined in [18] and briefly presented in Section 2.4). Notwithstanding the
main contribution of this chapter as a significant analytical result, providing a new insight
into the theory of (generalized) stack filter design, the framework of L, norm design of
stack filters, developed in this chapter, can find immediate applications in solving prac-
tical engineering problems. Specifically, it has been shown that in applications involving
restoration of images corrupted with impulsive noise, the L, norm stack filters are ca-
pable of removing impulsive noise much more effectively, and providing a better visual

performance, compared to that provided by the conventional MAE stack filters.

68

Chapter 4

A Bit-Serial Window-Partitioning
Algorithm for Stack Filtering

As discussed in Chapter 2, in the BTS approach for rank-order-based filtering, the level
adjustment is carried out based on the result of the operation of Boolean filtering char-
acterized by a positive Boolean function f, and by using increments which are pow-
ers of 2 (see (2.28)-(2.29)). Consequently, the bit-serial BTS architecture of [13] (see
Figure 2.8) does not take advantage of the additional information associated with the
binary threshold sequence doj, dij, ..., d(Mm-1)J- Specifically, the binary values dj;’s
can be used to divide the window-sequence {xq,x1,...,XM~1} into two subsets, namely,
Aj={xi|x;>2¢€,7=0,1,....M—-1},and By = {x: [x; < €3,i=0,1,...,.M—1}.
Thus, the subset Aj consists of those window samples which are greater than or equal to
¢, while the subset Bj comprises the window samples which are smaller than ;. In view
of the stacking property of f, a binary output f=1 at level £; indicates that the multilevel
output of the stack filter Sy is equal to one of the elements of A4j, and therefore, level
£341 should be selected from the elements of A;. Similarly, a binary output f=0 at level
£;5 indicates that the multilevel output is equal to one of the elements of Bj, and as such,

€341 should be selected from these elements. Based on this observation, in this chapter,

a new and efficient bit-serial hardware-oriented algorithm for stack filtering is developed

69

(3], [74], [78]- In the proposed algorithm, at each iteration, the new threshold level 4
is obtained by using both the result of the operation of Boolean filtering, as well as the
binary threshold sequence corresponding to the previous level, £5_;. An analysis of the
computational complexity of the proposed algorithm is carried out, and an architecture

suitable for its VLSI implementation is also developed.

4.1 Proposed Algorithm

The proposed technique for carrying out the operation of level adjustment is illustrated
by the block diagram of Figure 4.1. Specifically, the threshold level ¢; is adjusted by

employing both the result of the operation of Boolean filtering and the binary threshold

sequence dgj, dyJ, ..., d(M-1)1, in such a way that each threshold level ¢; is equal to one
of the samples xg,x1,..., XM—1-

s v v

x; ! Positive

. 5 | 417 [1] Boolean Sf(x(n))

i 4+ function | ,Level e

1 : 1, adjustment

'

M1 | g > f()
. 5 LoD T > ¢

Figure 4.1: Block diagram of the proposed bit-serial technique for stack filtering.

The proposed level-adjustment technique associates a Boolean variable B; to each
window sample x;, such that B; = 1 as long as, in order to determine the multilevel output
of the stack filter Sy, it is still necessary to carry out the operations of thresholding and
Boolean filtering at a level equal to x;. The variable B; is otherwise set to 0. At the
beginning of the proposed procedure, all variables B;,i=10,1,...,M— 1, are set to 1.

Then, at iteration J, a variable B; is reset to 0 if one of the following two situations occurs:

70

1) If at level €5 we have
f12 f(8(xo— €3),8(x1— €3), ..., 6(xp_1 — £3)) = 0,

on the basis of the stacking property of f, it follows that f(8(xo—x:), §(x1—X;), - - ., 8(XM—1
—x;)) = 0 for any x; > £;. Therefore, any further operation of thresholding and Boolean
filtering at a level x; > ¢; is redundant.

2) If at level €5 we have f; =1, on the basis of the stacking property of f, it follows that
F(é(x0 — x;),86(x1 — xi),...,0(%xM~1 — X;)) = 1 for any x; < €;5. Therefore, again any

further operation of thresholding and Boolean filtering at a level x; < £; is redundant.

Thus, at iteration J, if one of the following two situations occurs: a) x;>¥¢5and f1=0
or b) x; < ¢; and fy =1, B; is reset to 0. On the other hand, if ¢) x; < €5 and f; =0 or
d) x; > €5 and f; =1, B; remains unchanged. The steps to be followed in the adjustment
of threshold levels as used in the proposed bit-serial algorithm for stack filtering can be

stated as follows.

1. Initialize all B;’s to 1 and set J = 0.
2. If By = 1, evaluate the PBF at the level ¢; = x;.
— A result fj = 1 means that either Sy > ¢;, or Sy = £;. Consequently, any
x; < ¢; (i.e., any x; for which d;; = 0) cannot constitute the output of Sy,
and therefore set B; = 0 for all such x;’s. Also, in order to avoid any further
operation of thresholding and Boolean filtering at level ¢3, set B; = 0 for all
x;’s that are equal to €.
— A result fj = 0 means that §§ < ¢;. Consequently, any x; > ¢; (i.e., any x;
for which d;; = 1) cannot constitute the output of Sy, and therefore set B; = 0

for all such x;’s.

3. Set J=J+ 1. f J <M -1, go to Step 2; otherwise stop.

71

The principle used in the above procedure is to divide the input vector x = (xo, . - ., XM—1)
into two parts by employing the threshold sequence d 2 {dili = 0,1,....M -1}, and
then select one part, according to the result of applying the Boolean operator f, as the
work-interval for the next iteration of thresholding and Boolean filtering. At each iteration
J, the work-interval consists of those window-samples x;’s for which B; = 1.

In order to synthesize the expression of the Boolean variable B;, we observe that
corresponding to each operation of thresholding at a level €5, each pair (x;, fj) can assume
one of the four possible states, as shown in Table 4.1. The four possible ordering relations
between x; and {5 (i.e., ”<”, ”<”, ”>" and ">") are indicated by the threshold signals
d;; and df;, where

A 1 if x;2>4;
diy = 8(x; — £3) = (4.1)
0 if x<¢¥5,

and

1 if x;>¥;
bR (xi—by) = (4.2)
0 if x;<¥;5.

| dgy, diy | s| Ba |
diy=0 (Xi < ZJ) 0 B{(J-I)
diy=1(x;>4;5)] 0 0

a=0(x; &) | 1 0
d:-_, =1 (x,- > EJ) 1 B{(J_l)

Table 4.1: Syntheses of the expression of the binary variable B;.

Using Table 4.1, it can be easily observed that B; can be expressed as
Biy = (fidis + f1dly) - Big-y) - (4.3)

Now, the main algorithm for bit-serial stack filtering based on the above procedure

can be formalized using the pseudocode conventions of [14] as given next.

72

Algorithm 4.1 Bit-Serial Window-Partitioning (BSWP) Algorithm for Stack Filtering

1. B « ones(M)
2. for J «~ 0 to M-1
3. if Bj=1
then d «+ COMP-GEQ(x, x;)
d’ « COMP-G(x, x;3)
f <« PBF(d)
if f=1
then Sy « ¢;
for i <0 to M-1
10. B; « (fd; + fd%) - B;
11. return S¢

© 0 N oo oo

A listing of a Matlab program implementing the BSWP algorithm is given in Appendix D.

The proposed algorithm uses two procedures designated as COMP-GEQ and COMP-
G to determine the threshold sequences d = {dgj,d;y, .. -»dM-1)y3} and d’ = {dg;,d;, - ...
dEM—1)J} corresponding to a level ¢; of the stack filter configuration. The procedure called
PBF(d) evaluates the output of the Boolean filter f corresponding to the threshold se-

quence d.

At the beginning of an operation of stack filtering, any window sample can be
selected as the output Sy. Therefore, at line 1 of Algorithm 4.1, all the entries of the
partition vector B = {B;[¢=10,1,...,M — 1} are set to 1. When the condition at line 3
of the algorithm is satisfied, as it is always the case for J = 0, an operation of Boolean
filtering f = PBF(d) is applied to the threshold sequence d. A binary result of f=1
indicates that either Sy > £; (in which case the output of Sy is found among the elements
x; for which B;j = 1) or S§ = ¢;. Therefore, at line 8 of the algorithm, Sy is set to £;5. At
line 10, the new entries of the partition vector B are calculated using (4.3). Thus, B;’s are

adjusted according to the results of the operations of thresholding and Boolean filtering.

73

4.2 An Architecture Suitable for Hardware
Implementation of the Proposed BSWP Algorithm

An architecture (designated as the BSWP architecture) suitable for hardware implemen-
tation of Algorithm 4.1 is illustrated in Figure 4.2. The datapath consists of M identical
processing units (PU’s), each comprising a register-block REG and a comparator COMP.
A register-block REG consists of two register-fields denoted as B and X. A sample value
xi appearing in the input window of a stack filter is loaded into the register-field X of
REG;, while the register B of REG; is used to represent the partition flag corresponding

to x;.

f X
e E————
&r CONTROL UNIT S < A
-N-“’ Bg ... BMmog AQ eee AM.1 M E _5'_
""""""""""""""" ' K‘IS
X I Ao : 3 vy 2
COMP, lgd |
GEQ(2) | g :
G(>) '
do |

R et S Y

A SET ;
PUM-1 COMPpg g
GEQ(2) ;

S] G(>) =3 : 4

f PBF CIRCUIT dg -+~ dp.y
£ =PBF(dg - dpygg) [€

Figure 4.2: An architecture suitable for VLSI implementation of the bit-serial
window-partitioning algorithm.

74

The structure of the control unit is shown in Figure 4.3. It consists of a counter,
a decoder, a shift-register, and an output register. When the counter is incremented to
a value J, the output A; of the decoder is set to 1, and all Aj’s with 7 # J are set to
0. Accordingly, the output of X(REG;) is placed on the data-bus, and each comparator
COMP;, i = 0,1,...,M — 1, compares the content of the register-field X(REG;) with
the value stored in X(REGj). This operation of parallel comparison realizes both the

procedures COMP-GEQ and COMP-G that are used at the line 4 of Algorithm 4.1.

COUNTER of
(MOD M) CLKS o1
RESET|S o2
[T =1
DECODER REGISTER DourT o1
1 OF M) (SHIFT BY K) Lp
By A0 AL *c- Amg DIN RESET
A

OUTPUT _GJ_
REGISTER P L

s
L L

Figure 4.3: Structure of the control unit of the BSWP architecture of Figure 4.2.

In the BSWP algorithm, each new threshold level ¢; is equal to one of the window
samples x;’s for which B; = 1. In the BSWP architecture given in Figures 4.2 and 4.3, the
selection of the threshold level ¢; is achieved by employing the variable BZ = Uﬁgl AB;.
Specifically, the counter of Figure 4.2 is incremented with each rising edge of the main
clock @1, as long as the variable BZ asumes a value of 0. On the other hand, when
BZ =1, the content of the counter remains unchanged for the duration (TppF) required
to complete an operation of thresholding and Boolean filtering. This operation when
BZ =1 is accomplished by using the shift-register of Figure 4.3, whose size K is such that

K-T > Tpgr, where T denotes the period of ®1.

75

An illustration of the waveforms associated with the operation of the architecture
of Figure 4.2 is given in Figure 4.4. In this illustration, it is assumed that the PBF has to

be evaluated for J = 0,1, and 4, and that the size K of the shift-register of Figure 4.3 is

or [l L JLJL | 1
o2 [T LT LT

equal to 2.

bJ

Y : A Y
Ag.Ap.g 01(H)Y ' Y fo02 ! \)(oJ‘t’\XFé'\ 10 \ng__o
1 D]])
of | ! I

Figure 4.4: Waveforms associated with the operation of the BSWP architecture for
stack filtering.

4.3 Complexity Analysis of the BSWP Algorithm

The proposed BSWP algorithm for stack filtering uses a divide-and-conquer strategy. In
this strategy, the work interval at the iteration J is partitioned into two subsets Aj and Bj,
such that each element of A; is smaller than each element of Bj. Thus, from the point of
view of the complexity analysis, this partitioning technique is similar to the one employed
by the algorithm Quicksort [14]. As a result, the running-time properties of the proposed
BSWP algorithm for stack filtering are similar to those of the Quicksort algorithm. As it
is known, in spite of its slow worst-case running time, the Quicksort algorithm is generally
the best practical choice for sorting because of its remarkably fast average-case running
time. It has been shown in [14], that the partitioning technique used by the Quicksort
algorithm leads to an average-case running time which is much closer to the best-case than

to the worst-case running time.

76

The worst-case running time of the BSWP algorithm in terms of the number of
iterations per output sample is equal to M. This worst-case scenario is elicited only when
the input sequence x is arranged to some specific order for a specific rank. On the other
hand, the best-case scenario corresponds to the case when the partitioning procedure
produces two subsets of equal size at each iteration. In this best-case partitioning, the
number of iterations per output sample is equal to logoM. In the subsequent, following a
procedure similar to the one given in [14], we show that the partitioning technique used
by the BSWP algorithm leads to an average-case running time of O(log,M + k), where
the constant k is quite small.

Let us assume that the elements of x are in a random order. Also, to simplify the
analysis, it is convenient to assume that all input elements are distinct numbers.! The
probability of selecting the r-th largest element of a work interval with n elements as the
threshold level ¢; is equal to 1/n. As a result, the partitioning technique used by the
BSWP algorithm produces a partition whose low side (i.e., Aj) has r elements with the
probability of 1/n for any r € {1,2,...,n — 1}. Let T'(n) represent an upper bound on
the expected number of iterations per output sample required by the BSWP algorithm for
completing the operation of stack filtering when the work interval has n elements. Thus.
T'(n) is a monotonically increasing function of n, and it can be determined as the solution
of the following recurrence

1 n=l
T(n) < ~ ; max(T(r),T(n—r)). (4.4)
In (4.4), it is assumed that regardless of the rank r of £; among the n elements of the
work interval at the iteration J, the work interval at the iteration (J + 1) is given by A;
or Bj, depending on which one has the larger number of elements. In order to solve the
recurrence (4.4), we observe that in view of the fact that T'(n) is a monotonically increasing

function of n,

1For the case when x has non-distinct elements, the estimate of the average-case running time
would be smaller.

7

max(T(r), T(n—r)) = 4 L) i r=[n/2] (4.5)
T(n-r) if r<[n/2].

Thus, (4.4) becomes

1 [n/2-1] -1
T(n) < ;(Z Tn—r)+ Z T(r) . (4.6)

r=1 r=[n/2]
Now, if n is odd, each term T([»/2]), T([r/2+ 1), -.., T(n — 1) appears twice on the
right side of (4.6), and if n is even, each term T'([n/2] + 1), T([n/2 +2]), ..., T(n — 1)
appears twice and the term T'([n/2]) appears only once. In either case, the right side of
(4.6) is bounded from above by 2 zr—fn/ﬂ T(r),i.e.,

n—-1

< }: T(r) . (4.7)
r-fn/2'|

We solve the recurrence (4.7) by substitution. Assume that T(n) < log,n + k for any

T(n) <

n € {2,3,...,n — 1}, and for some constant k that satisfies the initial condition of the

recurrence (i.e., k > T'(2) — 1). Using this inductive hypothesis, we have

9 n—1
< = Z (logor + k)

T(n) ~
r=[n/2]
2 = 2 n
<= Y (logen+k) = =(n—[5])(logyn + k)
n n 2
r=[n/2]
2 n
< ;z-(n - 5)(log2n +k) =log,n+k. (4.8)

Thus, using the proposed BSWP algorithm for carrying out an operation of stack filtering
of window size M, the average number of iterations per output sample is < log,M + k.
In order to illustrate that the constant k assumes a small value, an experimental
investigation is carried out by applying an operation of median filtering employing the
proposed BSWP algorithm to the typical test image of Figure 4.5. In the experiment, the
average number of iterations per output sample has been determined for median filters
of sizes 3 x 3, 5 x 5 and 7 x 7, considering two different numbers of quantization levels,

L =64 and L = 256. The results are illustrated in Table 4.2, and compared to log,L, the

78

Figure 4.5: A test-image of size 256 x 256.

Average value of N/S
L M BSWP BTS | Savings
Exp. | log, M | (log, L)
3x3| 3.43 3.17 6 43%
L=64 |[5x5]| 4.21 4.64 6 30%
7Tx7| 4.66 5.61 6 22%
3x3| 4.04 3.17 8 50%
L=25|5x5! 5.38 4.64 8 33%
7x7| 6.61 5.61 8 17%

Table 4.2: Experimental comparison of the execution times (in terms of the number
of iterations per output sample, N/S) of the proposed BSWP algorithm with that

of the BTS algorithm for stack filtering.

number of iterations per output sample required when the conventional BTS approach [13]
is used. By comparing the 3rd and 4th columns of Table 4.2, it can be observed that a value
of k=1 is sufficient when considering filters of sizes up to 7x 7. Also, by comparing the 3rd
and 5th columns of the table, it can be seen that, as expected, important improvements in

terms of the computational speed can be obtained by using the proposed BSWP algorithm

instead of the conventional BTS procedure for stack filtering.

The average number of iterations per output sample required by the proposed BSWP

79

algorithin and architecture is O(log,M). This shows that the BSWP approach is generally
much faster than the BTS technique, which requires O(log,L) iterations per output sample,
since L is usually much larger than M. Yet, as seen by comparing the block diagrams of
Figures 2.8 and 4.1, the chip-area of the BSWP architecture is comparable to that of the
conventional BTS architecture[13].

It should be also observed that in applications where the number of quantization
levels is much larger than L = 256, the proposed BSWP algorithm and architecture
provide even more significant computational savings over the conventional BTS approach
than those listed in Table 4.2. This is particulary the case in speech processing, where a

16-bit quantization scheme is generally employed.

4.4 Summary

In this chapter, a new algorithm designated as the bit-serial window-partitioning algorithm
for stack filtering has been introduced. In this algorithm, at each iteration, the new
threshold level ¢; is obtained by using both the result of the operation of Boolean filtering,
as well as the binary threshold sequence corresponding to the previous level ¢5_;, in such
a way that each level £ is equal to one of the samples appearing in the input window of
the filter. With the BSWP algorithm, the average number of iterations per output sample
is O(log,M). It has been shown that the average-case number of iterations per output
sample is much closer to the best-case number of iterations per output sample than to the
worst-case.

An architecture suitable for the VLSI implementation of the BSWP algorithm has
also been developed. It has been shown that the proposed architecture achieves an in-
creased computational-speed over the BTS configuration for stack filtering, without an

additional expense in terms of the chip-area.

80

Chapter 5

A New Compression-Based
Algorithm and Architecture for
2-D Stack Filtering

The time-area complexities of the conventional parallel and bit-serial architectures for
stack filtering are determined by the number of quantization levels L of the multilevel input
signal. However, as recently observed in [1], more efficient architectures can be developed
by employing an input compression technique, which reduces the number of threshold
levels from L to M, the size of the filter’s window. The input compression technique of
[1] keeps track of the relative ranks of the samples appearing in the input window of the
stack filter by mapping each sample-value to a different rank, even in the case when several
samples assume non-distinct values. In spite of being very efficient for 1-D stack filtering
applications, this input compression technique is less suitable for the implementation of
2-D stack filters. In image processing applications, it is desirable to take advantage of the
fact that very often many pixels appearing in the filter-window at a certain time-instant
assume non-distinct values. Let us denote the number of distinct grey level values of a
sequence x(n) appearing in the input window of a 2-D stack filter by M. The fact that M

is generally smaller than the filter-size M can be exploited to reduce the computational

81

complexity of stack filtering, if a suitable encoding of the elements of x(n) into elements
of the set {0, 1, M- 1} can be performed. Such an encoding can be conveniently
achieved by employing the window sequence coding (WSC) transformation introduced in
this chapter [72]. Using the WSC transformation in conjunction with the BTS technique,
a new algorithm for 2-D stack filtering is developed [77]. It is shown that the proposed
algorithm is generally more efficient than the conventional input compression-based BTS

algorithm [1].

5.1 The WSC Transformation

Let us construct a set x*(n) = {xg, xJ,.... } by taking each element of x(n) at its

X811
first occurrence, when the elements of x(n) are scanned through from left to right. Thus.
X"(n) consists of only the distinct elements of x(n). Now, using x*(n). a new set denoted
by x™(n) is derived as

M—1

X(n)={% | % =[D>_6(x;-x})]-1:i=0.1.....M~1}. (5.1)
=0
Therefore, each element X7 € {0.1,...,M — 1} of X*(n) is given by the total number of

elements in x*(n) which are smaller than x7. Since both x*(n) and X" (n) consist of only

distinct elements, a mapping
Fn : x*(n) - x"(n), with F.[x/]=%7., i=0,1,....M—1. (5.2)
is 2 one-to-one correspondence, i.e., its inverse exists and it is given by
FIl[xll=xf, i=0,1,....M—1. (5.3)

The correspondence Fy, which maps the domain set x*(n) onto the range set X™(n) given
by (5.1) is designated as a window-sequence coding (WSC) transformation. The WSC

transformation given by (5.2) enjoys the following property.

82

Property 5.1 The ordering relations among the elements of the range set X~ (n) are the

same as those among the elements of the domain set x*(n), i.e.,

X; > X; if and only if x] > xj for all pairs (¢,5), with 4,5 € {0,1,...,M~ 1}. (5.4)
The proof of this property is straightforward, and it is omitted.

Example 5.1 As an example of constructing the sets x*(n) and %x*(n), we consider the
case of an input-window sequence x(n) = {97,255, 97,93, 32, 97,93, 93,97} with M = 9.
Following the procedure described above, we get x™(n) = {97, 255,93,32}, and X" (n) =

{2,3,1,0}. Therefore, in this case, the WSC transformation is given by

F. : {97,255,93,32} — {2,3,1,0}, (5.

[$)]
[¥)]
e

that is, F,[97] = 2, F,[255] = 3, F,[93] = 1, and F,[32] = 0.

Using the WSC transformation. the elements of x*(n) are encoded into the elements
of the set {0,1,...,M — 1}, and the sequence x(n) is mapped into a sequence X(n) given
by

x(n) ={ %; | X; = Fp[x];¢=0,1,....M—-11}. (5.6)
In view of Property 5.1 and the fact that the element-values in x(n) are the same as those
in x*(n), it follows that the ordering relations among the elements of %(n) are the same

as those among the elements of x(n), i.e.,
X;>x; ifand only if x;>x;, and %;=%; ifand only if x; = x;, (5.7)

for all pairs (,7) with 4,5 € {0,1,...,M - 1}.

Example 5.2 In 2-D stack filtering, the 1-D set x(n) is normally obtained by concatenat-
ing the rows of the 2-D window sequence. If for a specific window x(n) in Figure 5.1, the

WSC transformation of (5.5) is applied, the result, as shown, is given by %(n). The image

83

Figure 5.1: An example of applying the WSC transformation F, to a 2-D sequence
of size 3 x 3.

shown in Figure 5.1 represents a portion of the upper left corner of the noisy test-image
Bank of Figure 5.9(b), with 256 grey levels. In this example, the number of iterations
required for applying an operation of stack filtering to the encoded sequence %(n) by using
the BTS algorithm is given by [log,4] = 2. If the same stack filtering technique is applied
to a sequence obtained from x(n) by employing the input compression algorithm of (1], a

total of [log,9] = 4 iterations are required, since M =3 x 3 =9.

Let us now observe that, in practice, the WSC transformation can be applied without
the need of explicitly constructing the correspondence F,,. Specifically, the sequence x(n)
can be obtained directly from x*(n) (i.e., by using the distinct elements of %(n)), without

constructing the set X*(n), as

M-1
Xn)={% | % =[D_ 6(xi—x})]-1; i=0,1,...,M—11}. (5.8)
1=0

This fact is now used for the development of an architecture which is suitable for an

efficient hardware implementation of the WSC transformation.

84

5.1.1 A Hardware Architecture for the WSC Transformation

An architecture suitable for implementing the WSC transformation is illustrated in Fig-
ure 5.2(a). The datapath consists of M identical processing units (PUs), each comprising
a register-block REG with tri-state bus-drivers at the output and a comparator COMP.
A register-block REG; consists of three register-fields denoted by OSV, ESV and Z. An
original sample-value x; is loaded into the register-field OSV of REG;, while the register-
field ESV(REG;) is used to accumulate the encoded sample-value %;. Flag Z is used to
provide a mechanism for selecting only the distinct elements of x(n) (i.e., for implicitly
constructing the set x*(n)). The control unit generates the sequence of operations required
for applying the WSC transformation to the sequence x(n). The control unit comprises
an address counter/decoder block ACD and a counter M. The ACD block is used for
the selection of a processing unit PU; that places the content of its OSV register-field on
the DATA-bus. The counter denoted by M is used to accumulate the number of distinct
elements in the input sequence x(n). At the beginning of each new operation of WSC
transformation, the control unit performs an initialization of the architecture. During this
initialization, all SELECT signals are set to 1, the enable signal E and counter M are
set to 0, and a pulse signal 0-1-0 is sent to all REG;’s over the INIT-line. During the
time-frame when E=0 and INIT=1, the Z-flags are set to 1 and all ESV register-fields are
set to -1 (i.e., all the bits of each ESV register-field are set to 1).

The complete data-flow corresponding to the process of applying the WSC trans-

formation to a sequence x(n) is described by the following algorithm.

Algorithm 5.1 WSC Algorithm

Set SELECT = 1; Set E = 0; Set M = 0;
Set INIT = 1;
Set INIT = 0;

85

g CONTROL UNIT g
M rm=oon v gmezes b REG (k) 0|1]2]|3]|]4|5|6]| 7|8
71SELECT | AcD ! ! M ! k}
—»Z ST LSl par K osv 97| 255{ 97| 93! 32| 97| 93] 93| 97

"""" i;lja““"“""'“""- [mitial sate @:ESV)| 1:-1f 1z-1f 11| 1c-nf 1) nsar 1| s 1

- REGo .
Cs : Step j=0 Z; ;0|1;0|0:0] ;-1 1;-1 0:0] 1:-1f 15-1{0;0
_IL E_V_ oSV E ep j=0 Z;ESV)|1:0]|1
RES INC H Step j=1 Z;ESV)|1:0[1;1{0;001;-101;-1|0:;0f{1;-1j1;-1{0;0

]
{1
1
1}
L3
;
)
5 G E COMP, ‘J ! Step j=2 No change: Z(REG,)=0
L :
:- ’

Step j=3 (Z;ESV)|1:1]|1:2]0;1|1;0[1;-1|0:1]|0;:0[0;:0{0:1

Step j=4 Z:ESV)J1;211:3/0;2f1;1[1:0}0;2]0;1}0:1}{0;2

Step j=5 No change: Z(REG4) =0
Step j= 6 No change: Z (REG4) =0
Step j=7 No change: Z (REG,)=0
Step j=8 No change: Z (REGg)=0

Fmlsme V) | 2 [3] 2[10 2] t]1]2

-

R e T XD LT

(a) (b)

Figure 5.2: (a) An architecture suitable for a hardware implementation of the WSC
transformation. (b) An example of applying the WSC transformation using the
architecture of (a).

For j =0,1,...,M -1 do sequentially
Set @(R_EGJ') =0
If Z(REG;) = 1 then do
SetE=1;Set M =M + 1;
For k=0,1,...,M — 1 do in parallel
If GEQ(COMP,) =1
then set ESV(REGk) = ESV(REG) + 1;
If EQ(COMP:) =1 and CS(REG;) =1
then set Z(REG,) = 0;

End

Set E = 0;
End
Set CS(REG;) = 1;

End

Example 5.3 In this example, we illustrate the implementation of the WSC transforma-

tion on the architecture of Figure 5.2(a), by taking a specific window sequence, x(n) =

86

{97,255,97, 93,32, 97,93,93,97}, that was considered in Example 5.1. The contents of
all OSV-fields of register-blocks REG; (k = 0,1,...,8) during each step 7 =0,1,...,8 of
Algorithm 5.1 are shown in Figure 5.2(b).

As seen from Figure 5.2(b), at iteration j, if Z(REG;) = 0, no operation of compar-
ison is carried out. Thus, the computational time associated with the WSC architecture
is determined by the number of distinct samples of each window-sequence. An analysis of

the complexity of the proposed architecture of Figure 5.2(a) is carried out next.

5.1.2 Complexity Analysis of the WSC Hardware Algorithm

In this section, a comparison of the time-area complexity of the proposed WSC archi-
tecture with that of the input compression part of the ROSM architecture! of [1], in
performing an operation of 2-D window-sequence compression, is carried out. For con-
ducting this comparison, it is convenient to adopt the convention that the computational
time associated with a K-bit comparator is one unit, and its physical realization occupies
one unit of chip area.? In terms of this measure, the chip-area and computational-time
requirements corresponding to the WSC and 2-D input compression architectures can be
expressed as given in Table 5.1. While the area required by the WSC architecture in terms
of the number of K-bit comparators is equal to M, the chip-area required by the input
compression part of the 2-D ROSM architecture is slightly bigger and it is equal to QM,
with

Q=1+ —I1€ [log,M] . (5.9)

!Note that two realizations of the ROSM have been proposed in [1] by employing different
solutions for the implementation of the rank-update-logic stage. These two types of ROSM’s have
been designated as: 1) the ROSM with a feedback and 2) the ROSM without a feedback. In the
complexity analysis of the algorithms proposed in this chapter, a comparison is carried out with
respect to the ROSM with feedback, which achieves better time-area complexity than provided by
the second type of ROSM.

2Note that the number of registers is the same for both the ROSM and the WSC architectures.

87

The expression of Q has been calculated by observing that the input compression part of
the 2-D ROSM architecture comprises M K-bit comparators and M rank comparators. A
rank comparator is a ([log,M])-bit comparator, and therefore it requires a chip-area of

i [log,M] units.

L Architecture] Area | TimeJ

WSC
architecture M M A
2-D ROSM
(compression part) | QM | 4N

Table 5.1: Chip-area and computational-time requirements of the WSC architecture
and of the input compression part of the 2-D ROSM architecture.

The average running time of the WSC architecture is equal to Ma, the average
number of distinct samples appearing in the input window of a 2-D stack filter. On
the other hand, the average running time of the input compression part of the ROSM
architecture, carrying out an operation of 2-D stack filtering of size M = N x N, is a
constant equal to 4 N. This value has been obtained by observing that in the case of 2-D
stack filtering, for a window of size M = N x N, there are N new samples appearing in
the input window at each iteration, and for each new sample that appears in the input
window, there is a delay of approximately 4 units caused by a K-bit comparator (1 delay

unit) and an adder (approx. 3 delay units [1]).

The time-area requirements indicated in Table 5.1 illustrate that in 2-D applications,
the complexity of the WSC architecture is lower than (or at least comparable to) that of
the ROSM configuration, as long as 4QN > M,. This result is further analyzed in
Table 5.2, which gives the values of My corresponding to each of the noisy test-images of
Figure 5.9, when filters with sizes of 3x 3, 5x 5 and 7 x 7 are to be applied. This table 5.2
illustrates a comparison between the computational-time complexities of the WSC and

2-D ROSM architectures, as reflected by the relation between 4 N and M,, for each filter

88

sizeM = Nx N, N = 3,5,7. In this comparison, it is assumed that the WSC and 2-
D ROSM architectures are employed for applying an operation of 2-D stack filtering to

the noisy test-images of Figure 5.9. The cases of both L = 64 and L = 256 grey levels are

analyzed.
M=NxNf -
~ “2;’)1, 3x3| SxS5{ 7x7 3x3| 5x5| 7x7
Nk » 4 N 3 :v-_':.:_
Airplane: My £+] 47 | 84 | 119) | 68 | 137 223
Bank: My | 1 48| 89 | 125) | 69 | 139 228
Lenna: My [Z{ 49 | o3 [1|8 71 | 149 249
-~ " A
Hat: M, [=3| 54 | 106 152 [5] 74 | 156 | 271
4N 12 | 20| 28 || 12| 20| 28

Table 5.2: A comparison between the computational-time complexities of the WSC
and 2-D input compression architectures for applying an operation of window-
sequence compression to the specific noisy test-images of Figure 5.9.

The results of Table 5.2 show that in 2-D stack filtering, significant computational-
time improvements are to be expected, when using the WSC approach instead of the input
compression technique of [1]. Moreover, for commonly used filters of sizes 3 x 3, 5 x 5. or
7 X 7, the time-area complexity of the WSC architecture is also much better than that of
the ROSM configuration for the four images considered in this experiment. The possibility
of developing a WSC-based BTS algorithm which is faster than the input compression-
based BTS approach of [1], without requiring an increased chip-area, is investigated in the

next section.

5.2 A WSC-Based BTS Algorithm

By using the WSC transformation in conjunction with the conventional BTS procedure,

a WSC-based BTS algorithm for stack filtering is now presented. Figure 5.3 is the block

89

X; € [0.L-1] %; € [0,M-1]

Xg ;‘E’o ~

x_> WSC Tb BTS S,(X(n)

—L 5| Transfor- —L5 ik ool Sp(x(n)
: mation : | | Filtering | n [———>

XM-1 h Fp Xp E

Figure 5.3: Block diagram of a WSC-based BTS technique for stack filtering.

diagram illustrating the sequence of the operations in the proposed technique. The various

steps involved with this technique can be described in the form of the following algorithm.

Algorithm 5.2 WSC-Based BTS Algorithm

1. Construct the WSC transformation F,, and determine
%(n) = {Fa[xi(n)]]1i=0,1,....M—1}.

2. Using the binary-tree search approach and taking K = K,, = [log,M] , apply
the operation of stack filtering to the sequence %(n). Let Sf(%(n)) = X3

3. Determine the output of the filter at the time instant n as y, = F![X]] = x7 .

Thus, the output of Algorithm 5.2 is given by
yn = F7' [S5(%(n))]

Kn
= F7U [f(6(%0 — £3), 6(%1 — €3), ..., 8(Rn—1 — £3)) - 26279], (5.10)
J=1
and the threshold level in the Jth step can be obtained iteratively as

£, = 2Kn-1 (5.11)
J-1)

€= f(8(x0—4;),...,8(xm—1—€;)) -25°77] 4 2K | for T € {2,...,Kpn}. (5.12)
Jj=1

Note that (5.10) follows readily from (2.30).

90

In Algorithm 5.2, an output y, given by (5.10), corresponding to an input x(n), is
obtained by performing an operation of stack filtering Sy to the sequence %(r). In order
to demonstrate that this algorithm is functionally equivalent to applying the operator S f

directly to x(n), we first present the following two lemmas.

Lemma 5.1 Ifx,(n) = {x(0), X(1); - - -, X(M-1)} denotes an ordered set obtained by sorting
the elements of x(n) in the ascending order, then

2K—1

Srx(n)) = Y f(8(x0=£),6(x1—2),...,80xme1 — £))
=1

M—1
> {1y = x-n)] - F(8(x0 — x(5)), §(x1 — X@i))s - -2 6(XxM-1 —%X(3))) }, (5.13)

=0

where x(_;) = 0.

Proof: The relation (5.13) follows immediately, by expressing the summation Z?l__{fl)

e 2K 1 X(0) X(1) XM—1)
_fO=XfO0+ X fO+..+ X f0)
=1 =1 l=X(°) +1 l=X(M_2) +1
M-1 X
=2)BENION ¢ (5.14)
1=0 l=X(._1) +1
and observing that for each interval [X(@-1) + 1, X, with i =0,1,...,M - 1, we have

f(6(x0—€),6(x1—€),...,8(xm-1~0)) = f(6(x0—%(;)), 8(X1—%(3)), - - -» S(xM—-1 —X(3))) »

for all € € [x(;~1) + 1,%(;] . Thus, the inner summation in (5.14) becomes

X(i)
> f(6(x0—£),8(x1-2),...,6(xpM1 ~8)) =
£=X('_1)+1
= [X(i) - x(i—l)] - F(8(x0 — x(5)), (%1 = X(3)), - - -, 8(XM=1 — X(3)))
and the right side of (5.14) reduces to that of (5.13). a

91

Lemma 5.2 The following equivalence is true for any stack filter S £
Sp(x(n)) =xm = SsX(n)) =X, (5.15)
where I denotes an arbitrary number in the set {0,1,..., M —1}.

Proof: In view of Lemma 5.1, and using the notation %,(n) = {X0)r X(1)s - - -y X(M-1)} tO
designate the ordered set obtained by sorting the elements of X(n) in the ascending order,
S¢(x(n)) can be expressed as
M-1
S¢(x(n)) = Z; { X = Xl F(8(%o—%(3)). 6(X1 — X(3))s -+ -0 6(KM—1 — X(3))) }, (5.16)
where X(_;y = 0. In order to prove that the forward implication of (5.15) is true, we

assume that Sy(x(n)) = x(y), and therefore, based on Property 5.1 of F,,, we have

f8(Xo = %X¢iy), -, 8(%M—1 — X)) = f(8(x0 — X(5)), - - -1 8(xM—1 — X(3))) =

1 for ¢<1
= (5.17)
0 for ¢>1.
Now, using (5.17), (5.16) becomes
I
Sr(x(n)) = %) + D_[Xq) — %e-1] = X - (5.18)
=0

The demonstration of the backward implication of (5.15) is omitted, since it follows a

similar argument as the proof of the forward implication. O

Using Lemma 5.2, we will now establish the main theorem.

Theorem 5.1 The WSC-based BTS algorithm performs the operation of stack filtering,

i.e., ¥y, as given by (5.10) also yields

Ya = S(x(n)) . (5.19)

92

Proof: Assuming that S¢(X(n)) = Xy, from (5.10), we have
Yo = F1[Ss(x(n))] = F;! [xq]- (5.20)

Based on the definition and properties of F,, there should be an element x(1) in x(n) such

that X1y = Fa [x(r)] and thus F7! [%()] = x(3). Therefore, (5.20) can be written as
Yn = X(q) - (29)

Now, using §y(%(n)) = X(1), and the backward implication of Lemma 5.2, it follows that

x(r) = S¢(x(n)), and consequently y, = xq) = Ss(x(n)). o

5.3 Architecture for the WSC-Based BTS Algorithm

Algorithm 5.2 can be implemented by employing the WSC architecture discussed in Sec-
tion 5.1.1, and the BTS configuration along with a control circuitry and a circuitry to
implement F;!. The block diagram of the architecture is shown in Figure 5.4, whereas
the associated timing information is provided in Figure 5.5. In the block diagram, the
shaded boxes represent the WSC-control unit and the PUs of the WSC architecture of
Figure 5.2. It is to be noted that the architecture of Figure 5.4 uses the same registers
REGq, REGy, ..., REGM-1, as does the WSC architecture of Figure 5.2. As the intercon-
nections among the blocks of the WSC architecture are clearly illustrated in Figure 5.2,
they are not depicted in the diagram of Figure 5.4. Instead, the diagram of Figure 5.4
emphasizes the way in which the blocks of the WSC architecture are incorporated into the
WSC-based BTS configuration for stack filtering. While the shaded blocks of the architec-
ture of Figure 5.4 implement Step 1 of Algorithm 5.2 (i.e, the WSC transformation), the
BTS block of the architecture realizes Step 2 of this algorithm. As shown in Figure 5.5, the
signal denoted by WSC/BTS is used to control the sequence of WSC and BTS operations.
Note that the samples appearing in a window-sequence x(n) are loaded into the OSV

register-fields at the beginning of each WSC-operation, during the time when D_LD = 1.

93

SF
Se(x(n)

L

.

T

:1 BTS
» BLOCK

In

Sp ()

Figure 5.4: Block diagram of a WSC-based BTS architecture for stack filtering.

WSC/BTS I l l |
T

| Twsc I BTS !
D_LD [_l

osv X

.
X

cru f] l
-

Yn X
e T

Figure 5.5: Waveforms associated with the architecture of Figure 5.4.

At the same time, all Z-flags are set to 1 and all ESV register-fields are initialized with -1.
The BTS block of Figure 5.4 has a configuration similar to that of the binary-tree search
structure of Figure 2.8, except that the adjustment of the threshold level is accomplished
with a time-varying value of K, i.e., K = K, = [log,M]. Step 3 of Algorithm 5.2 is realized
by the output-mapping (OM) unit of the WSC-OM block. In Figure 5.4, the OM unit is

implemented by the circuit of the unshaded part of the WSC-OM block, and it consists of

94

M rank processing units (RPUs). These RPUs are used to determine the output of the filter
at the time instant n, y, = S¢(x(n)), based on the knowledge of the rank §, = S r(X(n))
of this output among the samples x(n) appearing at the input of the filter at time n.
Each rank processing unit RPUj is built around the register REG; of the processing unit
PU; of the WSC architecture. Each block RPU; comprises a rank comparator RCOMP;,
which is used to determine whether or not §, is equal to ESV(REG;). The OSV-field
of each register REG; is connected to the bus denoted by y, through a tri-state buffer.
This tri-state buffer is normally in the high-impedance state, except for the case when
Yn = ESV(REG;), Z(REG;) = 1, and CTRL = 1. In the exception case, the OSV-field
of register REG; contains the result of the filtering operation, and consequently, it is
required to place its content on the y,-bus. The result of applying an operation of 2-D
stack filtering to the sequence x(n) is loaded into the register SF after the rising edge of

signal CTRL.

5.4 A Pipelined Architecture for the WSC-Based BTS
Algorithm

The computational efficiency of the architecture shown in Figure 5.4 can be significantly
improved, with a slight increase in the chip-area, by employing a technique of pipelining.
Such a modified architecture is shown in Figure 5.6. This architecture has been obtained
from the block diagram of Figure 5.4 by completely separating the WSC and OM units of
the WSC-OM block. In terms of the chip-area, this operation amounts to only introducing
M additional registers, denoted by RREGy, RREGy, ..., RREGpM_;. At the time-instant
n, when the WSC block performs the encoding of the sequence x(n), the OM and BTS
blocks operate on the previously encoded sequence X(n — 1).

The timing information regarding the waveforms used in the architecture of Fig-
ure 5.6 is provided in Figure 5.7. As compared to the timing diagram of Figure 5.5, a new

signal, denoted by BTSCLK, is also shown in Figure 5.7. This signal, which is generated

95

%o § Tma §
WSC Unit Al 4% OM Unit LYY Control
e e DT ' Unit
PGy REGg H peSmeeesm— oo oo
! T =7 I-.' RPUO [RREGy ‘= BTSCLK
(2] BV | oSV et : sy T oev e D.LD J| |
xo | 1sET H H &l—-—rl_—él—: ¥, T D_LD
B S W : —_— ; -
{PUny REowa T L ,
: o l—['_ M -u:RPUM_l I RREG ppt ;:__‘ p (x(n))
v 2] BV [oSV et : 1 —
z ESV osv
XM-1 J:SE’T{ RESI ‘ ‘i H [_L;— l ——— PE ’ BTS
SR ty S P eYY & BLOCK
v S;(E @)

Figure 5.6: Proposed pipelined WSC-BTS architecture for stack filtering.

weeps | [1L [T
BTSCLK || N Nl N

pID [[[M.
OSVREG) X X Y X

Figure 5.7: Waveforms associated with the architecture of Figure 5.6.

In the complexity analysis carried out in the next section, it is shown that in some

from WSC/BTS, is used to control the data transfer between the registers REG;’s and
RREG;’s. As expected, the throughput 1/T~ of the architecture of Figure 5.6 is two times

higher than 1/T, the throughput of the architecture of Figure 5.4.

cases the WSC transformation takes longer computational time than the BTS operation
itself. In these situations, it is desirable to use a multistage architecture, employing several

WSC- and OM-stages.

96

5.5 Complexity Analysis of the Pipelined WSC-Based
BTS Architecture

In Section 5.1.2, a comparison between the time-area complexities of the WSC architecture
and the input compression part of the 2-D ROSM architecture was carried out, by adopting
the convention that the computational time associated with a K-bit comparator is one unit,
and its physical realization occupies one unit of chip area. In this section, we extend the
analysis, and compare the time-area complexities of the proposed pipelined WSC-based
BTS architecture and the complete ROSM architecture for 2-D stack filtering. To this

end, it would be useful to introduce the following notations:

Twsc — estimated duration of the operation of WSC transformation;

Trosm — duration of the operation of 2-D ROSM input compression;

TBTs — estimated duration of a BTS operation with the WSC-based approach;
Tpts — duration of a2 BTS operation with the ROSM approach;

Ten — duration of a thresholding operation within the BTS block;

Ty — duration of the operation of Boolean filtering f;

ToMm — duration of the operation of output mapping.

[t is readily seen that TBTS and TgTs can be evaluated using the following relations
Ters = [log,(Ma)1(Ten + Ts) + Tom (5.21)

TBTS = [log, M] (Ten+Tys) + Tom - (5.22)

It is to be noted that both the proposed and the ROSM-BTS architectures use ([log, M])-

bit comparators for carying out the thresholding operations within their respective BTS

blocks. As a result, Ty, is given by

Tth = %rlogz NI-I . (5.23)

97

Also, as shown in [1], the operation of Boolean filtering may take 1, 2, 3 or 4 delay-units3,
ie,Tf=1,2,3, or4, while the computational time Toyp is approximately equal to 0.5
units.

A comparison between the time-area complexities of the proposed and ROSM-BTS
architectures for 2-D stack filtering is illustrated in Table 5.3. This comparison is carried
out by considering the case of the noisy test-image Hat, for which, as shown in Table 5.2,
the worst-case values of M4 have been obtained. It is to be noted here that, as illustrated
by (5.21) and (5.22), the relation between TgTs and TgTs is completely determined by that
between [log,(Ma)] and [log, M]. In Table 5.3, the chip-area is expressed by calculating
the number of WSC- and ROSM-stages required for implementing an operation of 2-D
stack filtering with maximum throughput when using the proposed and the ROSM-BTS
architectures, respectively. The maximum throughputs for the proposed and ROSM-BTS
configurations are given by (1/ TBTs) and (1 /TBTS), respectively. In Table 5.3, the number
of WSC stages is denoted by NSwsc, while that of ROSM stages is designated as NSgosym.

The values of NSwsc and NSgrosym are calculated as
NSwsc = [Twsc/TaTs] (5.24)

NSrosm = [Trosm/TB1s] - (5.25)

As it can be easily seen by analyzing the results in Table 5.3, important improve-
ments in terms of the throughput are achieved with the proposed architecture over the
ROSM-BTS configuration without increasing the chip-area. Specifically, for all filter-
sizes and all possible values of Ty, except for the case of 7 x 7 filters with T; = 4,
NSwsc < NSrosm. Moreover, as shown in Table 5.1, the chip-area required by a WSC-
stage is smaller than the one corresponding to a 2-D ROSM-stage by a factor of Q =

1+ (1/K)[logo M]. As a result, even in the case of a filter of size 7 x 7 with T; = 4,

3In [1], the computational-time has been expressed in terms of gate-delay units. As such, a
K-bit comparison takes 3 gate-delay units, while the operation of computing the PBF may take
at least 2 and at most 12 gate-delay units. As stated in Section 5.1.2, the delay-unit is taken as
the computational time required to carry out a K-bit comparison. Using the measure of [1], this
computational-time can be equivalently expressed as 3 gate-delay units.

98

Ty

1

2 8.0 10.5 11.0 13.625 14.25 17.0

3 11.0 14.5 15.0 18.625 19.25 23.0

4 14.0 18.5 19.0 23.625 24.25 29.0

NSwsc [NSpasw [NSwsc | MSrosm [Nwsc | Srosm

1 1 2 2 2 2 2

2 2 2 3 3 3 3

3 1 1 2 2 2 2

4 1 1 1 1 2 1

Table 5.3: A comparison between the time-area complexities of the WSC-BTS and
ROSM-BTS architectures.

for which NSwsc = 2 while NSgosm = 1, the chip-area corresponding to the proposed
architecture is still comparable with that of the ROSM-BTS configuration. Specifically,
in this case the ROSM stage occupies 1.75 x 49 = 85.75 units of chip-area, while the two

WSC stages take 2 x 49 = 98 units of area.

5.6 Experimental Investigation

Four test-images and their noisy versions have been used in this chapter to evaluate and
compare the computational efficiencies of the WSC-BTS and ROSM-BTS architectures
for 2-D stack filtering. All test images have a size of 256 x 256 and two versions of grey
levels, L = 64 and L = 256, have been used. The original test images for L = 256 are
shown in Figure 5.8, and they are designated as Airplane, Bank, Lenna and Hat images.
The corresponding noise-corrupted versions of these images are illustrated in Figure 5.9,
and they have been obtained from their respective noise-free versions by using additive

impulsive noise with a probability of occurrence of 10%. The impulsive noise is uniformly

99

(@ | ® © @
Figure 5.8: Original test-images used in the experiments: a) Airplane, b) Bank, c)
Lenna, and d) Hat. All the images have a size of 256 x 256 and L = 256.

@ ® © @

Figure 5.9: Noisy test-images used in the experiments: a) Airplane, b) Bank, c)
Lenna, and d) Hat. All the images have a size of 256 x 256, and are corrupted with
impulsive noise with a probability of occurrence of 10%.

distributed over the grey level interval [-L,L]. The saturation levels of 0 and (L-1) are used
for the noise-corrupted images, leading to a salt-and-pepper noise pattern.

An illustration of the computational-time efficiency that can be achieved with the
proposed WSC-based BTS approach using pipelined architecture over the ROSM-BTS
technique for 2-D stack filtering, is provided in Table 5.4. The results of this table have
been calculated based on counting the total number of iterations Nwsc_pTs required to
complete an operation of 2-D stack filtering by using the proposed approach in the case
of each of the original and noisy test-images. Note that the total number of iterations
NRrosM-BTs required to perform an operation of 2-D stack filtering by employing an

ROSM-BTS architecture is completely determined by the size M of the filter, that is,

100

Filter size
Image S5x5| 7x7 3x3] 5x5} 7x7
Airplane 8% | 48% 33%| 20%| 3%
E Bank 46% | 4% 31% | 19% | 21%
'§‘ Lenna 4“%| 3% 31% | 16% | 18%
Hat 5% | 34% 9%} 11%| 13%
Airplane 35% | 37% 8% 15%| 19%
%’ Bank 35% | 36% L | 27%| 15% | 19%
= Lenna 2% | 34% |4 26%| 13%| 17%
Hat 27% | 29% || 25%] 10%] 2%

Table 5.4: An illustration of the computational-time efficiency n of the WSC-BTS
approach over the ROSM-BTS technique for 2-D stack filtering,.

Nrosm-BTs = [log, M] x 256 x 256. The computational-time efficiency is determined

using a measure given by

_ Nrosm-BTs — Nwsc-BTs 100 [%) . (5.26)
Nrosm-BTS

n

As seen from the results of Table 5.4, significant improvements in terms of the
computational-speed can be obtained when the operation of 2-D stack filtering is carried
out by using the proposed architecture. The computational efficiency of this architecture
is further reinforced by the curves shown in Figure 5.10. These curves have been drawn

showing the values of the computational efficiency n* calculated as

. n for L>M
Nt = (5.27)

7 for L<M,
where 7 = (1/Np1s)(NBTs — NmBTs) - 100 [%] and NpTts = [log, L] x 256 x 256, as a
function of N (= v/M). The reason for modifying the measure of the computational-time
efficiency from (5.26) to (5.27) is that for L < M, the ROSM-BTS architecture is less

efficient than the conventional BTS configuration [13] itself. Therefore, in this case, the

101

"+" (dashed line) - test-image Airplane "+" (dashed line) - test-image Airplane
2N "x" (doued line) - test-image Bank . sl "x" (dotted Line) - test-image Bank
AN "*" (dash-dot line) - test-image Lenna "*" (dash-dot line) - test-image Lenna
wl M3 "0" (continuous line) - test-image Har | "0o" (continuous line) - test-image Har
2 . ol
— '\'\ _.«"’—'—;‘:‘\ b
= ¥ "_i = Isl
- " e -.:_;\‘
. NS
= 3o \‘\‘~\s\ -
e
2s) T e Te o
L
\'1
20})
‘53156566{0{:{213”28Qn'ouzl"{e{sz'o
N (square filters of size Nx N have been used) N (square filters of size N x N have been used)
(a) (b)

Figure 5.10: An illustration of the computational-time efficiency n™ of the proposed
WSC-BTS pipelined architecture over the ROSM-BTS or BTS architectures for 2-D
stack filtering. The curves illustrate the values of 7= as a function of N, where N x N
is the size of the filter. The inputs to the filters are the noisy test-images with the
number of grey-levels (a) L = 64, and (b) L = 256.

performance of the WSC-BTS approach is compared with that of the BTS technique. The
computational-time efficiency 7~, as depicted in Figure 5.10, has been obtained using the

noisy test-images mentioned earlier with L = 64 and L = 256.

The curves of Figure 5.10 illustrate that the proposed approach of 2-D stack filtering
achieves considerably improved efficiency over the ROSM-BTS technique or the BTS tech-
nique itself for a very large range of filter sizes. By analyzing the results of Figure 5.10(b),
it can be also observed that the computational-time efficiencies corresponding to 5 x 5,
7X 7, and 11 x 11 filters are lower than those which can be achieved by using the filters of
window-sizes 3 x 3, 9 x 9, and 13 x 13. This type of fluctuation is a result of the relation
between 7 and the distance D = ,M - 2U°32MJI for different filter-sizes M. Specifically, n
assumes larger values when D is smaller, since for a smaller D, the probability that at

each window-position there are less than |log,M| distinct samples is larger.

102

5.7 Further Discussion on the WSC-BTS and BSWP

Architectures

The number of iterations per output sample required by the WSC-BTS architecture is
smaller than [log,M]. By comparison, the BSWP architecture developed in the previous
chapter is slower, requiring an average of log,M + k iterations per output sample. For
instance, employing a 3 x 3 filter with L = 256, the WSC-BTS technique requires approx-
imately 3 iterations per output sample while, as given in Table 4.2, the BSWP algorithm
requires approximately 4 iterations per output sample. However, when the PBF circuit
can be implemented using a reasonably small chip area (e.g., in the case of rank order
filters), the WSC-BTS architecture occupies significantly increased chip-area compared to
that of the BSWP configuration for stack filtering. Thus, in this situation, the BSWP
approach provides an improved time-area complexity compared to that of the WSC-BTS
technique. On the other hand, when the PBF circuit has to be implemented using ROM
memories, the PBF part of the stack filter configuration occupies the bulk of the chip-
area. In this case, the comparison between the time-area complexities of the BSWP and
WSC-BTS techniques clearly favors the latter. Specifically, in this case, the increase in
the chip-area required by the WSC-BTS structure compared to the BSWP configuration
is far less important than the computational savings that can be achieved by using the

WSC-BTS approach instead of the BSWP technique.

103

5.8 Summary

In this chapter, 2 modified binary-tree search algorithm for 2-D stack filtering has been
developed. The algorithm uses a new input compression technique designated as the
window-sequence coding transformation, which takes advantage of the fact that in most
images, many pixels appearing in the input-window of a 2-D stack filter at a certain
time-instant assume non-distinct values. It has been demonstrated that the proposed
WSC-based BTS algorithm is functionally equivalent to the operation of stack filtering.
A hardware architecture implementing the proposed algorithm for stack filtering has been
given. In order to improve the computational efficiency, a pipelined version of this archi-
tecture has also been developed. A comparison between the computational-efficiencies of
the proposed WSC-BTS approach and the ROSM-BTS technique for 2-D stack filtering
has been carried out. It has been shown that with the proposed approach, considerable
improvements in terms of the computational-time can be achieved without an increase in
the chip-area. The new approach is especially attractive in those cases when the window-
size M is only slightly larger than an integer that is a power of two (e.g., M=9 — as it
is the case for a 3 x 3 filter — or M=21 — as it is the case for a 5 x 5 filter in which
the corners are chopped off). Significant improvements in computational efficiency are
also achieved in those image-processing applications where L and M assume comparable
values. For instance, in the case of 3 x 3 filters, computational-improvements of at least
n = 25% can be easily obtained for images with L=256, while for images with L=64, the

efficiency can easily be increased to a value of = 45%.

104

Chapter 6

Design of Locally Optimal Rank
Order Filters with Application to

Deinterlacing Problems

The computational cost associated with on-line design and implementation of optimal
stack filters may not be unreasonably high in those image processing applications in which
suitable signal and noise models that do not change frequently, are available. However, in
commercial applications such as video coding for digital television systems, signal models
do not conform with this constraint and as such this optimal solution could be quite
expensive. Since at the multilevel domain a stack filter performs an operation of signal-
dependent rank order filtering and in typical images, the details of the scene are locally
situated, it can be expected that a filter bank of locally optimal rank order operators may
provide an effective alternative solution to the general on-line design and implementation
of optimal stack filters.

In this chapter, we investigate the possibility of designing locally optimal rank order
filters and using them for spatial interpolation. An efficient algorithm for the design of
rank order filters which are locally optimal in the MAE sense is proposed. The algorithm

uses a threshold decomposition technique in which the rank of a window sample x; is

105

determined by employing the threshold sequence corresponding to the level £ = x;. As a
result, with the proposed algorithm, the minimum mean absolute error (MMAE) design
solution of rank order filters (ROFs) is achieved without carrying out the operation of
sorting the samples appearing at the input-window of the filter, as is generally required in
the conventional techniques for the MMAE design of ROFs. It is shown that the proposed
algorithm can be efficiently implemented in hardware by employing a slightly modified
version of the WSC architecture of Chapter 5. An application of the proposed algorithm
and architecture to spatial interpolation is alsc investigated by developing a procedure for

intrafield deinterlacing of video signals.

6.1 An Algorithm for the MAE Design of Locally Optimal
Rank Order Filters

The problem of determining a rank order filter of size M that is optimal for signal es-
timation in the mean absolute error sense can be solved by using a conceptually simple
procedure. Specifically, an optimal rank order filter can be determined by first evaluat-
ing the MAE corresponding to each possible rank r, and then selecting the ROF which
achieves the minimum MAE over all possible values of r € {0,1,...,M — 1}. An algorithm

suitable for this design can be easily established as given below.

1. Set MAE(r) =0forr=0,1,...,M—1, and set n = 0.

2. Sort the elements of the window sequence x(n) = {xq,x1,...,XM-1} in decreasing
order, and let x,(n) = {%(0)» X(1)s - - -» X(M—1)} denote the resulting set.
3. Set r = 0.

4. Update the MAE corresponding to the current value of r, i.e., set
MAE(r) = MAE(r) +] S(n) = X

3

where S(n) denotes the desired output at the window position n.

5. While r <M, set r =r + 1 and go to Step 4.

106

6. While n is smaller than the size of the training set, let n = n 4+ 1 and go to Step 2.
7. Set r =1 and ROF =0.

8. If MAE(ROF) > MAE(r), then set ROF = r.

9. While r < M, set r = r 4+ 1 and go to Step 8. Otherwise stop.

In this section, an alternative algorithm for the MAE design of locally optimal
ROFs is developed, by employing a threshold decomposition technique. Specifically, it
is observed that the rank r of an element x; can be determined by using the threshold
sequence {d(xo — X;),8(X1 — X;),...,8(xM=1 — X;)}, as formalized by the two lemmas

given below.

Lemma 6.1 An element x; that appears only once in the set x(n) is the r-th largest
element of this set if and only if

M-1

r=25(xk—xj). (6.1)

k=0
Lemma 6.2 If for an element x; of the set x(n), there are Z; other elements in x(n)
which assume the same value as x;, then the ranks of these (Z; + 1) elements are given

by r,r—1,...,r ~ Z;, where r is given by (6.1).

Lemmas 6.1 and 6.2 can be easily proved by contradiction. As a consequence of these
lemmas, it can be observed that the time-consuming operation of sorting the elements of
the sequence x(n) can be eliminated by employing a threshold decomposition architecture
for the MAE design of locally optimal ROFs. The steps of the proposed algorithm are

summarized below.

1. Set MAE(r) =0forr=0,1,...,M—1, and set n = 0.
2. Set 7 =0.
3. Determine the rank r of x; using the results of Lemmas 6.1 and 6.2, and compute

the local MAE (LMAE) corresponding to selecting x; as the output of the ROF at

107

the window-position r, i.e.,
LMAE = |S(n) — x; | .
4. Update the global MAE associated with r, i.e.,
MAE(r) = MAE(r) + LMAE.
5. While j < M, set 5 = j + 1 and go to Step 2.
6. While n is smaller than the size of the training set, let n = n 4+ 1 and go to Step 2.
7. Set r =1 and ROF = 0.
8. If MAE(ROF) > MAE(r), then set ROF = r.
9. While r < M, set r = r + 1 and go to Step 8. Otherwise stop.

Using the above procedure, a much more efficient scheduling of the operations of
summation involved in updating the MAE is achieved. The possibility of using the WSC
architecture of Chapter 5 for the development of an efficient configuration for the MAE

design of locally optimal ROFs is investigated in the next section.

6.2 An Architecture for the MAE Design of Locally
Optimal ROFs

An architecture suitable for an efficient VLSI implementation of the MAE design of locally
optimal ROF's is illustrated in Figure 6.1. The datapath consists of M processing units
(PUs), each comprising a register-block REG with a tri-state bus-driver at the output and
a comparator COMP. A register-block REG; consists of three register-fields denoted by X,
B, and Z. An original sample-value x; is loaded into the register-field X of REG;, while the
latch B(REG;) is used for storing the binary result of the comparison which is caried out in
COMP;. Let us denote by x = {x§,x}...,xJ,-.., X%y,) @ set consisting of the M distinct
elements of x(n). The register-field Z(REG;) is used to provide a mechanism to determine
the rank of the element x; = x} when there are several elements in x(n) assuming the same

value x;. This mechanism is required in view of the result of Lemma 6.2. Specifically,

108

gn of locally

109

° -
» | =
i]
Siva " A A >
YT e
7 13534
avoi il Wl i | (e ..% B TR Sk it | S -
ot ' ' +
i t] !]
0! t ' »M |
g P "
m » vyl o Y [
g]] -]
" ala- 3~
] -] -
= R AP Zls) t gH s glall
z i kL | T 8lgg|l:
5 |e idd R “
d M] 'z | seed) H
) LY H ' _.llB_ H
2 e [|
z b e o P) :
w m_ m"n.n o " "UM —- v |
P] H]
=D e (18] & bl & "
XS | I I)
-— g
10373 ¥ —>

Figure 6.1: Block diagram of the proposed architecture for the MAE desi

optimal rank order filters.

when the elements of x(n) are scanned through from left to right, and an element X; = X],
for which there are other Z; elements assuming the same value x;, is encountered, then
the register fields Z corresponding to all these Z; + 1 elements of x(n) are incremented. At
each iteration j, =0,1,...,M — 1, the inputs to a comparator COMPj are given by x;

and Xi. As a result, at iteration j, the binary set
6(x(n) —x;) = {B(REG¢) [k =0,1,....M—1} (6.2)

represents the threshold sequence corresponding to the element x; of x(n). The rank of x;
is given by the difference between the total number of 1’s in the threshold sequence given

by (6.2) and Z(REG;).

The control unit generates the sequence of operations required for the MAE design
of a locally optimal rank order filter. It comprises an address counter/decoder block ACD,
an adder ¥, and a sub-block to determine the MMAE ROF for estimating a signal S(n).
given a training sequence X(n). The sub-block consists of a memory-block MAEg, MAE;,.
...y MAEN_, a register S, and the operational blocks MIN, ABS, and “+”. The ACD
block is used for the selection of a processing unit PU required to place the content of its
register-field X on the DATA-bus during a certain iteration j. The rank of an element
x; is determined by employing the adder ¥ whose output is represented as SUM. The
rank is then used for decoding the address of the MAE storage-location (i.e., MAEsupm)
which is adjusted at iteration j. Specifically, at iteration j, the content of MAEsypy is
increased by the amount ABS(S — x;), where ABS denotes the operation of taking the
absolute value. The result of the design procedure (i.e., a locally optimal ROF) is given by
the lowest address of an MAE storage-location whose content is minimum over the entire

memory-block MAEg, MAE,, ..., MAEM_1, i.e.,
ROF = min {r [MAE, = min {MAEo, MAE;,...,MAEy_;}}. (6.3)

The dataflow corresponding to the architecture of Figure 6.1 for the MAE design of lo-
cally optimal ROF's can be formalized in the form of the following algorithms, using the

conventional pseudocode notations.

110

Algorithm 6.1 Algorithm for Designing Locally Optimal MAE ROFs

Fork=0,1,...,M -1 do in parallel Set MAE; = 0;
Set SELECT = 1; Set E = 0; Set LOAD = 0;
Set RESET_Z = 0; Set RESET_B = 0;
Forn =0,1,...,N — 1 do sequentially
Set RESET Z = 1; Set LOAD = 1;
Set RESET_Z = 0; Set LOAD = 0;
For j=0,1,...,M — 1 do sequentially
Set CS(REG;) = 0; Set RESET B = 1;
Set RESET.B = 0; Set E = 1;
For £k =0,1,...,M —1 do in parallel
If GEQ(COMPy) = 1 then set B(REG,) = 1;
If EQ(COMP;) = 1 and CS(REG,) = 1
then set Z(REG:) = Z(REGy) + 1;
End
Set MAEsym = MAEsym + ABS(S - X(REG;));
Set Eg(REGj) = 1; Set E = 0;
End
End
Set ROF = min { r | MAE, = min {MAEy, MAE,,...,MAEy_; }};

As previously stated, with the proposed architecture, the MAE design of ROFs is ac-
complished without carying out the operation of sorting the samples of the sets x(n),
n=0,1,...,N — 1. Specifically, at each iteration 7, the rank of the element x; is directly
determined by using the results of Lemmas 6.1 and 6.2. As an example, by considering a
specific window-sequence x(n) = {97,25,97}, the ranks of the samples xq = 97, x; = 25
and x2 = 97 are easily determined by employing Algorithm 6.1, as being 2, 3 and 1,
respectively. The contents of all register-fields after the step j = 2 of the algorithm are

indicated in Figure 6.1.

The idea of using locally optimal MAE ROFs for signal estimation can be employed
in solving a variety of problems in image and image-sequence processing. Therefore, many

2-D and 3-D signal processing applications can benefit from the availability of the proposed

111

architecture of MMAE ROFs, which is computationally very efficient and yet suitable
for low-cost implementation. In the next section, the possibility of using the proposed
architecture for the problem of video-signal deinterlacing through spatial interpolation is
studied. In this context, the MMAE ROFs can find immediate commercial applications

with the emerging advanced digital television systems.

6.3 Application to the Deinterlacing of Video Signals

In the subsequent, a technique that uses a rank-order filter-bank for intrafield deinterlacing
of video signals is introduced, and an investigation of its performance is carried out by
means of a simulation. In the proposed technique, an image-field (interlaced image) is
divided into overlapping blocks of 6 x 6 pixels, as shown in Figure 6.2(a). Then, an
MMAE design procedure in which the samples appearing in a filter window W are used
to estimate a sample S, is applied to each of these blocks. As a result, an ROF which is
locally optimal for signal estimation over each individual block of 6 x 6 pixels is determined.
By employing this rank-order filter-bank, a deinterlaced image-frame is obtained from the
given field by spatial interpolation. Specifically, as shown in Figure 6.2(b), a block of 8 x 4
pixels of the deinterlaced image-frame is obtained by using the lines of an original block
of 4 x 4 pixels of the given field and by employing the MMAE ROF corresponding to this

4 x 4 block to interpolate the missing lines in the 8 x 4 block of the image frame.

An investigation of the performance of the proposed interpolation technique, in
terms of the subjective quality of a deinterlaced image-sequence, has been carried out.
An illustration of the performance of the proposed deinterlacing technique in the space
domain is shown in Figure 6.3. Figure 6.3(a) depicts an interlaced image-frame of 170x 160
pixels consisting of two consecutive fields, each of 170 x 80 pixels. A very annoying artifact
can be observed along the vertical lines, due to the horizontal movement of the camera.

Figure 6.3(b) shows the result obtained by using one of the conventional deinterlacing

112

................

............

tmeden

Block of 4x4 pixels repre- s N
senting the desired subimage Block of 8x4 pixels of the

interpolated image-frame
(a) (b)

Figure 6.2: The proposed deinterlacing scheme. (a) A block B of 6 x 6 pixels of the
given image field (interlaced image), which is used as the training set for the MMAE
design of a locally optimal ROF. (b) A block of 8 x 4 pixels of the deinterlaced image
frame.

procedures, namely, the line-doubling [44]. As it can be noticed, this deinterlacing method
introduces a disturbing artifact along the horizontal lines. Figure 6.3(c) illustrates the
result obtained by using the proposed technique for spatial interpolation using the locally
optimal MAE ROFs introduced in this chapter. From this figure, it is observed that the
spatial continuity of lines and contours of the image is much better preserved, as compared

to the images of Figures 6.3(a) and 6.3(b).

113

Figure 6.3: An illustration of the performance of the proposed deinterlacing tech-
nique. (a) Interlaced image-frame of 170 x 160 pixels consisting of two consecutive
fields of 170 x 80 pixels. (b) Deinterlaced image-frame obtained from a field of
170 x 80 pixels by line-doubling. (c) Deinterlaced image-frame obtained by the ap-
plication of the proposed technique for spatial interpolation using locally optimal

MAE ROFs.

114

6.4 Summary

In this chapter, motivated by the fact that, in typical images, the details of the scene
are locally situated, a hardware-oriented design of locally optimal MAE ROFs has been
developed. It has been shown that the Boolean rank order operator associated with the
ROF does not require sorting. As a result, the proposed design technique offers improved
efficiency compared to employing a conventional multilevel configuration of rank order
filter for the MMAE design and implementation of ROFs. It has also been shown that
the proposed design can be conveniently implemented in hardware by employing a slightly
modified version of the WSC architecture of Chapter 3. An application of the proposed
design and implementation of locally optimal MAE ROFs to spatial interpolation has
been investigated, by developing a procedure for intrafield deinterlacing of video signals.
The proposed deinterlacing technique can be successfully used in low-cost commercial

applications for digital television systems.

115

Chapter 7

Conclusion

7.1 Concluding Remarks

Motivated by the recent successes of using stack filters in image processing applications,
in this investigation, we have been concerned with the problems of efficient design and
implementation of stack filters. The focus has been on exploring the possibility of using
the L,-norm optimality criterion for the design of stack filters and on the development
of hardware-oriented algorithms for the implementation of the filters designed using this
optimality criterion.

The problem of designing optimal generalized stack filters by employing an L, norm
of the error between the desired signal and the estimated one has been solved. It has been
shown that the L, norm can be expressed as a linear function of the decision errors at the
binary levels of the filter. As a result, an Ly-optimal stack filter can be determined as the
solution of a linear program. The conventional design of using the mean absolute error
(MAE) criterion, therefore, becomes a special case of the general L, norm-based design
developed in this thesis. Other special cases of the proposed approach, the problems
of optimal mean square error (p = 2) and minimax (p — oo) stack filtering, that are
of particular interest in signal processing, have also been discussed. The conventional

MAE design of an important subclass of stack filters, the weighted order statistic filters,

116

has been extended to the L, norm-based design. By considering a typical application
of restoring images corrupted with impulsive noise, several design examples have been
presented, to illustrate the performance of the Ly-optimal stack filters with different values
of p. Simulation results have shown that the L,-optimal stack filters with p > 2 provide a
better performance in terms of their capability in removing impulsive noise, compared to
that achieved by using the conventional minimum MAE stack filters.

A new algorithm designated as the bit-serial window-partitioning (BSWP) algorithm
for stack filtering has been developed. In this algorithm, the threshold adjustment is
carried out by using both the result of the operation of Boolean filtering and the sequence
of binary threshold values. An analysis of the computational complexity of the BSWP
algorithm has shown that the average number of iterations required for its implementation
is O(logoM) per output sample, where M is the size of the filter. It has been shown
that in those signal processing applications where M < L (L being the number of grey
levels), considerable improvements in terms of the time-area complexity can be achieved
by employing the proposed BSWP algorithm instead of the bit-serial binary tree search
(BTS) approach of [13]. Through experimental investigation, it has been shown that these
improvements are in the order of 20% to 45% for filters of sizes 3 x 3, 5 x 5 and 7 x 7.
An architecture suitable for VLSI implementation for the proposed BSWP algorithm has
been also developed.

A window-sequence coding-based BTS (WSC-BTS) algorithm for 2-D stack filtering
has been developed. The algorithm uses a binary-tree search method for stack filtering in
conjunction with a new technique for encoding the samples appearing in the input window
of a stack filter. This encoding technique, which has been designated as a window-sequence
coding (WSC) transformation, takes advantage of the observation that in typical images,
many pixels appearing in the filter-window at a certain time-instant assume non-distinct
values. It has been demonstrated that the proposed WSC-based BTS algorithm is func-
tionally equivalent to the operation of stack filtering. An architecture implementing the

WSC-BTS algorithm has also been developed. A comparison between the computational

117

efficiency of the rank order state machine (ROSM)-based BTS architecture [1] and that
of the proposed WSC-BTS architecture for 2-D stack filtering has shown that with the
proposed approach, significant improvements in terms of the computational-time can be
achieved, without increasing the chip-area. It has been observed that for typical images,
using 3 x 3 filters, computational-improvements of at least 25% can be easily obtained for
L = 256, while the improvements can easily be increased to 45% for L = 64.

Motivated by the fact that in typical images, the details of the scene are locally
situated, a hardware-oriented design of locally optimal mean absolute error rank order
filters has been proposed. It has been shown that since a Boolean rank order operator does
not require sorting, the proposed algorithm achieves an improved computational efficiency
over the technique of employing the conventional multilevel configurations of a rank order
filter (ROF). The application of the proposed algorithm for the design of locally optimal
mean absolute error ROF's to spatial interpolation has been investigated, by developing a
procedure for intrafield deinterlacing of video signals. The technique developed has been
found to be superior compared to the line-doubling technique in preserving the spatial

continuity of lines and contours.

7.2 Scope for Future Investigation

An important contribution of this thesis has been the development of a general, Ly-norm-
based theory for signal estimation using stack filters. The results of this theory have
been verified in the context of a typical application of restoring images corrupted with
impulsive noise. However, it is expected that the L,-norm based theory for optimal stack
filtering could find very interesting applications in solving real-life engineering problems.
For instance, the minimum MSE stack filters could find immediate applications in wireless
communication systems. Specifically, the use of linear predictors in conjunction with non-
linear stack filter-based estimators could provide efficient coding performance along with

a robust behavior in the presence of impulsive noise. Another important domain where

118

the L, norm stack filters could be very helpful is the area of low-level computer vision.
It is expected that the L,-norm optimal stack filters could find interesting applications in
feature extraction and in shape representation and description.

In light of the results of Chapters 4 and 3, it is expected that an investigation on
the implementation of specific multidimensional rank order operators and morphological
filters using the BSWP and WSC-BTS stack filter structures could provide very attractive
solutions. It is known that 1-D rank order filters enjoy very fast implementations based on
a technique of maintaining the window as a sorted list [67]. However, in the case of mul-
tidimensional ROFs, the solution of employing a sorted list requires a different and more
complex hardware implementation [33]. On the other hand, a stack filter implementation
of ROF's does not depend on the dimension of an input signal (e.g., the same architecture
can be used for the implementation of a 1 X9 or a 3 x 3 filter). Nevertheless, the increased
computational complexity of the conventional configurations for stack filters have made
the solution of implementing ROF's as stack filters appear very inefficient. Thus, in view
of our results in improving the computational efficiency of stack filtering, the solution
of realizing ROFs using a threshold configuration architecture could provide a versatile
and yet an efficient alternative for the implementation of ROFs. The implementation of
ROFs could also benefit from the possible new sorting networks using L, comparators.
This would complement the existing solutions that use max-min sorting networks [9] and
nonlinear L, mean comparators [58].

Stack filtering has long been known to be closely related to morphological signal
processing [21], [36], [51], [68]. Recently, in [41] and [40], it has been shown that gray scale
morphological opening and closing operations can be accomplished by using a bit-serial
BTS architecture for stack filtering. In this architecture, a suitable operation of posi-
tive Boolean filtering is applied at each level, preceded by an associated bit-modification
operation. The operations of morphological opening and closing could benefit from a re-
designed version of bit-modification logic so that the BSWP algorithm may be used in

these operations.

119

Finally, it should be pointed out that the theory of stack filters is still in its infancy.
Increased research efforts are needed in this area to refine the theory itself and to apply
it to more practical problems. To this end, the research efforts of this investigation could
be expected to provide a basis for developing nonlinear processing techniques as powerful

alternatives to the theory of linear filters.

120

References

[1]

(6]

(7]

G. B. Adams, E. J. Coyle, L. Lin, L. E. Lucke, and K. K. Parhi. Input Compression
and Efficient VLSI Architectures for Rank Order and Stack Filters. Signal Processing,
38:441-453, 1994.

M. O. Ahmad, M. N.S. Swamy, Q. S. Gu, and C. E. Savin. Multidimensional Filtering
and Applications. Proceedings of the Micronet Annual Workshop, pages 3.18-3.35,
1995.

M. O. Ahmad, M. N. S. Swamy, and C. E. Savin. A Hardware-Oriented Algorithm
and Architecture for Stack Filtering. Proceedings of the Micronet Annual Workshop,

pages 63—64, 1996.

M. O. Ahmad, M. N. S. Swamy, and C. E. Savin. Lp Norm Design of Stack Filters and
its Application to Image Restoration. Proceedings of the Micronet Annual Workshop,

pages 61-62, 1997.

D. A. Akopian, O. Vainio, S. S. Agaian, and J. T. Astola. SBNR Processor for Stack
Filters. IEEFE Transactions on Circuits and Systems—II: Analog and Digital Signal
Processing, 44(3):197-208, March 1997.

A. Antoniou. Digital Filters: Analystis, Design and Applications. McGraw-Hill, New
York, 1993.

G. R. Arce. Multistage Order Statistic Filters for Image Sequence Processing. IEEFE
Transactions on Signal Processing, 39(5):1146-1163, May 1991.

121

(8]

(9]

[10]

[11]

[12]

(13]

[15]

[16]

K. E. Barner and G. R. Arce. Permutation Filters: A Class of Nonlinear Filters
Based on Set Permutations. IEEE Transactions on Signal Processing, 42(4):782-798,
April 1994.

C. G. Boncelet. Recursive Algorithm and VLSI Implementations for Median Filtering.
Proceedings of the International Symposium on Circuits and Systems, pages 1745-

1747, June 1988.

A. C. Bovik. Streaking in Median Filtered Images. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 35(4):493-503, April 1987.

A. C.Bovik, T.S. Huang, and D. C. Munson, Jr. A Generalization of Median Filtering
Using Linear Combinations of Order Statistics. IEEFE Transactions on Acoustics,

Speech, and Signal Processing, 31(6):1342—-1350, December 1983.

A. C. Bovik, T. S. Huang, and D. C. Munson, Jr. The Effect of Median Filtering
on Edge Estimation and Detection. IEEFE Transactions on Pattern Analysis and

Machine Intelligence, 9(2):181-194, March 1987.

K. Chen. Bit-Serial Realizations of a Class of Nonlinear Filters Based on Positive
Boolean Functions. JEEE Transactions on Circuits and Systems, 36(6):785-794, June

1989.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, Mass., 1990.

E. J. Coyle. Rank Order Operators and the Mean Absolute Error Criterion. IEFE

Transactions on Acoustics, Speech, and Signal Processing, 36:63—76, January 1988.

E. J. Coyle. Stack Filters in Signal and Image Processing. ISCAS-94 Tutorials, pages
22-39, May 1994.

122

(17]

[18]

[24]

E. J. Coyle and J. H. Lin. Stack Filters and the Mean Absolute Error Criterion. IEEF
Transactions on Acoustics, Speech, and Signal Processing, 36(8):1244-1254, August
1988.

E. J. Coyle, J. H. Lin, and M. Gabbouj. Optimal Stack Filtering and the Estimation
and Structural Approaches to Image Processing. IEFE Transactions on Acoustics,

Speech, and Signal Processing, 37:2037-2066, December 1989.
H. A. David. Order Statistics. John Wiley & Sons, New York, 1970.

K. K. Delibasis, P. E. Undrill, and G. G. Cameron. Genetic Algorithm Implementa-
tion of Stack Filter Design for Image Restoration. IEE Proceedings - Vision, Image

and Signal Processing, 143(3):177-183, June 1996.

O. Egger, W. Li, and M. Kunt. High Compression Image Coding Using an Adaptive
Morphological Subband Decomposition. Proc. IEEE, 83:272-287, February 1995.

J. P. Fitch. Software and VLSI Algorithms for Generalized Rank Order Filtering.
IEEE Transactions on Circuits and Systems, 34(5):553-559, May 1987.

J. P. Fitch, E. J. Coyle, and N. C. Gallagher, Jr. Median Filtering by Threshold
Decomposition. IEEFE Transactions on Acoustics, Speech, and Signal Processing,

ASSP-32(6):1183-1188, December 1984.

J. P. Fitch, E. J. Coyle, and N. C. Gallagher, Jr. Threshold Decomposition of Multi-
dimensional Ranked Order Operations. JEEFE Transactions on Circuits and Systems,

CAS-32(5):445-450, May 1985.

M. Gabbouj. FEstimation and Structural-Based Approach for the Design of Optimal
Stack Filters. PhD thesis, Purdue University, West Lafayette, IN, December 1989.

M. Gabbouj and E. J. Coyle. Minimum Mean Absolute Error Stack Filtering with
Structural Constraints and Goals. IEFEE Transactions on Acoustics, Speech, and

Signal Processing, 38(6):955-968, June 1990.

123

[27]

[28]

[35]

[36]

M. Gabbouj and E. J. Coyle. On the LP which Finds an MMAE Stack Filter. JEEE
Transactions on Signal Processing, 39(11):2419-2424, November 1991.

M. Gabbouj and E. J. Coyle. Minimax Stack Filtering in a Parametrized Environ-
ment. Proceedings of the International Symposium on Circuits and Systems, pages

97-100, May 1992.

M. Gabbouj, E. J. Coyle, and N. C. Gallagher, Jr. An Overview of Median and Stack
Filtering. Circuits, Systems and Signal Process., 11(1):7-45, January 1992.

N. C. Gallagher, Jr. and G. L. Wise. A Theoretical Analysis of the Properties of
Median Filters. IEEE Transactions on Acoustics, Speech, and Signal Processing,

29(6):1136-1141, December 1981.

D. Z. Gevorkian, K. O. Egiazarian, S. S. Agaian, J. T. Astola, and O. Vainio. Parallel
Algorithms and VLSI Architectures for Stack Filtering Using Fibonacci p-Codes.

IEEE Transactions on Signal Processing, 43(1):286—-295, January 1995.

E. N. Gilbert. Lattice Theoretic Properties of Frontal Switching Functions. Journal

of Mathematical Physics, 33:57-67, April 1954.

M. R. Hakami, P. J. Warter, and C. G. Boncelet. A New VLSI Architecture Suit-
able for Multidimensional Order Statistic Filtering. IEEFE Transactions on Signal

Processing, 42(4):991-993, April 1994.

O. Y. Harja, J. T. Astola, and Y. A. Neuvo. Analysis of the Properties of Median
and Weighted Median Filters Using Threshold Logic and Stack Filter Representation.
IEEFE Transactions on Signal Processing, 39(2):395-410, February 1991.

P. J. Huber. Robust Statistics. John Wiley & Sons, New York, 1981.

H. Hwang and R. A. Haddad. Multilevel Nonlinear Filters for Edge Detection and
Noise Suppression. IEEE Transactions on Signal Processing, 42(2):249-258, February
1994.

124

[37]

[38]

[39]

[40]

(41]

(42]

[43]

[44]

[45]

[46]

A. K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, Englewood
Cliffs, NJ, 1989.

N. S. Jayant. Average and Median-Based Smoothing Techniques for Improving Dig-
ital Speech Quality in the Presence of Transmission Errors. IEEF Transactions on

Communications, 24(9):1043-1045, September 1976.

B. L. Justusson. Median Filtering: Statistical Properties. In Two-Dimensional Digital

Signal Processing II, by T. S. Huang (Editor). Springer-Verlag, 1981.

S. J. Ko, A. Morales, and K. H. Lee. A Fast Implementation Algorithm and a Bit-
Serial Realization Method for Grayscale Morphological Opening and Closing. IEEE
Transactions on Signal Processing, 43(12):3058-3061, December 1995.

S. J. Ko, A. Morales, and K. H. Lee. Block Basis Matrix Implementation of the
Morphological Open-Closing and Close-Opening. IEEF Signal Processing Letters,
2(1):7-9, January 1995.

J.Lee and V. J. Mathews. A Fast, Recursive Least-Squares Second-Order Volterra Fil-
ter and its Performance Analysis. I[EEFE Transactions on Signal Processing, 41:1087—

1102, March 1993.
M. D. Levine. Vision in Man and Machine. McGraw-Hill, New York, 1985.

J. S. Lim. Two-Dimensional Signal Processing. Prentice-Hall, Englewood Cliffs, NJ,
1990.

J. H. Lin and E. J. Coyle. Minimum Mean Absolute Error Estimation Over the Class
of Generalized Stack Filters. IEEE Transactions on Acoustics, Speech, and Signal

Processing, 38(4):663-678, April 1990.

J. H. Lin and Y. T. Kim. Fast Algorithms for Training Stack Filters. IEEF Trans-
actions on Signal Processing, 42(4):772-781, April 1994.

125

[47]

48]

55]

[56]

J. H. Lin, T. M. Sellke, and E. J. Coyle. Adaptive Stack Filtering Under the Mean
Absolute Error Criterion. JEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, 38(6):938-954, June 1990.

H. G. Longbotham and A. C. Bovik. Theory of Order Statistic Filters and Their
Relationship to Linear FIR Filters. IEEE Transactions on Acoustics, Speech, and

Stgnal Processing, 37(2):275—287, February 1989.

L. Lucke and K. Parhi. Parallel Processing Architectures for Rank Order and Stack

Filters. IEEE Transactions on Signal Processing, 42:1178-1189, May 1994.

P. Maragos, R. W. Schafer, and M. A. Butt (Eds.). Mathematical Morphology and Its

Applications to Image and Signal Processing. Kluwer Academic Publishers, Norwell,

Massachusetts, 1996.

P. A. Maragos and R. W. Schafer. Morphological Filters - Part II: Their Relations to
Median, Order-Statistic, and Stack Filters. IEEE Transactions on Acoustics, Speech,

and Signal Processing, 35:1170-1184, August 1987.

V. J. Mathews. Adaptive Polynomial Filters. IEEE Signal Processing Magazine,
8(3):10-26, July 1991.

S. Muroga. Threshold Logic and Its Applications. John Wiley & Sons, New York,
1971.

J. Nieweglowski, M. Gabbouj, and Y. Neuvo. Weighted Medians - Positive Boolean

Functions Conversion. Signal Processing, 34(2), November 1993.

A.V.Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. Prentice-Hall,
Englewood Cliffs, NJ, 1989.

C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and

Complezity. Prentice-Hall, Englewood Cliffs, NJ, 1982.

126

[57] A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill,
New York, third edition, 1991.

[58] M. Pappas and I. Pitas. Sorting Networks Using Nonlinear L, Mean Comparators.

Proceedings of the International Symposium on Circuits and Systems, pages 1-4, 1996.

[59] D. Petrescu, I. Tabus, and M. Gabbouj. Prediction Based on Boolean, FIR-Boolean
Hybrid and Stack Filters for Lossless Image Coding. Proceedings of the International

Conference on Acoustics, Speech, and Signal Processing, pages 29652968, April 1997.

[60] L. Pitas and A. N. Venetsanopoulos. Nonlinear Digital Filters: Principles and Appli-

cations. Kluwer Academic Publishers, Norwell, Massachusetts, 1990.
[61] W. K. Pratt. Digital Image Processing. John Wiley & Sons, New York, 1991.

[62] W. V. Quine. Two Theorems About Truth Functions. Boletin Sociedad Matematica,
Y:64-70, March 1953.

(63] N. Rama Murthy and M. N. S. Swamy. A VLSI Architecture for the Implementation
of Real-Time Order Statistic Filters. IEEE Transactions on Acoustics, Speech, and

Signal Processing, 4(2):2096-2099, June 1991.

[64] H. Rantanen, M. Karlsson, P. Pohjala, and S. Kalli. Color Video Signal Process-
ing with Median Filters. IEEE Transactions on Consumer Electronics, 38:157-161,

August 1992.

[65] J. A. Rea, H. G. Longbotham, and H. N. Kothari. Fuzzy Logic and Mathematical
Morphology: Implementation by Stack Filters. IEEFE Transactions on Signal Pro-
cessing, 44:142-147, January 1996.

[66] P. A. Regalia. Special Filter Design. In Handbook for Digital Signal Processing, by
S. K. Mitra and J. F. Kaiser (Editors). John Wiley & Sons, New York, 1993.

127

[67]

[68]

(69]

[72]

D. S. Richards. VLSI Median Filters. TEEE Transactions on Acoustics, Speech, and
Stignal Processing, 38:145-153, January 1990.

P. Salembier, L. Tores, F. Meyer, and C. Gu. Region-Based Video Coding Using
Mathematical Morphology. Proc. IEEE, 83:843-857, June 1995.

C. E. Savin. Linearly Separable Stack-Like Architecture for the Design of Weighted
Order Statistic Filters with Application in Image Processing. M.A.Sc. Thesis, Con-

cordia University, Montréal, Québec, Canada, September 1993.

C. E. Savin, M. O. Ahmad, and M. N. S. Swamy. Lp Norm Design of Stack Filters.

Submitted to IEEE Transactions on Image Processing.

C. E. Savin, M. O. Ahmad, and M. N. S. Swamy. Design of Weighted Order Statistic
Filters Using Linearly Separable Stack-Like Architecture. Proceedings of the Midwest

Symposium on Circuits and Systems, pages 753-756, August 1994.

C. E. Savin, M. O. Ahmad, and M. N. S. Swamy. A Window-Sequence Coding
Transformation Suitable for Computationally-Efficient Bit-Serial Implementation of
Stack Filters. Proceedings of the Midwest Symposium on Circuits and Systems, pages

704-707, August 1995.

C. E. Savin, M. O. Ahmad, and M. N. S. Swamy. On the Derivation of the Linear
Program which Finds a Minimum Mean Absolute Error Stack Filter. Bulletin of the

Polytechnic Institute of Iasi, XLI (XLV):37-45, 1995.

C. E. Savin, M. O. Ahmad, and M. N. S. Swamy. Bit-Serial Window Partitioning
Algorithm for Stack Filtering. Electronics Letters, 32(15):1359-1361, July 1996.

C. E. Savin, M. O. Ahmad, and M. N. S. Swamy. Minimum Mean Square Error
Design of Stack Filters. Proceedings of the Midwest Symposium on Circuits and

Systems, pages 644-647, August 1996.

128

[76]

(77]

[78]

[79]

[80]

[81]

(82]

[83]

(84]

[85]

C.E. Savin, M. O. Ahmad, and M. N. S. Swamy. A General Framework for the Design
of Stack Filters Using the Lp Norm Objective Function. To appear in Proceedings of

the Midwest Symposium on Circuits and Systems, August 1997.

C. E. Savin, M. O. Ahmad, and M. N. S. Swamy. A Modified Binary-Tree Search
Architecture for Two-Dimensional Stack Filtering. To appear in Signal Processing,

61(1), 1997.

C. E. Savin, M. O. Ahmad, and M. N. S. Swamy. Fast VLSI Architecture for Rank
Order Based Filtering Using a Bit-Serial Window Partitioning Technique. To appear

in Proceedings of the Midwest Symposium on Circuits and Systems, August 1997.

C. E. Savin, M. O. Ahmad, and M. N. S. Swamy. Lp Norm Design of Weighted Order
Statistic Filters. Proceedings of the International Conference on Acoustics, Speech,

and Signal Processing, pages 2369-2372, April 1997.
D. L. Snyder. Random Point Processes. John Wiley & Sons, New York, 1975.

[. Tabus, D. Petrescu, and M. Gabbouj. A Training Framework for Stack and Boolean
Filtering - Fast Optimal Design Procedures and Robustness Case Study. IEEE Trans-
actions on Image Processing, 5(6):809-826, June 1996.

J. W. Tukey. Nonlinear (Nonsuperposable) Methods for Smoothing Data. 1974
EASCON (Conference Record), page 673 (abstract only), 1974.

J. W. Tukey. Ezploratory Data Analysis. Addison-Wesley, Reading, Mass., 1977.

S. G. Tyan. Median Filtering: Deterministic Properties. In Two-Dimensional Digital

Signal Processing II, by T. S. Huang (Editor). Springer-Verlag, 1981.

T. Viero, K. Oistimé, and Y. Neuvo. Three-Dimensional Median-Related Filters
for Color Image Sequence Filtering. IEEE Transactions on Circuits and Systems for

Video Technology, 4:129-142, April 1994.

129

[86]

[87]

(88]

[92]

[93]

[94]

P. D. Wendt, E. J. Coyle, and N. C. Gallagher. Stack Filters. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 34(4):898-911, August 1986.

B. Widrow and S. D. Stearns. Adaptive Signal Processing. Prentice-Hall, Englewood
Cliffs, NJ, 1985.

R. Yang, M. Gabbouj, and P. T. Yu. Parametric Analysis of Weighted Order Statistic
Filters. IEEE Signal Processing Letters, 1(6):95-98, June 1994.

R. Yang, L. Yin, M. Gabbouj, J. Astola, and Y. Neuvo. Optimal Weighted Median
Filters Under Structural Constraints. IEEE Transactions on Signal Processing, pages

591-604, March 1995.

L. Yin. Stack Filter Design: a Structural Approach. IEEE Transactions on Stgnal
Processing, 43(4):831-840, April 1995.

L. Yin, J. T. Astola, and Y. A. Neuvo. Adaptive Stack Filtering with Application to
Image Processing. IEEE Transactions on Signal Processing, 41(1):162-184, January
1993.

L. Yin and Y. A. Neuvo. Fast Adaptation and Performance Characteristics of FIR-
WOS Hybrid Filters. IEEE Transactions on Signal Processing, 42(7):1610-1628, July
1994.

L. Yin, R. Yang, M. Gabbouj, and Y. Neuvo. Weighted Median Filters: A Tutorial.
IEEE Transactions on Circuits and Systems, 43(3):157-192, March 1996.

J. Yoo, C. A. Bouman, E. J. Delp, and E. J. Coyle. The Nonlinear Prefiltering and
Difference of Estimates Approach to Edge Detection: Applications of Stack Filters.
CVGIP: Graphical Models and Image Processing, 55(2):140-159, March 1993.

P. T. Yu. Some Representation Properties of Stack Filters. IEEE Transactions on
Signal Processing, 40(9):2261-2266, September 1992.

130

[96] P. T. Yu and R. C. Chen. Fuzzy Stack Filters - Their Definitions, Fundamental Prop-

erties, and Application in Image Processing. IEEE Transactions on Image Processing,

5(6):838-854, June 1996.

[97] B. Zeng, M. Gabbouj, and Y. Neuvo. A Unified Design Method for Rank-Order, Stack,
and Generalized Stack Filters Based on Classical Bayes Decision. IEEE Transactions

on Circuits and Systems, 38(9):1003-1020, September 1991.

131

Appendix A

Listing of Matlab Program to

Determine the Ly, Norm

function [Alpha,Beta] = lp_norm(p,S,X,Filter_size)

% [Alpha,Beta] = LP_NORM(p,X,S) calculates the coefficients Alpha and

% Beta appearing in the binary-level expression of the Lp norm of

A the error between the desired image S and its estimated version

% using stack filters. The estimated version of S is to be obtained
% by applying a stack filter characterized by an arbitrary PBF f to
% the input image X. The image X is assumed to be a noise-corrupted
% version of S. The value of p itself is expected to be specified

% as an input to the function LP_NORM. Filter_size = [x_size y_size]
YA is a vector with two elements specifying the size of the filter.

% For instance, in the case of a 3x3 filter, both x_size and y_size
A are equal to 3. Similarly, for a i1x3 filter, the number of rows,
YA x_size, is equal to 1, and the number of columns, y_size, is equal
% to 3. Note that a 1xM filter is simply a 1-D filter of size M.

/i NOTE: the filters are expected to be rectangular, and BOTH x_size

% AND y_size SHOULD BE ODD NUMBERS. At each window position,

132

h the output of the filter is to replace the input pixel
4 situated at the center of the window, at its current position.

% FUNCTIONS CALLED: LP_NORM invokes the function BORDER, which adds

% a suitable frame to the input matrix X: this frame represents

/A the initjal conditions for applying the filtering operation at

A filter positions situated on the margins of the input image X.

h

x_size = Filter_size(1); % x_size - no. of rows of the filter window
y-size = Filter_size(2); % y_size - no. of cols. of the filter window
M = x_size * y_size; % M is the size of the binary vectors

Alpha = zeros(2°M,1); % Initialize Alpha

Beta = zeros(2°M,1); % Initialize Beta

% Determine the number of quantization levels.
GL = max(max(max(X)), max(max(S))); % There are GL+1 levels, i.e.,

% 0,1,...,GL. However, the operation

% of thresholding is carried out

% only at the levels 1,2,...,GL.
% There is a pair of coefficients (Alpha(b_10+1),Beta(b_10+1)) corresponding
% to each binary vector b. The notation b_10 designates the base-10 value of
4 the vector b interpreted as a binary number. Note that the coefficients
% Alpha and Beta corresponding to a vector b=[0 O ... 0] are Alpha(1l) and
4 Beta(1), and NOT Alpha(0) and Beta(0) (in MATLAB, the indices start with 1
% and not with 0). To calculate the indices of the coefficients Alpha and
4 Beta corresponding to an arbitrary threshold vector b, we use the following
% vector of "Powers-of-two":
Powers_of_2 = (2%ones(1,M)) .~ [M-1:-1:0]; % For instance, if M=4, then

% Powers_of_2 = [8 4 2 1].

% Determine the size of the images S and X.

133

if size(S) =size(X)
error(’The sizes of matrices S and X do not agree !’); end
[Nr Nc] = size(S); % Nr(Nc) designates the no. of rows(cols.)
/i Augment the input image by bordering the matrix X with a frame whose
% dimensions are determined in accordance with the size of the filter.
AX = border(X,Filter_size);
% Main computation
for i=1:Nr
for j=1:Nc
% In 2-D stack filtering, a 1-D set x is normally obtained
%4 by concatenating the rows of the 2-D window sequence.
x = reshape(AX(i:i+(x_size-1),j:j+(y_size-1)), 1, M);
% Append O and GL to x, and sort this augmented vector Ax
% in ascending order.
Ax = [0 x GL]; Sx = sort(Ax);
/i Calculate the consecutive differences x(2)-x(1), x(3)-x(2),
hooo., x(M+2)-x(M+1).
Dx = diff(Sx);
i Denote the total number of nonzero elements in Dx by nz,
/% and let I denote a vector whose elements are the indices of
/i the nonzero elements in Dx.
nz = nnz(Dx); I = find(Dx);
% For reasons of computational efficiency, at each window position
h (i,j), the operation of thresholding is carried out only at
% levels which are equal to distinct samples appearing in the
% window sequence, i.e., at the levels Sx(I(1)+1), Sx(I(2)+1),
% ..., Sx(I(nz)+1). As it is known, over each interval of threshold

4 levels T1=[Sx(I(k))+1,Sx(I(k)+1)], with k=1,2,...,nz, the binary

134

% threshold vector b remains unchanged: b=(x>=Sx(I(k)+1)).
% The vector of binary signals appearing in the threshold decomposition
h of S(i,j) over each interval of threshold values Tl is denoted by sl.
for k=1:nz
Tl = Sx(I(k))+1 : Sx(I(k)+1);
b = (x>=Sx(I(k)+1));
b_10 = b*(Powers_of_2)’ + 1;
sl = (S(i,j)>=Tl); sl_polar = 1-2%sl;
Alpha(b_10) = Alpha(b_10) + ..
sum(sl_polar .* abs(((S(i,j)-T1+1).7p) - ((S(i,j)-TL)."p)));
Beta(b_10) = Beta(b_10) + ...
sum(sl .#* abs(((S(i,j)-Ti+1).7p) - ((S(i,j)-T1)."p)));
end
end
end
Alpha = (1/(Nr*Nc))#*Alpha;

Beta = (1/(Nr*Nc))=*Beta;

135

Appendix B

Listing of the Function to
Generate Boundary Conditions

for Images

function AX = border(X,Filter_size)
% AX = BORDER(X,Filter_size) borders the input image X with a frame
A (margin) whose dimensions are calculated based on the Filter_size.

% Filter_size = [x_size y_size] is a vector with two elements specifying

% the size of the filter. For instance, in the case of a 3x3 filter, both
A x_size and y_size are equal to 3. Similarly, for a 1x3 filter, the

% number of rows, x_size, is equal to 1, and the number of columns,

A y-size, is equal to 3. Note that a ixM filter is simply a 1-D filter

A of size M.

% The border represents the initial conditions for applying a filtering
% operation at filter positions situated on the margins of the input
% image X. The border is composed of 8 rectangles designated as:

A 1) Left_Margin, 2) Right_Margin, 3) Top_Margin, 4) Bottom_Margin,

% 5) Upper_Left_Corner, 6) Upper_Right_Corner, 7) Lower_Left_Corner,

136

% and 8) Lower_Right_Corner. Each of these margin-rectangles and

% corner-rectangles are obtained by repeating suitably chosen pixels
A appearing in the first and last (y_size-1)/2 columns and in the
A first and last (x_size-1)/2 rows of the input image X.

i NOTE: the filters are expected to be rectangular, and BOTH x_size

% AND y_size SHOULD BE ODD NUMBERS. At each window position,

h the output of the filter is to replace the input pixel

% situated at the center of the window, at its current position.
%

x_size = Filter_size(1); % x_size - no. of rows of the filter window
y_size = Filter_size(2); % y_size - no. of cols. of the filter window
[Nr Nc] = size(X); % Nr(Nc) designates the no. of rows(cols.)
AX = zeros(Nr+x_size-1,Nc+y_size-1); % Initialize the bordered image

AX((x_size-1)/2+1:Nr+(x_size-1)/2 , (y_size-1)/2+1:Nc+(y_size-1)/2) = X;
% CONSTRUCT THE MARGIN-RECTANGLES
Top_Margin = []; Bottom_Margin = [J;
for i = 1:(x_size~1)/2
Top_Margin = [X(i,:) ; Top_Margin];
Bottom_Margin = [Bottom_Margin ; X(Nr-i+i,:)];
end
Columns = (y_size-1)/2+1:Nc+(y_size~-1)/2;
AX(1:(x_size-1)/2 , Columns) = Top_Margin;
AX(Nr+(x_size~1)/2+1:Nr+(x_size-1) , Columns) = Bottom_Margin;
Left_Margin = [J; Right_Margin = [1;
for i = 1:(y_size-1)/2
Left_Margin = [X(:,i) Left_Margin];
Right_Margin = [Right_Margin X(:,Nc-i+1) J;

end

137

Rows = (x_size-1)/2+1:Nr+(x_size-1)/2;

AX(Rows , 1:(y_size-1)/2) = Left_Margin;

AX(Rows , Nc+(y_size-1)/2+1:Nc+(y_size-1)) = Right_Margin;

% CONSTRUCT THE CORNER-RECTANGLES

Upper_Left_Corner = X(1,1)*ones((x_size-1)/2,(y_size-1)/2);

AX(1:(x_size-1)/2 , 1:(y_size-1)/2) = Upper_Left_Corner;
Upper_Right_Corner = X(1,Nc)*ones((x_size-1)/2,(y_size-1)/2);

AX(1:(x_size-1)/2 , Nc+(y_size-1)/2+1:Nc+(y_size-1)) = Upper_Right_Corner;
Lower_Left_Corner = X(Nr,1)*ones((x_size-1)/2,(y_size-1)/2);

AX(Nr+(x_size-1)/2+1:Nr+(x_size~1) , 1:(y_size-1)/2) = Lower_Left_Corner;
LRC = X(Nr,Nc)*ones((x_size-1)/2, (y_size-1)/2); % LRC = Lower_Right_Corner

AX(Nr+(x_size-1)/2+1:Nr+(x_size-1) , Nc+(y_size-1)/2+1:Nc+(y_size-1)) = LRC;

138

Appendix C

Listing of the Function to Verify

the Correctness of the Program

for Lp Norm

function [M_NORM,B_NORM] = vf_norm(p,S,r,Filter_size)

% [M_NORM,B_NORM] = VF_NORM(p,S,r,Filter_size) verifies whether or not

h
h

h
h
h
%
h
h

the operation of the function LP_NORM.M is error-free. The function
VF_NORM.M calculates the Lp norm of the error between a given test
signal S and its processed version using a rank order filter of
size Filter_size=[x_size y_size] and parameter "r". The specific Lp
norm which is to be calculated by VF_NORM.M is passed by the value
of the argument "p" (e.g., p=2 corresponds to the MSE). VF_NORM.M
calculates the Lp norm by using both a multilevel approach, and a
binary level technique employing the results of function LP_NORM.M :
1) In the multilevel approach, an operation of rank order filtering
is directly applied to the test signal (image) S. At each window
position, the output of this operation of ramnk order filtering is

determined by selecting the "r'"-th largest element appearing in

139

A

the input window of size (x_size * y_size). Let X denote the pro-

% cessed image. Then, at the multilevel, the Lp norm can be calcu-
% lated by using the following formula:

A M_NORM = (1/(Nr*Nc)) * sum(sum((abs(S-X))."p)),

h where Nr and Nc denote the number of rows and columns of images

4 S and X.

% 2) At the binary level, the Lp norm can be calculated by using the

A coefficients Alpha and Beta, and the binary level outputs of a

h rank order filter of parameter "r". In this approach the coeffi-
h cients Alpha and Beta are obtained by employing the function

% LP_NORM.M. The value of the Lp norm obtained by this approach is
h denoted by B_NORM.

A By comparing the values of M_NORM and B_NORM for different arguments
% P, S, r, and Filter_size, the user can thoroughly verify the opera-
A tion of LP_NORM.M. Specifically, for any combination of input argu-
A ments p, S, r, and Filter_size, one has to obtain the same value for
% both M_NORM and B_NORM.

% FUNCTIONS CALLED: BORDER.M, LP_NORM.M

x.size = Filter_size(1); 4 x_size - no. of rows of the filter window
y.size = Filter_size(2); %h y_size - no. of cols. of the filter window
M = x_size * y_size; % M is the size of the binary vectors

[Nr Nc] = size(S); %4 Nr(Nc) designates the no. of rows(cols.)
4

% 1) THE MULTILEVEL APPROACH

4 Generate an image X by applying a rank order filter of parameter “r"
/A to the input image S. At each window position, the output of this

% ter of

A to

parameter “r"

the input image S. At each window position, the output of this

140

% filter is given by the r-th largest element in the window.

%
% Augment the input image by bordering the matrix S with a frame whose
% dimensions are determined in accordance with the size of the filter.
AS = border(S,Filter_size);
X = zeros(Nr,Nc); % Initialize the matrix X
for i=1:Nr
for j=1:Nc
% In 2-D stack filtering, a 1-D set x is normally obtained
% by concatenating the rows of the 2-D window sequence.
x = reshape(AS(i:i+(x_size-1),j:j+(y_size-1)), 1, M);
% Sort the vector x in descending order.
Sx = fliplr(sort(x));
% The output of the filter at the position (i,j) is given
% by the r-th element of Sx.
X(i,j) = sx(x);
end
end
% Now, at the multilevel, the Lp norm can be calculated as follows:

M_NORM = (1/(Nr#*Nc))=*sum(sum((abs(S-X))."p));

h
% 2) THE BINARY LEVEL APPROACH

A Calculate the coefficients Alpha and Beta by employing the function
% LP_NORM.M, and then calculate the Lp norm using the binary outputs

% of a rank order filter of parameter "r". Note that the function

4 [Alpha,Beta] = lp_norm(p,S,X,Filter_size) should be invoked with the

h arguments S and X assuming a common value : S.

h

141

[Alpha,Betal = lp_norm(p,S,S,Filter_size);
B_NORM = 0; % Initialize B_NORM
for j=1:2°M
% Convert (j-1) to binary
b = zeros(i,M); d = j-1;
for k=1:H
b(k) = d-2#floor(d/2);
d = floor(d/2);
end
b = fliplr(b);
% Add Alpha(j)*f(b)+Beta(j) to the current value of B_NORM
£ = (sum(b)>=r);
B_NORM = B_NORM + Alpha(j)*f + Beta(j);

end

142

Appendix D

Listing of Matlab Program to
Implement the BSWP Algorithm

function FX = bswp_filter(PBF,X,Filter_size)

h FX = bswp_filter(PBF,X,Filter_size) applies an operation of stack

) filtering characterized by the positive Boolean function PBF to

A the image X, using the BSWP algorithm. PBF is a column vector

A whose j-th entry represents the output of the characteristic PBF

4 when the binary input vector is determined by the base-2 value of
% (j-1). Filter_size = [x_size y_size] is a vector with two elements
% specifying the size of the stack filter.

% NOTE: the filters are expected to be rectangular, and BOTH x_size

% AND y_size SHOULD BE ODD NUMBERS. At each window position,
A the output of the filter is to replace the input pixel
A situated at the center of the window, at its current position.

% FUNCTIONS CALLED: BORDER.M

x_size = Filter_size(1); % x_size - no. of rows of the filter window
y.size = Filter_size(2); % y_size - no. of cols. of the filter window
M = x_size * y_size; % M is the size of the binary vectors

143

% To determine the output of the PBF corresponding to an arbitrary input
% given as a binary vector b, we use the following vector of "Powers-of-two":
Powers_of_2 = (2%ones(1,M)) .~ [M-1:-1:0];
% Augment the input image by bordering the matrix X with a frame whose
% dimensions are determined in accordance with the size of the filter.
AX = border(X,Filter_size);
% Determine the size of the input image X.
[Nr Nc] = size(X); % Nr(Nc) designates the no. of rows(cols.)
FX = zeros(Nr,Nc); ¥ Initialize the matrix FX, representing the output image
% Main computation
for i=1:Nr
for j=1:Nc
xn = X(i:i+(x_size-1),j:j+(y_size-1)); x = reshape(xn,1,M);
B = ones(1,M);
for k=1:M
if B(k)==1
d = (x>=x(k)); d1 = (x>x(k)); £ = PBF(d*Powers_of_2’+1);
if (f==1) SF = x(k); end
B = (((T£)*(7d)) [(£f*d1)).#*B;
end
end
FX(i,j) = SF;
end

end

144

