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Abstract

Finite Analysis of Pavement Subgrades

Walter Jerry Bobesiuk P. kng.

In order to adequately design a pavement system,
attention must be paid to the subgrade. This thesis attempts
to formulate such a design method based on the expected
traffic volumes, the subgrade material properties, and
material behaviour.

The methodology described in this thesis involves
two main phases. The first phase develops a relationship
between the vertical strain produced at the top of the
subgrade and a combination of five axle loads and three base
thicknesses. This relationship is based on constitutive
equaticns and the finite element method. These fifteen
relationships shown as strain contours are for a specific
material, and can be used to find the critical strain for a
given axle load and base thickness.

The second phase of this thesis deals with the
development of a pavement design method using vertical strain
contour charts. These strain contour charts have been
developed using constitutive equations and the finite element
method for different types of soil parameters and behaviors.
This method then utilizes equations from the Asphalt Institute

design method to determine base thickness ani the life of the
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subgrade. Numerical examples of the design method have been
provided.
A set of computer programs have been developed for
the finite element analysis. These programs have been unified
under a menu program (FINITE) and are capable of finding the

stress-strain distributions in the subgrade.
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Chapter 1

Introduction

1.1 Flexible Pavement Structure

The flexible pavement structure is composed of an
asphalt wearing surface, a granular base, and a subgrade layer
which for design purposes is assumed to extend to an infinite
depth. 1In the case of stabilized soils, the base layer may be
omitted. Traffic loads are applied to the surface and are
transmitted throughout the three courses. The axle load is
distributed on the asphalt as a pressure from the contact area
of the tires. This stress is then distributed through the
asphalt to the base and finally through the subgrade. The
actual load does not diminish or disappear. It is merely
distributed over a greater area as the depth increases.

1.2 Constitutive Equations and Finite Element Analysis

The stresses and strains produced in the subgrade
are dependent on the load applied and the material parameters
such as modulus of elasticity. This behaviour is governed by
a stress strain relationship or constitutive law. The
relationship can be linear elastic (obeying Hooke’s law) or
elasto-plastic (obeying Von Mises or Mohr Coulomb theories).

The stress-strain distribution throughout the
structure can be defined by the finite element method. Until
the advent of computer technology, such calculations would ke

difficult to perform, and as a result engineers were forced to
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utilize numerous assumptions which made the results
lnaccurate. However, now that accurate mapping of the
stress/strain distribution is possible, the question of how to
apply these results to the design process arises.

1.3 Objectives of the Study

The primary objective of this study is to provide a
better understanding of the fundamental relationship between
the vertical compressive strain, henceforth called the
vertical strain, produced at the surface of the subgrade and
the combination of traffic loads and material properties.
Beyond the primary objective, the study is specifically aimed
at establishing the following:

1. To develop strain contour graphs based on base
thicknesses and axle loads. Each of these
graphs will be for a specific material with
distinct properties.

2. To develop a series of strain contour charts
which can be used to design a required base
thickness given traffic volumes, soil behaviour,
and parameters.

1.4 Structure of the Thesis

Chapter 2 of this thesis outlines the literature
review regarding the uses of finite element analysis in
geomechanics and highway engineering. It also describes
numerous soil properties that are necessary for the study.

Chapter 3 describes the development of constitutive

equations and their integration into finite element analysis.
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The structure of the three types of analysis (linear elastic,
Von Mises, and Mohr Coulomb) are also discussed.

Chapter 4 describes the pavement model and required
finite element meshes used in the study. The determination of
the soil parameters is also discussed.

Chapter 5 arranges the results of the analysis in a
matrix form to show the fundamental relationship between the
vertical strain produced at the surface of the subgrade and
the combination of axle load and base thickness. Contours are
drawn and can be used to find the combination of base
thickness and axle load that can produce a given magnitude of
vertical strain.

Chapter 6 expands the model to include a broader
range of soil parameters. Strain contour charts are created
from the large body of vertical strains generated. These
charts are incorporated into a design method based on traftic
volumes, soil properties, and behaviour.

Chapter 7 illustrates the comprehensive computer
wor¥k used in this research. The algorithm (FINITE) 1is
discussed and instructions on its use are shown.

Chapter 8 provides conclusions and suggestions for
further research,.

Appendices A, B, C, and D contain respectively:
strain contour charts, sample output, flowcharts, and computer

programs.
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Chapter 2

Literature Review

2.1 Introduction

The use of finite element analysis for geotechnical
applications has been discussed in numerous sources. The
object thus far has been either to perform a comparison
between the predicted and actual stresses and strains or to
calculate the overall effects on the soil due to a given load.
This geotechnical analysis can be applied to the pavement
structure (such as the subgrade) to find the vertical strain.

2.2 Development of Constitutive Equations

The use of constitutive 1laws has increased
significantly with the development of modern computers. These
laws in turn have been applied to finite element, finite
difference, and boundary integral methods. Desai and
Siriwardane (1983 and 1984) use constitutive laws and together
with the finite element analysis for applications to
geotechnical problems. They discuss the development of
constitutive equations from the generalized Hooke’s law

expressed by:

0 = Ee¢ (2.1)
where o = stress
& = strain

E = modulus of elasticity
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to linear elastic models expressed by:

(o] (Di{e] (2.2)

where [0] stress matrix

strain matrix

(el
(D]

elastic stress-strain matrix

and elasto plastic models expressed by:

(do} = ({D]) - [PL])[de) (2.3)
where (do?) = stress increment matrix

[de] = strain increment matrix

[PL] = stress dependent plastic component of the

stress-strain relationship

However, these authors state that without adequate
soil data the analysis becomes a mathematical exercise.
Therefore they discuss the tests based on various types of
triaxial set-up to derive the proper parameters. They also
provide much of the soil data in their examples. Many of
these parameters are used in the computer trials in Chapter 5.
These values are also checked against parameters listed in
Bowles (1982 and 1984).

While the main focus is on foundation soils, this
method can also be applied to highway pavements, where the

pavenent 1s assumed to behave as a strip footing.
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This application of the finite element -nalysis to
railway embankments is also explored in Desai and Siriwardane
(1984). 1In this case, each layer reguires a different model
type (linear elastic, cap, cam clay, and variable moduli) and
each layer 1is analyzed separately. The predicted results
compare well with the observed values. This approach is used
in the analysis of the multi-layered highway pavement
structures.

Ashtakala and Poorooshasb (1989), use the concepts
of constitutive equations and finite analysis to solve the
problem of tensile cracking in pavements. The authors derive
a constitutive relationship for the subgrade soil and
determine stresses and strains in it using a finite element
program called CONPAVE. The results of CONPAVE show the
distribution of porewater pressure and ground movement. This
approach can be applied to pavement subgrades to plot the
distribution of stresses and strains in the continuum as well
as the critical stresses and strains for a given load case.

Marchionna et al (1987), also apply finite element
analysis to a pavement problem. The authors examine a four
layer pavement structure where the asphalt wearing surface is
assumed to behave linear elastically while the remaining
layers are non linear. Their model evaluates the allowable
load repetitions related to different cracking stages of the
pavement surface. Their input data is based on falling weight

deflectometer tests. Using the tensile strains of the bottom
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of the asphalt, they derive the stress-strain distribution.
They also evaluate the residual life of the pavement based on
the initial asphalt thickness affected by cracking. Thus the
fatigue distress model is used to calculate the remaining life
of the uncracked portion of the pavement. They also create a
diagram where the percentage of residual life is calculated to
the percentage of cracked surface in order to predict the life
of the overlay before resurfacing must be done. They utilize
the method to forecast changes in pavement conditions through
time.

2.3 Development of the Finite Element Method

Smith (1982), and Smith and Griffiths (1988),
discuss the construction of finite element proyrams
specifically for geotechnical applicaticns. Beginning with
the constitutive laws, the authors show how they are placed
within the programs. They utilize applications teo linear
elastic solids as well as Von Mises elasto-plasticity and Mohr
Coulomb plasticity. The sample programs provided are set up
in standard IBM mainframe building blocks making them easy to
modify, if necessary.

Weaver and Johnston (1984), provide additional
explanations and intermediate derivations to the equations
provided by Smith (1982).

As stated in Desail and Siriwardane (1984), the
analysis must be realistic or else the work becomes an

exercise in theoretical mathematics. There are numerous tests
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that compare the results of finite element analysis with
observed values. For exauple, Heinrichs et al (1989), compare
finite element results with real pavement models.

A line of research by Sweere et al (1987), focuses
on cyclic loading triaxial testing of unbound base course
materials. A full scale test pavement with built-in
transducers is constructed to compare the results. Saraf et
al (1987), try to determine the effect of tire contact
pressure distribution on flexible pavements using finite
element programs (ELSYM5 and TEXGAB-3D). Their results
indicate that the critical tensile strain is overestimated
while the critical compressive strain is underestimated. It
has also been found that changes in tire pressure have
negligible effects on the critical compressive strain.

The results of various comparisons yield the
conclusion that the finite element values compare well with
observed effects.

2.4 The Asphalt Institute Method

Oglesby and Hicks (1982), discuss the development of
the Asphalt Institute design method. The engineers of the
Asphalt Institute acted in an advisory capacity during the
AASHO road tests and later took the results to perform an
independent analysis. They produced a revised method of
design of flexible pavem~nts which were made available in
1963. Ritter and Paquette (1967), state that since this

method was designed for use under a wide range of conditions,
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it is not considered as accurate as methods developed by local
agencies within their own areas.

The Asphalt 1Institute method uses the 1laws of
mechanics and applies elastic layer theory to pavement design.
The method requires the modulus of elasticity (E) and
Poisson’s ratio (») for each material layer. The finite
element method has similar requirements but it also includes
additional s0il parameters such as cohesion, angle of
friction, angle of dilation, and yield stress. Thus, while
the Asphalt Institute method in effect only considers linear
elastic material, the use of finite elements adds the new
dimension of soil behaviour to the method.

The traffic load is expressed in terms of 18,000
lbs. (80 kN) single axle load applied on two sets of dual
tires.

There are two limiting strains considered by the
Asphalt Institute method:

1. The horizontal tensile strain ¢ on the
underside of the asphalt layer. 1In the case of
the finite element model for the base, the
largest tensile strain would be located on the
surface of the mesh directly undzr the 1load.
This stress can then be inserted into the

following equation:

N, = 18.4(C) (4.32x10°% PEV") (2.4)
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where N, represents the number of loads to
fatigue cracking, C is the volume of voids in
the asphalt, ¢ is the tensile strain, and E
represents the modulus of elasticity (Oglesby
and Hicks, 1982). However, Ullidtz (1987), notes
that this formula can change from agency to

agency. For example, in Italy, Autostrade uses:

N, = (&/47.4%x10")*¥ (2.5)
1 t

which will yield different results.

The vertical strain ¢, which is located at the
surface of the subgrade directly under the wheel
load. The values of ¢ can be inserted into the
equation below to find the number of load
repetitions to failure (N,. The equation to

estimate pavement life is given by:

N = 1.36x10°(g,)*# (2.6)
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Chapter 3

Theoretical Background

3.1 Constitutive Egquations

A constitutive model is defined as a mathematical
equation which describes the stress-strain relationship of a
material (Desai and Siriwardane, 1984). This model can be
used to describe a material based on a Cauchy’s linear elastic
type of the lowest order equivalent to the generalized Hooke’s
law) or one based on a elasto-plastic behaviour with an
axisymmetric stress-strain relationship as in the case of Vvon
Mises or Mochr Coulomb behaviour. In both cases, a planc
strain model is assumed.
3.1.1 Linear Elastic Relationship

The stress (o,) and strain (¢,) are governed by the

following equation when initial stress is absent:

o, = ;1,6 + ay¢, (3.1)
where: a, = 2G where G is the shear modulus
a, = K - (2G/3) where K is the bulk modulus
I, = first invariant of strain tensor denoting
volumetric strain (&, + &) + &y)
§, = Kronecker delta (where § = 1 for i=j and

zero otherwise)
then by substitution the following equation is derived:

o, = KI,;6, + 2G(¢g, - (I,/3)6,) (3.2)
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For a plane strain model, strains occur in the x and y

directions only. Therefore, in this situation, the first

invariant becomes:

I, =&, + &y (3.3)
and by substitution the following equations are defined:
o, = (3}< + 4_)8” + (K - 2G i€y (3.4)
3 3
o, = (3K + 4G)e22 + (K - g_)e” (3.5)
3 3
3 l 3
o, = 26, (3.7)
ag., = a,, = 0] (3.8)
or in the matrix form:
ro1 1 C
10” [3}\' + 4G 3K - 2G 0 }811
L l 3 3
!oyf = ’3K - 26 3K + 4G 0 &) (3.9)
| 3 3
| |
Lo | , 0 0 2G &
BlL . 12 ]
In the case or uniaxial stress, o, = 0,; = 0 and
o, = ( 9KG )c” = Eg,, (3.10)
3K + G,

and
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82: = 83; = =[3K - 2G 8” = 1'8“ (3.11)

6K + 2G
where E and ¢ are known as the modulus of elasticity and
Poisson’s ratio respectively. The modulus of elasticity can

be expressed as the ratio of the stress divided by its
corresponding strain. Hence it is also known as the stress-
strain modulus (Bowles, 1984). Th2 Poisson’s ratio is the
proportion of vertical to horizontal stresses 1in the

material. These two parameters can be expressed as:

E = _ 9KG (3.12)
3K + G

vy = 3K - 2G (3.13)
6K + 2G

and implies that a uniaxial state of stress causes strains in
the axial and lateral directions. Thus by substituting the
modulus of elasticity and Poisson’s ratio into the stress-

strain matrix, it can be rewritten as:

?on' = E(l1-v) v 1 0 €n
! ! (14v) (1-2v) 1 -
| :

Osy 0 0 1-2» ¢,
L j 2(1-v)
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This matrix 1is the constitutive equation for the linear
elastic material under a plane strain condition. It can be

restated as:

0 = D¢ {3.15)

where D is the constitutive matrix (Desali and Siriwardane,

1984) .

3.1.2 Elasto-Plastic Relationship

A material will remain elastic until it reaches a
yield point where it begins to deform permanently. At this
point, the material begins to produce plastic strains and
therefore, is said to behave elasto-plastically.

Elasto plastic soils cause greater analytical
problems than the linear elastic routines because solutions
are almost always obtained from a step by step linearization
process where the increments are small enough for practical
purposes (Smith, 1982).

In the case of the two elasto plastic programs used,
only the material nonlinearity will be considered. Both
programs, as already stated, wuse incremental solution
procedures. As shown in Figure 3.1, repeated trials starting
fresh each time yield different load deformation slopes.
These slopes change progressively (Newton-Ralphson method)
where the stiffness matrix changes continually (Smith, 1982).

Tne main physical feature of the nonlinearity of
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elasto-plastic soils is the irrecoverability of strain. 1In
the theory of plasticity, a yield surface separates stress
states which in turn give elastic (recoverable) and plastic
(irrecoverable) strains. While this yield surface may move
kinematically during cyclical loading, this movement is kept
to zero in these cases.

The Von Mises soil possesses a failure surface as
shown in Figure 3.2.

The axis of the Von Mises yield cylinder lies on the
space diagonal implying that the mean normal stress has
0,+0,+0; no effect on yield. The material will yield only when
shear stress reaches a critical value.

The sample material is a simple undrained clay with
a constant shear strength (¢, = 0). The undrained shear
strength (C,) is in fact multiplied by two to get the yield
stress.

In this case the material flows in an associated
manner, that is the vector of plastic strain increment is
normal to the yield surface. This type of flow yields
mathematical simplifications and with a Von Mises surface
serves to describe the plastic behaviour of undrained clays.
The direction of the plastic strain vector satisfies:
de, + dg, + de; = 0 or no volume change.

The Mohr Coulomb materials do not yield and flow
according to a no volume change rule. 1In fact, for the vast

majority of soils it is extremely difficult to define yield
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(1) (2) (3)

Load (P)

_’
Deformation §

Figure 3.1: Nonlinear Iteration Process

0,=0,=0;

/

Figure 3.2: Von Mises Failure Cylinder




17

stress as soils can flow plastically under almost all applied
loads. In many cases the detailed undrained wvolumechanges
that occur before failure are not as important as the
dependence of so0il failures on mean normal stress is
adequately represented. The Mohr Coulomb criterion (found
from laboratory tests) that the ultimate stresses born by
soils in terms of effective stresses fall on the hexagonal
surface shown in Figure 3.3 (Smith, 1982).

The cone does not expand linearly for very large
values of mean normal stress but does so adequately for
moderate loads. Elastic behaviour occurs within the surface
while the surface itself indicates plastic flow. The plastic
flow can be a crude approximation but two limiting assumptions
are used:

1. flow is assumed to be associated where angle

of dilation (y) is egual to soil friction angle
(¢) with the Mohr Coulomb surface which xmplies
high volumetric expansion.

2. flow is assumed to be non associated (Y = 0)

with a zero plastic volume change.
As stated previously, the second assumption will be utilized.
While it implies that the critical state is coincident with
the Mohr Coulomb surface (which is not the case), the results
are acceptable. In any case, the degree of association
attributed to the fiow does not have a great deal of influence

on ultimate loads.
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The stress-strain relationship for both materials

can be expressed by:

do = DPL x deg (3.16)
where do = change in stress

de = change in strain

DPL = variable elasto-plastic matrix

This matrix can be considered to act in the same way as the
constitutive matrix in the linear elastic case. However, in
this situation, the matrix 1is a (4 x 4) array due to
axisymmetric loading. This matrix is used by both the Von
Mises and Mohr Coulomb programs.

Axisymmetric loading 1is assumed in the elasto-
plastic cases because such behaviour is not truly two-
dimensional. The elastic and plastic components tend to
balance in the direction of the 2zero total strain (Smith,
1982). Therefore, the _xisymmetric assumption is more
realistic by having four independent components of strain
rather than three.

The matrix DPL can be expressed as a combination of
the elastic constitutive matrix anc a stress dependent plastic

component. The question is:

DPL = D - PL (3.17)
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0,=0,=0;

7/ 6

= :

O3

Figure 3.3: Mohr Coulomb Failure Cone




where

D

]

PL

20

The matrix can be defined as:

E(1-») (1+v)

(1-2v)

while the plastic stress-strain matrix

where

the linear elastic component

2(1-2v)
(1-v)

the stress dependent plastic component

is expressed by:

[ s
Symmetrical
5,8, s,
3E
20°(1+w»)
TI"IS! Tl‘lS7 Trzz
568, SeS, SeTr, Se’
S, = deviatoric stress (20,~04~0,)/3
S, = deviatoric stress (204-0,~0,)/3

W0
It

~
]

" Xz shear stress

o, = Von Mises shear stress

deviatoric stress (20,~0,~04)/3
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Since the material may b. elastic for part of the loading and
elasto-plastic for the remainder, a factor of plasticity is
entered into the equation (Smith, 1982). The stress-strain

matrix is then expressed as:

DPL = D - (FAC » PL) (3.18)
where FAC = (o0, - 0,) /(0. - 0,)

0. = increment of shear stress

o, = yield stress

0, = Von Mises shear stress

These equations are then utilized in finite element
analysis to define the material behaviour.
3.2 The Finite Element Method

Finite element analysis is a very efficient means of
solving linear elastic or elasto-plastic problems. It is easy
to account for boundary conditions and various soil effects.
Unlike the classical approach, the finite element method can
satisfy the numerous differential equations of equilibrium,
stress strain relationships, and compatibility conditions at
every point on the continuum including those at the boundaries
without assumptions or truncations. It is also more versatile
than the finite difference method because it does not require
a different egquation formulation for boundaries and works
better with elements of different sizes (Weaver and Johnston

(1984) .
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The finite element method analyzes a descretized
continuum which in the case of pavements represeonts the base
and subgrade layers. The continuum is descretized by dividing
it into a finite number of elements of a simple yet arbitrary
shape (Weaver and Johnston, 1984). Two popular shapes for
analysis are triangles and rectangles. Input at the nodes of
each element is related to the output through a matrix of
partial differential equations. The matrices of each element
(local Matrix) are then summed up into a global matrix
representing the entire continuum to be studied.

Finite element analysis, due to the large number of
equations to be processed, could not be used until the advent
of the digital computer. The finite element approach can ke
summarized as:

1. divide the continuum into finite elements of a

given shape (in the pavement case, rectangles)

2. select nodes where compatibility and

equilibrium are enforced and define the boundary
conditions at the nodes

3. satisfy the stress-strain relationship at each

element

4. sum up the local element relationships into a

global matrix for the entire continuum

5. solve the eguilibrium equations for nodal

displacements

6. calculate the stresses and strains at all
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element nodes for elastic soils and at element

centres for elasto-plastic soils
The three computer programs, linear elastic, Von
Mises, and Mohr Coulomb, use the approach listed above with
similar program blocks (with slight variations for soil
behaviour). Fach program assumes a plane strain model and can
be divided into sub-programs which perform, input and
initialization, element stiffness integration and assembly,
and solution/recovery of stresses. Detailed flowcharts can be
found in Appendix C while the program lists are in Appendix D.

3.2.1 Linear Elastic Model

The linear elastic model deals with a plane strain
(stress) analysis using four noded rectangular elements.
Based on soil properties the element property matrix (or
stress~strain matrix) is created. The element geometry is
defined by the nodes. In the case of a triangle and
rectangle, there are three and four nodes respectively. Each
node is defined by its position in space. 1In the case of a
plane strain model the position can be defined in the
horizontal (x) and vertical (y) distances from an origin. 1In
the case of the three programs, the origin is defined at the
lower 1left corner of the mesh. Figure 3.4 shows the nodal
coordinate scheme for the model.

The nodes are also defined by their ability to move
in space. This movement 1is called the node freedom and

defines displacement in the x and y directions for a plane
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strain model. For example, nodes at the surface or in the
middle of the continuum may move freely in both directions.
At the boundaries, the nodes may be restrained in one (roller
support) or in both (hinged support) directions. Convention
states that zero indicates freedom to move while one indicates
restraint. Therefore, the nodal freedom array for a free node
would be (0,0), a hinged node (1,1), and (1,0) for a node that
can only move vertically. Figure 3.5 illustrates this
principle.

Once the stress-strain relationship is defined and
the nodal coordinates and freedoms determined, then the local
stiffness matrix can be created for each element. This matrix

is expressed as:

© R

Sk Sni Sxis Snis Snis Snis Sy Snis
[ ] [ ] ® [ ] [ ] L ] [ ] [ ]
® [ J [ ] [ ] [ ] [ ] [ J ®
[ ] [ ] ® [ ] [ ® ® [ ]
® o ® [ ® ® o [ ]

Sn Spao Sy Snas Snss Snis Sner snnJ

for a rectangular element where the stiffness matrix is based
on the element stress strain relationship, nodal coordinates
and freedoms.

Each element stiffness matrix in the mesh is added
to the global stiffness matrix for the continuum. This global

matrix can be expressed as:



25
[(G] x [d] = [1] (3.19)

where (G]

i

global stiffness matrix

(d]
(1]

nodal displacements

nodal loads

This matrix 1is then reduced and solved for the nodal
displacements using either the Gauss-Jordan or Choleski
method.

Once the nodal displacements have been calculated,
they are redistributed back to the elements so that 1local
stresses and strains may be recovered.

3.2.2 Elasto-Plastic llodels

The setup of the global stiffness matrix for a Von
Mises and Mohr Coulomb soil is similar to the linear elastic
model except that an axisymretric stress-strain matrix is
used. Elasto-plasticity enters the analysis when the node”
displacements are redictributed to find element stresses and
strains. The redistributions in both cases is performed in
two nested loops. The outer loop 1is responsible for load
cycles while the inner loop redistributes stresses that exceed
the material’s elastic 1limit. The Von Mises method uses a
yield stress to indicate this 1limit while the Mohr Coulomb
analysis relies on a visco plastic yield function. 1In both
cases, if' the stress dces not exceed the yield,then the
elastic stress-strain relationship 1is used. Ctherwise an

elasto-plastic stress-strain matrix (different for Von Mises
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and Yoh.r Coulonb; must be created. At the end of the inner
locop, the stress and strain increments are added to those

previously accumulated before proceeding to the next load

cycle.
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Chapter 4

The Pavement Model

4.1 Introduction

The finite element programs regquire an accurate
model of the pavement structure and reasonable soil parameters
to accurately predict the effects of the loads on the
material.

In order to insure that the results are as precise
as possible, the finite element mesh must be carefully thought
out. A mesh with very large elements will yield inaccurate
results while one that is too fine will waste computer memory
and time.

Laboratory and field testing provide the parameters
that define the material to be studied. Without realistic
soil parameters, the analysis becomes an exercise in
theoretical mathematics (Desai and Siriwardane, 1984).

4.2 The Mesh Development

The finite element programs used to analyze a
typical three layer flexible pavement system consisting of an
asphalt wearing surface, granular base, and subgrade. This
type of pavement is selected because it is the most commonly
used in construction. Use of flexible pavements range from
residential streets to major highways. Figure 4.1 shows the
structure to be studied with the locations of the wheel loads.

The asphalt surface course is not subjected to
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analysis and the wheel loads are assumed to remair unchanged
when applied to the base. Desai and Siriwardane (1984)
discuss the analysis of a multi-layered railway embankment
where each layer possesses a different soil behaviour and
consequently must be analyzed separately. This approach is
taken with the pavement model where the base and subgrade
layers are analyzed separately.

4.3 The Base Mecsh

As the base layer is usually thinner and stiffer
than the subgrade, stresses tend not to distribute far from
the area of the point load and thus require a fine mesh to
model the distribution accurately. Figure 4.2 shows a portion
of this mesh along with a table of the node freedoms. The
entire mesh consists of 72 elements with 95 nodes arranged in
an 18 by 4 pattern. The mesh shown in Figure 4.2 is for the
0.45 m base situation.

While the mesh is enclosed by a fixed boundary, in
reality, loads exerted on the pavement will be distributed
infinitely in all directions. However, each side of the mesh
contains roller supports while the bottom is hinged. This
situation does not allow stresses to leave the system and thus
conservation occurs. Since both sides and bottom are fixed in
some way, the behaviour of the outermost elements may not
accurately depict soil behaviour.

Consequently, an additional row has been added to

the bottom of the mesh to make the base appear to be 0.60 m.



31

881n0) aseg ayj I0J YS3W JUBWLTd 93ITUTL :Z*p 2InbTd

08 _JooT |66 [¥9 [vL [c¢ |8y [er [ev [2€ ez 1z |91
56 | w2l [czt |6L |86 |i6 €9 [zL |te [ev Jov [sr [T1c ST
I ¥5 ¢TT | 121 8L 9& S6 9 0L 69 9y {19 0T 61 vul,
(3 A €6 0ZT [ 61T ¢l 6 €6 19 B Sy Yy €y 6Z 81 L1 €T
Bl Z6_ | 811 |LTT 9L 09 83 [¢9 lwy [zv [ty [sz lo1 [stU [z1 |
1 16 Gt |26 |16 165 |99 |s9 |cv |ov lec [z |oT [€T 1T
06 9TT |STIT [ ¥L 06 68 86G 9 €9 (44 8t LE 9z 0T
ovt lect |68 [wit |ext jeL |88 |c8 |¢s |z3 19 {vw | | sz |zt |11 |6
8cT | Lev |88 | 2T | VU1 |2. |98 |s8 |96 | ov_|9c |s€ [vz [oT |6 |8
9€1 |GET |9 | oTT [601T [1L s |09 |e6s |ec |ve |e€ ez |8 ¢ |t
PEY { ECT | 98 0L y8 €8 S 86 LS 8¢ [4% 1€ [44 9 S 9
<8 [s8o1 [coT1 |69 [ze |te [es |9s |ss_|ie _loc |6z [tz g
ZET |TeT [ve 901 [0l (69 |08 6L |25 |vs [€s {9 | | Toz [¥ ’
OCY | 62T |€8_ | voT |€oT [£9 [8L |eL [1¢ <€ |ez [tz [e1 & €
"3ZY | LZ1 | ¢8| zoX | 10T |99 os_|es |1s |ve |9z |sz |sr1 |z z
9Z1 | SZ1 |18 — Is9 [o¢ st |ev los |ev lec |wz le€z [ev [T [
40a | 40 | 9poN| 40a | 40d | epos! 20a | d0a | @pon| 400 Ta0d | epon] 20a | 40a Tapon|d0a Ta0d [ opon

tdoq) wopaaxz jo saazbag

- RS A I S %llllx,. —




32

deep. Since the lowest nodes are assumed to move freely with
the subgrade surface, the fourth row is added so that the
third may move in the x and y directions. Thus the third row
stresses are determined and transferred to the subgrade model.

The element geometry was chosen because it has been
found that the stresses and strains exerted on each node are
nost accurately predicted when the element width to height
ratio is 2:1. Should the ratio change to 1.5:1 or 3:1, then
the calculated values will be greater or smaller than those
which actually occur.

4.4 The Subgrade Mesh

The subgrade utilizes two separate models, since the
stress distribution in the upper 0.60 m. of the subgrade is
different from the other layers. In the first 0.15 m. of the
subgrade, stresses are distributed close to the wheel loads
line of action. These stresses quickly distribute themselves
laterally so that they affect the entire pavement width by
0.60 m. Beyond this level, the stresses and strains are more
uniformly distributed and change slightly from layer to layer.
The fine mesh, similar in geometry to the base model shown in
Figure 4.3 except that all the top nodes are loaded. Since
the main thrust of the analysis is to calculate the largest
strain on the surface of the subgrade, (vertical strain), a
fine mesh extending to a great depth is unnecessary.

A mesh with larger elements has been created to show

the stress distribution beyond the depth of 0.60 m. Each
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element in this case has a width of 1.82 m. by a 1.00 m.
height arranged in a three by six pattern. Figure 4.4 shows
the coarse mesh along with a table of node degrees of
t reedon. This mesh is used only to illustrate the stress
distribution below 0.60 m. and is not a part of the remainder
of the analysis.

Since each mesh has either a different geometry ox
soil parameters, each must be analyzed separately. This
approach is used in Desai and Siriwardane, (1984) when dealing
with the railway embankment problem.

4.5 Determination of Parameters

Laboratory or field testing play a crucial role in
defining the soil parameters to be used in finite element
analysis. Without reasonable parameters, there will always be
a gap between theory and practice (Desai and Siriwardane,
1984). Thus it is necessary to perform laboratory tests on
samples which represent the conditions of the region to be
analyzed.

The main soil parameters that the three programs

require are:

E modulus of elasticity is derived from the
triaxial test. The resulting slope of the 7,
vs ¢ curve when multiplied by ( 32 ) yields
E.

r Poisson’s ratio is the proportion of the
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vertical to horizontal stress in the material.
Its effects show that the vertical compressive
stress 1is associated with the horizontal
stress extending outwards from the wheel load
(Lay, 1986). The ratio is derived from the
hydrostatic compressive test. The resulting

slope of the o, vs & curve yields the bulk

[+ 8]

modulus K which is inserted into following

equation:

vy = (K - EK) /2K (4.1)

soil cohesion is derived from the triaxial
test and c can be found from the Mohr’s circle
where the failure envelope intersects with the
y-axis

internal angle of friction is derived from
the triaxial test. This value of ¢ is the
slope of the failure envelope on a Mohr's
circle. This value can also be found in some
cases by pouring the sample into a pile and
measuring the angle of the resulting slope
California Bearing Ratio is derived from the
plate load test. The resulting load to cause
0.1 inch penetration is compared with that

required to penetrate a standard sample of
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crushed rock to the same depth and expressed

by:

"R = (L,/L) x 100 (4.2)

|
n

where . load carried by specimen at
0.1 in piston penetration

L, = load carried by standard
crushed rockbase at 0.1 in

piston penetration

The result is then rated on a scale of 1 to
100. The CBR (Pandey, 1990) can also be

related to the modulus of elasticity by:

CBR = (E in MPa)/10 (4.3)

These tests are discussed in greater detail in Desai and
Siriwardane (1984), Oglesby and Hicks (1982), and Bowles
(1984) .

The parameters that are used in the computer trials
¢ re shown in Table 4.1. These values are taken from samples
presented in Desai and Siriwardane (1984) and Oglesby and
Hicks (1982). The parameters are also checked against typical
values 1in Bowles {1982 and 1984) to insure that they are
within reasonable limits. Thus there are six cases for the

three behaviours and soil types. Unrealistic situations such
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as a Von Mises sand are eliminated from the trials. These
cases when combined with three base thicknesses and five

loading conditions comprise a total of 90 cases.
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23

24

25

26

27

Load Load
v v
1 8 15
Element
1.82x1.00m
9 16
10 17
P11 18
|
t12 19
|
|
! !
|13 T 20
| |
|
[ ] }
7 14 21
Degrees of Freedom (DOF)
! Node DOF x 'DOF y' Node \DOF x IDOF y
Tl Pl 15 | 19 20
f 2 2 16 21 22
R 3 17 23 | 24 !
4 L4 18 25 | 26
.5 5 19 | 27 28 |
6 | 6 20 | 29 30
7 | 21
P8 7 8 22 31
s 1 9 10 23 32
10 11 12 24 33
11 13 14 25 34
12 '@ 15 16 26 35
13 | 17 18 27 36
14 ! 28

Fiqure 4.4: Large Element Subgrade Mesh
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Table 4.1: Soil Data for Finite Element Analysis
|
1 Base
Analysis l Gravel
Type
|
Linear l E=500 MPa
Elastic | v=0.3C
Subgrade
Analysis Sand Clay sand-Clay |
1 Type ! c=0 o=0 c=0 so0il
|
Linear E=190 MPa E=207 MPa
Elastic v=0.30 , v=0.30
E=207 MPa
von v=0,30
Mises Y.S.=620 kP
1 E=190 MPa E=207 MPa E=207 MPa ;
Mohr v=0.30 v=0.,30 v=0,30 \
i Coulomb c=0.0 kPa c¢=120 kPa c=70 kPa |
i 0=35.0 | 0=0.00 0=20.0 |
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Chapter 5

Results

5.1 Stress Distribution in the Base

The first phase of pavement analysis involve the
calculation of stress distribution through the base layer.
The results, found through linear elastic finite element
analysis, show how the wheel loads on the asphalt surface vary
with the depth of base.

For a granular material with E = 500 MPa and
r = 0.3, stresses are reduced by 13%, 36%, and 50% for 0.15,
0.30, and 0.45 m. of base respectively. For example a
standard 80 kN load would be reduced to 70, 51 and 40 kN for
base depths of 0.15, 0.30 and 0.45 m. respectively. The
decrease in stress directly below the wheel load is balanced
by an increase in stresses surrounding the load. Eventually
at a certain depth, the stresses will be distributed uniformly
over the width of the pavement. Figure 5.1 shows the stress
distribution through the various base thicknesses. These
stresses are then converted to point loads and applied to the
surface of the subgrade mesh.

3

5.2 Results of Subdgrade Analysis

The six soil cases in Table 4.1 are analyzed using
the finite element method. The combination of three soil
types (sand, clay, and sand-clay), three methods of analysis

(lincar elastic, Von Mises, and Mohr Coulomb), three base
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depths, and five truck loads require ninety computer trials to
be run. In each case the stress-strain relationship can be
derived. Figure 5.2 shows an example of this relationship for
the three methods of analysis. Each of the three cases is
found to be in the elastic range for the given loads. It
should be noted that the two elasto-plastic methods yield the
same results in the elastic range and consequently can be
plotted on the same curve. However, the linear elastic method
produces results which differ from the others and hence
possesses a slightly different relationship.

The linear elastic and Mohr Coulomb stress patterns
are similar. Initially the stress tend to crest at the
centreline of the axle becoming more uniform with an increase
in depth. The Von Mises pattern initially crests at the outer
wheel and then develops the distribution pattern of the
previous two methods.

The stresses and strains in the uppermost 0.60 m. of
the subgrade remain closely in 1line with the point loads
rather than being distributed more evenly over the width of
the pavements. Due to this non uniform distribution, a mesh
with large elements would be insufficient to model the
situation adequately. Therefore a mesh with smaller elements
must be used for the upper 0.60 m. of the subgrade. The
stress distribution at 0.60 m. is more uniform and is similar
to the pattern shown on the large element mesh.

Since the main purpose of the finite element
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analysis is to find the largest strain developed in the
topmcest row of the subgrade mesh (&), the refined mesh is
us~u for greater accuracy. The large element mesh is only
used tc illustrate stress distributions beyond the critical
0.60 m. depth and will not be discussed further. The vertical
compressive strains (¢,) for the six soil cases are shown in
Table 5.1.

The vertical strains for the two types of analysis
(linear elastic and elasto-plastic) are found differently.
Linear elastic analysis is static and strains are located at
the nodes of each element. The vertical strain is the largest
compressive strain at the top of the mesh. This point usually
corresponds with the node under the largest 1load.

The elasto-plastic loading is cyclical and stresses
and strains are located at the element centres. In order to
find the largest vertical strain at the top of the mesh, the
stresses and strains are first plotted to £find their
relationship. The wheel load is then converted to a stress by
dividing the point load by the element width. This stress is
then inserted into the relationship to find the corresponding
vertical strain.

By assuming two different soil behaviours for each
soil type, a comparison can be made. For example, the sand
and sand-clay soil cases show that the Mohr Coulomb method
yields higher vertical strain values than the linear elastic

analysis. The Mohr Coulomb values are found to be an average
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of nine percent higher than their linear elastic counterparts.
The clay case which compares Von Mises and Mohr Coulomb
behaviour indicates that the two methods would yield the same
results (at least in the elastic range). However, when the
Mohr Coulomb results are compared, the values for the clay and
the sand-clay are exactly the same. It can be seen that the
values of cochesion and angle of friction (which changed in
these two cases) have no effect on the results in the elastic
range and the modulus of elasticity and Poisson’s ratio are
the governing parameters.

5.3 Strain Contours

The values of vertical strain can also be arranged
in a matrix form as shown in Figures 5.3 to 5.8. Contours
rerresenting certain values of vertical strain can then be
plotted. These contours indicate the combined effects of
loads and base thickness on the magnitude of ¢,.

A comparison of vertical strains based on loads,
base thickness and material properties can be made using the
contours. For example, for linear elastic sand shown 1in
Figure 5.3 the vertical strain decreased from 0.000481 to
0.000271 m. when the base thickness is increased from 0.15 to
0.45 m. for a standard 80 kN load. This increase in the base
course represents a 44 % decrease in vertical compression
strains in the base course. If an 80 kN load were exerted on

a sand with a 0.30 m. base then the vertical strain would be



46

Table 5.1: Vertical Strains
Sand Clay Sand - Clay
Load Base L/E M/C v/M M/C L/E M/C
(kN) (m)
71 0.19 427" 469 430 430 392 430
0.30 312 345 316 316 286 316
0.45 244 267 246 246 224 246
80 0.15 481 528 485 485 442 485
0.30 351 388 356 356 322 356
0.45 271 301 277 277 249 277
89 0.15 535 587 539 539 491 539
0.30 391 432 396 396 359 396
0.45 306 335 308 308 281 308
98 0.15 589 647 594 594 541 594
0.30 430 476 437 437 395 437
0.45 337 369 339 339 301 339
107 0.15 644 706 648 648 591 648
0.30 470 519 477 477 431 477
0.45 368 403 370 370 338 370

Strains x 10°
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0.000351 and 0.000388 for a subgrade with linear elastic and
Mohr Coulomb behaviours. The elasto-plastic behaviour yields
more conservative results given identical parameters. The
changes in vertical strain are also directly proportional to
changes in loadings.

The strain contours represent a fundamental
relationship between the applied load and the base thickness
in producing the vertical strain at the top of the subgrade
layer.

For example, if a horizontal line is drawn in Figure
5.3 corresponding to a base depth of 0.3 m., then the vertical
strains for each load case can be found. If a vertical line
is drawn corresponding to a load case of 80 kN, then the
vertical strain can be found for each base thickness. From
these two lines, it can be concluded that the vertical
strains decrease as the base thickness increases and increase
as the axle load increases. Thus the contours indicate a
combination of these two effects in producing a specific
magnitude of vertical strain.

The strain contour graphs can be utilized to
determine the specific combination of base thickness and axle
load that can produce a given magnitude of the vertical
strain. These graphs form the basis for the pavement design

method developed in the next chapter.
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Chapter 6

Paveme . Design Method

6.1 Introduction

as stated in the previous chapter, the vertical
strain (¢ ) contours created apply only to the three soil
types studied. A more general set of contours would have to
be formulated if a design method is to encompass as many
des.gn types as possible. In the previous chapter the
contours are based on loads and base thicknesses. The design
curves should rely on base depths, modulus of elasticity,
Poisson’s ratio, and behaviour types. The different loads are
not necessary since loads can be factored to an 80 kN (18,000
1b) standard. These design curves are no longer pertinent to
onc soill type such as sand or clay. The curves are based
sole.y on behaviour such as Mohr Coulomb and it 1is the
designer’s responsibility to match the soil type to the
appropriate behaviour. The design method is as follows:
1. Determine the traffic Eguivalent Axle Loads
(EAL) due to trucks in traffic stream for the
service life of the pavement, using the

multipliers in AASHTO Tables 6.1 and 6.2

r
.

Identirfy the subgrade behaviour
3. Determine the soil parameters

Determine the required base thickness

La

5. Determine the service life of the pavement
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6.2 Development of Strain Contoui Charts

From the results in chapter 5, it can be seen that
the modulus of elasticity (E) and Poisson’s ratio (v) govern
the value of critical strain (¢) in the elastic range.
Changes in the angle of internal friction and cohesion do not
play a role in *this range. Thus the vertical strains were
calculated by varying E from 100 to 1000 MPa and » from 0.1 to
0.4. These two ranges represent most soils considered in
Bowles (1982 and 1984).

The traffic load 1is kept to a constant 80 kN
standard. Differvent loads c¢an be factored to an 80 kN
eguivalent axle load (EAL) with AASHTO Tables (Oglesby and
Hicks, 1982) and thus an additional dimension to the contours
can be eliminated

These values of ¢, could then be arranged in a
matrix form where the x-axis would show the different values
of E and the California bearing ratioc (CBR). The value of CBR
as well as the :lastic modulus are used because it is felt
that engineers using this type of chart would be more familiar
with CBR values. A separate contour graph is then drawn for
each value of Poisson’s ratio which varies from 0.1 to 0.4.
These values of CBR and v serve to encompass almost all the
values presented in Bowles (1982 and 1984). Therefore, twelve
strain contour charts have been created, taking into account
all possible combinations. Figures 6.1 to 6.3 show three

examples of the contour graphs. The entire set of graphs are



56
shown 1in Appendix A.

.3 Pavement Design Method

The design method requires that all loads be
factored to an 80 kN (18,000 1lb) eguivalent. This conversion
is necessary because the Asphalt Institute equations are based
on an 18,000 lb standard load. The soil parameters, modulus
of elasticity and Poisson’s ratio, are then identified for
field or laboratory tests. These values are then combined
with the appropriate soil behaviour to find the required base
thickness from the design charts.

6.3.1 Determination of Traffic Load Repetitions

The design method initially requires that the daily
volume of truck traffic on the pavement be converted to the
number of 80 kN (18,000 lb) load repetitions per year. This
conversion to equivalent 18,000 1b single axle load
applications (EAL) 1is done by multiplying the number of
vehicles 1in each weight class (N,) with load equivalency
tactors (f,). Thus the traffic loads per year (N,) can be

found by:

N, = (365 days/year) (ZN, x £f;) (6.1)

The load equivalency factor (f,) is shown in Table 6.1. The
values shown in the table are for a present serviceability
index p of 2.5. This index represents a rating given to road

based on high speed tests as well as on deformations and
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deterioration of the pavement. Oglesby and Hicks (1982) give
a detailed explanation of the serviceability index and its
derivation.

Growth factors in Table 6.2 (Oglesby and Hicks,
1982) may also be used if required. These factors allow the
calculation to take into account the annual increase in
traffic over the design period. The total number of EAL in

the design life of the pavement (N) can be found by:

(6.2)

where S is the design life (in years) and N, is the load
repetitions per year. Tables 6.1 and 6.2 are taken from
Oglesby and Hicks (1982).

6.3.2 Determination of the Subgrade Soil Type

The scil behaviour such as linear elastic, Von Mises
or Mohr Coulomb must be selected correctly if results are to
be realistic. The behaviour can be determined from laboratory
testing where values of parameters such as cohesion and angle
of friction can indicate soil type.

6.3.3 Determination of Subgrade Soil Parameters

Using either 1laboratory or field tests, the
parameters of the soil must be found. The governing soil
criteria, modulus of elasticity and Poisson’s ratio are

necessary to adequately model the subgrade.
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Table 6.1: Load Equivalence Factors (p = 2.5)
Single Axles Tandem Axle Sets
Structural Number SN Structural Number SN
Loads
(kN) 1 4 6 1 4 6
9 0.0004 0.0002 0.0002
26 0.01 0.01 0.01
44 0.08 0.10 0.08 0.01 0.01 0.01
62 0.33 0.39 0.34 0.03 0.03 0.02
80 1.00 1.00 1.00 0.07 0.09 0.07
98 2.48 2.09 2.30 0.16 0.21 0.17
115 5.33 3.91 4.48 0.33 0.40 0.34
133 10.31 6.83 7.9 0.61 0.70 0.63
151 18.41 11.34 12.51 1.06 1.11 1.08
169 30.90 18.06 18.98 1.75 1.68 1.73
178 39.26 22.50 23.04 2.21 2.03 2.14
195 3.41 2.88 3.16
213 5.08 3.98 4.49
Table 6.2: Growth Factors
Design Annual Growth Rate (%)
Period
(yr) 0 2 4 6 8 10
1 1.0 1.0 1.0 1.0 1.0 1.0
5 5.0 5.20 5.42 5.64 5.87 6.11
i0 10.0 10.95 12.01 13.18 14.49 15.94
15 15.0 17.29 20.02 23.28 27.15 31.77
20 20.0 24.30 29.78 36.79Y9 45.76 57.28
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6.3.4 Determination of Base Thickness

The value of N can th n be inserted into the Asphalt

Insti1tute equation (Oglesby and Hicks, 1982):

£, = (N/1.36 > 10°%) ' (6.3)

to determine the value of vertical strain g corresponding to
N. This ¢,. can then be inserted into the appropriate contour
chart to find the required base thickness.
For example, a pavement with the following parameters:

1. subgrade CBR = 30

2. subgrade v = 0.1

3. vertical strain of 0.000241
will require a base thickness depending on each type of
subgrade behaviour.
The base thicknesses for the three soil behaviours can then be

found from Figures 6.1 to 6.3. These values are

a. linear elastic 0.40 m.

b. Von Mises = 0.24 m.

c. Mohr Coulomb = 0.24 m.
It should be noted that since the Von Mises and Mohr Coulomb
materials behave the same way in the elastic range, their base

thicknesses would be identical.

6.3.5 Determiration of Service Life

If the base width is specified or assumed, the

service life (S) of the pavement can be predicted. For a
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given base thickness, CBR, r, and soil behaviour, the vertical
strain can be found from the contours. This value can then be

inserted inte the following equation:

N=1.36 x 10°(¢g)*" (6.4)

to find the total number of 1load repetitions to failure.
Then, based on the number of 80 kN load repetitions per year

(N,), the service life can be calculated as follows:

S = N/N, (6.5)

Therefore, given the proper parameters, the base
thickness can be designed or the design life calculated by
combining the design curves using the Asphalt Institute’s
equation. The following section lists four numerical examples
which show how these principles can be applied to
design/analysis situations.

6.4 Numerical Examples

Example A: Determination of Base Thickness

Assume that a material with the following properties:

1. CBR = 30

2. v = 0.2
should withstand 3000 standard 18,000 1b load applications/day
for a service life of fifteen years. If the subgrade behaves

like a Mohr Coulomb material, what is the required base depth?
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Solution

Given the regquired daily traffic and service life, the number
of load repetitions to failure is:

N (3000 loads/day) x (365 days/yr) x (15 years)

16,425,000 load repetitions to failure

and thus the corresponding vertical compressive strain would
be:

& = (16,425,000/1.36 x 10°)144¢
= 257 x 10% m/m

This value is inserted into the Mohr Coulomb contour chart
shown in Figure 6.4 to find the base thickness. A vertical
line is drawn from a CBR value of 30 to intersect a contour
line corresponding to an ¢ value of 257 x 104. From this
point of intersection, a horizontal line is drawn to obtain a

value of 0.30 m. for base thickness.

Example B: Determination of Service Life

Assume that a material with the following properties:

1. CBh = 40

to
I

o

(V]

should withstand 4000 load applications/day. If the base
thickness is 0.30 m. and the subgrade is linear elastic, then
determine the service life of the road.

Solution

Given the base thickness and subgrade properties, the vertical
compressive strain (¢ ) value can be found in Figure 6.5. A

vertical line is drawn from a CBR value of 40 and a horizontal
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line from a base thickness of 0.30 m. The two lines intersect
at a value of ¢ of 175 x 10°%. Then by inserting the value of
£ = 175 % 10" into the Asphalt Institute equation:

t

N = 1.36 % 10°(g)**

1.36 x 10%(175 x 10944

92,199,475 load repetitions to failure

N, = 4000 x 365 = 1,460,000 loads/year

Yy

The service life can then be calculated by:

S N/N,

92,199,475/1, 460,000

"

63.15 years

Example C: Determination of Additional Service Life

Assume that a material with the following properties:

1. CBR = 35

3. Mohr Coulomb behaviour
should withstand 5000 load applications/day for a service life
of twenty years. Perform the following:
a. desigr the required base thickness for the
above criteria
b. if the base were increased by 50 percent, what
would be the extended service life?
Solution
Given the required daily traffic and service life, the

number of load repetitions to failure is:
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N (5000 loads/cay) x (365 days/vyr) x (20 years)
= 36,500,000 load repetiticns to fa_.lure

and thus the corresponding vertical compressive strain would
be:
o= (N/1.36 x 109) 14

= (36,500,000/1.36 x10°%) 44

= 0.000215 m/m

= 215 ¥ 10° m/m
This value can then be inserted into the Mohr Coulomb contour
chart shown irn Tigure 6.v find ti.2 base thickness. A vertical
lince 1s drawn from a CBR value of 35 to intersect a contour
line corresponding to an & value of 215 x 10°, From this
point of intersection, a horizontal line is drawn to obtain a
value ot 0.27 m. for base thickness. If the depth is
increased by 50 percent to .40 m. then the corresponding g,
world be 1.67 x 10° from Figure 6.7. Inserting this value

into the equation:

N = 1.36 x 10%(g )+

i

1.36 x 10°(0.000167)%%

113,702,265 load repetitions to failure

I

H, 5,000 x 365 = 1,825,000 loads/year
Then given the traffic criteria, the service life would be:
S = NJ/N,
= 113,702,265/1,825,000

= 62.3 years

Theretore tor an increase of 50 percent of base thickness, the
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service life is increased 3.1 times.

Example D: Determination of Remaining Service Life

Given a three year old road with the following properties:
1. CBR = 20
2. v = 0.3
3. Von Mises behaviour
This road has a base thickness of 0.25 m. and is subjected to
1,000 standard 18,000 1lb load applications per day. Calculate
the remaining service life of the road.
Solution
The value of vertical strain ¢ 1is found from Figure 6.8. A
vertical line 1is drawn from the CBR value of 20 and a
horizontal 1line from a base thickness of 0.29% m. The
intersection point gives the value of ¢ = 450 x 10°. Given
¢, the number of load repetitions to failure is:
N = 1.36 % 10%(¢g)**
= 1.36 x 10°(0.000450)**"
= 1,340,130 load repetitions to failure
The number of load repetitions accumulated during the first

three years of the road’s life is:

N, (1000 loads/day) x (365 days/yr) x {3 years)

1,095,000 load repetitions
and thus the remaining load repetitions to failure are:
N, = 1,340,130 - 1,095,000

!

= 245,130 load repetitions to subgrade failure
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The remaining service life is:

il

S 245,130/ (1000 loads/day x 365 days/year)

0.67 years

Therefore, the subgrade will fail in 0.67 years.
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Chapter 7

Computer Progranms

7.1 Introduction

The programs for finite element analysis are written
in QuickBasic 4.5 for operation on personal computers. These
programs are based on original FORTRAN programs written for
mainframe IBM computers (Smith, 1982). Several modifications
have been undertaken to suit the requirements of this prcject.
The following sections give flowcharts and explanations of the
programs. Computer printouts are given in the appendices.

7.2 Modifications to the Original Progqrams

The programs are rewritten into QuickBasic 4.5 and
then compiled into executable files. The programs have been
translated so as to integrate them into a menu driven system.
That is, the original programs require all necessary data to
be input manually. A menu system allows the program to guide
the wuser through data entry and given some input can
automatically generate the remainder. It can also prompt the
user as to which program to use or given the soil parameters,
select and run the appropriate program automatically.

7.3 Constraints in the Translation

The major constraint with QuickBasic 4.5 (as well as
with its parent, BASIC) is the 64K memory limitation. That
is, both the data generated and the program itself cannot

occupy more than 64 Kilobytes of memory.



75
In order to conserve memory, the main program is

broken down 1into a series of subprograms each chained

together. The main cause of memory overload is due to large
intermediate matrices. With a series of subprograms, each
segment will start with zero memory, create its own

intermediate matrices, and then store only the data needed for
the next subprogram. During the chaining operation, all
intermediate matrices are erased, so that each subprogram can
start with zero memory. The linear elastic program is divided
into four such subprograms while the elasto-plastic programs
are divided in three. Figure 7.1 shows a flow chart of the
overall finite element programs. It should be noted that once
all three behaviours are integrated with the menu system, the
programs essentlially become one progran.

7.4 Other Modifications

Other changes include the substitution of the
Choleski matrix reduction for the Gaussian mcthod because the
former is readily available in Smith (1982).

The original Mohr Coulomb program requires that
deformation increments be used rather than the actual loads on
the mesh. This requirement is not consistent with the other
two programs so sections that converted the deformations to
loads are modified so that the loads are directly used by the
program.

The Mohr Coulomb is also modified to take into

account soi1l failure on the first load cycle. The program as
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PROGRAM
INFORMATION

GRAVEL

SOIL

SAND

CLAY

SAND=-CLAY

iDATA INPUTr-"

ELAST1
ELAST2
ELAST3
ELAST4

DATA INPU

VONNSEL
VONNMSE?2
VONNMSE3

DATA INPU; !

MOHRCOL1
MOHRCOL2
MOHRCOL3

Figure 7.1: Flowchart of Integrated Programs
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RINT/SA
SULT
-

YES

PRINT TO
FILE

VA

PRINT
RESULTS

Figure 7.1 (Con‘t): Flowchart of Integrated Programs
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originally written fails to allow for this situation and will
“crash" in this event.

7.5 Program Instructions

The program may be started by entering FINITE and
pressing the return/enter key. The initial menu screen is
shown in Fiqure 7.2. Each topic in the upper part of the
screen can be accessed by pressing the left or right cursor
key until the topic cell is highlighted. Once the cell is
reached, 1t may be accessed by pressing the return/enter key.

When the program is started, it initially defaults
to the leftmost cell (information). If this topic 1is
selected, then a submenu column will appear directly under the
cell. The ieft right keys are now deactivated and the up/down
cursor Keys can be used to scan the menu. The program cell
will display information about the program and a set of
instructions for its operation. The soils cell accesses a
second menu column which allows the user to retrieve
information about various soil types including typical soil
parameters. The final cell in both column menus allows the
user to return to the previous menu. Thus, in the soils menu
the final cel) allows the user to return to the information
menu. The final cell or the information menu allows the user
te the main menu where the up and down keys are deactivated
and the left and right keys can be used. Figure 7.3 shows the
information screens.

The next three cells of the main menu allow the user
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to select the appropriate method of analysis. The format of
the three cells is identical. The cclumn menu includes a data
input, program start and return to main menu cells. The data
input cell allows for input directly from the keyboard or from
a data file. The keyboard data entry reguires that only the
general model parameters be given. The more tedious entries
such as the restrained node freedoms are generated
automatically, saving time and preventing input errors.
Figures 7.4 and 7.5 show typical input screens while Figures
7.6 to 7.8 show input requirements. The print save screen
allows the user to print the results on paper, save the

results “o a data file, or both.
Once work is completed, the user may exit to the

system by accessing th= end cell.
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Load Load
1 4 4 7
2 5 8
3 6 9

Degrees of Freedom

Node x Y Node x y

1 1 7 7 8
2 2 8 9 10
3 9
4 3 4 10 11
5 5 1 6 11 12
6 N 12 !

Continuum Data

NXE ¢4 elements in x-direction 3

NYE § elemente in y-direction 2

N 4 degrees of freedom 12

w half bandwidth 7

NN 4 nodes 12

RN 4 restrained nodes 8

NL ¢ loaded nodes 2

Element Data

GP Gaussian integration order

AR element size in x-directic -

BB element size in y-directic -

E Young'‘s modulus -

v Poisson's Ratio -

Node Freedom Data (node freedom-x freedom-y)

1 1 0 21 0 3 1 1 6 1 1

$ 1 110 1 o011 1 o©O0122 1 1
Load Data

4 Load 8 Load

10

11

12

Figure

7.6: Data for Linear Elastic Program
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Load Load
1 4 v 10
I
2 5 8 11
3 6 9 12
Degrees of Freedom
[ Node | x Y Node x y
1 1 7 7 8
2 2 8 9 1o
3 9
4 3 4 10 11
5 5 6 11 12
0 3 12
Continuum Data
NXE ¢ elements in x-direction 3
NYE §# elements in y-direction 2
N $ degrees of freedom 12
w half bandwidth 7
NH # nodes 12
RN § restrained nodes 8
NL $ loaded nodes 2
INCS f lcad increments -
ITS 4 mtress redistribution it -
Element Data
GP Gausszian integration order 2
AA element size in x-directic -
BB element size in y-directic -
v Poisson’s Ratio -
E Young’'s modulus -

SBARY von Mises yield stress

Node Freedom Data (node freedom-x freedom-y)

1 1 0 2 1 0 3 1 1 6 1 1

$ 1 110 1 0111 1 ©012 1 1
Load Data

4 Load 8 Load

Figure 7.7: Data for Von Mises Program
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Load Load
1 4 7
2 5 8
3 6 9

Degrees of Yreesdom

Node x Y Node x 'y

1 1 7 7 8
2 2 8 10
3 9
4 3 4 10 11
5 5 6 11 12
[ ! 12

Continuum Data

NXE 4 elements in x-direction 3

NYE t elements in y-direction 2

N $ degrees of freedom 12

W half bandwidth 7

NN § nodes 12

RN § restrained nodes 8

NL § loaded nodes 2

Element Data

GP Gaussian integration order 2

AA element size in x-directic -

BE element size in y-directic -

v Poisson’s Ratio -

E Young's modulus -

INCS 4 load increments -

ITS § stress redistribution it -

COH soil cohesion -

PBI soil friction angle -

PSI scil dilation angle -

Ncde Freedom Data (node freedom-x freedom-y)

1 1.0 2 1 0 3 1 1 6 11
$ 1 110 1 011 1 012 1 1

locad Data

4 Load 8 Load

10

11

12

Figure 7.8: Data for Mohr Coulomb Program
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Chapter 8

Conclusions

The research work described in this thesis develops

a pavement design method based on finite element analysis of

the subgrade and equations used by the Asphalt Institute.

This chapter summarizes the conclusions developed during the

research work and offers some suggestions for further study.

8.1 Conclusions

The conclusions of the study are:

1.

A constitutive model in conjunction with the
finite element method can be used to predict
vertical displacements and strains in the
subgrade. The methodology can then be used to
predict the thickness of the base and life of
the subgrade using the Asphalt Institute design
method. The subgrade soil need not be assumed
elastic as 1is done in the Asphalt Institute
method. Other assumptions such as elasto
plastic behavior of soil can be made as shown in
this thesis.

A fundamental relationship exists between the
vertical strain produced at the surface of the
subgrade and the combination of axle load and
base thickness. The strain contours developed

can be used for finding the combination of base
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thickness and axle lcad that can produce a given
magnitude of vertical strain.
A fundamental relationship also exists between
the vertical strain produced at the surface of
the subgrade and the combination of base
thickness, modulus of elasticity, and Poisson’s
ratio. Strain contour charts developed can be
used for finding the required base thickness
given the traffic volume for the pavement design
life and a combination of modulus of elasticity
and Poisson’s ratio. The life of the subgrade
can be determined given a combination of base
thickness, modulus of elasticity and Poisson’s
ratio.
The stress strain relationship is identical for
the Voun Mises and Mohr Coulomb soils in the
elastic range. The linear elastic relationship
differs slightly.
In all three cases, the values of modulus of
elasticity and Poisson’s ratio governed the
critical strain calculated. Changes in cohesion
and angle of internal friction parameters did
not significantly alter the value of vertical
strain and therefore are not considered.
A range of loads are not necessary in this

analysis, since the design methcd utilizes the
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standard 18,000 1lb. axle load as input.

In conclusion, the development of the design contour
charts is a significant accomplishment of the research. This
design method differs from those presented elsewhere, in that
it allows for the direct input of soil type and parameters
into the contour charts. Unlike the Asphalt Institute method,
base thicknesses can be calculated. This design method is a
useful tool for the design of flexible pavements
8.2 Topics for Further Research

The determination of vertical strains on the
subgrade using constitutive equations and the finite element
method is an accurate means of predicting the behaviour of
pavement structures. However, ’here are numerous refinements
and new avenues of research which should be explored.

The finite element programs themselves c¢an be
improved. While QuickLasic 4.5 was used to make the programs
more user friendly, there are other languages(such as C or
C*'') that will work just as well but which do not have the 64K
memory constraint. Therefore, with these languages, larger
matrices can be handled.

The programs can also be written to take into
account other soil behaviours such as Drucker~Prager, cap, or
variable moduli problems. An extended set of soil behaviours
will make the program much more flexible. The program can
also be modified so that given the soil criteria, the program

can select the appropriate method of analysis automatically.
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This modification will tend to reduce the likelihood cf the
wrong method being chosen.

The finite element method can also be applied to
other analysis situations. For example, an analysis can be
performed should existing soil parameters change due to
infiltration of pollutants or from an accidental toxic spill.
Climactic factors such as water infiltration or heat can be

included in the analysis program.
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Appendix-A

Strain Contour Charts

This Appendix contains the remaining strain contour

charts utilized by the design method which were not included

in the body of this thesis.

Figure
A.

A.

? - -

1

2

A.10

A.11

A.12

The strain contour charts shown here include:
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Appendix-B
Sample Output

This Appendix shows a complete list of all data
files used in this research project. An example of the output
is shown for all three programs (linear elastic, Von Mises,
and Mohr Coulomb) as well as the proceedure to find the

vertical strain in each case. The information includes:

Figure Title Page
B.1 Mesh Used for Sample Output B.7
Table Title Page
B.1 Base Course and Large Element Files B.2
B.2 Small Element Mesh Files B.3
B.3 Linear Elastic Material B.4

(Design Method Files)
B.4 Von Mises Material B.5
(Design Method Files)
B.5 Mohr Coulomb Material B.6
(Design Method Files)
B.6 Linear Elastic Output B.8
B.7 Von Mises Output B.12
B.8 Mohr Coulomb Output B.17
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Table B.3: Linear Elastic Material (Design Method Files)

i
|

I
|
|
|
i

|

| E 0.1 [ 0.2 0.3 0.4
| Base=0.15 100 STR.DO1 | STR.D11 | STR.D21 [ STR.D31
|Subdirectory 200 STR.DO2 | STR.D12 | STR.D22 | STR.D32
. \LE15 i 300 STR.DO3 | STR.D13 | STR.D23 | STR.D33
400 STR.DO4 | STR.D14 | STR.D24 | STR.D34
500 STR.DO5 | STR.D15 | STR.D25 | STR.D35
600 STR.DO6 | STR.D16 | STR.D26 | STR.D36
700 STR.DO7 | STR.D17 | STR.D27 | STR.D37
. 800 STR.DO8 | STR.D18 | STR.D28 | STR.D38
T STR.DO9 | STR.D19 | STR.D29 | STR.D39
1000 STR.D10 | STR.D20 | STR.D30 | STR.D40
Base=0.30 . 100 STR.DO1| STR.DI1 | STR.D21 [ STR.D31
Subdirectory 200 STR.DO2 | STR.D12 | STR.D22 | STR.D32
_\LE30 300 STR.DO3 | STR.D13 | STR.D23 | STR.D33
400 | STR.DO4 | STR.D14 | STR.D24 | STR.D34
500 ! STR.DO5! STR.D15 | STR.D25 | STR.D35
. 600 STR.DO6 | STR.D16 | STR.D26 | STR.D36
1700 STR.DC7 | STR.D17 | STR.D27 | STR.D37
800 | STR.DO8| STR.D18 | STR.D28 | STR.D38
900 | STR.DO9 | STR.D19 | STR.D29 | STR.D39
1000 | STR.D10 | STR.D20 | STR.D30 | STR.D40
_Base=0.45 100 | STR.DO1! STR.D11 | STR.D21 | STR.D31
Subdirectory 200 | STR.DO2| STR.D12 | STR.D22 | STR.D32
_\LE45 300 | STR.DO3 ' STR.D13 | STR.D23 | STR.D33
400 | STR.DO4 | STR.D14 | STR.D24 | STR.D34
500 STR.DOS5 | STR.D15 | STR.D25 | STR.D35
600 STR.DO6 | STR.D16 | STR.D26 | STR.D36
700 STR.DO7 | STR.D17 | STR.D27 | STR.D37
800 STR.DO8 | STR.D18 | STR.D28 | STR.D38
900 STR.DO9 | STR.D19 | STR.D29 | STR.D39
| 1000 STR.D10 | STR.D20 | STR.D30 | STR.D40
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Table B.4: Von Mises Material (Design Method Files)

I

v
| E 0.1 | 0.2 0.3 | 0.4

| Base=0.15 100 STR.DO1 | STR.D11 | STR.D21 | STR.D31
|Subdirectory 200 STR.DO2 | STR.D12 | STR.D22 | STR.D32
; \VM15 300 STR.DO3 | STR.D13 | STR.D23 | STR.D33
400 STR.DO4 | STR.D14 | STR.D24 | STR.D34

500 STR.DOS | STR.D15 | STR.D25 | STR.D35

600 STR.DO6 | STR.D16 | STR.D26 | STR.D36

700 STR.DO7 | STR.D17 | STR.D27 | STR.D37

. 800 STR.DO8 | STR.D18 | STR.D28 | STR.D38

L 900 STR.DO9 | STR.Di9 | STR.D29 | STR.D39

| 1000 STR.D10 | STR.D20 | STR.D30 | STR.D40

. Base=0.30 100 STR.DO1 | STR.D11 | STR.D21 | STR.D31
iSubdirectory 200 STR.DO2 | STR.D12 | STR.D22 | STR.D32
\VM30 300 | STR.DO3 ' STR.D13 | STR.D23 | STR.D33
400 | STR.DO4 | STR.D14 | STR.D24 | STR.D34

500 | STR.DO5! STR.D15| STR.D25 | STR.D35

.. 600 1« STR.DO6 | STR.D16 | STR.D26 | STR.D36

. 700 STR.DO7 | STR.D17 | STR.D27 | STR.D37

' 800 STR.DOB | STR.D18 | STR.D28 | STR.D38

L 900 STR.DO9 | STR.D19 | STR.D29 | STR.D39

11000 STR.D10 | STR.D20 | STR.D30 | STR.D40

' Base=0.45 100 STR.DO1 | STR.D11 | STR.D21 | STR.D31
Subdirectory 200 STR.DO2 | STR.D12 | STR.D22 | STR.D32
\VM45 300 ' STR.DO3 | STR.D13 | STR.D23 | STR.D33

. 400 | STR.DO4 | STR.D14 | STR.D24 | STR.D34

' 500 | STR.DO5 | STR.D15| STR.D25| STR.D35

600 STR.DO6 | STR.D16 | STR.D26 | STR.D36

700 STR.DO7 | STR.D17 | STR.D27 | STR.D37
800 STR.DO8 | STR.D18 | STR.D28 | STR.D38 |
900 STR.DO9 | STR.D19 | STR.D29 | STR.D39 !
1000 STR.D10 | STR.D20 | STR.D30 | STR.DA4O |




Table B.5: Mohr Coulomb Material (Design

B.6

Method Files)

| E 0.1 [ 0.2 0.3 | 0.4
Base=0.15 100 STR.DO1 | STR.D11 | STR.D21 | STR.D31
Subdirectory 200 STR.DO2 | STR.D12 | STR.D22 | STR.D32
\MC15 300 STR.DO3 | STR.D13 | STR.D23 | STR.D33
400 STR.DO4 | STR.D14 | STR.D24 | STR.D34
500 STR.DO5 | STR.D15| STR.D25 | STR.D35
600 STR.DO6 | STR.D16 | STR.D26 | STR.D36
700 STR.DO7 | STR.D17 | STR.D27 | STR.D37
800 STR.DO8 | STR.D18 | STR.D28 | STR.D38
900 STR.DO9 | STR.D19 | STR.D29 | STR.D39
1000 STR.D10 | STR.D20 | STR.D30 | STR.D40
. Base=0.30 | 100 STR.DO1 | STR.D11| STR.D21 | STR.D31
Subdirectory 200 STR.D0O2 | STR.D12 | STR.D22 | STR.D32
\MC30 | 300 STR.DO3 | STR.D13 | STR.D23 | STR.D33
400 STR.DO4 | STR.D14 | STR.D24 | STR.D34
. 500 | STR.DOS5 | STR.D15| STR.D25 | STR.D35
. 600 STR.DO6 | STR.D16 | STR.D26 | STR.D36
L 700 STR.DO7 | STR.D17 | STR.D27 | STR.D37
‘ 800 STR.DO8B | STR.D18 | STR.D28 | STR.D38
900 STR.DO9 | STR.D19 | STR.D29 | STR.D39
1000 STR.D10 | STR.D20 | STR.D30 | STR.D40
~ Base=0.45 | 100 STR.DO1 | STR.D11| STR.D21 | STR.D31
' 'subdirectory 200 STR.DO2 | STR.D12 | STR.D22 | STR.D32
\MC45 ' 300 STR.DO3 | STR.D13 | STR.D23 | STR.D33
400 STR.DO4 | STR.D14 | STR.D24 | STR.D34
500 STR.DOS | STR.D15 | STR.D25 | STR.D35
600 STR.DO6 | STR.D16 | STR.D26 | STR.D36
700 STR.DO7 | STR.D17 | STR.D27 | STR.D37
800 STR.DO8 | STR.D18 | STR.D28 | STR.D38
900 STR.DO9 | STR.D19 | STR.D29 | STR.D39
1000 STR.D10 | STR.D20 | STR.D30 | STR.D40
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Linear Elastic Method:

Stresses and strains are measured at Gauss points at each
node of the element as shown helow. The critical strain for
the mesh is located at element 1, Gauss point 1.

2 1

4 3

Elasto-Plastic Method:

Stresses and strains are measured at the element centres
rather than at the Gauss points at the nodes.

Figure

B.1: Mesh Used for Sample Output
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Table B.6: Linear Elastic Output

‘[Node! G.E. Chorizontal | vertical | shear |
IL___J 1 [ strain || 0.00001155[D.00007832] 0.00001504
| stress 11540.27929 21299.32031 1099.037841
2 strain 0.00001155 0.00007347 -0.00000833
stress 11008.06835 20057.49414 -608.421447
3 strain -0.00000129 0.00007832 0.00001237
stress 8256.706054 19892.07421 904.0900268
4 strain -0.00000129 0.00007347 -0.00001099
stresgs ] 7724.494628 18650.24804 -803.367858
vt 2 ¢+ 1 | strain i -0.00000765 0.00007737 -0.00000883
L | stress | . 6523.767089 18949.11328 -645.02099¢€
2 strain ; =-0.00000765 0.00007963 -0.00001706
. stress | 16771.920898 19528.13671 -1246.80017
3 , strain | ;-0.00001217 0.00007737 -0.00000758
j | stress |15366.503418 18453.14257 -554.122131
" 4 | strain | 1=-0.00001217 0.00007963 ~-0.00001582
istress I§5614.656738 19032.16601 -1155.89892
3 1 | strain | (-0.00001382 0.00007194 -0.00001733
lstress ?i4350.300781 16885.10742 ~1266.26477,
2  strain f!-0.00001382 0.0000775 -0.00001728
stress . :4960.102539 18307.97656 =-1262.62268
3 | strain ;‘ -0.0000138 0.00007194 -0.00001427
| stress 1|14357.306640 16888.11132 ~1042.89416
4 | strain ! ~0.0000138 0.0000775 -0.00001422
stress 14967.106933 18310.97851 -1039.25134
4 1l | strain -0.00001319 0.00006672 -0.00001597
[ stress 3939.780273 15619.56542 -1166.92541
' 2 strain ~-0.00001319 0.00007241 -0.00001302
\ stress 4563.067382 17073.90039 ~951.365722
F3 lstrain -0.00001157 0.00006672 -0.00001284
| | stress 4354.317871 15797.22070 -938.615844
i 4 | strain -0.00001157 0.00007241 -0.00000989
| l stress 4977.606445 17251.56054 ~723.055847
o5 11 { strain -0.00001009 0.00006252 -0.00001272
| . stress 4271.804199 14884.03515 -929.,530273
2 . strain -0.00001009 0.00006726 -0.000008321}
' stress "4791 047851 16095.60253 -~-608.361389

J
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Table B.6: Linear Elastic Output (Con't)

INode ' G.P. " horizontal | vertical | shear |
e 3 | strain ||-0.00000768 0.00006252 -0.0000101%]
stress 4889.4375 15148.73535 -739.332275
4 | strain |{-0.00000768 0.00006726 -0.00000572
| | stress | |5408.680664 16360.30175 -418.163146
6 | 1 | strain |{-0.00000536 0.00005866 ~0.00001224
stress ||5059.933593 14415.51757 -894.182067
2 | strain ||-0.00000536 0.00006197 -0.0000051
stress |[{5423.367675 15263.53027 -372.972900
3 | strain ||-0.00000144 0.00005866 -0.00001041
| stress |!6062.259277 14845.08593 -761.056091
| 4 strain | |-0.00000144 0.00006197 ~0.00000328
: _stress ' '6425.692871 15693.09765 -239.847076
7 1 strain ., 0.00000218 0.00004881 -0.00003502
; ' stress ||5908.006835 12723.32617 -2559.50488
- 2 i strain !! 0.00000218 0.00007171 -0.00004515
' . stress - !8418.140625 18580.30273 ~3299.17724
i 3  strain |[-0.00000338 0.00004881 -0.00002244
| stress (4485.563476 12113.70703 -1640.04321
! 4  strain :-0.00000338 0.00007171 -0.00003256
1 stress .:6995.695800 17970.68164 ~2379.71508
8 1 |, strain ..-0.00000486 0.0000446 -0.00005697
stress |,3645.529052 10874.24902 -4163.47949
, . 2 , strain {{-0.00000486 0.00006797 -0.0000542
: ! ' stress ||6207.263183 16851.62890 -3960.51318
! | 3 | strain ||-0.00000333 0.0000446 -0.00004413
! stress ||4035.852539 11041.53027 -3225.11425
4 | strain |[-0.00000333 0.00006797 -0.00004136
stress ||6597.587890 17018.91210 -3022.14672
[ 9 1 ' strain [1-0.00000244 0.00004356 -0.00004839
i ; . stress |14150.738769 10873.19433 -3536.10449
| 2 | strain |{-0.00000244 0.00006284 -0.00004672

! | stress ) 6263.962402 15804.04980 ~3414.04858

| 3 | strain [|-0.00000152 0.00004356 -0.0000378.
| . stress :4385.463378 10973.79101 -2762.03051
, 4 strain - -0.00000152 0.00006284 -0.00003613
stress . 6498.687988 15904.64746 -2639.974136
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Table B.6: Linear Elastic Output (Con't)
‘Node G.P. | horizontal | vertical | shear |
710 ¢+ 1 | strain |[-0.00000104 0.00004443 -0.00003466
| stress |({4604.617187 11251.00292 -2532.68969
"~ 2 | strain ||-0.00000104 0.00005922 -0.00003394
3 stress | [6225.205566 15032.375 -2480.35937
. 3 | strain ||-0.00000065 0.00004443 ~0.00002653
! | stress ||4705.252441 11294.13183 -1939.06872
| ' 4 | strain ||-0.00000065 0.00005922 -0.00002582
| { stress |[6325.840332 15075.50390 ~1886.73828
|
?__y;_w 1 ! strain |!-0.00000045 0.00004579 -0.00002326
B | stress ' (4905.220214 11662.39160 -1700.07812
2 | strain [-0.00000045 0.00005676 -0.00002298
__stress 116107.922363 14468.69726 -1679.17382
3  strain ° -0.00000029 0.00004579 -0.00001724
| stress ,/4945.422363 11679.62109 -1259.52893
4 | strain |/ -0.00000029 0.00005676 -0.00001695
| _stress ||6148.124511 14485.92675 -1238.62402
12 1 | strain [ :=0.00C00018 0.00004737 -0.00001823
stress . |5146.002929 12095.83593 -1331.85681
2 | strain .(-0.00000018 0.00005474 -0.00001798
__ stress ' ;5953.862793 13980.84179 -1314.17761
3 . strain :,-0.00000005 0.00004737 -0.00001418
stress  '5180.001464 12110.40722 -1035.92774
4 strain ' -0.00000005 0.00005474 -0.00001393
_ stress .1598,.861328 13995.41308 -1018.25836
13 1 | strain ||=0.00001373 0.00000249 -0.00006019
stress |/-3239.43286 -868.649475 -4398.22509
| 2 | strain |!-0.00001373 0.00003024 -0.0000267
| stress ||-197.086105 6230.161132 -1951.09460
. 3 | strain 0.00000467 0.00000249 -0.00004494
L stress | |1466.58898y 1148.217163 -3283.81201
4 . strain ., 0.00000467 0.00003024 -0.00001145
- stress |[4508.937011 8247.027343 -836.680969
14 1 | strain i 0.00001251 ©.00000719 -0.00004537
| stress ' [3987.966796 3210.250244 -3315.49658
2 . strain - 0.00001251 0.0000283 -0.00003991
stress  6301.560546 8608.634765 -2916.68725:

|
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Table B.6: Linear Elastic Output (Con't)

'Node ' G.P. | horizontal | vertical | shear |
"14 | 3 | strain || 0.00001551 0.00000719 ~0.00003377]

stress §754.908203 3538.939453 -2468.02563

4 strain 0.00001551 0.0000283 -0.00002832

- stress |7068.500976 8937.321289 -2069.21582

15 + 1 strain 0.00001626 0.00001775 ~-0.00002939

stress 6104.729492 6321.822265 -2147.78247

2 strain 0.00001626 0.00003146 -0.00003111

stress 7608.159179 9829.825195 -2273.48193

3 i strain 0.00001532 0.00001775 -0.00002185

l | stress 5863.000488 6218.226074 -1597.07592

. 4 | strain 0.00001532 0.00003146 -0.00002357

. stress "7366.429199 9726.226562 ~1722.77551

|

16 1 strain 0.00001423 0.00002658 <0.00001797

stress 16554.012695 8359.051757 -1313.42907

2 strain 0.00001423 0.00003568 -0.00002164

. stress 7551.3125 10686.08496 ~1581.31958

3 strain 0.00001222 0.00002658 ~-0.00001297

! stress !6038.837890 8138.261718 -948.118041

4 | strain | 0.00001222 0.00003568 -0.00001664

| stress 17036.137695 10465.29492 -1216.00866

17 1l ' strain 0.00001054 0.00003325 -0.00001026
stress 6339.277343 9658.274414 -749.633854|

2 strain 0.00001054 0.00003948 -0.00001494

stress 17022.730957 11252.99902 -1091.71325

3 ' strain 0.00000796 0.00003325 -0.00000683

| | stress 5681.441406 9376.342773 -499.289733

[ 4 l strain 0.00000796 0.00003948 ~-0.00001151

l stress !6364.896484 10971.07128 -841.363952

|

18 ' 1 i strain ! 0.00000554 0.00003913 -0.00000575
i | stress 15705.203613 10614.63769 -419.994445 .
2 ' strain :' 0.00000554 0.00004318 ~-0.00001312:
_stress  16149.627441 11651.62695 -958.882751 |
3 . strain ' 0.00000149 €.00003913 -0.00000352

stress 4658.879882 10170.49902 -~-257.201873

4 strain - 0.00000149 0.00004318 -0.00001029

. stress :5113.303710 11207.48730

IK

-796.090148
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Table B.7: Von Mises Output

Load [Element; Stress Strain
lIncrementi ¥
[ 1 1 10740.246047 0.0000449672
2 12360.21875 0.0000517497
3 12221.75 0.00005117
4 11301.6025391 0.0000473175
5 10261.4980469 0.0000429628
6 9126.5302734 0.0000382109
T 9830.9453125 0.0000411602
' 8 !110567.8652344 0.0000442455
9 ' 9559.7988281 0.0000400249
10 . 8542.4931641 0.0000357657
11 Il 7939.7822266 0.0000332422
12 { 7742.5883789 0.0000324166
13 5319.6054688 0.0000222721
14 | 5230.0893555 0.0000218973
15 | 4603.7851563 0.0000192751
16 | 4521.3344727 0.0000189299
17 | 4978.5844727 0.0000208443
18 5870.7553711 0.0000245797
2 1Iterations
2 1 21480.496094 0.0000899344
L2 24720.4375 0.0001034994
.3 24443.5 0.0001023399
L4 22603.205078 0.000094635
5 20522.996094 0.0000859256
i 6 18253.060547 0.0000754218‘
7 | 19661.890625 0.0000823203
8 21135.730469 0.000088491
9 19119.597656 0.0000800498
10 17084.986328 0.0000715313
11 15879.5644531 0.0000664845
12 15485.1767578 0.0000648333
13 10639.2109375 0.0000445442
, 14 10460.1787109 0.0000437946
15 9207.5703125 0.0000385502
16 9042.6689453 0.0000378598
17 | 9957.1689453 0.0000416886
18 ° 11741.5107422 0.0000491593
2 Iterations

{
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Table B.7: Von Mises Output (Con't)

2

Load Element Stress Strain

’ Increment #
| 3 1 92220.7&6096 0.0001349017
2 37080.65625 0.0001552491
3 36665.25 0.0001535099
4 33904.808594 0.0001419525
5 30784.494141 0.0001288884
6 27379.589844 0.0001146327
7 29492.835938 0.0001234805
8 31703.595703 0.0001327365
9 28679.396484 0.0001200748
10 25627.478516  0.000107297
I 11 23819.345703 0.0000997267
E 12 23227.765625 0.0000972499
| 13 15958.8164063 0.0000668163
| 14 15690.2675781 0.0000656919
| 15 13811.3564453 0.0000578253
| 16 13564.0048828 0.0000567897
1 17 114935.7539063 0.0000625329
: | 18 |- 17612.265625 0.0000737389

; 2 JIterations
1

1 42960.992188 0.0002798689
2 49440.875 0.0002069988i
3 48887 0.0002046799
4 45206.410156 0.00018927
5 41045.992188 0.0001718512
6 36506.121094 0.0001528437
: 7 39323.78125 0.0001646406
| 8 42271.460938 0.000176982
; 9 38239.195313 0.0001600997
, 10 34169.972656 0.0001430627
11 31759.128906  0.000132969
12 30970.353516 0.0001296665
13 21278.421875 0.0000390884 |
14 20920.357422 0.0000875893i
15 18415.140625 0.0000771004
16 18085.337891 0.0000757196!
17 | 19914.337891 0.0000833773.
18 23483.021484 0.0000983186

Iterations \




B.14

Table B.7: Von Mises Output (Con’t)

|
|

2

Load Element & Stress Strain
E Increment # i
| s | 1 37031.238281 0.0002248361
| 2 61801.09375 0.0002587485
3 61108.753906 0.0002558499
4 56508.015625 0.0002365875
5 51307.492188 0.000214814
6 45632.644531 0.0001910546
7 49154.726563 0.00020:8008
8 52839.328125 0.0002212275
.9 47799 0.0002001246
10 42712.464844 0.0001788284 .
P11 39698.914063 0.0001662112
| 12 | 38712.9375 0.0001620832
|13 | 26598.025391 0.0001113605
Lo14 26150.445313 0.0001094866
15 23018.925781 0.0000963755
.16 22606.671875 0.0000946495
.17 24892.919922 0.0001042216
18 29353.777344 0.0001228982
2 Iterations
6 1 64441.484375 0.0002698033
2 74161.3125 0.0003104983
3 73330.507813 0.0003070198
4 67809.617188  0.000283905
.5 61568.992188 0.0002577768 !
L6 54759.171875 0.0002292655
7 58985.675781  0.000246961
| 8 63407.195313 0.0002654729
9 57358.800781 0.0002401495
|10 51254.953125 0.000214594
: 11 47638.639219 0.0001994535
: 12 46455.523438 0.0001944998
| 13 31917.630859 0.0001336326
| 14 31380.533203 0.0001313839
g 15 27622.710938 0.00011565061
16 27128.003906 0.0001135794
17 29871.501953 0.0001250659"
18 35224.535156 0.0001474779

Iterations |
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Table B.7: Von Mises Output (Con’t)

%

Load Element | Stress Strain
Increment # l
-1 L1 75181.733375 0.0003147706
2 86521.53125 0.000362248
3 85552.257813 0.0003581898
4 79111.21875 0.0003312225
5 71830.492188 0.0003007396
6 63885.695313 0.0002674764
7 68816.625 0.0002881211
8 73975.054688 0.0003097185
9 66918.601563 0.0002801745
10 |1 59797.441406 0.0002503597
11 || 55578.484375 0.0002326957
12 |. 54198.113281 0.0002269164
13 I\ 37237.234375 0.0001559047
14 36610.621094 0.0001532812
| 15 || 32226.496094 0.0001349258
16 1 31649.339844 0.0001325093
17 34850.085938 0.0001459102
.18 . 41095.289063 0.0001720576
t 2 Iterations
8 1 85921.984375 0.0003597378
2 | 98881.75 0.0004139977
3 97774.015625 0.0004093598
.4 90412.820313 0.00037854 |
.5 82091.992188 0.0003437024=
L6 73012.226563 0.0003056873 !
L7 78647.570313 0.0003292813
- 84542.921875 0.000353964
- 76478.40625 0.0003201994
L 10 68339.929688 0.0002861254 |
. 11 || 63518.269531 0.0002659379
12 1 61940.699219 0.0002593331
! 13 || 42556.839844 0.0001781768
' 14 || 41840.710938 0.0001751785
| 15 36830.28125 0.0001542009
16 36170.671875 0.0001514392:
17 39828.667969 0.0001667545
18 46966.046875 0.0001966372

2

Iterations
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Table B.7: Von Mises Output (Con’'t)

Load [Element . Stress Strain
{Increment | # i
[ 9 1 6662.234375_0.000404705
2 111241.96875 0.0004657474
3 109995.765625 0.0004605297
4 101714.4375 0.0004258576
5 92353.484375 0.0003866652
6 82138.75 0.0003438982
7 88478.515625 0.0003704415
8 95110.789063 0.0003982094
9 86038.203125 0.0003602243
10 . 76882.421875  0.000321891
11 ' 71458.054688 0.0002991802
12 || 69683.28125 0.0002917497
13 |! 47876.445313 0.0002004489
. 14 . 47070.800781 0.0001970758
15 |' 41434.066406 0.000173476
. 16 , 40692.003906 0.0001703691
' 17 1! 44807.253906 0.0001875989
18 |, 52836.804688 0.0002212168:
f 2 Iterations
|

10 1 || 107402.4843 0.08004496723;
2 i, 123602.1875 0.0005174971
3 11122217.523438 0.0005116996
4 |1113016.046875 0.0004731751
5 11102614.984375 0.000429628
6 i 91265.273438 0.0003821091
7 98309.460938 0.0004116016
|8 ’ 105678.65625 0.0004424549
9 95598.007813 0.0004002493
10 | 85424.914063 0.0003576567
11 | 79397.835938 0.0003324224
.12 |l 77425.867188 0.0003241663
13 ', 53196.050781  0.000222721
. 14 | ' 52300.890625 0.0002189731
| 15 || 46037.851563 0.0001927511
| 16 || 45213.335938  0.000189299"
17 497¢£5.835938 0.0002084432,

18 58707.558594

2

0.0002457965;
Iterations |
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Table B.8: Mohr Coulomb Output

. Load Element Stress Strain |
|Increment #
1 1 [2921.5097656 0.0000133262 |
2 2585.4499512 0.0000117933
3 1860.1882324 0.0000084851
4 1335.1773682 0.0000060903
5 991.96313477 0.0000045247
6 728.2713623 0.0000033219
7 708.41156006 0.0000032314
8 | 1171.7718506 0.0000053449
9 | '1031.4346924 0.0000047048
10 | 804.07250977 0.0000036677
11 . 638.90332031 0.0000029143
12 543.32232666 0.0000024783
13 221.43247986 0.00000101
14 . 337.71130371 0.0000015404
15 ' 359.5696106 0.0000016401
16 ' 316.34338379 0.000001443,
17 313.58615112 0.000001430¢"
18 357.0390625 0.0000016286
2 Iterations
2 1 {5904.9160156 0.0000280591
2 ' 5029.2055664 0.0000269371
3 3688.5432129 0.0000209251
4 2561.0803223 0.0000147514
5 © 1773.5177002 0.0000099168
6 ;. 1218.338501 0.000006243
7 !, 1319.9104004 0.0000060206
8 l| 2613.0153809 0.0000112585
|9 I, 2454.9211426 0.0000104797!
10 !; 1923.9014893 0.0000080691 .
11 ') 1458.6368408 0.0000061332
©12 1141.0128174 0.0000051092"
13 ' 291.91040039 0.000002056
14 © 707.36090088 0.0000032266
15 ' 759.66809082 0.0000034652
16 1 647.2835083 0.0000029525
17  637.18823242 0.0000029065
18 728.78637695 0.0000033243
I

10

terations

-y
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Table B.B8: Mohr Coulomb Output (Con’t)
| Load Element Stress Strain
Increment $ j

| 3 | 1 884.6103516 0.00004168B45
2 7593.1738281 0.0000398133
3 5625.4052734 0.0000309393
4 3945.7333984 0.000022002
5 2737.9133301 0.0000149957
6 1867.4130859 0.0000095202
7 1953.9445801 0.0000089127
8 3879.7854004 0.0000165483
9 3650.0864258 0.0000154629
.10 2880.4697266 0.0000119495
11 {1 2204.152832 0.0000091413
12 |1 1729.5644531 0.0000076753
13 1! 404.46286011 0.0000033089"
14 . 981.8994751 0.000004532
15 i 1086.7835693 0.0000049573
16 | 951.71716309 0.0000043412]
17 | 948.63659668 0.0000043271
18 . 1086.7536621 0.0000049571

l 9 Iterations
4 ' 1 |[.11870.08691 06.0000558492
2 | 10148.5126953 0.0000529209;
3 |1 7532.8378906 0.0000409864
4 ©, 5302.3564453 0.0000292136,
5 i 3677.7575684 0.0000199491.
6 |, 2498.092041 0.0000126986 |
7 i] 2634.9682617 0.0000120192
8 5209.8710938 0.000022196
9 4883.4121094 0.0000206953
10 3831.7685547 0.n000158555
11 2932.9299316 0.0000121107
12 2303.3430176 0.0000101923
13 505.33529663 0.0000039214
14 1297.5935059 0.0000063304
15 1475.6555176 0.0000067311
16 || 1265.2683105 0.0000057714
17 | 1264.6645508 0.0000057686
18 ' 1450.3791504 0.0000066158

8

Iterations |
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Table B.8: Mohr Coulomb Output (Con‘t)

Load Element Stress Strain
Increment #
, I 1 | [14867.96289 0.0000701313]
E 2 12728.7880859 0.000066229%
; 3 9451.9912109 0.0000511423
: 4 6666.6083984 0.0000364998
} 5 4626.0219727 0.0000249736
: 6 3130.3203125 0.000015893
; 7 3323.4753418 0.0000151597
' 8 6517.5195313 0.0000277727
9 6163.5317383 0.0000261268
.10 4815.0786133 0.000019956
11 3669.2182617 0.0000151357
12 2877.3476563 0.000012716
13 624.4520874 0.0000044246
14 | 1601.1239014 0.0000079343
15 i 1950.9802246 0.0000088992
16 | 1605.2808838 0.0000073223
. 17 i, 1581.329834 0.0000072131
.18 ', 1814.5085449 0.0000082767
10 Iterations
6 oo 17870.957031 0.0000843216
2 15299.8632813 0.0000794796
3 11362.4589844 0.0000612722,
4 8009.9516602 0.0000436833
5 5552.5170898 0.0000298785
6 3754.6882324 0.0000190396
7 4006.9240723 0.0000182376
8 7841.0322266 0.0000333834
9 7391.862793 0.0000313216
10 5762.1567383 0.0000238376
11 4393.737793 0.0000180917
D12 3447.9284668 0.0000152251
'13 752.75518799 0.0000051353
I 14 1937.8519287 0.0000095482
15 2327.1711426 0.0000106152
16 | 1916.6065674 0.0000087424!
17 || 1898.5609131 0.0000086601
.18 "1 2179.2678223 0.0000099405
5 Iterations ﬂ
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Table B.8: Mohr Coulomb Output (Con'‘t)

!

Load Element Stress Strain
Increment $
| 7 1 @0868.257813 0.0000984175
2 17876.244141 0.0000927639
3 13285.0683594 0.0000714886
4 9358.0722656 0.0000509113
5 6480.25 0.0000348028
6 4378.9648438 0.0000221901
7 4735.4916992 0.0000212739
8 9157.2695313 0.0000389444
9 8620.5146484 0.0000365042
10 6713.3325195 0.0000:277307
11 5121.5395508 0.0000210607
12 4020.5 0.0000177446
13 884.26348877 0.0000059233
14 2269.3103027 0.0000111007
15 i 2693.8869629 0.0000122879
16 I 2226.5205078 0.0000101561
17 ;1 2215.,3117676 0.0000101049
i 18 !] 2543.4399414 0.0000116017
| 10 Iterations
8 | 1 3893.205078 0.0001128779
i 2 20461.648438 0.0001061739
' 3 15196.3222656 0.000081662
1 4 10705.4658203 0.00600581351
4 5 7415.2348633 0.0000397679
6 | 5007.987793 0.0000253664
7 5475.703125 0.0000241508
8 10472.0498047 0.0000444768
9 9876.9199219 0.0000417925
10 7684.6162109 0.0000317383
11 5856.8349609 0.0000240783
12 4596.0913086 0.0000202826
13 996.86804199 0.0000067792
14 2572.6762695 0.0000125386
15 3106.2858887 0.000014169
16 o 2552.8061523 0.0000116444
17 1 2531.7902832 0.0000115485,
18 . 2906.4648438 0.0000132576:
i 10 JYterations
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Table B.8: Mohr Coulomb Output (Con’t)

Load Element ' Stress Strain
Increment L [
I 1 | [P6917.363281 0.0001272406
2 23039.865234 0.00011951
3 17103.59375  0.000091803
4 12044.0039063 0.0000653118
5 8340.3056641 0.0000446733
6 5633.6650391 0.0000285212
7 6211.3408203 0.0000270277
8 11793.5439453 0.0000500356
.9 11105.3466797 0.0000469649
i 10 8636.1132813 0.0000356349
1 6584.9311523 0.0000270569
|12 5169.2709961 0.0000228095
13 1112.0804443 0.0000077105
14 2892.9282227 0.0000140081
115 3472.3811035 0.0000158389
16 ' 2865.3134766 0.0000130699
17 2848.6550293 0.0000129939
18 |, 3269.9992676 0.0000149158
3 Iterations
10 ! 9940.851563 0.0001416125
L2 25627.523438 0.0001328938
3 19019.472656 0.0001019875
4 13396.5351563 0.0000725652
3 9280.4892578 0.0000496689
6 6265.5859375 0.0000317141
| 6937.0048828 0.0000299149
8 13098.5195313 0.0000555286
9 12366.9814453 0.0000522722
10 9613 0.0000396748
11 7322.9448242 0.0000300899
12 5746.2724609 0.0000253543
13 1225.0366211 0.0000085752
14 3190.1726074 0.0000154324
15 3895.7583008 0.0000177701
16 3195.0053711 0.0000145737
17 3164.5375977 0.0000144347
18 3632.4367676 0.000016569

10

Iterations
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Appendix-C
Detailed Flowcharts

The flowcharts for the programs used in the thesis

are listed in this Appendix. The flowcharts are:

Figure Title Page
c.1 ELAST1.EXE C.2
c.2 ELAST2 .EXE C.3
c.3 ELAST3.EXE C.6
C.4 ELAST4 .EXE cC.7
C.5 VONMSEL. EXE C.10
c.6 VONMSE2.EXE C.11
cC.7 VONMSE3.EXE C.14
c.8 MOHRCOL1.EXE c.21
c.9 MOHRCOL2.EXE C.22

C.10 MOHRCOL3.EXE C.25
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Figure C.1:
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Figure C.2: Flowchart of ELAST2.EXE (Con't)
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Appendix-D

Program Listings

The computer programs used in the thesis are listed
in this Appendix. These programs were originally written in
FORTRAN and have been rewritten and compiled in QuickBasic.

The programs are:

1.0 Linear Elastic D.2
1.1 ELAST1.EXE D.2
1.2 ELAST2.EXE D.5
1.3 ELAST3.EXE D.9
1.4 ELAST4.EXE D.10

2.0 Von Mises D.13
2.1 VONMSEl.EXE D.13
2.2 VONMSEZ2.EXE D.16
2.3 VONMSE3.EXE D.20

3.0 Mohr Coulomb D.30
3.1 MOHRCOL1.EXE D.30
3.2 MOHRCOLZ2.EXE D.33
3.3 MOHRCOL3.EXE D.37



D.2

1.0 ELASTIC ARALYSIS PROGRAM

REM *** PLANE STRAIN OF ELASTIC SOLID USING 4 NODE w=**
QUADRILATERAL ELEMENTS *ue

DIM DEE(3, 3), SAMP(7, 2), NF(100, 2)

INITIALZE DATA bl

REM Number of Freedoms per Node
FOR INPUT AS #1

number of elements in x direction
number of elements in y direction
total number of freedoms in mesh
half bandwidth

number ¢f nodes in mesh
restrained nodes in mesh

number of loaded freedoms
Gaussian integration order
element size in x direction
element size in y direction
Young’'s Modulus

Poisson’s Ratio

REM *** SET MATRICES TO ZERO ##»

REM *** STRESS STRAIN MATRIX FOR PLANE ELASTIC STRAIN t#»

REM *** GAUSSIAN QUADRATURE ABSCISSAE AND WEIGHTS w»+#

J) = DEE(I, J) *E/ (2 * (1 + V) * W)

ELAST1.EXE

CLEAR

REM

REM LR R ]

REM

REM

REM LB R

REM

NODOF = 2:

OPEN “INPT.FLE"
INPUT $#1, NXE: REM
INPUT $1, NYE: REM
INPUT $#1, N: REM
INPUT #1, W: REM
INPUT $#1, NN: REM
INPUT $1, RN: REM
INPUT #1, NL: REM
INPUT #1, GP: REM
INPUT #1, AAR: REM
INPUT #1, BB: REM
INPUT ¢1, E: REM
INPUT #1, V: REM
REM
REM
FOR I = 1 TO 3

FOR J = 1 TO 3
DEE(I, J)
NEXT J
NEXT I
REM
REM
Vie Vv / (1 -V)
VW= (1 -2 *vy)
DEE(1, 1) = 1
DEE(2, 2) = 1
DEE(3, 3) = VWV
PEE(1l, 2) = V1
DEE(2, 1) = V1
FOR I = 1 TO 3
FOR J = 1 TO 3
DEE (I,
NEXT J
NEXT I
REM
REM
GF = INT(GP)

=- 0

.5/ (1 - V)

IF GP = 1 THEN GOTO 700

IF GP = 2 THEN GOTO 100




i IF GP = 3 THEN GOTO 300

| IF GP = 4 THEN GOTO 400
IF GP = 5 THEN GOTO 500 ,
IF GP = 6 THEN GOTO 600
IF GP = 7 THEN GOTO 200
GP = 2

100 SAMP(1, 1) = 1 / SQR(3)
SAMP(2, 1) = =SAMP(1, 1)

200 SAMP(1, 2) = 1
SAMP(2, 2) = 1
GOTO 700

300 SAMP(1l, 1) = .2 * SQR(15)
SAMP(2, 1) = ©
SAMP(3, 1) = -SAMP(1, 1)
SAMP(l, 2) = 5 / 9
SAMP(2, 2) = 8 / §

SAMP(3, 2) = SAMP(1, 2)
GOTO 700

400 SAMP(1l, 1) = .861136311594053
SAMP(2, 1) = .339981043584856
SAMP(3, 1) = -SAMP(2, 1)

| SAMP(4, 1) = -SAMP(1l, 1)
SAMP(1, 2) = .3847854845137454
SAMP(2, 2) = .652145154862546

l SAMP(3, 2) = SAMP(2, 2)

k SAMP(4, 2) = SAMP(1, 2)

i GOTO 700

|500 SAMP(1, 1) = .506179845838664
SAMP(2, 1) = .538469310105683

f SAMP(3, 1) = 0

| SAMP(4, 1) = -SAMP(2, 1)

1 SAMP(5, 1) = -SAMP(1, 1)
SAMP(1, 2) = .236926885056189
SAMP(2, 2) = .478628670499366
SAMP(3, 2) = .568888888888889
SAMP(4, 2) = SAMP(2, 2)

. SAMP(5, 2) = SAMP(1, 2)

K GOTO 700
SAMP(1l, 1) = .9324695142031521
SAMP(2, 1) = .661209386466265
SAMP(3, 1) = .238619186083197
SAMP(4, 1) = =SAMP(3, 1)
SAMP(5, 1) = =5AMP(2, 1)
SAMP(6, 1) = -SAMP(3, 1)
SAMP(1, 2) = .1713244%237917
SAMP(2, 2) = .360761573048139

| SAMP(3, 2) = .467913934572691

i SAMP(4, 2) = SAMP(3, 2)

| SAMP(5, 2) = SAMP(2, 2)

; SAMP(6, 2) = SAMP(1, 2)

{ GOTO 700

1600 SAMP(1, 1) = .949107912342759
SAMP(2, 1) = .741531185599394
SAMP(3, 1) = .405845151377397

, SAMP(4, 1) = 0

1 SAMP(5, 1) = -SAMP{3, 1)




o e

‘1300

D.4

SRMP(6, 1) = -SAMP(2, 1)

SAMP(7, 1) = =SAMP(1, 1)
SAMP(l, 2) = .12948496616887
SAMP(2, 2) = .297705391489277
SAMP(3, 2) = .381830050505199
SAMP(4, 2) = .417859183673469
SAMP(5, 2) = SAMP(3, 2)

SAMP(6, 2) = SAMP(2, 2)

SAMP(7, 2) = SAMP(1l, 2)

REM

REM *** NODE FREEDOM ARRAY FOR > ONE FREEDOM PER NODE w##
REM

FOR I = 1 TO NN
FOR J = 1 TO NODOF
NF(I, J) =]
NEXT J
NEAT I
FOR K= 1 TO RN
INPUT $1, RNODE: REM Restrained Node Number
FOR L = 1 TO NODOF
INPUT #1, RNT: REM Restrained Node Type
IF RNT = 1 THEN NF(RNODE, L) = 0
NEXT L
NEXT K
K =1
FOR M= 1 TO NN
FOR P = 1 TO NODOF
IF NF(M, P) = 0 THEN GOTO 1300
NF(M, P) = K
K=K+ 1
NEXT P
NEXT M
CLOSE §1
REM
REM **+ PRINT DATA TO BIN FILE FOR NEXT PHASE w»«
REM
OPEN "MATRIX.DAT" FOR OUTPUT AS #2
FOR 1 =~ 1 TO 3
FOR O = 1 TO 3
PRINT $2, USING “#48#44i448.43¢ ~; DEE(I, J);
NEXT J
PRINT #2, "~ "
NEXT I
PRINT $2, GP
FOR K= 1 TO GP
PRINT #$2, USING "##4#48¢484.48% ~; SAMP(K, 1); SAMP(X, 2)
NEXT X
PRINT #2, NN
FOR L = ) TO NN
FOR M = 1 TO NODOF
PRINT $#2, USING “$#4#834¢88. 888 ~; NF (L, M);
NEXT M
PRINT #2, =~ -
NEXT L
CLOSE #2
CHAIN "ELAST2.EXE"




ELASTZ2.EXE

CLEAR

DIM DEE(3, 3), SAMP(3, 2), NF(100, 2), COORD(20, 2), KM(20, 20)

DIM FUN(20), DER(20, 8), JAC(20, 2), JAC1(20, 2), DERIV (20, 4)

DIM VOL(20,, DBEE(20, 20), BT(20, 3), BTDB(20, 20), G(10)
DIM BEE(20, 20), KB(200, 50)
REM
REM w#»+ ELEMENT STIFFNESS INTEGRATION AND ASSEMBLY ***
REM
REM *w*+ DATA INPUT #s»
REM
OPEN "INPT.FLE" FOR INPUT AS #1
INPUT #1, NXE, NYE, N, W, NN, RN, NL, GP, AR, BB, E, V
CLOSE #1
OPEN "MATRIX.DAT" FOR INPUT AS #1
FOR I =1 TO 3
INPUT #1, DEE(I, 1), DEE(I, 2), DEE(I, 3)
NEXT 1
INPUT #1, NGP
FOR J = 1 TO NGP
INPUT #1, SAMP(J, 1), SAMP(J, 2)
NEXT J
INPUT $¢1, NNF
FOR K = 1 TO NNF
INPUT #1, NF(K, 1), NF(K, 2)

NEXT X
CLOSE #§1
T =2
H =23

NODOF = 2: DOF = 8
NOD = DOF / NODOF
REM

REM *** NODAL COORDINATES + STEERING VECTOR FOR A RECTANGULAR
REM *++ MESH OF 8-NODE QUADRILATERAL PLANE ELEMENTS NUMBERING

REM »a+ IN THE Y-DIRECTION
REM
FOR I = 1 TO NXE
FORJ = 1 TO NYE

AO = (I - 1) * (NNE+ 1) + J

AL = RO + 1

AM = I ¢+ (NYE + 1) +J

AN = AM + 1

G(l) = NF(AL, 1)

G(2) = NF(AL, 2)

G(3) = NF(AO, 1)

G(4) = NF(AO, 2)
G(5) = NF(AM, 1)
G(6) = NF(AM, 2)

G(7) = NF(AN, 1)

G(8) = NF(AN, 2)

COORD(1, 1) = (I - 1) * AA
COORD(1, 2) = (NYE - J) * BB
COORD(2, 1) = (I - 1) * AA
COORD(2, 2) = (NYE - J + 1) * BB

LR R

LA D ]

"k
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COORD(3, 1) = I * AA

COORD(3, 2} = (NYE - J+ 1) * BB
COORD(4, 1) = I * AA

COORD(4, 2) = (NYE - J) * BB
REM

REM *** SET MATRIX TO ( 2ee

REM

FOR K = 1 TO DOF
FOR L = ) TO DOF

KM(K, L) = 0

NEXT L

NEXT K

FOR II = 1 TO GP
FOR JJ = 1 TO GP

K1 = SAMP(II, 2)
K2 = SAMP(JJ, 2)

REM
REM #*** LOCAL COORDINATE SHAPE FUNCTIONS AND #*+**
REM #»+ THEIR DERIVATIVES FOR 8-NODE e
REM #*« QUADRILATERAL taw
REM

ETA = SAMP(II, 1)

XI = SAMP(JJ, 1)

ETAM = .25 * (1 - ETA)
ETAP = .25 * (1 + ETA)
XIM = .25 * (1 = XI)
XIP = .25 v (1 + XI)
FUN(1) = 4 * XIM * ETAM
FUN(2) = 4 * XIM * ETAP
FUN(3) = 4 * XIP * ETAP
FUN(4) = 4 » XIP * ETAM
DER(1, 1) = -ETAM
DER({1, 2) = ~ETAP
DER(1, 3) = ETAP

DER(1, 4) = ETAM

DER(2, 1) = -XIM

DER(2, 2) = XIM

DER(2, 3) = XIP

DER(2, 4) = =XIP

REM

REM *ts MATRIX MULTIPLY *w»
REM

FOR K=1TOT
FORL=1T0T
X =0
FOR M = 1 TO NOD
X=X + DER(K, M) * COORD(M, L)

NEXT M
JAC(K, L) = X
NEXT L
NEXT K
REM
REM *** INVERT THE JACOBIAN MATRIX w##
REM

DET = JAC(1, 1) * JAC(2, 2) - JAC(1, 2) % JAC(2, 1)
JAC1(1, 1) = JAC(2, 2)
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JAC1(1, 2) = =JAC(!, 2)
JAC1(2, 1) = =JAC(2, 1)
JAC1(2, 2) = JAC(1, 1)
FORK = 1 TO 2
FOR L = 1 TO 2
JAC1(K, L) = JACI1(K, L) / DET

NEXT L
NEXT K
REM
REM *** MATRIX MULTIPLY ®##»
REM

FORK= 1TO T
FOR I = 1 TO NOD
X =0
FORM = 1 T0 T
X = X + JAC1(K, M) * DER(M, L)
NEXT M
DERIV(K, L) = X
NEXT L
NEXT K
REM
REM *** SET MATRIX TO O #**
REM
FOR K = 1 TO H
FOR L = 1 TO DOF
BEE(K, L) = 0

NEXT L
NEXT K
REM
REM *** STRAIN DISPLACEMENT MATRIX FOR ***
REM *»* PLANE STRAIN (STRESS) bl
REM
FOR K = 1 TO NOD

KK = 2 *» K

LL = KK - 1

VOL(LL) = DERIV(l. K)
BEE(1, LL) = VOL(LL)
BEE(3, KK) = VOL(LL)
VOL(KK) = DERIV(2, K)
BEE(2, KK) = VOL(KK)
BEE(3, LL}) = VOL(KK)

NEXT K

REM

REM *** MATRIX MULTIPLY ®**+
REM

FORK = 1 TO B
FOR L = 1 TO DOF
X =0
FORM = 1 TOH
X = X + DEE(K, M) * BEE(KM, L)
NEXT M
DBEE(K, L) = X
NEXT L
NEXT K
REM *** TRANSPOSE A MATRIX ***
REM




'

100
200

OPEN

CL

NE
oS8

D.8

FOR K =1 TO H
FOR L = ] TO DOF
BT (L, K) = BEE(K, L}

NEXT L
NEXT K
REM
REM *** MATRIX MULTIPLY *w«
REM

FOR K = 1 7O DOF
FOR L = 1 TO DOF
X =0
FOR M= 1 TO H
Y = X 4+ BT(K, M) * DBEE(M, L)

NEXT M
BTDB(K, L) = X
NEXT L
NEXT K
QUOT = DET * KI * K2
FOR K

FOR L = 1 TO DOF
BTDB(K, L) = BTDB(K, L) * QUOT

NEXT L
NEXT K
REM
REM *** ADD TWO MATRICES #*»»
REM

FOR K = 1 TO DOF
FOR L = 1 TO DOF
KM(K, L} = KM(K, L) 4+ BTDB(K, L)}
NEXT L
NEXT K
NEXT JJ
NEXT 1II
REM

REM *** ASSEMBLES ELEMENT MATRICES INTO GLOBAL MATRIX **»

REM
CDMAX = W + 1
FOR K = 1 TO DOF
IF G(K).= 0 THEN GOTO 200
FOR L = 1 TO DOF
IF G(L} = 0 THEN GOTO 100
CD = G{L}) =~ G(K) + CDMAX
IF CD > CDMAX THEN GOTO 100
KB(G(K), CD) = KB(G(K), CD) + RM(K, L)
NEXT L
NEXT K

NEXT J
NEXT I
"CONSTIT.DAT™ FOR OUTPUT AS $2
FOR I = 1 TO N

FOR J = 1 TO DOF

X
E

~
Py

PRINT #2, USING "##4438348048088 040844 ; RB(I,

NEXT J
FRINT $2, = -

]

[P T =

J)

’




100

200

300

CHAIN "ELAST3.EXE"
ELASTS.EXE

REM
REM *** CHOLESKI REDUCTION OF A SYMETRICAL BAND e#s
REM
DIM KB(200, 50), LOADS(200)
DOF = 8
OPEN "LOFDS.DAT" FOR INPUT AS #1
INPUT $1, NLOADS
FOR I = 1 TO NLOADS
INPUT #1, A, LOADS(A)
NEXT 1
CLOSE §1
OPEN *INPT.FLE" FOR INPUT AS #1
INPUT #1, NXE, NYE, N, W
CLOSE #1
OPEN "CONSTIT.DAT" FOR INPUT AS #1
FOR I = 1 TO N
FOR J = 1 TO DOF
INPUT #1, KB(1, J)

NEXT J
NEXT I
CLOSE #!
FOR I =1 TO N
X =0

FORJ = 1 TO W
X = X + (KB(I, J}) * KB(I, J))
NEXT J
KB(I, W + 1) = SQR(KB(I, W + 1) - X)
FORK = 1 TO W
X = 0
IF I + K > N THEN GOTO 300
IF K = W THEN GOTO 200
L =W -K
X = X + (KB(I + K, L) * KB(I, L + Kj})
L =1 -1
IF L = 0 THEN GOTO 200
GOTO 100
A=1I+K
B= (W-K) +1
KB(A, B} = (KB(A, B} - X) / KB{(I, W + 1)
NEXT K
NEXT I
REM
REM *** CHOLESKI FORWAREC SUBSTITUTION ***
REM
LOADS (1) = LOADS(1l) / KB(1l, W + 1)
FOR I = 2 TO N
X = 0
K =1
IF I <= W 4+ 1 THEN K = (W - I) + 2
FOR J = K TO W
XXX = ((I + J) - W) -1

X = X + KB'I, J) * LOADS!XXX)
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LOADS(I) = (LOADS(I) - X) / KB(I, W + 1)
NEXT I
REM
REM *** CHOLESKI BACKWARD SUBSTITUTION ®**
REM
LOADS (N} = LOADS(N) / KB(N, W + 1)
I =N-1
400 X = 0
Le I+ VW
IF I >N-WTHEN L = N
M=1I+1
FOR J = M TO L
XXX = ((W+ I} - J) + 1

X = X + KB(J, XXX) *

NEXT J
LOADS (I} = (LOADS(I) - X
I=1-1

IF I = 0 THEN GOTO 500
GOTO 400

500 OPEN *DISPL.DAT" FOR OUT
IOR I = 1 TO N
PRINT $2,
NEXT 1
CLOSE #2
CHAIN "ELAST4.EXE"

USING

LOADS (J)

} / RB(I, W + 1)

PUT AS #2

IS EZ222 2R RRA2E ] M

LOADS(I)

ELAST4.EXE
REM

REM *** RECOVER ELEMENT STRAINS AND STRESSES ®*t

REM *** AT ALL GAUSSIAN INTEGRATION POINTS #s*

REM

DIM NF (100, 2), DEE(3, 3), SAMP(3, 2), COORD(20, 2), FUN(4)

DIM JAC (20, 2), JAC1(20, 2), ELD(100), LOADS(100), DERIV(20, &)

DIM VOL(20), DBEE(20, 20), G(10), SIGMA(3), EPS(3), DER(20, 8)

DIM BEE(2(, 20)

REM *** NODAL COORDINATES AND STEERING VECTOR FOR A RECTANGULAR #**=
REM *** MESH OF 4-NODE QUADRILATERAL PLANE ELEMENTS NUMBERING #**
REM *=e IN THE Y-DIRECTION L
REM

OPEN "INPT.FLE"

FOR INPUT AS $1

INFUT #1, NXE, NYE, N, W, NN, RN, NL, GP, AA, BB, E, V

CLOSE $#1
OPEN "MATRIX.DAT"” FOR IN
FOR I =1 TO 3

PUT AS 1

INFUT #1, DEE(I, 1), DEE(I, 2, DEE(I, 3)
NEXT 1
INFUT #1, NGP
FOR 1 = 1 TO NGP
INPUT #1, SAMP(I, 1), SAMP(I, 2)
NEXT I
INPUT 41, NNT
FOR I = 1 TO NNF
INPUT #1, NF(I, 1), NF(I, 2)

NEXT I
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REM
FORK=1TO0T
FORL =1 TO T
X = 0
FOR M = 1 TO NOD
X = X + DER(K, M) * COORD(M, L)

NEXT M
JAC(K, L) = X
NEXT L
NEXT K
REM

REM *** INVERT THE JACOBIAN MATRIX ®#+
REM
DET = (JAC(1, 1) # JAC(2, 2)) - (JAC(1, 2)
* JAC1(2, 1))
JAC1(1, 1) = JAC(2, 2)
JAC1{l, 2) = ~JAC(1l, 2)
JAC1(2, 1) = -JAC(2, 1)
JAC1(2, 2} = JAC(1, 1)
FORK = 1 TO 2
FORL = 1 TO 2
JAC1(X, L) = JAC1(K, L) / DET

NEXT L
NEXT K
REM
REM *+* MATRIX MULTIPLY ***
REM

FORK =1 TO T
FOR L = 1 TO NOD
X =0
FORM=1TOT
X = X + JACL(K, M) * DER(M, L)

NEXT M
DERIV(K, L) = X
NEXT L
NEXT K
REM
REM *** SET MATRIX TO 0 w»»
REM

FORK =1 TO H
FOR L = 1 TO DOF
BEE(K, L) = 0
NEXT L
NEXT K
REM
PEM *** STRAIN DISPLACEMENT MATRIX FOR ¢#+*
REM ##* PLANE STRAIN (STRESS) e
REM
FOR K = 1 TO NOD
KK = 2 » K
LL « KK - 1
VCL(LL) = DERIV(1l, K
BEE(1l, LL) = VOL(LL)
BEE(3, KK) = VOL(LL)
VOL(¥K), = DERIV(2, K)
BEE(2, KK) = VOL(KK:
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BEE(3, LL) = VOL(KK)
NEXT K
FOR K = 1 TO DOF

IF G(K) = 0 THEN ELD(K) = 0

IF G(K) <> 0 THEN ELD(K) = LOADS(G(K))
NEXT K
FOR L = 1 TO H

X =0

FOR M = 1 TO DOF

X = X + BEE(L, M) * ELD(M)

NEXT M
EPS(L) = X

NEXT L

FOR L = 1 TO B
X =0

FORM=1TO H
X = X + DEE(L, M) * EPS(M)
NEXT M
SIGMA(L) = X
NEXT L
FOR K = 1 TO H
PRINT $2, USING #4188 3580048. 88088 ~;
EPS(K);
NEXT K
FRINT #2, ""
FOR K = 1 TO H
PRINT #2, USING "##iidsdtd4ie8. 888818 ~;

SIGMA(K) ;
NEXT K
PRINT $2, "~
NEXT JJ
NEXT 1I
NEXT J
NEXT I
CLOSE #2
CLOSE #1

CHAIN "SUBFIN.EXE"
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2.0

VON MISE’'S ANALYSIS PROGRAM

VONMSEl.EXE

ClLEAR

REM

REM *** AXISYMMETRIC STRAIN OF A RECTANGULAR ELASTO-PLASTIC **+
REM #»+»* (VON MISES‘'S) SOLID USING 4-NODE QUADRILATERAL wea
REM #»*+ ELEMENTS-~INITIAL STRESS METHOD “aw
REM

DIM DEE(4, 4), SAMP(7, 2}, NF{100, 2), RADIUS(25)

REM

REM w#** INITIALZE DATA tew

REM

NODOF = 2: REM Number of freedoms per node

DOF = B: REM Degrees of freedom per element

OPEN "INPT.FLE" FOR INPUT AS $1

INPUT #1, NXE: REM number of elements in x direction
INPUT $#1, NYE: REM number of elements in y direction
INPUT #1, N: REM total number of freedoms in mesh
INPUT $#1, W: REM half bandwidth

INPUT #1, NN: REM number of nodes in mesh

INPUT #1, RN: REM restrained nodes in mesh

INPUT $1, NL: RENMN number of nodes where solution non zero
INPUT #1, GP: REM Gauesian integration order

INPUT 41, BB: REM element size in y direction

INPUT $#1, V: REM Poisson's Ratio

INPUT 41, E: REM Young'’'s Modulus

INPUT #1, SBARY: REM So1l cohesion

INPUT #1, INCS: REM Number uf load increments

INPUT $1, ITS: REM Total number of iterations

PI = 4 * ATN{]l)

NOD = DOF / NODOF

CDMAX = W + 1

R = N » CDMAX

REM

REM *+* STRESS STRAIN MATRIX FOR ELASTIC AXISYMMETRYN ***
REM

V=V /(1 - V)

VW e (1 ~-2*V)/ (1l~-V)*.5

DEE(1, 1) = 1

DEE(2, 2) = 1

DEE(4, 4) = 1

DEZ(3, 3) = VV
DEE(1l, 2) = V1
DEE(2, 1) = V1
DEE(1, 4) = V1
DEE(4, 1) = V1
DEE(2, 4) = V1
DEE(4, 2) = V1

FOR I = 1 TO 4
FOR J = 1 TO 4§
DEE(I, <y = DEE(I, J) * E * (1 -V} / (1 - 2 * V)
/ (1 + V)
NEXT J




1200

'300

400

NEXT 1

REM

REM *** GAUSSIAN QUADRATURE ABSCISSAE AND WEIGHTS ***
REM

GP = INT(GP)

IF GP = 1 THEN GOTO 700
IF GP = THEN GOTG 100
IF GP = THEN GOTO 200
IF GP = THEN GOTO 300

IF GP THEN GOTO 500

IF GP = THEN GOTO 600

GP = 2

SAMP(1l, 1) = 1 / SQR{3)
SAMP(2, 1) = -S5AMP(1l, 1)
SAMP(1, 2) = 1

SAMP(2, 2) = 1

GOTO 700

SFAMP(1, 1} = .2 * SQR({15)
SAMP(2, 1) = 0

SAMP(3, 1) = -SAMP(1, 1)
SAMP(l, 2y =5 / 9

SAMP(2, 2) =8 / 9

SAMP(3, 2) = SAMP(1l, 2)

GOTO 700

SAMP(1, 1) = ,861136311594053
SAMP(2, 1) = ,339981043584856
SAMP(3, 1) = ~SAMP(2, 1)
SAMP(4, 1) = ~SAMP(1, 1)
SAMP(1l, 2) = ,3847854845137454
SAMP(2, 2) = .652145154862546
SAMP(3, 2) = SAMP(2, 2)
SAMP(4, 2) = SAMP(1l, 2)

GOTO 700

SAMP(1l, 1) = ,906179845838664
SAMP(2, 1) = ,538469310105683
SAMP(3, 1) = 0

SAMF(4, 1) = ~-SAMP(2, 1)
SAMP(5, 1) = ~SAMP(1l, 1}
SAMP(1l, 2) = ,2369268850561859

2
3
4
IF GP = 5 THEN GOTO 400
-6
7

SAMP(2, 2) = .478628670499366
SAMP(3, 2) = .568888888888889
SAMP(4, 2) = SAMP(2, 2)
SAMP(5, 2) = SAMP(1, 2)

GOTO 700

SAMP(1l, 1) = .9324695142031521
SAMP(2, 1) = .661209386466265
SAMP(3, 1) = .238619186083197

SAMP(4, 1) = -SAMP(3, 1)
SAMP(5, 1) = -SAMP(2, 1)
SAMP(6, 1) = -SAMP(3, 1)
SAMP(1, 2) = .17132449237917
SAMP(2, 2) = .360761573048139
SAMP(3, 2} = .467913934572691

SAMP{4, 2) = SRMP(3, 2)
SAMF(5, 2) = SAMP(2, 2)
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t
'

500

700

800
CLO
REM
REM
REM
OPE

FOR

NEX
PRI
FOR

NEX
PRI
FOR

SAMP(6, 2) = SAMP(1l, 2)

GOTO 700

SAMP(l, 1) = .949107912342759
SAMP(2, 1) = .741531185599394
SAMP(3, 1) = ,4058451513773%7
SAMP(4, 1) = 0

SAMP(S, 1) = -SAMP(3, 1)

SAMP (6, 1) = ~SAMP(2, 1)
SAMP(7, 1) = ~-SAMP(1, 1)

SAMP (1, 2) = ,12948496616887
SAMP (2, 2) = ,29770539148%277
SAMP(3, 2) = ,.381830050505199
SAMP (4, 2) = .417959183673469
SAMP(5, 2) = SAMP(3, 2)
SAMP(6, 2) = SAMP(2, 2)

SAMP (7, 2) = SAMP(1l, 2)

REM

REM *** NODE FREEDOM ARRAY FOR MORE THAN ONE FREEDOM/NODE w*=»*

REM
FOR I = 1 TO NN
FOR J = ] TO NODOF
NF(l, J) = 1
NEXT J
NEXT I
FOR K = 1 TO RN
INPUT #1, RKNODE: REM Restrained Node Number
FOR L = 1 TO NODOF
INPUT #i, RNT: REM Regtrained Node Type
IF RNT = 1 THEN NF(RRODE, L) = U
NEXAT L
NEXT K
K =1
FOR M = 1 TO NN
FOR P = 1 TO NODOF
IF NF(M, P) = 0 THEN GOTO 800
NF(M, P) = K
K=K+ 1
NEXT P
NEXT M
SE $#1

*e» PRINT DATA TO BIN FILE FOR NEXT PHASE ***

N "MATRIX.DAT" FOR OUTPUT AS #2
I =1T04
FOR J = 1 TO 4
PRINT $#2, USING “$$8488#8088%4.944 ~; DEE(I, J);
NEXT J
PRINT $2, *
T T
NT $2, GP
K = 1 T0 GP

PRINT $#2, USING “#$#si4888080.883 -, SAMP(K, 1); SAMP(F,

T K
NT $#2, NN
L = 1 TO NN

2)

e
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FOR M = 1 TO NODOF
PRINT $2, USING “#¢44.483 ~; NF(L, M);
NEXT M
PRINT #2, " *
NEXT L
CLOSE #2
CHAIN "VONMSE2.EXE"

VONMSEZ2 .EXE

CLEAR
DIM DEE(4, 4), SAMP(7, 2), NF(100, 2), COORD(20, 2), KM(20, 20)
DIM FUN(20), DER(20, 8), JAC(20, 2), JAC1(20, 2), DERIV(20, 4)
DIM VOL(20), DBEE(20, 20), BT(20, 4), BTDB(20, 20), G(10)

DIM BEE(20, 20), KB(200, 50)

REM

REM *** ELEMENT STIFFNESS INTEGRATION AND ASSEMBLY *#+

REM *** DATA INPUT #**»

OPEN "INPT.FLE" FOR INPUT AS $1
INPUT $1, NXE, NYE, N, W, NN, RN, NL, GP, BB, V, E, SBARY, INCS,
FOR I = 1 TO RN
INPUT #1, DUMMY1S, DUMMY2$S, DUMMY3S
NEXT I
CLOSE #1
OPEN *"MATRIX.DAT" FOR INPUT AS ¢1
FOR I = 1 TO 4
INFUT $1, DEE(X, 1), DEE(I, 2), DEE(I, 3), DEE(I, 4)
NEXT I
INPUT #1, NGP
FOR J = 1 TO NGP
INPUT 41, SAMP(J, 1), SAMP{J, 2)
NEXT J
INPUT #1, NNT
FOR K = 1 TO NNF
INPUT #1, NF(K, 1), NF(K, 2)
NEXT K
CLOSE 1
T = 2
H = 4
NODOF = 2: DOF = B
NOD = DOF / NODOF
PI = 4 *» ATN(1)
REM
REM *+*+ NODAL COORDINATES AND STEERING VECTOR FOR RECTANGULAR *ww
REM *** MESH OF 8-NODE QUADRILATERAL PLANE ELEMENTS NUMBERING tw#
REM ®*» IN THE Y-DIRECTION LA
REM
FOR I = 1 TO NXE
FOR J = 1 TO NYE
AO = (I - 1) * (NYE + 1) + J
AL = AO + 1
AM = I * (NYE + 1) + J
AN = AM + ]
. ___G{l) = NF(AL, 1)




G(2) = NF(AL, 2)

G(3) = NF(AO, 1)

G(4) = NF(AO, 2)

G(5) = NF(AM, 1)

G(6) = NWF(AM, 2)

G(7) = NF(AN, 1)

G(8) = NF(AN, 2)

COORD(1, 1) = (I - 1) * AR
COORD(1, 2) = (NYE - J) ¢ BB
COORD(2, 1) = (I - 1) * AR
COORD(2, 2) = (NYE - J + 1) * BB
COORD{3, 1) = I * AA

COORD(3, 2) = (NYE - J + 1) * BB
COORD(4, 1) = I * AA

COORD(4, 2) = (NYE - J) * BB
REM

REM w=#* SET MATRIX TO 0 www

REM
FOR K = 1 TO DOF
FOR L = 1 TO DOF
KM(K, L) = 0
NEXT L
NEXT K
FOR II = 1 TO GP
FOR JJ = 1 TO GP
K1 = SAMP(II, 2)
K2 = SAMP(JJ, 2)

REM

REM *** LOCAL COORDINATE SHAPE FUNCTIONS AND 4+
REM #s+ THEIR DERIVATIVES FOR 8-NODE s
REM %+ QUADRILATERAL *an
REM

ETA = SAMP(II, 1)

XI = SAMP(JJ, 1)

ETAM = .25 * (1 - ETA)

ETAP = .25 * (1 + ETA)

XIM = .25 * (1 - XI)

XIP = .25 * (1 + XI)

FUN(1) = 4 * XIM * ETAM

FUN(2) = 4 * XIM % ETAP

FUN(3) = 4 * XIP * ETAP

FUN(4) = & * XIP * ETAM

DER(1, 1) = -ETAM

DER(1l, 2) = -ETAP

DER(1, 3) = ETAP

DER(1, 4) = ETAM

DER(2, 1) = -XIM

DER{2, 2) = XIM

DER(2, 3) = XIP

DER(2, 4) = -XIP

REM

REM *#*% MATRIX MULTIPLY ***

REM

FORK=1TOT
FOR L = 1 TO
X =0

T
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FOR M = 1 TO KOD
X = X + DER(K, M) ®» COORD(M, L)

NEXT M
JAC(K, L) = X
NEXT L
NEXT K
REM

REM *** INVERT THE JACOBIAN MATRIX #**
REM
DET = JAC(1, 1) * JAC{2, 2) - JAC(l, 2)
* JAC(2, 1)
JAC1(1, 1) = JAC(2, 2)
JAC1(1, 2) = =JAC(1, 2)
JAC1(2, 1) = -JAC(2, 1)
JAC1(2, 2) = JAC(1, 1)
FOR K = 1 TO 2

FORL = 1 TO 2

JAC1(K, L) = JAC1(K, L) / DET

NEXT L
NEXT K
REM
REM *** MATRIX MULTIPLY ***
REM

FOR K= 1 TO T
FOR L = 1 TO NOD
X =0
FOR M= 1 TOT
X = X + JACL1(K, M) * DER(M, L)

NEXT M
DERIV(K, L) = X
NEXT L
NEXT K
REM
REM *** SET MATRIX TO 0 #*»
REM

FOR K= 1 TO H
FOR L = 1 TO DOF
BEE(X, L) = 0
NEXT L
NEXT K

REM **¢ STRAIN DISPLACEMENT MATRIX FOR w#w=
REM #»» AXISYMMETRIC STRAIN e

SUM = 0
FOR K = 1 TO NOD
SUM = SUM + FUN(K) * COORD(K, 1)
NEXT K
FOR M = 1 TO NOD
Ke=2 *M
L=K -1
BEE(1l, L) = DERIV(1l, M)
BEE(3, K) = BEE(l, L)
VOL{K) = DERIV(2, M)
BEE(2, K} = VOL(K)
BEE(3, L) = VOL(K)
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BEE(4, L) = FUN(M) / SUM
VOL(L) = BEE(1l, 1) + BEE(4, L)
NEXT M
REM
REM *** MATRIX MULTIPLY #*+*
REM
FCR K =1 TO H

FOR L = 1 TO DOF
X = 0
FOR M= 1 TO H
X = X + DEE(K, M) * BEE(M, L)

NEXT M
DBEE(K, L} = X
NEXT L
NEXT K
REM
REM *** TRANSPOSE A MATRIX *+s
REM

FORK=1TOH
FORL = 1 TO DOF
BT (L, K) = BEE(K, L)

NEXT L
NEXT K
REM
REM *+** MATRIX MULTIPLY ***
REM

FOR K = 1 TO DOF
FORL = 1 TO DOF
X = 0
FOR M= 1 TO H
X = X + BT(K, M) * DBEE(M, L)
NEXT M
BTDB(K, L) = X
NEXT L
NEXT K
QUOT = DET * K1 * K2 » 2 » PI * SUM
FOR K = 1 TO DOF
FOR L = 1 TO DOF
BTDB(K, L) = BTDB(K, L) * QUOT
NEXT L
NEXT K
REM
REM *** ADD TWO MATRICES **+*
REM
FOR K = 1 TO DOF
FOR L = 1 TO DOF
KM(K, L) = KM(K, L) + BTDB(K, L)
NEXT L
NEXT K
NEXT JJ
NEXT II
REM
REM *** ASSEMBLES ELEMENT MATRICES INTO GLOBAL MATRIX ***
REM
CDMAX = W + 1
FOR K = 1 TO DOF
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E100
'200

1

300

400

500

NEX
REM
REM
REM
FOR

NEX
OPE

IF G(K) = 0 THEN GOTO 200
FOR L = 1 TO DOF
IF G(L) = 0 THEN GOTO 100
CD = G(L) - G(K) + CDMAX
IF CD > CDMAX THEN GOTO 100
KB(G(K), CD) = KB(G(K), CD) + KM(K, L)
NEXT L
NEXT K
NEXT J
TI

#** CHOLESKI REDUCTION OF A SYMETRICAL BAND ***

I=1TON
X =0
FOR J = 1 TO W
A= X + (KB(I, J) * KB(I, J))
NEXT J
KB(1, W + 1) = SQR(KB(I, W + 1) - X)
FOR K = 1 TO W
X =0
IF I + XK > N THEN GOTO 500
IF K = W THEN GOTO 400
L=W-K
X = X + (KB(I + K, L) »~ KB(I, L + K))
L=La~1
IF L = 0 THEN GOTO 400
GOTO 300
A=1+K
Bw (W-K)+1
KB(A, B) = (KB(A, B) - X) / KB(I, W+ 1)
NEXT K
TI
N "CONSTIT.DAT" FOR GUTPUT AS $2
FOR I = 1 TO N
FOR J = 1 TO DOF
PRINT #2, USING "#4#438084438448. 43088 ~; KB(I, J);

NEXT J
PRINT #2, = "
NEXT I
CLOSE $2
CHAIN "VONMSE3.EXE"
VONMSE3.EXE
CLEAR
REM
REM *** INCREMENT THE LOADS #**«w
REM
DIM DEE(B, 4), DPL(B, 4), PL(8, <), SAMP(3, 2), COORD(8, 2)

DIM
DIM
DIM
DIM
DIM

[ PR —

DIM G]

|
|
DERIV (B, 4), BEE(S8, 8), 1LD(8), VOL(8), EPS{4), SIGMA(4) ﬁ
DF(8), ELOAD(8), Vi (40), STORKB(20), NO‘20), G(8), KB(16, B) ‘
SR(20, 20, sT(20, 20), SZ(20, 20), TRZ (20, 20), ER(20, 20) i
JAC(8, 2), JAC1(8, 2), DER(B, 4), FUN(4), ELSO(4), SPL(4) .
LOADS(20), BDYLDS{20), OLDLDS(20), ET(20, 20), E2(20, 20)

GRZ (20, 20y, NF(20, 2)
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DOF = 8
OPEN "INPT.FLE" FOR INPUT AS $1
INPUT #1, NXE, NYE, N, W, NN, RN, NL
INPUT ¢1, GP, BB, V, E, SBARY, INCS, ITS
CLOSE #1
DOF = 8
NODOF = 2
NOD = DOF / NODOF
T=2
B = ¢
OPEN "CONSTIT.DAT®" FOR INPUT AS $#1
FOR I = ] TO N
FOR J = 1 TO DOF
INPUT #1, KB(I, J)
NEXT J
NEXT I
CLOSE $1
OPEN "MATRIX.DAT" FOR INFPUT AS $1
FOR I = 1 TO 4
INPUT #1, DEE(I, 1), DEE(I, 2), DEE(I, 3), DEE(I, 4)
NEXT I
INPUT $1, NGP
FOR J = 1 TO NGP
INPUT 41, SAMP(J, 1), SAMP(J, 2)
NEXT J
INPUT #1, NNTF
FOR K = 1 TO NNT
INPUT #1, NF(K, 1), NF(K, 2}
NEXT K
CLOSE $1
OPEN "LOADS.DAT" FOR INPUT AS $1
INPUT $#1, NLDS
FCR I = ] TO NLDS
INPUT §1, NO(I), VVL(I)
NEXT 1
CLOSE #1
PI = 4 * ATN(1)
OPEN "STRAINS.DAT" FOR OUTPUT AS §3

REM

REM *** INCREMENT THE LOADS **

REM

FOR Y = 1 TO INCS
REM
REM v** ITERATE TO REDISTRIBUTE EXCESS ELEMENT STRESSES *+**
REM

FOR 2 = 1 TO ITS
FOR I = 1 TO N
LOADS(I) = O
NEXT I
FOR I = 1 TO NL
LOADS (NO(I)) = VVL(I) * PI
NEXT I
FOR I = 1 TO N
LOADS(I) = LOADS(I) + BDYILDS(I)
%7 I

REM
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‘100

200

KEM *** CHOLESKI FORWARDC SUBSTITUTION ¢*=
REM
LOADS{1) = LOADS (1) / KB{1l, W + 1)
FOR I = 2 TO N
X = D
K= ]
IF J <= W + 1 THEN K = (- I) + 2
FORJ = K TO W
XXX = ((I +J) - W) -1
X = X + KB(I, J) * LOADS (XXX)
NEXT J
LOADS(I) = (LOADS(I) - X) / KB(I, W + 1)
NEXT I
REM
REM *** CHOLESKI BACKWARD SUBSTITUTION ==+
REM
LOADS(N) = LOADS{N} / KB(N, W + 1)
I =N - 1

X =0
L=I+W
IF I >N - WTHEN L = N
M=1I+1
FOR J = M TO L

XXX = ((W+ I) -J) + 1

X = X + KB(J, XXX} * LOADS(J)
NEXT J

LOADS (I) = (LOADS(I) - X) / KB(I, W + 1)
I =1I-1
IF I = 0 THEN GOTO 200

GOTO 100

REM

REM *** SET VECTOR TO 0 *»*
REM

FORI =1 TON
BDYLDS(I) = O

NEXT 1

REM

REM *** TINSPECT ALL ELEMENTS ***
REM

FOR I = 1 TO NXE
FOR J = 1 TO NYE
RO = (I - 1) * (NYE+1) +J
AL = AO + 1
AM = I * (NYE +1) +J
AN = AM + 1

G(l) = NF(AL, 1)
G(2) = NF (AL, 2)
G(3) = NF(AO, 1)
G(4} = NF (RO, 2)
G(5) = NF(AM, 1)

G(6) = NF(AM, 2)

G(7) = NF (AN, 1)

G(8) = NF (AN, 2)

COORD(1, 1) = (I - 1) * AA
COORD(1, 2} = (NYE - J) * BB
COORD(2, 1) = (I - 1) * AA




COORD(2, 2) = (NYE - J + 1) * BB

COORD(3, 1) = I % AA

COORD(3, 2) = {(NYE - J + 1) * BB

COORD{4, 1) = I * AA

COORD(4, 2) = (NYE - J) * BB

REM

REM **sSTRAINS AT ELEMENT 'CENTRES' #***

REM

II = 2

JI = 2

SAMP(2, 1) = 0

REM

REM %%+ LOCAL COORDINATE SEAPE FUNCTIONS w1+
REM *** AND THEIR DERIVATIVES FOR 8-NODE #t*
REM wwt QUADRILATERAL vee
REM

ETA = SAMP(II, 1)

XI = SAMP(JJ, 1)
ETAM = .25 * (1 - ETA)
ETAP = .25 * (1 + ETA)

XIM = .25 * (1 - XI)
XIP = .25 * (1 + XI)
FUN(1) = 4 * XIM * ETAM
FUN(2) = 4 * XIM * ETAP
FUN(3) = 4 * XIP * ETAP
FUN(4) = 4 * XIP * ETAM

DER(1, 1) = -ETAM
DER(1, 2) = -ETAP

DER(1l, 3)
DER(1, 4)
DER{2, 1)
DER(2, 2}
DER(2, 3)
DER(2, 4)

REM
REM
REM
FOR

ETAP
ETAM
-XIM
XIM
XIp
-XIP

**+ MATRIX MULTIPLY #w+

K=1T0T
FORL = 1 TO T
X =0
FOR M = 1 TO NOD
X = X + DER(K, M) * COORD(M, L)
NEXT M
JAC(K, L} = X
NEXT L

NEXT K

REM
REM
REM
DET

te* TNVERT THE JACOBIAN MATRIX #**

= JAC(1, 1) * JAC(2, 2) - JAC(L, 2)

* JAC(2, 1)

JAC1(1l, 1) = JAC(2, 2)
JAC1(1, 2) = =JAC(1, 2)
JAC1(2, 1) = =JAC(2, 1)
JAC1(2, 2) = JAC(1, 1)

FOR

K=1T02
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FOR L = 1 TO 2
JACI(K, L} = JAC1(K, L} / DET

NEXT L
NEXT K
REM
REM *** MATRIX MULTIPLY ®e«
REM

FOR K =1TO T
FOR L = 1 TO NOD
X=0
FOR M =1 TO T
X = X + JACI1(K, M) * DER(M, L)

NEXT M
DERIV(K, L) = X
NEXT L
NEXT K
REM
REM *** SET MATRIX TO 0 **w
REM

FOR K = 1 TO H

FOR L = 1 TO DOF

BEE(K, L) = 0

NEXT L
NEXT K
REM
REM **» STRAIN DISPLACEMENT MATRIX FOR #*+*»
REM ®*» AXISYMMETRIC STRAIN LA
REM
SUM = 0
FOR K = 1 TO NOD

SUM = SUM + FUN(K) * COORP(K, 1)
NEXT K
FOR M = 1 TO NOD

K= 2 M

L=X-~-1

BEE(l1, L) = DERIV(1l, M)

BEE(3, Ky = BEE(1, L}

VOL (K} = DERIV(2, M)

BEE(2, K) = VOL(X)

BEE(3, 1) = VOL(K)

BEE(4, L) = FUN(M) / SUM

VOL(L} = BEE(l, L) + BEE(4, L)
NEXT M
FOR M = 1 TO DOF
IF G(M) = 0 THEN ELD(M) = O
IF G(M) <> O THEN ELD(M) = LOADS(G(M))
NEXT M
REM
REM **+* MULTIPLY A MATRIX BY A VECTOR t##
REM
FOR M= 1 TO H

X =0

FOR MM = ] TO DOF

X = X 4+ BEE(M, MM) * ELD(MM)
NEXT MM
EPS(M] = X
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NEXT M
REM
REM *** ELASTIC STRESSES ARE SIGMA **+
REM
REM
REM *** MULTIPLY A MATRIX BY A VECTOR ##+
REM
FOR M = 1 TO B

X = 0

FOR MM = 1 TO B

X = X + DEE(H, MM) * EPS(MM)

NEXT MM

SIGMA(M) = X
NEXT M
REM
REM *** SET VECTOR TO 0 ##+
REM
FOR M = 1 TO H

ELSO(M) = 0

NEXT M
REM
REM #*** SET VECTOR TO 0 #**
REM
FOR M = 1 TO DOF
BLD(M) = 0
NEXT M

S1 = SIGMA(l) + SR(I, J)

S2 = SIGMA(¢) + ST(I, J)

S3 = SIGMA(2) + SZ(I, J)

54 = SIGMA(3) + TRZ(I, J)

DSBAR = SQR(.5 * ((S1 -~ §2) * (S1 - S2)
4+ (S2 — S3) * (S2 - S3) 4 (S3 - S1) * (83 - S1)
+ 6 * S4 v S4))

IF DSBAR < SBARY THEN GOTO 400

S1 = SR(I, J)

52 = ST(I, J)

S3 = SZ(I, J)

S4 = TRZ(I, J)

REM
REM *** STRESS-~STRAIN MATRIX FOR VON MISES ®**
REM tw» PLASTICITY et
REM

SP = (S1 + 82 + §3) / 3

SRl = S1 - SP

STl = S2 - SP

§21 = S3 - SP

SBAR = SQR(.5 * ((S51 - 82) * (Sl - §2)

4+ (82 - S3) * (S2 - S3) + (S3 - 81) * (83 - S1)
4+ 6 % S4 * S4))

IF SBAR > SBARY THEN FAC = 1

IF SBAR <= SBARY THEN FAC = (DSBAR - SBARY)
/{DSBAR - SBAR)

PL(1, 1) = SR1 * SRl

PL(1, 2) = SRl * szl

PL(2, 1) = PL(1, 2)

PL(1, 3) = SRl * §§
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PL(3, 1} = PL(1, 3) ,
PL(1, 4) = SRl * STl %
PL(4, 1) = PL(1, 4)

PL(2, 2) = SZ1 * §71

PL(2, 3) = SIZ1 * sS4

PL(3, 2) = PL(2, 3)

PL(2, 4) = Sz1 * ST1

PL(4, 2) = PL(2, 4)

PL(3, 3) = 54 * sS4

PL(3, 4) = ST1 * sS4

PL(4, 3) = PL(3, 4)

PL(4, 4) = STl * ST1

FOR K= 1 TO 4
FOR L = 1 TO 4
PL(K, L) = PL(K, L) * 3 « E / (2 * SHAP
* SBAR * (1 + V))
DPL(K, L} = DEE(K, L) ~ FAC * PL(K, L)
NEXT L
NEXT K
REM
REM *** ELASTO~-PLASTIC STRESSES ARE SPL ***
REM
REM
REM *** MULTIPLY A MATRIX BY A VECTOR ##4
REM

FOR K = 1 TO H
X =0
FOR L = 1 TO H
X = X + DPL(K, L) * EPS(L)
NEXT L
SPL(K) = X
NEXT K

FOR M= 1 TOH
ELSO(M) = SIGMA(M) -~ SPL(M)

NEXT M

REM

REM *w** INTEGRATE ALL EXCESS STRESSES TO ***
REM *** FIND NODAL LOADS wan
REM

FOR II = 1 TO GP
FOR JJ = 1 TO GP

K1 = SAMP(II, 2)

K2 = SAMP(JJ, 2)

REM

REM %%* LOCAL COORDINATE SHAPE ***
REM ***  FUNCTIONS AND THEIR #+*
REM *** DERIVATIVES FOR B-NODE #*+*
REM s#s QUADRILATERAL wesr

ETA = SAMP(II, 1)

XI = SAMP(JJ, 1)

ETAM = .25 * (1 - ETA)
ETAP = .25 % (1 + ETA)
XIM = .25 * (1 - XI)
XIP = .25 % (1 + XI)
FUN(1) = 4 * XIM * ETAM
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FUN(2) = 4 % XIM * ETAP
FUN(3) = 4 * XIP % ETAP
FUN(4) = 4 * XIP * ETAM
DER(1, 1) = -ETAM
DER(1, 2) = -ETAP
DER(1, 3) = ETAP

DER(1, 4) = ETAM
DER(2, 1) = -XIM

DER(2, 2) = XIM

DER(2, 3) = XIP

DER(2, 4) = -XIP

REM

REM *** MATRIX MULTIPLY w#«
REM

FORK=1TCT
FORL = 1 TO T
X =0
FOR M = 1 TO NOD
X = X + DER{K, M)
* COORD(M, L)

NEXT M
JAC(K, L) = X
NEXT L
NEXT K
REM

REM +** INVERT THE JACOBIAN MATRIX ##@
REM
DET = JAC(1, 1) * JAC(2, 2) - JAC(l, 2)
* JAC(2, 1)
JAC1(l, 1) = JAC(2, 2)
JAC1l(l, 2) = ~JAC(1, 2)
JAC1(2, 1) = =JAC(2, 1)
JACl(2, 2) = JAC(1l, 1)
FOR K= 1 TO 2

FORL = 1 TO 2

JACl (K, L) = JAC1(K, L) / DET

NEXT L
NEXT K
REM
REM #** MATRIX MULTIPLY w==
REM

FOR K=1TO T
FORL = 1 TO NOD
X =0
FOR M =1 TO T
X = X + JAC1(K, M)
* DER(M, L)
NEXT M
DERIV(K, L) = X
NEXT L
NEXT X
REM
REM *** SET MATRIX TO 0 %%+
REM
FOR K = 1 TO B
FOR L = 1 TO DOF




300
400

BEE(K, L) = 0
NEXT L
NEXT K
REM
REM *** STRAIN DISPLACEMENT MATRIX
REM **+ FOR AXISYMMETRIC STRAIN
REM
SUM = 0
FOR X = 1 TO NOD
SUM = SUM + FUN(K) * COORD(K, 1
NEXT K
FOR M = 1 TO NOD
K=2 *M
L=K -1
BEE(1, L) = DERIV(1, M)
BEE(3, K) = BEE(1, L)
VOL(K) = DERIV(2, M)
BEE(2, K) = VOL(K)
BEE(3, L) = VOL(K)
BEE(4, L) = FUN(M) / SUM
VOL(L) = BEE(1, L) + BEE(4, L)

NEXT M

REM

REM =+** TRANS! JSL A MATRIX ##**
REM

FOR K = 1 TO H
FOR L = 1 TO DOF
BT(L, K) = BEE(K, L)
NEXT L
NEXT K
REM

*d e

)

REM we*» MULTIPLY MATRIX BY A VECTOR ®s**

REM
FOR M = 1 TO DOF
X =0
FOR MM = 1 TO H

X = X + BT(M, MM} * ELSO(MM)

NEXT MM
ELOAD (M) = X
NEXT M

QUOT = DET * K1 * K2 * 2 * PI * SUM

FOR K = 1 TO DOF

BLD(K) = BLD(K) + ELOAD(K) * QUOT

NEXT K
NEXT JJ
NEXT I1I
REM
REM *** COMPUTE TOTAL BODYLOADS VECTOR ®*#+
REM
FOR M = 1 TO DOF
IF G(M) = O THEN GOTO 309
BDYLDS (G (M)) = BDYLDS(G(M)) + BLD(M)
NEXT M
IF 2 <> ITS THEN GOTO 500
REM
REM *** UPDATE ELEMENT STRESSES AND STRAINS

LR
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REM
SR(I, J) = SR(I, J) + SIGMA(l) -~ ELSO(1)
ER(I, J) = ER(I, J) + EPS(1)
S2(I, J) = §2(I, J) + SIGMA(2) - ELSO(2)
EZ(I, J) = E2(1, J) + EPS(2)

TRZ(I, J) = TRZ(I, J) + SIGMA(3) ~ ELSO(3)

GRZ(I, J) = GRZ(I, J) + EPS(3)
ST(I, J) = ST(I, J) + SIGMA(4) - ELSO(4)
ET(I, J) = ET(I, J) + EPS(4)

§1 = SR(I, J)

§2 = ST(I, J)

§3 = S2(I, J)

$4 = TRZ(I, J)

SBAR = SQR(.5 * ((S1 - §2) * (S1 - S2)

+ (52 - 83) * (82 - §3) + (83 -~ S1) * (83 - 81)

+ 6 * S4 * 54))
S$1 = ER(I, J)

§2 = ET(I, J)

§3 = EZ(I, J)

$4 = GRZ(I, J)

EBAR = SQR(2 * ((S1 - §2) * (S1 - §2)

4 (52 - S§3) * (S2 - S3) + (S3 - S§1) * (S3 - S1)

+ 3 * 54+ 84/ 2))y /3

PRINT $3, USING ~#43848833i.0443488080484848 ~; SBAR;
PRINT $3, USING “$44#88443.88808¢84884848 ; EBAR
NEXT J
NEXT I
NEXT 2
NEXT Y

CHAIN "SUBFIN.EXE"
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. 3.0 MOHR-COULOMB ANALYSIS PROGRAM

MOHRCOL1 .EXE

CLEAR

; REM
REM *** AXISYMMETRIC STRAIN OF A RECTANGULAR ELASTO-PLASTIC ***
REM ww# (MOHR COULOMB) SOLID USING 4-NODE QUADRILATERAL ##*
REM #*»** ELEMENTS~-INITIAL STRESS METHOD wew
REM
DIM DEE(4, 4), SAMP(7, 2), NF(100, 2)
REM
REM ¢»# INITIALZE DATA e
REM
NODOF = 2: REM Number of freedoms per node
DOF = 8: REM Degrees of freedom per element

OPEN "INPT.FLE" FOR INPUT AS #1
INPUT $1, NXE: REM number of elements in x direction
INPUT $#1, NYE: REM number of elements in y direction
INPUT #1, N: REM total number of freedoms in mesh

INPUT $1, W: REM half bandwidth

INPUT $#1, NN: REM number of nodes in mesh

INPUT $1, RN: REM restrained nodes in mesh

INPUT $#1, NL: REM number of nodes where solution is non zero
INPUT $1, GP: REM Gaussian integration order

INPUT #1, AA: REM element size in x darection

INPUT 41, BB: REM element size in y direction

INPUT #1, V: REM Poisson’'s Ratao

INPUT #1, E: REM Young's Modulus
INPUT #1, INCS: REM Number of load increments
INPUT #1, ITS: REM Total number of iterations
INPUT $#1, COH: REM Scil cohesion
INPUT $1, PHI: REM Soil friction angle
INPUT $#1, PSI: REM Soil dilation angle
. NOD = DOF / NODOF
‘ CDMAX = W + 1
| R = N * CDMAX
REM
REM *** STRESS STRAIN MATRIX FOR ELASTIC AXISYMMETRYN #»**
REM
Vi =V / (1 =V)
VW= (1 «2*V) / (1 «V) *.5

DEE(1, 1) = 1
DEE(2, 2} = 1
DEE(4, 4) = 1
DEE(3, 3) = VW
DEE(1l, 2) = V1
! DEE(2, 1) = Vi
: DEE(l, 4) = V1
| DEE(4, 1) = V1
DEE(2, 4) = V1

DEE(4, 2) = V1
FOR I = 1 TO 4
FOR J = 1 TO 4
DEE(I, J) = DEE(I, J) *E * (1 = V) / (1 - 2 * V}
/ (1 +V)




100 SAMP(1, 1) = 1 / SQR(3)
SAMP(2, 1) = ~SAMP(1, 1)
600 SAMP(1, 2) =1 ‘
SAMP (2, 2) =« 1
GOTO 700
1200 SAMP(1, 1) = .2 = SQR(15)
SAMP(2, 1) = 0
SAMP(3, 1) = -SAMP(1, 1)
SAMP(1, 2) =5 / 9
SAMF(2, 2) =8 / 9
SAMP (3, 2) = SAMP(1, 2)
GOTO 700
300 SAMP(1, 1) = .B61136311594053 |
SAMP(2, 1) = .339981043584856 |
SAMP(3, 1) = -SAMP(2, 1) ‘
SAMP(4, 1) = «SAMP(1, 1)
SAMP(1l, 2) = .3B47854845137454
SAMP(2, 2) = .652145154862546
SAMP(3, 2) = SAMP(2, 2)
SAMP (4, 2) = SAMP(1, 2)
GOTO 700
400 SAMP(1, 1) = .906179845838664
SAMP(2, 1) = .538469310105683
SAMP(3, 1) = 0
SAMP(4, 1) = -SAMP(2, 1)
SAMP(5, 1) = -SAMP(1, 1)
SAMP(1l, 2) = .236926885056189
SAMP(2, 2) = .478628670499366
: SAMP(3, 2) = .568888888888889
1 SAMP(4, 2) = SAMP(2, 2)
) SAMP (S, 2) = SAMP(1, 2)
i GOTO 700
| SAMP(1, 1) = .9324695142031521
! SAMP(2, 1) = .661209386466265
} SAMP(3, 1) = .238619186083197
SAMP(4, 1) = -SAMP(3, 1)
: SAMP(5, 1) = -SAMP(2, 1)
SAMP(6, 1) = -SAMP(3, 1)
SAMP(1, 2} = ,17132449237517 ‘
SAMP(2, 2) = .360761573048139 f
SAMP(3, 2) = .467913934572691 '
_ SAMF (), 2) = SAMP(3, 2)

NEXT J

NEXT I
REM

REM *** GAUSSIAN QUADRATURE ABSCISSAE AND WEIGHTS ***
REM

GP = INT(GP)

IF GP = 1 THEN GOTO 700

IF GP = 2 THEN GOTO 100

IF GP = 3 THEN GOTO 200

IF GP = 4 THEN GOTO 300

IF GP = 5 THEN GOTO 400

IF GP = 6 THEN COTO 500

IF GP = 7 THEN GOTO 600

GP = 2
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500

700

SAMP(5, 2) = SAMP{2, 2)

SAMP(6, 2) = SAMP(1, 2)

GOTD 700

SAMP(1, 1) = .949107912342759
SAMP(2, 1) = .741531185599394
SAMP(3, 1) = .405845151377397
SAMP(4, 1) = 0

SAMP(5, 1) = -SAMP(3, 1)
SAMP(6, 1) = -SAMP(2, 1)
SAMP(7, 1) = -SAMP(1, 1)
SAMP(1, 2) = .12948496616887
SAMP(2, 2) = .297705391489277
SAMP(3, 2) = .381830050505199
SAMP(4, 2) = .417959183673469
SAMP(5, 2) = SAMP(3, 2)
SAMP(6, 2) = SAMP(2, 2)
SAMP(7, 2) = SAMP(1, 2)

REM

REM +*** NODE FREEDOM ARRAY FOR > ONE FREEDOM PER NODE #a»
REM
FOR I = 1 TO NN
FOR J = ] TO NODOF
NF(I, J) = 1
N .l J
NEXT 1
FOR K = 1 TO RN
INPUT $#1, RNODE: REM Restrained Node Number
FOR L = 1 TO NODOF
INPUT 41, RNT: REM Restrained Node Type
IF RRT = 1 THEN NF(RNODE, L) = O
NEXT L
NEXT K
K = ]
FOR M = 1 TO NN
FOR P = 1 TO NODOF
IF NF(M, P} = 0 THEN GOTO B0O
NF(M, P} = K
K=K+ 1
NEXT P
NEXT M
CLCSE ¢$1
REM
REM *+** PRINT DATA TO BIN FILE FOR NEXT PHASE ¢+
REM
OPEN "MATRIX.DAT" FOR OUTPUT AS $#2
FOR I = 1 TO 4
FOR J = 1 TO 4
PRINT #:, USING "#8¢444448448.8048 =; DEE(I, J);
NEXT J
PRINT $2, = *
NEXT I
PRINT $#2, GP
FCR K = 1 TO GP
PRINT $2, USING ~#444988404084. 448 ~; SAMP(K, 1); SAMP(K,
NEXT K
PRINT $2, NN

- Tt R |

2)




FOR L = 1 TO NN
FOR M = 1 TO NODOF
PRINT $2, USING "#444.444 *; NF(L, M);
NEXT M
PRINT #2, = -
NEXT L
CLOSE 42
CHAIN "MOHRCOL2.EXE"

MOHRCOL2 .EXE

CLS
CLEAR
DIM DEE(4, 4), SAMP(7, 2), NF(100, 2), COORD{20, 2}, KM(20, 20)
DIM FUN(20), DER(20, B), JAC(20, 2), JAC1(20, 2}, DERIV(20, 4)
DIM VOL(20), DBEE(20, 20), BT(20, 4), BTDB(20, 20), G(10)
DIM BEE (20, 20}, KB(200, 50)
REM
REM #** ELEMENT STIFFNESS INTEGRATION AND ASSEMBLY *#*»
REM
REM *** DATA INPUT #*w»
REM
OPEN "INPT.FLE" FOR INPUT AS $1
INPUT #1, NXE, NYE, N, W, NN, RN, NL, GP, AA, BB, V, E, INCS
INPUT $1, ITS, COH, PHI, PSI
FOR I = 1 TO RN
INPUT $#1, DUMMY1S$, DUMMY2$, DUMMY3S$S
NEXT I
CLOSE #1
OPEN "MATRIX.DAT" FOR INPUT AS #1
FOR I = 1 TC ¢
INPUT #1, DEE(I, 1), DEE(I, 2), DEE(I, 3}, DEE(TI, 4)
NEXT 1
INPUT $1, NGP
FOR J = 1 TO NGP
INPUT #1, SAMP(J, 1), SAMF(J, 2)
NEXT J
INPUT 41, NNT
FOR K = 1 TO NNF
INPUT $1, NF(K, 1), NF(K, 2)
NEXT K
CLOSE $1
T =2
He= 4
NODOF =« 2: DOF = 8
NOD = DOF / NODOF
PI = 4 * ATN(1)
REM
REM *+* HNODAL COORDINATES AND STEERING VECTOR FOR RECTANGULAR ®r+
REM *** MESH OF 8~NODE QUADRILATERAL PLANE ELEMENTS NUMBERING ®#¢
REM #»» IN THE Y-DIRECTION LA
REM
FOR I = 1 TO NXE
FOR J = 1 TO NYE
AC = (I - 1) » (NYE + 1) +J
AL = AO + 1
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AM = I * (NYE + 1) +
AN » AM + 1

G(l} = NF(AL, 1)
G(2) = NF (AL, 2)
G(3) = NF{AD, 1)
G({4) = NF(AO, 2)
G(5) = NF(AM, 1)
G(6) = NF(AM, 2)

G(7) = NF(AN, 1)
G(8) = NF(AN, 2)
COORD(1, 1) = (I - 1)

COORD(1, 2) = (NYE -
COORD(2, 1) = (I - 1)
COORD(2, 2) = (NYE -
COORD(3, 1) = I * AA
COORD(3, 2) = (NYE -
COORD(4, 1) = I * AA
COORD(4, 2) = (NYE -
REM

‘7

* AA
J) * BB
* AA
J 4+ 1) * BB

J + 1) * BB

J) * BB

REM *** SET MATRIX TO 0 ==+

REM

FOR K = 1 TC DOF
FOR L = 1 TO DOF

KM(K, L) = 0

NEXT L

NEXT K

FOR II = 1 TO GP
FOR JJ = 1 TO GP

K1 = SAMP(II, 2)

K2 = SAMP(JJ, 2}

REM

REM *** LOCAIL COORDINATE SHAPE FUNCTIONS AND ¢+ »
REM **+ THEIR DERIVATIVES FOR B-NODE e
REM »#» QUADRILATERAL L)
REM

ETA = SAMP(II, 1)

XI = SAMP(JJ,
ETAM = .25 *
ETAP = .25 #
XIM = .25 *

XIP = .25 * {
FUN(l1l) = 4 »
FUN(2) = 4 +
FUN(3) = 4 *

FUN(4) = 4 *

1)

{1 - ETA)
(1 + ETA)
1 - XI)

1 + XI)
XIM * ETAM
XIM * ETAF
XIP * ETAP
XIP * ETAM

DER{l, 1) = -ETAM
DER(1, 2) = ~ETAP

DER(1, 3) = ETAP
DER(1, 4) = ETAM
DER(2, 1) = ~-XIM
DER(2, 2) = XIM
DER{2, 3) = XIP
DER(2, 4) = -XIP
REM

REM *** MATRI
REM

X MULTIPLY +**
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FORK=1TO T
FOR L= 1T0T
X =0
FTOR M = 1 TO NOD
X » X + DER(K, M) * COORD(M, L)

NEXT M
JAC(K, L) = X
NEXT L
NEXT K
REM

REM *** INVERT TBE JACOBIAN MATRIX **¢*
REM
DET = JAC(l, 1} * JAC(2, 2) - JAC(l, 2)
* JAC(2, 1)
JAC1(1, 1) = JAC(2, 2)
JACl(1l, 2) = <JAC(1l, 2)
JACl(2, 1) = -JAC(2, 1)
JAC1(2, 2) = JAC(1l, 1)
FOR K = 1 TO 2

FOR L = 1 TO 2

JACl (K, L) = JAC1(K, L) / DET

NEXT L
NEXT K
REM
REM *** MATRIX MULTIPLY ***
REM

FOR K= 170 T
FOR L = 1 TO NOD
X =0
FORM=1TOT
X = X + JACI1(K, M) * DER(M, L)

NEXT M
DERIV(K, L) = X
NEXT L
NEXT K
REM
REM #*** SET MLJRIX TO 0 w*»»
REM

FOR K = 1 TO H

FOR L = 1 TO DOF

BEE(K, L) = 0

NEXT L
NEXT K
REM
REM *+* STRAIN DISPLACEMENT MATRIX FOR *#+
REM ®e+ AXISYMMETRIC STRAIN tes
REM
SUM = 0
FOR X = 1 TO NOD

SUM = SUM + FUN(K) * COORD(K, 1)
NEXT K
FOR M = 1 TO NOD

K=21*M

L=K-1

BEE(1l, L) = DERIV(1, M)

BEE(3, K) = BEE(l, 1)
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VOL(K) = DERIV(2, N)
BEE(2, K} = VOL(K]
BEE(3, L) = VOL(K)
BEE(4, L) = FUN(M) / SUM
VOL(L) = BEE(1l, L) + BEE(4, L)
NEXT M
REM
REM *+* MATRIX MULTIPLY #e»
REM
FORK=1T0 B
FOR L = 1 TO DOF
X=0
FORM = 1 TO H
X = X + DEE(K, M} * BEE(M, L)

NEXT M
DBEE(K, L) = X
NEXT L
NEXT K
REM
REM *** TRANSPOSE A MATRIX ***
REM

FOR K = 1 TO H
FOR L = 1 TO DOF
BT(L, K) = BEE(K, L)

NEXT L
NEXT K
REM
REM *** MATRIX MULTIPLY ***
REM

FOR K = 1 TO DOF
FOR L = 1 TO DOF
X =0
FORM = 1 TO H
X = X + BT(X, M) * DBEE(M, L)
NEXT M
BTDB(K, L) = X
NEXT L
NEXT K
QUOT = DET *# K1 * K2 * 2 ¢+ PI » SUM
FOR K = 1 TO DOF
FOR L = 1 TO DOF
BTDB(K, L) = BTDB(K, L) * QUOT
NEXT L
NEXT K
REM
REM *** ADD TWO MATRICES ##+
REM
FOR K = 1 TO DOF
FOR L = 1 TO DOF
KM(K, L) = KM(K, L) + BTDB(K, L)
NEXT L
NEXT K

NEXT JJ

NEXT II
REM

REM *** ASSEMBLES ELEMENT MATRICES INTO GLOBAL MATRIX ***




D.37

REM
CDMAX = W + 1
FOR K = 1 TO DOF
IF G(K) = 0 THEN GOTO 200
FOR L = 1 TO DOF
IF G(L) = 0 THEN GOTO 100
CD = G(L) - G(K) + CDMAX
IF CD > CDMAX THEN GOTO 100

KB(G(K), CD) = KB(G{(K), CD) + KM(K, L)
100 NEXT L
200 NEXT K
NEXT J
NEXT 1
REM
REM #*¢* CHOLESKI REDUCTION OF A SYMETRICAL BAND #a+
| REM
; FOR I = 1 TO N
f X=0
f FOR J = 1 TO W
X = X + (KB(I, J) * KB(I, J))
NEXT J
KB(I, W + 1) = SQR(KB(I, W + 1) - X)
FOR K = 1 TO W
X =0
IF I + K > N THEN GOTO 500
, IF K = W THEN GOTO 400
, L=W-K
1300 X = X + (KB(I + K, L) * KB(I, L + K))
' LelL-1
IF L = 0 THEN GOTO 400
GOTO 300
1400 A=1I+K
B= (W-K) +1
KB(A, B) = (KB(A, B} - X) / KB(I, W+ 1)
500 NEXT K
NEXT I

OPEN "CONSTIT.DAT" FOR OUTPUT AS #2

FOR I = 1 TO N
FOR J = 1 TO DOF
PRINT #2, USING "#444448404888 . 40441 ~; KB(I, J);
NEXT J
PRINT $2, " "
NEXT I

CLOSE #2
CHAIN "MOHRCOLJ.EXE"

MOHRCOL3.EXE

CLEAR

REM

REM %+ INCREMENT THE LOADS #%+*

REM

DIM DEE(8, 4), DPL(8, 4), PL(B, 4), SAMP(3, 2), COORD(8, 2)

DIM DERIV(S8, 4), BEE(B, 8), ELD(8), VOL(8), EPS(4), SIGMA(4)

DIM DF(8), ELOAD(8), VVL(30), STORKB(30), NO(30), G(8), KB(30, 8)
DIM SR(30, 30), ST(30, 30), S2(30, 30), TRz (30, 30), ER(30, 30)
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DIM JAC(8, 2), JACL(8, 2), DER(S, 4), FUN(4), ELSO(4), SPL(4)
DIM ET(30, 30), E2Z(30, 30), GRZ (30, 30), NF(30, 2)
DIM LOADS(30), BDYLDS(30), OLDLDS(30)
DOF = 8
OPEN "INPT.FLE" FOR INPUT AS §1
INPUT #1, NXE, NYE, N, W, NN, RN, NL
INPUT #1, GP, AA, BB, V, E, INCS, ITS
INPUT #1, COH, PHI, PSI
CLOSE #1
DOF = 8
NODOF = 2
NOD = DOF / NODOF
T = 2
H=4
PI = 4 * ATN(1)
PEI = PHI * PI / 180
PSI = PSI * PI / 180
SNPH = SIN(PHI)
CSPH = COS(PHI)
SQ3 = SQR(3)
OPEN "CONSTIT.DAT" FOR INPUT AS #1
FOR I =1 TON
FOR J = 1 TO DOF
INPUT $#1, KB(I, J)
NEXT J
NEXT 1
CLOSE #1
OPEN “"MATRIX.DAT" FOR INPUT AS §1
FOR I = 1 TO 4
INPUT #1, DEE(I, 1), DEE(I, 2), DEE(I, 3}, DEE(I, 4)
NEXT I
INPUT #1, NGP
FOR J = 1 TO NGP
INPUT #1, SAMP(J, 1), SAMP(J, 2)
NEXT J
INPUT #1, NNF
FOR K = 1 TO NNF
INPUT #1, NF(K, 1), NF(K, 2)
NEXT K
CLOSE #1
OPEN "LOADS.DAT" FOR INPUT AS #1
INPUT $#1, NLDS
FOR I = 1 TO NLDS
INPUT #1, NO(I), VVL(I)
NEXT 1
CLOSE #1
OPEN "STRAINS.DAT" FOR OUTPUT AS #3
REM
REM *** INCREMENT THE LOADS w#+
REM
FOR Y = 1 TO INCS
ITER = 0
REM
REM *** ITERATE TO REDISTRIBUTE EXCESS ELEMENT STRESSES ***
REM
ITER = ITER + 1
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100

2 = 1
FOR I = 1 TO N
LOADS(I) = ©
NEXT I
FOR I = 1 TO NL
LOADS(NO(I)) = VVL(I)
NEXT I
FOR I = 1 TO N
LOADS(I) = LOADS(I) + BDYLDS(I)

NEXT I

REM

REM **+ CHOLESKI FORWARD SUBSTITUTION #**+
REM

LOADS (1)} = LOADS(1) / KB(l, W + 1)
FORI = 2 TO N
X =0
K e«
IF I <= W + 1 THENK = (W - I) + 2
FOR J =K TO W

XXX = ((I +J) = W) -1
X =X 4+ KB(I, J) * LOADS(XXX)
NEXT J
LOADS(1) = (LOADS(I) - X) / KB(I, W + 1)
NEXT I
REM
REM *#*» CHOLESKI BACKWARD SUBSTITUTION #t*+
REM
LOADS (N) = LOADS (N} / KB(N, W + 1)
I=N-1
X=0
L=1I+W
IF I >N-WTHENL = N
M=1I+1

FOR J = M TO L
XXX = ((W+ I)-J) +1
X = X + KB(J, XXX) * LOADS(J)
NEXT J
LOADS (I} = (LOADS(I) - X) / KB{I, W + 1)
=11
IF I = 0 THEN GOTO 200
GOTO 100
REM
REM #*+ SET VECTOR TO ( #w¢
REM
FORI = 1 TON
BDYLDS(I) = ©
NEXT I
REM
REM #*+ ITERATION TOLERANCE #w«
K2 = 0
FORI = 1 TO N
IF ABS{LOADS(I}) > K2 THEN K2 = ABS(LOADS(I})
NEXT I
FORI = 1 TO N
K1 = ABS((LOADS(I) - OLDLDS(I)) / K2)
IF K1 > .00 THEN 2 = 0
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OLDLDS(I) = LOADS(I)
NEXT I
IF ITER = 1] THEN 2 = 0
REM

REM **w INSPECT ALL ELEMENTS ®*¢

REM
FOR I = 1 TO NXE
FOR J = 1 TO NYE

AO= (I - 1) * (WYE + 1} + J

AL = AO + 1

AM = I *» (NYE + 1) + J

AN = AM + 1

G(l) = NF(AL, 1)
G(2) = NF(AL, 2)
G(3) = NF(AO, 1)

G(4) = NF(AOQ, 2)
G(5) = NF(AM, 1)
G(6) = NF(AM, 2)
G(7) = NF (AN, 1)

G(8) = NF(AN, 2)
COORD(1, 1) = (I

- 1) * AA

COORD(1, 2) = (NYE - Jj * BB

COORD(2, 1) = (I - 1) * AA
COORD(2, 2) = (NYE - J + 1) * BB
COORD{3, 1) = I * AA

COORD(3, 2) = (NYE - J + 1) *» BB
COORD(4, 1) = I * AA

COORD{4, 2} = (NYE - J) * BB

REM

REM ***STRAINS AT ELEMENT 'CENTRES' ##*
REM

II = 2

JI = 2

SAMP(2, 1) = 0

REM

REM *** LOCAL COORDINATE SHAPE FUNCTIONS e+
REM *** AND THEIR DERIVATIVES FOR E-NODE ***

REM ®*2#
REM

ETA = SAMP(II, 1)

XI = SAMP(JJ, 1)

QUADRILATERAL *re

ETAM = .25 * (1 - ETA)
ETAP = .25 * (1 + ETA)

XIM = .25 * (1 -
XIP = .25 * (1 +
TUN(1l) = 4 * XIM
FUN(2) = & * XIM
FUN(3) = 4 * XIP
FUN(4) = 4 * XIP
DER(1, 1) = -ETAM
DER(1, 2) = -ETAP
DER(1, 3) = ETAP
DER(1, 4) = ETAM
DER(2, 1) = -XIM
DER(2, 2) = XIM

DER(2, 3) = XIP

XI)
XI)

* ETAM
* ETAP
* ETAP
* ETAM
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DER(2, 4) = -XIP
REM
REM *** MATRIX MULTIPLY **s
REM
FORK=1TO T
FORL = 1 TO T
X = 0
FOR M = 1 TO NOD
X = X + DER(K, M) * COORD(M, L)
NEXT M
JAC(K, L) = X
NEXT L
NEXT K
REM
REM *** INVERT THE JACOBIAN MATRIX ***
REM
DET = JAC(1, 1) * JAC(2, 2) - JAC(1l, 2)
* JAC(2, 1)
JACL(1, 1) = JAC(2, 2)
JACL(1, 2) = -JAC(1l, 2)
JAC1(2, 1) = -JAC(2, 1)
JAC1(2, 2) = JAC(1, 1)
FORK =1 TO 2
FOR L = 1 TO 2
JAC1(K, L) = JAC1(K, L) / DET

NEXT L
NEXT K
REM
REM *** MATRIX MULTIPLY *@»
REM

FORK=1 TOT
FOR L = 1 TO NOD
X = 0
FORM=1TOT
X = X + JAC1(XK, M) * DER(M, L)
NEXT M
DERIV(K, L) = X
NEXT L |
NEXT K
REM
REM ##** SET MATRIX TO 0 ##+
REM
FORK=1 TO B
FOR L = 1 TO DOF
BEE(K, L) = 0
NEXT L
NEXT K
REM
REM *** STRAIN DISPLACEMENT MATRIX FOR ®#+
REM ®*1 AXISYMMETRIC STRAIN zee
REM
SUM = 0
FOR K = 1 TO NOD
SUM = SUM + FUN(K) * COORD(K, 1) |
NEXT K 4
FOR M = 1 TO NOD |
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K=2*NM

Lek -1

BEE(1, L) = DERIV(1, M)

BEE(3, K) = BEE(1, L)

VOL(K) = DERIV(2, M)

BEE(2, K) = VOL(K)

BEE(3, L) = VOL(K)

BEE(4, L) = FUN(M} / SUM

VOL(L} = BEE(1l, L) + BEE(4, L)
NEXT M
FOR M = 1 TO DOF
IF G(M) = O THEN ELD(M) = 0
IF G(M) <> O THEN ELD(M) = LOADS(G(M))
NEXT M
REM
REM t*+ MULTIPLY A MATRIX BY A VECTOR %¢s
REM
FOR M= 1 TO H

X =0

FOR MM = 1 TO DOF

X = X + BEE(M, MM) * ELD(MM)

NEXT MM

EPS(M) = X
NEXT M
REM
REM *** ELASTIC STRESSES ARE SIGMA #***
REM
REM
REM *** MULTIPLY A MATRIX BY A VECTOR #*+#
REM
FOR M =1 TO H

X =0

FOR MM = 1 TO H

X = X + DEE(M, MM) * EPS(MM)

NEXT MM
SIGMA(M) = X
NEXT M
REM
REM *#*+ SET VECTOR TO 0 =+
REM

FOR M =1 TO R
ELSO(M) = 0

NEXT M
REM
REM #** SET VECTOR TO 0 w»*
REM
FOR M = 1 TO DOF
BLD(M) = 0
NEXT M

S1 = SIGMA(1l} + SR(I, J)
§2 = SIGMA(4) + ST(I, J)
S3 = SIGMA(2) + SZ(I1, J)
S4 = SIGMA(3) + TRZ(I, J)
REM

REM *** INVARIANTS OF THE STRESS TENSOR ***

REM
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300

1400

1500
1600
|

700

900
‘1000

DSBAR = SQR(.5 * ((S1 - §2) * (Sl - S2)
4+ (82 = 53) * (52 - 83) + (83 - §') * (83 - §1)
+ 6% 84 v 54))

DEVI = (2 * §1 - 5§52 -— S§3) / 3
DEV2 m (2 % §2 - §3 - S1) / 3
DEV3 = (2 * §3 ~ S1 - S2) / 3
MEAR = (S1 + S2 + S§3) / 3

J3 = DEV1 % DEV2 * DEV3 - DEV2 * 64 * 54
IF DSBAR <> 0 THEN GOTO 300

LODE = 999.999

GOTO 600

LODE = -13.5 * J3 / (DSBAR * DSBAR * DSBAR)
IF LODE >= 1 THEN GOTO 400

IF LODE <= -1 THEN GOTO 500

ADJ = SQR(l - LODE * LODE)

LODE = ATN(LODE / ADJ) / 3

GOTO 600

LODE = PI / 6

GOTO 600

LODE = -PI / 6

SNTH = SIN(LODE)

CSTH = COS(LODE)

NEWF = -SNPH * MEAN + DSBAR * (CSTH / SQR(3)
- SNTH * SNPH / 3) - COH * CSPH

IF NEWF < 0 THEN GOTO 1900

§1 = SR(I, J)

§2 = ST(I, J)

$3 = S2 (1, J)

S4 = TRZ (I, J)

REM

REM *t* INVARIANTS OF THE STRESS TENSOR ***
REM

DSBAR = SQR(.5 * ((S1 = §2) * (S1 - §2)

+ (52 - S3) % (S2 - S3) + (S3 - S1) * (83 - S1)
+6* S4 v 54))

DEVI = (2 * S1 - S§2 - 83) / 3

DEV2 = (2 * S2 - 83 - §1) / 3

DEV3 = (2 * S3 - S1 - §2) / 3

MEAN = (S1 + §2 + §3) / 3

J3 = DEV1 * DEV2 * DEV3 - DEV2 * S4 * S4
IF DSBAR <> 0 THEN GOTO 700

LODE = 999.999

GOTO 1000

LODE = -13.5 *+ J3 / (DSBAR * DSRAR * DSBAR)
IF LODE >= 1 THEN GOTO 800

IF LODE <= -1 THEN GOTO $00

ADJ = SQR(1 - LODE * LODE)

LODE = ATN(LODE / ADJ) / 3

GOTO 1000

LODE = PI / 6

GOTO 1000

LODE = -PI / 6

SNTH = SIN(LODE)

CSTH = COS(LODE)

F = -SNPH * MEAN + DSBAR * (CSTH / SQR(3) -
SNTH * SNPH / 3) -~ COH * CSPH
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1050

1100

'1200
1300

1400

1500

1600

700

REM #** STRESS STRAIN MATRIX FOR MOBR ®e+

REM wee COULOMB PLASTICITY wae

REM

SBAR = SQR(.5 * ((Sl1 - S2) * (Sl - 82)

+ (82 - 83) * (S2 - S$3) + (83 -~ 81} * (S3 - 81)
+ 6 * 54 * 84))

DEV] = (2 +# 8] -~ 82 - 83) / 3

DEV2 = (2 * 82 - 83 - 8S1) / 3

DEV3 = (2 * 83 - S1 - 82) / 3

MEAN = (S1 + 82 + S3) / 3

J3 = DEV1 * DEV2 * DEV3 - DEV2 ¢ §4 * 84

IF SBAR <> 0 THEN GOTO 1050

TRETA = 999,99%

GOTO 1300

THETA = «13.5 * J3 / (SBAR * SBAR * SBAR)

IF THETA >= 1 THEN GOTO 1100

IF THETA <= -1 THEN GOTO 1200

ADJ = SQR(1 - THETA * THETA)

THETA = ATN(THETA / ADJ) / 3

GOTO 1300

THETA = PI / 6

GOTO 1300

THETA = -PI / 6

SRD= (2 * §] - 82 - §3) / 3

STD = (2 * S2 - 83 - 81} / 3

S2D = (2 * S§3 -~ S1 ~ S§2) / 3

ROOT3 = SQR(3)

PRAD = PHI

IF ABS(THETA) <= .523424 THEN GOTO 1400

Fl = SIN(PRAD)

F2 = .25 / SBAR * (3 - SIN(PRAD))

Fi =0

GOTO 1500

Fl = SIN(PRAD)

F2 = COS(THETA) * ROOT3 * .5 / DSBAR

* ({1 + SIN(THETA) / COS{THETA) * SIN(3*THETA)
+ SIN(PRAD)/ROOT3*(SIN(3 * THETA)/COS(3 * THETA)
- SIN(THETA)/COS (THETA}))

F3 = (ROOT3 * SIN(THETA) + SIN(PRAD)

* COS(THETA)) * 1.5 / (SBAR * SBAR

* COS(3 * THETA))

IF ABS(THETA) <= .523424 THEN GOTO 1600

Ql = SIN(PRAD)

Q2 = .25 / SBAR * (3 -~ SIN(PRAD))

Q1 =0

GOTO 1700

Ql = SIN(PRAD)

Q2 = COS(THETA) * ROOT3 * .5 / DSBAR

* ((1 + SIN(THETA) / COS(TBETA) * SIN(3I*THETA)
+ SIN(PRAD)/ROOT3* (SIN(3 * THETA)/COS(3 * THETA)
- SIN(THETA)/COS(THETA)))

Q3 = (ROOT3 * SIN{THETA) + SIN(PRAD)

* COS(THETA}) * 1.5 / (SBAR * 5BAR

* COS(3 * THETA))

DF(l1) = F1 / 3 + F2 * SRD + F3 / 3 * (SRD * SRD
+ 2 * SZD * STD * §4 * S4)
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DF(2) = F1 /3 + F2 * S2D + F3 / 3 * (82D * S2D
4+ 2%* SRD * STD * S4 * S4)
DF/3) = 2 * F2 *» §4 - 2 * F3 *» §4 * STD
DF(4) = F1 /3 + F2 * STD + F3 / 3 * (2 * 82D
* SRD + STD * STD - 2 * 54 * 84)
DQ(1) = Q1 /3 + Q2 * SRD + Q3 / 3 * (SRD * SRD
4+ 2% SZD % ETD * 54 * S4)
DO(2) = Q1 /3 + Q2 * §2D+ Q3 /3 * (82D * 82D
+ 2* SRD * STD * 64 * §4)
DQ(3) = 2 * Q2 @ S4 - 2 * Q3 » §4 * STD
DQ(4) = Q1 /3 + Q2 * STD + Q3 /3 * (2 * 82D
*» SRD + STD * STD - 2 * §4 * 54)
REN
REM *** MULTIPLY A MATRIX BY A VECTOR #¢t
REM
FORM = 1 TO 4
FOR MM = 1 TO 4
X = X + DEE(M, MM) % DF(MM)
NEXT MM
DDF (M) = X
NEXT M
REM
REM *** MULTIPLY A MATRIX BY A VECTOR #t#
REM
FORM = 1 TO 4
X =0
FOR MM = 1 TO 4
X = X + DEE(M, MM) * DQ(MM)
NEXT MM
DDQ(M) = X
NEXT M
VVL ¢« 0
FORK = 1 TO 4
VUL « VVL + DDF(K) * DQ(K)
NEXT K
FORK = 1 TO 4
FOR L = 1 TO 4
DDQF(K, L)} = DDQ(K) * DF(L)
DDQF(K, L) = DDQF(K, L) / VVL
NEXT L
NEXT K
FORX = 1 TO 4
FOR L = 1 TO 4
X =0
FORM=1T0 4
X = X + DDQF(K, M} * DEE(H, L}
NEXT M
PL(K, L) = X
NEXT L
NEXT K
IF F > 0 THEN FAC = 1
IF F <= 0 THEN FAC = NEWF / (NEWF - F)
FORK = 1 TO K
FOR L = 1 TO H
DPL(K, L) = DEE(K, L) - FAC * PL(K, L)
NEXT L
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NEXT K
REM
REM *** ELASTO-PLASTIC STRESSES ARE SPL #¢s
REM
REM
REM #** MULTIPLY A MATRIX BY A VECTOR wee
REM
FORK= 1 TOH

X=0

FOR L =1 TO H

X = X + DPL(K, L) * EPS (L)

NEXT L
SPL(K) ~ X
NEXT K
FORM= 1 T0H
ELSO(M) = SIGMA(M) - SPL(M)
NEXT H
SAMP(2, 1) = -1 / SQR(3)
REM
REM *** INTEGRATE ALL EXCESS STRESSES TO ***
REM t*» FIND NODAL LOADS nes
REM

FOR II = 1 TO GP
FOR JJ = 1 TO GP

Kl = SAMP(II, 2)
K2 = SAMP(JJ, 2)
REM
REM *** LOCAL COORDINATE SHAPE #++
REM *** FUNCTIONS AND THEIR  ##+
REM *** DERIVATIVES FOR B-NODE ##+
REM **» QUADRILATERAL wes
REM
ETA = SAMP(II, 1)
XI = SAMP(JJ, 1)
ETAM = .25 * (1 - ETA)
ETAP = .25 * (1 + ETA)
XIM = .25 * (1 - XI)
XIP = .25 * (1 + XI)

FUN(1l) = 4 * XIM * ETAM
FUN(2) = 4 * XIM * ETAP
FUN()) = 4 ¢« XIP * ETAP
FUN(4) = 4 * XIP * ETAM

DER(l, 1) = -ETAM
DER(l, 2) = -ETAP
DER(1, 3} = ETAP

DER(l, 4) = ETAM

DER(2, 1) » -XIM

DER(2, 2) = XIM

DER(2, 3) = XIP

DER(2, 4) = -XIP

REM

REM *** MATRIX MULTIPLY #*+
REM

FORK= 1 TOT
FOR L =1 TOT
X=0




R

FOR M = 1 TO NOD
X o X + DER(K, M)
+ COORD(M, L)
NEXT M
JAC(K, L) = X
NEXT L
NEXT K
REM
REM ***+ INVERT THE JACOBIAN MATRIX ¢+¢
REM
DET = JAC(1, 1) * JAC(2, 2) - JAG(1, 2)
* JAC(2, 1)
JAC1(1, 1) = JAC(2, 2)
JAC1(1l, 2) = -JAC(1, 2)
JAC1(2, 1) = -JAC(2, 1)
JAC1(2, 2) = JAC(1, 1)
FOR K =1 TO 2
FORL = 1 T0 2
JAC1(K, L) = JAC1(K, L) / DET
NEXT L
NEXT K
REM
REM +#% MATRIX MULTIPLY ww+
REM
FOR K=1 TO T
FORL = 1 TO NOD
X =0
FOR M=1 TO T
X =X + JACL(K, M)

* DER(M, L)
NEXT M
DERIV(K, L) = X
NEXT L
NEXT K
REM
REM #*¢ SET MATRIX TO 0 #w+«
REM

FOR K= 1 TO H

FORL = 1 TO DOF

BEE(K, L) = 0

NEXT L
NEXT X
REM
REM *** STRAIN DISPLACEMENT MATRIX #**
REM *** FOR AXISYMMETRIC STRAIN  s+¢
REM
SUM = 0
FOR K = 1 TO NOD

SUX = SUM + FUN(K) * COORD(K, 1)
NEXT K
FOR M = 1 TO NOD

Ks2 = M

L=K -1

BEE(l, L) = DERIV(1l, M)

BEE(3, K) = BEE(1l, L)

VOL(K) = DERIV(2, M)
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! 1800
: 11900

BEE(2, K} = VOL(K) [
BEE(3, L} = VOL(K) !
BEE(4, L) = FUN(M) / SUM

VOL(L} = BEE(l, L) + BEE(4, L)

NEXT M

REM

REM *++ TRANSPOSE A MATRIX # e+
REM

FOR K =1 TO B
FYORL = 1 TO DOF
BT(L, K} = BEE(K, L)

NEXT L
NEXT K
REM
REM ®e+ NULTIPLY A MATRIX BY VECTOR wes
REM
FOR M = 1 TO DOF
X =0
FOR MM = 1 TO H
X = X + BT(M, MM} * ELSO(MM)
NEXT MM
ELOAD(M) = X
NEXT M

QUOT = DET * Kl * K2 * 2 * PI * SUM
FOR K = 1 TO DOF
BLD(K) = BLD{K) + ELOAD(K) » QUOT
NEXT K
NEXT JJ
NEXT II
REM
REM *»» COMPUTE TOTAL BODYLOADS VECTQR #+*
REM
FOR M = ] TC DOF
IF G(M) = 0 THEN GOTO 1800
BDYLDS(G (M)} = BDYLDS(G(M)) + BLD(N)
NEXT M
IF 2 <> 1 AND ITER <> ITS THEN GOTO 2000
REM
REM *=*» UPDATE ELEMENT STRESSES AND STRAINS ww+
REN
SR{I, J) = SR(I, J) + SIGMA(1l) - ELSO(1)
ER{I, J) = ER(I, J) + EPS{1)
S2(I, J) = SZ (I, J) + SIGMA(2}, - ELSO(2)
EZ2(X, J) = EZ(I, J) + EPS(2)
TRZ(I, J) = TRZ{1, J) + SIGMA(3) - ELSO(J)
GRZ(I, J) = GRZ(I, J) 4 EPS(3)
ST(I, J} = ST(I, J| + SIGMA(4) - ELSO(4)
ET(I, J) - ET(I, J) + EPS(4)
Sl = SR(I, J)
$2 = ST(1, J)
§3 = s2(I, J)
S4 = TRZI(I, J)
SBAR = SQR(.5 * ((S1 - §2) * (S1 - S§2)
+ (82 - 83) * (S2 - 8$3) + (S3 - 581) * (83 - 81)
+ 6 * S4* 54
§1l = ER(I, J)
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S2 = ET(I, J)
$3 = E2(I, J)
$4 = GRZ (I, J)
EBAR = SQR(2 * ((S1 - S§2) * (Sl - 8§2)
4+ (52 - B3) * (52 - §3) + (53 -~ 81) * (83
+ 6 % 54 * 54))
PRINT $#3, USING “#44484¢80. 808480000800
PRINT #3, USING “#84824400. 0888008400048
NEXT J
NEXT I
IF 2 <> 1 AND ITER <> ITS THEN GOTO 50
PRINT #3, USING “##4"; ITER
NEXT Y
CHAIN "SUBFIN.EXE"

- 81)

: SBAR;
s EBAR






