e

e e e st el gt TS ST BN T

-

_sity sent us an inferior photocopy.

CANADIAN THESES

NOTICE

The quality of this microfiche is heavily dependent upon the
quality of the orignal thesis submitted for microfiiming. Every
eﬂonhasbeenmadetoensuremehlghestqualﬁyofreproduc-
tion posslble

It pages are missing, contact the uniyersity which granted the
degree. . .
Some pages may have indistinct pring especially if the original

pages were typed with a poor or it the univer- .

Previously oopyrtghted materials (journal atticles, publlshed
tests, etc.) are not filmed.

Reproductlon in full or in part of this film is governed by the/™
Canadian Copyright Act, R.S.C, 1.920, ¢. C-30.

> C <
" ¥
THIS DISSERTATION

> HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

/

NL-/!” {r.08/08)

' 7 , N \\\\. “
J# National Librgry natiorigle N

of Canadg § du .) -

\ F
: N Y - ,
Ottawa, ‘; // ,
K1A ON4 \ o !
. R \‘W/ﬁ'z/‘)

AVIS

La qualité de cette microfiche dépend grandement de la qualité .
de la thése soumise au microfilmage. Nous avons tout fait pour
assurer une qualité supérieure de reproduction. '

N S

S'iLmanque des pages, veuiliez communiquer avec I'univer-
sté qui a contéré le gradd’

La qualité d'impression de certaines pages peut laisser & °

désirer, surtout si les pages originales ont6té dactylographiées
4 I'aide d’un ruban usé ou sl 'université nous a fait parvenir

une photocopie de qualité inférieure.

Les documents qui font déja I'objet d'un droit d’auteur (articles
de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, méme partielle, de ce microfilm est soumise
4 la Lol canadienne sur le droit d’auteur, SRC 1970, ¢. C-30.

s

'

* LA THESE A ETE
MICROFILMEE TELLE QUE
'NOUS L'AVONS REGUE

N

Canad'é'

e . : v N

M -

Probabilistic Learning of. Boolean. Concepts

E 4

- . » ‘ . ‘) ’
‘g - ‘

- . .] .
Thomas Papadakis ~'' ~ |

A Thesis

$

‘-

in
The Depar tment
of

' Computer Science

Presented in Partial Fulfillment of the Reguirements
for the Degree of Master of Computer Science at

Concordia University
Montréal, Québec, Canada

June‘19eé

(© Thomas Papadakis, 1986

a8

Po.

v u.'mé':-’

v e

-

: Permission has been granted
b " to the National Library of
‘ Canada to microfilm this
. thesis and to lend or sell
v coples of the film.’

The "author {copyright owner)
has reserved other
publication rights, and
. neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

ISBN §-315-32231-4

o w

.o

L'autorisation a &t& accord@e

2 la, Biblioth&que nationale.

du Canada .de microfilmer
cétte thd3se et de pré8ter ou
"de vendre des exemplaires du
film. :

L'auteur (titulaire du droit
d'auteur) 'se réserve les
autres droits de publication;

ni la th@se ni de 1longs

axtrait's de celle-c¢ci ne
doivent @&tre imprimés ou
autrement reproduits “sans.son
. autorisation Bcrite.

/

J

r

/

B

tow

"y

[N

iii

"L e ABSTRACT . \
Probabilistic Learning of Boolean Concepts

Thomas Papadakis
: » <

The problem of boolean concept learning from examples”

is discussed in this thesis. L. G. Valiant's proposal to
consider approximate rather than exact‘learning\has been

adopted. o e

Valiant's algorithms learn in polynémial time an
épproximati&n to a boolean concept from e:ror—frgg or noisy
examples, when a bound on the number of 1literals per
disjunts/conjuct® is kpown. Thes; algorithms have been
considerably improved here. In the case of error-gyee

examples, our algorithms -are non-asymptotically faster than

Valiant's; in the case of noisy examples, they are both

- asymptotically éﬁd " non-asymptotically faster, and they can
v ‘ N

arso haqd}e”more noisy examples. :

13

)

New algorit

gkowledge of the A;;imum number of ' literals per

, disjunct/conjuct is known, have also been designed. 1In the

case of error-free examples, they are asymptotically as fast

ap ké;igs%Tﬁgfboolean concepts when no .
14

wai;v'“ .

<

oo : .

as Valiamt's; in the case .. qf/ noisy examples, a

user-specified pataméteﬁ détermings the probébility that

. . L . .
. . o ‘
they will be asymptotically ad .fast as Valiant's. .
o , \ N > .
o : : . . Ld s .- ,
3 . . .
(£ [‘. .
i
z | S N
i " ' :
l‘ ’
| . ")
» 4 »
¢ .. .
. . .
b
| ‘
. o 3 .
+ 4
! %,
K])
' .
. . . t -
4 -
\g\ ¢ s
. e
e, , L
1 .
YA ' -
. ‘
' > 5 .
L . .
Y [N i . -
r.“ , ‘,\:.
. , | = S L :
<, ‘ J\/J .
. - 4 '“J;‘i
- : . L)
. . ,
3 . - s-‘ a N N *
\ . Y - . @
o Sl g
. . . Vs ‘ .
. S {-_ -
i
’- i3
i . B

&

»
A
i
.
f gAY

1 wish to express my gratitude/to my supervisor, Prof.

-
D. K. Probst. His guidance and s ggestions throughout this .
research, as well as his patience, understanding, and advice

throught my most difficult moments at Concordia have been an

invaluable aid.

I also wish to express my deep appreciation to Prof.
V. S. Alagar, for everything he taught me -when I'was
working with him, and for /the encouragement he gave me on my

past and future plans. / .

I will be always grateful to.my high school math -

teacher, Mr.. A. atsoulakis, for the great 1love for

Mathematics he inspired in me.

-~
Sﬁécial 3 nks to my family for their moral support,
and to Mr. P./ Mylonakis for his help during my stay. in
Montreal. ‘

support of this research through N.S.E.R.C.

is also acknowledged. ,' »

o

.
. . . i
: N
. .
¢ -
& s
.
. - X
+ " - e
. . \ .
N »
. h R . -
M - i}
B

-
To Zo¢"n

.. ~
« ° >
. . © . .
» R
~ LI -
-y ’ -)
> K3 ..
. - \0
N .
© . .
w) o
. .
N v:.n-
i] .
4 r 4 .
3 .
i R
| - -
¥ .
] - <
: . <)
i :
i . 3
1 .
1 - - -
“r) P -t)
~ i oy .
.l] -
. . a,\ T

. .
.
: T
: - 3 N
L4 -
. ,
J. S~
< -
»
. .
. . .
&
2" L
. |
X .
. =)
. -
- R4
- ..
.
s .

. ———— b e s b e b i £ g e

#* -
- v - -2 B
: »
- ’,
- - < . -
' .
. P -
. ° . “@%
& . N B
- N - e
- . L e .
. - . . P
! -
l\ L ~ . -
- Ca - e -
¥ . . .
. . L3
.) 3 R
3 . -
- . .- -
3 . .
. -~ N
-
e T . \ :
- R
PR
-
¢ -
. O
R -~ . B LY
.) .
- -
. ot
- .
. . \ - .

Y

| TABLE OF CONTENTS .’

Chapter

-1. SOME MACHINE LEARNING CONTEXT

i .
1.1‘ Introductibn ° A. . L] . L . . L] L] ". * . . L] L4 -
‘1.2._Importanqe of Machine Learning . « « « + « + &

1.3; ﬁistory of Machiﬂe Learning . « o« < ¢ o o & ¢
. >) K4
1.4. Classificatign of Machine Learning Reaserch .

1.5. Learning -from EXamples « « « « o o o o o o & o

a3

‘1.6. NOISE o o o o v o o o o o o e v o o o0 o o«
i.?i Mitchéll'é Version Space « « + o o o o .‘; e
1:8. Problems in Léarnin§ fro%TExamples;

Valiant's Ideét.l. . . ,L: A R .
1.9. Analysis of ALGOrithms . + « « &« o s o o o« o &

1.10.Thesis Orgénization e e e e e e e e e e

lollnsummary e e o o & o & e s _n s & ‘- e o s & @

3

FOR THE AN IS OF OUR ALGORITHMS

2.1.\Int;o:3§§£on e s o e 4 e s s s s s & e & e o o

Z.2. Preliminaries . . « & o &+ & o o o 0
2.2.1. Asymptotic Notation . . « « « o o « » &
2.2,2.'B$hnd§ of the Logarithmic function . .

% .
2.2.3. The Quadratic Inequality .« « « ¢ « « &

EXY
\

* %

2. MATHEMATICAL PRELIMINARIES AND FUNDAMENTAL THEOREMS

10

14

is .
20

23
27

3

2.

34
35
35
38

38

e B .

2.3, useful Combinatorial Bounds .. . RS

2.4.‘ Summaty - . [[L] L] . 'o . L4 - . - 'q“o .X .

3. BOOLEAN CONCEPT (:.EM}NING
) 3.1, INEEOGUCEION o « o v o 4 b b Fieie e e e
3.2, Bog}eaq~ﬁlgebr§ Terminology '.‘(. ; . ot
3.3. Important Theorems L e et e e e e e
3.4. Learnability . :“. e e e e e e e
| 3.4.1. Necessity for Approximate Learning
: 3.4.2. Error-Free Example Generators . % .

' 3.4.3. Noisy Exampie Generators .-. . . e
3.4.4. Definitions of Learnability . . . :

3550 smary s » L] . » . - . L] 'l . o] o o » .

¢

4. k-CONCEPT LLARNING; KNOWN k;

'ONE ERROR-FREE EXAMPLE GENERATOR

3 4.1,

. 4.2.
L.
4.4.

4.5.

‘Introduction « « ¢ ¢ ¢ 40w e 000 .
“Tractability of k-CNF and k-DNF Learning .
Example of k-CNF.Leérning from PEs . . .
k-CNF Learning from Pﬁs~ s e e e e s e o

Exahple of k~DNF Learning from NEs

4.6. k-DNF Learning from NES -+ « « o « + « + .
7. Discussion v e 0 e ..
4.8. SUMMATLY + &+ & & & & & e e e e e

I3

38
Et
-62

64
65
74
79
79
83
85
88

92

- 94
95
101

104

115
118
121
128

5.1.
5.2.
5.3.
5.4.
5.5.

. 5.5.2. Bounds of r and h, .

5.6.

5.7,

TWO ERROR-FREEL EXAMPLE GENERATORS

6.1,

6.2,

6.3.

" 6.4.

6.5.
6.6

6.7.
6.8.
6.9.

i ix)
. . yk
. 5. k-=CONCEPT LEARNING; KNOWN k; » ‘
‘ ' i . a . . .
ONE NOISY EXAMPLE GENERATOR - . vl .

-

IntroductiOl:l . [. L] '. . e . [- a‘ - ‘. . . L] L] »

P

Example of k-CNF Learning fréﬁ PES v « ¢« ¢« o o o

kJENF Learning Algorithm from PEs 4 . .
: l ‘ o Al .

Output of k-CNF Learning Algorithm from PEs . .

Discussion on k-CNF Learning Algorithm from ‘PEs

5.5-1. ChOiC%Of d /and M . . . - . ¢ . 3 K » . L]

e e LI] . L] * . . .

1

*5.5.3, Conservatism of Mk. « ¢ o v s v e e e e

Time complexity of k?FNF'Learning Algorithm.

:!om PES . . 7‘ . (3 ’- - . . [:.“o . . q'c c. - .. “

Improvements:6f~ouf Algoriéﬁmléver Valiangﬂs,.‘.
5.8. k-DNF Learnéng FXOM NES & o o % o o o o o o &
5.9. Summary Cu e e e e e e e e e e e e
. ' sy . !
k-CONCEPT LEARNING; UNKNOWN k; K

IntrOdﬁCtion . . . » . . L] o ¢ L] LR) « % . - . ..

First Ideas :\ - L] L4 .' @ L] . ._ - L L] .~ . " L] -« L]
CNF Learning = Case I . & o o o o o s s = o« & &

DRF Learning

Case I .\ L L] L .. L L] L] L] .. L4 . .

CNF/DNF Learning\— Case I :'o . l- ® s o s e o ‘o

CNF Leatning - Case II s o & @ e« o o s o 8 e o
Comparison of Cases I and II of CNF Learning . .

DNF Leatning"’ Case II e & & & & & & & ‘e 8 e o @

o

CNF/DNF Learning - Case II

r

-o

5.10-Summary o e ® o o ‘e o = » L L I S

)

<

130
131
135
137
147
147

150

153

154
165

170
174

176

177

181

192
197

199

205
éOB
211
214

.

e
. ///Z x
7. k-CONCEPT LBARNING ’UNKNOWN k;

\ ONE ERRORHFREE AND ONE NOISY EXAMPLE 'GENERATOR

;:9 7.3. DNF Learning from Noisy PEs - Case I .

s

" 8.2, CNF Learning

9.

'8.3. DNF Learhing

7.1. Introduction ..

7:2..CNF Learning. from Noisy NEs -. Case 1.

©
[

* -

7.4. CNF Learning from Noisy NEs - Case

7.5. DNF Learnirg from Noisy PEs - Case

7.6. Discussion .

74<7. Summary

k-CONCEPT LEARNING;

Twoxsar EXAMPLE GENERATORS

8.1. Introduction . .

8.4. CNF'Learning,

8.5. DNF learning

8.6. Summary . o'e

_CONCLUSION

9.1. Introduct;oﬁ o o

9.2. Thesis Resulfs

9.3, Further Research

’9-4'fsummary' e v 8 Tw.

REFERENCES . « o o « + &

A

_Case I
Case I

Case I1

]
[e]
o

~{n
®
-4
-4

. . .

LN

UNKNOWN k;

.
)

o

11
11

. e

217
218

227
230

24;' .
245
246

‘248
249

g

256

260
1272
277

279
279

281
283

284

P N T LF ~

Nt — Ay b3 L

. //V\q .

" CHAPTER 1 .

~zU,- ’ E) : -~

. ! d O
W ’ *

~ SOME MACHINE LEARNING CONTEXT) : -
) v
"1.1. Introduction ° = o l/f”“\;

. ﬁé | |
Human intelligence, one of the central'thepes in many -
disciplines jlike philosophy. psychology,'énd anthropology,
has' been a very interesting and intric;te subject of study
éince the time of the ggciént éreeks. Altho%gp'no pneéise‘
and universally acceptable definition of it has been given,
most people ggrée that intelligegcerconsisys pf the ability
to understand a language, to develop..personal beliéfs, to
learn and bomprehené. to orgahiz;“!tﬁuited knowledge, to
rgason logicaiiy and draw conclusions, to‘jﬁdqe, Fo set up

goals . and plans to achieve thém, to invent and to create'byf

‘usinaafacquired knowledge as well as / intuition. and

.
0y

inspiration, and so on.

Since the human species is,,bgﬁpature, ambitious it
triéd, in addiéion of -just studying intelligence, to also
generate/reproduce it. The D}ssue of whetker the °
qonétrucﬁion of artifacts as in;elli;;;\\és human’ beings is
feasible (they should be able toxcompose like aeeghoveﬁ, or

’
r

’

) 1

>/

[

: Y u- ' ‘)
o« s zk') ’ . ’ o
. ¢ ¢ } . . \«\ \

T &o'science 1iké Newton] or even desirable (they shoyld have

-

the’ freedom to use thexr‘1ntelligence to become notor1ous
(g

criminals - whatever that means) .is debataple. However, wézﬁ?\

A
— ~ FS

Aw111 notr discuss it here®, What everyone seems“to agree on ,

o

is that conputer systels more iqﬁellxgent that todéy s can

4

be constructed this is the.target of under901ng-research.

4
¢
L4

Since ‘learning is one of the characteristics of

intelligence, it follows that Artificial Intelligence (AI),

the part of Computer Science concerned with
designing intelligent#computer systems; S

((BAFEI81], p. 3)

“

&

©

. -~is, among .others, concérned Jﬁgth the éxploration . of

'(machine) learning. & o ..

- ~

‘ / ' .
’ * N * *
An -introduction to the machine learning field f, from

r

the AI viewpoint, is given in‘this chapter. That will give

o ']
——;Q- ----- - * , @

* The feasibxlxty of °’ maqhine' intellxgence was first .

extens1ve1y digcussed by Allan ?ﬁrzng ([TURINSO]) ~in ;950;
he was quick to recognizef/gossible objections. Herbert

®

Dreyfus became its most famous opponent in the early 70‘
([DREYF72]). Pamela McCordugk gave a fair and entertaining
tr:etment & the subject ({MCCOR79], Chapters 8 and 9).."

*# See also [SCHANBZ] for an general d1scussion on machine

."k

......

- - - . - . - r e e a ea - BN S
3 g
. 1

L

the context of our thesis' work, which is 'on machine

-~

vlearniné“-

o

The importance of machine learning is exéiaineﬁ in

: %, . ’ T a ?
Section 1.2, and its history is briegly_sketéhqd dn” Section

1.3.: A faxonomy of machine Iearning;tgseargh is'given in

. . . ' / . '
Section 1.4, wheré. the category‘of "learning frgg examples”

is identified to be the one in which, our work falls. Next,

in Secfiqn ‘1.5, this ‘category of machine learnihé 'is

presented in more cdetail, after beihg narrowed. down to the-

3

sub-category of "singlé concept learning from examples”;

this is the exact kind of learning our algorithms perform.

The issue of noisy data is discussed next in Section 1.6.

A ’
" ’
,

Mitchell's version space method, providing a general

framework for the description and comparison of mény'

learning algorithms, is é}scugsgd' tn .Section 1.7. L. G.
Valiant's pew idea for 1ea£ing from examples is stated in

Section 1.8;, this is the starting pbint,d% our -work..
. . . 4

- N
i

Valiant gave a great emphasis "to the discovery of

polynomial time lé&}ning algorithms. The issue therefore of

[}

the analysis of algorithms comes into Ehe scene, and is

»
discussed in Section 1.9.

'S

-

! The. thesis' organization is finally outlined in Section

1,10, and a' summary of Chapter 1 is given in‘Seption 1.11. ‘=
/ . .
[\ o .

N

;
.
»
‘ /\ ‘

-
ks

sty

o~

1l.2. Imﬁbrtance of Machine Learning

Ve s T

[d

o [

/4%e 1mportance of machine learning" will be described
"ih the context of each of its primary research areas. Those

areas are the follow1ng. v N

1. The traneforma&ioﬁ of knowledge of humans into

-~

“b
owledge usable by expert systems. An expert system**

performs . tasks like medical diagnosis, . mineral
exploration, or VLSI design, which wrdinarily require
human i;telligence. It achieves that by maintaining a
knowledge base, where known facts ais stored, and by
'applying a set of inference rules to this knowledge,
bete;mining in this way its next action.)

{

Although thé knowledge stored in tﬁe knowiedge

=

” s
base of an expert,system can be represenﬁgd in many

dxfferent forms,; human- knowledge is not prepackaged in

any of those forms. it is not even known where and ow‘ . ‘
)

'\
. s
o o e e g N

* The value of“machine learning was fir;t exrensively' and
skeptically disc?ssed’py H. Simon ([SIMON83]f in 1983. Thg
same year, P, Scott ([SCOTT83]) gave an answer to Simon's
views. ‘

*;.See [YAMAX84], or any Al text, for an introduction to the

expert systems field. k\

v

. Ve
human knowledge is stored in the brain, and it is

difficult to ttansform such knowledge into
machine-usable form. Such‘a traﬁsformation is nowadays
done by Knowledge Engineers. The question therefore is
whether maghines can take on (part of) the burden of'
this job. 1f 'machineﬁ can learn (i.e. transform
e knowleoﬁ!h, then more- sophlstlcated expert systems ‘'will
be -constructable, and theréfore, less ¢ erieal work

- o s
will be left for hurlans.

The field of expert systems design. has faced an
. enormous commercialization the last five years. Many
companies in ' the U.S.A., Japan, and Europe have

launched 'multi-million programs to develop"this

e even F.. Hayes-Roth, one of the

expert systems experts, admits that

whéh~&ompared,with a human expert, today's
'expezt system appears: narrow, shallow, and
brittle, lacking the human expert' a _breadth
of knoulédge and understanding of fundamental
principles,

‘('HAYES84], p. 264)

- 14

it can be expected that significant results will be

e T T »

‘*. See [HAYESB4] for a discussion of the state of the art and

the future of expert systems. -

3

o

¢ Yo

e

-

LSRRI Rl WV e gt S iy

.

£l

II.

R

obtained in the near future. °

The exploration of thé space of solvable learning

groblems.'kThat is to say, can the "learnable"™ be
reasonably defined, in the same way that "computable®™ -
was defined\in 1971 by Stephen Cook ([{GAJOH79], Chapter

2)? Can some (non-)learnable problems He identified,

in the same way that some NP-complete problems .wbre' -

; ‘dienxif{gq . ([GAJOH79]), Appendix)? Is there anything .

(t same way that apggoximaée solutions were derived
* v .

III,

\whith can be done about the non-learnable problems, in

for the NP-complete problems (%BAASE?S], Chapter 7)?
v
- To the best of our knowledfe, L. G. Valiant's
work” ([VALIA84a), [VALIA84b], and [VALIA85]) is the
first to address issues of this kind,” and so far it

hasn't been referred to by any other researcher.

The K computer simulation of the human learning process.

Ay

Even the most basic form of learning, that of .
memorizing, is done differently by computers and by
humans; for a computer it is equally‘easy to mémorize a
poem and a page from the telephone directory, but far a
persdﬁ'it is not. - } L=

Fruitful studies in this area of machine learning

may enable psychologists to - test, establigh, and

-

2%

wn, s
3oy

™~

develop new theories, and therefore, to better
understand learning mechanisms. Sﬁbsequently, such an
understanding may help, on the one hané, 9ducators to
improve people's learning performance, and on éhe othgt
hand, computer scientists ¢to derive better 1learning

algoFithms, or to realize the limitations.of learning.

Magy distinguished scientists consider this area

of machine learning to be very important. . Herber}
, . R .
Simon, for example, who received the Nobel Prize in

Econonics in 1978, ag[;;1i‘aﬁ the ACM Turing award in, -

- 1975, ,and ‘'who has | q156 done significant work in

) > je

cégnitive psychology, AI, pSIitical science, management
N B ‘
studies, operations research, etc. ([RALSTS83],

t

P 13243, believes that

-

a very ‘high priority [should be given] ‘%:o
research aimed at simulating, and thereby

uﬂderstaﬁding, human learning.

.
3

([SIMON83], p. 35) .

o

a8

anfortunately, not much attention has been paid to-this
area, or, at least, no éignificant :esultéahavg been
obtained. This is proQabfy due to the fack that hAI
alone is .not sufficient to advance the field; the
co?tributiop of - (at least) cognitive psyéhology is

essential. ‘ :]

8

~r

Our thesis' work falls‘clearly into category TII. It

improves and extends L. G. V§ iant's ideas, to be outiined

e

in Section 1.8. ' o~
!

‘ ’ L)

1.3. History of Machine Learning

/

¥

A brief history of machine learﬁing is given in this
section. A more detailed history can be found in [CAMIMS83],

' :and an extensive bibliography, containing 572 references

appearing before 1982, can be found in [UTNUD83]. For this
reason, not manf references have been included in this
/ .

séction, except if ihey are cornegstones of machine

learning, or if they are not included in [CAMIMB3] ‘anQ//

2

[uTNUD83]. A bibliography containing recent (iveh
appearing.afﬁer 1982) references is expected to be found, in

‘[MICAMB6] . : A

Y

The 30-year old(higtory of “machine learning can be
y

-

divided into three periods.

P

//
/

The first period started in the ‘late 50's, and was the

most ambitious one. Learning systems were simulating

humans' neural networks; they were starting with simple

RN

networks (i.e. with\no knowledge): and they were trying to
ﬁodify them towards an optimal organization (i.e. ‘théy were
£rying to learn), by properly reacting to stimuli. The most
successful attem%t of this kind was Rosenblatt's Perceptrons
([ROSEN58]) . Although this approach didn't get anywhere, it
generated many useful ideas and helped the development of
the fields of pattern recodnition and control theory in the

mid 60's.

o
&

The second perioéd of machine learnfng started in thew
late 60's, and was mainly concerned with symbolic object
learning from examples, independently of the application
domain. P. H.n Winston's Ph.D. thesis (original version in
[WINST70]; updated version in [WINST84], Chaptq? 11)‘in
1970, marked the beginqing of thi;,efa, which ﬁasn't come to
its end yet*. “

The third peried of machine learning started in the
late 70's, and is concerned with the development of
knowlédge acquisition tools for expetg systeﬁs. As already

discussed in Section 1.2, this era of machine learning has

not even reached its zenith yet. ‘ .

%

* A review of some learning systems of the 70's &?’given in
[MICHIB2]. The work done in Edinburgh in the early 80's is

described in [MICHIS84].

1.4. Classification of Machine Learning Research
“ , ’ A \ ° -

~

. The several kinds of machine learning ‘are presented in

this section, so that the context of our work will become

e g IR N e il el o

e
more clear. 7; a]
-
. ‘]: » .
" : \) . The classification of “machine 1learning can be done,
r R
-3

among Qthers, along the follow%gg two directions.

A
c I. According to the acquired knowledgqe's representation.
' “w

The knowledge acquired by a learningjbsystem may ‘be
e

3

>
e o I~

represented by employing any of the known knowledge
representation techniques. Since the topic of knowledge
representation* is, by itself, a research topic in aI,
we will not get into any details here. We will restrict
.ourselves fo mentioning that production rulgs, feature
. vectors, for@al logic (e.g. propositional logic, first

order predicate logic, etc.), scripts and frames, and

semantic networks are the most well-known knowledge

-

representation techniques. Several learning systems

[P

N

exist, acquiring knowledge in each of them, as- well as

‘e in many other hybrid representations**. In addition to

* See [BAFEI81), pp. 141-222, for an introduction to the
knowledge representation area.
** Michalski's Annotated , Predicate Calculus ([MICHA83]) is

such an example. , . "

bk e,

& v e Sy o 3y o

II1.

1 11

these, there exist systems learning parameters?® of
algebraic expreséions, decision trees, formal grammars,

automata, etc.

The Kknowledge representation form used in our

[

thesis is propositional logic.. Admittedly, this is not

a very powerful knowledge representation. However, it

was chosen Dbecause, although it is the simplest

representation form, its study is already quite
, ‘

complicated, as will become apparent later on.

According to the learning strategy used {or

equivalently, according to the difference between the
representations of the teacher's and the learner's
knowledge). The following categories exist.

'3

(a) Rote learning. This is simple information stbtage,

i.e. n knowiedge transformation is performed by
the leStning syséem. Alﬁhough someone might argue
that this should’ not even been considered as
learning, a. Samuél, with his checkers-playing

prgﬁram (ISAMUE59] and [SAMUE67]), has shown that

this may be duite useful. 1Instead of his program ‘

merely searching a few moves ahead in order to
evaluate the board positions resulting from all

possible -moves. (and therefore, in order to cetermine

its best next move), his program was also recordiné.

]

o

-

L e e,

(b)

&

I , it

the current board position aloﬁg with its
evaluation. Subsequently, when the same. board
positien was en;euntered, his program used the
eQaluation already computed. In th;s way, the
actual number of moves his program' Qae‘ searching

ahead was ’increasing. Samuel's program becane

finally a o,

/

- - " /
rather better-than-average novi®e, but
definitely not . . . an expert. ,\g;

(ISAMUES8], p. 218)

e
/

Léarning by being told (or learning/ from

instruct}oﬂ). This can be applied when the
ﬁnowledge provided by the teacher is of higher level

‘(more general) than.that used bj the learner. For
r

example, when Mostow's Foo | program ([MOSTO83]),
knowing the rules of playing the card game of

et

' Hearts, 'is given the advice "avoid taking points”,

(c)

it can operationalize it ‘into (it can 1learn) the

rule "play lower than the highest card so far in the

suit led", whxch is dlrectly executable, in contrast

to the given advice,

Learning by analegy. ' This can be applied when

analogiee are detected between new desired kndwledge

‘énd already possessed knowledgé. Po} example, if

 ®

»

‘ "7.' .) ' 13

—_—

T , . - someone knows how to rent a' bike (search yellow

.) pages, call for information, search for money,
B | ‘ ¢ . N

. etc.), and (s)he wants to rent a car, then (s)he can

reason by analogy in order to learn the new task.

v
o
-

This field of machine learning is very new; the

’ " ' First interesting paper ([WINST80]) appeared in

s;

‘ A med

3
E bt - December 1980. So far, no significant results have
t
t
¢

A §§§23 been reported in this area. o L%

'

(d) Learning from examﬁiés. This can be épplied when
, the knowledge provided by the teacher is of lower:
.. ..level than thﬁé uséd by the learqu. Consider, for
| éxample, vthe case in ich several examples and/or
. . , ‘ counterexamples- of conneéted graphs'"(in discrete
‘ mathematics) or of S-card™hgnds containing at least
one péir {in poker) are shown to a 1earne£:‘ The
learner mnqight want to genq;alizg"them, i,e; to

. . _learn what a connected graph is and what a pair is.

o e e

' This is the kind of leaining performedilin our

w

thesis, and for this reason it is examined in more

detail in the next section.

-
0

z ‘ : ¢’

P

i. ‘(e) Learning from observation and discovery {(also called\

unsupervised lehrning)y This is the most difficult

kind of learning,. since the 1learner acquires
\ ® . .,
. Co y S .) ’ 59,
\ e 2

.
b e A A

N

T A o s

M X o
studied area of machine learnting, and therefore, any attempt:

14
. -
kncwledg% without thefbelp of any teacher. The most
* successful prog;am of . this kind in Lenat's AM
([LENAT82}), which re-discovered quite a lot of

number'theo;y resuitq; having started only with some

basic concepts of set ‘theory.
, o . . ‘ 5
\ * k] e

4

1.5. ‘'Learning from'Examples',

Learning from examples is, by'faf,)theﬁhost extensively

to review it adequately would be ¢ vain. The interested’

reaaervis referred to [COFEI82], “[COQKBBS], and [LACAR84])

for an introduction and a critical survey; [FORSY84] also

. discusses the same subjec%&w) . s

learn
learn

topic

oL

-

In this section, the restricted area of single concept
ing from examples (thereafter referred .sihpiy as:
ing from $¥ampies) will be discussed, sinée{fhis is the -

I

of dur own work,

-

I3

Learning from examples {s defined, as the task in whicﬁ

-

given a set of examplés ané coun;efexamples of a
concept, a learner induces a general concept
descript?on that deéscribes all of t?e examples and ’
none of the couaterexamples.

‘([cAMIM83), p. 9)

o~
L et
e PN

Oy

- ' o ’)
e 15 . =~

rd

The eiamples of the isovg définiﬁion are usually called -l '

positive examplés (PEs), and the counteréxamplesanegative
examples (NEs). An example is either a PE or a NE. . ° ‘

’> Clearly, learning from examples is a form of inductive
- . * A
learning,. since it processes by hypothesizingxa‘ggggtﬁiﬂf

description from eiq?ples. Ais such, fi,_does‘ not . preserve

k3

truth.

. . ’
Clearly also, the above definitiol preassumes that

thereaéxiSt both an instance langquage, in which all examples :

-are describable, and a ggnezalization'laggiage) in which all”

- candidate concepts to be learned are describable.- .

~ - ,
.
L . N q
¢ N

The most common use of iearning from examples 1is that

of classificaiion; a machine is supposed to learn a concept Q

, - from a set of training instances,‘so that it can[later on;‘ i

classify an instance (not necessarily encountered before) as

a positive or a negative one. pata compression is another

candidate application domain 'of learning from examples,

~

malthough;hfj\fﬁr; nobody has used }eérning for this‘purposeé
Y () .o -) . ’
; -+ H. S8imon and G. Lea first observed ([g}LEA7W]) that

"learning from examples can be viewed as a search of the rule

' space (Or -hypothesis space), i.e. the set of all candidate

céncepts to be 1learned, guided by training PEs and NEs,

; drawn from the instance space. All recent work on Iearqingw e

° ”
<

\j B

e

|
Py

.

. >
from exampless views the learning problem as a 'sea;ch-
problem. . : .

» B ..
* . N [

Learning from examples has aévanced 'Elong several

»

N di;Eétions, depending on the way each researcher resolved

the numerous issues which’exist in the field.

o)

N

v

\ representation -of the examples and the concepts. Which is

the in;tance language? wWhich is the generaiization

is the instance languagg a subset of the generalization

g

language®? 1Is the generalization langudge biased, 1i.e.

does it describe onfy a proper subset of all existing

~

*k '
concepts ? 1If yes, how is‘the problem of new terms going
i 3
{ , . to be solved, i.e. _how can the rule space be augmented so.
| T ~
i
}
1

- e o —— -

° e /”[UTMITB?] it is proposed that the learning program itself

, -) ,shodld select the biases. >

'Some of these issues are concerned with the

-

language? 1Is the single-representation trick employed, f.e.’

* When the single representationittick is employed, the :ulé‘

Lt space can be searched more easily.([COFEI82], pp. 368-369).
;' T ‘. ** The use of aagfased generalization lapgnage' reduces the;
: . size of - the rule space to be searched, but it may cause
8 ; - Y problems if the coﬁéept t6 be learned is not‘ contained . in -
' the (reduced) rule space. The issue of selecting -biases by.
. \;/f ‘ hand ’is distussed in [MﬁTCHéO]; .in‘ (UTGOF83] ‘and in.

¢

that the concept to be learned will be included in it?”

Some other Vissues in 1earniﬂg from gxamples are
comcerned wifh% tye way examples become availab}e to thg‘
leagnﬁrf. Are only PEs, 3r.on1y Nﬁ§, or both PEs ahd NEs
available to the learner? 1Is there an, ORACLE, ,i.e. does’

the learner havg; tﬁe freedom to ask' the teachér whether a

certain instance is a PL or a NC, and can the teacher give -

an answer**? Is the order of'presentation of the examples
important? can the exa&pleé be‘any, examples, or do thy
have to be il{ustrati;e examples? Are all the examples
available at once, fhatwié} can qﬁe learner exaﬁiﬁg any 6f

. P , . . - .
them at any time, or are they shown one by oqs?. . []

Thé gene?alization language (i.e.’. propositional logicl
uged in our worktig biased. 1In Chapteré 4'and,5’it will be
guaraqteed thag the generalization language considered can
describe éhe concept to be learned, but in Chapters 6, 17,
and 8 the problem of the new termé will be addressed. Our
learning ‘algorithms have no access to any ORACLES.

Depending also on the learning task, only PEs, or only anf

-

- . > G - o - =

their own right, are discuésed in [RISSL83].
** The .availabiltiy of' ORACLEs can speed up/ﬁhe search
process; if-the learner asks the proper question, (s)he can

eliminate ﬁalf‘gf the rule space.

3

. , . , _
or both PEs and NEs may be required. The ordler in which the

examples are presented is imméterial, and no rgétrictions*
fonterning their illustrativity are imposed. h Fidal;y, our
.learning algorithms need never to re-examine an example

already seen. S | n
. -~ ’ .

1.6, Noise .

e

>

-

- One more issue, concerning the task of learning .from

-

examples, is that of the presence or not of noise. Due to
its great importance, it .is ' examined separately in - this
section. .

v

: . It can be easily - realized that in real-life
’ ~applicaiions, PLs anc NEs'presented to a learning system are

r 1

‘ - not expected to be etrér-frée. Depending on the particular .

A S

application domain of the learping aigorithm,fﬁhe sources of

3.
o .
e
1]
o
L&
<
N
T
<
L]
g
2]
3
n
=]
o
<
c.
(1]
(2]
e
o
td-
(1]
(¢}
"
e
<
(1]
[N
3
[e)
jo o
o]
~
1
Q
cr
[0
[N
N
[
=
[Tel

o
o]
o
"~
0
[¢]
o
m -
0
3
[11]
3
[+
"
(n
3
-
h
(o]
~
1]
3
v
=
ge!
’-—l
1]
-
o)
"
-
=2
(1]
.
3
o)
L
o
[}
€
"
=)

- -+ . listing .the symptoms of a disease; errors may be physically

‘gé;eratéd oyéi a transmissioh line; maliciously noisy data
< e : may Sé: fed into a sistem by an enemy; and if something is
o inéorréctly léarned and it is going to be uged’ for future

-

- know;édge acguisition, it 'is going to affect the system's

=~ behavior.

S .) . - -
4 .

[ST R ORI
.

‘'which approximate learning can be performed,

o

The lagt point is worth emphasizing. Since . not too
many thingé can be learned from scratch, the knéwiedge base
of ah expert system is gradually increasing; always, a large
amount of knowledge already possessed by th; system is used
to bbtain a new, small piece of knowledge. For exanple, a
system may be first taught the c0ncePt of a "pai}"-in poker,
‘and ihen it may use this knoyledge to learn the concept of a
"full® (three".of a kind ahd' a pair). ' If errors are’

introduced when fhehsysteﬁ is learning the "pair™ concept,

~then the "full" cohcept (to be learned subséquéntly) will be

uhavbidably‘affected. In cases like that, the study of a
system's behavior in the preéque of noise, gives

information about error propagation inside the syétem.

\i&i'“égz;ough the need for research in learning from noisy

data has been acknowledged a loné “time ago,+it is only

recently'&hat some pa;tialtresults_ have been repprted by

Quinlén {[QUINLB3]} and Segen ([SEGEN85}). L. G

]

also,_stgdied the problem of boolean concept 1ledrning fréﬁ

noisy data ([VALIA85]). He determined the co ditibné under:

found that his algorithms take polynomial .

Valiant
M

\

“

and 4he .also ‘

4

[v - -
) ’ M it T ¢
AT e e .
o8 - v
S '
i

.20 ' v

l.7.— Mitchell's Version Space

T. M. Mitchell's Ph.D. work (first version in
[MITCH77] and [MITCH79); more polished version in [MITCH82])
“is descrited in this section, since it provides a unified
. framework for descrihing and coﬁparing several learning
: algorithms. It will be used in Chaptér 4 to describe our
stated algorithms in a different way, and also- to explore

other possible learning strategies.

r

Mitchell observe that any rule space is partially
ordered by the "more-géneral-than" rélétion; a concept Cl is

: more-general-than a concept C2 if and only if all PLs of\cz

are also PEs of C,, ' “

¢
<

As an example, chnsider the case in which each instance
7
is a ball which

1i) is either large or small, and

S (ii) has two hemispheres, each of them painted ei

v L

' or red.
Every such instanée can be cescribed by a ériplet,' sﬁch as
{blue, red, 1large} (which is equal to qred, blue, largel),
or {b;ue, blue, smali}. The rule space is described uby
«~ similar tr%plets, with the adéitional freedém that a * may
appeér in any of the three places, indicatiné tpat,the color
or the size o} the ball is insignificant. The partially
ordered rule space is shown in F%gdre 1.1. Noticé that the
a.') \ ' \F

-

21

generélization language 18 biased, since the rule 'béth
hemispheres have the same color"™ is not included in the rule
space, Clearly also, the single-represéentation trick has
been employed. |

most
. S gpecific -
blue - blue red fﬂ‘ i red
blue red red : | {red
! small small AL large

red

.

blue
*

NI

small

small

* l) most
. * general

~

Figure 1l.1. Delimiting sets S and G of version space.

*

. The partial ordéring of the rule space allows a very

. compact representation of the (possibly 1argef set of all .

LS

B ey s

%
.: ’ N L f’
plausible (i.e. candidate to be learned) rules. “This is

achieved by wusing the set G of the most general rules, and’

the set S of the most specific rules. For example, .if the

* shaded rules of Figure 1.1 form the set of all plausible

rules, then this set can’be represented by the 2-element set

G an¢ the l-element set $, also shown in Figure 1.1.

’ @itchell's learning method consists of maintaining the

sets G and S, delimiting the version space, which is nothing

but the set “of all rules consistent with all ‘observed

instances. G and § are initialized to the set of all

instances and to the null set, respectively, and they are

. updated only when absolutely necessary. If a PE (NE), which

is not contalned (is contained) in some element of”}t(G), is .

‘seen, then the eléﬁents of S (G) are generalized

(spécialized) as lxttlg as possible, so that the new PE (NE)
is contained (is not contained) jin the updated § (G). What
is very important is that each PE (NE) always causes the
most conservative generalization (specializatign). . For
example, the PE {blue, red, large] will result in the § of

Figure 1.1, whereas the NC {blug, blue, small} will result

- in the G of Figure 1.1,

Thigi algorithm is practical only vhen an efficient

_matching test of an instance and a rule exists, and when an

A

efficient computation of - the "more—general-than" relation

betwed//two rules can be made. Both of \those requlrements

o I P ”-:\l S S s

hn
e .w«emwnwm'v'ﬂ““‘} -
.

23

are fulfilled by the example of figu;e 1.1; the first one is
fulfilled because of the single-representation trick

employed, and the second one because of the generalization

lauguage'ﬁsed. Clearly also, the algorithm is applicable °

only when the concept to be lea:neﬁ can be expressed in the

generalization language used.

The main advantages of this algorithm is that its

A |

output, § and G, gives a concise representation of all

plausible answers, it never needs to backtrack, and its’

performance does not dgpedq on the order of the presentation
of the examples. Clearlylthough, it will not do well if the

examples are noisy. . »

1.8. Problems in Learning from Examples; Valiant's Idea

In Section 1.5 it. was stated that 1learning from
examples can be viewed as a search of the rule space. ; Most

of the_wérk done by 1984 was concerned with the improvement

-of those search methods. Thé ultimate goal was always to

findg

- the unique concept 1in the rule space that best
covers all of the positive and none of' the

negative instances.

a

G

([COFEIB2], p. 383)

*

5, o

e

. -
. . oot TRV RY L (AT LR -
e S Y e AT ez e 7 X T ek Gl e h IR

24 ! \
Moreover,

most work to date ’[;.e. 1982] assumes that if
éxactly one

2

enough instances are .presented,
©

concept exists that is consiftent with the

training instances. . i

. . ‘ ([COFEIB2],p. 383)

However , in most of the cases, a hugé rule space has to
be searched, and therefore, the "enough instances" of the
guotation above are actually "too many". That results'in a
prohibitively large execution time réqﬁired by any search
method. Since that was realizgd guite early, not much

attention was paid to finding and comparing the time

2 N 3 . H * * M
complexities of various search methods ; even the fastest

algorithm ‘was quite slow. The -compgrison of different
learniﬁg algoritﬁms {(equivalently: search methods) was done,
if at all, in terms of other issues. T. M. -Mitchell, for
example, suggésted tihat,o~ ' ;
.in comparing altetnatiéé.sttategies,‘;he importqﬁt
issues concern capabilities [e.q. gbﬁlity‘.ﬁo
detect when the concept has been learnedi' rather

~than efficiency:

([MITCH82], p. 218)
[|

s
- e - -

* [MITCH82] and [DIMIC83]‘are two of the few exceptions.

&1

ey g~ e
~

25 ' r

3

One of the attempts mad;'to{overcome the problem of the
‘xlargf ngmber "of examples required for learning was to
.petférm "learning from one example". DeJong's fexplaﬁatozy
.schema acguisition"™ technigue ([DéJONBB]); applicable to
natural 1;nguage understanding,bnintonfs "consﬁ;aint-based
generalization" ‘technique ([MINTO85])}, applicable to
game-playing, and Silver's method ([SILVES3]), ‘learning‘
equation solving techniques, are three exampiés of khis

A
kind- o . - -

LY v 47

y
y

If "learning from one example" sounds too impressive,
or even impossible, the researchers themselves have an

‘answer. ' DeJong confesses that His program o

can acquire a new concept based on only one input

a
.example . . . although latet;inputs may result in
refinement of learned concébts.
([DEJONB3], p. 462)
“Ninton also admits that - . ' .

S

" after ﬁéing tought approximately fifteen examples,
tﬁe program plays’ go-mdku at a ievel that is
better than novice, but not expert . . . it seems
likely that the program c&uld be brought to’ the
expert level - by tedtﬁfﬁg;it.perhaps fifteen more

t .examples. bi,’

(IMINTC®5], p. 14)

1 A

’ . 1
-
. .

1

-

L BN .
FRmter e yanie oy N O g » \
Lt Gl SR TN

' 26
. .
According to those statements, the idea of "learning °©

from one example" does not Seem to be brand new (this is not

related to the scienfific value of these papers, which is

not negligible). : [

NN i
’ ‘P
. .
’

4
s

: ' L. G. Valiant moved in a different direction. He
observed that the ggpblem he wanted to solve, that of

learning, a boolean expression from a set of examples,

re@uiréd'exponenéial time in the worst case. 8o, instead of
trying to optimlze the searchlng method, that is, instead of
trying to find a better expsgﬂ\tzal algorlthm he tr1ed"to
find a . "different, -but .st1ll reasonable, notion of’
’learnability, which would éllowkhim to learn (écéording to
his definition) a boolean expression in polynomial time,

.

What he proposed was that a boolean expression should

be considered to. be learned if just the most common PEs

(NCs) are included in (excluded from) it. That is to say, a

PE (NE) with very low probability to be seen does not have
to be included in (exclpded from) theé learned concept*.]

) \ o
Valiant®'s work is improved on and gexpanded in our.

thesis. ' ! . , ' a

~ r

—— - g e o S

- * [KOORP81] describes another, but finally unsuccessful,-

'attempt for approximate learning. R

- ~— —~— T — T ———————s
. . L) N .

et o e i 4 n mane B g e 1D e ——— e g = s v e g ey e e v ae v ey = v e

B TN —

. 27

1.9. /;naiysis of AlQorithms

»
[

.
According to what was stated near the end of the last

section, some sort of analysis of (the ne§3 algorithmé has
to be performed in order to determine whether the new

learning algorithms, following Valiant's idea, are "indeed

_ better than the old ones.. Several issues concerning the

énal&sis of algorithms, Yg'é!heial, &re discussed in -this -’

section.f They provide ¢t «context of the -analysis of

\

algorithnis performed ih ouf thesis. ' *]
3o \.
N ' ; . (3 .‘ ' \ . . . 3
We tend to believe that no algorithm is useful .if it is:
not accompanied by an analysis, allowing its cqmparison with
other algorithms solving the same or similar problems.

13 . '
< - .
S
. - -

Many aspects of an algorithm c¢an " be gxamined * through
i AN .

?
its analysis. Here are some of them.

(a)“Time complexity. That is, the time required for -the

execution of the algorithm. ‘ ' e

(b) Space complexity. That is, the amount of storage

required for the execution of the algorithm. !

(c) Generality, or applicability. That is, ghe conditions
under which® the algorithm is applicable. Different
algorithms solving the same prohlem, for example, might
tolerate different amount of-noisé‘in their input data.

(d) Output cuality and rekiability. That is, the closeneés

. of an ‘approximate solution to thgﬂéxact solution(s), and'

~

the frequencthith which
< * B
solution = will. be produced. This . is ‘%@
! W

important for algorithm$ “solving difficult” problems

a correct or anfﬁ acceptable

Y

e

%ticularly
(e.g. primality test, graph problems, etc.). A fast
algorﬂ{;ﬁ giving a/the right answer 95% of the time, for
example; mi%gt'be preferred over a slow algorithm giving
the right answer 100% of the time.) |

Talking about the time complexity of an algorithm,
three cases are always distinguished.*

(a) Best-case. That is, the execution time réquired for' the
most favorable input, i.e. the minimum time within
which the algorithm can be coﬁpleted. -

(b) Average-case. That is, the average of- the exeéution
. .

times for all possible inputs. The computation of that

.'ssuﬁes knowledge of the distgibuéfén on the set of
” inputs. ‘ ‘
(c) wbrst-case. That 1is, the time required for the most
un?évorable input, i.e. the maximum ‘time required for

e

. the algorithm's execution. ~/”\\ .

* The 'definitions giwven here hold for deterministic

élgorithms; " for ﬁ?obabiligtic qlgprithms, i.el’ ~ for
algorithms making random‘ choice(s) at certain point(s) T

during their execution ([RABIN77] and [KARP77] are the .first
papers on this subject) diffgrent definitions have to be

given.

%
H
¢
t
¥
B

o

&

29 //;{

3

¥ e

The best-case time - complexity i not ‘of great

h . \ ' :
importance, for obvious reasons. ., TheY¥ worst-case time

complexity i; the one which shows the limitations of an
algorithm, whereas the averagé-case time complexity is- more
use%ﬁl, provided of course that the input dist;ibution is
known. | L a

The analysis of ’any of the four aspecés of an

algorithm, mentioned in the beginning of this section, can

be either theoretical or empirical.

To make an empirical analysis of an algorithm, one has
to gather some statistics about the actual execution time of
the algorithm, the spacé it used, etc., for several inputs, ~

On the other hand, to make a theoretical analysis of

“

.the time complexity of an algorithm, one has to express its

execg;ign time~in terms’ ot éﬁg’inguf size of the problem'
{e.qg. the number of integeré to be sq;ted, ‘or the
dimensions of two matrices to be mhltip}ie@), rather than in
real time, This is achieved by eXpressing the number of

basic operations {e.g. number of cqypaiisoné, or number of
. ,

<
multiplications of two integers) as a function of the input . -

size, for the best-, .the ‘average-, or the worst-case.

Similarly, to make a theoretical analysis Sf the space -

- complexity, the applicability, or the reliability of an

n

y Co ~

algorithm, one, has to expfegs reg:lts in terms of perhaps

30 n

several of the Eﬁput'q paramet®rs.

.) ;o
‘It is not to be thought however, either that both of -
"these analyses are applicable in M1 cases, or tﬁat both of”
them convey the same amount and quality of -infiormation.
et /
/o & empirical analysis will unavoidably be heéavily
dependent' on’ the algorithms's implementation, that is, on
the- computer and éhg programmf;g language used, the quality
‘of the cogé written, etc. A theoretical analysis, on the
other hand, will yield ﬁore elegant, concise, and genera}
results (in addition to beihg an intellectual activity
itséi@/. &here are ca;es! of A course, in which~ the
difficulty ef analyzing a degigned dlgorithm is propibitive.
In thgse cases an empirical analysis is (temporarily)
. justified. - ' -

2

N

Having now, discussed the four aspécts of an algorithm
which mighé be use;ully aﬁa;&zed,ﬂas well asughe two ways in.
which this analysis ‘can be performed, let's see uhichi
aspécts of our own algorithms have been énalyzed in this

thééis, and how this analysis has been pérformed.

. ar - -
ML

+

- s
A great emphasis has been given :3 the analysis of the
worst-case time'compleiity of oum algorithms; the analysis
of the average-case time complexity:cannot be done, since\hq

% N G . . : ’
‘particular inputdistribution is assumed, and the best-case

B Y

analysis is of no interest.

e
s
\

Both the applicability -and the reliability of our

»

algorithms have also been studied, since without them even”

the description of the aléorithms wﬁ)uld be of no use. Great
effort has .been put into achieving tight results for these

two aspects, amd considerable improvements over Valiant's

[
4

results have been finally achieved.

P
il

In contrast to these three aspects, the sg;ace

—
complexity of our algorithms has “not received . much
att'ention, because the analysis is quite straightforward,-

and the space .complexity itself is not high - enough to

:gquitq.improving (see remarks after Algorithm 4.,1).

~ The last fopic to be discussed is that of the choice-of

a. theoretical or an empirical analysis- of our algorithms.
/! Due to the already merntioned advpnta’ges of a theoretical
;nalysis, and dueoalso to the manageable complexity of the

analysis, a theoretical analysis has been pursued.]
.) - :

»

1.10. Thesis Organization
. \

a”

&

As already stated in previous sections, our thesis'
work improves and extends L. G. Valiant's results on

boolean - concept learning from examples. The n(aterial

- 4

Kl

-

faw

Chapters 2 and.3 contain the mdthematical prerequisiteé

‘ presented in this thesis is organized as follows.

for the analysis of the algorithms, as well as some

%’ ' definitionslrequired for the formal description of the
% results,
¥
L ‘
¥ 8 ‘ .
: 'Chapterg 4 and S5 are based on Valiant's work, presented
} 1 -
{ in [VALIA84]) and [VALIA85]; Chapter 4 examines the problem
;/ of learning from error-free data, and Chapter 5 the problem
" i “ .
{ of learnggg from noisy data. Due to our improved . (compared
: with Valiant's) results of Chapters 2 and 3, our own
algoriéhms in Chapters 4 and 5 are significantly better than
Valiant's, in many aspects. .
o - Chapters 6, 7, and 8 address a brand new problem.

Algorithms for -boolean concept learning from examples are
developed, which have less information about the concept to

be learned than the algorithms of Chapters 4 and 5.

P ————— g e

v

Chapter 9 concludes the thesis with a summary of the

obtained results, and suggestions for further research. N

1y

- » 1.11., Summary

‘
1

The topic of our thesis, that is, the problem of

-

|

B

:\?;.'

- amoa e e

33
¢

approximate boolean cohcept learning _from examples, was
described in‘this chapter. This is an AI problem, examined

here from a theoretical standpoint. For these reasons, some

/
AI background (on machine learning), as well as 'some.

" theoretical background (on analysis .of algorithms) hagL been

given.~ ' -

. ¢

.Due to .the non-trivial analysis of our algorithms,

I

sevetai méthematical results are required. They are all

. stated 4£p the next chapter, and motivate the inclusion. of

e

the chapter at this point in the thesis. o . =

¥

_ .
. ik M TS T AU gt a e T e,
BRI B e A as T e R 2 PR b M e

#
A

a

CHAPTER - 2
\

MATHEMATICAL PREREQUISITES AND FUNDAMENTAL THEOREMS

N

FOR THE ANALYSIS OF OUR ALGORITHMS

‘ -\

. . 2.1. Introduction
< ' .

This chapter containg some mathematical .r-esult:s, mainly

" from calculus and probability 'theory, necessary for the

\

analysis of our algorithms. BAdditional results, £from the

L]

boolean algebra area, will be given in Chapter 3.

N oy

Some of the results stated in this chapter are already

well-known, and they are.briefly mentioned in“Section 2.2,

Some others, presented in Section: 2.3, had to be
established; due to particular problems encountered d\iring
the design and analysis of our algorithms‘. Because of thgt,
their usefulness gannot be j\;stified now . L. G Valiant,

in [VALIAB84al, also lo@(ed at som'e of those problems, but

the answers he got are worse than ours. The chapter closes

with a summary in Section. 2.4. L i]

Poa

since not even the formal definition of the problem

addressed in our thesis has been given yet, the entire

LIV

B

d
Pt

35

[

Chapter 2 can be omitted-in Jthe first reading, without loss

.
N a

of continuity. . & B

2.2. Preliminaries

The standard notation wused in the ahalvsis « in

jalgorithms, as well as a number of useful and well-known

theorems from calculus and probability theory are presented .

in this section. The pfoofs of these theorems have been

omitted, since they can be found in any text. Some

non-standard probability theory definitions and notation

have also been included here.]

A4
\ -

2.2.1. Asymptotic Notation

; & .

An exact expression for the time complexity of an
algorithm, alrgady discussed in Section 1.9, is not always
the ultimgte aim of an analysis. Although the derivation ;f
such an expression may be a challenging job, the expression
iiself may be too complicated to be informative; it may
contain ﬁqo ﬁany details, not necessarily-affecting the
algori hm's time complex;tf, since, anyway, only the number
of bagic ~operations is counted; rather than the actual

execution time. Because of that, and éspecially in cases in

which the derivation of an exact formula is tedious,‘én

:

P

PETINR St ey g1 PR, e et . " M
) . te e et e e e oS T e e SRS 4 115 g A RS gt Ao e
¥ e .
2y ' N L)
~ . - 36 N . .
) approximate expression, correct within ‘an order of
. ——— .
% magnitude, is what is sought.
; An asymptotic _ notation. is one way -of formally
'i describing the order of magnitude. The notation proposed by
% . D. E.‘ Knuth in [KNUTH76]) has been adopted and extended
) here.) ‘ N
A
LI
f‘ A
% Let ‘f(ul,uz,,..,un) be a positive fknction of n
g positive‘real variables. Then:
) B Definition 2.1.
i 3
: . f(ul'---’un) = O(g(ul,...,l,ln)) "(
if and only if there are constants c, ulf,uz'{...,un' > 0, _
such that f(ul,...,un) < cg(ul,...,un),._fo; all ui > ui',
for #=1,2,...,n.
Definition 2.2. '
) ‘) f(ul’cotlun) = Q‘g(ull""un)) v
§ if and only if there are constants c, upteuytyeea u ' > 0,
g' such that f(ul"“"un) 3.cg(u1,...,un), for all u;zpi', for .
; i=1’2,--a ' * 4
Definitiéin;j3. t
/ f(ulp-oo,un) .= e(é(ulp...,un)) . ‘ ‘
if ‘and only if Heth f(ul,...,un) = O(g(ul,...,un)) ?nd
. f(gl,...,uh) = Q(g(ul,...,un)) are true. .. =
) For our purposes, the variables “Ujreee sy will stand
- for the input size of the problem (e.g. one variable
A ' B
A
A . h v .

g o

o

.f(u)-ﬂ(usx, and :(u)xe(us) are opviously correct’. However,

denoting the number of integers to®e sorted is sufficient,

whereas three variables denoting the dimensions of two

-

.matrices to be multiplied are required), and f(yl,...,un)

may be either the best-, .average-, or worst-case time

complexity expression. Each of those three time

complexities can be written by using” "any of the three

asyﬂbtotig,notations.

One more remark is in place.' Suppose, for example,

that f(u) = 3u5+4u3+7 is the best~, average~, or worst-case

’

time complexity of an élgorithm. Then, all of f(u)=0(us),‘

it is also true that f(u)=0(u?§, f(u)=0(u7),..., and that': -

£)=2(u?),...,£(0)=0(1). Therefore, the O- and thé
Q-notations might be misleading, although correct. For this
reason it is preferable to use the e-notation for any of -the
Egggé time complexities. If a é-expression cannot be \found,
or it is very complicated t6 be informative} it is advisable
to give bth an O- and an Q-éxpressién for the time

complexity under consideration. This is what has been done

in our thesis.

'It has t6 be ‘remembered though :thata although the
e;nétatidh ii; the best one, it has to be used cautiously;
ihe values of the constants‘u', c, and c¢' for which. <

. c'glw) £ £(u) < cglu) vux! (2.1)

are very important. ~ ' a

’

R ez oy e

,_-)i,:r,: -

woyew g n

38 ’

-

-

%.2.2. Bounds of the Logarithmic Function

The following inequality is known ffam calculus:

%-%-i lInx < x-1 vx>0. - (2.2)

Equality on both sides holds when x=1, ‘ . B

'

2.2.3. The Qﬁédratic Inequality
/

The roots of the quadrdtic.formula F(x) E.Ax2+Bx+C, for

any real numbers A, B, and C, are given by
. = -BAVB2-4AC
1,2 2A *

Suppose that X1<Xq. Then, F(x) takes the sign of A for all
x, such that X<xy and Xo<X. F(x) takes the opposite sign of

A for all x, such that xl<x<x2.]

J

2.2.4. Expected Value of a Random Variable

Let X be a discrete random variable with probability

function: ,
Plx=x;] = p; vi=l,2,...
. Then, the expecteé¢ value of X is defined as .
il :

'

N . .
o e T o A P e et N L R TLE T T T

o random variable as %ﬁ;ﬁﬂi and Y=f£(X) be

s s),

39
\ .
another ;and?)m variable. Then
T E(Y) --izipif(xi).] B (2.4
. > . - : B
>, :

r

-

If X;, X,,... X are independent random variables, then

_— n n . K o7
' CE Hx.) = I'I(E(x.)>. ' " (2.5)
- . r (i=l 2 i=Y v7- : . .

: . : oo\ :
Let X be a random variable, and X>0 (i.e. X takes only

positive values). Then
P[Xialf.'E%xl- va>0. Lo " (2.6)

This is known as Markov's ine@ality (also ‘called extended

(or generalized) Chebyshev's inequality). o - m

7 |
. . ’ .
) . -
, *
, .
.

2.2.5. Bernoulli Trials

A sequence of trials, each of them ha\;ing only two

. v . /o
possible outcomes A and A', is called a sequence of

.~ Bprnoulli trials. Usually, we ca.‘rl/A a success, and A' a
, ‘ . . i -
. fallure.

!

\ According ,:to‘our definition, the probability of success
does not have to be the same for all trials, implying .théi:
1‘ . .’ the trials may not be ipdependenf. Although the Bernoulli
trials are usually assumed to be independent, we don't

follow this convention, because 'non-in'depeqdent Bernoulli

~

—

R T :
- trials will play a central role 1in'the analysis of our

_adlgorithms.

The description of Both-cases is given below. M

I. Classical Bernoulli trials. .Let X be avrandqm,.va;iable

denoting the number of successes in n; independept'~

Bernoulli tr1als, each having probability of success P,
- and ‘prebability of failure qnl-p. It is then said that

X follows the binomial distributién with. parameters
4 and p. l Obviously,

.~ i PRI
ok R B R

n

Bl
¥

Srg e

X gan take the values 0,1,2,...,n.

To indicate the dependence of X on n, and p, we write

b(k; n,ﬁgf instead of P[xX=k], for all k=0,1l,...,n. It
) ! - .
is known that

a
- Lewrh

LT biki n, p) = (} Jeka™ ™ wk=0,1,..0m (2.7),

t

‘.) 1f X130 Xpreen xn are random variables . with
& L .

probability functions - .
. P[Xi=1] = :p' P[xi‘O] = q" = l-p Vi=,1,2,. ..,n'

then the random variable

X=ZX - - | f «E

i=l

’
4T et

follows the binomial distribution, with baramenters n -

' © and p, d.e. . 4)
. v Lo
‘ ‘r [le =k] = b(k’ Ny p) ~Vk'0,1,.-..,n. (2-8)
. i= '
. - o /
'4 . » i ;

Since.the‘ cumulative distribution function PI[X<k]

will play a central role in%6ﬁk:work,:the following

|
;
}
¥
£
i

Sawn pmewe g
s

II.

.

&

(but only a lower bound of their success prébabilit§ is |
‘4 o

allows non-independent Bernoulli trials’ to be

notation has been used: oo ~

o) k . "
. blki n, p) = P[X<k] =2, b(i; n, p). (2.9 .
oL i=1 ‘

]

L]

Lower-bounded Bernoulli .trials. Let Y be a random

variable denoting the number of successes in n Bernoulli
trials, €ach having probability of success at least .p. b

Obviously, Y can: take the 'values 0,1,2,...,n. By o
* . : 3 * .
b (k; n, >p) we will denote the P[¥=k] .
'y , -t - .,
Those Bernoulli trials differ from the classical, ' /

oneé ‘in that their exact success probabilities might not .
\ R . N) [

be known; only a_lbwer bound for them is known. That

-ry

mean that either all Bernoulli trials are equiprobable

&

knowfi), or that each Bernoulli trial has a different
g :

success probability (with a known lower bound for the

entire set of Bernoulli trials). Clearly, the last case

1

considered. .

¥

. . * .
One more remark is in place. b (k; n, >p) is not a

.
g] . o -
,

W

- — - -

* Although the notation b(k; n, ZP’ would be sufficient .. to

distinguish those Befnoulli‘trials from the classical ones,

the b| (k; n, >p) notation will be used for more emphasis.

hd .] . . \ ‘ .

o

.
&
¥

42 '

unique number, as is the case with ;N p). For each
‘set f{pl""’pﬂ}' such- that p,>p, for i=x,...,n;zif
. qi-l-pi, then .

. .
b (k; n, >p) = E P; +¢+DP; q
Y 17

P
»

eredy r . (2.10)
1 '"n ’

where the sum is taken over a11 permutations - of

~

oo igeeenii b = {2,000}, sueh thar j<...<i, ang
‘T; ik+1<"'<inf‘ .' ‘ h . | , -
. ' - -

For example, if n=4 and k=2, then for any" set ’
| {pl,pz,p3,p4} with py>p for i=1,2;3ﬁ4, b*ﬁZ; 4, Zp)‘dﬁll
. be equal“to‘ S . T

P1P29394*P1 P399, P 1P49593P 2P 391 94¥P P91 93%P 3P4 O

. : SN T n , .
. Clearly, eash bé(k,~n, >p) is €he’sum of (k) terms.
Clearly also, what distinguishes two values’ of

« :
- b (k;j n, 2p) is the choise’ of pyi..v/p,i thein .

assignments, @s success probabilities, to particular . b

-t . n .
trials is immaterial. That means that in thé previous

. \ * —

example, the value of b (2; 4, >p) does not depend on -
which of p,, pz; Pyr Py is the successs probability of
the 1lst, 2nd, 3rd;,4th trial; as long.as each trial has

one of Pyr Por Pyr Py as itg success probability. .

! ’
~

P!

Lo - For thg cumulative distribution' function PIlY¥<k],

" the following notation will be used:

!

. . & kK '
b(<k: n, >p) = Pl¥<k] =2.b" (i; n, >p). (2.1
) tol . i=l A |

o

v

° . . . \ - N LR

—

[B) = a

2:.3. Useful Combinatorial Bounds ®

a
3
- '
] . ,

. ' ’ °
- 5

Some probability tﬁeory results, . essential for the

]

analysis,of our algorithms, are established in this section.

The fiost important of. them are fheorems 2.1, 2.2, and 2,5:

r

P
} N .
q

—

The problem addressed in Theorems 2.1 and 2,2 was also
addressed by L. G. Valiant, in [VALIA84a], but our results

~stated here are _better than his. The, problem addressed

- "Theorem 2.5 was not considered by him. " S
,°,1 . In contrast to the last section, ail results in thig
sgc}ion are fully proven, sihce they cannot be found in the

standard probability theo:yytéxts. However, none of tﬁe'

WP e ™t

%ﬁlpfoofs is required for. the understanding of the rest.of the

thesis; only the stated definitions and theorems have to be
knowny ‘ ot

-

» @

. The reader is warned once more tliat the usefulness of

> "all definitions, lemmas, and theorems of this section will‘p
not become apparent until later)éhgpters. Thearems 2.1 and
. 2,2, for exampiq, will be used in Chapter 4, whereds Theorem

'. 2.5 will be used in Chapters™%, 6, 7, and '8; Lemmas 2.1 to

2

L e TN AN AR

L ek e et g e o T

-

44

2.7 are mainly required for the proof of the first two
theorems, whereas Theorems 2.3 and 2.4 dre required for the

proof of Theorem 2.5. ' ’ , : n

[

w

The following notation will be used in this section,
eexcépt 'if otherwise indicated. The symbols k, n, p, p',
etc. will have the obvious meaningé implied b the
definition of the Bernoulli trials in Subsectiodﬁz.zlgz For
example, the appearence of b*(ik; n, >p') in an eipression

will imply that keéN,, néN, 0<p'<l, and g'=l-p'. Also, h,

hl’ h2, will be real numbers. . []
N

)

The, next definition is more general than the one given

]

by L. G. Valiant in [VALIA84a]".

Définition‘72.4."'For all Hi,h2>l**, and for all kENo, we

define . -
L,(h,,h,,k} = min{neN |‘b*(;k- n, >h -1) < h -1
VARS AL ' Xifezh 12w
v ’ '
The value of Lg(h,,h% k) dominates the time complexity

-

OE our algorithms. Roughly speaking, if t is the input size

,of the problem, then many of our algorithms have time

) coyplexity O(Lo(hl,hz,tk)), for some hl' hz, and K.

2

- e . o - - A

* Valiang has set h=h,=h,. T

: a * .
** The definition cah be given for h1>1 and hzz;. If. k N,

~ the definition gan be extended for hy,h,>l.

I s L
R

B A A e PSP S

Clearly, the computation of Lo(hl'hz'k) is of great
importance.,

\
\

Unfortuna£ely'th6ugh, no analytic formula is knowﬁ for
b(<k; n, h-l), and even 1less for ~b*(ik; n, zp-l).
Therefore, there is not much hope of finding the exact val&é
of Lo(hl'hz'k)‘ So, our aim will be to £ind un upper bound

of.Lo(Hl,hz,k)g Such a bound is given in Theorems 2.1 and

2.3, NeedGless to say, the tighter that bound will be, the-.

fastér our algorithm will be shown to become. In order /to

establish our theoréms, several lemmas are required first. B

-

°

&gpma 2.1. If p<p',, then //

b(k; n, p") < b(k; n, p) for k<np.

Proof: Accord}ng to (2.7), it sufficeg to show that

e 5 a-p ™K < pF-p ™K forikemp, - (2.12)
wﬁére n"keN, and p'zp: '
Consider the function

£ :[0,1] -=> Ry with £(p)=pX(1-p)"kK.

It can be verif%ed that 19
£ (p) = tkenp)pXlaep iRl
and therefore f ‘ '
N E'(p) < 0 for k<np, ‘ _— L
which implies that S e

£(p) : decreasing in [0,1] for k<np.
That establishes (2.12), and the result fol}ows. 1

“

ry

- . e e rmta ey mee e o o e a T Por

46

Lemma 2.2. .

b*(k; n, >p} < b(k; n, p) for k<np.
N

. * ' '
Proof : If all Bernou trials are equiprobable, then Lemma

2.2 reduces to Lemma 2.1. ') _

a

all Berpoulli trials are equiprobable, then {i

\

If

sﬁ fices to that. each member of the set defined in

.10) is at most b(k; n, p). For simplicity, we will

L4

‘consider the case in .which 'n-1 Bernoulli ,triﬁls have

* 1

probability of success p, ani one,trigl'has probability of

. success p', for some p'>p. In that case,

* In- -k- * fn=° -1 n=- p
b* (ks n, >p) = (nkl)pkqn k lq'+(ﬁ_i)pk lqn kp'.

Therefore,. it suffices to show that

a

=1\ k n~-k-1 =1\ k-1 n=-k k Lk
(n)P e (ﬂ 1)" i) ()p ’ .
for k<np and p'>p, (2.13)
" or, equivalently, ' ¢

(n I)Pq'*(k et < (R)ea gor kenp, pr2p.

By\using elementary properties of the binomial coefficients,

“the last inequalit§763n~be rewritten as

- e - - o=

* .An alternate proof would be to show that the function
f : [p,1) ==-> R with

- -k il -
e = ()R 1(1 -p) (02 i)pk 1gn=kps

is decreasing for k<np. The.proof ig-easy, and is similar

to that of Lemma 2,1

-

v

47

- -1 - -1
w(nkl)qu(;l—l C (R ear{(iD)es for kenes 2

'

'which is equivalent to | ’ . |

‘(“*;1)9(11'-«;) < {(‘:})q(p-g'»)\ for k<nps p'2p.

and sipce‘g;—q = p-p' < 0, the last can be rewritten as

(")e 2 (3)s

for k<np, ,) ~
. PN IE
or

% 1%—:% i for k<np,
v - 4

which is true, as it can be easily verified. That proves

(2.13). '
This proof can be generalized if the n Bernoulli trials have
\ :)
success probabilities PyePgresesPpe 1 : []
Lemma 2.3. (known as Chernoff's bound; see [PAPOUB4], =

p. 121). Let X be a random variabie, and keno. Then
: -kt

Plx>k] < e "tp(e®®) | vex0
and . . o
' Pix<k] < e XtE(e®™) weco. .

Pkoof: Let te€R. Consider the random variable y=e'¥ and the

number a=ekg4\ Clearly, Y>0 and a>0. " Therefore, Ma:kov's:\ : e

inequality in((2.6) is applicéble'for Y and‘a, and it yields

tX -
£ [e';xg.etk] 5_-%%?—)—, ' ; -

The result now follows. . o -

,
7
LT e - PR -
g U~ SO »

\\\\\\ o, e, . R . .o W o e T - . R S L g ’
; s
, 48 'K\\~_
- Lemma 2.4. .
b(sk; n, p) < e Kt (petsq)® we<o.
. ~ .
Proof: Let xl,xz,...{xn be random variables with probability '
functions . ' * .
» '/‘(
P[Xiéll = p, and P[X’i’=0] = g=1l-p, Vi=l,...,.n.
N According to (2.8), the random veriable ' '
- . . | ‘ V ,
x=Zx. ‘ , (2.14) "
i=1 !
follows the'binomial.distribution, with parametérs n and p.
Therefore o e
' ' P[X<k] = b(<k; n, p). L (2.9

Lemnma 2.3 implies that
plx<k] < e K*g(e®) yico,
According to (2.14), (2.15), and (2.5), the last inequality

can be rewritten as . ‘ ‘ . .

~

’ . : -kt txi) n ' N
Co ‘ b(<ks n, p) < e "|T\e . V<0, 7 (2.16)

[

o ~ .,

But (2.4) inpplies that

~

B(e) = pet+q,

'since" X; takes only the ‘values 0 and 1. .The last
v CER. vt~ N : : . [
inequality, together with (2.16) prove the lemma. []

3

Lemma 2.5. For,all hy,,>1, and for all keNg,

' ' . . - ‘ '-l _1 k+1nh2 .
. o ““min{neN | l:f(f_k:n.‘hl) £ hy < eh, :
| \ . SRR o . ln(ehlﬂ-ej :

. . . ‘ .
¢ a .
o - .
b . . .
. [T \ »
. . . g
. . N .
. . . . an
d - f .
.

i ek ¢ AT T SAT SRR

- erser

TR AT, A 4 1

NIRRT A e it

Jp_

1t can be verified that

49

Proof: hccording to Lemma 2.4

»

o

min{neN | b(ik;n,h1'1)£h2'1}<

1

t ., \n . |
< min{nENIe_kt(—;’—-u-lr) < hz-l, for any t_~:_0}.(2.17)
1

But it can be verified that the jnequélity
t n
~ktf e 1 =1
e (-1-1— +l—E;) < h2 Vt_<_0

is equivalent to

-kt+1nh2
n > vt<0,

ln'—t————-
e +hl-1 -

which, for ‘t=-1, yi€lds

" k+1nh
n > 2

- eh !
eh1+l-e

since A must be an integer. The 'last'

together with (2.17), prove the 1émma.

Lemma 2.6.

Proof: Consider the function
s

9

" eh e-1
£°(h) ‘ln(eh+1-e) ehtl-e *

Application nov’ of (2.2) yields

uif

kz;lai

inequality now,

€: 01,8 --> & with £ = hin(5Eg). (2.19)

eh e-1"
1“(eh+1-e) S ehil=e
. Therefore, £'(h)<0 is true, or equivalently, .

£(h) : decreasing in (1, @). : (2.20)
It can be also seen that

£ °

lim £(h) = 1. C (2.21) «
h==>1 ¥ '

But (2.20) and (2.21) ipply that

f£(h) <1 Vhell, @), o L

which, according to (2;19), éompletes the'proof. . B

Lemma 2. 7.

k¥lAh, . _,.

. k f_ —ps ehl hl) . VKGNO, Vhl'hzll' ' .
%D eﬁl+1-e .
' i Y

LY

Proof: Since for k=0 ‘the' lemma is "obviougly true, it

suffices to prove that : S

. k+1nh R 2 :
I VkeN, Vhy,hp> 1. . (2.22)

- ehy’ z
UL B e Do o
* \ 1 ‘ - \

-

1o
i

. Consider tye function
- k+1nh2

£: (1, ® --> R.with £(k)= —
. : : eh,
Y kh‘lln(eh"ljb' 1"-"9

It can be easily verified that

(2.23)

1nh y
2 <0,

. 5) - -
Kby In\Gh Flme

which implies that >/* o | "'f~‘ "ﬁw

g
i
H
B
i
¢
H
£

B T

‘But (2.24) ané (2.25) imply that

51 ‘ .

£(k) : decreasing. in (1, o). (2.24)

It is also obvious that

lim £(k) = L P , :
k==>® hy1n{——2— o
1 ehl+1-e ’

which, according to Lemma 2.6 implies that

lim f(k) > 1. ‘ . (2.25)
k-->® ’ ‘

£(k)>1 Vkell, o),

. which, according to (2;23), proves (2.22f.' That completes

the proof. L]

‘ Our first main result can now be established.

L

Theorem 2.1, Let h1,52>1. Then

k+1nh2

Lothyehpek) < ek,
- 1n{ i

VkENO.
hl+l-e

.

‘Proof: By setting p-hl-L, and k=0,1,2,... in Lemma 2.2, and

by adding the resulting inequalities, we get
-1
1l

According now to Definition 2.4, the proof is immediate from

2

Lemmas 2.5 and -2.7. ,]

¥

* -1 ' ' ! -1
b (<k; n, z_hl) -< b(<k; n, h) for kf_nhl N

Near the beginning of this section, it was stated that

Lo(hl,hz,k) dominates the time complexity of our algorithms.

Therefore,. its wupper bound, given by Theorem 2.1, wili be

T4 e we e R LR W I 3 I AN, Y Y X LA T v e gt g e a1 4R wm e

;
Yoy
T -

N Al
raepyn s wanp ey a2

XA

TR LT i e

A T I

aqd. accotding to Lemma 2.6, ‘

52.

overused in our thesis. For brevity, we will denote

,L(hl'hz'k)' More precisely, we have:

a

it by

Definition 2.5. For all hl;hzgl, and for all keNo, we

define:

k+1nh, _
; in

eh1+1-e

1

_Obviously, Theorem 2.1 can now be restated as:

T Lglhyshgek) < Lihy,hok) VKEN.

(2.26)
L

Since k, hl' and h2 will characterize the input size of

the problem to be solved, our next step is to find an

asymptotic expression for L(hl,hz,k). .

Theorem 2.2. For all hl'h2>1' and for all keNo,

Jhy (k+lnh,) < L(hy/ho,k) <

e
< 37 by (klnhy) 41,

Therefore,

L(hl,hz,k) = e(hl(k+lnh2)).

Proof: (2.2) imélies that

. 1l . _e -
-] ‘eh i3 hl Vhlil'
‘ln ———-——]—'—— \ '
ehl+17

algorithms learning from noisy data as efficient

3
) 53
1 e . .
h, ‘< < h Vh;>1. (2.27)
l - eh -e~1 "1 1=~
1ln —_— o
. ehl+1-e

-

.
\

. The result now follows by multiplying the last inequality by

k+lnh2. . ° [|
4
Keeping always in mind the importance of the upper
bound of Lo(hl;hz,k), given by Theorem. 2.1 (seé remarks
after Definition 2.4), let's pauserfor a while, in order to
seé what improvements.we have made over valiant's results,
in [vaLIA84a]. He was able to show that

~

min{nEN | b*(<k: n, >h”1) i\,h'l} " 2h(k+1nh)) -

First of all, the fact that he used only h, instead of
h,, and hz, made,his algorithms less flexible (see Cbapter
4), and also deprived him of the necessary tools for finding

as ours

)

(see Chapter 5). Anyway, if we make the necessary

mocifications in his proof, in orﬁer to include hl and h2,

and we add the ceiling function he forgot, we will finally
) . .

obtain

Cleérly, according to Theorem 2.2, our bouqd L(hl,hz,k)
is asymptotically equal - to Valiant's boundlL'(hlyhz,k) in
(2.28). However, we have made some improvements.

1

Since-:%itzl.sa, Theorem 2.2 implies that our bound |is

Lo(hyshosk) € L' (hy,ho,k) = Phl(kﬂnhz?l . (2.28)°

-

i
i
)
LE]
o
5
Xy
S
A
PN
. :"
=
)
%
%,
&
k
i
"
£
B

e

Y T TR T ok R

54

better than Valiant's by at least 20%. We say "at least

208", instead of just “20%",. because this difference of 20%

*

is between his L'(hl,hz,k), and the upper bound of our

-

L(hl,hz,k). If we go bqék to the proof of Theorem '2.2, we

will see that this upper bound was derived from (2.27), and

. therefore, according to what said in Subsection 2.2.2

A

L(hl,hz,k) - l.SBhl(k+1nh2) whern hl-->m .. |
Therefore, for small values of hl, L(hl,hz,k) is strictly
less than 1.58h1(k+ldh2), which justifies our "at least 20%"

statement. . -) : a

I

The next'question we can ask is wheéther an even better
bound of Lo(hl'hz‘k) can be-found., Definitely, no bound of
Lo(hl'hz'k) can be sublinear in k, since, by definition, nzﬁ

must be true, which implies that Lo(hl,hz,k)zy must’ be true

as well,

What about h, and 52? From (2.18)'he can see, that a

tighter bound of L(hl,hz,k) could have been obtained if

A)

-kt+lnh2
min

h
t<0)yn = 1
e +h1—1

could be computed. Unfortunately, we were unable to find

’ .

-

this minimum.

g

»

Bué then, how Yij\ii}/;hoice of g._l made in (2.18)72 °

s
o /

It can be shown (the proof is the same as in Theorem 2.2)

that for all kew&, h21l, and for all constant iip

3

————

-kt+lnh2 : . . _—
°1h1‘.""m‘2) < ——-—E—l——-— f_pzhl(k+1nh2), (2.29)
| ' 1n(t)
e +hl-1
where
\ \ R
) - e T if -1<t<0
¢y =’ lrem (2.30)
—S+ if tel
l-e
¥
,and |
. - l . -
—— if. =1<t<0 ,
B _) 1-e
c, =7 - (2.31)
e if te-l :
1-e

Tﬂis result implies that independently of the constantf
value assumed by ¢t, there is no asymptotic impro;ement of
Lo(hl,hz,k). Tge reason now for whiph the value of,t=—1 is
chosen is éwofolh‘ First, thé expression for L(hy,hy.k)
becomes relatively simple. Sécond, the constant, c,, in
(2.31), of the O-expression of Lo(hl'hz’k) which can be
obtained from (2.29), takes a vaiue very close to its

minimum.’ ' , : n
=~

* Thé question of obtaining a better bound of L (Ly,h,, k) by
. . o112

choosing a value of t depending on hl, hz, and k remains

A

open. < , ‘

—

™

—
_v,—'
,

56

¢ w .
- °
[

r

Next, we are going to look at some addition&h ge%dlts
to be used in ghe analysis of our learniﬁg algorithms in
Chapters 5, 6, 7, and 8. | . -,»’, ‘

. N . . ' N

wi\/ffart ﬁyy)extendiﬁé Definition 2.4 to -include the

case of a real r, instead of only dn integer k.

Definition 2.6. For all hl,h2>l, and‘rER;, we define

. ok - ~-1)
_Lo(hl'hZ'r) =v@1n’n€§ | b (<r; n, >hy 1) < h2 t.m
. . ' v) 1
- Theorem 2.1 now can be extended as follows:
Theorenn 2.3. Let h1'b2>1" Then
-r+lnh2 +
. Lo(hl,hz,r) < oh VIER,.
“11n I .
eh1+l-e-
Proof: Obviously . ’ , “
| b*(<r' n, >h -l) = b*(< rj; n, >h -1)' vreR+
. ’ r l N 1—L J ’ LA 1 0. =
Def&initi 2.6 now implies that .
' +
Lo(h%..h;,r) = Lo(hl'hz'LrJ) erRo, ,
which according to Theorem 2.1 implies that
‘ £ - N .
i Le] +1nh, +
Lo(hllhzlr) f_ " eT: VrtRo. T
) 1n —d '
eh1+1-e

Sipce now:
lEf < VreRg,

‘ ' .
the result follows. []

-

?
&
i
1
B
4
4
A4
I
¥
i
.

PRI P MR

s owm e

)

i

A

57
e
Definition 2.9 can be extended in the obwvious way “for

‘the bound of Theérem 2.3.

¢

) pefinition 2.7. For all hl,h2>1, and for all reR;,-we

, .
define . _ o : ' , .

> ' ¢

, r+lnh,
L(hl,hz,r) = ‘,ehl . N . , .
L Inch #1-e '
..Obviously, Theoiem 2,3 can now be restated 4&s

'Lo(hl'hz'r) < P(hl,hz\rl vtéRo. (2.3%&

e

For the sake of completeness, the follow1ng theorem is

stated..

Theorem 2.4. For'all h,/h,>1, ang all reR;

L(hyshyer) - e(hl(r+lnhé)).

‘¢

Proof: As in Theorem 2.2. B v I |

The last two theorems are nbw making the computation of

.an’ upper bound of

min{neN | b (<dn, n, >h1 1)'i hztlf C(2.33)

. for some dERo, feasible. It is the computation of this

"bound which will enable us to desxgn ﬂo1sy data learnihg

algot;thms better than Valiant's \Chaptet’S), and will also

allow us to des;gn‘ou: own algorithms (Chapters 6, 7, 8) .

el

o

h

g

AN

."/:l

58

[
2

Theorem 2.5. Let hj,h,>1, and deR, such that

[. eh ’ -
0<d < ln(——l——ehlﬂ_e). .] . (2.34)
. ‘ ¢ * |
Then , '
) . v - ' d+inh \ -1
moin{ntN | b.* (<dn; ' n, z-hl «l)ihz 1} ir 2
‘ - : 1n<%ﬁ-¢rz—)
Proofs Let's call , .
‘ , . hd
d+lnh2 ‘ P .
m= =F . - {2.35).
wlgk)e| \ |
. eh,+l-e] " '

According to Definition 2.7, if (2.34) holds, then

L d+lnh, ' L
m=L hl' 02' d Y eh +1 (2036)
ln ——-:—-1— _d)

) ehi+1-e

can be vefifie‘d. Theorem 2.3 now implies ,

>

d+1nh e

1 -
) m, 2h) s by (2.3
In{———5== eh; i .

But : : -

- \\ Mx] < xt+1 VX€ER, \ A (2.38) -

which implies that 7)
b (<d[f1; m, >hy"h<b’ (ca(x+1)s m, 2h,7h) va,xery
rding to (i 35), (2. 3“7‘) implies:that P2

* -1
b (_<_dm; ' >h) < h2 . €2.39)

. ’ -1 v '
/ b (<ém'; m', >h) < h2 V%_.{m '.(,2.40;%
£ ' o TS
X u ’ .
«
” ; —

Y

b
g T T o P

59 :) . L
is always true*; The proof will be:done by induction‘on m', *
%,
(i)Basia: For, m'=n (2 Aé) reduces to (2. 39), which is true.') R
(ii)Inductive step: Assume that ‘ o b
\\ﬁ,J . b* (<dk; k.'zpl l)‘i hz'lfor some k:?'gp.(2,41)
. ‘ i e 3
1t must be shown that o . ‘ . f
o b' (<d{k+l)s K+1, *h, -1 by -1, ‘(2.42)< '
A Theorem 2.3 implies that’ o . ' i f ‘
' 1 ' ﬂr‘ :Ll L:w
mlngneﬂ | B (<d(k+1); ny >h) < h%. |
. k+1) +1nb3
' o 2‘33') +1ab; | . - v o 1
. W - ehl : . ,
SRR i Cren -
’
Theréere, in order to prove (2,.42) it-sufficep toré;ové . - '
that . , ‘ " ‘ ‘ E o ,
la—(k+1)+1nh2> ’ ‘ |
1n eh,+1-e . R S
.3 B ‘ . . ' . . . ~ -
~ or, according to (2.38), it suffices to proyg'thaé) ¢
' d(k+1)+Inh, . \ L . h , -
P ') eh i k. , . “ ‘ . v
1“(53':1;':‘ ‘ |
But it can be verified that this is equivalent to L . A
! . LN : '
. . @amn, v v N
¢ . < k 7 ‘
ln -—EEL—‘ - = ; ‘ Con ' .
eh1+1-e S C e T e

‘which; according to the values of k from (2,41) and to

—~—

W S R R SR G S SN Y S - 4

* (2 40) cannot be derived directly from (2. 36) ‘It can Be
shown that any m'>m. makes (2.37) true, but that will not be '
sufficient; the quantity by which 4 is multiplied in (2.37)

should not be constant.

T S—.

——

P] .
- M ke e R e o

S

) : 2.3 implies that we should look for an L hdving the Eﬁqg?rty

' (2.35), is always true.

‘That proves (2.40). Hence the proof of ‘the theorem 'is

S ety

complete. . = - e . m

Although the proof of the last theorem is complete.'.v

let's briefly explain how we derived it, i.e. how we found

the bound of (2.33). 'Tf we call L-L(hl,hz,k), then-Theo:gm

d(L+1)+lnh, . o
: L o (2.43)

e

(we wrote L+l instead of‘L._in ordef tb-"takg,‘cdre"of the

ceiling function). The solution ‘of (2.43) yields' the bound - -

of Theorem 2.5. . P | 2 1

1

) . . _
~ 8ince m, the upper bound in Theorem 2.5, defined in -

" (2.35), will play an important role in the time complexity

.) &
of our alyorithms, let's see if we can derﬁ;e an asymptotic
expression for it, assuming that hl and h2 are growing..

1t can be immediately seen” that d is an additive factor
to m. Therefore ‘ SR . o

inh

2 '. . . . A
m.>_ eh ’ . . o T
ln — 4 _‘ [}
ehl+l-e \ A . RS
and, according to Lemma 2.6, o -
m= Q(hllnhz). (2.4{)

R - — v, S . vy

¥

61 T ' g.,;

7 L : ' ‘
Looking now for an O-expression, we can . first obgserve

that d cannot stay as a paramenter in this ésymptdtic
expression for m, since Theorem '2.5 implies that. as h,
increases, the upper bound of 4 decreases. rhat means that

if .d is fixed, h; cannot 'grow beyond a certain value. To.be

~

more precise, if

' ehl ' S !
d < dpy = 1n ek +1%e)’ '
A then d__ (h,) is decreasifig. Also, according to (2.27
e-11 1. w |
& h < %max SHT

and. moreover, as hl incrgases, dmax.reaches‘its lower bound.

Those remarks imply"’ that if an O-expression is to

derivec for m, that must be done under the assumptions that

- e ‘ e-1 ,
d <]; for ¢ <= . ‘ (2.45)

" In that case, according to (2.27), (2.35) implies that

R J

hl+lnh2

" 5-e-1_c !

.o ehy By

which implies that

e) ec .
m < eTmee MMMy T T ¢ (2.46)

1

1f ¢ in (2.46) is treated as a constant, then (2.46) implies

that
ma= o(ﬁanhz).' - (2.47)
However, c should not be considered as a constant, for two

reasons. First, ¢ is an indicator of the different values d
e

~

(2. 46), then the implied expression

can take. Second, when Cef>§§lv(see (2.45)), then.for the

coefficient of the O(h;lnh,) 'in (2.47), -->® is

-
. e-1l-~ec
* ‘ ' .
true , hence (2.47) is rather misleading.

[

_ ’
If, .on: the other hand, c is tredted as a.parameter in

m = O(e——l——e‘-a(h lnh +1)) . ‘ ' (2'4.8)
taken together with the conditions in (2.45) ' is not more

informétive ihaﬁ m itself. ' <

/r
7

. ! C e .
For ' these reasons, m itself is going to ke used in our

thesis, instead of (2.44), and (2.47), or (2.48). .

&

[

2.4. Summary

- ' Lo
Several mathematical results were" presented- in this
chapter. They 'were originally compiled from the literature
or derived‘af:esh'dnly when they were seen to be necéssary
for the analysis of the algorithms. Although it woﬁld be
more natural to present them in the thesis in this order

too, for practical reasons we preferred to include all of

*

G 0 s o - —

* That - should be expected from the definition of m in
{2.35); when d approaches its maximum perpissible value,

then me->@ ,

+ { ' a. ' ’ 63 ‘ .’ K
+ them in a single chaptef, instead of having them scattered
.- throughout the thesis. S '
. R » .
RN
; 7 el . Co . i
L As ‘stated in Chapter 1, the starting point of our .

thesis* is L. G. Valiant's work, on concept learning.

-

e Hoﬁeveg,,»because‘ of the improvements we hage made in his

T

algorithms (Chapter 5), and also because ~of the new | s
algorithms we‘{havg Beveloped (Chapters 6, 7, ané‘a),‘sqmel Ck
- problems not even addressed by valiant have been ‘answered: |
here (e.q. fheafem 2.5), whereas for some othhrkproblems
examined b}"ﬁim we oBtained better answers (e.g. Theorems

]

2.1 and 2.2). : o LI X
To be fdily’ prepared to design anéd study boolean
expression 1éatning alggtithms, precise definitions of
“severaI boolean’ algebra terms have to be given, as well as a

~ reasonable definition of learnability. This 13 the :subject

of the next.chapter. . =

CEAPTER 3

. *. 7 BOOLEAN CONCEPT LEARNING

o \§.$. Introduction

/ ’ 7

- The formal framework for learning boolean. ekpgessjqns}

the brobleﬁ acddressed in our thesis, is _given in this

chapter. The definitions and theorems stated here will bé C

used throughout the thesis. .

Although much of this material is to L. G.

Variant, all terms have been rigorously defihed, and '&1%

. theorems have, been proven in detail. This has been done for

several reasons. "Firat of all, since Valiant's work

. Sﬁpeared in three different sourcesZ(IVALIA84a1, [VALIAB4D],

and [VALIA85)), the terminology used is inconsistent.

Second, the fact that new algorithms have been designed, and

Valiant's algorithms have been improved/corrected

Definition 3.9, and Theorems 3.1, 3.2, ande3.§).~aé well as

the modification of some 61§ ones (e.g.. DefinftionS'B.ls

and 3;16).‘ Third, the inclusion of .all neéessar& ~-u‘xa!:e::ial‘_~

in this chapter, ma¢e,the thesis ﬁelf-contaﬁngﬂ.

‘.,

P r‘g;‘oéa-mw [

-
-

& . ",
uomssmmyﬁﬂ;:%%w 2 %yymmw,(v . . — o'

65 $
Section 3.2 contains all definitions required for,the “
formal description of our results. Three theorems, stated ’

.

in Section 3.3, and not appearing in Valiant's work, will be
very useful in our subsequent work. The example generatgfs,
used to cdmmunicate "knowledge from the teacher to thg
learner, as well’as thg new notion of approximate learninéil
all’rqf them du; to Valiant, are defined in Section 3.4:
_Finally, the chapter closes with a summary in Section 3.5. m

a1

3.2, Boolean Algebra Terminology

4

'

The definitiqné of all boolean algebra terms wused in o
6ug) thesis are given in this seétion. Some of them (e.g.'
Definition 3.8) have been especially tailored for 6ur needs,
i.e. to faci;iate th; proof of a Eheqrem, to describe more’
concisely our results, etc. ‘Spme othersl(e.g. Definitions

3.6 and 3.7) are widely used in boolean algehbra theory, but

they are also stated here, because the terminology in this

area has not been standardized yet.

-

; ‘ Throughout this section, X)rXgreeerXy will :denoté
‘boolehn variables over the two-valued boolean algebra {6,1},
That means that each X0 for i=1,2,...,t can take either the
value 0 or the value 1. It is assumed that the. definitioné

of the complement.('), the sum (+), and the product (*) for '

LN et o e £ oS
:
-

this two-valued boolean algebra, as well as their properties

' g 66

\
\ (e".g. xi(xi+xj) =)\(i)* are known. -‘ (\ ' [
We start by giving the definitions concerning the
representation of the concepts ggo be) learned.
. s
'Définition 3;1. A lyteral is either a Variable{‘ or ‘its .)
complement. - , _ B ["(’,
v / 4 . . \ I .
Definition 3.2. A boolean expression is either a literai,
' br any expressioh built up from literals, by using the + and
@
* operators.
The ifems of Definitions 3.4 to 3.9 below are examples
of boolean expressions. L
: ' _pefinition 3.3. A boblean'function of t variables 1is a
| funotion F : {0,1}% --> {0,1}:
For example, if tm2, then tbé - function
F: {0,1}% -=> {0,1} such that F(0,0)=0, F(0,1)=1, F(1,0)=0,. _—

and F(1,1)=0 is a boolean function.

Rt iy 28 : ;

i Any boolean function can 'be written as a boolean'
expression. For example, the funé%fbn F above can be

written as F(xlffZ?'xl'*Z' ‘ . | |

R T L ke Sl i S 6 o

.* When no operator appears, multiplication is assumed.

-
S

*

-,

e -
e - S —
[}
> o 67 | ‘
The terms “boolean function®, "boolean expression®,
_«"'boolean ' concept”, and "concept”™ . will® . be- used

interchangeably throughout our thesis. ' =

'Definition*ﬁ3.4. A fundamental {product (fundamental sum) is

eithér a literal, or a product (um) of literals, with at

most one literal. from each varialble.

-

rd

For example, x,°, x1x3'x4 are fundamental products;’

whereas xix3'xl' is not. A;}?, Xp'y 0 Xyxgt4x, are

fundamental sums, whereas Xy+x,'+x;' is not. m
- . - ’ Definitioh 3.5. A k-produét (k-sum) is a fundamental
3 r .
. \ product (sum) of at most k literals. * .]

_~ . R ! * l ' .” . ‘ j’

Definition 3.6. A Disjunctive~ Normal Form or DNF

(Conjunctive Normal Form or Cﬁ?} is either a fundamental

product (sum), or a sum (product) of fundamental products

— ’ (suﬁs)i

o
2

AFoi . example, xl+x3'+x4,\‘fx1xj'x4f x1+xlx2',' and

A x1x3'+x1'x2'x4 are’ DNFs. Also, x1+§3'+x4, x1x3'§4,

’il(x1+x2f)h-qu (x1+x3‘)1xi'+x2+x4) arg CNFs.

Any boglean fhnctioﬁ can be written in bNt and in CﬁF,:

" ' . - This representation though is not unique. In general,’ the

-~ . 'equivalence of two DNFs/CNFs is not easy to be detected. B

A}
'

PR ——

e e e A\

oo . -
Mdnisid " bl ""V‘mm««z TLTR e scmatan

L ST e SR ¢ ERYL [T I € SO AT ey M N 1 TR AT)

-~

!

68

Definition 3.7. A minimal DNF (minimal CNF) is a DNF '(CNF)-

representation of a function such that-

"

(a) No . other DNF (CNF) representation has fewer terﬁhu i.e.

fewer fundamental products (sums).

e e
-

(b) Any other DNF (CNF) representation with the same number

~

of terms will not have fewer occurences of literals.

For example, since x1+xix'-x1, both expressions are -
DNFs of the same boolean function, but only Xy is minimai
both expressions are minimal DNFs of the same boolean

T,
2). 3
and (xlsz)(xl'+x2')(x2+x3') and (x1+x2)(xl'+x23)(x1‘+x3')

: N ‘ . ,
function. Similarly, xq is'mihigii CNF, but not xl(x1+x

are both minimal CNFs of the same bdolean function. n
1 v ‘ L N
Definition 3. A k-DNF (k-CNF) }s either a k-product.’
N , N ‘
(k-sum) or a sum (product) of k-products (k-sums).

For example, X +x g +x4 is a k-DNF for k>l, X) X3 x4 is a

" k=DNF. for k>3, and X)X, +x1 is a k-DNF for k>2, .although it

2 . "daﬁ be rewritten as Xy which is a 1-DNF as well. Also,
1x3 x4 is a k-CNF for k>1,. xl+x3 X, is a k- CNF for k>3,
and (x1+x2')x1 1s a k -CNF for k>2, although it can rewritten

as xl, ‘which is a 1-CNF as well.

A
. N

~Notice that we aze not. falking about a functibn being

in _k-DNF (k—CNE), but abopt’ an’ e;pteasion "(l.e. a |

69
R marticular representation of a function) ‘being in k=DNF
(k=-CNF) . The reason for that should be clear from the last

example. .) ' ' .

Definition 3.9. A maximal k=DNF (ma*imal k;CNF) is 5 k-DNF

(k~CNF') representatibn of a function F, having the form

F-p1+...+pm (F-sl*...*sm), where each P; (Si) is a k-product

{k=-sum), 'for i=1,...,m, and also~having the property that

there is no} k-prdduct (k=sum) p, (s54)" different from

//pl"..’pm (sl"..sm)"

uch that F-F+p0 kFQf*so)-

N

-

ﬁ _ For example, the maximal 2-DNF of the function
L F(x;,%x5)=x," is Xy '+K) 'X,+x%, "X, ", whereas the maxima; 2-CNF

of the same function is x;'(x;’+x,)(x; "+x,'}. ‘ o

A

] . . <

) -
I C . . .

-

3 - Clearly, in contrast to the miriimal DNF (CNf), there

exists a unique maximal k-DNF (k-=CNF)" represenation for
A ' every function. . . M ' o]
A -different tepresentat}on of a hoolean function of a

small (usually at most 6) number of variables ,can be’

‘ "achieyed by means of a Karnag;h map. The const?uction of
N ' . Karnaugh maps is assumed to be known, but as a reminder, an
| - . - example,is’gfvgp in Figure 3.1. Given the Karnaugh map of a
£unctiop, a Dﬁf (CNF) expression for the function |{is
obtained by taking the sum (product) of the pioperly named

, . - .. 'groups of 1!'s (0's) in the map. Naming the groups ‘of 1's
1 ereo o -)

I

n
O

o i

vz yz' y/zr ylz

L

a) ‘ (b)

h Figure 3.1. Karnaugh map of a function F(x,y,z).
F(x,y,2) = xy+x'y'+y'z' in DNF, from (a).

F(x,y,z) = (x+y') (x"+y+z') in CNF, from (b).

T

.the particular group.

(0'sy is done by taking the product (sum) of the labels (the

complements of the labels) of the rows and columns forming

Karnaugh maps are pictorial representations of boolean
functions, and since there is alw;ys a unique Xarnaugh map
for every boolean functioﬂ, they will be extensively used in
our thesis as examples, to jusf&fy the design decisions
made, to illustrate the significance of our results, etc. N

[!

As a first example, let's see' how a Karnaugh map of a

k-DNF expression of t variables 1looks 1like. Clearly, a

group of a single 1 requires t literals (one from each

variable) to be expreésed as a product; a group of 2 1's
r

requires ‘t-1 literals, a group of 4 1l's requires t-2

]
S —

71

-
\

literais, etc. Therefore, in éenera%, if a fupction'can be
e{bteéséé in okaNF, then all g;oupsfof 1's in its Karnaugh
map contain at least 2t7K 115, . & qﬂ
. § . .
‘ Reasoning similarly,bwe bag c;nclude that if a function ee—"
"can be expressed in k-CNF, then all grouéﬁ of 0's in its

{ Karnaugh map ‘contain at least 2tk gvg,
. 4

(a) (b))) ”/’_'_____———4

e

Figure 3r2:—Karnaugh maps oi/ rué“"ﬁ???@?sﬁz—_a;:’fr —""——"—"—‘

" functions.

/

¢

An examéle for the case of 4 variables is shown in

Figure 3.2. The function in Figure’ 3.2(a) requires a 4~DNF,

.

but wonly a 2-CNF. The functions in Figures 3.2(b) and

3.2(c) can be written in 3-CNF and 3-DNF, whqfeas' the - 8

N TR T AT S PSRy

function in Figqure 3.2(d) can be written in 2-DNF, but it
requires a 4-CNF.

’ <
2

From this examplé it shouid be clear that.thé smaller k .

2

N N

. ;me-.”ww%ﬂ-w >

ﬂ . " e . |

i‘«
5.
} !

e

7

v P

N 72,
. . | \ o
. is in a k-DNF (k-CNF) expression, the larger groups of 1l's
' (0's) exist'in t§e expression’s Karna g map. =
'4 . . ‘ \\ | : | \
P; " We close this section by giving\\Ghe definiéions

»

4
encountered by the learning algorithm.

¢oncerning the representation oNthe examples to be

»

«

’ . . ' -
’

* pefinition 3.10.- A total vector is an element of 10,1}t.
~{, A . ' ?

i

Total vectors can ‘be’ written as fundamental §£oduéts of .

exactly t literals. For example, for t=3, v=(1,0,0) is.a
: n °r . N

total)chtor, meaning_tﬁa:!ﬁ%l, xz-o, anq x3-q.' It 4&?

also be written as vsxlxé'x3'. .

*

¥

‘Definition 3.lLl. A partial vector is An element of

‘{Olll*}t-{oll]t°

o~

x;N\\\. Each partial vector has at least ofle * as one of Tes

v

' ’E cog:dinatesi‘ signifying that the particular coordinate-éaﬁ -

can also be written as

be either 0 or 1. Partial vector

fundamental products. For example, for t=3, v=(1,%,0) is a’

e

1 N *
partial vector, meaning that xlsl, xz-undefined, and x3-0,
|

“* ' and it can alsg@ De written as v-x{x3 i : .
? - - . ‘
Y

Definition ,g;12. A vector is an element of {0,1,*}%, i.e.

- . .
either a total vector, or a partial vector.— a

=y >
-, ') '] (/:}
o N s

~
4

1y

vectors ‘resulting from v'by'rétaiﬂing all 0's and 1's of «, v

‘ va{v}. ‘Clearly, any partial vector v is nothing but a

\F - L]

Definition 3.13. For every vector v, its associated set. of

total vectors, denoted by ’Tv' _is the set of all tdtal

and by changing eath * of v to either a 0or al. -
" For exahplé, Cif -v=(1,*,0) is-a partial vector, then ;

T, = {(1,1,00, 1,0,0)}. If v is a total vector, then always

short way of writing all total vectors contained in”Tv. .-
-
AN

Given a boolean funection F and a total vector v, S
exactly one vof F(v);l‘and F(v);o is true. But this is not
the case if v is a partial vector. The followiné definiﬁﬁon

extends the concept of boolean functions over all vectors.

pefinition 3.4, For’ any boolean function

F: {0,1]%* =—=> {0,1), its associated " extended boolean

function F' : {0,1,+}% -=> [0,1)*} is defined as follows:
For any veéton v s) .

(a) F!(v)=1, if and only if F(w)=1 VWET .-

(b) F'(v)=0, if and only if F(w)=0 VWET,.

{c) F'(v)=¥, otherwise. .

. ¢

For example, 1if F'(x;,X3)=xX,, then F'(*,1l)=1,

F'(*,0)=0, F'(1,1)=1, F'(1,0)=0, and F'(1,*)=*.

i3

Clearly, boolean functions také only total vectors as
. i

e g 4 o AR 3

\

“mifpv) = o)a(pnv £ 8);

N

ke

o

|
‘ , 1
arguments, whereas extended boolean functions can {a

either total or partial vectors. However, it can! be

immediately seen that if F ié‘a boolean‘fuNCtion and G &s a

total vector, " then F(v)=F'(v). Therefore, we can
interchangeably talk about a boolean function F and its
associated extended boolean function F'. 1In the rest of the

thesis, the term "boolean function" will be used.)

3.3. Important Theorems

-

Three important theorems, established by us, are stated
| . S
in this section. They will allow us to make some critical

remarks, to coffect, and to improve Valiant'g.algorithms

o

(Chapters 4 and 5}, 'and to design our own algorithms

(Chapters 6, 7, and 8). As is also the case with Chapter 2,

the entire section can be omittéd in the first reading. a

Theorem 3.1, Let s be a k-sum, p be a ‘k-product, v be a

vector, and ¥ be the vector obtained from v by

complementing all its literals. If s, p, Vv, ahd 14 are’

;epresented as sets (each set containing the literajls

specified in each k-sum/k-pqoduct/vector)} then
(a) (p(v); l)ﬁ(pg v) .

(©)(stw = 1)&(sNv ¢ 2).
(@ (sv) = 0)&(s9).

’ »(ci Always

75.

-~

Proof: Easy. In order to prove (b) for example, assume that‘

p'uluzi..um, and'v=wlw2...wn. Then

p(9)=0 -
is equivalent to ‘

at ieast one of ul,...,u is made 0 by v
which is equlvalent to 277y

at 1least one of ul‘F"pm is one owai',}t.yﬁa'

which is equivalent to

PNV F B, " o [

\

”Theorem 3.2. ‘Let pl,...,p be k-products, F = pl+...+pm be
. in k-DNF, and v be a-vector. .
(a) If F is in, maximal k-DNF) or if v is a total vector,

then v

(F(v?51)¢$(3iijl,a.,,m} : pi(v);l).
(b) If'F is.not in maximal k-DNF, .-and v is a partial vector,

then only the "¢ " implication above hol@s.

P

(rivi=0)&(p, (v)=0 iElie.ml) .

ﬁrobf:

(a) “"e=" Trivial.. - e

"=" If v is a. total vector, it will make each of F's
proéucts -elther 0 or 1, therefore in order fot
F(v)=l to hold@, at least one of F's broducts vmusé

be made 1 by v. o

"1f F is in maximal,k;DNF, then:

e

PRI

(b)

(c)

o , aieﬂl,z,...,m}, and 3V €T, & p; (vo)=l, ,

v

.76 -

(i) If v ‘is ‘a product of at most k literals.lit
can be easily verified that FsF+v [Indeed, let

"u "bg -'a tqtdl"Qecfor. If F(u);l, then
F(u)#v(u)=l; hence (Fsv)(wel. If, on the
other ."hand, ?(ﬁ)-U, then v(u)=0, because if
V(u){o,:then' v(u)=l, and since F(v)=1, we
would .have F(u)=l, which contradicts our

' assumption that. ' F(u)=0; therefore.,

(F+v) (u)=0]. Cleatly; F+v is in k-DNF. 'Since

now F is in maximal k—DﬁP, v must be one &f
tbg‘: ﬁi,,.,.pmi Let Q-pi; for' somé_
1é{$,f..,m}. Then p; (v)=1. ' ‘
.. ({i) If v is a product of more than k literars, it
‘ ., can be .simiLAriy shown that all vectors
resulti;g fotﬁ v by keeping at most } of :its
literals are also in f. .
Let F(xlyxz)-pl+p2, " where pl-;l'xz and pz-xl'xz',‘ﬁnd
also let v-xl'. Then F(v)=1l, but pl(v)!* and pi(v)-*.
*“¢=" Trivial. 5
"—" The proof will be done by contra@ictiop..
Suppose that ,
316{1,2,...,m]w : py (V)FO .
i ghen, according to Definitions 3.13 and 3.14
Part (a) now of this theorem implies that
F(vg) =1 " N
which c?htradﬁcts the fact that F(vo)-o, derived

(3

A

Y

Dt T RTINS B NN A O | Ty
.

O R S

JRESSR

117

"

" from our assumptién that F(v)=0.) [

yz'’ Xy

y'z yz yz2' y'z’ y2

e st |

N
X'z’ l(yzr x'y’z’ v=yz’ X'z’ .

-

8 ' E (b)

1 Figure 3'3'. IlIustéa;iqn of Theorem 3.2.

The results of Theorem 3.2 can be better understo&b by

" look#ng at the Karnaugh map of the function F. For example,

! the function of Figure 3.3 cap be written in maximal 3;DNF,

as
F = xyz + xyz' + x'yz' + x'y'z' .+ xy + yz' + x'2',
as shown.in Figure 3.3(a). It can also be written' in

non-maximal. 2-DNF or 3-DNF as ' .

by s

F=xy+x'z', e

as -shown in Figuré 3.3(b). As it can be easily seen, no
mattér whether F is in maximal 3-DNF or not, any total
vector v . making it 1 ‘(i.em any single square of the
garnaughvm!E falling inside F'?‘region) will also make at

-\l . yy

whal -

2t .) . ., \

T T LB P g inn e . TR EABAE TR A L KU P f Uk e s) oW pEe A e 3 e oo o -
. s
\ con
78 - '
- y R (S

. least one of its products l‘(i.e. will also fali inside one

of the .groups éf 1's, éomposing F). Similarly, if F vis. in

ma;ihgl 3-DNF (i.e. f%g\F is formed by all possible groups

of 1l's), then any vector ‘;\ making it ‘1 ki;;.'w"aﬁQ_
‘squaré/rectangle falling ihgide F's region) will also make ‘
one of F's products 1 (i.e. will be or will fall inside one . - - .!
- of the groups of 1l's, composing F). HNowever, as shown in

Figﬁre 3.3(b), this might not be true, if v is a partial

vector and F is ot in maximal k-DNF. . /

The next theorem is the dual of Theorem 3.2.

-t

~

Theorem 3.3. Let 8y,...,5, be §fsums, F ',91"‘8m be in

k-CNF, and v be a vector. » L

-
\

(a) If F is in maximal k-CNF, or if v is a total vector,

’
1

‘ then |
. , | .(F(v)-0)¢$(éitt},g..,m} : si(v);p).
| kb)'lf F is not in maximal k-CNF, ;nd v is a éagg}q{‘Qgcggg,
then only the "¢=" implication above holds. - o
(c) Always e

. (F(v)-?l)a(si(v)-l Vie(l,....m)).

, ‘) Proof: The proof is the dual of that of Theorem 3.2, and it,

"

is briefly sketched here,.

(a) It can be shown that if v is a vector of at most (more

than) 'k 1literals, then the sum consisting of the
complements of all (of at most k) of its'literalé will.
g ' R .
. ' -3), : -
ol U}
r™ . R) .

e L

i

\ then that contradicts the assumption F(v)=l. i

\

‘le&ining

TR

‘be in F. .
(b) Consider F(xl,xz) - kx1‘+x2)(x1'+x2'), and v-xlﬂ“ .

(c) It can be shown that if 5{(v)¥l. for some Ne{1,...,n},

'
P
’

34, Learnability

~

) .

L. G, {Valiant had a new idea é;; learning from
exampleé. Ingtead of try{ng to improve a provably (see
Theorem 3.4) exponential algorithm, performing exact
learning; i.e/ learning the exact conceptv inducedi by ali~
error-free ’/PDs/NEs, he gave a new- definitian of
learnability, which is sti;l. reasonable, and which also

leaves some space for polynomial time learning algoritnms. -

Several versions of his definition of learnability are °
given here. They are preceded by the required definitions
of the éxample generators. . |

rs

e

3.4.1, ,Neceééity for Approximate Learning

.The next theorem suggests that the old notion of exact

3

is not satisfactory for our purposes.

Theorem 3.4. Exact learning of a concept from its examples,

ki

L ge . . .
SR R LSWASQUENEE, & e -y [R TSNS RO S P .]
’\("

. 80 Tl
' o

if no information about the concept is available, takes

"exponential time. '

vy £

-Ptobf:”CIearly, in order to learn exadtly a concept about)

e

which nO"a'prio;i'infd}mation‘is known, either-all its PEs, h ;-

or all its NEs haﬁe? to'épe‘ seen. But a concept of t - T

b e o awn

varlables can‘have:dp to Zt\PEs/NEs (1f the examples have to
be total vectors), or up to 3t PES/NEs (if ;he examples can

‘be elther total or .partial vectors). .In both cases, an

x? " exponential number of examples is required, in order to be

P . guaranteed tnatjthe exact concept -will be learned. Even if

.each of them takes O(1) time to be ptoceésed, the overall
Sl - .)

execution time is exponential. ' . .

N

PR o

t In- . this theorem it Qas not stated rwﬁether the
y(exponéntial time complexity refers 5°\ the best-, ~the)
! . -averagé-, or the worst-case. Clearly, depending on the
input, i.e. on the order of presentation 65 the éxamples, | P
the time'complgxity-ﬁay vary; the process of a particular PE
or NE, for examﬁle, may shorten the . process time of

subsequent examplesi/ Tha} implies gﬁat best-, average-, ana

oo ' worst-case can be distinguished. However, since, - '
i independently of the input, Qn _exponential number of

examples has to be examined, all best-, average-, and

worst-cases take exponential time. : : -

et

The 1issue of whether only total, or both total and \4

-

o o SIS
-

e

T] P TET A B ot i

8l

’pattial vectors can be presented as examples has ar@sen from

the. proof of the last theorem. OQur decision, which will

hold for the rest of our thesis, is to allow both partial

and | total vectors to be presented as exanples, since some

variables might not be significant for the description "of -

the .concept to be learned. The existence of e table, for

example, -1s immaterial for the description of a bedroom, but

it is essential for the description of an office. In such a

.case, the example’generator should have the freedom to leave,

non-significant variables unspecified. , T L

Attention has to be paid when'reading Theorem 3.4, so

that no conclusions.other than the ones stated in it, are

drawn. For example, Theorem 3.4 does not say that the exact

concept will be learned if 3% PEs o@ 3t nNEs are seen. an

fact, this is not true. If no restrictions are imposed onji

- *
the example generator., no matter how many examples are
seen, there is no guarantee that the exact cohéept will be

learned; the example generator may simply refuse to produce

* Imposing certain restrictions on example generators is not’

unusual, P.H.‘ Winston, for example, in his influential

work on structural learning ([WINST70]; [WINST84], Chapter

) lf?, assumes that in order to 1learn from a sequence of

' ekémpies, the NEs have to be "near-misses™, and the PEs have

to be presentea in some pedaéogicél order.

PO T,

PSR

/

7 L rTor S e
<

v ERERTNCY S e e

.
s
!
' /h"‘\‘\xi\
.
.

certain PEs/NEs. ' , . V-

If all PCs/NEs of the goncept to be ‘learned have the

same probability to be seen, then the onlx kind of statement

&

which could poésibly be made is “if n PEs/NEs are seen, thgn

probably the exact concept has been learned”, where n is a

number to be determined. Notice tHaf the word "probably” in

. b s :
the last statement is necessary, since some PEs/NEs may hot

be seen.

' H;wever, the assumption of equiprobability made above
is‘ unrealistic. In practice, some PEB{NES may be very
cémmon,-énd some others very rare. In such a case, even the
last .(a%ready 'weak)’ statement cannot be ﬁade; the rare
PEs/NEs érobably will not appear,sénd therefore probably the

-exact concept will not be learned. That means that even if
n PEs/NEs, for somé n:}t (i.e. even if an exponential
number of PEs/NEs) are seen, even the conclusion "probably

the exact concept has been learned" cannot be drawn.
- .

¥

The need ;o relax at ieast one of our two demands 1is

imperative. Either learning the exact concept should not be

-

- our'afm,'or some information about it should be available in

-~

advance. In -order to clearly define the context of our

work, the déﬁand of exact learning will be dropped first,

i.e. a new definition of learnability will 'be given. _ []

\

-

b ¥
perm

xw‘ Gii B

83

'

. Before stating the new definition, 1let's make our
intentions clear by giving an example, If f-x1 is the
concept to be 1learned fr PEs, but 99% of its PEs have
x,=0, and it didn't happeﬁ that WPE with x,%1, or x,=* has
been seen, then learning the concept g=x1x2' instead of f
will be accepéable, since g approximatgs f quite well. 1In
that cas;, our conclusion could be a statement of the form
"if n PEs are seen, then probably a good approximation of £
has been 1learned”, where n is a number to be determined.

-y

Clearly, the word "probably" is necessary again, in order to

'cover the unfortunate case in which the example generator

will not produce some common examples, as it is expected to

d°o ! . .

3.4.2, Error-Free Example Generators
A certain (possibly arbitrary) input distribution has
to be assumed, in prder'for the words "probably" and, "good.

approximation™ in the 1last statement to be rigorously

.defined.

\

Definition 3.15. For any concept f(xl,...,xt) to be

learned, ° a probability.dﬂstribution,Qi is Eﬁfined over all
vectors v such that f(v)=l1], and an other probability’
distribution D~ is defined over all vectors v such-t at

f (v)=0. .,

84

Oobviously,

N ‘ " N
Z pt(v) =1 and. Z D (v) =1,
f(v)=1 + £(v)=0

gleakly also, for every vector ve{O,l,*}t at most one of

p*(v), D (v) is defined; if f(v)=* (see Definition 3.14),

then none f them is defined. .]

- w '

The distributions D* and D~ completely determiné the
‘frequencies with which error-free PLCs and NEs are generated.’

' More precisely, we have:

Pt

S

Definition 3.16. For every coﬁcept f to be learned, the

examplé generator EXAMPLE+ outputs a vectof v, quch that
f(v)=l, with probability p+(v). The example generator

EXAMPLE outputb a vector v, such the f(v)=0, with

probability D-(VF§XC1;§ n

7

..
“

~4

Our definition of D~ and EXAMPLE is #ifferent from the

one given by L. G. Valiant. The reason for doing so, will

be explained.in Section 4.6. It has to be emphasized though .

that, following Valiant, no' particular distribution is

assumed over the set of PEs and NEs. All our results will

‘be expressed in terms of DY and D”.

- »
.

.Some examples of what each of those two example
generators can/cannot produce are shown in Figure 3.4. Ey,

_Es, and Ej are three-poégible outcomes of EXAMPLE+; their

°

probabilities of appéaraES? though ate not related. E, is a

r
-

!

-————

by iy

R e i e

4 . p
85
2 . N ~
l'y “ .
'(P\":\\ ,
) \\\\ \\\ =
/\ a ‘ ’ B N
_Pigure 3.4. Permissible and non-permissible outcomes of |-
EXAMPLE' and EXAMPLE . ' ,)

<

o

ue

possible outcome” of EXAMPLE . Eg cannot be output by either

K

y

EXAMPLEY or EXAMPLE ™ because £(Eg)=*.
output by either of the ékample denerators, because i€

cannot be represented as a vector in the first place.
» . . \‘ :

o
Wy,

3.4.3. Noisy Example Gemerators S,

?ince, according to what was stated in Sectioi 1t6,
n9i§y rather than error-free data, should be expected i real
i . v
life, a rngrous definition of the noisy example generators
1, e ('

F

o

is in‘piace. ,

. > . /’{i:
. e o .
Definition 3.17. 1If a positive (negative) %kqmple.geperafor

N)

of a,boolean concept f is making errors, by changiﬁg;one.or

1

Eg also cannot’ be

o
/

~.
y wzll be erroneously changediKB"Gjhas EﬁR be added to it, [

. . ' ¥ , L -
more of the coordinates of the ve;¥or it should output, with
[]

probability at most r, for somé\§<r<1, then it is calleé

r-EXAMPLE! (f-EXAMPLE™}.

\\
Py

. i

Notice that if, for example, v 1is the output of

r-EXAMPLEY (similar remarks ¢an be made if v is the output

‘of r-EXAMPLE™), theh one of the following might happen:
° # '

(a) £(v)=0, i.e. v is actually a NE of If example

genérators were error-free, then v shoulL be output only
- .

-

by EXAMPLE . .

{(b) f(v)=*, i.e. v is neither. a PE nor a N- of f. If

example generators were error~free, then v could nqur .

be presented as an example. .

(c) £(v)=1, i.,e. v is indeed a PE of f. Although in rhis
case. the error-free'EXAyPLﬁ+~could also ?roduce v as-a
PE, the error rate r is important, becau;e it ’changes
the frequency with which v is expected to be seen. To
be more precise,'the probability that v will be produced

by~ exampret is exactly D+(v);lwhereas the probability

‘that the same v will be produced by r-ExAMPLET is at

-~

ieast<(l4r)dt(v)*. ‘ p

13

- - o - o= ————

* Even if the error probability of the example generator is
exactly r, the probability of genératioh of v will still be

mt least (l-r)p Lv), ‘the probabxlity that another vector v’

¢

-

PR
‘ . 87 %

'\“ o ’
*]

early, each vector cap be ﬁ%tput by any of t-EXAMPLE*
KAMPLE™. That was not the case with error-free
Ig\genera ors, where each -vector coula be output either

only by ExampLy’ , or only by EXAMPLE , or by none of them.
]

"It has to be ﬁ\embered though, that there are stxll. groups

nf vectors, like E6 of Figure 3 4, wh1ch cannot be output by

either r~CXAMPLEY or r-Examprg™. ° .

Let's try hew‘to justify the given definition of the
noisy example 'generétors. First of all, a noisy example
generator cannot be defined but in terms of an etror-free
example generator. That necessitaﬁes the introduct{on of r
in Definition 4.}7, since that ~éxph;sses the Eelationship

between the two exampie generators.
- ‘ “ \,}.

4y : -~
One of the controversial issues in this definition is
the fact that each example is chardcterized as either
erroneous or not, i.e. no notion of the amount of error

~

made is'int;oduced.'~The'reason for doing s0 is twofold,
First, evén for the simple case of the - binary

&haracterization of an example as erroneous or not, the

2

" study of the errors' effects is not easy at all, as it will

be Seen in Chapter 5.

+Second, an appropriate measure of the amount of error

made in each particular exampke is not easy to give. The
8 ,

n
L

X ..
, .
. ! ’ a
~ ‘ , ‘. ,
. f . o '
- : . »

-
0 .-
ot

"probability that n vector coordinates will be alteggd"
could'bema feaéonable definition,‘capturing the amount of
error made, but' qince it is exgﬂcted that ; learning
élgorithm will be more sensiti§e to the change 'of certain

yéctor coordinates than to some others', such a definition

: <]
.would not lead to more accurate reéhlts. On the other hand,

a definition involving the probabilities of the change of

each coordinate of an example, could lead to more accurate

results, but it would alsq make the analysis of the learning

algorithm prohibitively complicated, and, what is more

important, it is totally unrealistic, since such kind of
] . ~ .

information about an example generator should not be

éxpected to be available. V

r

~ 4

From what has been said above Tt should be apparent

that the presence of r in Definition 3.17 was necessaf§7/qz

/

but, RFobably, any additional details/information relating‘

!
/

the noisy and the error-free example ' genarators would be,

either unrealistic or not helpful. ' .

3.4.4. 'Definitions of Learnability

' - The formal definitions of learnability can now be
stated. Three kinds of 1earnability are distinguished;~€heg
are all in agreement with what said so far, and they will

also prove useful in our work.

* B . :
.

F

e

-

89

\ pefinition 3.18. An algorithm has.performeé one-sided-error

¢ learning of a conncept £, if.and only if its output g has

either the properties

| 2 o*(wizh; < 0,7t and 2 D (v) =0 - (3.1)
‘ g (v)¥0

or the properties. .) : ' .
Y o*v) =0 anda B| 2, D™ () >h, e v, 7H32)
g(v) ¥l . g(v)#0 '

‘ : []
for some hl,hz,h3,h4>l.

(a) 0

B

. Figure 3.5. One~sided-error learning.

v o,

-

™

If £ is the concept to be learned, and g is the
one~sided-error learned concept, then there are two possible

Venn diagrams of £ and g, shown”in Figure 3.5, In Tigure

- 3.5(a), g 1is entirely inside £, i.e. g is more specific

than £; if v, and v,'are the only falsely non-included PEs,
then ! : ’

P[D+(v1)+D+'(v2) > hl"l] < hz'l. ’ :

4 '

b

-

» -
i

¥
K
W

X
k”dutput_ghhas the properties

%0

In Figure '3.5(b), g is entirely outside f, i.e. g ismore

. \
general: than f; if v, and v, are fthey only falsely

non-excluded NEs, then

p[n" (V14D (v,) > h3’1] < h4‘1. ' .

.The next reasonable extension of the definition of

- learnability is to allow both aifew NEs 'to' be . falsely

included and é few PEs to bé falsely excluded.

Definition -3.19. An algorithm® has performed strong

two-szded*error learning of a concept £, if and only if its

output g has the properties

ZD(V)>hﬂ<_ lang ZD(V)>h h,t(3.3)
(viAl (v)#0 ’

‘fér §°me hi,hz,hj'h4>.1o ’ . , ¢ ‘.

~f
»

Clearly, one-sided-error learning is a special case of
oA N

strong two-sided-error learning. . n

~— i

LY

Definition 3.20. An algoriﬁhm has performed weak

two-sided-error learning of a concept f, if -and only if its

and :LZD (v) >h, 1_114‘1(3.4)
(V)'l N

\'

L]

3: the properties

» FLZD(V)>h ’]5 land ZD (v)2h, *]@[1'(3.5)

A (v)=0 {v) ¥0

_ for some hl,hz,h3;h4>1. ' | . |]

¢ SRt
,]I: ' ‘ ' ' &‘
-: » f\//\\ -
.«::(' /
-
g
¥ .
f_l \
4
i
%
a0 . - A
% " Figure 3.6. ‘Two-sided~error learring.
3 B .
£
’? ’ A‘p
i A Venn diagram of % concept £ to be learngd and a
‘two-sided-error learfied concept g is shown.in Figure 3.6.
! if vy and 2 are thgfonly.falsely non-excluded NEs from .'g,
h» and) and Va aré'the only falsely non-included PEs in g,
tuen ’
(a) g is strongly ‘two-sided-error learned if and only if
: 1
[D (v3)+D (vg) 2 > h1] ;.hz.-
] . . :~' , \\\‘\‘\ and ~ >l :
\; ™, < PID (v,)+D (V,) > h -¥ f h -1 ‘
Y 1 2 3 4 ° ‘
. J(b) g is. weakly two-s1ded-error learned if and only if
V\‘_ [r"". .
: P D (v3) > h1 l] < h2 -1,
¥ : a
) u . and .)
, : A - -1
BV P D (vy)+D] i.h ’
g V) 2 4 |
or _ ! oL e *
. P[0T (vy)4nt(vy) > hl-l] < 7t
i ' o and '
' [-1 -1
w PID (v,) 2 h]<h_.
S ¥ Y1) 203 =4
o .
° 2 My
P

PRt Al

92 - -
3 ' .
Clearly, stroﬁg two-sideqverror learning is: a ‘special

" case of weak two-sided-error learning. R]

/

For the rest of the thesis, the term "learning™ has .
been reserved for either er-sided-error,'or two-sided-error -
;earg&ng, Elthough the term “approximate learning'.will be

. used_soﬁetfmes; for pgore ~gmpﬁasis. Alsp, throughout the’
- thesis, f will stand/for the concept to be learned, and g

for the learned concept. - i

3.5. Summary

¢

7

L. G. Valiant's view of concept learning from

examples,, as approximate learning,. rather than exact S

learning considered before that, was presented in this

L

¢ chapter. Th¢ need for this new notion of learnability,

3.4,

definitions of all boolean terms to bg used in.fhe

our thesis were also stated hére, as well as our own
. ¢ ”~
.results. The last ones will prove very useful in subsequent™ .

]

Chapter 3 completes the presentation of the material

3
3

S

93 - .

'.ohr algdrithms,‘,ueich~ started in 'Chqpter
chaptet “‘continues with the study . of learnxng algorithms fot,
N

T,

a a\\ficular class of boolean functlons.

. . v
.
'
7
.
v - .
! ‘
-
-
5 .
a
. .
”
kY
. o
1 3
“ x b
B .
l o
¢ >
Al .
, . » -
- g
r
‘a
f o
v .
-
)
. .
»
- -

Y
2.

The

next

Jb’

w™

¥

\ - k~CONCEPT LEARNING; KNOWN k;°

“»

' CHAPTER 4

ONE ERROR-FREE EXAMPLE GENERATOR

:

' 4.1. Introduction

® ' N
K]
.

o

- ®
"The ' first booleéan concept 1learning algorithms are

[
21

3preéented' in thés chapter. They learn k-CNF (Kk-DNF)

Qo

expressxons, i.e. expressions having a bounded number of

" literals per disjunct. (conJunct), p{gv1ded that k is known a

v

prjor;. The motdivation for looking }nto these 'classes of
boolean expressions 'is given in Section 4.2. - .

/ %

‘A Kk-CNF learnieg algorithm, whén k is known, first
appeared in [VALIA84al. A slightly modlf1ed versxon of it
ie~ presented here, as Algorithm 4 lt in Sect1bn 4.4, along
with 1ts deta11edd§§a1y51s. The desxgn of _the algorithm

follows natuxally from the example given in Section 4 3.
i - [.
r e ' H

Algorithm 4.2 is the dual of Algorithm 4.1. It learns

k~DNF. expressxons, aIWays in the case of a known k,- and it
N

is stated in Sectxon 4.6, glong with its analysis. Some

errors made in its first presentation ([VALIA85)) have been

o

b B . N

3

“

+

h
{

i

" corrected here, sand some crltxcal remarks, concerning its

95

o

applicability, ave also been made. Sect1on 4.5 cdnta1ns ‘an
‘examplé- illustrating the algo}ithm.
' »

-0
Valia%t's approach to k- CNF and k-DNF leagning, in. the

. context of Mitchell's ver51on space method, is exﬁslned in

Sectlon' 4.5, The chapter closes with a summary in Section
t CA : . . R) ’ r

4.8. o | ' =

i*z' Tractability of k-CNF and k-DNF Learning

¥
!

e
¢

,The new definitions of (approximate) learning, stated

o

in the 1last chapter, were necessitated by Theorem 3.4. ’
HodZver,(this tneorem does noc guarantee that under (thesel
new definitions of 1earnab111ty, all boolean concepts are
learnable in polynomial tlme. This issue is investigated in
this section. Tne next theorem gives a partiel answer to -

Tit.

Theorem 4.1. Learning’ a concept 'f(xl,.,.,xt)fionly from v

PEs,| or only from NOs, if no information about it is known,

*takes exponential time in t. .

- o - -

* "Learning” in Theorem 3.4 meant exact learning.

-

"Learning™ * i 3this theorem means ohe/two-sided~error

learning. . : - N

na

TR T e T T R

96 s

. .
\) . \
Proof: We will distinguish two casés. * - R
{a) Only PEs seen. - ' ~
Suppose that an algorithm tryind éo learn £ is allowéd *

/e to make over-generalizations; vi.e. during its
execut1on, the concept g 1earned from some PEs can .be A
more general than the concept induced by those PEs. In

’ such a case, . thahfinal output"of the algorithm might be \
more general than f. That implies the folloning°

(1) The second condition of (3.1l) might not be true. |
{(ii) Ehe second cond}t1on of, (3.2), (3.3), and (3.5)
, ! ﬁiéht not be true. That will be the case if, for .,
t /example, hy is chosen so that l o : ' '
(J, BN h3*1 < min D" (v) | ¥v : £(v)=0}. | - |
| Since g might be more general than f, A ' .
S g(g#g-"m > |
CL " might be true, or r’ , : o
) " (' * Z D (v) > min {D7(v) | ¥v : £(v)=0} a
. g (v) ¥0) ’ L
/’ might be true, and therefore | / -
. ' [ZD(V)>h1]=1 L
g (V) #0 . B
. ‘. might be true. .
((iii) The second condition of (3.4) might not be ytru‘e';"l
if h3 is chosen as abowe, .then , . J
. . 2; D (v) > min {D"(v) |Vv : £(v)=o}
g(v \ s ,
R mignt also be true. ., s
Therefore, no elgorithm leerning onlfr from PEs should
. . > 9

<~

Coe

G

- ' A' .. N 97

ever over general1ze. if over-generalization occurs,

there is no guarantee that, 1ndependent1y of D~ and h3,°

Learn1ng«wrll actually be performed. C o~ ‘

~
»

Let's assume therefore that an algorithm ‘is trying to

. . » . o
learn only from PCs, and that it is not allowed to

~over-generalize. Moreover, let's assume that all PES

are equiprdbable.” Then, if only 2t"1 of them are seen,

- . X ttw >3 . _

’ A g(v) #1) ' - o
mlght be true (if, for ~example, all PEs are total
vectors, and at least one of them has been seen tw1ce).

% bThat implies the followlng: ®
(i) The first condition of (3.2) might not be true.

(ii) The first conditién of (3.1), (3.3), "and (3.4)

exaﬁple. hl>2." Then

p[2 ptvr o> hl'l], =1

g (V)#l

might be true. “ .

might not be true. That will be the case ik, for

®

(i1i) The first condition of (3.5) might not be true,.

for a similar reason. = s
Therefore, more than Zt_l PLs are required in order to
guarantee that an algorithm never over-generalxzxng can
1earn £ in polynomial tlme, only from its PEs,
independently Of D ' hl' and the number of- its PEs.
(b) Only NIs seen.

LN

~

o } ;
.

)

IR

The proof is the dual of the one-given in (a). ?{fst,-

e T € e

i

-only from NES.

98 “ -

)

it has to be shown that ahy‘algorithm iearning a concept,

f?gﬁ NEs, is not allowed to_,over-specialize, because the

L

L ol
.

"first condition of (3.1y, (3.2), (3.3), (3.4), and (3.5Y¢

might not hold for some D¥ and h,. . Next, it has, to be

1 .
ghown that no _algorithm not over-specializing can be
guaranteed to learn £, if less than Zt'l NEs are seen,

- because the second condition of (3.1), (3.2), (3.3),

(3.4), and (3.5) might not be true, for some D~ and h3.l”'

® | |
Unfortunately, we were not able to obtain a _definite
answer on whether learning a concept £ from both PEs and NEs

\
can be done ih polynomial time, if no a ‘priori . information
' - * 3 ,

about £ is available. Theorem 4.1 though, haé/posed a new
problem: identify the/some classes of boolean fuctions ‘which

are learnable in polynomial time, either only from PEs, or

o _ Yae
0'.@.‘ .
One reason which seems to make concept ‘. learning

difficult, 1is the fact that information about the céncept
(i.e.‘hfps and NEs) might be given piece-by-piece (il.e. as
total ,vectors) \iﬁspead of in big chunks_({.e. partial
vectors).. Another reason is tﬁat 'overlappin; ‘between
partial and total vectors might .ogguf, resulting ’in

unnécessary processing time, since'this situation cannot be

easily 'detected and properly treated. Notice though that

the fact that the example ge%eratorrmaY'r eatedly output a

particular examplé, is not a \pnoblem %ny more; the new

A [

r

—

.

r

'

99 \‘

.. “\ . ,
definition of learnability has taken care of it. :
R o . .t . PR .

..l.g (‘

e Ta

o L

Ry

[y a

Figure 4.1. & concept difficult to be learned in

polynomial time.) b

4

o ° . ‘ ¥

4

i

Clearly, there ate cases in which coping with.those l

problems is impossible. For example, if the conéepé of

‘Figﬁre'4.1 is to be léarned, since no over—generali%atipn is

‘ <
allowed, (almost) all PEs must be seen.
' —p

«

LY

One ideq could be to consider the learning of% cdoncepts
for which'pértial vectérs can be presented as exampies, i.e.

concepts having large regions of 1's or 0's in their

K;}naugh maps. However, this requirement alone wouldn't be -

sufficient; ‘the example yenerator should also be forced to

o

(frequeﬁtly) produce partial -vectors. But we have already

-~

‘”Explained in Subsection 3.4.1 that agéﬁming .any particular

inpmt distribution is unrealistic and undesirable.
.) /
&

W

\

<

p—

ﬁy not(try” doing something else:. try to learn a’

v

e

e

(a)

1

i

3

Figure 4.2.

J speed up learning.

}ﬂ.
Information a

i

9

bout

e / .
‘a conceptls form can

K

v

example generator'complg;ely free, and take advantage of the.
4

known

\,

fact that f consists of large regions of 1's or O'S.ﬁ

LY

AY

Consider, for example, the case of learning '‘a 2-CNF concept

£, provided that the faot that it is expressible in 2-CNF is

known. After seeing some PCs inducing the cdhcept of Figure

‘.4.2(a), the conclusion that £ has to be at least the concept

of Figure 4.2(b) (and not merely that of Figure 4.i(a)) can
: AN ;

QE diawn, simply bgFause Stherwise £ couldn®t be writteh in -

Yl - ~
2_CNFO . '
3 . : ’ L)

This exaﬁble suggests that the classes of k-CNF and
k—=DNF expressions are worth investigating for polynomial

time learning. Tﬁat will be, the subject of the rest of this

chapter. ,»

L4

T owe

n

*

i

¥ -
TR

e

=

e ey RTINS

Ny
-

101 .

o + 4.3, Example of k~CNF lLearning from PEs

- o 4

An example of learning a k-CNF expression from PES
on}z,I,@En'k is known, is presented ”&§Mf%is .section. It
serves as éﬁ 1ntroduetron to?the formal descrlptxon of the
algorlthm given in the next sectxon. The vpr1ous steps of
the. algorlthm follow naturally from the defxn;tlons and the

remarks. of _ection‘3.2. ¢ -

Consider the task of learning . the 2-CNF expression
) AN

vf(w,x,y,z)=y}(x4+z) from the. PEs El, E2, E3, and E4 shewn in

Figure 4.3(a). For simplicity, the case in which the seen

PEs cover' the entirevf, has been considered. ¥

Before the first PE is presented, the only inform;tion"/

avallable about f is that it can be written in 2-CNF.

\

Therefore, it has to be the product of some ef the 32

2-gums. For thi%‘reason,:the output g of the algorithm is

" initialized . to. the pfeduct of those 32 2~sums, for

convenxence represented as a 32-e1ement set, shown in Figure

4.3(b). Clearly, -this is the most specific concept, i.e.

-

the empty concegtw

/

E;=wx'y' is the first seen PE. That implies that when

w=l, x=0, and y=0, g must be 1, or eq&fvalently, each of the

2-suﬁs of g must be 1. Therefore, each of the 2-sums of g

must contain, either w, or x', or y'. what is done next
. Y

Lty

PO

ot P e L T G s T s
2 8 ol " *)

g, Ay R g ek Y)

e o oW R

p3

‘s ! - J'D
102 R S
.) 1
. ' yz yz'yz’y’z Ea:)(’y’l’
! ‘ wx ...'
] ; wx' . E1=wxlyl (o
(' w'x E4=wlxlyl . .
wx| ’ .
" gzzxy’z
) .) W Yz w'oox' y' 2!
.) w+x wty witz wix' wiy' wiz! (b) .
) - Xty 'x+z x4w' x4y' x420 <. |
) 9= \yez - y+uw' yx! y+z' , . i S
. z+wl z+,“(l z+y! wl+x' wl+yl w'*z| .
xl+y' xl+zl Yl+zl u ’
w x' y! s55555-‘:55'“:)
‘ _jwix L wty wtz wtx' wty' wez!
9 2 ix+y" y+x' z4x' z+4y' w'Hx' w'+y'
» xl_j_y' xl‘+z| y'+zl .
lg-= y'! WX w+z wty' x+y' z4x' J w
CE Tz4y' wliy' x'+y' y'+z! '
. o
' ' Y4t . N
g=;y z+x' z+y' W +ys - ce)
x ‘
. ‘ h
g _’y' wiy' x+y' z4x' z4y' w4y’ - 1)
- xl+yl zI‘+yl .]
1 A
Figuré 4.3, k~CNF .learning from PEs.

is to delete from g all 2-sums containing}négg of w,
. i , »!

" fThe resulting g is shown inirigure‘4.3(é).

4

. Next, the second

N -
#* .,

- .
. . ~ 4

Py

4

. example E,=xy'z is presented. -

g is obtained in the same, way, and it is shown in Figure

4.3(d). Notice that so fari g covers nothing but the

concept induced by all seen PEs.

The third PE'k3=x'y'z‘ changes § to what is shown in

Figure 4.3(e). A very important remark can'’be made heré:

.) One additional point, not having been seen as a PE yet, is >
| . . .
¢ ’ included -in g (the one denoted by a #). But this is not an
"; over<g alization. Although that point has not been

, reported 7% a PE, ig?does belong to £, because otherwise £
-

I ¢ f

/ could not be written in 2-CNF;. due to the °l-neighbours of
| that point, the 3-sum w+x+z' would be required. ' o T
o

Sim?lar wark‘on the fourth example E,=w'x'y! results-in
the final answer shown in Figure 4.3(f). ' .
Let's look now at the form of the finéi‘answer. As we R
can see, it is not in minimal "'CNF, i.e. {t is not
.si@plified.' ‘In this particular example of. course, the
miﬁimal CNF can be'obtained by 'dropping the ggrms wty',
x+y', z+y"', w'+y‘,~x'4y', ;nd z'+y'! wpichﬂére implieé by y'.
However, no such simplification is always possible,’ a;a

~ -~

moreover, ‘even in the cases in whiéh it is possible, the-
. n resulting expression is not always in minimal CNF. ‘ For °
! example, ifﬂPﬁs cogering the entire 2-CNF coﬁéept of Fjgﬁre
- 4.4 Sre égen, and the algoéithm describgd in ihis section is

" applied, then the answer g=(x"+z) (y+z) (x+y) - will be

104

y: yzl y'zl

cannot be sxmpleied to minimal CNF.

Pigure‘4.4.' The output of -the k-CNF 1earn1ng algorithmy

.®

f’aﬁ\“\;

minimal ONF (x'+z) (x+y). £

)

oBt%ijzﬁ. ‘There is no obv bus.way‘of'simplifying it to the

N

In géﬁera%, ‘the algorithm described produces the

\ T i &
maximal k-CNF expression of f. That will be proven in the

next section.

. The Kk-CNF 1learning algorithm,

. 4.4. k-CNF Learning from PEs

-~

described in thé Tast™

section, is precisely stated here, followed by its analysis.

-

Fxﬂst of all, it can be seen that the number of k-Sums,"

1nit1a11y included in the algorithm's output g, is crucial

o

&

105

b}

for its time complexity, since iy determines the number of
~ - -
fteps to be executed (i.e. the number of k-sums to be
\ ekamined) for each ?E encountered. Obviously, there are ‘2t"

l-sums, 0922 k-sums with 2 litrals each, 6923 k-sums with /
? 3 literals each, etc. Therefore, there is a total of ///
: . k ’ ' ’ ‘
;
i .) ,i /
i 2(1)? ‘
. : i=1

. v k-sums. This sum will be referred many times in our thesis, /

e : . . . PR ‘ VA
. — ané¢ since, unfortunately, no closed formula exists for it, / °

3

it will be denoteq by Ak. One remark, which can be mad

' : aktout it, is that since _
(;;) 2i t{t=1)e.. (t=1i+1) 2i

-) - e, /
i

if i is considered to be a constantf we can write ///

-

k .]
A = A(E) = Z(f)21.= e’y wket'/ (4.1
’ i=1" . ’ N /"_) . . /_‘
_Clearly, al;o, the minimum value of Ak is z,f/ﬁchieved when
/

ket=l. { e / N T
; y ,

/

. -
¢ R / T

/ +

» The formal description of the alg9§ithm follows.
» /

, /

Algorithm 4.1.

1

/

Task : Learn £ frgm‘erro;-free Pgsf mﬂ({/f/

- —— v - —— o —— -

., " *L.G. Valiant in [VALIA84a] used the looser bound

Ak=0(tk+l); he observed that 2i:ﬁi.

1 L .

106

: [3 ~ f.’ h‘
Assumptioris: (a) Xys..0¢%, are-sufficient to express £.

t
(b) f can be written in k-CNF; k is known.‘

/

Parameters : hl' h2 > l.

2. repeat L(hl,hz,Ak) times

3. begin -
4. -y < ExampLet)
5. for each s;eg do -
6. FEERGE! | ' |
7. ~ then g <-- g-{s } o
8. end ‘ | u

Clearly, the space coﬁplexity ©of Algorithm 4.l is
nothing but the ;pace required fdﬁ the stor?ge .of the
initial g, in line 1) which, according to (4.1), is e(t¥),
uncer the rfasonable ‘assumption that each k-sum takes

' constant spaéz ~

,A non-asymptotic’ improvement of the space complex1ty
can be achieved by observ1ng that the fxrst PE seen, always
ca@ses the deletion of some k-sums from g. Therefore, g can
be initialized, after the first éE v is presented, to
set of all k-sums‘-compatible with (made 1 by) v. t‘ﬁt

s

All algorithms in our thesis have the same space
‘complexity.. For this reason, it will not be mentioned

again. ' . -

Proof: Let £=slsz...sm be

107

The next ,theorem provides some information about the

output of Algorithm 4.1. -

- — .

Theorem 4.2, The output. g of _Algggﬁth 4.1 has the

properties: .
(@ 2 DT(w) = 20w = 0.
g(v)¥0 - g(v)=1 ‘

S + -1 -1
() p| 2. D(v)z_hl]f_hz ‘o

(v)#1
{

(c) g is in maximal k-GNF.

’ A

’

~

the’ conceéF to be ieafnedc in
maximal k-CNF. Let's call L = L(h;,h,,A), and let also
94 = {sil i=1,.,.,m,m+1;...,hk} be the initial g in line 1,
and 95 be the value of g after the thh‘execut;on of §h¢
repeat-loop, for i=1,2,...,L. h
(a) Let v be a PE. By definition, f(v)=1, and accérd{ng ta,
' Theorem 3.3(9Y, si(m)-l holds for all i=1,2,...,m."
Therefore, the test of line 6 implies ihat none of the

k-sums of £ will ever be: deleted from any g9;, for

i=0,1,...,L-1. Since now g¢=g;, it follows that {all

k-sums of f will be included in g as well. X '

Let now u be a vector such that f£f(u)=0. Theorem 3,3(a)
impiiés that 'Si(u)=b, must be true for some
ie{l,z;...,m}. According to what said before, s; will
be included in g as well, therefére g(u)=0 will-be true,

as well. That proves that

(b)

108
| . L4

if £{u)=0 for some vector u, then g(u)=0

which' is equivalent to .

[

" Yoo o=0,
g(v) #0 .

and that

if £(u)=0 for some vector u, then g(u)#1

which is equivalent to ,

Z D (v) = 0.

g(v)=1
That completes the proof.
Let
x; = 2 otv) vielo,l,... L)
g; (v)#1 ’ :
It will be shown that
: P[XL ‘>_h1-1] <n, 7k

Each seen PE, Vv, :tan be interpreted as a Bernoulli

s

trial, with "success" being vy makes at least one k-sum

of -the current g; 0/*", or "v causes the deletion of at.

least one k~-sum from the current 9;". The number of

successes &ccurxed is at most A -m, since,.according to
what said in (a), all k-sums of £ will be retained in g.
Therefore, the number of successes is at most A, (sihgg.
the only known fact about m is that'mzp). Each X; now,

for i=0,Y,...,L-1, denotes the probability of success of

_the (i+1)-th trial, i.e. -the probability of deleting at

,'léast one k-sum during the (i+l)-th execution of the

repeat-1loop, when obtaining 9:41 from gj- Clearly, the
sequence X;,Xy,...,X, is non-increasing, with Xg=1
(since, for example, both Xy and xl' belﬁ}g to gg and

-
a
[

- u\
. . ;

\

PRI
Sl s — e mr ey

»

109

A

hence at.least oqe‘of them will ke deleted). Therefore,

the event ‘ -

» "1
ok 7T
implies (but it is not equivalent to) that

"less than A, successes have | _occurred in
. 4 * - B /.
L(hy,h,,A) Bernoulll trials, each with success

’

. probability at least‘hl'l", . ,\\~N\ /f

. Hence,

7
’

which, according to Definitions 2.4, 2.5. and Theorem

’

. // . N -
2.1, implies that : N\

-1 -1
p[ng_hl ,]ihz' :

/s ,
Hence, the proof is conplete.

(c) It wigb\bé shown that after the i-th iteration of the
. . - yb ' -

fepeat-loop, for -all i=0,1,...,L, g; is in maximal

k-CNF. The proof will be done by induction on i« |
(i)‘Bad;s:-go is‘in'méximal k-CNF; since it éﬁntains

all‘k~sums. . o .

(iii Inductive step: Let g;=sy...s , for some

qsq+lolcsq+n

s

’ G/nENy be the value of g after the i-th‘itera}ioﬁ,
for . some ie{o,1,...,L-1}. Assumé..that Qi is in
ﬁagimal,k-CNF. Let 'v be the PE generated by

: EXAMPLE+J in the ({¥i)-th iteration, and let

.' gi+1=§l,.;sq be the. value of g after Fhe (i+1);th
iteration. - It Hwill ,beq proven that 9541 is in
maximal k-CNF. The proof will be " done by

5,

. oty o
contradiction. - T N

. . 2
. . . . ,
. \ : . . .
.ot -
8 - . K
- ! <
N .

[::k"l]:b*,(sﬁw TR N

i

S 110

j+1 is not in maximal k-CNF. Then.,
' S - there must exist a k-sum s 7 differént from
&« .

= * . fe t
4159541 %8 Since g; is in

Sugpésef that g

Sl,...,s

such that 9;

ql

maximal k-CNF, s has to be' one pf sq+1""'sq+n

- (because otherwise 94=9;*s would be true, for some
o — s_different from si,...,sq+n). So,
iggé?ﬁ ‘ 9i+i - gi+lfsj' fo% some jg[q+1t...,q+ﬁ};
ﬁL’f Hence, for the particular vector v,
° 33:5{:11&1'. .qtn}ig [y (V) =gi+;’(v)*sj (v).(4.2)
>//”’ But acgording to lines 6 and 7 of the algorithm,:
‘) sl(vJs...=sq(v)=l, therefote,(| |
g v =1 o C(4.3)
and O ” |
54 (v) #1. vielgDeo,atnl, - o
*whichqihplieé-that f .
‘ . vie{q+l,...,q+n} (av;)e'nv 2 s;j;(vo)so)'.(a.tn '
. ¥
o A Since now (4.2) and (4.3) must also be true for the
‘ "vector Vo ;f (4.4), it follows tﬁgt they contradict
with"14.4)« _Therefore, 9541 must'Be in max{mal
7a' . k-CNF, yhich completes the pféof °f.the inductive
f~ . ‘ ‘ step.
N - A The inductive proof now of part (c) is complete. - a
, . ¢
ia) Two; remarks cgn be made abopt Algorithm 4.1, both of l
'them stemming from the proof of Theorem 4.2(b). | First, if
;>‘ o 'm,' the number Sf; k-sums of f, were known, then fewer PEs
‘ k @,cﬁ v 'Lwoald be’ reguired,"resulting& in a loyer zu?ning*‘tiqgg “

-
Second, even for the case of an ynknown m, L(hl,hz,A -1) PEs

) would. be sufficient, since h>0, and. the:efore the number of

successes is.

-3

since this is not a very sign1flcant

1

at most Ak 1, rather than Just Ak . However,

improvement, A, _has
been used for simplicity. [|

S VoL o ‘ ‘ .//’
/-b ‘ . . \ e : -)
- Theorem -.4.2 implies that Algorithm 4.1 performs

one-sided-error learning. h -difference between.. the -

propertxes of g in part (a) of the theorem, and Definltion
3.18 is not important. ~In fact, although 4n general

P 'pbé:v(v)>h3r5_h4' :
.) b . ;.l

is not equxValent to ' :

[T o 2 h, 3] on,ml

(v)=1 it i -4 . , »
(th1s is the reason for wyich the distinction .betwee® weak -

-) ’ .Q
and strong two-sided-etror learning was made); it can be .
proven, that, indepencdently of the learnlng algorlthm, y N

D(v) =0 . L . (4.5) . .
v) #0 ‘ : ‘ :
lé'equlvaléntcfo A S, Y o ﬁ.. " A *
T 2. D (v) = 0. \ Coe T {4.6) &
g(v)=1 : S)

The proof goes ad follows. Since (4. 5) is equivalent to - R o

i f(v)=0 = g(v)=0, for all vectors v, | (4.7V!
and (4.6) is equivalent to . S, k i' e ‘
f(v)= =0 =, g(v)#l, for all -vectors v, (4;§l
it suffices ¢o show that’ (4 7) and (4.8) are equiValent.
Clearly, (4.7) 1mpi1es (4.84.. To show ,now that’ (4 8) . :) ;b
2 ‘e ' R s '
‘ e v . ‘f{o;’ ‘/

Dl g

\\s

' . i d
implies (4.7), assume that v is a vector such that f(v)=0.

If v is a total vector, then .(4.8) - implies that g(v)#1,
thetefoie g(v)=0. If v is:- a part1a1 ’vector, then the

assumpt1on f(v)=0-implies that- f(v y=0 VV,ET, . Therefore,

9

(4.&) 1mp11es that g(y0)=0 YVofTv. Hence g(v)=0. []

Figure 4.5. Venn'diagiam of £ and g of Algorithm 4.1.)

A o stands fqr a non-seen PE, whereas a 4 stands for a

k “

seen PE.

N A -

<

A Venn dlagram of the concept f to be learned, and the
output g of Algorithm 4. l ‘is shown in Fzgure 4.5. According

to part (a) of the last theorem, g is more spec1£1c than - f.

. From the course of -the algorlthm also, it should be clear

that alI“seen PEs are correctly included in g. .Some

~—

non-seen , PEs are possibly included in g as well, because it

-

js known that f can be written ip k-CNF (see, for example,
Eigufe\ 4.3(e)). Unavoidably though, some non-seen PEs will

nd@fﬁquinéluded in g, but part (b) of the theorem implies
o » - v * , .
that it can become highly improbablev(i.e. the probability

. * . o
3

x
o
Y.
.
. i
% X °
L -
. “‘: .
w e
& &
[4 {l -
%ﬂ-
%
Y.
. ?‘-
u
2 \
g -
" "
5 .
i
i
I
I
'1]
.
"
4
‘-l
»
&
1
I
£
~
.
. 7
¥
s . Q-
~ -~
» °

/

can be at mostr h 1) that their weight (i.e. the sum’. of,

their probabilities to be presented asfPEs) will be higher

* ! “ - -

than even a small quantity (i.e. greater‘than hl‘l). .2
~ . ﬂ ™ ’ {‘

\—\ (3 3 . " ‘ 13 3 N ’ ‘

L. G. Valiant, in his algorithm din [VALIA84a], has .set

h=h1=h2. Clearly, our algorithm is more fiexible than

vl

valiant's, in the sense that it gives more freedom to the

~ a

user to specify the reliability (s)he requires from the

algorithm. ’ ‘ a

‘The price the user has* to pay for a Dbetter

approximation is given by the'next theoren.

rd

4

Theorem 4.3. The worst-case time complexity of AlgoritQm

~ « . . °
A

4.1 is . ‘

%

T(t/hy,hy) = e("*l(t"unhz')) .

Proof: According ‘to Theorem 3.1(c), execution of, line 6
reéqires e(t) éime, since each of v and s contain at most t
litergls, and the intérsection ofhtwo t=element sefs can ﬂpe) '
compuﬁeﬁi‘in e(t) time. In the worst case, the number of s,
in g will be Ak' or e(t) accord1ng to (4.1). Since lines‘4n‘
and 7 reguire constant time, lines 4 to 7 requ1re e(t 1)

¢ A

time in the worst case¢. According to Theorem 2. 2 now, lines

¢

2 to 8 require e(hltk+1(t +1nh20 time ‘in the worst-case,

and since line 1 requires e(tk) time, the result follows. ®&

E s ¢

4

B R L T Gt e i o 0 L
* * o e, R "

e s;:.:ig*;é@:.

F

1

114

)

.This theorem says that not only Algorithm 4.1 is

polynomial _in ¢, but also that it is (sub)linear in the’

.

user- specgfied parameters hl and h2 That means that the

price- the user has to pay for a better approximation, 1s not

" too high. ‘ g ' ‘ 3 o L

[
LN /

-

\

From the proof OFf .the theorem also, it should bte clear

that the number of PEs.required by Algorithm 4.1 (i.e: the

number q{{iterations of the repeat-loop) is crucial for its

. time complexity.! VaIiaht's algorithm, in [VALIAB4a],f

reouires E@(k+1nﬁﬂ‘ PEs. chording\to our discussion after

Theorem 2.2, that inplies that our' _algorithm is
non—asymptotxcally faster than Valiant's,‘ when applied in

the restricted case of h=h —hz (that Valiant's algorithm is

‘applicable), or ' when the modified Valiant s results in

(2.28) make his algorithm applicable when hliﬁz. _Clearly

though, ‘our algorithh is asymptotically as fast as

Valiant's. ’ . . BRI , (|

",

r

" valiant's definition of 1learnability, as well as his

algorithm, can now be appreciated. Not only he was able to

learn in polynomial time a close approximation o; a class of .

boolean functions withaut knowing anything about the inﬁutf

distribution, but he was also able to make conclusions about

. .L'
the closeness of the output to the exac(/ solution.. As

stated in Section 1.8, that was not the case W1th previous
{

"works in" leaxning, not too many persons paid attention to

& . 4 -
“ . 4 v y J
. , B > : 4

115

’

- /

the time complexity of their algorithms, and not too many o

-persons drew conclusions - about: the closenees'.bfu their

S

¥

answers to the exact solution. ; B A

4.5. Lxample of k-DNF Learningﬁfrom'NEs

-
.

' ‘ \
Now that the algorithm for k-CNF learning from PCs has

been understood, its dual algorithm,'fperforming k=DNT

!
1earninglfrom,NEs, can be presented. An example of learning

the same"boolean function of Figure 4.3(a), which can_ af%o

be written in 2-DNF ae‘f(w,x,y.z) = x'y'+zy', but from NES *

this time, is shown’ in Figure 4.6. Again, for simplicity,-“

it is aSSumed _that. the NEs seen cover the entrre space

outs1de f, they are El, Ez' E3, 4, and E5 in order of

presen;atlon, and they are shown in Figure 4.6(a);
Af‘

v

Here, g'is initialized to:the. sum of‘a11A32 2-products,
as shown- in Figure 4.6(b),/ i.e. ' to the most: gener 1

concept. 'The first NE Elswyz implies that when wey=z=l

a must be 0, therefore each of the 2-products of g has to, be

0. That results, in the deletion of all 2-products

I

conta1n1ng none of w', 9', '} and the -g shown in Figure

[N

4, 6(c) is obtained

- .

For eVery Nﬁ seen, . the current g is spec1al1zed, if

3
necessary, [Te] that it w1ll not match the new example. The

\

22

b

‘116

yz y2'y'z’y2

Es=wyz..
, wx’
wi' i
w'x
<
. W X
WX T wy
. _)xy Xz
g'(yz yw' * yx'
zw' zx' zy'
X--'Y' x'z! Y'Z' -
» wl ' yl z'
9= wy' wz' xw'
yw' yz' zv'
) wlx‘ wlyl ‘v'ziv
o= y' mwy' xw')
s lzw' zy' w'y'
Nazliw' zy xvy'\t .
~ “
g=fzw' zy' x'yY
v S
R

(a)

(b>

f)

117 ‘ ' -
éalues of g ‘upon presentation of Ez, E3, E4, and E5 are
shown in Figures 4.6(d), 4.6(e), 4.6(f), and 4.6(q)
respectively. Notice that, as it is also the case wiéh the
k-CNF learnihg, upon presentation of an example (E3=xy'z'),
some pqints (dendted by @) not seen as NEs are excluded from
g. . Agéin, this is not over-spécialization; those points
have té be excluded in order for the §oolean function to be
expressible in 2-DNF. The final answer g=x'y'+zy' obtgined,
in addition of being in maximal 2-DQF as expected, it "also

happened to be in minimal DNF. Obviously, this will not "be

ralways the case. ’\\{ _ -) ‘ n

L. G. Valiant mentioned the feaéibility‘ of k-DNF
1ea¥ning from Ngswin (vaLIAB4a), and he éresented a detailed
algoriﬁhmf f&r it‘ in [VAﬁIASS] (although he admitted that
this new algorithm is "essentially the dual" of the ' one

performing k-CNF &earning in [VALIA84a]). - However, ih both

places, he made a mistake. He defined

a probability distribution DI .om .t

. : vectors such that f(v)#1,
Py ,

»

s " ([vALIAB4a], p. 1137)

and he claimed éhat by dualizing the k-CNF 1learning

v

.. algorithm

. L/ -
' for any k, the class of DNF expressions having a
v bound k on the *length of each disjunct can be .

. [.
learned in polynomial time from negative exanles

~

L

1l1e

alone {i.e. from a source of vectors such thai
D- (V)fO). ’
([vaLiA84al, p. 1140)

According to our terminology, that means that EXAMPLE™
outputs vectors v such that £(v)¥l. But clearly, this is
wrong, since in the example of Figure 4.6, w and w' are two
such vectors, -and if they are presepted‘as NEs, the embtyA
concept will be fiﬁ;Lly learned. . This is the reason for
which the Definitions 3.15 and 3.16 of D” and’ EXAMPLE™ are -
diffe;en; £rém those given by Valiant. : .

[]
Y S

-

-

4.6, k~DNF Learning from NEs

The k~DNF learning algorithm, ‘described in the last

_section, is precisely stated here. Lohg discussions have

L I

been omitted, since‘ihgy would be the duals of those made

for Algorithm 4.1. . -

Algerithm 4.2,

Task :. Learn f}from error-free NEs.
ASsgmptions: (@) Xy,...,x%, are sufficient to express-f.
(b) f can be written in k-DNF; k is known.
Parameters : h3, h4 > 1. I
hd

1. g <=- {pi | p; is a k-product Vi=1....,Ak] ’

,

o g ‘”)""“"ﬁ'wwv--mr«.-. - e 2 vy - a4 - ¥
, 119 _%

2. repeat L(hy,h,,A) times i

\ . © 3. begin

\ - Ly ’

: . 4. . v <-- EXAMPLE

5. . for each p;eg do
6. if pi(v)#o > . -
7. then g <-- g-{p,;} -
8. end M ' ' om

f
?

. The duals of Theorems 4.2 and 4.3 hold for Algorithm

4.2. They are stated below. ‘

Theorem 4.4. The output g of Algorithm 4.2 has the

properties: o .
ﬂ @ Lotw = Lot = o 1
[g(v) #1 . g(v) =0 : .
“) B| D, DT (w) 3_h3-.l'§:h4-l.
b g(v)#1

kc) g is in maximal k-DNF.

- . v

.

Proof: The dual of that of Theorem 4.2. Lo n
Clearly, Algorithm 4.2 performs one-sided-error
IEarniﬁg; A 'Venn diagram of f and g of Algorithm 4.2 is

shown.in Figure 4.7. According to part (a)"of the last

. | ~ théo:em, g @% more general tﬁan f. TFrom the course of the’
algorithm also, it should be clear that all 'seen NEs are

cqrrectly excluded from g. Some non-seen NEs are possibly.

excluded om ¢ as well, since it is known that f can be

&

ar
"
&
¥
i

e

g e s

‘e
3

-

Figure 4.7. Venn diagram of f and g of Algorithm 4.2,

A » stands for a non-seen NLC, whereas a a4 'stands for a

]

seen NLC. .

written in k-DNF (see, for example, Figure 4.6(e)). Part
!b) of the last theorem implies that the ‘probability that
the weight of the falsely non-excluded NEs will be higher

than even a small value (h3'l), can become quite low (h4-1).

This inc sed confidence in the algorithm's output redquires

additional exgcution time, as indicated by the following

theorem.

J 3

Theorem 4.5.

The worst-case time complexity of Algorithm
4.2. s

g

T(t,hg,h,) = e(h3tk+l(tk+1_nh4)).) X

Proof: As in Theorem 4.3. .

<

Although L. G. Valiant observed that a k-DNF learning

+

. \‘ S
121

‘algorithm~ can be constructed, he also commepted that this
might.not be helpful, because
' the main source of difficulty }s the fact that the
problem of determining whether a non-éozg} vector
implies [i.e. i5 mékiﬁg 1] a function /specified
by a DNF formula is.NP-hard*.

B " (1vaLIAB4al, p. 1139)

"This is a true statement, but what Vvaliant failed to notice
i 9 R e v

is that the output of‘Aiéorithm 4.2 is in maximal Kk~DNF.

“Therefore, according to Theorems 3.l{(a) .and 3.2(a),

determining whether a vector makes the output of Algorithm '

k+1

4.2 equal to 1, is not NP-hard; it takes at most ©(t" ")

- time. According also to _Theorems 3.1(b) and 3.2(c)¥

determining whéther a vector makes the output of the

algorithm egual to 0, requires the same amount of time. @&

.

2 ‘ I3
4,7., Discussion

In this section, Algorithms 4.1 and 4.2 are examined in

. the context of Mitchell's version space, presented in

Section 1.7.

&

\

description of the algorithm, he mentioned nothing about the

usefulness of DNFs as concept classifiers.

¥

t ‘ . 122
é ' As it was stated in‘Seé@ion 1.5, the task of concept
; . © learning from examples can be viewed as a search of the rule

: : ‘" space. In the case of boolean concept learning, “the rule

: | space is the set of _ali boolean functions, “and it is

: : c partiaily ordered under the mofe-genegal-than relation. An

3 example for the case of 2 variables is shown in Figure 4.8.
»

Algerithm 4.1_starts with the most specific concept (in
the,top of Figure 4.8), thch it gehe}aliies (i.e. i%’moves
doﬁnwards) as long as new PEs are seen; The geﬁeralizétion
dorie is the most conservative one; as explaxned in éection
4.3, and therefore, the final output is the least general

cy, concept compat1b1e w1th all PEs seen. Slmllatly, Algorithm
4.2 starts with the most general concept (in the bottom oéﬁ
F1gure 4.8), Wthh it specializes in the most conse:vatxye
l*way, on the appearence of .new NEs,,and its-final,apéwer is
; the least general concept .compatible with all NE§'seen.
' ‘ N X
What is worth noticing here, is that in the case of
boolean %unctioq learniwé,”each observed PE (NE) results in
the most cbnéervative generalization (specialization). In
other words, the sets G and S, delxmxtxng the version space,

always contain one element. o - - m

There is one idea which is ‘worth inyestigating.
Mitche;l's version space guar#ntees'thatxghe correct answer
is always contained in a set of plausible answers, delimited

- ‘ 1

vy

o e o e A T R R

* 41

€,

most specific

.4

. most general

Figure 4.8. Partial ordering of 2-variable boolean

k]

functions. e
Functions in 1-CNF are indicated by a + . Functions im

1-DNF are indicated by a .

-

~

' B

- by 8 ‘anéd G. On the other hand, this chapter's algorithms

v
i

-
124 _ - ‘
have the property fhat probab1§ the answer fouﬁd is quiée
close to the _qorrect'\anSWer. Obviously, this difference
Setween the two approaches is due to the fgct ’;hat " version
space mové? in both Qirections in the’sééce of all possiﬁle
answers, whereas Algorithms 4.1 and 4.é move in only ‘one
~direction. Is iti p;ssible to design an algogithmuwhichJ,
instead pf moving b)ly downwards (g.g. k-CNF learning), or
only ‘upwardg (e.g.i fa{DNF learning), it will move in both
directions, produc}ng in this way a set of Qlausible‘ahswers g
such that ;he ;qrrect answWer would be one of them with
probability iOQ%?
.
Our first attémpt is to see whether the k-CNF learning
algorithm from” PEs, ‘and the k-DNF learning algorithm from
NEs can be simultaneously appiied. Unfortunately, in - order
to do so, the concept to Qe learneq should be in ﬁoth_k-CNF
and k—DNF; If it is in k~-CNF, but not in k-DNF, then the
two algorithms will not ~be searching the same space, as?
indicated in Figure 4.8, and the entire version spaéé,
approafh will collapse. But cons;derihg the learning of
concepts expressible in both k-CNF and k-DNF, iﬁpoges severe
restrictions on the (already restricted) °classes of
polynomially'learnable_boolean functions. For this reaéo ’
this idea'qiil not be pursued further. .
;‘,‘ “
Our seconé attempt ‘is to see whethér, in addition of
'appi&iﬁé Aigorithm 4.1, i.eTJ’in add;éion of ie;rning k-CNF .

o~

. 125 :
. » (’f

b

from PLs (by.generalizing), an algorithm learnfng k-CNF from

NEs (by specializing) could be designeda'

- [~
9:={ } e g=|wex'})
yz y2'y'z’y% yz yz"y'z'y'z wy'z’ Yz yz'yz'yz
/ ™ T o EETFR
wx' wx’ wx'E
| w'x ~ w'x wix' [
w'x w'x “w'x .
° v
(> LY ' (c)

vz yz2'y'z’'y%2 yz yz’y'z'y2 yz y2'y'z2’'y2

wX

wx’ wx'
wl.l wlxl :
w'x w'x -
4 "
o) , (9) ()
Pl

Figure 4.9. Attempt for k-CNF learning from ‘NEs.)

.

Let's look at the ‘example of'Figure‘4.9. Suppose - that
a 2-CNF concept is to be learned from NEs.. Clearly, the

learning algérithm performing this task, should initiali;e

4

its output ‘g to the empty set, as shown in Figure 4.9(a),

and then for each seen NE v=u,, y_, it should add the term

. N . L

" Ul'+...+uq'. to g: For example, .if the first NE seen is
@

126

vaw'x, thén the resulting g wpa&é‘ij;}ne oné shown 1n Figure ° o
RS 4.9(b). ‘ ' 7 |

7 .

o .7 o

Suppose now -that the next NE seen is v=wy'z'.

.

Obviously, g cannot become the concept of Figure 4.9(c)

P ‘Aj .. sr%‘#-&g??_.‘ggrw{y?’lm : "i:s}nv.:

because " this 1is in 3-CNF and not in 2~-CNF; g has to become

one of the concepts shown in Figures‘ 4:9(d), 4.9(e), - or -
4.9(f). Thqrefo;e, d%e qf, the following has to be done:
either the algorithm has to keep track of all three possible
concepts in Figures 4.9(d), 4.9(e), and 4.9(f), or the NE -
" seen has to be ignored sinqg it did not result in a 2-CNF, .
or an- ORACLE has to be used, which, when presented with data
‘ , j(the vectors w'y'z', wyé‘,‘and wy'z in the example under
£ : cansideration), it will tell the leéiner'whethér‘the data is

s

a NE or not. -

RN
[N

¥

, ‘f * None of those' splu£ionS' is considé;ed‘ﬂsatisfactéry.

p "The first solution has been investigated, and it led to a
compligated sear;h;'in- ad@i;ion of increasing the space
complexity. The second solution is clea;lylunacceptable:
consider, for example, thehcase in which a yeryﬂcommon NE is ¢

. repeatedly ignored because it is pgesentéd to the léarning o

algorigﬁm'inla "bad moment", i.e.. when: itS' considerafion
ot forces '@he learned éopcept not to be in k-CNF any more.
’ . Finally, the iaga of an ORACLE was rejeébed;-él;hodEh L. G.

: 8}
valiant himself did use "ORACLEs in k-DNF 1learning, he

. ‘ admitted that C S -

-~ * N) V:

4

.:...wf,.. Gol o o oo o
. ' N

Ay

IESWET LS

e

ey e

> ” 127

.) Il ‘ » D I ' '
there is the additional philosophiEaI difficulty
~ that availability of the [k=DNF) expression*does

. not itself imply a polynomial time
ORACLE*, oh the

algorithm for
othhr’ hand, the theorem
[analyzing a legrning algordthm using ORACLEs)

- does say that if an agent ha§lsome; may be ad hoc,

: black box for ORACLE whosé workings are unknown to
him or her, it can be used to teach someone‘else a

\]
‘DNF expression that approximates the function.

({vaLIA84al, p. 1140)

Our feeling is .that it is not useful or reasonable to assume '

R //that the teacher already knows the conéept (s)he want to
teach the learner.

-~

For those reasons,~ the idea of » learning - k~CNF

expressions from NLCs only, is abandoned.

, Sigfé our _second attempt, to perform Mitchell's

. . . ' ' . 0 : N .
bidirectional conservative search, was Tot successful,

Valiant[é one-directional search method will be the basis of

our work. [|

,

- Lo .
* As already mentioned in Section 4.6, Valiant thought that

for the k~DNF output g of his -algorithm, the éuestiOn of

determining whether g(v)=l or not was NP-hard.

-
¢

4

7

e}

) . + 128
i3

N - “ 4.8. Summary

. .

The need to look for particular _g}assér‘bf boolean

concepts which couid "be (aﬁp’{&cixi;nately) learnable . in

pelynomial time, was suggested by Theorem 4.1. The classes
n ‘ '

of k~CNF and k<~DNF expressions, when the value of k is

known, were identified to be two such classes.

" Algorithm 4.1, performing dne-sided-error polynowial
learning of k=CNF expressions_—)from PEs, and Algorithm 4.2,

-

performing one-sided-error polynomial 1learning of Kk=DNF
expressions from NEs were presented and anal'yzed; in both
cases k should be known. These algori{:hms are based- on
Valiant's work. Their twofold importance was stressed; they

perform approximate learning in polynomial time, and it is

Y . . .
known bow good this approximation is. Valiant's mistake in

the definition of the NEs required for the k-DNF . learning

.

was corrected in Section 4.6, It was also pointed out that,

in contrast to what he believed, the \k‘—DNPs learned by .

Algorithm 4.2 are-good concept classifiers; thif is also the

case for the k-CNFs learned by Algorithm 4.1, Also, due td

- our Yesults of Chapter 2, our algorithms presented here are

faster and more flexible than his.

3

L -
/ -

Next, the relation between Valiant's method and

Mikchell's version space was discussed, an(d it was found

that a direct applica"tion of Mitchell's bidiredtional search

- . 4

e

A

ot
- o, ey DRI
SRR

%
s

N
24

T

. g . Lt
S e e

~ o . 129
wouldn't be profitable for boolean concept learning. N |
‘ After having thoroughly studied the probleﬁ of k-CNF

and,k-DNE learning from etror-free data, &hen'k is‘kqun, we
are now ready to look at‘the problem of k-ngfaaérk-DNF
learning from noisy data, always in the case of a known k.

'

B
& =~ 2 .)

This is investigated in the next chapter.’ . o ‘m

&

Ly

- 130

/ CHAPTER 5

k~CONCEPT LEARNING; KNOWN k;
ONE NOISY EXAMPLE ' GENERATOR

5.1, Introduction

As already explained in "Sgctiop 1.6, in real-life
rapplications, ’err;neous rather than érror-freé data will be
fed into a learn&ng system. Althéugh ig:ucould' argue that
the task of k-CNF‘and'k—DNF }earding om error-f}ee data,

for a known k (studied in Chapter 4), is not. a real-life

application, it\sij/;;ae‘that the study of the learnability
.0f those classes boblean'gunctions; always for a known k,

but from noisy data .this time, ‘is not easy at a11,~ané
therefore it is worth pursuing. If not anything else, such
a study will help us to better understand this’particuiar
problem, and - thereafter to soiye more down-to-the-earth
problems.
.

An algorithm for k-DNF learning from noisy NEs, due to
L. G. Valiant, first appeared in [VALIA85]. The idea
underlying this aiqofithm is explained in Section 5.2, and

it forms the starting point for the design of our own

. | .

L3 /I,' ' \ . > 131
N o '
algorithms in this chapter.

-
. 1

Algorithm 5.1, learning k-CNF expressions from noisy
tr . . B . ’\‘ - - -
’ ‘ PEs,. is presented in Section 5.3, followed by a

£ 3- " ‘characterization of its output in gection 5.4. Several
. useful :émarks have been included in Section .5.5, and the
algorithm's 'time complekity analysis is given in Section
C.) 5.6. A comparison between Algorithm. 5.1 and Valiant's
: algorithm is made in Section 5.7.
S ' |

‘ Algorithm 5.2 is the dual of Algorithm 5.1, It
\ performs k—-DNF learning from hoisy NEs, and it is ©briefly

stated in Section 5.8, along with its analysis.

Finally, the. chapter closes with_a summary is Section
- , o

5-9- ‘ -,’w, ' S, . . -

s (k4

5.2; Example of Kk~-CNF Learning from PEs

Y
.Since the k-CNF learning algorithm from noisy PEs will
be based on the %k-CNF 1éarn;ng algorithm from érrorffreé
PEs, let's loc;k gncg’ more at, the lagf' algbrithm, from a
o '; «8lightly differeﬁt angle.

sAs it- has already been explained, g is initialized to

the set of all k-sums, i.e. to the set: of all k-sums of £,

Y

132

augmented by any ad@itional k- s not in\ff Each k-sum éﬁ
. £ will be made 1 by all PES, whereas each ﬁk-suh noé in f
will be made 0/%* by at least one PE. Some of the:last

~ k-sums will be made O/* by many PEs, and some others by only

‘a few, depending on the.PEs' distribution D+,

7 S -

. . f:g) . *1
f—*——-\ . "
J 1 2 3 4 A1 A
k-sums ' _ \ . S I
counters 0 0 2 5 : 12 18
(a)
g |
. \’ f o - -
/—*—-—\ L -
- 1 2 3 4 o A=1 A,
k-sums — // - J 4
counters O o' o 3, 7 -9
' (b)
Figure 5.1. k-CNF learning from PEs, by using counters.

. . 4 . . .
If a counter is associated with each k-sum, counting

\ the number of times the k-sum is made 0/* by a PE during the
execution of Algorithm 4.1, then a possible situation is

shown in Figure S5.1. All counters of the k-sums of f will

e

133

definitely be " zero. If now all PEs are seen, then the

counters of all k-sums not in f)will be -non-zero, as shown

’ in Figure 5.1(a), whereas, i ot all PEs are seen, then the

-

counters of only some of the k-sums not ia £ will _be

[

-, non-zero, as shown in Figure 5.1(b). Theorem 4.2 guarantees

that if a sufficient number of'PEs is seen, then probably
only 'the k;sums,u whicﬁ have low counters, will decrease
their counters ™to zero, and thefefore wi;l be falsely
included in g; the remaining k-sums wiMll have non-zero
counterg,'hence they will be deleted sométime in the course
of Algorithm 4.1,

- Suppose now that some of the PEs seen are erroneous.
That may change some of the'?ero counters of the k-sums of £
to non-zero, which implies that over—éenekalizatidn may
occur. According to our definitions Jf learnability, thé
probability of that happening has to be minimized, if

learning is to be performed. To do so, instead of deleting

a k-sum when a PE making it 0/* appears, a coumter will be

‘kept for each k-sum initially in g, and at the .end (i.e.

when s fficiéntb number of PEs has been seen), all k-sums
whose c¢ounter is dgreater than a certain threshold d, will be
deleted. + Clearly, the highef d is, the less probable it is
that a k-sum will be‘falsely deleted from g, i.e. the less
probable it'is that over-generalization will occur..

VP

In addition. to what was just said, the presence of the

N

%

s

g

- sy
"

AR P RREER

#

-

£
erroneous PEs will have one more effect

the k-sums not 'in f may either increase or decrease, and
somé of them may become zero. The ' k-sums whose countérs
-bncome zero, will be unavdidably'fal§ely included in g. The
k~sums, now, whose counters will become quite low, will be
gossibly‘ falsely included 1in g,‘ due to tﬁe threshold d
introduced'.above,. resulting in an under—-generalization.
Clearly again, the higher d.is} the more probable it is that
‘many K-sﬁms will be falsely includeé‘iﬁ g, 1i.e,. the more

probable it is-that an extensive under~generalization will

take place. - . =
s . ’ * :
. . .

‘»’J t

The above described idg:a for k-CNF learning from noisy
PEs is éhite simple, and it first appeared in [VALIA85].
However, the crucial point in the design of the algorithm is

the choice of the threshold d, so that over-generalization

will probably not occur, and under-generalizatikgv’will be”

probably not too high; according to wha£ was said above,
these two demdands are conflicting. Also, since d will
affect the number of Pﬁs whiéh have té be seen, and
therefore the executi@n time of the algorithm as well, d has

to be- éhosen so -that it minimizes the ngmber -of PEs

~

required.
‘ -

The detailed deséiiption of the algorithm is given in

‘the next section. Our choice of d is different from that of

L. G.. Valiant in [VALIAB5], and as it will prove in Section

-

. The counters of"

~

*»

135 | ,

“%.7, it is much detter than his:. \ -

5.3.;-k-CNF-Learning Algorithm-from-PEs

\
The algorithm described in the last section -is -

L]

precisely stated here. - ’ .- .

" Algorithm 5.1,

' 4

Task : Learn f from ngisy PEs.

Assumptions: (a) xl,...,xé are éufficient'to express f.
(b) £ can be written in k-CNF; k is known.,
(c) “Error rate r of PEs generator is knpwn;

Parameters : hl' hz,‘h4 > 1.

.1' g == {si | Si iS a k-sum' Vi=l,2,...,Ak}
2. zero a counter COUNT[i] for each 84

3. a <=-- ln(b4)

40. b == 1n(h

© gLy <em 1n< e(l-r)'l)
\ e(l—r)—l+l—e

eh 2, (1-r) -1
-

Go 'y K== ln

ehlAk(l-r) +l-e

__ yil+a) + b(l=x)
7. d < atb TRy

) a+b+
8. M <=~ I-:‘+y_—'

mepeat M times ' ,,_;D

136

N |
. 10. " begin
E 1L, v <-- r-pxampLet '
- 12. = for each s ;€9 do . »
‘ e
;. 13. i€ s;(v)#
: 14. then COUNT[i] s~-- COUNT[i]+l '
3 15. end ‘
. - ’ ...~ COUNTI[i]
{*"; | 16. cflete from g all s; having —=——=5— > d , a
) . .
. . ' N\
The next theéorem' establishes the necessity of certain
conditions in order for the algorithm to be applicable.
‘Theorem.5.1. Algorithm 5.1 is applicable if and only if
. \[(ezs.ku-e)2+4(e-1)-(eAk+2-e)
0 sr<x v = . 3(e-1) - (5.1)
holds for the error rate r of the PLCs generator, and also-
. ' _ (1-r)(er+l-r) ’
1l < hl < hmax = YW ‘502)
B k :
holds for the user—specified parameter hl' Moreover) "
E==pay if and only if hpg-->1. o (5.3)
Proof: Clearly, M, defined in 1line 8 of Algorithm 5.1, has
X :
o

to| be a positive number. Therefore, its denominator” has to

be positive, or equivalently -) .
1 . N _1
-1 h.A (1-
1 -ln(—e(l-r))<1n ey (1)
\e (1-r) ~T41-e ehh, (1-r) " +1-e

TN

mudt hold. Since both sides of the last inequality are -

positive, this is equivalent to

o~

e

wl

[

137 C o
" eh.a (1-r)!
e < 17k .
e(l-r)"" 4 eha (1-r) “+l-e
e (l—r)'lﬂ;e '
"the solution of which yields

b < (1-r) (er#ler) -

1 _ eApr ot

14

That proves the necessity of (5.2), since, obviously, 'hlﬁ
, " \ t
- is required as well.
From (5.2) novq,,“ it is clear that

(1-r) (er+l-e) oo
l < g eAkt hY

must hold. But it can be easiYy verified that. thé last

inequality glequivalent to V |
(1-e)r? - (eh +2-e)r + 1 > 0,

which, accotdiﬁg to what was st;anted in Subsection 2.'2‘.3-'.-

yields (5.1). ‘

. Clearly .also, (5.3) is true, since (5.1) was obtained " from

the solution of 1 &‘h‘mx, from (5.2). ’ a

4

.

. . ~ [} “" =
5.4, Output of k-CNF Learning Alger?@m from PES

The complete analysis of Algorithm 5.1 1is quite
lengthy. For this reason, it has been split into several
sbctions. The'prc;perti.es of the output of Algorithm 5.1-ate
studied in this sect@on. - | , B

/ ‘ v

.The following. lemma will be primarily used in the proof

of Theorem 5.2. . ‘V"\)

- ' 138

Lemma 5.1. The following is true: -
< eha 1 eh o .
(i) <% (efs) vhazL -
.)
. (Proof: Let h R, with h>l. Consider the function :
5 S i . Aln(eha)
. . © "f: (1, ®)-->R with £(h) =— ehtgl’e . (5.4)
Lo - In(grit=s)
. ' It can be verified that ' ‘
. Do = 1 ehiA l-e -
:f (A) -~ 1n eh” {ln(ehml—e)Jr .ehA+1-e}' (5.5)
- eh+l-e ‘ ' ' .
L .]
Consider now the function :

g >R, with q(A)=ln{—gbA },_l-e
g : [1, o) >'R, w1th/g‘(A>-ln(ehAﬂ_e)-rehAfl-e-(S.6) N

It can-ke\\;;rifiea'tﬁét .. S -

o O ¢ £
v . A(ebhA+l-e)

D)

> 0,

_3wd therefore, accordi’ng, to (5.6),

g(A) : increasing in [1, ®). {5.7) -
. , N c
Also,
AR lim g(a) = 0. -, (5.8)
* L A==>0 *

. | : _ (5.6) how, together with (5.7} and (5*:8) imply that]
‘g(r) <0 vaxl. - _ . (5.9)
» Therefore, (5.5)- iumplies t{hat £'(A) .<_0,. and according to

(5.0) |

R f(A) : decreasing in [l,®). - (5.10)

.Obviously, also, : o

t
- .v/
-

139
" lim £(A) = 1, - {5.11) -
A——>l‘ . e
and (5.4) now, together with (5.10) and (5.11)" imply that
£(R)'<1 Val.

The result now follows immediately. . " . "

v 7

/ .
.~ Theorem 5.2. +The output g of Algorithm 5.1 has the

*<%probefqies: : .
r (a)‘ P[Z D+(v) 2' h'_l] ihz—l- . . .

1 ’

g(v)#1 .
) | X p7w > 0| <n,7L.
| g(vi#0 -4 b

.(c) g is in n-CNF, for some n<k; g is not necessarily in

maximal n-CNF.
Proof: Let f=s)s,...s, be. the concept to be learned in
. ' ¢ o .
maximal k-CNF, and gébe the final output of the algorithm.
(a) Let Vi' be the set of PEs making 0/* at lqash'one k=sum
sj (of the initial g in line 1), having COUﬁle]'< aM,
after the i-th iteration of the repeat-loop, for
i=0,1,...,M. It can be seen that if v is a PE, then
A . . v ' oo -
(g(v)#l)c:(v(Vﬂ). . (5.12)
Indeed, veVy, holds, if and only if v‘makés‘07* at' least

one k-sum sj ' having .COUNT[3] < dM ‘after the M-th
| . R

.iteration. But this is equivalent to. that v makes O/*

at least one k-sum of the duﬁput g of the algorithm,
‘which, according to Theorem * 3.3(c), is ‘equivalent to
g(v)#1l. o s T

Accarding to (5.12) now, it 'suffices' to préve that)

4

N
i
e,
N
&
3
5&

.

..
.
S

R R

" and therefore, since r>p, '

(VM -

-

.- Each qutp'ut, v, of r-EXM:Pi.E+, ca}fbe interpreted as a

Bernoulli trial, with "success” .b#ing "v makes it least
one k-sum sJ“ h;dving' cu;vrently COUNT"[j] < dM, 0/*".
That means that a: tr1al is. successful 1f and only if it
contnbutes to the p0551ble future deletion of a k-sum.'
&lea;ly, M trials have been performed, and the numper of
success?s occurred is at most (dM) (Akem), and therefore,
at most’ dMAk. '

If p '(p') denotes the probability that r—EXAMPLB will

change a vector v from 1n51de (butside) V{ to a vector

-v_‘, ngt making (makmg) B/* any (some)'s.Eg having

J.

LCOUNT{]] < dM, then the probab111ty of - sugcess 6f the

o

i-th trial is .

.BISuccess] = Pl{v : insidé Vi] * (1-p), +

- »+ P[v : outside Vi] * p',-

Pl{success] 2 (Z D+(v)) (1-r). . '
“\vev, :

Since now V., +1_ 1, for all i=<'01,1',.\..,M-1, the last

inequality implies that

- Plsuccess] 3_(Z D+(v)j (1-r). (
B } YE VM . ‘ ’
Hence, the event . . .

-

Z pt (v) > hl -1 holds after the last run"
ng .

.. .implies that

"the ppebtability of s\;ﬂces's‘ of each of the M

-]

p[z p*(v) > hl-'l] < hz'l. (5.13) .
v -

§ . <m

L

//‘_—-
!
»

%

.which is eguivalent to

141

Bernoulli trials (in the last run).is at least

—

hl_l(l-r), and at most dMAk ‘successes have

! !
occurred”, '

and therefore,

* y -1
z:D (v)>h 1 < b {<dA, M;M,>h {1-))(5.14)
| [V(V] hl (_ K kil]) _

But Theorem 2.5 1mp11es that °

(3 * - . N -
mzngneﬂlb (EgAkn;n,:pl 1(1-r)y§p2 i%gpl,(S.IS)

where

da, + lnh, ,
1 . _,lT' ’ (5.16)
f n poy - dA
eh, (1-r) " 141-¥ k

IS
n

proviéed that condition (2.34) of Theorem 2.5 is mef;
or, according to the definition of d in the algorithm,

provided thaf

-1
p y(l+a)+b(1-x) A eh, (1-r)

< 1n . (5.17)
a,‘+b+x+y k ehl(l-r) 1+1_

¥

‘But Lemna; 5 $ implies that in order to prove (5 17), it

,;
suffices tc prove

y(l+a)+b{1-x)
atbex+y Yo
atb

~ . (b¥x) (1-x-y) <0,

o .
which is alwaYs true, since b+x>0 by definition, and

Theorem 5.1 impl1e§ that M>0, therefore 1-x-y<0. That
establishes (5.17), and therefore (5.15) as wellL ‘To

-

I5c¢>mp1et:e'novnv the proof, it suffices to show that "

-~

-

faska l42 2 ’

L, < M. | (5.18)

But Lemma 5.1 again implies that

Ak - 1
-1 -1 ’
ehl(l-r) ' ehlAk(l-r)

- k -1
ehl(l-r) +l-e ehlAk(l—r) +l-e
which, according to the definition of ?’ in the
algorithm, implies that
A, + lnh, [a + 1nh£]

ehl(l--x:)-'1) = l y -3 J.
T = dAy

1n

ehl(l-r)- +l-e {//
Accoréing now to (5.16), the left-hand side of the last

rinequality is’ equal to Ly, and according to the

'~ definitjons of b, d, and M in the élgorithm, the

(b)

or, according ;o'Thebtem 3.3(a), is equivalent to

right-hand side can be verified to be is equal to M.

That establishes (5;18), which completes the proof,

since (5.15) implies that
* ‘ - -
b (iﬁhkM; M, >hy 1(17r)) < byt

which, according to k5.14), proves (5.13).

The'eyént i
" 2 B(v) > 0"
g(v)#0 R Y
is equiQalénb to _
) "ghere éxist a vector v, - s&éha‘that £(v)=0 and
g(v)f0%, ”

"there exist a vector v, sﬂqh tHat s, (v)=0 for some’

"ie{1,2,...,m}; and g(v)¥O".

"

(5.19)

Sl Gk LY O BN

ey ERET AR 2y

e e o

o

‘ where‘j"\\ ‘ ’ ' . r
(1-d) + lnh, '

‘143

-
3

. That implies (but is not equivalent to) that
) fat‘least one of sl;...,sm is missing frém g®.
But® that implies that r-EXAMPLE’ . made at least degrrors
(again, the inverse implicatiéﬁ is not true, since what
is éequired is that at least dM e;rors'will affect the
game k-sum). B }
If each output, v, of r-EXaMPLE’ is interpreted as a
Bernoulli trial,' witg "éﬁccess; heing "v is not
erroneous", then M trials have been performed, each with
probability of ‘sucgess ‘at least l-r, and at most M-alt
successes have qccurred (siqpe‘;t least one of Syse-ee5y

‘is missing from g)« Therefore,

Pl 2, D" (>0 < b*(i(l-d)M; r4.°3;1-:))(5.20)
lg(v)¥0 ~ '

But - Theorem 2,5 implies that

min ne'nlb*(;_(l-a)n; n, 3_(1—:))5.%’1*5_1,:;,(5.21)

v

(5.22) °

2 i - 1 [4 [
. '1n< eli-r)) - (=)} >
e(l-r) “+l-e

.gince it cah be verified that condition (2.34) of
Theorem 2.5 holds. Indeed, according to the "definition
of & in the algorithm, it suffices to prove that

_ y(l+a)+b(1-x)
1 2B TRy < X, . {5.23)

But‘fhis'is eqﬁivqlent to
‘i, .
(a+x) (1-x-y) < 0, ‘

which is always true, since N>0. That establishes

. Vv
(5.21).

.,

143

* Agccording now-o the definitions of 4, a, x, and M in
the algorithm, it can be verified that.

‘

. S . "

Ly, = M. . o ‘ (5.24)

From (5.?1) now, and (5.24), i; caﬁ be derived’that
‘ 'b*(f_(l-;d)rx; M, _>_(1-r)) < k,7t, .
which, togéther with (5.2@) ;fove the result,\
(¢) Since, acc%rding to what was said iq ,(b), some of
L sl",...,sm may be missing from g, ' g ‘ma§ not have ahy
k-sums with k literals, i.e. é may be in (not

necessarily maximal) n-CNF for some n<Kk. :]
v .

.Thedkem 5.2 -implies that Algorithm 5.1 performs ‘a
speéial kind of strong two-sided-eryor learning‘ (see’
Definition 3.19). The question which natuéaliy arises, is

whether by allowing

Pl 2. D" (v) 1113’1] £h4‘1, S, (5.28)
g(v)#0 "~ : ')

instead of part (b) of the theorem, a lower exeéutioh timg,

or a wider range of permissible values‘of r and hl' cbuld be

achigved.

Unfor tunately, the answer to this question is "no".

Even the inclusjon of a single NE may be disastrous. If,

. for¢?example, D (v)=1l, for a vector v included in -g, Einpe;g -

is not tﬁsted against NEs, such an error will Xneéer be

detected. . : \\\ "

\
“« ot
v g et TR R

~

. Figure 5.2. Venn diagram of f and g of Algorithm 5.1.
A 5 stands for a non~seen vector, whereas a a stands for

a vector presented as a PE.

A Venn diagram of the concept f to be learned and the
output g of Algorithm 5.1 is shown in Figure 5.2,
. In contrast to Algorithm 41;; éome seen (real) PEs may
not bekinoluded in g now. This will happen.if a PE,is seen
only a few times, anc no.other PE encompassing it' is seen
sufficient number of times. Algorithm 5.1 will then think
that ¢his PD is actually a NE falsely reported ‘as a PE. But
on the other hand, as is also the case with Algorithm 4.1,
some non seen PCs may be included in g, due to the known
tact that £ can be written -in k-CNF (see Figure 4.3(e)).

Independently of the reason for which a PE may or may

not be 1ncluded in g, Theorem 5.2(a) guarantees that the

probab111ty h2 l, that .the weight. of the falsely

'\non-includea PEs will be greater than a certain. quantity

146
hl—l,*can be made arbitrarily small. However, (5.2{ implies
that tﬂe guantity hl-l cannot become arbitrarily small.

In contrast also to Algorithm 4.1, 'Algorithm 5.1 may’
ove;-gene;alize, i.e. g may contain some NEs aé-wéll. "This
.will happen if a NE,.or a number of NEs encompassing it, is
repeatedly presented as a PE; if a NE is presented only a
féw times as a PE,.then it will not be included’ in g, due to
the d threshold, except if it is forced to, by the known
fact that f can be written in k-CNF, as explained abo;e.
The last fsét may result “in some more unfor tunate
iifuations; it may force, for example, a NE, "not even
presented as a PE,‘to be falsely inclﬁded in g. -

, o
Independently again of the reason of the false

noijgxclusion of a NC from g, Theorem 5.2(b) guarantees that

=

the probability h,~! that even a single NE will be falsely

non-excluded from g can become arbitrarily small. . (]

’

Let's look now at tﬁe~ggry' important consequences of
bart (c) of the 12?1 theorem, although the& are immediate
after our Theorems 3.1.and 3L3. The output g of Algofithm
5.1- can’ determine fast kfn at. most O(tk+lj time) whether
g(v)=1 for,aﬁy vector 9, and whether g(v)=0 for any total‘

vector v. However, determining whether g(v)=0 for a partial -

vector v, is NP-hard. B ' n

>

i A T A

*

. behavior is examined in the next section. . ..

5.5.1 Choice of d and M

147

5

5.5. .Discussion on k~CNF Lea:ging'Algorithm from PEs
o

A justifibatiqn of the seemingly ad hoc choice of q and
M .in Algorithm 5.1, as well as a logical\zxplanation of the
fact that r and h; are upper-bounded, is given first.. Those
remarks give us a dé%per insight into the problem and its
solution, and also reassure- us that the obﬁained results are
ﬁeaningful.' o ' ‘ '

A '

Next, a remark is made on the value of M; M determines

.the ‘time complexity of Algorithm. 5.1, and its dsymptg;ic

+

~

Suppose that d ' is’ unknown. Then, from the proof of
! . 2

" Theoren 5.2 (see (5.16), (5.17), and“(5.22), (5.23)), it is

3bvious that:
(a) In order for property {a) of Theorem 5.2 to hold, at
ieast y ‘
~dAk + lnh2

L, = o I . (5.26)
ehl(l-r) ’

1n —
. ehlel-r) +l-e

- ’dAk

iterations are required, provided that
ehl(l r)
1

dAk < 1n

\ ehl(l-r)- +l-e

AP

" G
. } .
“

B i o et S

v

148

(by In order for property (b) of Theorem 5,2 ,to 'hold, at, '

least . : .
§ - : . 1-4d-1nh, . ‘ -
L2 ‘am "l ' ' (5.27)
(1-r)
ln(e ‘)f (1-d)
e(l-r)” “+l-e/ 7 ,
lterations are required, provided that '
C1-d < ln(ell-r)”)
\ e(l-r) “+l-e

Therefore, in order for both (a) and (b) of Theorem 5.2’;0

hold, at~least max{Ll,Lz} iterations are required, provided

that
dl < g < d2' |
e(l-r)~L
where dy=1-1n -1
e(l-r) “+l-e
. a1 ehl(l-'-x:)-l
and 62 =-x-1n] . {(5.28)
. . k ehl(l-r) tl-e/

That means that Theorem 5.2 holds for all d in the range

specified by (5.28). The problen now is to find the' "best”

6, minimizing the number of itergtions, max{Ll,Lz}; .
: . T , \

1f L, and L, are considered as functions of d, then L,

is increasing, and L2 is decreésing. That implies)that thg

d satisfying the conditipn L,=L, is the Sest chgiﬁe, i.e.

it mimimizes the max{Ll,Lz} {see Figure 5.3).

i

X

. . Although the solution d of the equation Llst‘ can be
‘obtained, it leads to very tedious computations

subseguently. But Lemma 5.1, formulated for this very |

A

.’5

149 \

VR

af - - - ---1
- 1

al - - - - - -4 2em -

‘Figure 5.3, Graph of Lj=L,(d), L,=L,{d), and
’ ’ 1

Ly =L, " (d). |

The ->—6— line is the max{Ll,Lz}. The —&~B- line is the

max{Ll',Lz}{

s

purpose, implies (see derivation of (5.19)) that L,<L '

l 1 4
where ' d* .

d + 1nh2

I . , (5.29)

-1 - d
ehlAk(l-r) +l=-e ¢

eh,A, (1-1)"
inf——0mo=>Fk

Obviously now, in ordef for (a) ‘and (b) of Theorem 5.2 “to

hold, at least max{L, " Lz} iterations are required, proVidéd
that

e < <
dmxn d dmax' -

%
%
g
g
&
3
&
&,
#
P
',g .

e

'imélies that

150
- }
where ~ d_. ‘s 1 - ln(e(l-r)-l)
min e(l—r)‘1+l-e
, _ ehya (1-n)7! ;
.and d . '=1n — . . (5.30)
ehlAk(l-r) +l-e -

-

Again, the d sdtisfying L,'sL,.is the best choice, and the d
of Algorithm 5.1 is this very &, which when substituted in
L' in (5.29), or in L, in (5.27), yields the M of the

algofithm. It has to be remembered though, that a.lower

. execution time could have been obtained if the equation

~ +

L,=L, had been solved instead. ., T

5.5.2. Bounds oﬁ r and 51'

Y

¥

» The reason for which r and,hl cannot grow beyond a

certain value, as implied by (5.1) and (5.2), even in the

expense of ‘running time (in that case Algorithm 5.1 §imply

doesn't wozk),<ﬁill be explained here.

-

™
The rationalization of those two facts, already
rigoréusly proven in Theoren 5.1, will be faciliated by our

discussion in the last subsection.
Yo

Clearly, property (a) of Theorem 5.2 implies that the

~

. . e
leftmost inequality ‘of (5.30) has to be true, which, in turn

?

vwhen r increases, dmin‘increases. , "a ‘5.31)

]

- : “ " 151

This is so, because when the example genetatog makes more - ¢
L ’ | . ' errors, iore counters of the k-sums, of £ tenq to'falsely

become non-zero. Therefore, the algorithm has to ask for

more evidénce ihat a k-sum has to be deleted.from g, since

the maximum probabiiity Q;—l, that even one k-sum of f ;ilr

be falsely deleted, remains fixed.

* Property (b) of Theorem 5.2 implies that the rightmoét
inequality in (5.30) has to be true. That impiies that b 1
‘ when r incréases, 4 . dec;eases. (5.32) ' ‘
This is 'so, because when the example geherator makes‘ more ’ «
étrorst more counters of the k-sumi not in £ tend to falsely l
decrease, or hecome zer&, implying.thét more PEs tend to be
falseiy non-included in g. Therefo;e, the algorithm should:
* . a require less evidence that a.k-sum has to be deleted from £,

since the maximum weight of the falsely ndn-ihciuded PEs has

not beem increased.

The same inequality also implies that

1]

when hl increases, d ax decreases. . (5.33)

m

~ That happehs; because as thg user becomes more -fussy about
the weight of the PEs falsely non-ificluded in g, or
eguivalently, about the number of k-sums falsely included -in
g, 'the algorithm has to decrease its threshold, so that it 4
will not be fooled toetmuch by the errors ;f the example—

‘generator, i.e. it will not falsely keep too many k-sums in.

g, which it shouldh't. \ RV ! . i ’

%

152 , : v

The last implication of thg/ rightmost inequality of.
(5.30) is that , .

when A, increases, a,

—_—

ax decreases.’) (5;34)
The reason for this is that as Ak;incfeases, since the
weight of the PEs (falsely non-included in g, and therefore)
;:king 1 the k~sums not in f remains fixed, it becomes less
probable that a k-sum not in f will be made 1 by a PE.

y Therefore, in order for the algorithm not to be fooled too
mué% (by keeping toq many k-sums which it shouldn't), it has

to decrease its thresholds s

;

r

. The rgsson now for which r is uppér-SQunded ié obvious.
@9(5.31) and (5.32), already rationalized, imply that as .r
increases, the range of permissible vglues of d:’}h (5.30),
is shrinking down from both sides. Therefofe, when r 'grows

beyond a certain value, it can be expected that d d

< s
max "min .
will occur, which allows no value for d. Therefore,

should not be allowed\ﬁo grow arbitrarily.

On the other hand, if h1 increases, (5;33) iﬁplies that
the range of 4, iﬁ (5.30), is shrinking down again, but only
from the right side this time, and therefore the undesirable

situation d . <4 may occur again. To prevent that, hy

min
s ..
shouldn't be allowed to grow arbitrarily.
: S

But what about (5.34)? Doesn't it imply that A cannot

grow arbitrarily? The answér is "yes", provided that r is

.
‘ ‘ ®
. .

P sy
3y

Ry,

RS T

TR A
N N

§ -

> 153

fixed, so that d in (5.30}, remains fixed. However,

min’
since this is ﬂndesirable, r will not be allowed to be
fixed, as it will be explalned in the next section; r will

. be somehow related to Ak' % that when A, grows, i.e. when

dmax in will decrease too, so that dmm<dmax

will afﬁé?s hold. . ' . [

decreases, ' 4

5.5.3. Conservatism of M . . '

»
L4

Tﬂe-number of iterations of Algorithm 5.1 do;inates thefT
aléorithm's time cemplexity. -Therefore, before studying M's
) asymptotlc behavior, 1t does make sense to check whether a
lower M is.sufficient for most of the cases’ (i.e. for most
of the sequences of the PEs presenteﬂ),/and if so, to find
t?e’ circumstances under which a ‘ﬁumber of iterations’as
large as M is absolutely necessary.

From the proof of Theorem 5.2, it should be obvious.
.-that M is very conservative; it is large enough to guarantee
-that prope;;xes (a) and (b) of the theoren hold in the worst'

case.- This case arises when all PEs are turned to non-PEs

N

by the noisy example generator (because if a PE is turned to
another PC, none of the counters of the k-sums of f will be
falsely increased), each of those non-PEs affects the - same

k-sum of f (because the increase of many counters up to dM-1.

is of no harm), and moreover, the deletion of this

4

8

v e o R PR *}4&6’5@?’?’&-‘?

154)
Ao

_ particular k-sum ‘does affect. g (the false deletion, for

-

example, of x, froM g = x;x,(x;+x,') does not affect g).

_¥or this reaébn, when r-—>0,_the d of Algorithm 5.1

does not tend to 1,'i.e. Algorithm 5.1 does not tend to

Algorithm 4.1. : ']
: d

K2

-

' \ '
5.6. Time Complexity of k~GNF Learning Algorithm from PEs

¢
A}

The time complexity of Algoélthm 5.1 will be studied. in

this ‘section.* As already mentiorfed in the last subsection,

}
the key point to that is the derivatioh. of an -asymptotic

expression ‘for the number of iterations M, i.e. ' the study
of the Behavior'of M, when Ak (equivalentlyz when t),’ hl’
h2, and h4'aré growing.

One could say that in an asymptotic expreésion for M,
the error rate r should be a pérameter; the more desirable
idda of studying the behavior of M when il;---> ®, is not

. ~r
applicable, because, accarding to (5.1), r is upper-bounded,

i.e. r cannot always approach the value l. ' However, a more

o

careful examination of 05.1) reveals that as ‘Ak increases,

Loax decreases.- That implies that if r is a parameter, i.e.

if.r has a fixed'value, A, Ccannot grow beyond a certain

vilue, tﬁerefore, no value of Mf%pists'wheh‘Ak -—>m,

]

r}’

Sy , ’ 155

One more problem,”conce;ning.the ésymptotic behavior of » -
M, arises from (5.2). According to that,. h, also cannot
grow arbitrarily, and therefore, no M exists when hl-->m .

Moreover, the permissible values of h1 are harder to study,
¥ . .

. L
since they depend on both Ak and r, with r itself depending
. R . _/ A
on Ak‘ B Y - , o K

~—

1

o el

The above remarks suggest that before the study of the,
asymptotic -behavyior of M is attempted, the rflation between
) hl' and 'Ak has to be fully’ understood.. Lemma 5.2
gxaﬁinés the relation between r and Ay, which seems toibe

more tractable ;han that between r, hl, 9nd Ak' examined 1in

L?a 5.30 - i . to. ‘ “ '.'
. o B A S v

. 0‘ - .
Lemma 5.2. .For ' ‘ .
(eak+2-é)2+4(e-1) - (eA +2re) .
, .;gmax = x Z(e-1. 7 ;.
the following are true: .) L. . -) o
",(a.) v:rmé\x%c) s decreaaing_‘, 'VAk > 2. \
.3679 .11 < Yol-ge -e-21 . .3954
(b) ST= =< (TSt 2 ,)
s Ak e Ak max - e-~1 . Ak Ak
%\ . - ‘ I
hence '
o)
r . = 6 .
max .« \B, .
- K . AM; .
'Moqéoge:.°rmax approaches its lower ‘bound, when A -->@,
Proof: "« . o L S

(a) In order to show _that
.

Loax (B) is décreasing; it

‘

3

o

. v .. S - ' : ’ /
: , (‘ [
A N rmax' (Ak) < 0 ‘ ’u §
_ (b) Upper and lower bounds for i " B §
\ k((eAk+2-e) +4({e-1)-(eA, +2—e) -
, Pelmax (P) == . 2(e=1) i - 5 35)
will be derived. First, it will be shown that
. ., .3 ‘ *
Akrmax(Ak) : decreasing «n (2, ®). (5.36)
: To do _so, it suffices to prove-that x
(A nax(P))' < 9.)
or,_equivalénfiy, that X
(eA, +2-¢) (2eA +2-e)+4(e-1ui S\
ZeT - " (a2,

.156

.)
suffices to show that its first derivative is(
: B ' .
But y .

negative.
™

x'(gk)

2(e-1)
C "&ekk+2re)2+4(e-l)

and since 4(e-1)>0,

\ +
-1),

\l}\ (eA +2-e) + 4(e-l)Ak

which 1s‘equiva1ent to
- 4(e-l)A

S Ay (en +2-e) +: 2eAk32 e :
' < 1.

. e 2

1

By - considering the square of both sides of the last

" inequality, ané by performing some algebraic operations,

7 3

the

2
.. dle=1)+(e=2)“ .

is derived, which is always true, sinée Ak

proves (5.36), which, in turn, implies that

s
¢

Z?' That

»

]

'
1

"y

o) 157

- Alim(Akrmax(Ak’) < Akrmax(hk) < 2rmax(2:.)-(5"37)

L TT® - , 8 ‘ :

But (5.35) implies that

e’+8e - e - 2
e-1l

o 2r, (2) = | . o) (5.38) . , ,
Also, multiplication of the . numerator "~ and - the

denominator : of Ar (Ak)" 'in (5.35) with the cénj}u_galte

: . : max
R . of the mumerator yields) \
’ ’ ‘ ZAk
Mgl T
. . oo VI(eAk+2-e) +4h(e-.-l) + (gAk+2-—e).
) or -
' \ Akrmax(p‘,k) 3 . o
" R ' " ‘ N : eAk+2-e ’ + 4(&"'1) +' e$k+2-’e ’
' . . , - AL LA A,
Tk P
y Therefore, S ’
- o N .] . .) '1 '(. t~
. o0l (Aermaxt®)) =% - |
. : -—>0 ~ , .
Vo k y . N . y

The last equality now, together with (5.37) and (5.38)

" prove the result. _ N ‘-

The relation between r ., the maximum acceptable error

.rate by Algorithm 5.1, and its bounds '
11 o :
f1 " e & , ‘
" 4 !
o ahd ‘ ! - : N ! . .
. Velige - e-21
2 e-1 T Ay '

R as established in Lemma 5.2, is shown in Figure 5.4, Any

. o 'etrqx:‘ rate, lying in the shaded area (depending on Ak.). is -

N

e

e
TR

o,

R)

G T RO ERA e e O e At -

W

I\

158 B
. b L

;Ak

Figure 5.4. Graph of ¢ nd its bounds r; and r,.

max’ 2

‘Lemma 5.2 is very important, because it allows us to

set
T =—g— ’ for some c,<‘-l'-, (5.39)
k . € ‘

when studying the asymétoﬁic time complexity‘of Algorithm

5.1, without testriéting it to a particular range of . .

acceptable error rates. Other values of r, with
1 : . .
€A, . .

)

r >

are. acceptable error rates as well (if they are lying.

between rrax and ry in Figure 5.4), but only for small

values of A . Hepéé,'they need not be 'considered. Y

L

. g

+159 B

1 . . v -

As was already stated in the beglnn1ng of the section, o Lo
the relation between hl, r, and Ak has to be studied next. -4

»Since this result will be used in M's asymptot1c expression, ‘ <

o

according to what was said above, it can be assumed, without
- M N . [] N

‘. loss of.generality, that (5.39) holds. o o

o : ~ 5

Lemma 5.3. If ¢ is a cénstantj:w§th o -) ' x

[} v

1 \ P : :
. C < ?‘ K , ’) <ﬂ) (5.40)
and’ “ i o | .
r =£-, for all A . S (szii)
Ak L ~_k. . .)
.and aipo . ,) .
Y - (1-r) (er+l- rl
max eAk
then, the following ar® true: "y . o
) | ’ [)
(a) hmax(hk) : decreasing VAk > 2.
1) (2-c) (2+ec~c) -
(b) T < Lhmax ,‘<' Jec .

Moreover, h .. approaches its lower bound, when A, -->®.

Pa::k: Acbording to (5.41), the definiﬁion of ’hmax can be
rewritten as '

,(Ak-c)(ec+Ak-c)

h = () = (5.42)
max max k] ecAkz '
4 ¢
or -
' Ak2 + c(e-2)n - cz(e'l) . 4
by () = s : . (5.43)
ech, »

(a) To show that hmax(Ak) is decreasing, it suffices to show
i

/ ' Cooe ' L ‘
- . . \ . 160 ' '
that i}s first derivative is negative. But . .
A (-e(e-Z)czA

A . K +2e(e-l)c3)
L] =
h-max (Ak)”v (.

k
ezc2Ak4 -

Therefore)))

Chay'im) <0 . . (5.44)

is equivalent to
t . o2(etl)c
Ay > e~ ’

which is always ‘true, since A 22, and, agcording to

“

(5.40), B
2{e-1)c 2(e-1) -

. e_2 < e(e-) ll76o

".That proves (5.44), as .required.

(5) Part (a) imﬁlies that .

AIETSSmax(Ak)) < Prax () £ hpayt2). (5.45)
, . k , .
K But (5.42) implies that

: w | .
= 12=-¢) (ec+2~c)
hmax(z)) dec £5.46)
and (5.43) implies that) ,
N R N ! N | ‘ .
1im£:max(nk)) - = S (5D

A -~

The result now follows from (5.45), (5.46), and (5.47).m

*

. The relation between h the maximum wvalue of the

max’
user-specified parameter h1 acceptable by Algorithm 5.1, and

its bounds, as established in Lemma 5.3, is shown in Fiéure

5.5, . . - ' »

As was also the case with Lemma 5.2, Lemma 5.3 allows ..

t

[P
.

A »
[T

N
e el ,,h".?";‘.’";»

161 4
hy
i 3)
(2-cX2+e 0—¢)
. 4ec :
/"/\-
,ﬂ) N
‘1- &
ec .
Figure 5.5. Graph of hmax and its bounds.
)

. ‘ , (::;ﬁyﬁ
, us to assume that hl<é5-holds, when studying the ptotic

time complexity -of Algorithm 5.1, without restricting it to

‘a particular rangeé ot«peilllaiblc values of h;. -
- ' The time complekity‘ of Aléoritbm' 5.1 can now be
derived. | | “ |

’ . . ' L

Theorem 5.3. If c is a constaht, with

c <_t1;. | ‘ ‘, 5.48)
and_ .' ‘ : ' ‘ | - 3
r -‘—%;-‘ for all A S (5.49)
is an error rate acceptable by Algorithm 5.1, ;nd alsgo
by <= - | 3 (5.50)

ec - :

162

kolds for the. user-specified parameter ' hy, then the

worst-case time complexity of Algorithm 6.1 is

hlf2k+lln(h2h§l
T(e/hyrhg) = 0= Tocen, (.51
and
= b t3**1n (hohy) V |
T(t'hzyh4) ""9 = k - ’ (5.5?)
) (l-chl)t -C . , :)

Prodf:’Uppe: and lower bounds of the expressidh'

v & . s __1
-1 eh A (1-r)
E = 1n(elne))+ln Lk)-1,(5.53)
e(l-r) “+l-e ehlAk(l-rJ +1-e/ ~

i.e. the Qpnominatpr of ﬁ, will”be derived first. By using
elementary properties of the logarithms, it can be verified

that when (5.49) holds, (5.53) implies

3

. . eh
E=1n{— ‘ 1k (5.54)

ehlAka-(e-l)(1-ébhl)Akzv(e2-3e+2)cAk+c2(e-1)2

/

which, according to (2.2), implies

(e_—l)(l—echl)Ak2+(e2-3e+2)cAk-c2(e--l)2
E >’ T ’ . (5.55)
ehlAk

But

[

(e2-3e+2)ch, - cl(e-1)% > 0 o _ ' (5.56)
K , 3

is equivalent.to _ e C S

IC
.k e“-3e+2

which is a1wa§s true, since Ak:;, and according to (5.48)

cle=1)? __ (e-? . |

e‘~3e+2 e(e’-3e+2) |

1 . <

.

E R T I
ot
e

§
H

[N PR Y

which, according to (5.49), yields

163

That establ1shes (5. 56), and therefore (5.55) 1mplies

v

(e-l)(l-echl)
E2 gh A

. _ , '%(—
or, according to (5.50y, - L

eh, A,

1) ' '
= < . . 5.57
E < (e-D) (I-echy) ° .o B

. According now to Lemma 2.6, (5.53) implies

1-r
E < (l-r) + - l,

(1-ch1)Ak - C

T g g . (5.58)
. ‘ hlAk i
\ *

But v,

(1-ehy)a = ¢ >0 _ (5.59)
is, according to (5.50); equivalent to
~ c ‘

Ak ” T-chy :

which is always true, since A,>2, .and (5.48) and (5.50)

' imply that

Y
c e
<
l-ch1

L
1-8

That establishes (5.59), and therefore (5.58) implies that

., h,A,°%
> . 5.60)
= 11-ch,)a -c ,» (

Y
E

According now to the definition of M in the algorithm,

(5.57) and (5.60) imply

. h Ak (lnjézh)+1).< y < 2 Elpk(ln(h2h4)+l)
(l-chl)Ak -c_ = =e-1 1 - echy '

= .58, -

o oy o W
i L Qf'&j?t’.f’-’“"?im M

U

en

- imply that 'execution of lines 9 to 15 takes,

‘ 164
or, according to,(4.1).

\ | (hytKin(hoh,) - o
. MEOoTmenT - ech; .o (5.61)

N

2k :
" ;Q<h1t 1n (hzh‘l))_.
(l-chl)tk - ¢

and

(5.62)

It can now be seen that lines 11 to 14 of the Algorithm 5.1
take at most e(Ek+1) time (the proof is as in Theorem 4.3).

Since they are executed exactly M times, (5.61) and (5.62)

in the worst
CéSEI

. 2k+1
o hlt ln(hzh’)
) l-ech1 N
{
and

3k+l ' '
. h, t Inth.h,)
9<1 k24) <y

(l-cml)t - C
time. Clearly, lines 1, 2, and 16 require at most e(tk)
time, and lines 3 to 8 reéuire (1) time. Therefore, none

of them increases the overall running time; and the result

follows. - - n

Theorem 5.3 1is ‘very important, 'since it .implies that
even if noisy PEs of a concept f are fed “intot a iearning
system, provided that the noise is not too high, a probably’

good approximation of £, and . not merely of the concept
. . .

. induced by the examples bresented'aé PEs, can be learned in

time polynomial in ihe number of- variables t.

A}

Moreover, the

[

¢ B oI e s BN AR o -

B

oy

BETUN

-

168

algorithm is applicable, i.e. when (5.66) and (5.68) hold,

To see that, our Mﬂané his M* have to be coqﬁ}red directly, ‘!B
and :] ’
2lnh + 1 ' <

eha, (1-r)~1 | S
+)-1

in(e(l-r)-;')+1n
e(l-r)-1+1-é -

ghAg;;—;?-1+l-é

&

< 36hAkLn(hAk) o, . (5.71)
has to be proven. But, according to (5.68) and the

established (5.57), it suffices to prove
2elnh +e . g1, (hAk) ,

L (e-1) (4~e)

or

2é1n(hAl)'+ e
, (e-1) (4-e)
But this is equivalent to

U ‘e ' |
19 = grecTyirey=ze < 1nhag).

;whiéh is always‘ true, since Akzz,

That proves (5.71), and therefote our claim has been

established. '

.

€

The reason for the drastic improvement of our al

, over Valiant's is discussed next.

If we parallelize Valiant's proof _ﬁ (VAL A85] with

¢

v
- o W e > o

this gre important; even whef the asymptotical shperiority

of an algorithm has bee

-

\ . | o .

. s
’ AR A My e ey S - o e emw ke om = -
1‘ - \. Lo
. .
* -

169 . . !

ours, we can see that instead of him de iving {5.14) and

(5.20), he derived the much weaker inequalities '

- e[Totwan,] ¢ no <o M,>(hya)T (1-:))(5 72)
[VEVY ‘

-

e Bl 2w iAk’fb*(f_(l-'d)Mi M, 3_(l—r))r (5.73)
’, 19 (V) ¥0 : : :

* respectively.. Vo v

. . _ . *
%L . * r N) \‘ * l ' . ! -

i

i 1‘}"

To derive (5.72), he considered each PE .seen as a
Bernoulli ;riar,.wi,th "success" bging "k-sum 8; is ma:.i,e 0/"* e
. by Fhe .output of"i—nxmﬁ«z*"./ Also, heaebsegved thgﬁ%\; each
, VM‘ makes 0/* at least one -falsely inciuded k-sum" in g, ’ . ¢
that there are at most A §uch falsely included k—sums ing, . - -
and that each of them is made 0/* only by, PEs belonging to v

. M' and by at least one such v VM' Hence, at least' one of

PoY, : ! .
probability%‘a,ﬁx least L k

. the ‘falsély included k-sunis in ga h

(hya)"1 to be made 0/* by a PE (in

?') .- “‘~, [Zﬁ-l-{v) >h l]

M)"‘ Therefore’, “:;, - @
84 has probabillty -
P|2(h;a)"t to be g | |

.
»
€
N
* e
-f

li

where sm+1'“"sm+q are the k—sums falsely includ;ed in 9.

>

R ‘(fleaaly, for each of them, less than dM successes have

To ‘ occurred, which implies (5.72). P
? A ' :
. N . ¢ N . -\
“ t . - .) ” .
o Té}/erive (5.73), he considered each PE seen as a

i

a [.
~ .., Bernoulli trial, with "success" being_"no error made by

S) r-EJ}AMPLE"" §s ve did), -but next he u%) the weaker '
& . , ¥ P o, LI

-ineguality Ty L.

PR S T W i e - H
8 fa T L T AL | . TR Y T TR R TIN5 o s somes an

. » o
. m) IO
P Z D (v)>0] < Z Pls; : missing from g},
‘g(v)¥0 i=) : . .
* . A ha %
which, obviously, implies (5.73). > . "

. . , - -
5 3 - '

It is worth noticing though that even if we were to use
(5.72) and (5.73), instead of (5.14) and (5.20), our .number
of iterations would be '

) 2
ln h2h4Ak + 1

3 =)
e (14r) T+1-e eh A, (1-r) +l-e

-1
which .can be 'proven (in a'way similar to that (5.71) was
proven) to be non-asymptotically better than Valiant's e

P

* ' '
number ‘of iterations M . Definitely, this improvement is

due to our theorems in Chapter 2, which, in addition to

e e SR B = o RS BCRTES R e R e e S ity i -

that, have almost automated the derivation of the required
‘ : number of iterations for our algorithms, as it became

;aépargnt from Subsection 5.5.1. [

5.8. k~DNF Learning from NEs

\ p . The dual bf Algbffthh 5.1, performing k-DNF learning
from noisy NEs is briefly presented in this section,

followed by its analysis. - The description of the algorithm
. 2 is given first.. . a

i
Ficd 5r

171

Algorithm 5.2.

Task : Learn £ from ngisy NEs.
- | Assumptions: (a) XjseoerX, are sufficient to exétess £.
" - (b) f can be wfitteﬁ in k-DNF; k is known.
(c) Error rate r of Nés‘generator is known.

~ Parameters : h2, hg, h4 > 1,

i

1. g <= {pi | p; is a k-product, Visl,2,...}A£}

1 2. zero a counter COUNT[i] for each Pi
3. a <== 1In(h,)
i 5 x <o iﬂ(e(l-r)"1)
; SR e(l-r) “¥l-e
| , , eh & (1-r)~1 -
' 6. y <== 1n —) .
' ; ' eh,A, (1-r)" “+l-e s
{ ~ 3%k

atb+x+y #

5 o _ [Etbel .
" . ,“ ‘B-M<-" r;.._y_—l '

: ' " . 9. repeat M times - | L
BN | " 1o, begin ' ') ﬂ o ‘
' 11. v <-= r-EXAMPLE™
12,. for each éieg do : ;' ' : .: . ‘
13, . if p (viF0 - ‘ ' oL
155 then COUNT[i] <-- COUNT[i]+l | .) 1
’ . 1%.- ;nd ‘ ‘ , - -
‘ ’16. delete from g alle\pi having -5923211¥-3 d .. _ o
. : o . | . N D - I a : 1§%
v / - | o o DR ".A 'y | C
Lo e e

-

ety P o e @ T P

e rede 1 MgRs Th ANy ke s .
£ adre 3 il d u Py e

a) . 172

. !
¢

The duals of Theorems 5.1, 5.2, and 5.3 hold for
Algorithm- 5.2, They' are all stated ﬁere, for easy

reference. First, the theorem concerning the maximum

' permissible values of r and h, is stated.

ot

Theorem 5.4, Algorithm 5.2 is applicable if and only if

ﬁi}fz—e)zﬂ (e-1)- (e, +2-€) _
0 <r < rmax = | 2(9-1) (5-74) .I N

bholds for the error rate r of the NEs generator, aﬁd dlso.

o {l-r) (er+l-r))
1 < hg f hoax eh T (5.75)

holds for the usg;-specified'parameter h3. Moreover,

r—->rﬁ9x «if and only {f hoax~ "1 ,(5.76)

1
2

Proof: As'in Theorem 5.1. . -]

%

The properties of the output of the algorithm are

stated next. \

Theorem . 5.5. The output g of Algorithm 5.2 has the

properties: oo

(a) 2| X p*w > o] < n,7L .
g(v) ¥l

(b} B| 2, D(v) _>_h3'1] <n "L
g(v)¥0 .

L}
(¢) g is in n-DNF, for some nik; g is not necessarily in

o

. maximal n-DNF.

B 3
-3
. ,Q‘
.7
3 b N
A
S
g
¥
g
¢
)
¥
i
ks
¥
<
¢

-

v

[

~,

i .
. - . . e amaes
LON ¢ . .

173

(

(a), and (c) of Theorem 5.2. . B |

*This theorem implies that Algorithm 5.2 performs a
special kind of stfong two-sided-error learning. Somé-PEg,
(encompassed by PEs) frequently presented as NEs, may be
non-ificluded ‘in g. However, part (a) of the last theorem

implies that the probability that even one PE of f will be

falsely non-included in g, can become arbitrarily small (at -

most hz-l). On the otpet hand, the (NEs encompassed by)
rarely seen, real, NEs may be non-excluded from g, but all

freqhently seen, real, NEs will be correctly excluded from

qg. Also, some 'non-seen NLs may be excluded from g. Part

"(b) of the theoren implies that the probability thati the

weight of the falsely non-excluded NEs from g will be

greater than a certain quantity (h3'1) can become

arbitrarily small ({(at most hd-l). However, according to

-1

Theorem 5.4, h3 cannot become arbitrarily small.

o

1

The implications of parg (c) of the same theorem are
‘mportant. ' According to Theoreq 3.2, for the.ocutput g of
Algorithm 5.2, it is NP-hard to determine whether g(v)=l for
; paitiai veFtor v; what can be determined fast (in at most
0(§*+l) time) is whether g(;)-l fbi a total vector Ve and

whether g(v)=0 for any vector v. . » n

‘r
Lemmas 5.2 and 5.3 now imply that next theorem gives
\ N

the asympﬁ?tic time complexity of Algorithm 5.2 -for the

A L

4

St

; 174

~

‘ ontito.gangc of pctniliiblo values of r and h3.

L

Theorem 5.6. If c is a’constant, with

1 S ® ‘
c < ry .(5.77)
" and
| . £ ” a)
4 Ak 'ﬁpr all Ak (5.78)

is an error rate acceptable by Algorithm 5;2, and also

1
h3 < ec .}5.79)

‘holds for the user-spécified parameter h3, then the

worst~-case time complexity of Algorithm 5.2 is

| h3t?k+lln(h2h4)
Tlerhashy) = O\ =h, —

(5.80)
. . ! 3
ang§ - S
R S L RS YO
T(€,hy,h,) = 2| i) - (5.81)
K . (l-ch3)t -c * ~
Proof: As in Theorem 5.3. ‘ ‘ ° .

5.9, Summary

v

-Polynqmiél two-sided;érrog learning aléoriéﬁmsf ﬁﬁigp
noisy data, for ‘'k-CNF and k-DNF expressions, when k in knéwn
a priori, were presented in this chaéter. The main 1déa for
the deéigh of those algorithms is 'due to L. G. Valiant, th

besidlys that, our approach was entirely different.

— g

Py,

.
L N U R

. FED T A -4

B R i ht o g AR e YT

LSt

' 17

Due to . our own results in Chapter 2, we were able to
design algorithms which are faster than Valiant's, both
asymptotically and non-asymptotically, more flexible, and
also applicable to a wider range of example generators'

i
error rates.

Our own results of Section 3.3, also, implied that'thé

output of the k-CNF (k-DNF) learning algorithm can alﬁays

determine fast whether a vector |is a PE (NE), but not
whether it is a NE (PE). According also to the definition
of .learnability, the outputs of our algorithms are probably

good. approximatTons of the true concept, and not merely of

the concept induced by the ‘output of the noisy example

generator.) . (.

-

Chapter 5 completed the study 6£ k~CNF/k=DNF 1gé:ning.
if k is known, which started in Chapter 4. Admittedly

‘though, the fact that the value of k is assumed‘to be known,

before even the learning process starts, is unrealistic.
Therefore, the next problem to be Esolved‘s that of learning
a boolean concept, for which the value of k is not known.
Chapter 6 examines this problem in.its simplest case, i.e.

when error-free examples are encountered. . n

%

4

-~

o e e e

L e

L iap PRRSRESEPUROT S S

‘greater importance and practical use, and it has not been

176

Lo : :

k-CONCEPT LEARNING; UNKNOWN k;
TWO ERROR-FREE EXAMPLE GENERATORS

)
6.1. Introduction

The algog&thms of* Chapters 4 and 5 can learn an
approximation of a k-CNF or k-DNF concept f, if the value of
k in known. Although the task of designing .and ianalx;ing

such algorithms‘ was not easy at all, and therefore it was

_worth doing, it is admittedly much more realistic to assume

that no such a priori information abbﬁt the form of £ will
bg available, i.e. that only a set of PEs and/or NEs iwill
be . presenfed to the learning machine. The task " of
approximate learning in such an environment isV of much

T

condidered at all by L. G. Valiant.

-9

The simplest case of this problem in the one in which

. all PEs and NEs are error-free. This is the subject of this -
Ty e B . ‘

’ éhapter. The cases in which one, or both, of the _example

generators are noisy, are discussed in Chapters 7 and 8.]

P e e PP, Wy ORI NPUU SRS SRR € TS S Y

' e e i P R— . N
: i d " . . "
- " . - .
Ll
N N . . -

[

s

.
i “ b
Sy admin: o
g\ :

% ¥

177 ' -

The algorithms of ‘Chapter 4 form the basis for the .,
design of our algorjthmé in this chapter. Some unsuccessful
modifications of ‘tbé Chapter 4 algorithms are first
attempted 'in Section AG?é,J ,93 CNF learning " algorithm is °
pregenﬁed in' Sect}oq ’q.3:3¥iys dual algorithm, performing
DNF learning, is;giien in Sgcéioh 6.4, Section 6.5 contains

a hybrid algorithmf f@arning“gither a CNF or a DNF.

A second version of each of those three algorithms is . : -
' ' oo .) -~
. given in Sections 6.6, 6.8, and 6.9. A comparison between
the algorithms of Sections 6.3 and 6.6 is made in Section
6.7. This comparison also holds for the algorithms of
Séctions 6.4 and 6.8, as well as for those of Sections 6.5
and 6.9. - '
. ») N 0
Thg differences and similarities between 'the algorithms-
'of Chapters 4 and 6, as well as the importance of the

algorithms of this chapter, are summarized in Section 6.10.8

6.2, First Ideas - .

-~

Instead of trying to design brand-new algorithms,
performing _ k=CNF learning when Kk is not kﬁown,‘let's'see
first whether the algorithms of Chapter 4 can be ‘modified,

so that they can cope with the new problem of the unknown k.

P

v S s wm e tem e e e an e e e,

178 v

One Bttempt to sélve this problem could be‘tb try first

to learn (b§ some meané)/xhe exaqt value of k, and then to
apply Algorithm 4.1. However, such an effort is out of the

question, since it has always been assumed that only a

- proper subset of all PEs and/or NEs will be seen, fact which

. is prohibitive for the computation of the exact k.

r ~ P

\vs L. .

(a) {-]

Figure 6.1. A close approximation of a k-CNF concept

‘can ‘considerably under-estimate k. ,

L d

;o The next idea, naturally arising, would be to tr& first
to aﬁproximate k (from the subset of all PEs and/or NEs
which are seen), and then to apply Algorithm-4.1. To be
more precise, our only hope would be to "approximate k with
high pfobaﬁility", rather the Jjust “approximate k"; the
(rare) case in‘wﬁich PEs v with high D'(v) 'do not appear
quite often, as it is expected, has to be taken care of.

3
i

Unfortunately, even this cannot be done. ,If, - for example,

" the PEs Vit Vor Var Vg and Ve of the 4-CNF concept in

1

‘'

g.;'&:'e%‘ -

bt

179

Figuie 6.1(a) are very rare, then its close approximation in
Figure 6.1(b) is in 1-CNF. That impliés‘that even a k'~CNF
close approximation of a k-CNF concept méy have k' much

lower than k.
\._1

| \ 29

a). L (b)

Figure 6.2. A close approximation of a k~CNF concept

can considerably over-estimate k.

Is)it then at least true that a k'-CNF ~ close
apprbximg%gon of a k-CNF concept always has k' lower than k?
AOr, in other words, is ‘it possible to restrict the range of
the permissible value§ of k? As the example of Fi;ure-6.2
shoﬁs, even éhat is not possible, If all 12‘ PES of the

2-CNF concept shown in Figure 6.2(a), which contain the

total vector v,, are very rare, then its close approximation’

shown in Figure 6.2(b) is in 4-CNF. Therefore, k' may be

much higher than k.

These large differences between k and k' can be

-

- "'"iz:
I

o ven e AT D W S Y] SRR L o gl ki "-'i ‘

P et LA

180
\

explained - by observing that given a k-CNF concept, any

subset of its PEs may form a close approximation of. it,

depending on p*. on the other hand, any subset of its PEs

may either under-eétima r over-estimate k, depending on

N

the relative bosition ofdthe PEs included in this subset.
Clearly, since ot is igdependent of the relative position of

the 'PEs, a close approximation of a k-CNF cdncept‘can

considerably under-/over—estimate k. . n

v

Since all our attempts to learn or approximate -k have
been fruitless, we will now try to learn an approximation of

a k-CNF concept without having, or being able to obtain, any
information about k.

The first idea towards this direction could be to learn
a t-CNF (t is the numbeﬁ of variables in the concept), by

applying Algorithm 4.1 for k=t. Although such an approach

14

will definitely give the correct answer, it will not be

pursued further, because it takes éxponential time on t (see

-

Theorem 4.3). - : - ' '

Another - (working) idea for k-CNF léarning, iﬁek is not
known and it cannot be learned or approximated, is presented

inothe next section. -]
*

(114 + *on
TP An L T &

vf‘"
!

3
1

T R

181

6.3. CNF Learning - Case I

One reasonable way of attacking the' problem of k-CNF

learning, without having any idea about the value of k, is

'uéo see what ‘happens when Algorithm 4.1 is applied, with g

R

initialized to the set oﬁ all n-sums, for n=1,2,...,t. Aﬁ
example is shown in Figure 6.3. If the 3~CNF concep£ of
Figure 6.3(a) is to'bf learned (when all PEs are seen) by
épplying Algorithm 4.1, then the outpuis 1of the algdrithm
when g is initialized to tgéuset of all 1-sums, 2-sums, and
3-sums are sbown in Figures 6.3(b), 6.3(c), angd 6.3(d),

respectively. As it can be immediately seen,’the lower n

is, the more general g becomes. This should be expected,

.. since the ohtput of Algorithm 4.i, when g is initialized to

the set ofﬁmﬁi}é}ums, is a subset of (more general than)
B)
the output of the algorithm when g is initialized to the set

°

of all (n+l)-sums.

Now, the main idea\ underlying our new algorithm,
follqws naturally. First, try to learn a 1-CNF expression
from 'Pﬁs, by apélying Algorithm 4.1, Next, test this g
against a sufficient numbef of NEs. If even one NE makes it
1/*, then over-generalizatioh has occurred, and therefore at -
least 2-CNF is requiredq. In such a case, try ‘to learn a
2-CNF expression g, by applying Algoriihm 4.1 again, test it
agéinst a sufficient number of NEs, etc. If, after n

trials, no NE makes the n~CNF, learrded from PEs, 1/*, tﬁen’

o

* For this reason, it is(?gg;ed seperately below.

~

(a) , th)y c) (d)
N]

—~
b

Figure‘6.3. Trials for k=-CNF iéarning without knowledge

o - " »

of k. - ' . <7

]

‘o

. probably no over-generalization has occurred. Notice once

more, that the word "probably" has to be‘inclgdeﬁ in the

-
last statemnent, since the NEs indicating -that

'’

over—-generalization has occurred, may be very rare, and

therefore they might not be seen at all. - -

v

- The test of ;he Yearned n-CNF “concept ‘g . against the

oy

NEs, in addition of being used by éhg.CNF learning algbrithﬁ

just described, will also be used by subsequent ?lgokiéhmsl

-

& . s

Function conflict-max-g-NE : boolean - . {)
J/g:_ 3 ' . , 14 .)
Task " : Return the value TRUE, if at least one of the

seen ' error-free ‘ﬂEs{igfr f makes g 1/*;
R T T
otherwis®¥$”return FALSE."
1 yﬁ

h s .

" =

-
>
»t
- @
i
pe——g g
2
,s
* >
.k
B
<

. - . ' ‘
Parameters : h3, h4: set up in calling routine.

.'lnh4
1. repeat B times = ° .
ll . ln(ﬁ) - . . . 1
. 3 i
2 bé in ' - . i ‘
.. ’ g0 .
3. v <-- EXAMPLE™
4. if si(v)#U Vs.€9 [i§ g(v)fO]
5. then
6. begin : ' i N .
~ t
7. conflict-max-g-~NE <-- TRUE=-
- . -
8. STOP
9. end
10. . end
11. conflict-max-g-NE <-- FALSE ' ' u

N ‘

It is ‘very important to notice that, according to »
Theorem 3.3(a), the test of line 4 is eguivalent to gkv)#o,
because g is maximal. The‘importance of that will become

apparent in Chaptei 8, when 'g will not be maximal any more,' ‘

we "

and the function above will have to be modified, to test for 1 <
g(v)=1, instead of g(v)¥0. | < | =
: S ©

L) . . e

Our algorithm can now be stated concisely.

I»
4

»

Algorithp 6.1.

v

. ’ - Do
Task ° : Learn _f-fyrom error-frge PEs and NEs.)
- ‘ . \ . b P S r R '
L ’ .\\ vto. - Tt A o
. ' ' » halad ” <
/ ’ \
1.
- I3

o
% TS
are sufficient to express f£. - , C-

t
Barameters,:rhl, h2, h3, h4 > 1.7 .

Assumptions: XireoosX

*

lop<-1 | . fget n to 11+ . . n g
2. call Algorithm 4.1_wi£h,k<--n' [learn n-CNF from PEs]
- 3. if Spnflict—maf-g-NE-‘ : ‘[if o%er—generalized]
4. then‘
5. begin
6. n <=- n+l [incremént n]
7. _go to 2 T [and try again]
8. end ' .

H]
’a\ . -
.

Since all the algozithms of Chapters 6, 7, and 8 are.
addressing "the problém of learning a k-CNF/k;DNF in the
absence of knowledge of k, they alll follow, in principle, “
the same method: they' try to learn succesively a 1-CNF °
and/or a l-ﬁNF, a 2-CNF and/or a 2-DNF, etc., until they
succeed (wi'th suécess being ;bpropriapely defined and
detected) . The necess}ty for the following definition can

now be easily understood.

-
. r

N~ . ;o s s

“"0%‘ £ e L ¢ R
. . o . .
Definition 6.1. Each trial of leayn ni~CNF and/or a. - ,
. , — 7
n-CNF, for-n=l,2,...,t, is called a .
~ For example, as far as Algorithm 6.1 ¥$ concerned, each

. execution of 1lines 2 to 8 iswé run. In each run, g is

. ® .
initialized to the emptyvconcept, which expands "(is made, -

méte general) as new PEs are encountered (in line 2). The
- é,'_ . ’ .

e A P

_'f: e =y -%,ﬂu}(mw fo— .. e . 3 \
, v
g-
185
L
f rate of expansion depends on the value of n. The £inal
outpdi g 'of the algorithm is nothing but the value of g
after execution of line 2, i.e. g does not change' (expands
or shrinks) when tested against NEs (in line 3). a
i ’ The following lemma, although siﬁple, will be very
-3 . useful.
: .
%: “Lemma 6.1. If f can be written in k-CNF,‘then the maximum
i' number of runs of Algorithm 6.1 is k.
!
l§ Proof: In Theorem 4.2(a) it was shown that when f can be
i i .
% written in k-CNF and ¢ is initialized to the set of all
5 kféums, then the output g of Algorithm 4.1 will be more
i - / spegATic Yhan f. That implies that -when n=K, "the function
{ ‘ i .
“cohflict-max-g-NE” will yield the value EaiSE, which proves
x . the lemma-. ' | .
- | . The fir;f_?zsplt on the performance .of Algorithm 6.1
. concerns the quality df its output. '
> \ ’ @ ’ ¥ .. , R
Theorem 6.1. _The output g of Algorithm 6.1 .has 'the
" properties: e)
R ’ g(v)Fl ‘ ' v
\: | (b) P ; D (v) _>_h3"1 5_54‘1. .
y N 1528 Y - .
%ﬁ (c) If £ can be written in- k-CNF, then g is in maximal
4 ‘ A A :
N ’ .
- .
Lo /
’ - N (J R ! A

'%‘&?&‘C e

186

{

n;CNF,‘fo: some n<k. R
3 ‘_ .

?roof: N , L
(a) The proof is si;TIaf to that of Theorem 4.2, and Et is
briefly sketché& here. Suppose that f can be written in
k-CNF, and that n is the number of runs executed. Let
also gy be the initial value of g,lwhen Algorithm 4.1 is
called in the n-éﬁ run, and let 9 be the value of g
after }he i-th execution of the repeat-loop of Algorithm
4.1, "Wwhen . it~ is called .in the n-th run, for

i=1,2,...,L(h;,h,,A). Let also ‘define

x' = Z \D+(V) fot i=1,2'-‘vo,L(h "h "A)'

i.e. Xi values are defined only for the last run. If

'

.each” seen PE iétnterpreted as a Bernoulli tria;, with .
"success" being the "deletion of at least one k-sum from '

the current g,", then the number of successes‘occurred

is at most A -m, where m is the number of k-sums of f
CE .

B

o

also contained Son gy (m will be equal to the huhbg:.oﬁ_

" k-sums of £, only if n=k), or, at most A, . Hence

P[2 ot > hl"l] .

g(v)¥l -
< b <A L(h,,h.,A) h'1)<n"1
< AT (ll 2800 My S hy o

B i it o R o L Rl i e oo Ly
. . -

g -

which proves the result.

(b) Suppose that . ‘ L
- -1

— g ¢

- ' S i . DTw 3h,
] g(v)¥0

holds, after execution of the last run. If each NE, v,

P e e fﬂ::rxr.a .y

et T

41 . °

.

e - . x{jﬁi{”‘ PR

~k

‘; 187 ' .

~
3

seen during the last run, is inteprepted as a’' Bernoulli

trial, with "success"™ being "v makes g 1/*", then

-=1 . 1
P lnh4 R

ln(l-h '1;

1ndependent and equ1probable Bernoulli trials have been

»

Vi
performed, each o them having probability of success-at

least h3—1, and no success.has occurred (since this is

the last run). Hence,

2: D (v)>h =
[g(v)#o I; 1*h3 -l)

for somé h 13h3

According to (2.7)," the last inequality 1mplxes»

[z 0 w1z, 1]'(“,) ln(l- A)_]

(v) #0
» i
which, according to elementary properties -’ ‘of the

logarithmic and exponential functions, can be rewritten

[2 (v 2 h3 1]_ h, L.
9

(v)¥0
That completes the proof.

as

~{g) Ag#ordiné to Lemma 6.1, g is in n-CNF, for some ngk.

The proofifhat*q isﬂ@;ximal is .the same as that of

'Theérem 4.2(c). g .

Y]
n .

; IR
Before explaining the significance of Theorem 6.1,
let's make a technical remark concerning the number of NEs
required in each run of Algorithm 6.1.

A
' ¢

.y,

e e e 1R AR B o SN L A

.+~ - 188 S
e@ . " N . "

» - .
According to the interpretation of each seen NE as a

Bernoyilli trial, stated in the ptoof of Theorem ~6.1(b), at

least X NEs “should be seen, where X satisfies the condition
&

.. \ b(0; X, -1 < h, "1 for some h 13p5-1, (6.1)
which, according to Theorem 2 1, implies that - +
lnh, S
X = L(h3,h4,o) = 3 ;' + (6.2)
ln(eh~+i-)
-3 e _ \ .

_NEs aré sufficient: However, an other way of finding an X

satisfying (6.1), is to use (2.7), and to rewrite (6.1) as

[y

which implies that

- (6. 4)
In (l-h%)

NEs are sufficient. ‘It can be easil&'verified that the X of

(6.4), which is the numbér used in Algorithm 6.1, is better
(smalleg) than the X of (6.2). g,

Le .

»?
)

This result can be easily understood if we recall that
the effort put to establish Theorem 2.1 was®justified by the

fact that there exists no closed formula for biik:x,h'l) for

w3l

k=0,1,..%,X (éee discuséiggjubfter Definition 2.4). This

fact forced us to derive an upper bound of b(<k;X,h 1) (see

Lemma, 2. 4) in. order to establish Theorem 2.1, 1losing .

uﬁavoidably some ground. lowever, when k=0, there 1is no

problem in . computing the exact value of

x,n"1)=b({DXh =1y, fTherefore, the X of (6.4),

.

X ' . \ .
(1-h3‘1) ah Tt e /3 (6.3)

¢

189

‘obtained after computing the exact-value of ”B(O;X,ﬁ'})' in

i ’ ' '

.1 (6.3), - is better than the X of (6.2), obtained by using the
: ~ :

1

. bound of Theorem 2.1. n

. /
‘o ﬁf . N ;

‘Let's now look back '‘at the information provided by .

PN

- . . o

Theorem 6.1. " According to p!}ts (a) and (b) of 7 e theorenm,
Algorithm 6.1 performs strong two-sided-errgr 1qarqing, and
therefore, the Venn diagram of f and g of the algorithm is

the one shown in Figure 3.6. All seen PEs,

some nomn-seen ones (consider the example of Figure 4.3(e),
or thé case in which less than-k runs are/ executed), are
correctly included in g. T,Also, all seen NEs, possiyly again
with soime non-seen ones (céﬁsider the cage in which k runs
are executed), are corfgctiy excluded/from g. The falsely

non-included (non-excluded) PEs (NES) are bounded, as

usually, by h, and h, (h., and h,).
Yo BY M 2 '3 4

Part (c) of the theorem mplies that theﬁdutput of

1

Algorithm 6.1 can determine fast /(in e(tk+) time, in the

worst case) whether any vector is a PE of a NE of the

learned concept. a

The study of the time complexity of Algorithm 6.1
'completes,the algorithm's/analysis. '
»

@&

Theorem 6.2. If f /can be written in k-CNF, then the

worst-case time complexity of Algorithm 6.1 is

and possibly-

Tt

t ‘
1

[TP
K i e P .

190 . \

)

" for some ng<k.

Ry,
PrdoficFirst it will be showi Ehgt
) 4 .

- TR
; 1“(h3-1>

=ehy. | U

Indeed, accdrdipg to (2.2),"
...___—}]1'—— < 53 S B RPN (6.6)
1n(——3—> =

h3~l

holds. Consicder now the fungtion¢

4

- . S * h
‘ f: [(l,) ~~>R ‘with ‘f(h3) = h ln(33) (6 7

It can be verified that

. h”
' = 31._.1 '
£'thy) 31“(h3-1) hp-1
which,. according to (2.2), 'imﬁlies that f'(hs)io; or
' eqhiValentIy, , !
— E(h) : decreasing in [1, ®), .
‘whxdh 1mplzes that ’ X ,
' . - ;
or, acpozdlng to (6.7),
1 1 Y ey
' ' h 3_1.39 h3 V~h3'>_2- (6.8)
1 ——l—
nh 1 -
3 - S
The last 1nequal1ty, together with (6 6) , prove (6 5) g

Accordxng now to Theorem 4.3, execution of line 2 of

Algorithm 6.1, in the Jj-th run, takes e(hltj+l(t3+1nh2))

© time in the worst case. Theorgm 3.1(d), on the other hand,

¢ - .
. . ‘
« ’ . .
. ' . -
‘ . . .
-
. f .
. . 4 . h
g . . - ! * .
- - . . .
’ « .
, '
.

191

og N

‘ implies that eakch 'si(b)#p" tést in 1line 4 of the

R LY ; , ’
'rbnflict—max-g-NE” function, takes at. most ©(t) time.

o
S Since this testeis performed at most*Aj-S(tJ) times in the
294 ¢ }\ .
‘% o > j=th. run, the ®xecution of line 2 of Algorithm 6.1 ‘'@n -the -
3_ j-th run takes at most: - o : £P4,
' .) N 1nh, , : &
4 a ceftitl T } ‘ ‘
: ‘ ln(E—%T) 1)
3 .F . ‘
: ,f time, oi,,éccording to the established (6.5), at most
' 6(t3* hyinn,)
{ . » , . "
g time "in’ the j-th run. , According now to Lemma 6.1, the
/ ' “) result follows. ¢ i" o . . ' m
.,Although we could set k;‘instegﬁf of n, in _ the “time
’ - ' - AN . v
complexity expression of the theorem above, we preferred not .
to do so, because we wanted to efiphasize one. of the main
advantages of our algorithm over the algorithms of Chapter ™

°

4, namely the possibility that Algorithm 6.1 may terminate

in fewer than k runs.

{
Considgr,’for example,lthe task of léarning the concept
‘of Figure 6.4(a¥% when vy :isv a very rare NE. Clearly,
Algorithm 4.1 cannoé be apélied if the faqgathat:k;4 is not
R knoén; however, this knowledge is noé required by our
Algorithm 6.1, Moreoger, even if Algorithm 4.1 has this
knéwledge and Algdrifhm o6.1y doesn't, Algorithm 4.1 will f

__probably be more expensive than Algorithm 6.1, since it will

-

A

. 192

. Y-
(»n . :
t “ ’

. 0

Figure 6.4. Algorithm 6.1 may(be faster than Algorithm

.

<

try to learn a 4-CNF, whereas Algorithm 6.1 after probably .

P
- ary gt A

- d failing to learn a 1-CNF, it will probably succeed- in
I

o v learning the 2-CNF of Figure 6.4 (b).

¢ .

o R et

v) , ¥
It has to be stated though, that if v, is a frequent

\ NE, then Algorithm 6.1 will probably be more expensive than

| Algorithm 4.1, since it will probably learn a 4-CNF, after -
having unsuccessfully tried to learn a 1-CNF, a 2-CNF, ;nd a
3-CNF. However, accoiding to Tﬁéoréﬁs 4.3 and-6.2, the

- . !

‘worst-case runﬁing time of Algorithm 6.1 will be

'y
Y { '
mptotically egual to that of Algorithm 4.1. |
t
‘ N
P . , ’ 6.4, DNF Learning\xncase I

Since no information about the form of the concept to

Ril

. e

193

-

¢ . €.
be.learned is-available, it is equally reasonaBle tp try to:

.

learn a DNF approximation of the concept; instead of 'a CNF
R

one. The algorithm performing this task _will be the dual of .

Algorithm 6.1. .The way ituworks, on the s&me concept of

Figufe 6.3(a), is showh in rigureAG.Sﬁ For convenience, the
¢

. 3-DNF concept . to be 1learned has been redrawn in Figure

6.5(a). If the dual of Algorithm 6.1 (i.e. Algorithm 6.2)

is applied, . and if a;ﬁ? PEs and NEs are seen, then the

concepts learned after the 1lst, 2nd, ‘and 3rd run (i.e.
after a i;CNF, a 2-CNF,‘and a 3-CNF have.been tried to be
learned) are shown in Figures 6.5(b), 6.5(c), amd 6.5(d),

¢
respectively. ' .) . [

. (a) (b) () L)

/) [N . ;j ’
7 4 ‘ ,
Figure 6.5¢ Attempts for k-DNF learning without

knowledge ‘of k.

)Y

The description of the function testing a n-DNF,
*learned from NEs, against PECs, is. give% first. It is

"followed by the algorithm's description ‘and its theorems.
\ .

.’L
fus

- 194

‘ !
'
1_1 L]

The duals of all comments and remarks’ made -for Algorithm

6.1, hold for Algérithm 6.2 as',wgll, and for this reason,

. LY 4,
L they have been omitted here. e c
.Function conflict-max-g-PE : boolean.
" Task ,Sﬁneturn the value TRUE, if at least one of the
| seen errbr-_gree PEs ‘of f makes g 0/*%;.
. otherwise, return FALSE.
Assgmﬁti:ons: g is in maximal n-DNF, for some J(inf_t. .
;g: Parameters : hl' h2; set up in calling routine.
% . ‘ *
£ 1ln
¥ ¢ l. repeat o times L
i " 1n —L
', : - hl'-l Y s
: 2. begin ’ - o
;’g‘ I. . + e S
; . 3. v <-- EXAMPLL \ .
C ' 4. if p, (VAL vp;eg) [if g(v)¥#1]
' -5, then) , . -
» ° 6. " begin
d o, - con~flict-max-g-PE"<-: TRUE
- . . K N 7 .
Bo STOP v , .
. - 9. " end
10, end o . |
. M\/ : 11 conflict-max-g-PE <-- FALSE’ .)
Algorithm 6.2.
' A\ ’ ' 1 4 ‘r ‘ ' ‘)
. Task _: Learr f.from error-fre¢ PEs and NEs. ;
. T . ~

e * L X)
\ ¢ - ! ?
. N . .
b 195
> o)
. Assumptions: x ,;..,xt are sufficient to express £.
s - b N 4
quametersv. hyy §2, h3,/ﬂ:\2 1. N o

1. n<“‘1) o ""

[set n to 1]

L

2. call Algot;thm 4.2 with k<-~n .[learn n-DNF from NEs]-:

3. if confl;ct-max-g—PE Tig‘OVe;-spéciaIized]

4. then ' ' , .
| ~ | .
5. begin C) '
6. ., n <=- n+j§v , ". [incrément n}
T~ go-to 2 fand try égain;;’
8. end A " R u
ﬁﬁ Lemma 6.2. . 1f f can be written in k-DNF,'then_tﬁé max imum
_number of runs of Algorithm 6.2 is k.
Proof: The dual of that of Lemma 6.1. °= . ~ "
Theorem 6.3. The output™ g of Algorithm 6.2 has the -
‘ ' N
properties:
(a) P o*(v) 2 by’ “H <yt « L
. g(viFl : . : S
(b) P Z D (V) :-h3-l ih4-lo ‘ . e .
g(v)#o ‘e v “. ") »

v . -~

(c) If f can bg written - in *kX=DNF, therr g is in méximal'

! n-DNF, fo: some n<k. * IR

v '
- .

e
7

Ptoof. The ptécfs of {a}), (b),-and (c), ';\\\ the dua;s of

~

those of (b), (a);" ‘and (c), of Theorem 5. 1.0 LY m

. ' 3
LI
.
. . \
/ i - . . r
« o . [
B
.

T)
v
AN

: e - ‘ L
L+ B . e
. PRUR B p 196w - o, .
_ > ' . .
"t ‘ L x‘_ ' » .
. I - N .
Theorem 6.4. .If f can be written *in k-DNF, then he
- ’) "_,” \(‘;‘,
woréffcase time complexity of Algorithm 6.2 is-
- .

. & ' '
- . = n+lf - fi .

or some n<k. - | ' :
. o
: N « ~ 3 f

Proof: As in Theorem 6.2. , ' o

L -
, .

In contrast to Algorithms 4.1 and 4.2, a c&mparison of -

Algorithms 6.1 and 6.2 doés make sense. Suppose that the

o ' concept to be learned can be written® in ky-CNF and in

R . kY-DNF, and that neither -of kl' kz is knowqf Then, both

Algorithms 6.1 and 6.2 - are applicable. Unfortunately

&

[. . 8 - :
though, no comparison of their’execution time can be made. -
. 4]

> ’

:]
£ Y

~

*o
L,
.

! .

~

L]
o
.

tr
%
i
5
;

- |’
"

i,

The reason for that is not (as ,ﬁt might be -~
supeéficially,thdﬁght) thé% it hay not be known whether

T) o k,"<k2 or k2<kl.kq Eveq if it is known, for exampie, that

k2<kl, it canno£ be d!;}ded that Algorithm Gaé is faster

¢ ' than Algorithm 6.1." - Thats is, begaﬁsé‘vﬁlgorithm 6.2 may

- terminate after kzxruns, but Algorithma G.h may terminate

"

R after only ki runs, for some k3<k?j§1' Such an example was,

-+ -~
- . \) .
given in Figure 6.4. Cot ‘.

s ! - ‘ /-\ - A}
From this rief di&ussioh,‘ it ;should be clear that it
ts the bt and D~ which dgtermine which algdritpm is faster.

-

:

- Rt A R T PO

R S

P

a .
¥
O
l“ 4

ST e mﬂ/
learnxng a CNF expre551on\(or a
expression, is more appropriate
, -pa

situation) can be made. -

Al

.

6. 5~f“CNﬁ/DNF Learning ~ Gase I - °

197

4

]

~

v

Slnce,té/;annot b:\determxned wbether

\
R - .

k]

to be applied in

iléoritﬁm 6.1,
lgorithm 6. 2 learnlné“a DNF

a .

S

rticular 51tuatxon, a hybrid algorithm, learning either a

'CNF or.a DNE, has been designed.

_?his

algorithm tries

to

. learn succesively a 1-CNF, 1-DNF, 2-CNF, 2-DIF, etc., until
Y . s it succeeds. (]
o | . — ' E /
) . The olgorithm is}precisely stétqd as follows: -
\ PO ; .
- Aléozithmﬂﬁxé.' ; . N
- : 't) ‘
Task ., 3 Learn £ from ertor-free PEs and NEs. .
’ Assuﬁptions: il,a..,xt.aré suf(icient to exoress £. .
?;famoters : hy, hz"h3;'h4 > 1. |
v 51. n <m- 1 :) [set n to 1]
: ..fz. cali‘ﬁigorithm‘4ll‘with k<-=n" ;Iléarn n-CNﬁ]'
3. if c&%élicﬁ—ﬁax-g-nn o . [if over-éenerai]
4. . then) , . - |
5. . ‘Begin . 25 N
6.'° . call Algorithm 4.2 with k<--n llearn n-DNF] -
7.

if confl;ct—max-g-PE

o

[1f over—specific]

4

o ‘A"';‘.',_, P

V4

«
R L SR

) A PR [:
. - ol i o PR - v . . o S e T e g sy .
e, S o Radd e LN R R R Y g i S AL NI PR ARG TR i s i an 1S
T B ¥ z 2 3 3 2 TR
- . T P -

i e

4 .

<

Mo T et A e b st S & e g A v e+ e s
A Y
+
o
¢ * ’ -
R 198
o
~ .
“ .
o 4
8. then .
[

§. //’ begin . \. ' ‘ ,Q%é‘ﬁ

io."1° Vet - .p == ptl [increment n]

L ?. . L)
- 11. : go to 2 [and try adaini
12. _ end s T '
13. end . : - =
S ¢ 3
. Acco (ing te Definition 6.1, each execution of lines 2
- to 13 is a run. Clearly,ithe’i-th run of tﬂis algorithm
" takes twice as much time as the i-th run of either Algorithm
6.1 .0r 6.2, fOr.i=1,2,3,.4.,t. v . =
. -) Y . (’ '
6::——’//;/£emma 6.3., If f ‘can be written in kl-CNF and "in kz-DNF,
’ then the waximum number of .runs of Algorithm 6.3 is
min{ky,k,}. ,
o . . ¢

Proof: Immediate from Lemmas 6.1 and 6.2,

-

. 'The two 'theorems, concerning the output and the time

y

' complexity of Algorithm 6.3, are stated next.’

L { .
Theorem 6.5. ‘The oufput g of Algorithm 6.3 has the
properties: . ' o
(@) p| 2, p*(w->nt] eon,
g(v) sl ‘ -
() '#| 2 DT (w) > h3"l < h4"1. L \
C [gtnFo : -

(c) If .f can be written in k,~CNF and ‘in K,~DNP, then g is

.
B L e e TN FOTIIPTE M A Bt g b nege ey ek g o

, r * ’ K f fD\
//‘

199
“eitﬂér in maximal h-CNF or in maximal ' n-DNF, for some
ngpin{kl,kz}.

4

Proof: Immediate Eram Thedrems 6.1, 6.3, and Lemma 6.3. a

u

It has gz‘”be made clear here& that accor

. g to what
1 . . w . . : o
-was said at the end of Section 6.4, the.statement Jif kliK; .

then g.is in maximal n-CNF for some “ikl' and At k1>k2 theﬁ

®

g is in maximal n<DNF for some nikz"' with which one may

attempt to repiace part (c) of the last theoreﬁ, is wrong. g

L

Theorem 6.6. If f can be written in k,-CNF and in k,=DNF, ‘

' then the worst-case time complexity of Algorithm 6.3 is .
: ’ ' N _ n+l n '
- - <T(t,hl,h2,h3 4) = 6|t ((hl+h3)t +h11nh2+h31nh4))
for some n < min{kl,kz} '
e

-, N N ¢
- L . . I} z
M s . * P - v
L
. L
v .7 v ,
J . ,
.

Prbof: Duriﬁg the j-th run, execution of line 2 of Aigori;hm

ra
~

6.3 takes at most 9(h1t3+1(t3+lnhé))“§ime, execdtioﬁ of line .

3. takes at most e(t3+lh3lnh4) time, execution of 1line 6

"takes at most e(h3t3+1(t3+inh4)) time, and execution of line
N 7 takes at‘most e(t3+;hllnh2) time. According now to ' Lemma
' o . . toe o .

' 6.3, the result follows. - . P -

pi

' 6.6. CNF Learning - Case II ot

. Let's go back for, a mément to the example of Figure

N [? Tt o s it e e e s Sk b e g s G
B R ﬂr*.f,f‘mmw;mvxwf T 3 A Gl e K L & bk b
R . .

e

200 ~
. ~
6.4. As it has been said, if the stand-alone NE vy is very
rare, then Algorithm 6.1 will probably require only 2 runs,
e N 4
since probably vy will-not be seen as a NE, conflicting the

2-CNF concept of Figure 6.£(a) learned in the 2nd run.

Obviously, forsthis particular example, the pqobability
that the algorithm diil terminate after the 2nd éun, can be
incrqased,“ by -starting a new run only when the frequency of

the observed conflicts, between the so far learned concept

ané tle s seen, 1is higher than a certain threshold d, -

,réther thagtfight after the first obser¥d conflict. . In
™. oN -

general, the introduction of such a threshold d (i.e. the

tolerance by the user of some discrepancies between the NEs

and 'the learned concept) is hoped to reduce the“number of
runs required, and " therefore the time complexity of

algorithm as well. ,) ..

The function performing this new kind of test abainét

NES, 'is° given next. - ,

14

Function d-conflict-max-g=-NE : boolean

i -

Task - : Return the value TRUE if the frequency of the’
' seen error-free NEs of f, making g 1/%, is

greater than d; otherwise, return FALSE.

‘Assumptions: g is in maximal n-CNF, for some l<n<t.

Parameters : h3, h4, and d4; éetwup in calling routine.

| «

L e

g [Lyt P

v

ll. n <-- 1, » [set n to 1]

\/f . .

N\

v ‘ 201

1. COUNT <--~&\\
{ d+lgh4
2. repeat 'L = eh ‘times

in ———3——)-a .

eh3+l-e, ’ -
3. begin “
.. . ’

4, 'v <== EXAMPLE~
5. if s, (VIFO Vs €g [if g(v)#0]
6. . then COUNT <-- COUNT+1
7. end
8. d-conflict-max-g-NE <-- (99%52-> d) my

3
3
%
"

L)

Notice Qnée mote that. t “fest7of line é of the ébéve'
function is equivalent to ‘g(v)#0, pecause 9 is maximal. @&
- ’ lo Y O '
The<;;w‘CNF dearning algorithm, u%ing the 1ast.funct16n
as a dgtéctor of over-generalization, is stated‘n;xq. ’

Algorithm 6.4. ' o .

Task . : Learn f from error-free PEs and NES.
Assumptions: XyreoorXy are)ﬁqgﬁicient to express £.

Parameters : hl’ hz, h3;,h; > 1, and 4»0.

-

Iy
2.gcall Algokithm 4.1 with k<--n [learn n-CNF from PEs] K o
3. if d-conflict-max-g-NE) [if ovef-gene;alized]
4., ‘then 3 .
5. begin v ’ !
6. p o<=- n+l " linctem;nt n} : .
q . S

it ol M-achet

+

e

S i

P

R e

.

.
B i AR N AN el
N 4 3T s,

' l T
(.'/J
- 202 i
7. go to 2 . ° }%égnd try again]
8. end ' | 48
nn
, The next: ‘theorem - is. very‘ wimportant, since it
. establishes a necessary and sufficient condition in order N
for Algorithm 6.4 to be applicable.
' Theorem 6.7. Algorithm 6.4 is applicable if and only if
. l"" - .. h '
. eh,)
0 <4« ln(eh3&1-é
' . holds for the uset-Spécified parameter d.
. / . !
. . ‘
Proof: Immediate from the definition of L in line 2 of
R &~ !

function "d-conflict-max-g<NE" S R .

The- following lemma -will be .used in the proofs of

Theorems 6.8 and 6.9.

Lemma 6.4. If f can be written in k=CNF, then the maximﬁm’//.

@

.

numSerﬁof runs of Algofigpm 6.4 is k. ////

-) ;
Proof: Same as in Lemma 6.1. , . ¥ L

*

Theorem -6.8. The output g .of. Algorithﬁ 6.4,fhas the

) . - : ,
properties: _ ‘ . \
‘ () 2| 2 p*(w > hl"l < hz"l. . . ‘
g(v) #1 ‘ ‘ R N
K ’ I, ‘ /,,
///‘ ’

P
o et e .

" (b)

g (V) #0

Xe ‘/"
Zn(v)>h 1] h4l.

() 1f f can be written in

k-CNF ’

gpen\ g

is

iﬁ. maximal

N

n-CNF, for some ng}i
A
Proof:
(a) Same as in Theorem 6.1(a).

(b) Suppose that

© ‘ 2: D (v) > h3 -1
g{v)#0 g
holds, after execution of the 'Tast run. If each NE, v,

v 1

seen duxlng the last run, is interpreted as a Bernoulll

"success"

d + lnhi¢_1 e

eh,
ln(._.—l—) - d
eh3+l—e

independent and eqﬁiprobablg Bernoulli trials have , been

trial, with being "v makes (all n-sums of) g

1/*", then

performed, each having probability of success at least
p ‘ g P >

: h3‘1, and at most dlL successes have occurred (since this

. . :
\5\\\\\ is the last run). Hence : .
N p[2 o (v) 2 hy 1] = b (<dL; L, 1h3-1).
. < g :

N (v) #0
AN
But, accord;ng to Theorem 6.7, Theorem 2.5 1mpl1es that
(<dL,/ r >h) < h4 l.

and the :eﬁgtx

follows.

(c) Same ‘as in.Theorem 6.1(c).

Theorem

B

6.8\implies that Algorithm 6.4 performs strong

204

a . ' i
two-sided-error . iearning{ and that its ‘output g can
.detetmine. f;st ;hethe; any vector is a PE:or‘a NE of the ’
learned concept. " One differgnce_'between the .output of
Algorithm 6.4 and that of Algorithm 6.1 is that, because of _ |
the introduced threshold d in Algorithm 6.4, some seen'{NEa&@p
méy not be excluded from g. That will happen if only a fed)“
\)éonflicts occué in the last run, between the so far learned
' éNF and the .seen NEs. ”Despite this fact, the confidence the
user wantg to have to the output ofiihe'algorithm can always
~be fully determined by hy, hz,‘h3, and h,, which affect the
time complexity of the algorithm phly (sub)linearly, "as the

¢ ' . m

following theoréem shows. . =

Theorem 6.9. If f can be written in k=CNF, then the
)

worst-case time complexity of Algorithm 6.4 is

d+1nh
n+l h

: 4
T(t,h,,h,,h,) = 6t t"+h.1nh. + (
1772774 1712 " eh,)_d
“Mehy+1-e

1

for some n<k. -'\K

\\E

-

JProof: The proof is similar to-the one of Theorem 6.2, and !
it is briefly sketched here.
buring the j=-th run, execution of line 2 of the algorifhm
takes at most
I+L 3)
e(hlt (t-+1nh,)

time, and execution of line 3 takes at most

205
L4 o l“ ’ [
d + 1lnh
! S l. - y
. _eh3 - J
In eh,+l-e/ = q <
time. The result now follows from Lemma 6.4. B - =

¢

1

6.7. Comparison of Case I and Case II of CNF Learning

a ‘According to what was stated in the‘SngizfiBEV’pf the .
Jé.' / .

last section, Algorithm 6.4 was introduced with the hope

" that it will be at least as fast as Algorithm 6.1 in all

cases {i.e. if the same PEs and NEé are presented to both

A s .:{M‘.c.-ﬁﬁ‘:ﬁ;%‘ Ll 2R,

’ algorithms). Let's see now whether our hope became a-
reality or not. A | .
i
; First of all, both Algorithmé 6.1 and 6.4 require the
E same number of PEs per run, and ﬁoreqver,,if they.gre shown
T

the same PEs, they process them in the same amount of time. ’

\\\ However, if

s

[a+am,
Ly =

” - ' (6.9) . - .
) -« e
eh#l-e ‘

is the number of NEszrequired'in each run of Algorithm 6.4,
5 and ' -

. | {6.10)

-

s
‘..J,.
7

]

\\\:?ich can be easilnggrified‘that is true.

206

then it can be shown that \

’,

1 < Ly . . U (6.11)

Indeed, in order to prove that, it suffices to prove .that

L

lnh, X lnh, }
eh h ' e f
ln—L_ 1n(——1—.)
' eh,+l-e h.-1
' 3, 3
- or, equivalently, , ‘ s
ehy hy . o~
—-——<—-—, \ N
ehy+l-e ~ h,-1 ' *, '

Because of (6,11), the cpmpariso'n of the process time ‘

of the ;ane Ngs, by'élgorithms 6.1 and 6.4, makes no sense.
Let's agree therefore, that the comparison of the two
algoi?th@& will be made under the aifumption that Algorithm
6.1 encounters-a p?oper subset of the NEs encouqte:ed .by
) Algorithm 6.4. In this case, (6.11)_ implies that'each‘;un

of Algorithm 6.4 takes more time than the corresponding . run

© *of Algorithm 6.1.

-

[

» What is then the advantage of applying Algorithm 6.4 in

' lieé of Algorithm 6.1? A plausible answer could be that

Algorithﬁ 6.4 requires fewer runs than Algorithm 6.1, Bht
'unfortunatelyc this is not always true.

’

Clearly, if Algorithm 6.1 terminates after n runs,

Algorithm 6.4 may require more ‘than that, since the

=% N
e

¢

[

207

additional NEs it is going to examine may ‘increase the

frequency of conflicts beyond the threshold 4. On the others

hand, if Algorithm 6.4 terminates after n ‘runs, BAlgorithm

6.1 may not terminate, since it tmay encounter one (or more)
NEs causing conflicts. So, any of those two algorighms may

require more runs than the other, and therefore, more

-

execution time than the other. &

o “her . T ef

.“"K‘w': 5 3
7 o , N
Let's make” one. additional (but still reasonable)

N

assumption, to see whether Algorithm 6.4”can be proven to be
faster than A;gorithm 6.1. Suppose that the two algorithms

examine LI and L2 NEs ‘ﬁaviné the same frequency of NEs

causing conflicts with the same g. n this case, Algorithm

6.4 will not require more runs_than Algorithm 6.1, Howéﬁer,
éhis is not of much, help, because t;Zt implies that
Algorithm 6.4 may require the same number of runs-as
Algorithm 6.1. 1In such a case,. according to what was said
before, the o«g;ail execution time of Algé;ithm.6.4 will be
higher than that of Algor@thm 6.1. Thfs_case may arise, for
example, if, when learning the concept of Figure 6.4(a), d
is cHoseﬁimuch lower than D (¥). Clearly, it is the lack of

knowledge about D , which makes the choice of the

appropriate d not feasible. o R a

L3 . .
HLO N .

Qan~an} conclusion, concerning .the “"usually" fastest
algorithm, be drawn? Clearly, no, as long as we remain

faithful to our initial choice 3§ making no assumptions #»

.

. 208

about the examples®' distributions p* and D . .-

R ~ o, - ’ L)
- - \

What about the worst-case time complexity gf.Algérithqs
6.1 and 6.47? Since eacﬁ NE is p;ocessed in at most 6(t)
time, (6.11) implieé' that, in the worst caée, each run of
Algorithm 6.4 ' takes more time than the corresponding run of
-Algorithm 6.1.~FTMerefore, in ghe uo:at7éase, Algo;ithnna.d
requires more execption:time than Algorithm 6.1. On the,
othet hand ‘though, " Theorems 4.3 and 6.9 imply that
asymptotically both-élgorithns have the same worgt—-case time

1 FE
complexity. 5ﬂ o - B

",) "
B o -

>
f

To summarize, due to the lack.of information about D™,
the threshold d was left as a user-specified parameter,
destroying our hope for ‘Rgf sﬁperiority of Algprithm'6.4

o?er Algorithm 6.1. Actually, for ‘certain‘ choices of d,

- Algorithm 6.4 is slower than Algorithm 6.1.

-

¢ _ . . , -
Despite the last fact, both algorithms were stated and

«

o .
analyzed in this chapter, since none of them is worse .th?n

rany other. : ’ []

- - .. 6.8, DNF Learning ~ Case 11

3

The dual of Algorithm 6.4, learning DNF expressions, is

. briefly presented here. I 'is preceded Dby the function

y"r

2 .

n

Ve

TR

T Talet

< P AR PRER T L e

*
o

rz(“‘"ﬂllh“":“m. IR "“.ﬁmﬁ*"m "

9

"Fuaction d-conflict-max-g-PC : boolean

P

209

teéting a DNFvconcept, learfied from NEs, agd{pst a number: of

PEs, for. possible over-specialization. ‘Finally, . the
theorems referring to the algorithm's output and time

3

complexity are stated. " S\\N__/ - . : R

. - e
Task : Return the value TRUE if the frequency of the

seen error-free PEs of £, making g 0/*, is

greater than d; otherwise, return FALSE.

- Assumptions: g is in maximal n-DNF, for. some l<n<t.

farameters : hi,gﬁz, and d; set up in calling ;outine.

»

1. COUNT <-- 0

d+1lnh ’

2. repeat L = 2 . times
. ehy
<ln<eh1+1-e)-d s

3. begin ’
4. v <-- EXAMPLE" |
5. ifpy(vIAl vpjeg ' [if g(v)AL]
6. then COUNT <-- COUNT+l o .
7. end" ‘ .
8. d-conflict-max-g-PE <--_(SQ%HE-> d) - | (I
Algorithm 6.5, —

)) s . é .

. Task : Learn f from error-free PEs and NEs.

‘Assumptions: Xyreeesx, are sufficient to express f;

Parameters : hl!-hz' hag,'h4 > 1, "and d;O.

» B «
[

e

b}
4 o .

“ e

n
C Qe .

g - o

210

l. n <= 1 » [setVﬁ to 1)) @

.

e 2. call Alborithm 4.2 with k<--n [learn n-DNF from NEs] ' _ -

3. if d-conflict-max-g-PE * [if over-specialized]
. - ‘ _

4. then ' '
- Y "5, begin)
6. n <--'n+l o [increment n]
, " 7. go to 2 [and try again]
3 °8. end "
% ‘ / B |
..% Theorem 6.10.. Algorithm 6.5 is applicable if and only if
-7 ' . eh, K |
$ v _L ’
: : o0 1“(‘eh1+1-e)
Ld 'SL P -\ .
: ,
e . holds for the user-specified parameter d.
o « Proof: Immediate from the definition of L in line 2 of the
wf) . function "d-conflict-max-g-PE".) ' .]
'y '
P . ’ r ' .
' - L8mma 6.5. If f can be written in k-DNF, then the maximum
. - number of runs of Algoriégggs.s is k.
) e C . N ‘ _;a" . ‘
\\. \ . . . " B 1\ . . .
- Proof: The dual of that of Lemma 6.4. u
- / v .] -
‘ ’ - .
o, " \gheozem’s.ll The output g, of Algo;itbm 6.5 has the
' -) . . : '
* s properties: d . :
CoL a) 2| 2. bt (v) z_hl"l] < Hé'l. - :
. g(ﬂ)fl L :
-~ .. T v - Y
. wie| 2 D) 2 hy Hoen,™
~ .. g‘V)# ’ . , . s
ce - ’ { ' 0
a :
., . e ' .
4 r !, X

211

C,
{c) If £ can be- written in k-DNF, then g is in maximal

:n~DNF, for some ngk. -

sl

»
¢

Proof: The proofs .of (a),'(b), and (c), are the duals of

\

those of (b), (a), and (c), of Theorem 6.8. o

.. * e _ , ;

.)‘
' . ~ The only dxfference between the output of Algorlthm 6 5
and that of Kigorzthm 6.2 (or that of’Algorlthm 6.1) is that
some seen PLs may not be 1ncluded in g. That.wfll happeh if

ohly a few conflicts occur in.the last run. C I
. ! ' CT

. . \ l'
i 4 ’ t |

Theorem 6.12. If £ can be written in k-DNF,- then the
worst-ctase time complexity of Algorithm 6.4{is

d+lnh2.

“ - +1 n
T(t,ho,hesh)) = 0t" ~[h.tM+h_ 1nh, + —t :
4 h o
o A e ' , 3 ¥ in ehy)-d\
, ; _ehl+1-e ! .
for some n<k, C
Proof: As in.Theorem 6.9. o ‘ . -

6.9. CNF/DNF. Learning - Case II..
. ° ‘ f\ .
In egactly'the same way Algorithm 6.3 was a comp;omiseﬂ
‘n‘ between'Algorithms_G.l and 6.2, Algobitpm 6.6, presentgd in //
this section, is a -compromjse between Algorithms 6.4 end‘

\8:5- | . o »

3 © ‘ .
C 212
7
. - ‘ : : . ' - L
v AJLQOI ithm 6 » 6- ’ y . " : J v ¢
¢ ' NI o .
- Task 4 Learn f from error-free PEs and NEs. ‘
) Assumptions:.xl,...,zst are sufficient to express f. -
2 Parameters : hy, h,, hy, 'h, > 1, and d>0. .
3 B ' » . \ .
: ., l.n<—1 ; : [set n to 1]
':i) C . 3 - ‘ : .
2. call Algorithm 4.1 with k<--n [learn n-CNF) :
: 3. if d-conflict-max-g-NE - ; [if over-generall
? ~ g, then ' ’
{ ‘5. ’begin ’ | - Y
¢ - . T) . p .
: 6. call Algorithm 4.2 with k<--n [learn n-DNF]
7. if d-conflict-max-g-PE) “{if over-specifib]—
b o 8. then ' . ' \
9. . be‘gin
o 10, .- nc==mel [increment n)
11. ' go, to 2f‘ N [anq try adgain]
) 12. end L *
. . " o U S o S
» Pl 13: . end ' , L Tk
A - we .
. ‘ Theorem (1 13. Algorithm 6 6 is applicable if and only if -
. ; . K,~\\h . eh o .
IV 0 <4< in;h‘ eh, +l-e) 1n(eh3+1-e) o
<& holds' for .the user-specified pafameter d. . B .
~ ¢ A*. - ' ' ot ’

\
L4
-

Proof- Immediate from the defxnxtxons of L in lime 2 of each

-

. _of \the “functions "d-conflict—max—g-NE” . and
’ ‘"d-conflict-max-g—PE". o) N] i
Al .

St ancin. 3

el S 1.

L p e g

L}

- a

. -

213 i ' ‘T

Lemma 6.6. If f can be written in kl-CNF and in kz-DNF,

then the maximum number of runs of ‘Algoritf:m 6.6 is

o min{ki.kz}.,

Proof: Immediate from Lemmas 644 and 6.5. . L

¢ -

Theorem;6.14. The output g of rAlgorithm 6.6 has the

properties: .
(a) P Z pt (v) > hl"] < 52-1_

(v) ¥l : .
™ (b) p[2o > by] <n,"t

{(v)#0 .

(c) If £ can be written in ky~CNF and in k,-DNF, then g is’
; .
ceither in maximal n~CNF or in maximal n-DNF, for some

nf_min[kl,k?}.

[y

Proof: Immediate from Theorems 6.8, 6.11, and Lémma 6.6. N |
~

»

Theorem. 6.15., 1f £ can be written, in kl-CNF and in klz—DNF,'

then the worst—case time complex1ty of Algor:.t:hm 6.6 is o
s) < | avinh, fdlh SN
. +1n +1ln -
- ofthtl (hy+h)t +h Inhy+h jlnh 4+ A i+ 2
3 1 3 eh eh
1n{=—2—)-a 1n|o—r)-a//-
£’ s }) ‘eh3+1-e eh,tl=e

for .some n ¢ m.in{kl,kzl.

i

T(t,

-~

Proof: During the’ j=th run, execution of line 2 of Algorithm

6.6 takes at most -

214

(Lt J+1H:J+lnh)) -
time, execution of line 3 takes at most

d + 1nh4

j+1 | —
< . 1n(eh3+l-e - d
| time, execution of line 6 takes at -most
e(3 J+1(t3+1nh4))

’ Eime, and execution of line 7 takes at mést

e tj+1 d + lnh2 .
(eh,)1
Inj—m—<—)=- 4
eh1+1-e\
time. According now ;6 Lemma 6.6, the result follows. .8

6,10. Summary~

<

Six new algorithms for con%ept learning from error-free

’. .
PEs and NEs were presented in this chapter. Th¢ (main

differences’ and similarities petwéeﬁ those algorithys. and
) the ones of Chapter 4 are summarized below. .
(1) No information about the form of the concept
léérned is feéuired by the algorithms of phépter 6.
Iin contrast to that, the knowledge of the maximum
‘number of llterals per conJunct/dlsjunct is requ{ted
by the algorlthms’gf Chapter 4. ‘
(ii) Both PEs-and NEs arq~required~ by the algorithms of

Chapter 6. ~The examples have to be presented in

groups of PEs and NEs of partiéular 'sﬂze} .but thﬂﬂ

[

215

order of the PEs/NLs inside each groupﬁin immaterial.

.In contrast to that, only PEs or only NEs A}e required

by‘the.algorithms of Chapter’4.

(iii) The actual running time of Algorithm; 6.1‘and 6.4 (6.2
and 6.5) can be ‘either lower or higher than that of
Algorithm 4.1 (4.2). Their wprst-caée running time is
non-gsymgtotically higher, but asymptotically (if
considered as a functjon of t) is equal to that of
Algorithm 4.1 (4.2).

}iv) The‘algorithms 6f Chapter 6 pe;form' tonsidedfqrror

" learning; whereas those of cﬁapter 4 perform
‘Awggé—siéed-error learning. For both cases, the amount
of discrepancy between the true concepé (the one from
which the PEs and NEs are drawn) and the learned ;ne,
is. within a user-defined confidence range,'

(sub)linearly affecting the algorithm's running time.

(v) The ouiputs of the algorithms df Chapters 4 and 6 can

determine fast (in at most e(tk+l) time).whether any
.vector is a PE or a NE. ¢ a
The algorithms of this chapter éreatly improve those of

Chapter ﬁ, because they apptoxi;ate a concept without

knéwing anything about its representability (except for the

number of wvariables involved), ané according to what was

-said in (ii), (iii), and (iﬁ) above, the pr}ce which has to

be paid for that is not high at all.

- *

oy

P T TR

216 'y

what is a bft annoying though, is the fact that it

cannot be determined which of those algorithms is the

'

best/worstt or which one is more/less appropriate to be

applied to a particular situation. That depends on the
examples' distributions D+' and D , about which ﬂﬁ
informétion is availgble, and on the choicé oé d, which,
because of the lack of information about D+and D, is left
as a uéeg-specified parameter. . i -

Y

Evidently, the mext topic to be examined, is that of

»

k-concept learning in a noisy environment; aiways in the

“absence of knowledge;of k. Chapter 7 examines the simplest

\

case, in which oniy one of the example geberators is noisy.lh

[y

ot

@

~f’

217

CHAPTER 7

k-CONCEPT LEARNING; UNKKOWN K;
, 8 §
» ONE ERROR-FREE AND ONE NOISY EXAMPLE GENERATOR

8

7.1. .Introdhotion

-
. >
v :

The k-concept learning problem, when k is unknown, was

first considered in the last chapter.. Having studied this

problem in an error-free environment, we are now ready to

palghetr ot 4 : <. : . e . e
e T oy 2 a3 Tt s TR v B e i Sl g T el o < O
© RS, ST RN RS Mo B E ’
. .

i study the same problem in a noisy environment.

‘The case in which only one of the example generators is :
\

T e

-

noisy, is examined in this chapter; the more complex case in

: which ,both example generators are noisy, is examined in the

-

next chapter. As was also the case with last chapter's

problem, t

been considered elsayhere.

i 3

The first algorithm of this chapter is stated in

Section 7.2. It learns a CNF concept from error-free PES

H

and noisy NEs. A modified version of this algorithm ."is

presented in Section 7.4. The duals of those two '

algorithms, learning a DNF concept from noisy PEs and

*

SR

La

)

| gl R R AP

om-Liabvi i AN + IR -, . - - 2
M) e LY N TR 1 D o Ve e Yo .
vﬁ‘ v bR S i e skt D e 3 WF N
ty -
.

I TR ’\
-
t

218

&,
+

error-free NEs, are stated in Sections - 7.3 and 7.5.°

’ “Finaliy, the reason for which different approaches to this

chapter's préblem have not been further inves?ﬂgateq, is
] . o p

explained in Section 7.6. As usual, the chapter(&loses with
a summary in Section 7.7. - (]

3

o)
7.2. CNF Learning from Noisy NEs ~ Case I

-

» i

The pfoblem of k=CNF learning from error-free PEs and
noisy NEs, when k is not known, will be studied in , this’
section.

-
.

The main idea used i; the design éf the algorithms of
Chapter 6, yill‘be used here, too. First, try to learn a
1-CNF from PIs, bf applying Algorithm 4.1 and by testing its

’output against NEs; i% significant over-generalization is
detected, try to 1ea£n a b-CNF in the same way; in case of a
new failure, try to learn a 3-CNF, etc. Terminate the

process when no significant over-generalization is detected.

One important diﬁference-petween this algorithm and the
algorithms of Chapter 6 is that, because of the noise of the
NEs génerator, even after k runs, some conflicts may occur,
when the learned Kk-CNF --is tested against the NEs, and

~

therefore, more than k runs méy -be required. In this

section, no solution is given to this problem; the algorithm

~

Al

) AP
e AT A e RS R

T TR T T T T T T T R

219

/
is left to run until either a t-CNF is ledrned, or only a

. few'conflicts are detected. -

~

. 4 -
For clarity, the description-of the fuction ‘testing for

LY

over-generalization, precedes the pfesentation of the
alggrithm;
o ‘ o

Function d-conflict-max~g-r-NE-I : boolean '
- N _ .

Task " : Return the value'TRUE,‘if the frequency of “the
seén noisy NEs of‘f, making g 1/*, is gleater’
than d; otherwise return FALSE.

Aésuﬁg}ions: g is in:maximal n-Cfo fdr séme_lgpg}.

Patémeters : h3, h

4r -and d; set up in calling: routine.
" 1. COUNT <-- 0

d + 1nh ..

2. repeat L = 4_1 ‘times
eh3§1-r) ’ .
1n) 1- 4 !
ehy(l-r) “+l-e
30 ‘ ‘begin‘) . - '
4. v <-- r-EXAMPLE S S .-
5. if 5, (V)#0 Vs.eg [if g(v)#0]
6. then COUNT <-- COUNT+l
\r 7. end ' "~ ‘
%‘8.‘d—conflict-max-g—r-NE—I < (SE%¥£L > d) . - a
: T

Algorithm 7.1.
Task : ‘Learn f from error-free PEs and noisy NEs. \

t i

RTINS+ o awisenes '
3 (A Ny orts mmrmarro g o ooy et Ty
hY

v 220

v

Assumptions: (a) xl,i...xt are sufficient - to express f.

(b) Erfor rate.r, of NEs generator is known.

Parameters ; hl' h2,'h3, h4 >~1, and 4 > O,
. ') : } ‘

r . ‘ h
. l.n <=1 : ' [set 'n -to
2. call Algorithm 4.1 with k<--n [learn n-CNF g from PEs]
3. if n<t . [if g not least general]
4. then -
) ' - T 4 R) . N
- , 5. . if d-conflict-max-g-r-NE-I [if g is over-generall
5 6.- then
7. begin o
,) S .
8. : n <=- n+l . [increment n}
9. go to 2 ~ [and try again)
N T 0. end ‘ S

[

_ Before stating the theorem describing the output of
Algorithm 7.1, the conditions under which.the algorithm is

') appliﬁable,_gre given.

\ \ 5\
.

. Theorem 7.l. Algorithm 7.1 is applicable if and only if
‘ eh3(1-i:)'1 \ L
0 <d < 1ln 1 .
eh3(l-r7 +1l-e o ':.

holds fog the user-specified~pagameter2d.

‘ Proof: Immediate from-the definition of L-in line 2 of the
o :) . . &) .
'd-cqnflict-mang-r-NE-I" function.]

»

oo
> A‘,
A
5
K
k.
g 3
. 37
AL
s,
i
.
3
%
o
P
w -
o
-,

,
£
é.
;';

A
¥

EORTS B o~ HE SIS

Theorem 7.2.

. "

o ' ,

properties:

(a) pL.Z pt(v) > hl'l < hz_l'

(b) P Z D™ (v) > h3‘1 ih[l.’ ' |
g(v)#0 i

1

Proof:

The output g. of Algorithm 7.1 has the

- H

(VA

(c) g is in maximal n-CNF, for some nfﬁ.

4

I

- \ « . R -
(a) Since the final output g of Xlgorithm 7.1 is nothing but

. (b)

the g formed durihg execution of Algorithm 4.1,

in the
. . s S 0w
last run, i.e. g. is "not albered by. ‘the

"d-conflict-max-g-r-NC-I" function, -the

proof 1is ihe

same as that of Theorem 6.1(a).

(i) Suppose that t runs are executed (i.e.

(ii)

g _of Algorithm 7.1 1/*. Clearly, it suffices to
" . prove that o

the t-CNF
learned is Jot tested against NEs).

AcZérding the Theorem 4.2,

p[2. DT (v) > h3‘1] s 0,
g - ,

and the result foilows.

Suppose that less than t runs are executed (i.e.

the k-CNF learned is successfully tested against
NEs) .

L

Let V be the set of all NEs making the final output

222

: p[zn’ ® > h3-1] y L. (7.1
: vev :

in

4

If- each output, v,,of_r-EXAMPLE', seen Edring the

last run, is interpreted as a Bepraculli trial, with

- "success" being "v makes g 1/*", then »
1 d +'lnh, :
%25] L = . _l ! (7‘2)
k:- \ . ') e (l-r)
| 1n(—H23 — -a
- ehy(l-r) “+l-e

independent and equiprobible Bernoulli trials have
) been performed, and ‘at most dL successes have

occurred (since this is the last run). If p (p')

JR T e T e iy L o
> P .

i denotes the probaﬁility that r-EXAMPLE will changel*
a vec;or\VfV (vfV) to a vector v'¢Vv (v'eV), then
- _the probability of success of each Bernoulli trial ,
E e . . .
' ‘ i P[success] = | P[v : inside V]*(1l-p)
T oo ’*ﬁ - | ’ + P[v : outside Yl*p‘ (7.3)
ané the;efore, since r2p, .
’ ‘ .~ Plsuccess] > (ZD_(V)) (1-r).
- ’ \ VEV
' > Cléarly now, the event ;_ -
‘ "ZD" (v) > ha.'l holds after the last run® .
o () VEV . ‘ '
\ o , _jy ' . is equivalent to) « . B v
' BN _ "fhe probabiliiy of sfcess 6f each‘qf, tﬁg L -
» , . trials (in .the 1last run) is at least
h3fl(1-r), -and at most dL succgsses have = - :
° ‘ . dc@ug;ed":,ffff
- T e S

Therefore,

-

 a

Yolds. But, according to Theorem 7.1, Theorem 2.5

implies \ '
| b*(gdL: L, :h3-1(l—r)) < h4“1,
which proves (7.1), ahd therefore the resﬁlé, too.
(c) Same as that of Theorem 4.2(c), if we.set k<--n. '|
. “) . f)
Parts (a) and (b) og this ;hebrem imply ‘that Algorithm
7.1 performs strong two-sided-error learnihg.i Part (c) also
of'the‘same theorem implies that if n is the number of 'runs
_executed byvﬂlgsrithm~2rl)‘then it’takes e(th+1).£ime in the
“wérst case to determine whether a vector is a PE or a NE 'of
the lea‘gnead conc‘egf:._ S ‘ . i

7 W

‘Before studying the asymptotic’ worst-case’ kime
»complgxity of Alqoritém 7.1, it would be useful to point out
tga: the number of NEs requited‘per run is high Fnough to.
assureq{hat Theorem 7.2 holds even in the wgrst‘?ase. This
will arise if'a;l NEs conflictghg with g (mgking g 1/*) are
changed by the noise to NEs/PEs not -conflicting fwith g
(making g 0), and all NEs not conflicting'ﬁith*g; are either,

' unchanéed, or chaﬁéed to other, NEs/PEs. not coaflicting with
- g, too. To say it in other words, the worst case will arisé"
Cif the-no;se is trying to hide, as much as pbssigle, any
information - 1leading to the _'detection of an

over-generalization. U : - ' =

9 ' N . -

b 224 ‘
‘ \ : . -0 o~

.?he above discussion also‘eiplains the reason_fbf hhicb
an increase -of the error rate of the NEs generator,
,necessitates ;n’increase of 'the number of NEs ‘gequired per

~» run (see definition of L in the “d—conflict-maxfg-r-NE-i“,

A -functiony.

;é - ’ . when r iné}eases, the probability that a NE causing a
~ ernfllct will be error-free (will not cause a conflict),
decreases. If the algdrithm is to produce an equally
rgliable outpuf, it has to be fed.with more NEs, so-that it

~ " . will catch a sufficient number of conflicts, detecting in

+

., this way the ove::ggneralizdtion accurred, and taking

appropriate action,

L : " But what about the NEs not conflicting with g? Doesn't

| the 1ncreased r imply that there is a increased probabil1ty

that a NE not conflzct1ng with g will be changed to a NE

, conflictlng with g,\and thereford, doesn't it imply that the

#” ~, o algorlthm can afford seeing fewer NEs? The answer ' to this
. L questlop 15. not necessarxly": the probabilxty that a NE not
confllct1ng with g w111 bé noisy, is not related* to the

- ' probabillty that .a NE not conflicting with g will be chang%d,

to a NE conflictidg y?th'g. In the most unfavorable case,,

all NEs . not‘conflictiqg with g will be changed to NEg#also
not conflicting with gq. Therefqré, no incrqgsg ‘in the
numﬁér of -éonflicts -is guaranteed, which implies that no -

by

decrease of the number of NEs can be -afforded by our

v

SRR

s

Fr T

aikey e TE T

SOREAEE T G e

e
3

as a user—specified parameter, simply because “its

225 °

where n is the number of runs; n can grow up to t.

o
Proof: According to Theorem 4.3,

Algorithm 7.1, execution of line 2 takes

31 (¢341nn,) : :
e(hlt (t'+1nh,))
time in

th& worst case. On the other hand, execution of

line 5 of the "d-conflict-max-g-r-NE-I" func¢tion takes at

most e(t3+1) time, @gnd therefore execution of line 5 of
Algorithm 7.1‘takes

6 341 d@ + lnh, N
. -eh3(1-t)-l
1n o T - d
3(l-r) +l-e

time in the worst case.” .The result nov follows*immediately.

As was also. the case with the thresholé d introduced in

Chapter 6 (see Section 6.6),*the d of Algorithm 7.1 is léft,

optimal

value is not kno?:; when d increases, the execution time of

each run increases (by a known amount, specified by L),

whereas the number of runs either remains the same, or

during the .j-th run of

3

1 k]
algorithm. N
» M Q “
Theorem 7.3, The worst-case time complexity of Algorithm-
7.1 is ' J)
' : d+1lnh
Y .
T(t,hy,hyohy) = ft" b tP+h 1nh,+ —3
' ‘ ; eh3(1-r)
i In =1 -4
' eh3(1-r) +l-e

i

oy

-

P

.

i BT

PETYARL
A

T

Crd g

o A

-

226

déiiedsgs (by an unknown amount, dependin§ on D).

However, -what is more annoying here,?is the fact .that
Aléorithm 7.1, approximating a k-CNF- concept;/—may— not
terminateteven after k runs. Although after k runs, g is
more Sbecific than £, the possibility that tﬁe'egrors made

by the NEs generator will gesult in a frequency of conflicts
~ R

greater than d, and therefore in the initiation of a new

run, cannot be eliminated. . [|

%

»

This is a serious problem, because it implies that ' the
time compléxity of Algorithm 7.1 can be exponential in t.

1t is therefore worth investigating whether the probability

that more than k runs will be executed, can.be computed, or,

i
at least, upper-bourided.
' 4

If the k=th run is not the last one, and if each NE, v,

seen during this.run, is interpreted as a Bern&ulli trial,
with "success" being "y mak;s g 0", then L independent and
equiprobable Bernoulli trials have been performed, at most
L-¢L ‘successes have occurred (since this is not the last
run), and each of them has probability of success at least
equal to the probability thag no err;r will be made] py
r=EXAMPLE™, hence at least l-r. Therefore,)

P[(more than k runs executedl=b*(ﬁp-dt;L,z}-r#T4j5)
However, according .to ‘Lemma _”2.1, B(ik; L, »1-r) |is

upper-bounded by b(k; L, 1-r) only if k<L(l-r) holds;

.

B i o 5 ol

-
e e 10
N

227

i
<
-

. e
e

otherwisg, the wupper bound is 1, which is of no use. That

implies that if we are to find an upper bound of (7.5),

/
L-dL < L(1l-r) o .
. o \
should hold,” or eguivalently
d>r ' . | (7.6

should hold. ﬁowever, the restriction of Theorem 7.1,

_ imposed on d; does not make (7.6) aiways true; if, for

examplei r=.} and h=10, then Theorem 7.1 implies that d<.058

-

is required, whichQﬁdkes (7.6) false.

The above ‘discussion suggésts that under our
. {
assumptions, the probability that moxe than k runs will be

. W .
. executed, can be arbitrarily high. . < : m

7.3. DNF Leazﬁggggﬁgpm Ndisy PEs ~ Case I
~ N

If the PEs generator, rather than the NEs generator, is
noisy, then the dual bf'Algorithm 7.1 cén be applied to
learn 'a -DNF expression:_it will try to learn a 1-DNF, 2-DNF,
3-DNF, etc., from the error-free NEs, until mno significant
over-specialization is detected, when the learned DNF is

L

tested against the noisy PEs. . "

The function performing the test aéainsf the PEs |is
given first, followed by the algorithim’s description, and

its theorems.

- - .
R ' : Cw e 228 . :
A '\)“ ‘ . \ : B 2 .
Function d-cdnf‘lict-max—gv-f-'-PE-‘-I s bodiean
.~ Task : i%eturd"'gihe, value TRUE, if the frequency of the
o . P -~ - . . .
) e . ' seen noisy\ PEs of f, mak\ing g 0/, is greater
| S ' * than &; othq?rwise return FALSE.
Assumptions: g is in maximal n-DNF, for some l<nct.
{ - .) :
.; . Parameters : hl, h2, and d; set up in calling routine.
% o o , ' '
g 1. COUNT <-- 0
L . ' ‘ . d+ 1lnmh, .‘
% o 2. repeat L =. -) times
- S ehy (1-1) |
S in _'1 . - d
ehl(l-r) +l-e T
D \ 3.+ begin ‘ BN
: N '
Ry . 4. v <=- g-CxamMpLE? *
3 B . R o i . - .
e o3 1£ p; (V)Fl vpeg [if g(v)#l}
SRR ¥ : 6. then COUNT <=-- COUNT+L .4 _
j . 7. end .
' 8. d-conflict-max=g-r-PL-I <-- (S-Q-%E% > d) Y u
Algorithm 7.2. .)
. Task :

Learn £ from noisy PEs and error-free NEs,
Assumptions: (a) Xy,.:e,X. are sufficient to express - f.
(b) Error rate r of.PEs generator is known:

Parameters.: hy, h,, hy, 134 .>;1‘,. and @ > 0.
l. n<==1 [set n to 1]
2. call Algorithm 4.2 with k<--n [learn n=DNF g from NEs}
e 3. if n<t

.
~ ¢ :
N .

(if g not least'specific]

» .

PN

isial
Sk
[

Y=t
e

4. then

‘ 2
‘{ ' 5. if d-cénflict-ﬁax—g-r-PE-I [if g is over-sbecific]
‘E 6. then ‘
E} | 7. begin - ’ .
g?, 8.’ n <-;'n+1 lincrement n]
i 9. go to'z ~ land try again] - Y
10. J end : ' ‘ " m

PR NPT

Theorem 7.4. Algorithm 7.2 is aﬁpiic&ble if and only if

~1
ehl(l-r)

. " 0 <dc<1ln -1
eh; (1-r) "+l-e

>“’HQ{FS for the user-specified parameter d.
Proof: Immediate from the definition of L in lin€ 2 of the

"d-conflict-max-g-r-PE-I" function. ' m

1 [}
. . &

Theorem - 7.5. The output g of Algorithm 7.2 has the

prbpertiesi

(a) PLZ Dt (v)

(vi#l

K ~
-1} ¢ p-1 ‘ ;
hl] i hz L] . . , ‘ b
) 2| 2 o7 vy h3'1] < h,~L

© g (v)#0 ? ‘

(c) g is in maxiﬁql n-DNF, for some n<t.

1v

\v

<

Proof: The proofs 'of (a), (b), and (c) are the duals of

and (¢) of Theorem:7.2. . [|

_Theorem 7.6. The worstcase time complexity of Algorithm ot

&hose of (b), {a)

L ’ .

N PR
e L , *ﬁi \E%

N

Tre ' - :.As—:.f;‘é_')é'y-

230
7.2 is
o d+1nh
T(tihy,hgh,) = eft™ [h t +h 1nh 4 L - ,
/ ehy (1-)" 1\ '
In =T -G
where n is the number of runs; n can grow up to t.
Proof: As in Theorem 7.3.) u

A

.] \
It is worth mentioning that, in contrast to our dilemma

concerning the cﬁoice of one of Algorithms.6.1 and 6.2, no

“such problem arises -here. If the PEs generator is noisy,

only Algorithm 7.2 is abplicable, whgreas if the NEs

generator is noisy, then only Algorithm 7.1 is applicable. B
B

7.4. CNF Learning frbm Noisy NEs - Case II

The "problem of CNF learning from 'error-free PEs and

-

noisy NEs, already examifed in Section 7.2, will be examined

.

. 'here again: ‘ : S

According to what was stated at the end of Section 7.2,

if the error rare r of the NEs &generator "is unrestricted,

and__only the restriction of Theorem 7.1 is imposed on the

’d

.user-specified threshold d, then (7.6) may be Efalse, and

therefgre the probability that more than k runs will be

i

executed can grow -as high as 1. Clearly, this is

N’

-

*

!

. iR N A N N
R A R R A B L R e
R et Y "F'f“'a—-:v_ Skt S 20 o L IR L e
. . . o

P

‘ L} .
) 231)

‘&‘

-

undesirable. what we will try to do now, is to see whether

this probability can be upper-bounded, by imposing _some.

additional restriction on r' and/or d, or by fixing their
. .

. values.

Suppose th8t d is unknown. Our aim is to find the

minimum number of NEs required per run, so that

S DN NI ey I 7. .
* - g(v) #0 , .

i.e. \property (b) ‘of Theorem 7.2, as well as

-

P{more than k runs executed] < hs'l,

- . . ’ (" V‘
' for some user-specified parameter h5>1, will hold.»
« v []
. , As shown in Theorem 7.2(b),
d + lnh4 . .
L = -0 (7.9)
eh3(1-r) .
1n T - d

ehé(l-r)' +l-e

L)

is the minimum number of NEs making (7.7) true. Also, (7.5)

~and Theorem 2.5 imply that

pee— ©

(1-d) - 1lnhg :
L' =

, (7.10)
) ln(e(1-r)1)- (1-d) ‘
- : .

, (1-r) t+1-e
is ‘the minimum number of NEs making (7.8) true.

-
o

"Hence, the
minimum number of NEs rquiged, so that both (7.7) and (7.8)

are true, is max{L,L'}. . o

This is exactly the situation arised in the design of

_Algorithm 5.1 (see Subsection 5.:5.1). L and L' are

(7.8) -

. I
K
8 Ny
a
b
R
i
5
3
&
Ed
i
"’-
-
%
Ay
u
H
¥
R
"
N
4
.

232

¥ . -

ihc}eaéing and decregsing functions of d, respectively, and

~ therefore, the d making L=L' is the 4 minimizing the

max{L,L'}, i.e. the @ yielding the minimum number of NEs-
making both (7.7) and (7.8) true. T a
The new functioq, ‘testing a CNF against this miniﬁgm

number- of NEs, is given next.

Function d-conflict-max-g-r-NE-II : boolean

Task - ¢ Return the value TRUE, if the frequency of the

seen noisy . NEs of f, making g 1/*, is greater
i than d; otherwise return FALSE.
Assumptions: g is in maximal n-CNF, for some l<n<t.

Parameters : h3, h4, hs; set up in calling routine,

1. COUNT <==- 0
20 a K== lnhs
3) b == lnh4

. - 1) .
4. x <==1n e(l-f;) ' .
e(l-r) “+l-e .

1 S -

eh3(l-r)
1

5. y <== 1n

eh3(l-r) +l~-e

__ y(l+a)+b(1-x)
6. d < atbixty

' —_ [atbs1
7. M < x+y-;]

8. -repeat M times

"9, Dbegin | | ’,__J)

Wy

T L e aa

233
‘10. v <=-- r-EXAMPLE~
S D '1f s.i,(_v)fo Vs €9 : [if g (v)#0] »
12. then COUNT <-- COUNT+1
13. end
14. d-conflict-max-g-r—NE-II <-.-(C—°gﬂl> a) S m
If thi{s fuhction is used, instead of the

"d-=conflict~max-g-r-NC-I" used rin Algorithm 7.1, _'th\e

following algorithm is obtained.

-

\

Algorithm 7.3.

P L]

Task "+ Learn f from error-frﬂee PEs and noisy NEs. oo o
Assumptions: (a) XyreoorXy ‘are sufficient to express £.
(b) Error rate r of NEs genérator is ®hown.

-

Parameters : h;, h,, hy, h,,*h, > 1.

l. n<--= 1 ’ J[set n)to 1]

2. call Algorithm 4.1 with k<~=-n [leazn n=-CNF g . from PEs]'

3. if n<t ' [if g not least general] /

4. then ' .

540 i} d—conflict-max-g-Vr-NE-II (if g is.over-general]

6. then '

7.0 be"gin 1 | ‘ | o
8. | n <-- ‘n+1’, X [increment n] .
9. . go to 2 ' (| (and try again]

10. end . L)]

3 234
. fi r Unavoidably, since” Theorem 2.5 ~;cas used in the
‘ b derivations of both L and L', in - (7.9 and -{7.10), some
i restrictions, stemming from (2.34), will be imposed on the
i; problem's parameters. ‘ o
%~ . . .
§ Theorem 7.7. Algorithm 7.3 is qpplﬁcable if and only if
) " .
2 . < T L ,
?. E ’ 0 <r<rpy= 4;5—}-= .3775 _ (7.11)
%:",“ ‘ .. ¢ ' N ’ _‘ ’ .
N holds for the“error rate of the NEs generator, and also
X . . . (1-1) (er+l-r)
_ . 1< hy<h .= o1 (7.12)
I N i ' L
¢ holds for thgf;ser-specified parameter h3. Moreover,'
» e) r==>r if and only if h___==>1, ° (7.13)
Zgee dewﬂ»’ - max max)

Proof: The proof is similar to that of Theorem 5.1, ‘and it

is briefly stated here.

A o . .
Clearly, .the number M of NEs -seen in each run of Algorithm
7.3 has to be a positive integrr. Hence
. , e .
_=l eh, (1-r)" : :
1 -“ln(elir)) < In|—"2—— (7.14?§§
i e(l-r) “+l-e eh3(l-r) +l-e
. " must be true, or equivalently, .
, E eh:‘;(l-r)'—l
e < ,
] e(l-r) "~ eh,(1-r) " +l-e .
Ly e(l-r) " t+i-e : : . L -
must be true. The solution of this inequality yield
K . (1-r) (er+l-r) /)
¢ h3< - er [J

which proves the necessity of (7.12).

From (7.12) now, it is clear that

\

[

,——.

i) 235 S

1 < {1-r)(er+l-r))
er . - ...'. r

must hold, or eguivalently,

(1—e)r2;2r+1 > 0

~,muét hold. .According to what wassaid in Subsectxon 2.2.3,

j‘ .

the solutlon of the last inequlity is

- 1+v’ 1ve . g
1.5415 T r i 1-e = 3775, . i

* M -

which proves the necessity of (7.11).

Clearly also, (7.13) is true, since (7.11) was obtained from

max
‘ .

the solutlon of 1<h . from,(7.12). L a

4

- A comparison of Theorems 7.1 and 7.7 reveals that, in
contrast to Algorithm 7.1, Algorithﬁ 7.3 works only for a
restricted .ragge of e:ror”}ates of the NLCs generator. - This

can be explained as follows. ©

*

.) &

)

Rjrst, if the outpit of Algorithm 7.3 has a fixed

reliability (i.e. 1if h3 and h, are not changed), then

4y . . . X
‘" - when r increases, d's lower bound decreases.(7.15)

fhat is so, because when the number of noisy NEs increases,

on the one " hand, the number of conflicting NEs which are
error-free (i.e. which remain conflicting) decreases, and

on the other hand, the .number of non-conflicting NEs which
4

& ¢
are changed to conflicting ones can either decrease or.

increase (see also discussion after Theorem 7.2).

Therefore, in the .worst case, the number of observed

conflicts decreases. Hence, d has to decrease, in order for

o .

it

prs

s
I
E

-

236

the algorithm to cgtch the . few conflicts observed, and
determine . «correctly _ whether the amount of
over-generalization actually océurréd is acceptable or not.

~ Second, if the probability that k runs will be executed
is fixed hb.e: if h5 is not changeé), then

when r increases, d's upgper bound increases.(7.16) .

That is so becaggéxaftgr k runs; the learned concept is more
specific than the concept to Se learned. That impliés that’
when the number of noisy NEs increases, the number of
co;flicts increases, too. Therefore, 4@ has to increase, in
order' for the algoritﬁm not tgi be fooled and ask for
additional runs.

%

From (7.15) and '(7f16) sit is c¢lear that when r

N3

increases,, the range‘of permissible valyes for the threshold

d is shrinking down. Since d .should alﬁays have a valug, r

»

should not be allowed to grow arbitrarily. |

&

-

The next ‘theorem shpﬁs that the properties of the

output of Algorithm 7.3 are 7identical to those of Algorithm

7.1, although the-two algprithm prgcess a different number

of NEs.

-Theérem, 7.8 The output g of AIQbritﬁmi 7;3' has the

properties:

b d

/‘Q\

Re

237

(2) P[*(v) zhy 1] < h, L,
G(V)#l ’

(v)-#0

() g is in maximal n—CNf, for some n<ts

- (b) p[207w 2 i 1] <n, 7t v :
g ‘ -)

. 7
n

>

a

Proof:'
{(a) Same as:in Theorem 7.2(a).
{b) Initialfy, the proof proceeds as in Theorem

only difference being that the number of N
.- oy . N
per run is M, instead of L. That .implie

—y

will be changed,to

Q‘P[Z D™ (v)2h,]f_b*(idM;M,lhé—%)(
g \

(v)#0

* Theorem 2.5 now implies that

©
o

. where' : v
d+1h, | -
My = 1N |’
. | ehy(1-r) ‘
in =3 - d
ehy(l-r) “+l-e 1

7.2(b), ‘the.
Es required

s that (7.4)

1¥z)).(7.17)

. * -1 -1{;,° .
min{neN|b (gﬁn;n,zﬁa (}-r))5p4 izM1¢(7'18)

o

- (7.19)

'provided of course that {2.34) holdé, or, afjprding to

‘the definitions of d and y, provided that-

y (1+a) +b (1-x) <
.7 v T atbIxTy y

oy

‘holds. But (7.20) is equivalent to
(b+x) (1~x-y) <0,

o

which is always true, since Theorem 7.7

»

(7.20).

implies that

M>0, and therefore, l-x~y<0. That éstablishés (7.20),

which, in turn, establishes (7.18)

»

According now to

LY

>~

238 O
» " ’

- the gefinition of d, it can be verified that the M, of-
7 s 9 -
(7.19) ' is equal to the M of Algorithm 7.3. Therefore,
a (7.18) implies '

£)

%ﬁ" . which, according to (1.17); proves the result.
%’ (c) Same as 'in Theorem 7.2(c).]
§1c \/\y\ﬁ . . £ " '
? The formal results, c¢oncerning "the role of the |
g user-specified paremeter hs, as well as the time ‘complexity
N [} , '
. of Algorithm 7.3, conclude the algorithm's analysis. &
. Theorem 7.9. .If Algorithm 7.3 is applieé to learn a k-CNF
5 v
‘] concept, then
N o () P[more than k runs executed] < h5-1',
z (b) The algorithm'sfwors£¥c$§e time complexity is
N $ o
T(t,;;wh%‘:':'th h4| Hs) = . '
7 " Inlhgng
of en#%f 1 +n ' 4's! :
. =0+ .’f(hlt +hy1nh,+ (—eh;))
. o In (er~r+l) (er+ehy-r+l)/
, where n is the humber of runs executed. oY '
. ~ Proofzl . e
=4 - /

(a) §uppose° that more than k runs are execﬁfeé. Clearly,

| _;fter ;he k-=th run, the learned dopcepb é will be more
specific than the concept £ to be learned. If each

X output, -v, of'r-Ex%MPLE-, seen during the last run, is

_interpreted as a Bernoulli” trial, with "success" being

"v makes g 0", then M in&ependent and eguiprobable

&

' 239

o
Bernoulli trials have.been performed, and at most M-dM
\ . . '
successes have occurred {since this is not the 1last

run).: 1f P denoﬁes the probability that ;he noisy

output v of'rTFXAMPLEh makes g 0, then the probability

of success of each Bernoulli trial is ‘
Plsuccess] = Plno error by r-EXAMPLE)

- . + Plerror by r-EXAMPLE™] * P

‘ "which implies that ' S

‘P{success] > 1l-r. ‘
The above imply that the event T .///

. - /
"more than k runs are executed"

is equivalent to the eveqt
"the probability of success of each of the M trials
T E ~ (in the k-~th run) is at least l-r, and at most M-dM
| | successes have occurred",
Therefore, -

»

Plmore than k runs are executed] =

4 >

"= b (<M-aM; M, 3l-r). ’ (7.21)
Theorem 2.5 now implies that “{7

minganlb*(g(l-dln:'n. 3;-r)gp5’12 < MZ,(7-§2)

where T X
» ' ‘ - ’
, C(1- + ll'xh5 , St
l42 = -1 i Fi (:7. 23)
. ln(e(l-fi)_ (l_d) . oo
e(l-r) *+l-e ‘ :
provided of course that (2+34), or that a .
1 - {l+a) +g ;.—X < 'x !]) (7!24)
» ' I N

holds. But (7.20) is eguivalent to

- 240

’ (atx) (l=x-y) < 0, ‘
. “which is always true, since Theorem 7.7 implies that
M>0. Therefore, (7.24) 1is true, which implies that
(7.22) 1is true. "It can now be verified that M,=M, and
therefore‘k7.22) implies that
' b*(i(l-r)M; M, 3;-:) <ngL,
which, according to (7.21), proves the result.

(b) It can be easily verified that

L0 -1
-1 eh, (l~r) “»
‘ ln(e(l-‘r:i)+ 1n —) 1=
e(l-r) "4l-e/ *° ehs(l-r) “+l-e "
\ ' ' eh3 ‘) \d ,
‘ o= n ((er-r+l)(er+eh3-r+l) 3 7.25)
Hence
in(h,h.)
' 475 -
- M= @ ~ eh3 ‘) . (7.26)
((er-r+l)(er+eh3-r+1)
L4
Similar reaépning, now, to that of Theorem 7.3, proves
the result. -] ‘]
W .

~—

- Although Algorkthm 7.3, ‘as well as Algorithm 5.1, have
both r'and q3 upper-bounded, the iime'complexity analysis of
Algorithm 7.3 was m&ch easier than that of Algorithm 5.1.
+ That was so, beéause rmax_of Algorithm 7.3 does not depend
on t, as 'was the case with the [oax ©f Algorithm 5.1.

Joot
Therefore, r can appear as a parameter in the asymptotic
time complexity expression of Algorithm 7.3 (see also

. . e
discussion in the-beginning of Section.5.6). ' u

.

4

3
;
b4
ph
%‘:‘
g
4
%
o
%
¥
-

4 of (7.26) whi;h» tends to 0, when h§~§>hmax, or r=-=>r H

v

241

It is also worth mentioning that no simplification of
the time complexity in Theorem 7.9 1is possible, since

Theorem 7.7 and (7.25) imply that it is the very denominator

1 -

max

this information should not be-lost. .- . []
P ' '

v

Since both Algorithms 7.1 apd 7.3 learn a CNF. concept

from error-free PEs and.noisy NEs, a comparison of them is

in Place; Clearly, the advantage - of Algorithm 7.3 1is that

it has "a user—specified probability to stop after k runs. .
However, a piice has to be paid for that: Algorithi 7.1 is
applicable for any ertof rate of the NEs generator, whereas

Algorithm 7.3 is applicable for error rates of only up to
.37. ’) []

7.5. DNF Learning from Noisy PEs ~ Case II

)

The dual of Algorithm 7.3, performing DNF learning'frdm

*noisy PL and error-free NEs, is presented in this section.

This a]gorithm can also be viewed as an extension of

Rlgorith .2, in exactly the same way Algorithm 7.3 was‘

- . -
viewed as an exﬂiﬁsion of Algorithm 7.1. To be more

-

specific, an addi ioaal user-specified parameter “hs is

. introduced in Algorithm 732, bounding the propability that

more than k runsg will be executed. This parameter uniquely

defines the best choice for the threshold 4, which is now

iy e ey i e S HPEN I TR A R,

Parameters :

© 7 2. 8 <=- lnh,5

4 SQ y‘ == ln

242
assigned a particular value, instead of being .left as a
user-specified parameter, as was the case with Algorithm

7.2.)

The function performing the test of the learned DNF

concept‘ against the, PEs, is g1ven first, followed by the

algorithm's description and its’ theorems.

: boolean

. ¥ 4
: Return the véyue TRUE, if the frequency of the

Function d-conflict-max-g-r-PE-II :

[}

Task :

.-

- . seen noisy PEs of f, making'g 0/*, is greater

)

than d; otherwise return FALSE.
Assumptfoqs: g is in maximal n-DNF, for some l<n<t.
h,, hyr hgi set up in calling routine.
1. COUNT <-- 0 ‘ ‘ ‘
3. b <-- Inh, T . PN

a. x.<--uln(e(l-r)~? ") . '
e(l-r) " Lt4l-e/ -
-1

h (1—:)

\eh (1 r) +1- v

€. @ <o Y(1*a)b(l-x)

a¥b+x+y ‘ . . N
a+b+1 € SR SR
7. M <—= [;*Y‘.] B o . L ‘. ,

8. repeat M t1mes s

9, begin

N -

PP

T .S . el

243 : -

10. v <-- r~EXaMpLE' ,

11. Af p, (V)AL VDp;Eg [if g(v)¥1l]
12, Othen COUNT <== COUNT+l

13, end H -

14. é-conflictQmag-g-r-PE-II <--(——Tr—-

"Algorithm 7.4.

Task : Learn f from noisy PEs and error-free NEs.

COUNT d) ‘ -

Assumptions: (a) XjeesorX, are sufficient to express £.

(b) Error rate r of PEs generator is known.

Parameters : hl' h2' p3, h4, h5 > 1.

~

1. n.o¢==11 ‘ o [set n to 1] :

w :

"2; call Algorithm 4.2 with k<--n [learn n-DNF g from NEs]

-3, if n<t ' [if g not least specificf
4. zéhen . .
5. if M-conflict-max~g-r-PE-II[if g is over-specific]
6. then
7. begin
8.. ‘. n <-- n+l [increment nl
‘9 i -go to 2) jand try dgain]

10: end’

1

' , / N ' C
Theorem 7.10. Algorithm 7.4 is applicable if and only if

J.e_"' l ~ ° . '
0 <r < »rma’/(‘:-—-e-—:-i' - .3?75 (7.27)

-

holds for the error rate of the PEs genérator, and also

AN

.

i

/
/

244

1< *;1 «h = Al=r)(er+l-r)

i_\ . max er - (7.28)
5~ " holds for the user-specified éarametet hl.' Moreover,
§F ' r-->r . if and only if h__ -->1. ©(7.29)
g]\ | \ o \ /
¥ Proof: Same as in Theorem 7.7. ///f/f// S 'a -
« " . "
:;},‘ . ’ 21;
- Theorem 7.11. The output g of Algorithm 7.4 has the
. N ¥ . i
properties: 4 \
: ‘ (@ p| 2 p*(v) >0, o, h
r - g(v)rl ‘ "
' (b) | 2, D7 (v) > hyt <o,
g{v)#0 .

“(€) g is in maximal n-DNF, for some n<t.

/

Proof: The proofs of (a), (b), and (c), are the duals of N

those of '(b), (a), and (c) of Theorem 7.8. .

Theorem 7.12. If Algorithm.7.4 is applied to learn,a k-DNF
concept, thgn‘

_ (aslb[ﬁorg~thép k runs executed] < hs-l,

(b) The algorighm's worst—case time complexity is

T(t, h2' -h3' h4l h‘s) =

In(h,h
=0 t'n+l h 2

5)
" eh T
(er-:+1)(er+eh1h:+1)
where n is the number of runs executed.

no.
3t +h31nh4+

Vs

Proof: Same as in Theorem 7.9. ‘

) 245

X ' 7.6, ‘Discussion

A diffegent method for concept learning® from errgr-free
"PEs and noisy 'NEs could have been foiiowed; Instead of
'applYing Algorithm 7.1 or 7.2, i.e. 'instead of learping a
CNF frdm error-free PCs (by applying Algorithm 4.1) and
gesting it against noisy NEs, I;arn a DNF concept from noisy
NEs (by applying Algorithm 5.2) and test it ;gainét

error-free PLs.

However, this approach has not been considered fu:ther;
because it has two disadvantages. First, according to
Theorem.5.4, it restricts the range of pérmissible error
rates for the NEs generator. Second, According to Theorem
5.5(cy, it is NP-hard to determine whether a partial vector

is a PL of the learned concept.
9 ‘

' Similarly, the method adopted by Algorithmé 7.2—and
7.4, namely, that of learning a DNF_from error-free NEs (by
applying Algorithm 4.2) and testing it against noisy PEs, is
better than that of learning a CNF from noisy PEs, (by

applying Algorithm 5.1) and testing it against‘error-free

NES- e .

rs -

-

246

7.7. Summary

Four qélgorithdb,‘ performing ~str?ng two~sided-error
learning from. error-free PEs (NEs)(\and noisy Nks (PEs).,
without having any knowledge about the representability of
the concept to be learned, were presented in this chapter.

{ .
Algorithm 7.1 (7.2) is applicable for any error rate of
the NEs (PEs) generator, but its bo;st-case time complexity,
considered as a function of t, can g;ow up to e(t2t+ly,

depending on D~ (0¥) and 4. Also, the time required by its

output to determine whether a vector is a PE or a NE, can

grow up to e(tt+l) as well; that also depends on D~ (D+) and
d . , ’ t

On the other hand, Algorithm 7.3 {7.4) is applicable
for error rates of the NEs (PEs) generator, of on up to

.37, and its worst-case time complexity can also'grow up to

9(t2t+l). However, if the concept to be learned can be

written in k-CNF/k-DNF (with k itself being unknown), then

“the probability that the worst-case time complexity of

2k+1

Algorithm 7.3 (7.4) 'will be ©(t), as well as the

probability that the output of the algorithm can determine

1

in e(tk+) time whether a vector is a PE or a NE, can be

\

bounéed by a user-specified parameter, logarithmically -

affecting the algorithm's time domplexity. , B

o

~

w

:
:
{
f
4

i 247
]

Clearly, the problem of concept learning f£from one
error-free and one noisy example generator, studied in this

chapter, is more realistic th;ﬁ that of concept learning

)

from two error-free example generators; studied in the last

a

chapter. In addition, this spap;er's resulfs can also be
viewed as a preparation towards the solution of an even moré
realistic problem: that of concept lgarning from two noisy
eiample generators. This is the subject of the nexﬁ
chapter, and is also the 1last problem addressed in our

thESiS. . - ' ". '

a4
-

[

i

te, (:'.

i
R’

3
Rt -
B
%
g,
i
F:3
Siee
2zt
“
“
o
%,
g
+

algorithms is presented

© 248

/

CHAPTER 8 o

k~CONCEPT LEARNING; UNENOWN k;

TWO NOISY EXAMPLE GENERATORS

8.1. Iftroduction

1

. Having studied the problem of concept ieérning from PEs
-]

and NEs, without having any informatipn about the concept's

représentability,*‘ when . both example generators are

grror—free‘ (Chapter 6), as well as when only one of them is

noisy (Chapter 7), we will now study the same problem, when

‘both example generators are noisy:

‘The main idea used in the design of the algorithms of

Chépters 6 and 7, has also been used in the 'degign of .the
algorithms of

this chapter. Once more, the problem

~

. . '
addressed here, has not been considered elsewhere. [|

A CNF learning algorithm-is presented is Section 8.2.

Its dual algorithm, performing DNF 1earnin§, istpresénted in

Section’ 8.3. A second version of each of those two

in Sections 8.4. and 8.5. The

"7

chapter closes with a summary, in Section 8,6.

249 ') N

8.2. CNF Learning ~ fase I

» -

If both example generators are noisy, . and no
in;ormation about the representability of thé conceptuto be
learned is available, then Algorithm 7.1, learning: a CNF
concegt\ from; error-free PEs and noisy NEs, can be modified
to cope”with the additional problem of the noisy PEs:
instead of applying Algorithm 4.1 to learn a 1-CNF, 2-CNF,
etc., from error-ftée PEs, apply Algorithm 5.1 to leain a
1-CNF, i-CNF, etc., from noisy PEs. 1In both casei, a new
run is . going to be initidted if significant

overhgeneralization(is detected.

[

&

Here is where the similarities between Algorithm’ 7.1
and the new algorithm stoé. " First of all, according to
Theorem 5.2(c), &the output g of Algorithm 5.1 1is not

maximal, fact which, acecording to our very useful Theorem

3

3.3,'implies that it cannot be tested whether a NE makes the
learned g 1/%, i.e. whether a conflict (the way it has been
considered so far) has occurred. The only solution to this

problem is to test whether a NE makes g 1, instead of 1/%.

- -

The implication of such a test is that the new algorithm is

going to perform weak, rather than strong, two-sided-error

™

learning {see Definition 3.20). -

Obviously, moré& differences will exist between the new:

algorithm and Algorithm 7.1. They are inherited from

LN

-

——

250

- Algorithm 5.1, and they will all be statéd in the theorems .

accompanying the new -algorithm. ' []

The function performing the test of the 1learned CNF
against NEs, is .givep first. .Although its‘Bnly actual
difference-£POmAthe "d-c?nflict-max-g-r-NE—I" function is

its test for g(v) =1, 1nstead of g(v)#0, it-is fully stated
here, BQE\$he sake of completeness.

Function d'-conflict-g-r -N -1 : boolean

Task + .: Return the value TRUE, if the ftequeecy of the
| seen noisy NEs of f,, maklng g l, is greater

than d'; otherwise return FALSE.
Assumptions: g is in Inot necessarily maximal) n-CNF, for

some 1l<n<t.

Parameters : h3; h4, and d'; set up in calling routine.

\ .
v . o

1. COUNT <-- 0

. ——
‘ d' + lnh, \
2. repeat L = ‘ " times .
g » eh3(1-r)y - ' L.
ln 3 - a'
eh3(l-r } “+l-e

3. begin. ' Mot
4. vV <== f;-EXAMPLE- .
5. if s;(v)=1 vs;ég [if g(v)=1]
6. - then—-GOUNT <-- COUNT+l
7. end - ’ -

. B, d'-conflict-qrr'-NE-I <-= (55%¥£L > d') .

c ’ 251

Notice that the name- d',

‘instead gf the usual 4, is

useé‘for the threshold qf this function. This is done so,

because d 6 is the thréshold used by Algoriéhm 5.1, which is

. @alled by Algorithm 8.1, described below.” Keep in mind
. At

though, that 4 is not stated explicitely in thé algorithm's

description. * ‘ n
> -

Aigorithm 8.1, .

. e , \

Task - : Learn £ from noisy PEs and noisy‘NEs.

Assuﬁptions: (a) XyreensX, are sufficient to express f.

(b) .Error rates et
¥

2. caif‘Algorithﬁ 5.1

th k<--n and r<—-rt

generators are Kkn

Patémetgrs": hl' h2' h3, h4 > I,fand a' > 0.

1/ - -
an r of . PEs and NEs

B

own. Y
A

{set n to.1l]

iT;earn n-CNF g from PEs]

A

d

3. if n<t (if'g not‘least generall
4. then
‘ 5. if d'-conflidt—g;r'jNE—I [if‘g ig ovefbgenet§1]
,6:‘ . then | ' #
7. . : bégin
8. | S n <-=- n+l) [increment'nl-
9. ' a go to 2 {and try again]
. 10, end i o ‘l..
. i\fier, the conditions ‘under ;hich thig algor%ﬁbmﬁis

h

oo g 2
B e it al it A

252

applicable, areﬂgiven.

Theorem 8.1. 1klgotithm 8.1 is eppljcable if anq only if

" vheh +2-e)2+4(e-10-(eA +2Fe)'
0 <ttt - t : t (8.1)
max 2(e-1) o °
o - J

_ hrlds for® the error rate r’ of the PEs generator,
. . t .

+ 4., 4
°) (l-r’) (er +l~-r) .
1<hy <p . {8.2)
. ax . eAtr+,

holds for the user- spec1f1ed parameter hl' and also »

. , ehy(l-r ENk . =
0 <a'<1ln ——— (8.3)
. eh3(1-r) “+l-e

‘hgldé for the-user-sg;;ifiéd paraﬁetef'd':
8 .. .

?roef:'The call’of Algorithm 5.1 necessitates (8.1) and
(8.2) (see Theefem 5.1); since the concept to be learned may -
.have up to ¢t litetals per disjunct, the Ay of Theorem 5 1
has to be changed to At Also, the definition of L in the
'd'-conflict—g-r “-NE-I" function, necessitates (8. 3). .

. " ~ A~ : ' * o ‘
| fact that r+a; is a funct1on of K, zather than a
function of Ak (k is not known), has serious consequences,“

wﬁ&ch should nht be overlooked. According to Lemma 5.2, .
»3679 + 23954 - , s o
<r < .
ﬁt‘r-. max — At ' o
. . - ,
hglds. The problem is that At grows very .fast (for example,

A,=2, RA3=26, A4=80; etc.), and therefore, in practical

applicptxons, the maximum error rate of the PEs _ generator,

-

acceptable by Algorithm §%1, has to be very small. s

’

«««««

\
i
253 d .
L o . . -
" e . _j . ‘. LY '
, . The next theorem shows that, as already claimed in the
™ « beginning of this section, Algorithm 8.1 performs weak
. . . L AN >
two-sided~-error learning. T S
: Ed 2 I‘ ' . ' -,
‘:s—\‘.“ * . P ! * \, ’ : /
5 ~ Theorem _8.2. The output g of Algorithm 8.1 has the. Y
a . : . ,
‘properties: . i, :
By . a .
. (a) P Z D*(v) 2 by 1] < hz-'l. ' T U
‘;) ‘ g(V) 1 ., : . . o .'. !
% . Y - P . e '
£, (o) 2| 2 D-(v) 2 hy""| < hy, S . ' ",/\
;!;: . g (V) =] ¢ .' . ' 'b . ., o . N .
;f {c) g“\is in n-CNF, éor some n<t; g is 'not‘ necessarily in ‘
§;~ i . . l
T, " .« 7 maximal'n-CNF. ‘ *
; . s * 3
: Proof: . ’ : : Co R
4 ‘ ‘ (a) Since the output of ~Algorithm 8.1 is nothing but the‘__‘ ‘
L ' . output of Algdrithm 5 1 (called in lme 2), the proof is - ¥ v
‘ the same as that of Theo:em 5.2(a), if we get k<--n and .
. : consider only the last run. \
5 . " .
B (b) (i) Suppose that t runs are execuﬁ:ed (i.e. the . t=CNF
' learned -is not tested ajainst NCs). '
: According to Theorem 5.2(b) ,
A . | p| 2 0 (v > o] nfl (8.4) *
. S [1C7E [, :
: ' ‘holds. But
!
P Z D™ (v) >h | 2 oW >h](8.5)
, (g9 (v)=1 J g(v)¥0 _
, 0"\ is always true, as well as «
‘ . }
c 1R S P Z D (v)>h ﬂ <P z ,D'(v)>0](8.6))
_ : ' 7 lgeviyo g(v) ¥0

.

254

- e o) ‘ ®
The 'result now follows immediately from ¢8.4),

(8.5)., and (8.6).

‘(ii)‘Suéppse that less thdn t runs ’ére executed (i.e.
.the Kk-CNF. learned is successfully tested agéingt

_NEs).

4 ¢

The proof proceeds in exactly the’ same way as that

of Theorem"7.2(b)(ii), if v ié defined as‘thé set -.

g

of all NEs making the final output g of Algorithm’

B;l 1 (instead of L/?), and if 4' is substituted

“

R

for d. - o T - "

The asymptotic time 'complexity of Algorithm 8.1. is

given next. Keep in mind that, according to Lemmas 5.2 and
5.3, this is derived for the entire range of . permissible

.. values of h, and et

" Theorem 8.3. If c is a constant, with

c f.%, ~ , 3 L 8.7
. and ' ’ ‘
1 + [+] . .) . ' . \
r K, for all A, . K (8.8)

. {)
.is the error rate of the PLCs generator -acceptahble by
. Algorithm 8.1, and also

l » 4]
T ‘ (8.9)

h

<

1l
holds for the user-specified parameter hl' then the

worst-case time compleiity of Algorithm 8.1 is

T(t' hz, h3‘ h4) I‘

y
K
9
P
kA
i
"
7.
2
E
X8
#
A
L1
.3
1
Ll
3
AL
&
K3
e
PO
P

255 ’ ’ ok
. \ : N\
n+1 hlt 1n(h2h4) d'+lnh4
l-ech * -1 (8.10)
‘ eh3(l-p) ok
In|—) -3’)
. e eh3(1-r,) tl-e
| and -]
rs T(t, th h3' h4? =
' 2n+l
eaf et hlt 1n(h2h4)+ d'+lnh4 8.11)
= ' (1-ch) t"-c ehy(1=r") 7t ’
. e In — -a*
eh3(l-r) “+l~e .
where n is the number of runs executed; n can grow up to t.
. . - d o
. ﬂP;&of: According to Theorem 5.3, during the j-th run of
Algorithm 8.1, execution of line 2 takes
| N b 623 1n h b)
. . o - "
i 1 echl ‘ ’ K ‘ ",
, Qnd f. . | o -
- 3341) é .
hlp ln(hzhA) . ' . e
&1—ch1)t3~c ’ Co

time in the worst case. On the other hand, execution of)
line 5 of the "d'-conflict-g-r -NE-I" function takes at most
"e(tI*ly time, and therefore,.

execution of
Algorithm 8.1 takes

line 5 of

. d' + 1lnh CT
) t3+1 4

N eh3(].-::")'l
1n s} - a
- eh3(1-r) :

+l-e
' time in the worst case. The result now follows immediately.

. B3
f s

o B o i
s Vi L i i O R s S 5

A 4 e

Ay

»

‘256

8.3. DNF Learning - Case I_

Algorithm 8.1.: presented in the last section, is
applibabléffor aqy error rate of thé NEs genefetor, but onlf
‘for small error rates of the PEs generator. If it'gaépens
that the error rate of PEs dgenerator is high, but ~ that of
the: NEs ?eneratorqis gmall, then the dual of Algoriﬁhqu.l,

" learning a DNF ccncépé,'may be applicable. i}

Notice a difference here, between this pair. of dual
algoritﬁms'on the one hand, and the pairs of dual algorithms

of Chapter 6 on the _other hand. For the Chapter 6

S « to.
algorithmsy the user was supposed to choose arbitrarily the’

most suitable algorithm; for the Chapter 8 algorithms, the

error -rates of the example genérators will most probably be

the deciéive factor for this choise. n

The function perfiorming the tes£ of the learnédh DNF
against the PCs, is given first. This is the dual of the
'd'—conflict-g-rﬁ—NE4I"ﬁunétion. Also, its only actual
differenc; from the “d-conflict-maxwg-r-PE-I" function, is
that it tests for g(v)-O,.instead of g(v)¥l.

[

Function dt-conflict—g-rf—PE-I ‘s boolean

-

‘Task : Return the value TRUE, if the frequency of the
seen noisy PEs of £, making g 0, is greater
than d'; otherwise return FALSE.

Al

T

.
BN

PRz w;::{;w,g,ga;-

R

Parameters :

13

257] .o ';

1

. Assumptions: g§is in (not necessarily .maximal) n=DNF, for ' a .
; e ; ' '

some 1l<n<t.

By, h,, and @'; set-up in calling routine.

8

»

1. COUNT <=~ 0 . I o
da' + 1nh2
2. repeat L = o times . o
, fe ehl(l-r) .
N 1n T -1 - 4! ' : :)
ehl(l-r) “+l-e
. ’ 3
3. begin R 4,
4.. v <-- r"-pxamene’ o o
5. if p;(V)=0 vp,eg [if g(v)=0] .)
6. ' then COUNT <--. COUNT+1)
7.° end N)
' 8. d'-conflict-g-rt-pE-1 <-- (EQ%E!L> d') ‘ ' .. ‘

"
oo

Keep in mind again, that two thresholds are used in
Algorithm 8.2, but only one of them is stated explicitely in . . -
the algorithm's deécription below. The threshold d is set

’

up and used in Algorithm 5.2, when a DNF expression 'is

. learned from NEs; the threshold d' is user-defined, and it oo

is used in the 'd'-conflict-g—r+—PE-l' function, when ' the

learned DNF is tested against PEs. o ' n

»

The DNF leainiﬁg algorithm is stated next, followediﬁy

its theorenms.

S S

258

Algorithm 8.2.

Task :.Learn f from noisy PEs and noisy NEs.

Assumptions: (a) XyreeoeX, are sufficient to express f.

t
(b) Error rates r* and r of PEs and

~

generators are known.

‘Parameters : hys"hy, hyy h, > 1, and @' > 0.

l.n <=1 . [set n to 1)
2. call Algorithm 5.2

with k<=-=n and r<--r

holds for the user—speéified parameter h,, and also

NEs

{learn n~DNF g from NEs]

3

‘3. if n<t ' ’ "[if g not least specificl
4. then
s, if a'-cénflict-g-z+-p3-1 [if g is over;specific]
. 6. then '
7. . | begin . .
8. ' no<== n+l {increment n)
9. . ' go to 2 R . land try again]
10. ' end a | u
Tpeo;ém 8.4. Algorithm 8.2 is applicable if and only if
i _ . Ylearz-e)Zeate-1)- (eh r2-e) |
-‘ , OLf.: < LAk ™ Tle-1) (8.12) .
hblds f9r the error rate r of the NEs generator,
1< hy<n = ddzr)lerdlorT) (8.13%)
X eAtr

“ !
L. .
N

259

eh, (1- " lii-e

holds for the user-specified parametef ar.

Proof: Theorem 5.4 necessitates (8.12) -and (8.13). The

number, L, of PEs required per run, necessitates (8.14). @&
N

Theorem 8.5. The output g of Algorithm 8.2 has the

properties:

(a) P Z pT (v) lhl“}] < h'-l_.
'1g(v)=0 N

(by P Z D (V) ':*"h‘ “1]\“ h,” L.
[g(v)#o SN R T

t

(¢) g is in n-DNF, for some n<t; g is not necessarily in

maximal n-DNF.

Proof: The proofs of "(a), (b), and (c) are the duals oOf

those of (b), (a), and (c) of Theorem 8.2. \ []

Theorem 8.6. If c is-a constant, with.

c < .é., : ~ (8.15)
and ‘ . ‘
- < '
r A for all A, ~ (8.16)

is the error rate of the NEs generator acceptable by

Algorithm 8.2, and also

1

. hy < o3 (8.17)

3
, holés for the user-specified parametet“\h3, > then the

o

M

worst-case time complexity of Algorithm 8.3 is

'
<

ehl(l—r+)-l' : .
0 <d' <ln T | (8.24)

Hadt

L 260
\ - .

' ’ \f/‘
.\T(t' hl' hz' h4) :' . ,

oY ‘ . n N .

‘ Y (R R Y e it LT ' Tnh (8.18)
0 . ' l-ech +, -1)
%:" i 1n - "i’ _1 "'d'

% . f - eh, (1€F") " " 41-e

% and | , i T l :
: T(t, hys hy, hy) =

¢ B RSt T a'+1nh, -
i =q [+ 2 8.19)
» n + =1

%, (1-ch3)t ~-C ehl(l—r)

% . 1n e -q'

Y i ehl(l-r) Ttl-e

Py ' \

{ where n is the number of

runs executed; n can grow up to t. °

.h‘

Proof: As in Theorem 8.3.

v
2

N .

8.4. CNF Learning - Case II

A

Y

Algorithm 8.1. has the same drawback which Algorithm

7.1 had: it may require up to t runs, and, moreover, if -a

»
“tr

k-CNF concept is to be learned (k itself being unknown),
. then the probability that more than k runs will Le executed
o R ‘can grow up to 1, That -is so, because d' has been left ds a
:user-specified parameter; it depend; on the unknown D, 'and

Ehe:efore its optimal value cannot be found. .

The problem just desc:ibéd, will be solved by using the

method introduced in Chapter.7. That is, the minimum number

of NEs whlch, in addition of satisfying

[

PN
e

» N te

vt i ottt SHEFIFEPER R o

J T T Sl da

PN

; , 261

‘P[Z D" (v) :h;] .‘.‘?4-1' B

© (8.20)

g(v)=1
“i.e. ‘“proterty (b) of Theorem 8.2, will also satisfy
P(more than k runs executed] < hs-l.' (8.21)
. for some h5>;, will be determined.
It has been shown that
! : . . @ +1nh,
- =1
g . eh3(1—r) .]
1n — - a -
eh3(1-r) T+l-e - '
is the nminimum number of NEs, satisfying (8.20). It can

r

alsgo. been shown (for a complete prbpf see Theorgﬁ 8.9(a))
‘that
o1

hg(h!—l))

{1-a') + ln(.
Lt - Y
- '_1
; 1n(=) - (1-a")
(exl-r')-1+l—e)

is the minimum number of NEs satisfying (8.21).

»

The minimam
" number of NEs satisfying both - (8.20) and (8.21), can now be

easily found ' (see derivation of M in Subsection 5.5.1, or

derivat;on of M is Section 7.4): find the 4°' sa;isfying-"the

L=L', and substitute it to L, to obtain the answer. |

»

The new function, testing the learned CNF against a

sufficient number of NEs, so that both (8.§0) and (8.21) are

satisfied, is givgn next.

‘
B .

§ e W T R -

AN : -

262 ~-

Function d'-conflict-g-r -NE-II : boolean . p

*

-Pask ",: Return the value TRUE, if the frequency df the

.

, " seen noisy NEs of f, making g 1, is greater

‘than d'; otherwise return FALSE, _

Assumptions: g is in (not'necéssariiy maximal) n-CNF,

- for
some l<n<t.

. - - : /
Parameters : 3, h4, hS' set up in calling_routlne.

1. COUNT <-- 0 = C) .

- (hi(h,-1)
L 2.8 <=~ ln(—%—:ﬁ-——)
’ ' 4 7S)
3- b <""' lnh4

'4: X <== Ln(e(léf_)-l)

e(l-r") Le1-e
| e’h3(1-x')"1 . o o _
S- y oo ln _ "'l] A 4
eh (l—r) “Hl-e) . ‘ .
: (1+a)+b(;-g]? ' | . L
6. @' a+b+x+y - ’ o

a+b+1 . T
7 ﬁw-] e |

‘8. repeat M times

9. begin
10. v <-- r"~EXAMPLE~
11, . if sil(v')al Q's'ieg _ g g(v)=1]
12. then COUNT <-- COUNT+1 .
13, end

14. d'fconflict-g-r--NE;II K== (EE%?EE > d') ” B |

‘l.'

263

~

If the above function is used to test the learned CNF

concept for possible over-generalization, then the following
algorithm is obtained.

1

X Algorithm 8.3.

»
Task : Learn £ from noisy PEs and noisy NCs.

‘Assumptions: (a) Xjrese X, are sufficient to express f._

U < R S (b). Exror rates r* and £~ of PEs ané NEs

f@. , generaiors are known.
' Parameters, & hy, hy, hy, hyy hg > 1. "
1o n <=1 [sét ﬁ to 1]
'2. call Algorithm 5.1 . ' | ’
,: ' with k<--n and ré—-r+i ", [learn n~CﬁF g -from PEs)
. 3. 1if n<t .: ‘ "tif g not least general]
ot . 4. theﬁ '
5. if d'-conflict-g-r ~NE-1I [if’g is over-général]
6. then Lo
7. begin |
8. n <-J n+l) y " lincrement n]
9. .go.to 2 | - {and try again])

10. N end ' ' []

. Although the description of Algorithm 8.3 may look the
same as that of - Algorithm 8.1, except for line 5, the

properties of thé two algorithms are different.

f

"
L)

e’

£

et e W AR,

@

- AR aw- {-....’ ‘T:d: A,‘,(-w.' g “-\{}.—\:
SRR Ul e R R S T

e

264

First of all, the next theorem shows that the error

rates of both examplé generators are upper-bounded. As it

is also the case with Algorithm 8.1, the error rate of the

PEs generator in inversely proportional to At; that means

that for practical applications, it is too small. On - the

other hand, the error rate of the NEs generatof can be
considerably high.

: K .
: , &
Theorem 8.7. Algo;ithm 8.3 is applicable if and only if
and ’
0<r” <r =Y¥E1l= 3775 ‘ (8.23)

[

" hold for the error rates r' and r~ of the PEs and NEs

generators, respectively, and also

v L+ + P -
- (1-eT) ter 41Ty ,
1 <hy «hy o _22 2, (8.24)
L. el -
, t
as well as ©t
. L =rT)(erT+1-r7) = ,
l’ < h3 < ha.max — ’ ‘8'25) .
er .
and .
hg'< hy , . (8.26)

hold for the user-specified parameters hl’ h3, h4, and hS‘

Proof: (8.22) and (8.24) are necessary preconditions for the

' s
applicability of Algorithm 5.1 (see Theorem 5.1). Aalso, the

definition of M, in the “d‘-conflict—g—r;-NE-II" function,

PPN AR R

R - -

265 . . ‘

a N \

s

implies, .on the one hand, that the denominator of M hés' to
be positi;e, which, in turn implies that (8.23) and (8.25)
must hold@ (see derivation of (7.11) and (7.12) from (7.14)), 5$

and on the other. hand, that

ho(h,-1 .
‘___5(_1_) > o . ¢ . v
hd-hs - - . ’ -

must be true,'which necessitates (8.26).

The definitipn of M has one more implication, namely that

: hg(h,-1)
. 1lnh, + Inf————}+1 >0
by h,-he
must hold, or gqqivéléngly; that

ehghg (h,-1)

> 1
hy=hg

must hold. But the last inequality is equivalent to

x

' h : .
hs > ohn (h4~1 ¥ :

which is always true; since it is covered by the condition

hg>1l. That is so because ‘ - -

4 : ‘
- < 1 . -
eh4. (h4—1)+1- ‘ ¢

¢

is equivalent to ,
. .
?h4‘-(efl)h4+l >0,
which, according to what was stated

true- for all h4>1. Therefore,

h, and hg shouidﬂbe<impo :
Since the numérator of M is” always positive, it follows that '~

-~

the ranges of the petmissibie values of the problem's g

o

.) . ‘
parameters cannot be augmented by considering \the case in -

v R

.o .
which both the numerator and the denominator ~aré\negative. \
i .

- The proof néw of the theorem is complete. \ a
A " - v ‘ "\

:) \
- 9The next theorem shows that Algorithm 8.3 performs weak

-

z ° twe-sided-error léarning. S »
A . ‘

N, ""\ Py . ' ’ . ' . .0
‘Theorem , 8.8. The output g of Algorithm 8.3 has the

properties: - ' .

I oot
‘ -1 -1 ‘ ‘) -
* P Z p* (v) >h h, ~. a : »
. } \\ u# [(V)fl . 1]—' 2 - ' ‘

\ (b) p[gZ D™ (v) >h3 1];_1‘4—1/- I : | o ’ k

(vi=1 '

(e) g is in n-CNF, for some n<t; g 'is not necessarily in

. by . B
Te— L‘ 'magimal n-CNF. " . ‘ ‘e
4 /} b Y ' - . . : . ¢
. : N 1 N e . .
. s P
Proof: < -, \ ’ : : ' : *" .
« (a) Same as in ‘eorem 8.2(a). . ’ ’ ’ “"‘s
' oy 7 . (b (1) uppose .that t runs are executed (i.e. t-CNF ! ,-; -
. . + . - - . v . " l@
7 . . learned is not tested against NEs).
a ~ . ’ -8 N . R »
) R U The ?roof is identical to that “of Theorem 4
. L] ' 0
‘) e 8-2 b 1 ["
N, - - (b) (). < . _
P . (ii) Suppose that less than t runs are executed (i.e.
s . “ j - t the k-CNF leyed 1s succesfully tested against
> - . o * / . ‘ : ,
) ’ “‘. - NES)~ ‘ : ’ + \ N
- "\ s . N . : i
. . ', If éach output, v, of r -DX¥AMPLE , seen during-the
; o ' -
¢ o, last run, is mterpz@ted as a Bernoulli trial, with
) X t' . o success Semg "y makes g 1", then B (defined in - - K
."* “ . Y. " " 5 ‘ s . . . N s . ' .f'x . 1 N
S, . , » ,) . .
»—-: JQ‘:' [M -~) -”~ ! - 1 ' ' -) - b .
o f \ R . . ’ -
" “‘ 3 ? , t v . , ’ 3
Pl : N E ‘ ! - i -
, » /“.. IS A \
: s £ . : :
i - . > '
» - - L

267

{ N IV
function "d'-conflict-g-r -NE-11%) independent and
equiprobable Bernoulli trials have been performed,

each with probability of success at least

L

~ h3'1(1—r-)‘ (see (7.3)%, and at most d'M_succééses

have occurred. Therefore, ‘ S0
' P[ZD(v)>h31]_

g(v)=1

ce <b (5¢'M, My 2h; “Liger 0 L (s2n

is trué. Theorem 2. 5, now, implies that

. min neNlb (<d n; n, >h (l-r\))<h4 §<M1(8 28)

where,

' A
a' + lnh4

eh3(1-:’)'l
1nf — p— < |- 4
eh3(l-r) “+l-e

provided of course that (2.34), or that
y(l+a)+b (1-x)

a+b+x +y <y) . (B'm-

holds. But Theorem 8.7 implies that (8.30) is true
(see derivation of (7.20)), and therefore (8.28) is
true, as well. BAccording now to the definition of

d', +(8.29) implies that Ml-M, and hence (8,28)

y implies
' b (<a M; M, 2hy (1 D
‘ i which, together Wlth'(8.27), prove that result.
(c) same as in Theorem 8.2(c). ‘ « B

/ * '

Z o
%he}{ole of the user-specified parameter h5, as well as

" the® time complexity of Algorithm 8.3, are giyen next. Keep

’Il = M - o, (8.29)

lew'yw
Ln‘.'cf.} S

268

$

in mind, once more, that in spite of the conditions (8.31),
(8.32), and (8.33), the asymptotic time complexity
expression for Algorithm 8.3, is given for thé entire range

of the permissible values of r' and hy. | ; o

. Theorem 8.9. 1If Algorithm 8.3 is applied‘to learn a k-CNF

.

concept, then

(a) Plmore than k runs executed] < hs'l.

(b) If ¢ is a constanf, with .

c<x, (8.31)
and
[Teo. s . .
rf «2S for all A, . ' (8.32),
t - '

‘ is an error rate of the PEs generator, acceptable by

Algorithm 8.3, and also - . '

i~

1 ‘ \ .
hy < == (8.33)

holds for the user-specified parameter hl, then the

worst-case time complexity of the algorithm is

. T(t, hz, hq) =
' | n . l*hws) ')
F N\ of gt lat Hinthohg) W .
¢ 1-ech, / eh, —
,ln(a— y =)
. (er -r +1) (er +eh3-r +1)
and \ . / : ‘
T(t, h‘21 h4) = P . .
] P' *
’ ”~
o
’g/ ¥ rd -
P] L4 4

Y
L MU

-

e LA TR

et g ot

eTame e aAt mees T Trewe

o fenn

AT

14)
LIS N, Tm‘
r R R Er iy s S S W X,
i s
) A I AP i R L S TR S PR U S

.
B

i : . . 269

(he)
' 2n+1 1n - '
T : (I-ch t-c e, . ‘
) 1 ln(S 3_ _)
{(exr =-r +1) (er +eh3-r +1)

where n is the number of runs executed.
b * .

<

Ptoofz' ' . 9

- . (a) Suppose that exactly k runs ére executed, and let 'V be

"l

1. 1f each output. v, of r ~EXAMPLE , seen during the
last (k-th) run, is interpreted as.a Bernoulli trial,
with "successl. being ;g makes é 1", then M independent
and quigrbbable- Bernoulli trials have been performed,

. " v .
and -at most d'M successes haye occurred (since- thfs Iis

il

the last run). Hence-

"Plk runs executed] =

‘= P[<d'M successes | V=g] * P[V=p]
+ Pl<d'M succeeses | vég) * Plveg)

holds, which implies that

P[k runs executed] >

the set of an making the final output of Algorxthm 8. 37

> P[<d'M successes | v=g] * p[V=g] °(8.34)

holés. Since

P

9

(v)=1

(v) ¥0

2. (v > 0] _<_‘P[2. 0w >
. - B 9

is true, Theorem 5.2(b) implies that

P

(&3

Zn(v)>o

g (v) =1

QE,‘eguivelently,

] < h ln

)

B

fpiwsr

L g

-1, (8.35)

P[V=g] > 1-h

4
Clearly, also, when V=@ (i.e. when g is more specific

than £f), the probébility of success of each Bernohlli
PR o ‘trial is at most . Therefore, according to (8.35),
,@ (8.34) can be rewritten as
‘ Plk runs(executeﬁ] > b*(ﬁﬂ‘M;~M, <r‘)*(1-h4-1)
‘or, eguivalently, ,
L P{k runs executed]zp*(>M-d'M;M,3}-i—)*(1-h4-1)
{< which is equivalent to

P[k runs executed] >

> (1 - b*(gm—d'u; M, 3(1-:')})*(1—h4'%)(8.36)

Theorem 2.5, now, implies that .
. 1 ,

. . o 1-h.~ o
min{neN |b (gp-d'n;n,z}—r)il’ =3 |< My (8.37)
i . 1"h4 . .
where
- ‘ : ho(b,-1))
4 5 .
‘ . b12 = " e -l i (8.38)
£ : . ln(etl-r }) - (1-d") .
. T "' e(l-r) “+l-e)
provided of course that (2.34), or that s
| 1 - y(l+a)+b(1-x) < x - .

. : atb+x+y

holds. But this is equivalent to '

: (a+x)%l-x-yf‘< o,
which, accoréing to Theorem 8.7, 1is always true.
.?herefoze, (8.37) is true, and since it can'be verifiedﬁ
that M, (in (8.38)) is equal to M (the number of NEs
requlxed by the élgorifhm), (8.37) implies that,

+
‘e

H

271

"1-h, "1 ’
B - . 5 .
: b (5M-a-n;~m,.3;-:) < 1-—2—, (8.39)
& 4 ., 1-h,
¥ Co _)
% : ‘ From (8.36), now, and from (8,39), it can be concluded
¥ that ‘

T o ? Plk runs executed] > l-hs-l,

: ’ which implies that

P[k or more runs executed] 2 l-hs'l,

and the result follows.
,t ' ’ ' (b) According to Theorem 5.3, during the j-th run of

Algorithm 8.3\ execution of line 2 takes ‘
- - h.t23*11n (hoh,) ‘ “
o 1 . 2 4
1-ech

1

and

33+1
o1t "in(hoh)

! ?I—chl)tj—c
time in ‘the worst case. Also, the established (7.25)
implies that the "d'-conflict-g-r =NE-II™ function takes
- o345)
. h,~hg
"8 tJ+1 4 5

eh3
)
(er -r +1) (er +eh3-r +1)

time in the worst case. The result now follows

: . . immediately. . - ’ o N n

8.5. DNF Learning -~ Case II

If the error rate of the NEs generaéor is very small,
whereas that of the PEs generator is higher (up to .37),
then the dual of Algorithm 8.3 may be applicable. This
algorithm has the advantage, over Algorithm 8;2, that, if a
k-DNF concept 1is to .be learned (k itself béing unknown).,
then the probability that more than k runs will be exeé;ted,
is upper-bounded by a user-specified parameter. ,]

N :
The funbtion, performing‘ the test of the DNF, learnéd

. from NEs, against the PEs, is given first.

v

Function d'—conflict-g-r+-PE-II * boolean "
Task : Return the value TRUE, if the freguency of the

seen noisy PLs of £, making g'O, is greater
than d'; otherwise return FALSE.

Assumptions: ¢ is in (not necessarily maximal) n-DNF, for
some l<nc<t.

_ Parameters : hl' h2, hs; set up in calling routine'

1. COUNT <-- 0

. he (ho-1)
12, @ <= ln(,g _i)
] 2P

.

3. b <=~ lnh2

e(1-rt) !) ‘.
e(l-rH) " ti1-e
» ™~

273

, eh, (1-cH) 71
5. y <=- 1n T o1
, ehl(l-r)} T4l-e »

__ y(1+a)+b (1-x) !
6. df < atbFx Yy y

- { : .
A . Te M <=~ Fa_tb_ﬂ'_ . . . N

x+y-1

8. repeat M times

9. begin
10. v <o rt-ExampLE® ‘
1. 4f£p,(")=0 vpjes e gweny o
12, then COUNT <-- COUNT+l ‘
13. ‘end \
14. Q';conflict—g-r+-PE-II K== (5&%%{2 > d') a

Y

A

The dual of Algorithm 8.3, followed by its theofems, is

¢

stated next.

'Al;prithm 8.4.

Task @ : Learn f from noisy PEs and noisy NEs.
. H ‘
Assumptions: (a) XyreeosX, are sufficient ‘to express f.
(b) Error rates r' and r~ of PEs and NCs

generators are known.

¢
.
garametegs,f hl, hz, h3, h4, h5 > 1.
- l. .n <--'1 [set n to 1) '
w24z call Algorithm 5,2
with k<==n and r<e=-r- [learn n-DNF g from NEs]

3. if n<t . {if g not least specific]

5

AR

©

4. . then
B , 5, if d‘-conflictjqwrffPE—II [if g is over-specific]
jg' ' 6. then . ‘ i;y' L .
ﬁ : 7. ~ begin '
B 8. n <= ontl " lincrement n]
> 9, | go polz;‘ﬁ : 'fl‘ land try again)
10, ° end -IM'Y'_ o : .

«

Theorem 8.10. Algorithm 8.4 is applicable ifiand only if

_ _ ‘I(eAt+2—e)2+4(e-l);..(el‘xt+2-e) \
0 <r < Fma'x = ‘ . 3(e<1) ~(8.40)
and
+ + = ‘J—e-—l ~ .
0 <r <z 0 o1 3775 (8.4;)

hold for the error fates r. and r+ of the NEs and fEs

generators, respectively, and also ~
© . (=rT)(er 41-r") e
1 < hy<hy .o 3 . (8.42)
eA. r i
- t |‘
as well as o
’ + + . g
(1-r") (er +1-r’)
1< h1 < hl,max ' \ (8.43)
er
and)
\
1< h5 < h2 (8.44)
hold for the user-specified parameters hl' h2, h3, and hs.
e’ Proof: Theorem 5.4 necessitates (8.40) and (8.42). The

number, M, df PEs required per run, necessitates (8.41),

(8.43), and (8.44). ‘ C =

£
A
»
5
R
kS
3
¢
¥
£

275

-

Theorem 8.11., The -ouﬁbut g of Algorithm 8.4 has the

properties:
(a) P 2: pt(v) > hl-] < hz—l. .
., lgtv)=0
) 2| 2, 07w _>_h3'1] < n,h
g(v)#0 =~

(¢) ¢ is in n-DNF, for some n<t; g is not necessar.ily in
~ ‘ 1 : 4

maximal n-DNF.

Proof: The proofs of (a), (b), and gc), are the duals of

those of '(b), (a), and (c), &f Theorem 8.8. n

Thoerem 8.12. If Algorithm 8.4 is applied to learn a K-DNF ;)

concept, then .

-

(a) P[more than k runs executed] < hs_l.
A
(b) 1f ¢ is a constant, with ‘
c<l, | . (8. 45)
and
- .. i a
r R for all A, (8.46)
\

3

is an error rate of the NEs generator, accéptablé by

Algoriihm 8.4, and also

1 .
‘h3 <=z (8.47)

holds for the user-specified paraméter h3, then the
worst-case time complexity of the algorithm is

T(t' hzqhq) = !

7]
/

o

276

L h
hot"+1n(h.h,) ln(h ?h‘)‘
= of¢n+1)3 24’ 275
- l-ech3 ehl
‘ 1n T T T
' (er -r +1) (er +eh1—r +1)
) — .
and : \
T(t, hy, h,) =)
h,h .
‘ 2n+l ln(— “){
. gfea|Pat tntyhy) h,=hg)Y
: (I-chj) tec eh, |
' In + 4 ¥ .
. | (er =-r +1) (er +ehl-r +1)

where n is the number of runs executed.

Proof;
(a) The dual of that of Theorem 8.9(a).

(b) Same as in Theorem 8.9(b). . "

Before summarizing this chaptef's results, let's make
one remark. Two other algogithms, learning either a CNF or
a DNF, could have been easily constructed{ one of them would
be the combination of Algorithms 8.1 and 8.2, and the other
one the combination of Algorithms 8.3 and 8.4. Hd@éver, in
order for those two algorithms to be applicable, both
example genarators should have very small (inverserly
proportional to At) ,error rates. lfhag would make the
algorithﬂs‘pot practical, and that's why- they were not

stated in this chapter. . o s

277 x

8.6, Summary

Four élgorithms, performing ‘weak two-sided-error
learning, from noisy PEs énd,NEs, were presented in this
; (chapter.)
N . ’ Y
Algorithm 8.1 (8.2) is applicable for;any error rate of
L ‘ . ﬁhe NEs (PLs) genérator, and for very small error rates ‘of

the PEs (NLs) generator. 1Its running time, considered as a

- function of t, is at most 6(t2t+1). _The time, also, .

reguired by its output to determine whether a vector is a PE

N ‘
) (NE) is at most e(tt+l); determining whether a vector 1is a

NE (PE),' is NP-hard.

On the other hand, Algorithm 8.3 (8.4) is applicable

when tﬁe errdr fate of the NLs (PEs) generator is less than

.37, and when the error rates of the PLs (NES) generatof is

very small, However, if the concept to be learned can be

- written in k-CNF (k-DNF), with k itself being unknown, then

‘\ . the probability that the algorithm's running time will be at

2k+l), as well as 'the. probability that the

k+1

most e(t
algorithm's output can defermine in at most #8(t) time
whéther a vector is a PL (NE), can be bounded by ‘ €
user-specified parameter; determining whether a vector is a

"NE (PE) is still NP-hard. . ‘ u

The brobl&m solved in this chapter completed the study,

w e

Lt

;AR T

ML

vl

278

” PR

started in Chapter 6, of concept learning from PEs and NEs,

in the absence of information about the concept's

tebresentability. That was the most realistic problem

addressed .in our thesis. Problems to be considered for

future xesearch‘are given in the next chapter.

P ‘ ' .
. . -
“
‘
.
: .
0 A}
.
o
'
' '
- ’
» 3
.
- B
3
. \
5 -
. ~
-
4
f
] ’ . A
° '
' R "
N v -
\ 1
"\ N .
N
N » N
4 I
}
»
.
B
’ v -
-
1} LA
‘
~
.
'
/ Q
. .
- N -
N .
°
- Ll
/ .
W - .
\ . .
‘ ’ .
. t
. -
k=4 ‘ A
\
w .
/
v

I

CONCLUSIOﬁ

,9'1:‘ ‘Introduction Lor

¥
e ' & n

The most important results of our work, derdved in

Chapters ‘2 to B of this thesis, are briefly sketched "in

v

" > |4 2
- Section 9.2, The places in which improvements can be made, *
as well as the weaknesses of some of our results are stated

in Section 9.3. 'A few propgsals for further research are’

©
LAY ,

~also’'given in that section,) A : N R

-

2

'
Py 4 o

. , .
v 9.2. Thesis Results =

’ My

]

) Ae

L. G. Validnt's approach for approximate, instead of:
. o - :

exact, learning was adoptedain our thesis, where we studied.

4

several variations of the problém of boolean boncept¢ .

learning from examples. ’ S
-, \

o .
Valiant's idﬁa is important not because it 1led to

"algorithms which can learn an approximation of. a g&ﬁéept
" g s N
(any algorithm not shown all PEs/NEs caﬁ@ﬂt be guaranteed-

et

ol
e

B

R e

Ler 41 e AR RIS

280

1

-

. but to lgarn an approximation), ‘but because it allowed the

estimation of the closeness of the earned approximation.

. [
Notice that this - closeness. cannot.\be measured except in

terms of a "true" concept (denoted, by £\in our thesis), a
i . H

A .
notion which had not received much attention - before

Valiant's work.

Valiant was also able to find that the classes of k-CNF
| and k-DNF expressions are approximately lezthab1e~ from

error-free exaﬁples in bdlynomial tihe, provided that “the

value of k is known a priori. His a¥gorithms have been made
more flexible in our thesis (Chapter 4), and their time

complexities have been improved by at least 20%.

'

Valiant was also able to show that even if the examples

]

. are hoisy, the' k-CNF and’ k-DNF‘ expressions; are still
J approximately learnable in palynomial time, provided that
the value of k is known, and that-"the maximum noise, -which

. Y,
cannot be too ‘high, is kngwn, as .well.

His learning

N algorithms- have been modified here (Chabter 55, 56 thaeithe;\
are, faster. (their wearst-case time complexity is e(t2k+ly
compargd to the B(£2k+1ln(tk)) of Valjant's), they are more

flexible, and they are also applicable in more noisy

. i - b

environments, .

Y o
Next, the same problem of concept learning from
examples was® ¥xamineé, but.in .thé absence of the knowledge
| v A G S RN
. ;o \\L//
) .

2 ,

. ‘ R ~

) 281 L

% . .

-

of k. -Our algorithms (Chapter 6), per forming 'apﬁrdximate
concept learningd from error-free examples, when 'k is not

known, are in the woﬁ‘F case asymptotically as good as those

per forming the same task when k is known.
.) "
¥ Il ~,
- i

Oon the other hand, our algerithms (Qhapters 7 and 8)

v , . . ;
performing approximate concept learning.from noisy examples,

when k is not_known, may be in the worst case asymptotically

wofse than those performing the same task when k is known,

but the probability' of that héppehing can be bounded by a

user-specified parameter. e ‘ [

s

9.3, Further Research “

Several suggestions towards either the improvement of.

our thesis' results, or the consideration of new problems

.are given in this section.

Y

L}

. i
First Jof all, it should be clear that the value of

. L(hl, hy, ;E) "is bf %remendous .impggt‘anc’g for t'he time

compléxity of our algorithms. Therefq e, the questfonD of

whether the upper bound of Lo(hlf hz' k) can be tightened

deserves further consideration.
’ Y

. .
An unpleasant situation was epcountered towards the end

of our thesis (Chapter 8). If the value of k in not known,

. AT W e T P e

P e Ao e

A

282

and both example generators are noisy, then their noise has
to be very low in order for our algorithms to be applicable.
This 1is a serious problem, and it needs further
investigation.

A satiéfactory solution of this problem will also allow

the design -of -practical algorithms performing multiple
‘concept learning (or concept aiscrimination), that is,

learn%ng s8veral concepts, given a set of examples for each

of them. "If concepts fl,fz,...,fn are ‘to be learned, then
each boncept fi can be learned by applyinq. our thesis;
algorithms, if the examples of f. are considerec as PEs, and
the examples of fl"“'fi-l'fi+l""’fn as NEs. Definitely,
if all lexamble ‘generators are error-free, then the
algorithms of Chapter 6 can be applied to perform céncept
discrimination. However, if m&re than oﬁe of the example

’

generators are noisy, then’ their error rates have to be very

low. .

Another problem to be considered is that of boolean
concept learning, when the variables expressing the concept
are noé; nown. example, if ‘the first PE is Elnxz, the

second PE is e,=tx'w, etc., is it possible, and how, to

*learn an approximation? N e

Finally, it will be nice if our thesis' results can be

(partially) extended to include first order predicate logic;

-

o

TR TR AT R R

" s

et BT

o P TR sz,
.

_-h"'" -

283 o |)
\ ‘

as already mentioned in Chapter 1, the propositional logic
used is rather a weak knowledge 'representation. L. G.

Valiant ([VALIA85]) made some attempts in this direction. B
. . . ’ o

A . ~9.4. Summary
The first part (Chapters ‘4 and 5) of our thesis
improved consider&bly Vghiﬁgt's answer to the problem of
qonéept learn}ng from examples. The secqﬂé pért {Chapters
6, 7, and 8) of.our ;hesis 1éd to very satisfactory reéults;
although the learning probléms examined there had not been@

considered before. As it is always the case, there is still

plenty of room for improvements. - . »

ap?

et arn L e

BT AT T

w’s
872

r-
-
e s 2 T T S e e

S SN P

-

* e

p) . 284

REFERENCES

‘e

[BAASE78] Baase, S. Computer aAlgorithms: Introduction to

»

[BAFEI81) Barr, .A., and Feigenbaum, ég.A., eds. The

/’

Desicn and Analysis. Addison-Wesley, Reading, MA, 1978.

Handbook of Artificial Intelligence, vol. I.

W. Kaufmann, Los Altos, CA, 1981.

[CAMIMB3] Carbonell, J. G., Michaléki, R. S., and Mitchell,

T. M. "An Overview of Machine Learning”. In

-

o

R. S. Michalski, J. G. Carbonel&, and T. M. Mitchell,

eds., Machine Learning: An A

Approach. Tioga, Palo Alto, CA, 198B3.

tificial Intelligénce

[COCKBB5] Cockburn, B. F. "Inductive Concept ZLearning

-Using the Artificial Infelligence Approach”. Master's

Essay. Reéearch Report CS-85-12, Department of Computer

‘Science, University of Waterloo, May 1985.
!
| BN A

[COPEiéé] ‘then, P. R., and Feigenbaum, E. A., eds. The

* -
Handbook of "\Art{Eigiél -Intelligence,

vol . ﬁ' w‘
: LI ‘\“-"—-zr-,\ R ’
Kau§mann, Los Al;:;>4ﬁ£/)982. . v,

{DEJON83] DeJong, G. "Acquiring Schelmata Thréugh

Understanding and‘ Generalizing Plans".

the Eigh;h International Joint Conference

Proceedings of

on Artificial

Sy
<

<&

285
€

.

»

-

pp. $62-464.

- [DIMIC83] Dietterich} T. G., gnd» Michalski, R. S. "A

\

Comparativé Review of Selected Methods for Learning from

. Examples™. In R. S. Michalski, J. G. Carbonell, and

™

T. M. Mitchell, eqs.,. Machine Learning:)An Artificial

N _ N
Intelligence Approach. Tibga, Palo Alto, CA, 1983.

- [DREYF72] Dreyfus, H. What Computers Can't Do: A Critique

of Artificial Reason. Harpe§ & Row, New York, 1972.

[PORSYBAf Forsyth, R. 'M@g;ine Learning Systems”. Aslib

Proceedings, vol. 36, no. 5, May 1984, pp. 219-227.

-

. [GAJOH79] “Garey, M. R., and Johnson, D. S. Computers and

Intractability: A Guide to the Theory of NP-Completeness.

'W. H. Freeman, San Fransisco, CA, 1979.

e

. (¢
[HAYESB4] Hayes-Roth, F. ™“Knowledge-Based Bxpert Systems".

N

Computer, vol. 17, no., 10, October 1984, pp. 263-273.

[KARP77] Karp, R. M. "The Probabilistic Analysis of Some

Combinatorial Search Problems". In J. F. Tréub, ed.,

Algorithms and Complexity: Ngw Directions. Academic
0 - WY

4

i Press, New York, 1977.

\ [KNUTH76] Knuth, D. E. "Big Omicron and Big Omega and Big

Theta”. SIGACT News, vol. 8, no. 2, June 1976,

pp. 18-24.

f,

/ . -
ﬂ\’//\\\}htelligence, karlsruhe, W.' Germany, August 1983,

S

>

-

A R e e bn e = % s - e - e LRI VI AP S

286

[KOORP81] Konrad, E., Orlowska, E., and Pawlak, 2. "onh
Approximate Concept Learning"”. - Technical Report 81-7,

/

University of Berlin, October 1981, /

[LACARB4] Langley, P., and‘Carbonéll//J. G. "Approaches to

Machine Leafﬁiné“. Journal of the American Society for

Informatiogn Science, voly 35, /;o. 5, September 1984,

pp.306-316. /

/

[LENAT82] Lenat, D. B. "AM: /Discqvery in Mathematics as

Hburistic Search". In R{ Davis, and D. B. Lenat,

Knowledge-Based Systems /in‘ Artificial Intelligencé.

. /
McGraw-Hill, New York, 1982.

[MCCOR79] McCorduck, P. Machines Who Think.

W. H. Freeman, New York, 1979,

[n'xcn‘nan Michalski, x/a”. S. "A Theory and Methodology of

Inductive Learning/. In R. S. Michalski, J. G.

Carbonell, and T. M. Mitchell, eds., Machine Legfnigg:

An Artificial Inﬁélligence Approach. Tioga, Palo "Alto,
./
ca, 1983, /

[MICAM83] Micha(gki, R. 5., Carbonell, J. G., and Mitchell,
/ . .

T. M., eds://Machine Learning: An Artificial Intelligence

L

ABEroach.I/Eioga, Palo Alto, CA, 1983.

(Based on the First Machine Learning Workshop,

1

Carnegié—Mellop Unﬁversitﬁ, July 1980).

[MICAMBﬁﬁ Michalski, R. S., Carbonell, J. G., and Mitchell,

v

-

: . -~ ‘
T. M., eds., Machine’iearning: An Artificial Intéﬁligence

3

o,
Approach, vol. II. Morgan Kaufmann, Palo Alto, CA, 1986.‘
H . + »
Ay, {(Based on the Second Machine Learning Workshop,

Univers&{y of ITlinois at Urbana-Champain, June: 1983).

t

£

v
senimint g Al ST AR S, TN Y g NL N T O
SR BT v,,‘i%;- P R AR e S s et LS
FROEN, A :

[(MICHI82) Michie, D. "The State of the Art im Machine

Learning™. In D._Michie, ed., Introductory Readings in

Expert Syst@ms. Gordon agd Bxeaéh, New York, 1982,

b

[MICHIB4] Michie, D. "Automating the Synthesis of Expert

-

Knowledge". Aslib Proceedings, vol. 36, no. 9, Séptember

1984, pp. 337-343.

B R
-

{MINTO85] Minton, S. "A GamelPlaying Program that Learns

~

- by Analyzing Examples™. - Technical Report CMU-CS-85~130,

g, vt

Department of Computer Science, Carnegie=-llellon

s

University, May 1985.

[MITCH77] Mitchell, T. M. "Version Spaces: A Candidate

, . Elimination Approach to Rule Learning". Proceedings of

[

the Fifth International Joint Conference on ~Arti£ﬂcia1

:]
Intelligence, Cambridge, MA, August 1977, pp. 305-310.

{MITCH79] Mitchell, T. M. "An Analysis of Generalization

as a Search .Problem”. Proceedings of the Sixth”

3
International Joint Conference on Artif%g{al

- Intelligence, Tokyo, Japan, August 1979, pp. 575-582.

. [MITCHBO] Mitchell, T. M. '"The Need for Biases in Learnind

Generalizations". Te%hnical Report CBM-TR-117, Computer

a
o

<

- 288 |

[A ~ -

" Science Departmenf; Rutgers Universfty,lﬂay 1980.

lMITCEQZI Mitchell, T. M. "Generalization as Search".

2 - . ,
‘.Artificial Intelligence, vol. 18, no. 2, March 1982,

pp. .203-226.
N

[MOSTO83] Mostow, D. J. ' "Machine Tranformation of Advice
into a Heuristic Search Procedure". In R. S. Michalski,

J. G. Carbonell, and - T. M. Mitchell, eds., Machine

Learning:' An Artificial Intelligence Approach. Tioga,
Palo Alto, CAp 1983, 0

[PAPOUB4] Papoulis, (As Probabilities, Random Variables,-

and Stochastic' -Processes, 2nd edition, McGraw-Hill, New

\

York, 1984,
S

[QUINL83] (uinlan, J. R. 'Learningﬁkfrom Noisy Data".

wProceedingéJ of the Second International Machine Leaftning

Wworkshop, University of Illinois at Urbana-Champain, June
1983, pp. 58-64. » A

[{RABIN77]1 Rabin, M. O. "Probabilistip Alborifhms". In

J. F. Traub, ed., Algorithms and Complexity: New

Q

Directions. Acadﬁﬁic Press, New York, 1977.

[RALST83] Ralston, A., ed. Encyclopedia of Computer

Science ans- Engineering, 2nd edition. Von Nostrand

Reinhold, New York,\IQéB.
3

[RISSL83] Rissland, E. L. "Examples and Learning Systems".'

Technical Report 83-16, Department of Computer and

>
<

-

o

O . 289 , :

@' Information Science, Unibgrsity of Masgsachusetts at
Amherst, 198% |

&

s

Brain®.” . Psychological Review,

vol. 65, 1958,
pp. 36#-408.

P
"Some Studies in Machine Learning
Using the Game of Checkers".

-

[SAMUE59] Samuel, A. L.

IBM Journal of Research and
Development; vol. 3, no. 3, 1959, pp. 211-229.

[SAMUE67] Samuel, A, L. "Some Studies in Machine Learning

Using the Game of Checkers

Il - Recent Progress". I1BM

. w-v;‘*'ﬂ:ﬁ:»%‘#é@‘:iwﬁﬁy R ‘;.“;-'"""2:“-' i
. 5 SR

Journal &f Research and Development, vol. 11, no. 6,

1967, pp. 601-617. .

-4
P - [SCHANS82} Schank, R. C. "Looking at Learning”.

Proceedings. of the European Conference in Artificial

Intelligence,

a

orsay, France, July 1982, pp. 11-is8.
8
b

IR [ScOTT83] Scott, P. D. "Learning: The Construction of A

< Posteriori Knowledge Structures".
Faad 3 '
. Third National Conference on Artificial Intelligence, ;

Wash{ngton, D.C., August 1983, pp. 359-363.

Proceedings of the

; ISEGENB5] Segen, J. "Learning ancept'Dgscriptions from

Examples with Errors". Proceedings‘ of the ~ Ninth

International Joint Conference - on° Artificial

Intelligence, Los Angeles, CA, August 1985, pp. 634-636.

L9

-

S 8
. 2
. [ROSEN58] Rosenbatt, F. "The Perceptron, a Probabilistic
Model for '~ Information ,OrganizZation and Storage in the
o LT

g

290 ’ ¢ v
®

2

(SILVE83] sSilver, B. Learning Equatign -éolviﬁg Methods

from Cxamples". Proceedings of the Eighth-International
L4 . - 7 //

Joint Conference on Artificial Intelligence, Karlsruhe,

W. €ermany, August 1983, pp. 429-431. °

'[SIHONBBi Simon, H. A. "Why Should Machines Learn?". 1In
R. S. ﬁichalski, J. G. Carbonell, and T. M. Mtihell,

eds.} g Machine‘ Learn?%g: An Artificial 1In lngnce

4

Approach. Tioga, Palé Alto, CA, 1983.‘

[SILEA74] Simon, H. A., and Lea, G. "Probiem Solving and

Rule Induction: A Unified View". 1In L. W. G:egg;'ed.,‘

-

Knowledge and Cognitiod. Lawrenéé Erlbaum Associates,

Potomac, Marydand, 1974,

rd

’

[TURINS0] Turinged A. "Comﬁhting . Machinery and
Intelligence", 1950. 1In E. Feigenbaum, ,and J. Feldman,

eds., Computers and Thought. McGraw-Hill, New York,

~1963. -

5

[UTGO?pB] Utgoff, ' P. E. "Adjusting Bias in Concept
Learning”. Proceedings of the Eighth International Joint
P

Conference on Artificial Intelligence, Karlsruhe,

w.'éérmany, August 1983, pp. 447-449.
1

Also in Proceedings of the Second International Machine

" Learning Workshop, University of Illinois at

Urbana-Champain, June 1983, pp.- 105-109. @

[UTMI#82) Utgoff, P. E., and Mitchell, T. M. "Acquisition

Y
t

- e 291

of Appropri%te Bias for Inductive Concept * Leapning“.

Proceedings of’ the °Sec0nd National Conference*®.on

Art1f1c1al Intelligence, Plttsburgh Pensylvan1aé;JAugust

1982, pp. 414-417. | ‘

-
o \J
\;jXUTNUDBBI Utgoff, P. E., and Nudel, B. “Comprehensive'
‘ @
Bxbllography of Machine Learning” In R. S. Michalski,

J. G. Carbonell, and T. M. Mitchell, eds., Machine

Learning: AnLArtificiall“Intelligence Approach. Tioga,

. ' Palo Alto, CA, 1983.

L
b

[VALIA84a] Valiant, L. G. "A Theory of ‘the Learnable”.

\ P »
g%nications of the ACM, vol. 27, no. 11, .November:
¢ 1984, pp. 1134-1142.

. Also, in Proceedings of, the Sixteenth Annual ACM

v

Symposxum on the Theory of Comput1ng, Washington, D.C.,

4

May 1934, pp. 436-444. 4 -

[VALIA84b] Valiant, L.G. "Deductlive Learniné". Philosophical

Transactions of the Royal Society of London, series A, .

.- vol. 312, December 1984, pp. 441-446.
't ’ ‘ 7 -
_[VALIAB5] Valiant, L. G. "Learning Disjunctions of -
. Conjuctions”. Proceedings of the Ninth International

Joint Conference on Artificial Intelligence, Los Angeles,

0”;;\») ‘ >éA, August 1985, pp. 560-566. . ' .
‘ ~~ ! .o

_?/ [WINST70] Winston, P. H. "Learning Structural Descriptions

1

[

from Examples"™, 1970. In P. H. Winston, ed., The

s . N . >

g Psychology of Cofiputer Vision. McGraw-Hill, New York:,

T

-

~vr-

N '
< 1975. - .
Y oo -

[WINST80] = Winston,. ©P. H.- "Learning

Analogy". ‘Communications of the ACM,

December 1980, pp. 6§9-703.

v

{WIRST84] Winston, P. H. Artificial-

and . Reasoning by. ° .

E)

. gol. 23, no, -12,

s

N

Intelligence, 2nd

] f

edition. Addison-Wesley, Reading, MA,
S S .

{YAMAX84] Yagh@a}, N. S.; -and Maxin,

Systems: A Tutorial”,.

.1984.‘

J. A. "Expert

Journal of the American Society

'fbr Information Sciencé, vol. 35, no. 5, September 1984,

. s \
ppo.‘ 297_3050 '., ’

4
.
.
.
i
»
-
—"y
. .
. .
. -,
. .
X N -
.
. -
.
" »
i r
-

n

