- LT T T

- v 5

] S

. ' 5

»
v s ———

Problems to Programs: A Humanistic Approa&h . ;
. ' , (An Introduction to ABL Methodology) ) o f

12

Libero Ficbcéili )

f :

!

\ !

A Y
1.
Red

H

A Thesis .

. in ;
\ Lo 4
The Department 3

P ' N ¢

of ;

/ 3

i

Computer Science §

B ¥

/ . [

» SOLBFE I A SISl 5,

o et

Presented in Partial Fulfillment of the Requirements 3
for the Degree of Master of Computer Science at «
Concordia University ) -

- ,ﬁ’ ¥

Montreal, Quebec, Canada . . /\
August, §983
(©)Libero Ficocelli, 1983

et
e
o




AN

. . »
" ABSTRACT

.
.

‘

s

PROBLEMS TO PROGRAMS: A HUMANISTIC APPROACH
N (AN INTRODUdTION TO ABL METHODOLOGY) .

v

L

Libero Ficocelli

}

" This thesis directs attention_to a multitude of difficulties

both conceptual and techniéal involved with the
transformation of problems to programs. In so doing it
covers such areas as: programming languages, sofﬁware tools
and environments, the psychology of problem solving and

-~

programming as well as software production and wvalidation
techniéues. A methodology and environment is proposed which
it is hoped can more fully exploit the positive éttributes
of current ;oftware technologies while trying to minimize
and alleviate'difficulties inherent to these conventional

approaches.
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i : . ~ CHAPTER 1
INTRODUCTION o
Problem solving has existed since the dawn of consciousness

and through the ages man has shown himself to be extremely

adept at controlling his own environment. During which time

he has learnt to manufacture and utilize successively more

s

powerful and sopnisticated structures. Concomitaqt with

— e

7
this process he has also learnt, mostly via the method of
trial and error, to synthesize and manipulate abstractions.

As hisﬁ problems became more complex, mathematics,and more

particularly computations, evolved to encompass his

" technology.
The military has played a significant role in the
development of <computer technology: man needed greater
computational resources 'fn order to engineer progressively
more accurate and destructive weapons. Although modern day
digital computers still fulfill these military needs
industrial applications of computers have begun to dominate
v . . .

the rapid dissemination and acceptance of these machines.
The production of software necessary to effect computational

.:/// processes has evolved at a considerably slower pace then its

A asﬁociaﬁed hardware counterpart. In fact the term software

A k
“
.
t
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crisis sprang from the realization that.tﬁoﬁgh man possessed
advanced and complex machine ' sarchitectures, the software
essential to reliably control data transfo;mations did nét
exist.‘-0ver a decade after the compdting community directed
its attention to resolving thislimbalance we must concede
that this ipequality still prevails. This thesis is an
atﬁempt to p}ovidqi a héalthy environqent with which to
address some of the factors which ma& have contributed. to

the present dilemna. )

Unlike most techniques ABL does not purport to be a "best"
problem solving technique, "best" 1language, nor even’a
"best" representation. However it does provide a- flexiﬁlg
medtum with whigh a user may mold his own best solutions.

This avoids the psychological connotations that’ are

"intrinsic * to the use oﬁ conflicting absolutes. When

researchers state that a > technique is "best", this
automatically implies that other techniques are inferior.
This cannot help but precipitate confrontation. The
emotional trauma triggered by such unnecessary value
Jjudgements initiates defensive attitudeq‘and predfspose; the
community to an unjbstified eritical perspective of the
methods or techniques in question. '

/
!

" This thpsis directs attention to a multitude of difficulties,

both conceptual and technical, 1involved with the

[

transformation of problems to programs. The determinants




i

essential to ﬁHis study are as follows: (a) psychology of
problgm solving, (b) psyéhology of programming, (e)
programming languages, (d) software tools, (e) software
environments, (f) software production methodologies, (g)
software validation and testing, ‘and (h) software
réliability and complexity. These aspects 6f software
production form the topies through which we will
characterize the state of the art of software technology.‘

Chapter 2 presents an historical perspective. on thg

evolution of programming and software systems.

Chapter 3 provides an overview of‘human problem solving
paradigms. These paradigms are examined from the context of
known psychological behavior and their inherent functionél
correlatess(limitations and advantages). This reviey is
essential to the acquisition of a cognizant understanding of

the psycholog;cal factors fundamental to an objective

analysis of software and associated methodologies.

Chapter 4 introduces a technique (ABL) with which to
approach the production, analysis and subsequent testing of
software. Although this technique is language independent,
it can be embodied within a single control construct. Its
implementation hovever, implies a very unconventional
approach. This chapter will also describe a ,suitable ABL

environment and a philosophy for its use. *

-
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Chapter 5 is a critical synopsis of conventional programming
methodologies. The chaptér will outline deficiencigs which
can lbe ascribed to the aforementioned psychological
considerations. Consequent to this analysis we present A?L

in an environment which exploits its virtues.

Chapéer 6 discusses software validation and testing, the
. ¢ '
most costly phase of the software development cycle. The

chapter will address general problems inherent to this area-

of software production in which testing, 'validation and

proofs are essential prerequisites to the more global issue
' ~of reliability and verifiabilitx. The ABL metpodology
simplifies reliability considerations by eitedding standard
facilities and methods to those which are currently ~

o

infeasib{e or unavailable}

Chapter 7 attempts to put the application of the ABL

. b
approach into the perspective of an era which has become

dominated by the computer.’

Boehm in\1976 [Boeh76] characterized the typical industrial
* programmer as follows: "2 years college-level educatioh, 2
years software experience, famiiiarity withf2 programming
languages and 2 applications, and generally .introverted,
sloppy, inflexible, ‘'in over his head', and undermanaged".
He also points'out that "given the continuiné £ncrease in

demand for software personnel, one should not assume that

~—
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this typical profile will improve much. This has strong
implications for effective software engineering technology

which, like effective software, must be well-matched to the

people who must use 1;". Under the assumption that interest

in software engineering will migrate from academia to

industry we must develop viable software methodologies and

environments which will permit users to tackle problems in

this economically driven context. " )
o

! o

The thesiswill also 1llustrate how features fundamental t

ABL c¢can be

tiTized. For example, the fact that the AB
methodology a
usér. Furthefmore ABL's language independence Elso provides
a unifying medium with thch to approach the entire spectrum
of language bounded issues. This feature. enhandesl the
quality of:software by prpviding an integrity of description
in which there is no negd.to partition the source code from
its wvirtual description (documentation). In fact it 1is
possible to insure that these two entities are
isomorphically mapped unto eacb other. The 1issue of
integrity within the ABL enviroqment is further exploited by

the use of database technology.
. ‘\ .

) R w
philosophy are not limited to a class ©Of

e b o
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CHAPTER 2

'SOFTWARE DEVELOPMENT

4 - \
A program can be described as the vehicle by which a perso

can specify the sequerce of steps that he wishes a computer

to perform [Tqae79]. Thus a computer language is in effect\

a formal definition of a syntax through which we may |

communicate our wishes to a computer.

)

2.1 HIGH LEVEL LANGUAGES

/
. Early computing systems (first generation computers)

required that humans define their ppbgrams in machine
language .+ Sug¢h languages consist of numérical
rep;esenta&ions which map onto the internal state of the
computer.. As the processes to be defined and performed
became lengthier and more demanding, assembler languages
were introduced to relieve some of the human tedium that
this type of programminé required. ‘During these early years
of computing the major costs of data processing went into
hardware [Enos81]. As long as tﬁe machines remained
expensiQe, limited in power and relatively unreliable then

the costs of prbducing programs were buried and forgotten.

" With the arrivel of second generation computers, hardware

'
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became 1less expensiye and more powerful, hence cost
considerations quickly shifted the industrial emphasis frbm
hardware issues to production of software. This drasﬂically
altered the programmers tasks. Whereas he used to proﬁuce
short and Eimple pieces of code, using clever algorithms to
overcome restrictions on memory and speed, he was now being

asked to create larger programs designed to solve problems

of ever increasing complexity [GrieT79].

Fortunately rising computing capability =also created an
improved environment for programmers [Hunt82]. This was
mainly due to the intfoduction of high level procedural
languages which relieved the error prone demands of
maqhine/assembler language coding. These procedural based
languages soon evolved into programming languages which

resemble ‘subsets of the natural languages.

Developers naively assumed that having a tooll which
resembled our natural means of communication would make
programming easier [(WinoT77,Naur75)]. The problem with this

approach resides with the fact that the strength of natural

languages lies in their diversity.-and inherent ambiguity

[Wass82,Naur75]. As such, any attehpt‘to use a relatively
large subset of a natural language as a programming language

would By defintion be diamefrically opposed to its wultimate

objective: being able to communicate unambiguously with the

computer.

.
WA TIERICS - Ao bl e =
.
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One paradigm [Ehrm80] of software language development is
that the higher level programming languages evolved to meet
the global objective of minimizing the human effort required

to successfully control a desired copputation. In other

words the stimulus was programming "egSe", which 'required
that éesearchers simplify the mechanics of translating our
wishes into actions for ihe machine §o obey. Under such ‘a
paradigm, specifié application needs lead to ah incredible
prolife}ation of computer languages, whereas mpchine and/or
user dependent requirements created a con;idera le’ number of

dialects.

Lanéuage developers hoping to consolidate. and ; standardize
these application dependent 1languages, often attempted‘éd
incorporate as many features as possible into one all
encompassing language. Thus, they hoped to ‘avoid a tower pf
Babel by eliminating the problem of needing many different
languages. Unfortunately, these comprehenéive langeégﬂg/
were lumbering giants and as such were much too awkward and
.difficult to (use. There were so many language dependant
de@ails that programmers were prone to both syntactic and
semantie "errors; PL/1 uh;ch is an example of such a
language, was once described as a "baroque monstrosity"
[Dijk72). The magnitude of its shortcomings is demonstrated
by its lack of popularity, even after 15 years on the market
wi?h,the entire weight of IBM behind it [Phil177].

e V4
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Concomitant with this consolidation process was the "forcedﬁ
evolution of varieties of control constructs, prograhming
construets and syntai va}iations in an attempt to create
"the programming language" [Litv82]. The result of which is
that {there’are now literally hundreds of different computer

languages in existence. If we choose "popularity" as our

measure of evolutionary fitness, we mﬁst conclude that this
two dimensional approach, consolidation and forced
evoluticﬁa’ does not appear/to have succeeded [Phil77]. The

hope of finding "the" language with the 1ideal numbef and

type of control constructs is no longer considered an issue

®

13 .
[Shaw80]. The only consistent finding among researchers was
that the most popular languageé are usually thé ones with

the sparsest number of control constructs [BensT73].

2.2 STRUCTURED PROGRAMMING METHODOLOGY

L}

The advent of third generation computers, unfortunately .

creat;d little significant improvement in the programming
environment [Ends81]. Emphasis was' centered around the
concept that the product (the program) was the single most
importan 'item‘of concern and the sole measure of its
"goodne/ss™ was at the level of " If it works lgaye it alone.

If it éxecutes quickly, its outstanding" [Enos81].

In "the late 1960's as one after another of the ambitious

large scale systems faltered, failed or produced less then

0
«
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satisfactory results" [Enos81], it became apparé;; that the
computer industry was in the midst of a "software crisis"
[Dijk79]). There was confusion as to what was meant by a
software crisis, but ‘i£ was generally understood to mean
that we did not know how to produce programsi’well enough.
In other words, [Wein71] although systems of'br;grams were

being produced they were "not good" because they:

(a) did not meet specifications (did not do what they
were supposed to do or were loaded with errors)

(b) did_.not meet schedules (simz;y not on time)
(¢) were not sufficiently adaptable

(d) were not efficient.
To add insult %o injury, researchers [Broo74,MeCr73] .
revealed that industry norms, in terms of productivity was
as 1low as 2,3 lines of code per man day. It became obvious.
that current software technology was not sufficiept to meet
software production demands.‘
The verdict was that the time-proven, systematic approach
utilized by other engineering disciplines should be applied
to the area of software production [Wass78,Grie79].
Strucpured proéramming‘was introduced as the nucleus of this
software engineering approach. The premise involved three
essential ingredients [Dijk69,Dijk68,Dona73]: (1) the
elimination of the GOTO, (2) the notion of top down design
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and (3) emphasis on program quality.

The ﬂp%lowing three sections will examine how these three
principals were .intended to be agpreventativé measure for

insuring "good" software.

[t

" 2.2.1 ELIMINATE THE, GOTO 3

The elimination of - the GOTO was by . far _the most
controversial of the }hree. For a,long time this "rule" was
mistaken to be the sole 6bjective of the proposed

methodology. This, prompted a rather extended debate between

radical factioﬁs. On the one side, ‘there were those who

insisted that the GOTO should be purged entirely from our
programming languagg'vocabularies [Wulf72], while on the
other, there were “those who insisted that the GOTO was
useful and simply too valuable to ge disposed [Hopk72]. At

one point, the arguments had been so throughly thrashed out,

I3

AR .
and people s0o bored of hearing about them , that some

authors began writing humourous papers on the topic
(Clar73,Z0et79]. The heart of the problem was that no one
grbup was able to make any generalizations, there always

seemed to be good counter examples, both for and égainst use

of the GOTO [Knut79,Kern74,leav72]. Eventually, the

consensus view grew to be the compromise position,. that &t

was acceptable to employ "somehow" restricted use of GOTOs.
~~

- 11 -
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" The arguments against the GOTO can be summarized by the

statement: it is detrimental to the production of desirable
compufer code because it is too easy to use tpe GOTO in w;ys
which will obscure the logical structu;e of a program. It
was implied that the GOTO was such an unstructured or
"primitiveﬁ [Dijk65,D1jk68] control flow cohstruct, that a
programmer could not help but mess up his program by
inadvertantly‘creating "spaghetti code". The control flow
manuverability afforded. by the GOTO provided an
environment appropriate for succumbing to the temptation of
the GOTO shortcut: code as you go - think later! In other
words the versatile yet hamfistédipower of the GOTO, gave
the programmer the opportunity to create pieces of code, in
a disorganized fashion and then 1later patch in the
appropriate control flow.

A

The more salient arguments proffered in®defence of the use

of the GOTO are as;follqwsf

(1) . the GOTO 1is such an unconstrained conérol
structure that it allows synthesis of mo}e

v advanced and elegght control constructs &
(2) the GOTO's ability to direct an? override control
flow in a program, offers it's users an escape

from gimost any awkward situation.
The proponents of the latter statement claim that strugtured

- 12 =
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. programming devotees camoufiage these éﬁkwaré escapes by '

creating new or rather synonomous control constructs such as
. . ¢ g

"leave", "exit", "escape"™ [Hopk72,Lask79]. ‘These authors

made no judgements as to whether these awkward situations

were 'due to programmer. sloppiness, or if they were simply

inherent to the algorithm and hence unavoidable. _Thus, 1it?®:

would seem that the fundamental power and utilit& of the
GOTO makes it both desireable and ﬁndésiteable.

~Since it had been proved that any program could be expressed
using only the one-in one=-out control structures (structured

control constructs), the recommendation was made that they

-~

be wused to supplant éonventional unstructured (GOTO laden)
control flow elements. It was argued‘[Dijk76,HoLt75,Mill73]

that use of structured control structures would yield

[

programs wWith greater readability.and maintainability. The
L}

reason cited was that . it allowed prograﬁmers to bet’ter

follow the flow and hence the 1logic of a program.

- Programmers would also be able to trace backwards through a

program. This is something which was difficult to doy with

GOTO programs " because all labeled statements could” be
reached by all appropriately labeled GOTO's. The dilemma of

which GOTO (if any) summoned ‘the labelled statement in

question, would no longer be a predicament. 4

G e -

! 0

Another feature of structured constructs was that 1f allowed

for more distinct and meaningful blocking criteria [Dijké€5].

%
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Recognizing how sections of code (blocks) were 'related - o

one,  another would also improve the programmer's ability to
understand a program’/s logical function. 'ijkstra claimed
that these benefits would make control flow errors easier to

isolate, since the only way that a program could fail was

'éhrough ihfinite recursion or through faulty loop controls.

Earlier it was mooted that many researchers felt that
elimination of the GOTO construct’ was the necessary and
sﬁffipient “prescription" for alleviating the debilitating
syﬁptoms of so called "bad" software. On this premise;
several authors [Ashc7l,Pé§e13,Kosa73,dea76,Lipt75]
presented algorithms, restructuring engines, for replacing
all. GOTO's by structured programming language egquivalents,
constructs displa&ing single-entry sihgle—e&it control flow.
They disecovered that these '"new" struéturéd versions of
program code were‘not significantly better in terms of being
more understandable, maintainable or reliable then the

original "unstructured" code [Knut79].

AsS more programmers started using structured 1languages, it
became readily apparent that it was just as easy to create

"bad" code with structured programming constructs, as it had

‘been with languéges containing the GOTO construct [Berg79el.

The GOTO was thus partly exonerated: it was neither the
cause of the symptoms of "bad" softwé\s;/nor was its use

merely the.effect of sloppy reasoning. . -

'
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It is surprising that in the multitude of péﬁefs\on the GOTO

controversy, only:few mention that the underlying deficiency
of the GOTO doe§ not reside in the fact that.it allows the
programmer to explicitly define control flow. Rather,
problems occur as a result of the fact that ‘labels (enfry
points,frdm GOTOs) may be placed almost anywhere in the body
of the pfogram and as such conﬁrollmay be transferred into
the middle of a previously well defined* section of code.
These meps which typically allow for a reduction in the
amount of fedundant code may result in confused logif
because the established purpose of a particular piece 9f
code 1is no longer applicéble if entry occurs at,a place

other then the beginning.

Several authors have argued, albeit indirectly,

[Knut74,Kenn79] +that the difference in quality between

. Structured and unstructured programming, should not be

attributed to the use of the new coﬁgrol“ constructs.

Rather, it should be regérded as a byproduct of the extra

‘thought requirea in avoiding the frequent use of crude and

powerful expedient, the GOTO! Current attitudes toward the
GOTO, fall more in line with a realization that the GOTO can

be easily abused and that the programmer must ‘be careful

* when using such constructs. The statement: "where time or

intelligence are lacking, a GOTO may do the Jjob" [Hopk72],

- n s - - - -

* In terms of logical function
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is no longer an accepted criticism of the GOTO. \

1 .ooR

2.2.2 TOP DOWN DESIGN

"Top down design is a methodology in which,by starting with
the problgm statement, we construct a hierarchy of algorithms
[Dahl1T72]. The higher 1levels are concerned with isolating
important partitions of the préblem statement, while lowgr
lewels involve actual written code. . Movement tﬁ}ouéh the

. hierarchy, from -top to bottom, should show a gradual
incregse in the detail of specific algorithms, their data
structures éndqoperations. The bottom level of such a
desigﬁ methodology specifies the machine execufable
version pf/the algorithm.
Using Shaw's definition of the term abstraction as: "a
simplistic desgripgion or 'specification, of a system that
emphasizes some of the system's details or properti€s ﬁhile
suppressing others" [Shaw80], we can safely say that
"abstfaction“ is the cornerstone of the top-down design
methodology. This top down methodology provides a hierarchy
of such abstractions, in which the highest and lowest levels
show respectively the 1least and the most implementation
dependant detail.

. ' ) ' f
Other ‘authors [Parn72,Di jk72)] have also stressed the .fact

that the suppressioh of detail is essential for a thorough
&

-
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understanding of the solution 'to a problem. Information
hiding [Parn72] revolves around'the%idea of making visible
only those properties of a module needed to interface with
other modules. This requires the user to clearly define and
enforce module boundaries. Stepwise refinement [Wirt71] is
defined to be a technique by which an individual approaches
a program solution by slowly evolving and "adding onto an

initial crude piece of code (design documentation).

o

2.2.3 PROGRAM QUALITY

The 1last major component of the structured programming
methodology is thaE of program quality. Although the word
quality is i;ather broad and very vague it is generally
understood to mean [HoarT72,Dona73,McCr73, Your79] that

software should be:

(1) as easy as possible £o read and understand

(2) easy to test;debug and integrate

(3) easy to maintain - both modifiable and extensible

(4) réliable - does what is required without unpleast
surprises )

{5) efficient in terms of -

(a) development costs for initial

implementation .

(b) run time resources

'
h*3
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(¢) maintenance costs
(6) easy for HUMANS to use - user friendly
(7) as rugged as possible - especially with reference
to recovery from errors |
(8) producéd on or ahead of schedule
'(9) extremely portable -
(a) execute properly on different machines
(b) easily spliced into other pieces of
softwaz; - good library‘routine
Numerous methods have b4den proposed on how to achieve these
goals. The following is a list of some of the more popular

methods*:

(a)* inclusion of sufficient and necessary
documentation both internal and external to the
code

(b) high degree of modularity - both inter and intra

' procedural - >
(c) meaningful variable names - mnemonic aids to help

remember what each variable stands for

(d) proper and cénsistent indentation - visual aid for

* The 1last four entfies (1,3,k,1) are not part of the
ul
structured programming methodology, but have been included

for completenesi.

- 18 -
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(e)

(f)
(g)
(h)

(1)

(N

(k)

(1)

contrpl flow an& modularity

reduce and simlify the number of control paths -
through the use of restricted control constructs
and decreased levels of nesting

routines of limit;d size

restricted use of .global data

Chief programmer teams - increase the
effectiveness of communication by working in tgams
rather then as individuals+

software metries - to measure and cont;ol
complexit&.

prototyping - making available to the user a
subset or a simplified version of the total system
extensive static and dynamic software testing

completé and definitive requirements definition

A

Although the extent of the effectiveness of these adjuncts

is still disputed, it is generally agreed that they are not

detrimental activities.

-

One of the most important characteristics of the techniques

listed above is that they consistently stress simplicity of

design

and the use of methods that hinge on standard

representations. It seems that the overall goal was really

-

+ These teams also make use of the other features of

Structured Programming
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to aid wunderstanding of the code and related products by
presenting them in familiar structural context. Researchers

have attempted ¢to build onto the Structured Programming

. methodology by elaboration of one or several of the software

quality factors listed above.

2.3 SOFTWARE LIFECYCLE MODEL ' '

The software development environment was enhanced by the‘
inception of the software 1lifecyle model [Boch79] which
involves several serially interdependant phases, the
progression of events .in the Lifecycle 1is gréphically
represented in figure 2.7%. This approach is derived from
the manufacturing concept 6f lifecyle in which "products are

first concieved, specified in detail, designed and then

‘built and maintained until they are no 1longer wuseable"

[Wass80al.
REQUIREMENTS
DEFINITION
AND SPECIFICATIONS PRELIMINARY

DESIGN AND ‘

DETAILED DESIGN IMPLEMENTATION

CODE AND DEBUG | - | vALIDATION .
AND TESTING OPERATIONS

AND MAINTENANCE

FIGURE 2.1 A mﬁZZI\of the Software Lifecycle (Boeh79)
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The most important characteristic concerning the lifecycle

,1s the fact that for the first time researchers and

developers stressed that intermediate‘products were atAleast
as important, if not more iﬁportant .than the finished
software [WassT781]. Although Structured Programming
methodology. emphasized top down design; the major impetus
for'its use was concentrated at the level of improving code.
Researchers were still tryihg to treat the symptoms rather
then attempting to eradicate the disease of "poor" software.

»

2.3.T REQUIREMENTS DEFINITION/SPECIFICATIONS

Requirements. specification is a set of documents whose
purpose is to describe what a software package 1is expected
to do. It should also describe any interaction with other
systems, . people, and device. This 1is fundamentally a
process of data gathering (systems analysis) followed by a
formalization procedure [Howd82]. Specifications should be
complete, consistent and unambiguous enough so that they can
serve tb demonstrafe to interested parties+ tha§ the problem
is properly understood.

s

These specifications are also used as a guideline for the

+ Software production companies often use these documents as

legzlly binding contractual agreements [Boeh79].

- 21 -
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subsequent design phase [PeteBA]. If the proposed system is
"not defined in a "sufficiehtly precise" way then the final
system cannot be checked for correct implementation. Thus
we see that the requiremgnts definition and specification
‘documents are functionaiAat both pre and post implementation
stages. Hence possibilities for misunderstanding exist both

between and within the various groups.

Current{y most software specifications are informal and
expressed in free form English [Boeh79]. They are often
merely notegl which have been assembled in a cut and pagte
mode [Howd82]. This adhocxﬁpproach is reflected in the fact
that requ;rements specification documents suffer from
numerous critical deficencies [Leve82):
.
(a) omission of key information’
'(b) ambiguously stated information (results in terms
such as : suitable, sufficient, flexible)
(c) wrong or infeasible stateﬁénts of requirements
(d) untestable statemenfs of requirements (terms such

as : optimﬁm, 99.9% reliable)

Likely reasons for the above defects are due to the fact

that ,the approach is too informal, - and does not have the

appropriate support tools.
In attempts to overcome these deficiences and to more

- ggﬁ-
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effecﬁively fuffill the role of requirements definition and
specification documents, numerous formal languages have been
developed: SADT [Ross772,Ross77bl, PSL/PSA [Teic77), SREM
and SDS [reported in Leve82]. These tools can have a fixed
predefined specification language and/or facilities which

allow for leanguage definition.

2.3.2 SOFTWARE DESIGN

A software design specification is 'a document whose purpose

is to model a solution for a proposed problem. The design

model should then be able to "guide", the implementation of

the software. Thus each design document is a "blueprint" of

the method by which to map an algorithm onto a computer

program. . /

-

Until recently (1975) not much effort was being expended on

" this area of software development [Grif79,Berg79al. However

research studies have revealed that not only were gesign
errors more prevalent than other types of errors, ,they we\\"e
also the }post diff‘icu}t to correct [Boeh79]. These
statistics prompted renewed interest in the area of software
design with particular emphasis being placed on the top‘-down

approach (described earlier). A currently accepted practice

|
of system design is to approach the design problem in the

-

following two phases [Pete81,Boeh79,Free80al:

\
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PRELIMINARY DESIGN (LOGICAL ARCHITECTURE): is a high 1level
system model which describes the method by which tasks-are

to be performed, unencumbered by low level details. ’

DETAILED DESIG& (PHYSICAL ARCHITECTURE): is én expansion of
the preliminary design to include sufficiently‘low level
details to guide implementation. ¢

/
This does not preclude the possibility  of having nume:;us
other levels of refinement (abﬁftaction). Theése design
products are primarily informal prose descriptions and/or

a

diagrams generated using formal methodologiés [Howd82].

Other design representation techniques and méthodoloéies
present varied approaches to viewing any given problen.
Each meth;d emphasizgs different aspects of the system which
in turn generates varied responses from its vieweré.
Typical‘design representations concentrate on one or moré of

the following areas [Pete81]:

Example: (1) Leightbn diagrams [Pete81], (2)Hierarchy, plus
Input, Process, Output (HIPO diagrams) [Wass78]. .

SOFTWARE DESIGN STRUCTURE
Primary concern is to provide a method by which to organize

and develop software structure in a manner wh;ch addresses

the critical issues of integration and interface-definition

!
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representations which accommodate the hierarchical approach
. 1]

., (2) Design Trees [Pete80], (3) Structure Charts [Stev791],

’ \ .
(Boeh79]. - More  popular techniques are Dbased on

Qo

of top-down design and information hiding. i

Example: (1) Structured Analysis and Design Technique (SALT)

e b e e -

(4) Structured Decomposition Diagrams (SDD) [Rudk79].

SOF TWARE CONTROL FLOW

We ‘wish l to provide metﬁods with which to illustrate the
paths (execution sequence) that a required computaéion may
o1

regard

v.i This is the oldest and most popular area with
o design representationé. Thus ﬁumerous schemes are
currentlyl gvailable. Thé techniques are used }rimarily. for
describing low.level control flow behavior (algorithms)such

as would be requf‘ed for the detailed design phase (decision
points; ioop structure, control sequenge).‘ Main criticism
[Boeh79] of these techniques is that they are used "too

much" and hence results in the neglect of the other areas of
design.

Example: (1) flowcharts [DeMa74], (2) pseudocode [DeMaT74], e
(3) decision tables [Mont74], (4) Structured Control’and Top

down (SCAT) [Boch79], (5) Program Design Language (PDL), (6)

Nassi/Shneiderman diagrams [Yode78], (8) ‘Warnier Orr

;

: ' !
Problem Analysis Diagrams (PAD) [Futa81l, - (7" i
i

!

diagrams [Orr79a,0rr79bl], (9) control graphs [Pete8§1].

|

SOFTWARE DATA FLOW

.
: //7
p
A d
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These representations are geared towards estaGIiShing
software designs whicq attempt to optimize data managemen;.
The focus is to pro;ideimethods with which tg illustrate
data characteristics as well as. its concomitant flow and
transforﬁations. This non g{ocedural approach 1s a
reflection of current software priorities which are
basically not computationally bound; Modern day practice is
occupied with systems for handling vast volumes of data but
which undergo few complex transformations. The following

techniques ére related to data base design criteria.

Example: (1) Jackson Data Structures [Berg79bl, (2) Chen

‘Entity-Relationships [Pete81], (3) DeMarco Data Structure
Diagrams [DeMa79], (4) Flory and Kouloumdjian Approach

[Pete81]. )

-

o

LS

Software design 1is a highly creative ﬁuman endeavor and:as
such it is not surprising that it is not easily understood
or controlled. Software design does not lend itself well to
prescriptive or sequential steps that will ensure ;ucdess,
like the rﬁirections for assembling a bicycle. Nor is it a
deterministic process in which it will be 1'"possible ¢to
exhaust all reasonable variations and averages of inquiry to
reach an acceptable design" [Pete81]. Thus it is foolish as
well as naive to assume that it would be possible to point
to any given technique listed above and proclaim it . to be
the "best". Rather we should realize that each has

particular merits which enable it to exqél in some specific
. |

°
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problem area. .

N
LY ¢

.The followidg is a 1list of some of the‘criteria which are

important if',nqt essential for the construction of a

°

successful design process [Pete81,Berg793};’

1) A design process must = allow for gany levels of
absfractioﬁ: from the conceptual model to functional
details. This could include:

‘a) graphical notation (graphs, trees, tagles,
flowcharts) |
b) prototypes (siﬁplified working .model of final
‘system)" & ’ .
"¢) natural language docupentation (with soﬁe.forﬁ
of overlaying %tructure) o |

-

o

b

2) The process, should be baéedlon an underlying philosophy
or rationale which heips‘ the.ldesigner to :focus his
. activities. The design philosophy should  ensure
coﬁsistency and provide for more effective communication
amoné designers.- Sych a philosophy should alsp fdrm an

infrastructure for providing better documentation tools.

A

3) The design technique should be flexible enough to ’

°

accomodate persons of varying backgrounds thus allowing

them to bring their experience to bear on the

problem[Wass80b]. Such - flexibility ‘permits more

o
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efficient contribution from eaéh‘individual within the

design group.

Y4) A good design method should also be easilyxmaintainable,
so that refinements to the design model can be made as
human understanding of the problem grows. Similatly, we
can” ’handle the 1inevitable changes 1in the design
sﬁecificat;ons that occur after implementation is

L

complete.

5) A design process should be formalized to .the point where
it is possible to build automated1 tools for design

validation and risk'analysis.

2.3.3 CODIN(}C% DEBUGGING
N

This phase of the software lifecycie involves the actual
implementation of a piece of sourcebcode. The objectiﬁe is,
as it waé from the beginning is to produce "quality"
softwarle which is a physical realization of the gesign
specification. The fact that tpe defintion.of quality has
changed since then is not at issue. The quality techniques
discussed in section 2.2.3 for [étructured Programming
méthodology apply equally well here and thus will "not be
revieﬁéd. Although unstructured languages are stili in wide
use [Phil??} it is gener#lly accepted. that -languages which

\ support structured control conétructs are the languages of
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choice. Examples of such languages include ALCA, Pascal, and

C as well as other languages such as structured Fortran and .

Cobol which have been retrofitted to accept these

constructs.

Specifications for the languages of the eighties include the
/adoption of concurrent processing and 'data flow languages
[Back78,Litv82]. More interestingly other research
innovations point to the ability to create source code
directly from software spedifications. The former research
is bounded by the development of abpropriate computer
architecture while the latter work underscores the trend of

shifting the emphasis- of our endeavors away from

technicalities and necessary evils.

2.3.4 SOFTWARE TESTING AND VALIDATION

°

The objective of this phase'of the software lifecycle is to

determine that the software produced is functional,

relisble, and correct (in terms of user specifications)..

Testing is a very costly stage of the lifeéycle, incurring
approximately 40 to 50% of the initialvdeQelopment costs,
figu}e 2.2a [Boeh73). It is extremely time consuming and
frequently requires reworking of code and/or modifications

to design and specifications. Typical stages that occur in

testing are as follows [WasséOa]:
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DESIGN - POST PRODUCTION MAINTENANCE

Q@

’ IMTML
CODING DEVELOPMENT
‘TESTING AND
INTEGRATION
\
(a) : (b)
v

FIGURE 2.2a Costs 1ncurréd during initial development

2.2b Costs incurred during software system

~ "
’

lifetime N
UNIT TESTING
Individual program modules are tested for correctness. This

level of testing usually reveals common programming errors

such as: uninitialized variables, inaﬁpropriate array

‘bounds, -inadequate housekeebing of variables; poor 1/0

formats. Usual tests 1include exercising every statement,
branch and as many parts of the code as |is economically

3

feasible.

INTEGRATION TESTING

Program modules are assembled to ascertain if they function

properly together, Integration testing usually reveals

- 30 -



errors committed during the design phase, such as
inconsistent procedure interfaces or inappropriate module

boundaries.

ACCEPTANCE TESTING , | (

The intended user/customer evaluates the system with respéct
%o his initial specifications. Errors detected at this
level may reflect errors in the initial specifications and
can result in extensive reconstruction of the system. These
errors are usually attributed to incomplete, inconsistent,
incorrect or ambiguous statements of what the system was
ihtended,to perform.

The following is a2'list of some of the more popular testing
procedures and methods which .will be discussed in detail iﬁ
chapter %: 1) Peer Code Review, 2) Code Walk Through, 3)
Fault Isolation, 4) Test Data Generation, 5) Program
Mutation 6) Symbolic Execution, 7) Program Proofs.

It is important to note that our present methodologies
detect errors in what 1s perhaps the worst posbible manner.
Errors are detected in inverse relation to when they were
committed (LIFO behaéior): coding errors are detected first
whereas specification errors are encountered last. The cost
incurred by this phenomena is probably the principle reason
behind the move to increase "quality" of products in thg

early stages of the lifecycle.
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2.3.5 POST PRODUCTION MAINTENANCE

This stage of the software lifecycle involves makfng changes
té softwgre wﬁich is already operational. Maintenance is
usually the most costly activity incurred by any major piece
of software. Average costs of maintenance run in the order
of 50 to 75% of all costs associated with the functipnal
lifetime (from initial development to final shelving) of the

software systems, figure 2.2b [Berg79b].

-.Software maintenance can be Ssubdivided into two major

categories [Boeh791]:

a) Software Update: includes those changes which
result in a modified functional specification.
'Y

This usually involves adding or deleting

capabilities to or from a software systemnm.

b) Software Repair: includes only those chénges which
result in an unaltered fune£ional specification.

' This would include modifications such as:
algorithm , enhancement in terms ‘of
performance/readability/adaptabil&ty, minor 1/0

changes or corrections to previously overlooked

errors.
To be able to program either of the above maintenance tasks
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effectively requires the ability to execute the following

functions:

k\

1) understand existing software
Implies: proper documentation, good' mapping of

code to requirements, weli constructed code

" 2) modify existing software
Implies: easily modifiable documentation/software,

mirimal side effects from required changes

3) revalidate modified software
Implies: software which can allow for selective

retesting and/or tools for selectige retesting

\

The above factors make evident the fact that programming
involves ‘a great deal more then Jjust coding, thus
advocating that perhaps problem to program transformations
should no longer rely primarily on tools to support coding.
The concept of the Software Lifecycle has provided =
framework within which to coordinate the different
techniques for software production, as well as a/structuré

with which we may consider the devopment process as’a single

entity rather then just individual unrelated stages.
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CHAPTER 3

PSYCHOLOGY OF PROGRAMMING .

The production of computer programs has been considered an

.art form [KnutT74], and as such it was found to be extremely

sensitive to the individuals involved -in its production.
T%is sensitivity resulted in products whose intrinsic
qualities were highly unpredictable in the large and
inconsistent, at best in the small (large - refers to
industry in general : a GLOBAL EFFECT; small gefers to
individuals, small groups or a small company : a LOCAL
EFFECT). Researchers have invested much effort in
atteﬁptiﬁg* to formulate a discipline whose underlying
functional goal would be to curb these artistic tendencies.
It was believed that these disciplines would allow the

process of computer programming to achieve 1its crucial

transition into the "science of computer programming".
3. T PROGRAMMING: ART TO SCIENCE

The definition of science has been listed &8s follows

[Knut74]:

"knowledge that has been 1logically arranged and




systematized in the form of general 'laws'. The
advantage of science is that it saves us from the need

to think things through in each individual case;"

Thus it seems thaf the mandate of software engineering
researchers should be to isolate those variasbles which are
thought to pla; an important rqle towards "systematization"
and for the genesis of "general laws" of computer
programming. T@eoretically‘ the application of these laws
would yield &a carefully controlled product which would
achieve an acceptable balance between optimum productivity

3

and maximum quality.

As mentioned in the previous chapter, the methodologies which
are currently in vogue have not attained their requisite
égal of the "science of programming”. Abrahams [AbraT75]
makes the following statement concerning why he believes

Structured Programming Methodology has failed:

"the problem with structured programming lE%s not so
much in its content as in its sociology. There are
two baleful aspects of this sociolggy: the elevation
"of good heuristics into bad dogma, and the creation of
the‘illusion that difficult problems are easy. If
structured programming is treated as a collection of
1nfiéxible rules which can replace good judgement, it

will wultimately 1increase rather than decrease our
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efforts, while concealing from us the fact that this

increase has occurred.”

This ;gétehent points to a very important and fundamental
overSignt on the part of researchers involved with the
development of these disciplines.

Programming must not become dehumanized to the extent that
}nflexible rules prevail over good Jjudgement. In ofﬁer

words, we must avoid statements like: "In the production of

. computer software the product is more important than the

process" [Chap78]. Computer scientists must TeélMember that

programming 1is predominantly, 1if pgt uniquely a human
activity (excluding artificial intelligence systems and
automatic programming) . We must remember that it is
ultimately the human who must solve fhe problem and creates
the software. Thus we must be careful and more selective of
the tools that are developed and enforceq for it 1is these
which will ultimately determine the quality (if any) of the
end product. This provides a good starting point from which
we may reevaluate the process of software production with

regard to humanistic criteria.
3.2 PARADIGMS OF PROBLEM SOLVING

Programming has been described as being the study of human
problem solving, but at a level which has been relatively.
unexplored by cognitive psychologiss#s [Shne75]). Though this

24

,
4.
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statement has the obvious ring of truth the literature in

computer science has until recently [Shne??,Bfob??J been

relatively devoid - of reference to psychological

investigations within the domain of problem solving.

Probing into these neglected paradigms of problem solving

may yield valuable insights about the psychology ‘of
programming [Shie81,Maye81].

- ?

Psychological theories of problem solving have developed

from both  empirical -and theoretical explorations.

Experimental research has probed heavily into both human and”
animal studies. The techniques used have spanned the entire

gamet of available psychological methodologies, from

passive observation of natural béhavior to active
manipulations of artificial environments. The literature in

the area of cognitive psychol and problem solving is

quite diverse and a thorough neview would be beyond the

scope of this thesis. The ng section 1s a brief
synopsis of four of ‘the more widely accepted theories of

problem solving.

3.2.1 B\EﬁwVIORIST MODEL

This theory was first formulated by Thorndike in 1898
[MayeTT71]. After extensive study of cats in puzzle box
situations he noticed that with increased practice€ the cats

required less time to _escape from the boxes. He concluded
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that the cats were learning on the basis of accidental
successes. The model proceeds under the fundamental
assumption that problem solving 1is strictly a trial and

error process.

The behaviorist model reduces all problem solving situations
into three basic elements:

1) stimulus -'a problem solving situation

2) responses - splutions and general problem

\
solving behavior

3) associations -~ 1links that are formed between them

stimulus and the response
These three elements are combined as follows:

welicits ‘ creates
STIMULUS —-—vceeeee- > RESPONSE «--—ececen- > ASSOCIATION
If a given response ylelds a reward, then the association
between this response and the original stimulus 1is
increased. If no reward is present then the strength of the

link is decreased.

Thorndike believed that this "law of effect" enabled the
_problem solver to create a hierarchy of responses which
could be used ‘in future problem solving situations. The
¥

'model subsumes that the brain acts as a storehouse of

’
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solution hierarchies .which are formed from previous problem
solving episodes. Thus wher similar problems are presented
the subject will likely present the most rewarded response
(highest in hierarchy) first and proceed through gﬁe
hierarchy until a suitable soluﬁion is found. If the
hierarchy does not contain an answer the subject 1is forced

to find new response via trial and error.

Major criticisms of this model concern the fact that it does
l not adequately describe the complexity of human thought
{DaviT3], especially with regards to the~fact that the
model strips the problem solver of the abilig‘§£ to

consciously or deliberately guide the process of problem

-

solving. Another diﬂp{ﬁglty with the behaviourist approach

is that it presumes a great deal of repetition whereas real

world préblems hardly ever are.
3.2.2 RULE ,LEARNING MODEL

This model is baséd on the premise that problem‘ solving is

merely a 5 coniihuous process of hypothesis testing

(Maye77,Davi73]. The hypothesis or "rﬁles" are generated

through 'a classification scheme termed CONCEPT LEARNING.
This process is subdivided into two types of éasks:

\ .
1) concept identification tasks requires thé prob%em
solver to discover reltevant rules for a problem in

gD‘ - - 39 -
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which he already knoqs the., stimulus dimensions
(data objects) |
\2) concepé formation tasks require the problem solver
to discover relevant rules for problems in . which
' he must alse discover the relevant stimulus

-  dimensions.

bl
P

The thinkiné process }equired for concept learn{Pg has been
characterized inton two basic classes of theories. The
first, termed CONTINUITY THEORY, is an extension of the
behaviorist model and claims that the hypotheses to be

tested are derived from response hierarchies. The second,

termed NONCONTINUITY THEORY, claims that concept learning

involves the ability to.induce rules. This implies that - new
% ) ° ‘hypotheses are generated, voluntarily and in a copscious

manner by the problem solver. The gybothesis is tested and
: changed only when it fails to work.

" Although researchers working with rule induction tasks have

amassed an impressive amount of detailed statistics on human
problem solving, they have been criticized [Maye77] because

the research involves. ofly one type of problem solving

| ~ Qsituat;on, hence. ‘results may not be readily applicable to
more general' areas. Another major criticism concerns the
finding that subjects use "rules" in problem solving. Some
psychologists have argued that this is merely an artifact bf
the experimental ﬁethodg}ogy in which the rules are built

A
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insd the task. In'qﬁher wo?ds, if the experimenter devises
a problem situation which_requifes a subject to discover a
rule, it should not be surprising-when the subject discovers

*»

that rule.

3.2.% GESTALT MODEL

The Gestalt approach to, problem solving 1is to view the-

thought process és a‘highly mental activity (CPU bound!).
The theory assumes that the search for solutions 1is
dependent on the problem solver's ability tO'understaﬁd hoﬁ
the parts of a problem can "be made to fit together to
achieve the goal }Méye77,Davi73]. This phenomena is defined
as SERUCTURAL UNDERSTANDING.

S

‘The Gestalt psychologist stresses the concept of

organization and structures. The central idea is that the
structure of the problem should point the wa& to its

solution. ' The actual process of problem solving is

-

perceived as a continual progreésioﬁ of  mental
reorganizations of structures into subjectively more orakred”

components. At some _point in the rearrangement when the

mind achieves structural understanding, the correct solution
is ingtantly revealed. This sudden flash ;s termed
"insight" (often accompanied by the word,“ "AHAI" : Martin
Gardner reported in [MayeT771). |

o ”
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Through observation and introspective analysis Gestalt

‘theorists have proposed a taxonomy for the problem solving

process.  The following 1list -provides a chronological

pérspective of the slowlyoevolving Gestalt views of these

phases [Sack70]. ,

WALLAS (1926) *
® Preparation .

Incubation - N
Illumination
Verification

ROSSMAN (1931)
® Observation of a need or difficulty
Analysis of the need ‘
® Survey of the available information 1
Critical analysis of the proposed sélutions for advantages
and disadvantages
Birth of the new idea, the invention
* Experlmentation to test out the most promising solution:
perfection of the final embodiment by repeating some or
all of the previous steps
;

DEWEY (1938) '

Distributed equilibrium, initiation of inquiry
‘Problem formulation

Hypothesis formulation

Experimental testing

Settled outcome, termination of inquiry

OSBORN (1957)

¥ Orientation: pointing up the problem

Preparation: gathering pertinent data

Analysis: breaking down the relevant material
.Hypothesis: fling up alternatives by way of ideas
Incubation: letting up to invite illumungtion
Synthesis: putting the pieces together
Verification: judging the resultant ideas

The Etages are not mutually exclusive nor are_they strictly.

‘ )
sequential in nature. Since the phases are not distinet it

has been extremely difficult to use experimental techgiqﬁes
. N &
tb quantify both the effort and time required at each stage,

1
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Another basic concept in the Gestalt approacﬁ is that all
problems are not created equal. They claim that problems
can be solved using one of two kinds of thinking, either
PRODUCTIVE or REPRODUCTIVE. The basic distinction between
these is that the first\requires a new organization' to be
developed (creative thought) whereas the latter merely
“ involves reproductioﬁ of behavior performed for past
solutions. These can be iinked to the arguments used for

types of.learning: rote 1learning versus learning through

/

/

Based on this qualiiative distinction in tybes of thought,

understanding.

Gestalt psychologistsfhave also proposed and experimentally

demonstrated the concept of rigidity in the probleﬁ soivingx

set‘[Maye77]. In other words problem solvers often become
FIXAfED on 1inappropriate approaches for deriving a correct
solution. The cause of fixations generally falls within one
of the followinquomains [Scheb63]:
() incor;;;;T;:;;::;\concerning prqblém requirements
2) solution is not within convengional context . |
3) problem 'solver 1is unwilling to take detour which
will delay solution '

\

4) habituation (always attack problem in same way)

e
Fixation is overcome by recognizing that it exists . and by

encouraging shifts the way problems are viewed- and
' e

«
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approached.

Although the deétalt approach has been praised for
recognizing the complexity of human mental éhought processes
as well as)for introducing many provocative ideas, they have
been criticized for‘being too vague. Critics [Maye77] have
also pointed out that the general theory is very subjectije
and hence difficult to test explicitly.

3

3.2.4 INFORMATION - P?OCES§ING‘MODEL

This theoretical model assumes that human thouéht process
functions as an information processing machine. Information
theorists believe that their techniques can be used not only
to describe but @o explain problem solviﬁg‘ [NeweT21. The
theory states that problem solving by humans requires the
execution of Elemental Information Processes (E.I.P.,s) and
that these operations can be simulated on a computer. The
model draws on the fact that the basic human requiremehts
for problem solving have analogous computerized
capabilities. The following 111ustr'}ate_ some of these

fundamental correspondences [Maye7733g

HUMAN ’ " COMPUTER
sensory iﬁput keyboard, tape, disk,
TV camera, touch

. sensitive screens, light
. ” pens, joy sticks

memory: LTM, STM : disk, tape, cards, ROM,

x - 4y - | ;



RAM (core memory)

decision ﬁaking ability preprogrammed decision
' . making criteria (rules)

learning . write into memory

forgetting erase from memory
ialphanumeric printing,
talking, graphing, etc.

output (talking,
writing, drawing)

The goal of the information processing theorist is to reduce -

complex problem solvihg behavior to a set of elementary

'processes. which can be used to either produce, imitate, or

-

duplicate human #hinking. To isolate these EIPs they have
adopted an experimental procedure which involves asking
human subjects to “ solve problems aloud, hence giving a

running description of their thought processes and behavior.

Using a careful analysis of the transcript of the subject's

comments (knqwn as protocols) and through comparison to
other subj;cts, researchers have been able to distinguish
three intrinsic categories of‘internalizea information which
humans draw upon to solve problems [Lind73).
FACTS : knowledge which is instantly available.
Examplé - the multiplication table by which we
can answer questions like what is 4 X 8. ~
ALGORITHMS : sets of rules éhat allow the ﬁser to
automaticqlly generate correct answers.
Example ~ multipliéation rules with which we
can answer’ questions like what is 262 times

27, = o
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HEURISTICS : rules of thumb og general plans of action.
' Example - "estimation rules" with which we may
answer questions like what is the apprdximaté

answer to 262 times 127.

Using these approaches researchers have been able to create
programs which can solve problems in well defined areas,
such as logical proofs and Chess [Newe72), understanding

natural language [Wino77], and many others.

Major criticisms of this theory stem from the fact'that
although computer programs simulate human thinking behavior,
this does not imply that it has simulated tﬁe underlying
cognitive processes. - Thus information processing theorists

should not conclude that they have explained problem
-
o

solving.

3.3 HUMAN PROBLEM SOLVEQ
Having examined these baradigms of problem $olving we can
now turn our attention to those attributes of "mind" which
support the process.  Cognitive psychologists
[Lind?3,$hne77,8h1§82] have labeled the following cognitive
structures as being fundamental to problem solving: Loné

Té%m Memory, Short Term Memory'énd Creativity/Intelligence.

3.3. 1 LONG TERM MEMORY (LTM) Q
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LTM 1is the gtorehouse of our accumulated knowledge. It

provides thﬁﬁ/means with which to extract and utilize:

pertinent and necessary background material. The most
important feature concerning LTM is that it has, for éll

Intents and purposes, infinite volume. LTM memory 1is

capable of organizing [Newe72] "stimuli ‘or patterns of

stimuli, from input channels" into one recognizable symbbl
which whgp/fétfieved represents the entire stimulus. This
phénoﬁenon is called "chunking", and represents the ability
to form links between individual elements. The classic
experiments 1in chunking were demonstrated by the difference
in ability to restore chess configurations between chess
masters and novices [Newe72,Lind73). The masters were often
able to perceive complex patterns as single higher 1level
units thus making retrieval easier than ‘the novice who
N

attempted to remember individual player positions.

Two distinct ‘and unfortunate disadvantages of human memory
are: (1) LTM is prone to partial memory loss (permanent or
temporary), and (2) LTM has comparatively slow and most

often incomplete input into storage.

3.3.2 SHORT TERM MEMORY (STM)

The function of STM can be considered analogous to a scratch
pad. It allows the user to temporarily store 1Iinformation,

currently of value, into an area where it is instantly
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retrievable. It is thought that STM is where manipulations
".and reorganizations are performed, hence this 1is often
associated as the focus of consciousness and reasoning:
"inner voice" [Trac791]. The acoustic property of inner
voice seems to indicate that processing of information 1n
STM proceeds in/ﬁ sequential fashion.
, .

STM suffers from two major disadvantages: (1) the quantity
of newginformation which can be stored and manipulated is
extremely small: (7 +/- 2 'chunks',) and (2) information
retaihed in STM is extremely volatile and will fade if it is

not rehearsed frequently,on the order of once every 20 or 30

seconds.
3.3.5 INTELLIGENCE AND CREATIVITY

Psychologists and philosophers have 1555 struggled with the
defintion of both these terms. Although conceptually easy
to grasp they deal with very abstract, not formally ﬁefined
~and not easily. quantifiable properties. Therefore I will
not venture anything more than the following brief and

purposefully naive definitions:

1) Intelligence represents both the ability and the
facility to process information.o
2) Creativity represents the ability to combine and

~ restructure elements in new and unique (to the
™ .
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These two ‘ch‘aracteristics of the humén problem solver

v

translate into a variety of problem solving techniques .

[Poly65,Lind73, Rubi75]:

FORWARD REASONING

" Conceptually driven approach in which the problem solver

starts at the initial state and slowly evolves a solution by
working forward towards the desired goal, assessing his

progress after each step.

BACKWARD REASONING

Data driven approach 1is one in which the problem solver
studies th(i desired goal and attempts to ! ascertain which
Ssteps must have preceeded it, thus working backwards towards

the initial state.

INSIGHT

As explained ‘earlier insight is noi: an approach but rather
the sudden revelation of a solution which occurs after
havingg spent time studying the details of a problem and

’

performing some mental manipu;ations on the problem.

PROBLEM MATCHING
This template matching scheme involvies the problem solver

remembéring if he has encountered similar problems in the
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past. If he has, then he can use his previous solutions as

guides to solving the current problem.

DIVIDE ang, CONQUER

In this approach the problem solver breaks up a complex
problem into conceptually more manageable sub-problems which
he can solve. These sub-t_:omponerfts are then recombined to

obtain the solution to the initial problem.

TRIAL and ERROR
When the problem solver has not been successful using other
techniques or he has no clue as to how to approach a problem
he can always resort to this technique. This‘involves
tackling the problem any way at all (within reason) hoping
to accidently uncover the solution.
. N
HEURISTICS
This 1involves using a general mode to attack a specific
problem, with the prevailing philosophy that each specific
Plan will probaply but -not always ylield a good solution.

—
Assuming that the human problem sol/v,er/ understands a given
probliem he cannot consistently deliver the "best"™ or even a
"good" solution. For that matter, he may not even be
successful at all. The following are some of the many
obstacles and &ifficulties which can and most often do arise

during a problem solving encounter [Rubi751].
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1) failure to use known information

a)

b)

inadequate organization can result in an
oversight
an overly complex problem model can obscure

relevant details

2) unnecessary constraints imposed on‘ tﬁe requiréd

solution

a)

. b)

c)

Association constraint: concerns the manner in
which elements are viewed to be related.
Example: thinking that a prpbleé must be solved
in 2-D space when the aetué& solutjon exists in
3-D space. l

i

Function constraint: conceﬁns the context 1in
which elements are used. |
Example : not realizing that boxes can support
as well as hold things. a\\

World View constraint: concerns the global
context in _which elements f&nction.

Example : not realizing that a problem can be
solved outside of a self-imposed mathematical

reference frame.

3) inadequate knowledge base

a)
b)

state of the art is not sufficiently advanced
individual is lacking in appropriate training
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4) limited motivation
a) inadequate gratification
b) negative attitudes about achieving solution

c¢) insufficient interest

d) insecurity

\\\\“-~\\\\\“ e) lack of confidence

\\

5) fixated solution "set
a) due to conformity: performs in a specific
manner because he is "told to do it this way*;
or "everyone else does it this way".
b) due toﬂ habit and inertia: "it works so why

éhange".

Thus we have observed that problem solving is a very complex

-

and usually unpredicatable process. Fortunately, however by
having acknowledged that these attributes do exist we have

taken our first step towards improving it.

3.4 PROBLEMS TO PROGRAMS

-
-

e

In chapter two we introduced a popular definition of the

term program to be: the vehicle by” which we Xpress our

Jwishes to a machine. Based -on this definifion the term

"programming"  might be interpreted as: th act of

transferring our wishes to a machine. Although this

definition can and does apply, it is misleading in that ;t
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does - not adequately reflect the ‘essential pnereduisite of
what it is that neéds to be transferred. A more functional
definition of programming might be as follows: a method of
;roblem solving using a medium whose end product allows a
computer to calculate the required answers. Although
seem{ngly‘mofe accurate this definition presents programming
as being fundamentally a uniform and highly complex problem

%

solving continuim.
5.4. 1 ALPHA/BETA PROCESS

We may clarify this ambiguity by viewing programming as a
discontinuous process. Progrém generation can be dissected

into the following two stage sequence:
@

ALPHA ° \
1) Problem ===zz==z==z) Algorithm' : s
| PROCESS
o ' BETA
2) Algorithm ‘===zzz=z=z=z=z=z> Program
PROCESS

Although the two stéps obviously represent problem solving

situations, the type of problems each handles is'somewhat

‘different. We can continue this analysis by isolating

“important features in éach\of the above steps.
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ALPHA PROCESS

a)

b)

BETA
a)

involves establishing a "qofrect" mental model of the
given problem. This requires that .the individual be
capable of performing the following functions
(Lind73,Poly651]:

T)L%pderstand the problem

2) ﬁnderstand the goal

3) understand the conditions imposed

4) understand the data which is given.
creétive manipulation of thej model yie}ding a plan

capable of guiding its wuser to a correct solution.

This requires that the individual be capable of

o

performing the following functions:
1) ?apabie of creating & finite state machine whose
terminal states form the required goal
2) éapable of assessing the logical validity of being
able to achieve these terminal states
PROCESS
involves translating the correct algorithm into a

formally defimed syntax which is executable by a

machine. This requires that the individual be capable

of performing the following functions:

1) understand the finite state machine which
underl;gs the algorithm '
2) know the translation rules

3) know the appropriate syntax A
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,_This\ simplistic model ignores the 1issue that languége

selection can often be part of the original. problem.

The abave separ;tion reveals that problems to program
trensformation 1s not a uniform 'process.”AAlthough both
processes require problem solving skills, there exist .
distinct differenées in both the intelleétual requirements
and intellectuafbenvironment in the two stages. The ALPHA

process is obviously a highly creative human endeavor while

the latter, BETA process, 1is more literal and straight-

forward. In fact these two stages can be considered
representative of the two categories of problens which do

exist [Rubi75]. b

;SYNTHESIS': consists of a statement of an initial state and
" of a desired goal. The major effort is in the
selection of a—solution process to the desired
explicit goal, but for which the process as a
whole, the complete pattern of the solution, is

new to us, even though the individual steps are

B not.

<

ANALYSIS : this consists' of focusing the application of',

known transformation processes to achlieve a
goal. The resultant transformations make clear

‘what was originally obscure or hidden.
- ¢ ‘

3.4.2 PSYCHOLOGY OF PROGRAMMING
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_Recently researchers have begun to model programmer behavior '

[Shie82,Shne79,Broo77]. The research has explored various
experimental tasks such ;/as program construction

[Fitt79,Chry781], ) _rogram comprehension
~

ot

[Sime77,Shne82,Shep81] /4, maintenance ‘ and debugging
[Duns78,5hne77] as w:il ‘as studies on the progrgmmer's
. . ability to acquire new programming skills [Maye79,MéyeB1b].
Results from these. experiment; have demonstrated b& and
large that there does seem to be.spme sort 5f_"qualit1ative"

difference between algorithm composition and algorithm

implementation.

[4

~

Shneiderman [Shne79] « has probbaed .a cognitive model of
programmer behavior’based on syntatic/semantic interactions.

“® ., The model‘ partitions”~ LTM into ,language 1independent
‘?(éemantic) and language dependent (syntatic) cognitive based
structures, Syntatic‘knowledge is precise, detailed and

easily forgotten while semantic knqwledge is less specific,

e deals with higher level concepts and generally is contextual

.0 in nature. Both typeé are acquired and abstracted from

. experience and instruction. ~ Q\

@
- -

!

# g .
. - _ The model suggests that both of these knowledge sets are

tgpped ’in or@gr to create an internal ‘semantic
representation (cognitive model) qf "a given, computational
prooess. 'g;sémangic knowledge 'is " éssential “for 'problémo
iahalysis:’pile syntatic knowled;:\gls useful during 'thé\

& -

- 56 -

On



“
. . ; . .
T ’?.n\ - . :
. , h ' . A
- n

? r ' cqgggg and 1ﬁp1eméngetion phase" [Shne79).. When creating =

. —-7 N .
prdgrpm4’seméntic‘}nformation is brought into play first and , i
then formalized wusing syntatic knowledgee. During program

~ 0

‘comprehension the converse is true.

¥ CN
Shneiderman didlnot propose a cognitive structure for either
semantic or syntatic .knowledge, ‘however he did p&int out ™.

i .
that }hé prog?amm:ej process will be eased when a language's' ¢

syntax' more clo y reflec?!‘internal sem%ptic structures

Other researchers [Broo77 Newl72) have propgsed torqge
that

schema for these knowledge structures. They /Sugg :

T knowledge is stored in. the form of 8 production system: "a
production sYstem consists of a se} of pairs of condifions
and actisns to be performed when the conditions are met"
[Broo771]. ‘ : . : '

5.4.3 COGNITIVE TOOLS

L

* The 1issues discussed above have strong 1mplicasions ;or the
. types of cognitive based tools which should ‘be researched.
For example LTM tools should highlight organisational
»tqchniques which ‘can increase chunking ability, These ‘tools ' ;
should reduce, the effects of -slow input and memory lossy*
through the use of techniques which stress conceptual
S . simplicity. These tools should be d}sighed to allow for
) easier storage and more complete retention.“\\STM//tools _ ﬁh

should also be .directed towards creating an organized <;i
o ' . 5
- -
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envirdnment which is amenable to chunking. This would
permit more complex information to be held locally in STM,
thus enhancing problem solving abilities. Another ‘priority

should Ve -to create external aids which can act as effective

‘//Ldjuncts to the resources of STM, o :

Neurochemistry, biachemistry, and psychology may .someday
provide a technology with which to increase the efficiency

of tﬁe aforementioned human attributes necessary to problem

solving. T{ill then we must accept the fact that humans have

limited mental capabilities. The computer which has beiax

_heralded as a means by which mankind can extend these

intellectual capabilities cannot be expected to occur until

researchers provide appropriate computer based tools to aid
the human in problem solving. Only then will man have taken

a substantive step in his quest for extension of intellect.

w
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Several authors [Broo74,Boeh73] have researched cost

breakdowns ,of typical systems and have reported that actual

. .. ’
implementation of code, on the average, requires only 20% of

the total initial development costs of the software system,

. figure 2.2a.. Given this statistic it might seem rather

misguided that researchers have invested so much time and

effort inve%tigating and de&%loping computer languages. Has.

computer code because of its high visibility (aiﬁsr all it's

what makes everthing go) attracted more then its.fair share

of concern? The answer to this question is an emphatic NO!

The reasoning becomes evident when ‘'we note the following

- J

statisties from figures 2.2a and 2.2b: .

L4

1) testing, debugging, integration and validation .

consumes 40 ‘to 50% of initial development cost.
2) post production maintenance usually incur§ 50 to

> “15% of‘totab costs ineurred during the functional

. 3
lifetime of the system.

v

Since both of the above phases involve actually working with
‘. or changing computer code, we may appreciate why 80 much
energy . has been focused on computer * languages. Not

£
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surprisingly then, the technique‘to be presented, though not
~§estricted to being a .computer 1language |is nevertheless
based on a functional yet 1language 1independant control
construct. Several application§\of the technique, coined
ABL+ have been describeJ elsewhere

-

|
[Jawo82,Horv82,Lebe82,Morg81,Hint82]. ; . @
: l

|

This chapter will fogcus on some of the more fundamental and
] . -not yet documented characteristics of an ABLLapproach to the
pﬁoducéibn and majintenance of software. ParLicular emphasis
will be placed upon ABL's tabular notation, because it is
this feature ‘which most conveniently charaoterizes and

underlies its function and varied capabilities.

4.1 THE ABL CONSTRUCT
t L
’ ABL has only one control structure and it is related to
selection: the KOMPUT. This ' control structure is
illustrated in figure 4.1. The symbol S in figure 4.1
represents an ordered set of zero or more actions. The
circlel leading into each KOMPUT contains a2 number which
represents the cardinality of that specific KOMPUT, known as
-the QLUSTER NUMBER. Each selection path (different decision
) points) is known as an ALTERNATIVE. The circle at the end

. . |

s - — of* each- selection 4pétb contains a value which is used to

\ _ \

+ -Alternative Based Language .

- 60 -
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indicateycontrdl'fldw ordinalify, NEXT CLUSTER. This number

is used/

-

as a controléflow pointer who's purpose is to link

thg,given alternative to a subsequent KOMPUT or to ‘process

terﬁ\néfiog which 1is equated to the cardinal number: ZERO
A

(0).

&

FIGURE 4.1 Structural description of the ABL KOMPUT

Some very

construct

(1

(2)

(3)

I

.. @ . 52

R ~construct

important features to be noted\goncerning the ABL

)

are as follows:

the flow of "control allowed by ABL 1is . not
restricted, -apriori, to the single entry single

exit control flow constraint which is a

requirement' of the structured programming .

‘descipline

each KOMPUT may utilize single or multiple

predicates

the sequence construct is unnecessary.

- 61 =
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Pertaining to the latter statement, we find that the
B -+ -
underlying reason for this is that the KOMPUT construct has

‘embedded within it the properties of the segquence construct.

Therefore, sequence per se as an independent construct is

foreign to ABL.
4.1..1 SUFFICIENT LANGUAGE CONSTRUCTS

It is an accepted~fgct that flowcharts are suited to repre-
senting computer programé. These diagrams are usually con-
structed from'two elemental units (Boeh 66):

kl) Functional type boxes which represent

elementary operations
(2)" Predictive type boxes which permit selection
¢« (conditionals).

Bohm & Jacopini looked at the possibility of combining com-
binations of these elemental units into higher order control
constructs called "base\diagrams". In their classical paper
(Boeh 66) they‘showed that although it is not possible to
decompose all flow diagramsg into a finite number of given
base diagrams, they were able to prove that an equivalent
algorithm could bé constructed from three base. diagrams:
(1) sequeﬁce (2) selection (3) iteration, - These structu;es

later became known as structured control constructs and

- 62 -




formed the basis of structured programming languages.
Figure 4.2 illustrates flowchart diagrams of these three .
constructs and prbvides their strﬂctured programming

li;nguage equivalents.

The theoretical work by Bohm & Jacopini showed that
judicious use of. restrictive control cons£ructs can
enable a reduction of gross structural complexity

(sbaghetti to linear code) without aiminishing global

expressive capabilities.

L

The author believes that thé“KOMPUT can be utilized in
much the same.way as the three structures control
‘cons#ructs.g By changiné the restriction that the construct
be (l1-in, l-out) to (l-in, many-out) we can .replace

the three constructs by the KOMPUT. This in in keeping
with the arg;ment stated earlier that it was not the GOTO
itself which was to ?lame for bad code, rather it was
jumps into ;h% middle of blocks of previously well-bounded

logic that resulted in hopelessly complicated code. '

e

- 62a ~

[P - . Pt e g e i . e s s g e e gt o 43

A e ANy e e

s

ot i o




e o P8 st g

e ety e o

" X =Xl MYe=X ™ Xkl
Yi=X ‘
-
( o IF X<31
! TRUE Y= Y42 THEN
! Y Y 1= Y42
X > ELSE *
Yem¥eX -
' FALSE_ 1Y .u Y+X .
|
‘ +
‘ !
1] ¥
i
WHILE édl [11] ,
X = X-2 ' BESIH ‘
Y := Y43 X = X-2 f
Y = Y43 !
END . ;
- f
REPEAT . ‘
of X 1= X2 TRUE X 1= %-2 f
A Y i= Y43 - Y = Y43
UNTIL X <31
FALSE ‘

FIGURE 4.2 Bohm and Jacopihi control constructs and

Structured programming language equivalents

4.1.2 ?HE KOMPUT: A SUFFICIENT CONSTRUCT

In order ¢to ‘§how that ABL cé%. represent any program )
(recursively enumerable functi;n [(Lew 82]) it is necessary
and sufficient to show its equivalence to the three Bohm and
Jacopini structures. Figure 4.3 illgstrates how ABL can

emulate each of these structures. .

- 63 -

n o ——— vt - . R




C X 1= X+)
© @ Y= x 2o X tm Kol
i Y= X

I

IF X<31
THEN
Y= Y*Z

T

N

Y = Ye2

ELSE
Y =YX

0

£ Yy (% = -
0
__L-®

;

, Jl§ X = X2) WHILE (X <31) DO
Y= Y3 - BEGIN
’ - (® = X-2:
- ‘ Y = Vo3
(F) . EiD
T g ] " REPEAT
& @ LELA L1 I X = X-2:
- ¢ o L H
T : .
, . m ’ | ® WATIL (X<3D)
a ' B [ xe=x2 ‘
! , Y im vz

FIGURE #.3 KOMPUT emulation of the Bohm and Jacopini

control constructs

Some confusion may arise concerning the sequence construct
emulation given above particularly as to why each sépérate

action (x:= x+1 and yi= x) 18 not prefaced by a null

- 64 -
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predicate: a predicate which.is set to TRUE. Th; answér to’
this is that each block is intended to represent a se}ies og
actions. The concatenation of two series of actions yields
one larger ?series of actions which is still represented by
onlx one block of actions. .
Another question which may have been raised concerns why the
iteration construct, repeat - unti;, required that two’

ROMPUTs be used. The reason for this is that with repeat -

until, the sequence of actions within the block is executed

-at least once before the conditional phrase 1is evaluated.

Ther sequence of events :illustrated in figure 4.3 for the
"REPEAT"-type interation requires that the number 2 KO&PUT
prgceed the number 3 KOMPUT: which emulates the function of
the UNTIL‘ conditional. In a more sophi;ticated and
realistic ABL application, the block of actidns associated
with the number 2 KOMPUT, could ﬁaVe been appended to the
ordinal sequence of actions for each pathway connected to
the number 3 KOMPUT.
%,

Figure 4.4a illustrates a Pascal case statement, with its
appropriate flow diagram. It is a popular [Ledg75]
structured programming construct and does not result in a
binary decis;on. "An extension of the standard Pascal case
statement [Ledg75] can be made so as to _allow the
utilizétion of multiple conditionals. The flowchart in
figure 4.4b demonstrates that the skeletal structure of this
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extended case statement 1is unchanged from the original.
Figure 4.4c i1illustrates a simple exapple of the *extended
case and its co}responding flow diagram. A flowchart

demonstrating how it functid&; is 1llustrated in figure

y.4d. By altering the control flow so that it no longer

exhibits the one-out property, as shown in figure U.le we

realize that this is functionally equivalent to the KOMPUT
. * ' . N

construct illustrated in figure 4.1.

N $; F—
CASE (PREDJCATE) OF
CORDITION 1 : 51: Sy - ;‘
CONDITION 2 : 52: - — ’ L 2
2) o ) . A
. ' [ ]
_ . . 3 * ,
CONDITION N : SN3
) ma . ‘ ) .o s“ > . I '
$1 —-

CASE (PlaPZ: ‘e ’PN) DF 1
CIICZL‘.Q' Oc" : sl: ) A IV : - _A sz L .

b)

cllcza sae 'CN : S“: N
END: ” .
’ L

~t

Y

| . - ,
FIGURE 4.4a Pascal case statement with flow diagram
4.4b Extended Pascal' case with flow diagram °
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4.2 GUARDED COMMANDS

~formal syntax of program expression which wgpl& be highly'

constructs seem very awkward however it is improper to use
these emulations as "the" benchmark for the capabilz)ies of
the KOMPUT. The KOMPUT is intended for use in a different

purpose other then for the eleéant emul ation of functignally '

inferior eohtrql constructs [LedsTS,Fanc?@]. The precgeding
arguments have presented the ABL construct and a Eationale
gf its suitability as g‘ programming. language eqﬁivalent:
Hence, it should be apparent that the ABL construct although
different cah be viewed as 'é non radical "departure from

standard programming language éonstfucts.

Théleondept of Guarded commands was put forward to provide a
Ly ' .

amenable to a Calculus: "axiomatic definiiion of pgogrammihg

language semantics via predicate transforms" [Dijk75]. The

¢

3

e

f gwre-u.S.l .

-

N -

As an example let us consider-the progyam répveépnted By the _

foXlowing three Gdarded Commands:. .

(1) L ifAD> B-=> M= X; X iz Y; I 1+ 1; i,
2y 1f A<= C--> M= Y5 ¥ = X5 fi. .
T3 ifc>B - Y K T = 1+ 1; £l

—
. - 67 -

These KOMPUT based 1mp1ementations'of~struetured programming‘

sax of a subset of the Guarded Command is presented in,
R .
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c)

d)

e

v ‘ 4, yd Fidwqhart equivalent of /cése statement
® S \ | in figure 4.4c"

. . ] U.4e Extended case . without the "one-?ut"

restriction
o e
) Peg . 3 \ .
- . The terms "if" and "fi" ‘s uséd to denote tﬁg;légical bounds
" R
. . .

e)

CASE ((C=R). (V=])) OF
TT:ss £

T.F: Y
F.T: 33:

~END: .

>

1.1

=0

: S /

" i
w

FIGURE 4.l4c Example bf extended case with flow diagram
‘o [4
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sape strategy appliés to al€ other Guardedfﬁom@andsu

A \

.of a Guarded Command. , - ' o Bt

l\
’ . N
< GUARDED COMMAND > ::= < GUARDD> < GUARD LIST >

<GUARD> - Ad EXPRESSION

<GUARDED LIST> ii= <STATEMENT> {: <STATEENT>} =

\

© CSTATEMENT > :i= <ASSIGIMENT\ STATEMENT > | < PROCEDURL '
CCALLS> | <'FUNCTION CALLS >

b .
2 C
 FIGURE 4.5 BNF description of a subset of Dijkstra's

guarded command

H

» f ! & PR g s
The function of a;ﬁﬁarded Command .is -reélatively .straight
H . : \

, forward The ,statement 1list of each Guarded Command is

executed only if/the appropriate guard 1is satisfied. ¢ The

:guarded list -is the set of actions which follows %he symbol ¢

"o “. Thus in command 2 if the guard, (a <= ), is true.

then the actiods: m := y ;ry i= x, will be executed. The

1

v

»

4.2.1 TABULAR NOTATION

‘

. . o . M S
As an introduction to generai'tabular format, figure 4.6 ¢

111ustrate§ how the ‘£hree Guarded Commands given above woulg,

Be expressed as a table. XQmigu;e 4.6 should.notﬁye viewed

I

as afunctlonal decxsxon‘%able, but rather generic precursor

of the ABL fprmat. *

L. AN
Each 6Guarded Command q% represented by a single'column in
4 - : . ; . . .
e table. Relevant predicates for each Guarded Command
4 ~ . . « , ' 2 .
1ﬁd§ca:ed'by eithér a "Y" or "N" placéd in the row next to

-

~ ‘ * ’ h L
‘ . ../9’..
o : . L
‘ 4

N
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. 4 3
\ | | ,
. | o / \
. . n @ G .
) ‘ . - PREDICATES o ' v \F’/(
: »  A>B Yy - - ‘ :
, ' . A<=¢( - Y -
/’B ' ) C>B - - Y ,
, . | ¥ . ,
ACTIONS ‘ . - .
« & o ' oH:'X"s 1’, -, - N . J
M:=Y T - 1 -
1= |41 v 3 - 2 C.
X:-¥ 2 C— - s
Y= X o= e 2 1

. . ' FIGURE 4.6 Tabular form of guarded commands

Vi . ;,
the appropriate prédicete. This wculd also indicate whether
o the guard required a TRUE or a FALSE fesponse, in order to

be satisfied. A hyphen now' indiaetes that the corresponding

.predicate 1s not relevant to the given Guarded Command. For

example, from column 2 we can deduce that the predicateS'-A

o

&
> Band C > A, arefnet relevant and that the predicate A <=7

| B is relevant ‘#nd requires aeTRUE response. ",
s g . . Ee .-ﬂ
. s ' ’ I[ - . ‘v
The g¢orresponding set qf‘acfions to be performed for each
M (4] > ’ ‘ ) )

guard, and the sequence in which they are to b fexecuted, is

. . .
. indicated by . the .integer value in the row of Yhe required

."action. A hyphen in the column opposite an action would -

’ ¢
.~ - indicate that the action is §not to be performed. ‘For

=

; example, in column 1, when the guard is satisﬁded, (4 > B)

v is TBﬁE, then the sequence of actions to be exectued is as .

7

follows: M:_x, X:=Y and I:=I+1. T " Co Fc

"o - 70 -
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4.3 ABL TABULAR NOTATION N

. 5 X
The ABL table form is not vastly different from the tabular

'notation presented in figure H}G. It ;ncludesighg addition
P

‘of a matrix called CLUSTER, as well as a vector called NEXT.
These four gections consisting of a CLUSTER matrix, a
PREDICATE matrix, an ACTION matrix and a NEXT geo%or serve:

as a structural tempiate " for any ABL algorithm

\

TQe ABL
structural template is illustrated in figure 4.7. The only
~nquantitative 1limitation as to the number of permissible
clusters, predicates or actions are those imposed by actual

Physical constraints such as page size and other machine

¥

dependant restrictions. However, it 1is advisable for
. : -\ ",
féisons of’ "intellectual manageability" BDijk72,Fros75] that
ABL algorithms occupy no more than & single page.
¢

Before dﬁgcribing.these structures in more detail, we may
‘ ot

profit by noting the following definitions:

~ ]
)

Logical "Structure : is '}he user's view of the wa& in which

glementé' are . perceived to be

functidniné. T

u

. L7 e T , i .
Logical’ Unit : is the user's view of the way'fn which
ALTERNATIVES should be combined to form' .

~a functional set. In other words a set

of élternhtives which the user beliéves

* . will form a useful decision point.
» . A d ‘
- 71 - :
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CLUSTER

PREDICATE
e
P2
P3

P’\‘:

ACTIONS '
-.,
]
b |

. N
NEXT A L L .- n

! '
ASSUMPTION: D < i <= n

" Each altermative cln oily

' nlong to 1 cluster.
FIGURE 4. 7 ABL structurasal template ~.
- - (‘
4.3.1 ALTERNATIVES .

Each "of the columns 1n the AEL table is referred
i
ALTERNATIVE This tgrm is intended to reflect a

—theme behind“~ABL, that being, thét at any given

o
¢

- 72 -
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(decision point) we have th option to choose from several

different péths, hence the term alternatives.

CALTERNATIVED :i= <CLUSTER NUMBERD>  <CGUARDED COMMANDD  <NEXT VALUE>

<CLUSTER NUMBER> ::= CARDINALITY OF THE CLUSTER (KOMPUT)

S

<GUARDED COMMAND>> ::= AS PER DIJKSTRA'S GUARDED COMMAND

~

! FIGURE 4.8 BNF description of the }ogicql structure of

an alternative - |

i structure” of alterqg%ives. ¢ From this BNF it should be

¥

quite evident, at least at the functional 1level, that ABL

and Guarded Commands are generically relatéd.

~ -

4.3.2 CLUSTERS - ,
" The purpose of the cluster is to deliniatel.wh;eh
alternatives are to-be used to form a "logical wunit". In
| ) . ,
i ¥ ‘other words it groups together alternatives which the
! e
' program designer feels will best convey a meaningful 1local

decision. Each of these 1in turn will contribute to a

w

. clearer global view of the automata used teo _execute the

L required progéss. Sy

. o S - 173 -

<NEXT VALUED> ::= CONTROL FLOW POINTER TO SUBSEQUENT CLUSTER (KOMPUT) "

Figure 4.8 presents the .BNF description of the "logical




«

The cluster matrix is used as a visual indicatam of which
I . _ “ alternaiives are to be evaluated as a  single unit.¢ Each
w@ C@USTER need not be, nor is it recommended Phat it be
‘ . ¢ binaﬁy. Two or more predicates ﬁay be used 1in conjunction

to express the required 'logic at @& particular decision

point.

4.3.3 NEXT CLUSTER

| The ;ffect of the NEXT ve&tor is to connect the control flow

from each alternative, to the next cluster to bé executed.
ot A small yet typical ABL table is presented in figure 4.9.
This particular table is the ABL representation of a Binary
¢ Sgarch algorithﬁ. Specfal :Zte shou}d be made of the fagt
that for this example no structured dggumentation has been

iy N included. Thus in figure h.é if we hzﬁ’just compleipd the
sequence of actions associated with t

e guard [ test value >
middle ) equal TRUE in ciuster 3, then the subsequent
decision point would be cluster: 2. As in the KOMPUT

-~ \
description, a next value ,of 0 means that we terminate

execution of the current ABL Table.
) . ,

A ' ' . 2
i 4.4 ABL FLOW GRAPHS

# Current flowchart techniques are ineffective for properly

expressing control flow of an ABL table. However, we can

borrow from discrete mathematics the concept of@digeeted

A3
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C1
c2
¥ C3

: =- P1
% P2
. P3

A1
-A8
AT
A6
A5
A2
A3
A4

‘ NEXT

_ FIGURE 4.9 ABL tabular representation of the Binary Search

i R t

¢ =PROGRAM- . 1§A-MACHINE-

. » <

1
2
3
y
2

v Vv

® ® ® 8 ¢ & wb e
*® 8 & & & wa

o
o

-«

c.<o
<t

Sar .

P1 iEST_VALUE = LIST[MIDDLE]
TEST_VALUE > LIST[MIDDLE]
TOP <= BOTTOM

2| =
1 =<
21
o
w R

A1 TOP := MAX

A8 FOUND := FALSE

AT FOUND := TRUE

A6 BOTTOM := MIDDLE

A5 TOP := MIDDLE

A2 BOTTOM :=

A3 READ(TEST_VALUE) .
MIDDLE := (TOP + BOTTOM) DIV

A & ¢ ¢ ¢ ¢ o o o
N NDe ¢ ¢ are o @
\‘«
N NDe o cas s s o
>
3

o

algbrithm * ' .

j ] flow graphs to represent ABL control flow. ,To create ABL

! : ALTERNATIVES

adhered too:

CLUSTER

CLUBTER NUMBER

NEXT

directed flow graphs, the followfng descripfions need to be

]

: represented as nodes

: represented as a number contained
within each of the depicted nodes

: repreéented'as directed arecs

: represented as the nodg_to which the

directed arcs connect too.

- In situations where the NEXT cluster value 1is zero, ‘then the

arcs would connect to terminal nodes which are represented

n. .
- T5 -
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as darkened nodes. It is impbrtant to note that the basic
elements of the ABL flow graph closely resemble the listed .
BNF syntax definition of the ldgical structure of
alternatives. In the flow graph each alternative %s
representéd as a node, an arc and an arrow, these corrésgond

to the terms ' CLUSTER, GUARDED COMMAND and NEXT value

Pl
S
. CLUSTER NEXT

NUMBER CLUSTER
«apIGURE 4.10 Fowgraph representation of an Alternative

respectively, figure 4.10. PThé directed flowgraph for the '
binary search algorithm presented in figure 4.9 is
111ustratg9 in figure §.11a. For purposes ;f comparison the
skeletal structure using KOMPUTs 1is presented in figure
4.11b. The primary purpose of the flow graph is to provide
a compact visual representation of possible dontrol flows
through an algorithm., As such, the amount of additional
information which can be piaced +on the flow g;aph\ig\(
somewhat arbitrary. For example in figure 13b, I haQe adbed .

the requisite.guard elements and the cgrressponding ordered

sequence of actions for each alternative.

£)5 ABL INTERPRETER L |
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FIGURE 4.11a KOMPUT structural description of the Binary
Search algorithm

o , L1 INITIALIZE

e _ "HO SUCCESS® )

b 2.2 TESTVALUE = LIST (MIDDLE)
S "SUCEESS”

S

~ 2.3 TESTVALUE <> LIST (MIDDLE)

z TOP > BOTTOM -

]
! o
; : ' 2.1/f0p <= BOTTON

N _ 3.1 TEST.VALWE > LIST (MIDNLE)

C R 3.2 TESTVALE <= LIST (NIDDLE)

Tl ! - 4 -
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FIGURE 4.11b Flowgraph representation of Binary Search
l algorithm
}
Execution of an ABL program can be accomplished using the
algorithm described in figure 4.,12a and whose flow graph 1is
illustrated 1in figure 4.12b. 'This interpreter model makes
two fundamental assumptions about any ABL algorithm to Dbe

executed by 1t. These assumptions have been made solely for

the purpose of keeping the modelled interpretei‘ as

simple as possible, not because of any deficiency in the

general ABL model: x
1) Each CLUSTER must be complete: no missing rules.

2) Nondeterminism is not allowed.
4,6 ABL PROGRAM PARTITIONS ‘ !

So far we have dealt with ABI: _by "describing and defining
distinct partitions within a standard ABL table. This
tabul ar approach, however is only one of many‘ currently
available repr‘-esentations of an ABL program. The intrinsic
‘characteristics and ‘ strjengths of the ABL approach are

derived from an even higher order partition of an ABL

PROGRAM into: ABSTRACT PROGRAM and ABSTRACT MACHINE.

An ABL Program is the functional entity created by mapping

an’ appropriate Abstract Program unto an Abstract Machine.
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CLUSTER 1 IMITIALIZE . o o

14

1.1 GUARD IS SET TO TRUE
-~ CURRENT_CLUSTER = 1 @
- ALTERVATIVE SET = ALTERMATIVESIN CURRENT_CLURER
-~ PROCEED 10 CLUSTER 2

CLUSTER 2  SELECT AW ALTERNATIVE FROM ALTERUATIVE SET

2.1 GUARD CONDITIONS MATCH PREDICATE STATES
THUS AN “0PEH GUARD"
-- EXECUTE APPROPRIATE ACTIONS )
-~ CURRENT_CLUSTER = HEXT_CLUSTER
=~ PROCEED'TO CLUSTER 3 ‘ Lo K

2.2 GUARD COUDITIONS DO NOT MATCH PREDICATE . %%
STATES THUS “CLOSED GUARD” ' K
-~ DELETE CURRENT_ALTERNATIVE FROW ALTERHATIVE_SET
-~ PROCEED TO CLUSTER 2

CLUSTER 3 EVALUATE.THE EXECUTION STATE OF INTERPRETER
3.1 CURRENT_CLUSTER = 0 °
-- TERHINATE EXECUTION
3.2 CURRENT_CLUSTER <>0

-~ ALTERNATIVE SET = ALTERMATIVES IN EURRENT | ELUSTER
-~ PROCEED TO CLUSTER 2

(a) (b) b 4
»
FIGURE 4.12a Algorithm . for an ABL interpreter

., 12b Flowgraph of the algorithm in 4.12a

=

|

An Abstract Program i‘s defined to be the control flbw part
of an ABL Program, whereas an Ab‘stract Machine is defined to
be the statement part# of an ABL Progﬂe:ﬂ. Figure 4.13
illustrates the ‘concept of an ABL PROGRAM using BNF

-~

notation.

* Actions and Prgdicates
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, <ABL PROGRMM> ::

<ABSTRACT PROGRAM>
MAPPED ONTO

.

'<ABSTM$T£HACHINE>
ABSTRACT PROGRAM > ::=  MATRIX REPRESENTATION.OF CONTROL FLOW

<ABSTRACT MACHINED> = SET OF <PREDICATES>
SET OF <ACTIONS>

<PREDICATESS ;3= BOOLEAN EXPRESSIOH

o ’ / ‘
7 <ACTIONS> :i=  STATEMENT (As PER DIUKSTRA)' '

¥

FIGURE 4.13 BNF description of an ABL program

The immediate implications of this partition is that both

-Abstract Machines/Programs can be treated as different forms

of data and as such can be manipulated with relative -ease.

Software based on conventional‘programming'languaggé haye
global control flows which are determined as the sum of the
implicit control flows of the language construdts used, the
end result of which are extremely static and inflexible
programs. Tﬁis is obvious from thg fact that almost any

program change will alt;r its control flow. ABL on the

.other hand does not suffer from this problem because control

flow is explicitly rather'than implicitly defined.

\

A’second important feature concerning the above ABL Program
definition is that a number of Abstract Programs can be

mapped unto a single Abstract Machine. Other conseque&pes

“and advantages of the ABL program partition will become

.
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" apparent as this thesis progresses.
. N . ‘I ) ) f
Figure- 414 il1lustrates the :binary search a‘lgorithmi from . I

figure 4.9 in the form of an Abstract Machine and ar
Abstract Program. The Abstract Progfém is displayed in a
compact row form which ,corresponds "to the following

.convention:
\

e
CLUSTER NUMBER/PREDICATE NUMBERS/ACTION NUMBEﬁS/NEXT,CLUSTBR

(a) the predicate and action sections may be left blank and

_are considered to be null predicate list, null action

1list respectively. A ‘ ' -
EXAMPLE \
3/ /3,4,2/% inull predicate 1ist)
3/2,3/'/3 ‘(null action list)

(b) predicate number3 may be preceeded by a negative s
which implies éhat a false response to that predicate isy
N required.
? EXAMPLE - ' \ ' ,‘ ,
' 2/-1,3,-4/2,1,5/0
pré&icate 1 and 4 must be false

"and predicate’3 must be true in

. ~ order to satis y the guard ’ .
~ #4.7 ABL PHILOSOPHY )
‘ “ . o . 7 R
' e . / R
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PREDICATES ) g ’ %
y Pl TEST_VALUE = LIST (M1DDLE) ) . ;
s P2 TEST_VALUE > LIST (MipDLE) ' L
P3  ToP< = BOTTOM . i‘
ACTIONS ;;3;;,3 G - f
. Al Top i max ' . 21,-3/710 |
’ R BoTION = MIN 1.3/ 3 . " :
A3 READ (TEST_VALUE) . 3/2/6.4/2 . S .
Al miDDLE := (TOP+BOTTOM) DIV 2 3/-2/5.472 e
. AS  TOP := MIDDLE
A6 BOTTOM :™ MIDDLE T ’ ) ‘
A7 FOUND:™ TRUE ! ‘ o ‘4
A8 ;, FOUND:™ FALSE A - ( . ‘
n -

1 ¢
i . ' °

.
/) - . . “ ]

FTGURE 4.14 Abstract Machine and Abstract Program of = - s
: algor;thﬁ from

The definition of an ABL program as set out above is :

the Binary® Search

figure 4.9

s

inténded to be 1language ‘1ndepgnden% ~and , hence will

, i ;
accomodate "both machine executable and human interpretable

stétements._ This allows ABL pfggrams to be written ‘at  any

{ -

level of abstraction: natg}al languageé to microcode

I's

- o ° » o
[Lina82]. To aid in the logical. construction and

‘maintenance of ABL programs we propose a general question

and answer methodology. The underlying philosophy of this

. .% :
.methodology is to induce the user to fdbus his attentiop, ' ﬁ&\,

3 ~ « ')‘}:'

increase his awareness ~of relevant’ factors andr help- to

systematicall& organize important piecg; & ”informaifon N
[Ross77a,77b,Neiv79]. E . L '
L oo "‘1\/' ,
- @
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, builder to answer. the following %Bestibns?(

hhén designing an ABL rprogram each apluster requires the

’s : . A
. -
N ‘

- - - -

7 ‘1(1

;o (1) where did I come from? ' :
" (2) Why am I here? \ : :
(3) What will I do?

(4) Where will I go?
iy :

These four questions are geared primarily at %he cluster
and/or the alternative levels. Figure y, 1% illustrates how
ABL components may be involved whep answering the 4
Quegt;ons. Each question need not be answered fully ‘before

proceeding to the next, in fact they should be considered

eoncurrently. Partial responses create a skeleton on which'

to build successively more complete answers. The purpose of

the questions is to guidé not to "force".

- C
©
ALTERNATIVE | - CLUSTER
WHERE DID | g&ﬂg%n‘} - % .
T i .
Y 3 MR * | %
. WHAT elx'ff.q“éoz 1 ¥
S QUEST ION -
~‘) 4 . unsns WILL | 60 p .

A

,SFIGURE.4.15 Table showing the relationship of the FOUR

i

& . Questions t© ABL structural components

¢ ’
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.Question 1: WHERE DID I COME FROM?

Ld

- This’ . question is  intended to remind the

-«

anaiyst/designer/programmer of the state which éxisted‘priof‘
to the\current‘ one.’ This is an attempt to create an
association between the two clusters and hence reestablish ‘
tﬁe enviroﬁment which led to the preseni decision" point.
\

'Question 2: WHY AM I HERE? -

‘This duestidn' is néctually intended to answer two more
specific. questions: (1) What is the purpose of the current
Cluster within the context of the algorithm (2) Which
alternativ§5e will I need to fulfill the requirements of the
Cluster? To answer these questions the user is required to
ascertain not only the usefulness of the decision point but
also to adequately delinate the possible Alternatives. The
latter also requires the user to determine the exact
predicate(s) necessary to enforce appropriate selection of

the given alternatives. '

Question 3: WHAT WILL I DO?

This. question is an\ggtension and refinement of the previous
question. 1Its purpose is to force the user to re-think his
set of Alternatives and to supply the consequeﬂces (actions)
which need to be executed shoyfd the appropriate guards be
satisfied.

Question 4: WHERE WILL I GO?
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An@wering;th{; question should cause the user to extrapolate~

his train of thought for each’ alternative  to the 'next

logical decigion point.’
¢ (

The"host obviouspcharacteristics from aﬁong thésg'QUestions
is that there is a fair amount of overlap in their scope.
This Fedundancy is intended to be the means by whiéh‘to
clarify and establish meanin&ful problem ,partitions.
Compelling the user \to constantly review and justify his
reasoning helps the user overcome humén limitations of

short term"memory by establishing Ciuster and Alterngtive

"chunks". Since these chunks are more easily handled b& the

human problem solver, by repetitively anéwering each of the

questions’ the usér can form a progressively more complete

"conceptual understanding" of: the algorithm, individual

clusters, as well as the alternatives within each cluster.
— y

f
/

4.8 CHAPTER REVIEW Y | | , .

ht tﬁe beginning of the chapter it was stated that there was
reason to account for why researchers have devoted so much
in both time and resources towards ‘developing "good"
computer languages. Howevgr, we are sl}ghtly hard essed
to provide justification as ¢to why‘ there was so0 méch
redundancy in effort and consequently in the number of
computer languageé. Does the mere fact that a language can

exist mean that it should? The answer is obviously no, but

» . —

)

. ' - 85 -
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the multitude of available languages indicates that perhaps

1 24

researChel”S)( are answering yes., .
v & : <
e ) !

In this chapter, {t was shown that ABL could duplicate all "

1

of the control constructs required of a structured ~
‘programming lbngqgge. With extensions sugh as éata
declarations and procedure calls ABL will implement a fully
functional computér languagé [Lew 82]. However, now that we

have built the foundation for yet anogheﬂ&computer language, N
does this justify i1ts creation? Criteria\pertinent to this

question will be elaborated on in the next chébbef;

‘Over a decade dfter the computing community realized that it.

) L.

was® in the midst of a software crisis, we must concede that
it still exists. Tﬁe most<publiéized attempt to curb the
symptoms of the sofé@aré'crisis has beén through the use of |
\tﬁe Structured Programming Metho&ology. Although  much
effort has gone into creating "the" sérucbured programming
language none has yet proved itself to be outstanding. In
f;ct there 1s as yet no general concensug, as to the
’fundamental set of control constructs which a 1language 1is
expected to possess. It is not sufficient to assume that
language has been the sole factor responsible for the .
software crisis, hence it is not sufficient to propose
.merely a new language. 'Thu; with this in mind the following

chapter will criticaily address the issue of software

production from the general perspective of methodological

.
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CHAPTER 5

. <
~

AN ABL APPROACH' TO SOFT*ARB TECHNOLOGY *

- .

The @Uccess of both the Structured Programming Methééoloky
and: the Software Lifecyle Methodology ;an be attributed, at
least in part to the fact  that tﬁgy acknowlnged man's.
individualistic and multifaceted approach to program&iﬁg,'
Résearchers have\attempted‘to curb problems related to and
arising from these human‘ charactefisticf by 1imposing
restrictions on the way software was produced and
maintgined. It was hoped that these techniques would
introduce consistency 'to programming style thereby also:
increase productivity levéls. Unfortunately, although the
rate of software production and software quality tare both
significantly high?r then they were‘[Bbeh73],"they have not

yet attained levels which"can be considered adequate

[Boeh79,Bran81].

(a4

An important and surprising finding is the fact that even‘

though experimental observation has shown  Structured

Programming Methodology to be relatively effective, it has JW
) .

not been readily accepted by industry [Holt77]. Holton
states that this may be related to the more significant
problem o% morale; when Structured Programming Methodology
is used productivity usuall? goes up but morale does not.

. : ) .
. : \
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This finding seems to {ndicate that perhaPs not enough time
and effort has yet been expended on humanigtic aSpegts of

programming [Wein71]. This 1latter phrase is intended te
~ . » -

encompass those attributes which are essential . to human- -

"problem solving skills (with which we can create algorithms)
4 -~
as well as for the subsequent <+ransformation of these

algorithms into viable bieces of computer software.
Thi; chapter will study three rather broad areas of current
programming systems which researchers have pointed dﬁt as
2. R
being, deficient: tools, documentation and software
\\ \\
developﬁrnt environments. Particular interest will be

placed on those factors which deter from human programming

needs.
5.1 SOFTWARE TOOLS

'The introduction of software methodologies prompted strong
interest' in developing tools to aid software personnel at
each of the different phases of the software 1lifecycle.
Laubber [Laub82] 1lists the following general criteria for
defining softwWare tools. ‘

A software éool should:

(1) make use of the computer to design/develop/maintain

software

(2) aid communication among and betweenlﬁhe different

- 89 -




. groups involved ' in a .“software 'pr'oject
(users/managers/technical staff)
& . N .
'(3) facilitate understanding' and/or use of the software

.. 8ystem

¥

€u> facilitate ‘quality assurance/control as well as

-,

promote project management.

three types:

COGNITIVE TOOLS
The pm;}\{)ose of this type \of tool 1is to provide problem
sp\lving \ support y enhancing the intellgctual cépabilit:'ies
of the developers. This would include any- technique whifch
allows for a more effecient transition of problems to
algorithms. The more lmportant areas amenable ;c.'c: cognitive
tools were discussed in the chapter 3: organization, focus,

Y}

methodology.

N
AUGMENTATIVE TOOLS

These are used to augment the efficiency of the developer.
They allow users to work faster and more efficiently by

7 , ,
automating tedious activities. Examples of Augmentative

“tools would include tools such as automatic documentation

generators, dptimizing compilers, automated program proofs,

symbolic execution, ete.
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NOTATIONAL TOOLS

These are “languagesJ and othegﬁhgeans of expressing
) . v .

information evolving during ~development" [Laub82].

Notational tools .have numerous applications and are widegly

!ped throughout the 1nformation processing Spectrum. These

.tools can vary ‘from the informal, imprecise and ambiguous

" (natural 1languages) to very strict formal and precise .

notation (programm{ng languages) .

{

S INFORMAL ~=esccccmccccncacnana F ORMAL h

(for humans) (for machines)
The above categories are not mutually exclusive, the
introdyction of any new tool will be expected to have
" numerous repercussions through each of the above classes.

For example, a new notational ﬁool may enhance intellectual

capabilities while at the same time be ineffective® as an

-

augmentative toé;.

-5.1.1 NON INTEGRATED TOOLS
B ' )

The number of tools has grown quickly, especially with the
introduction of iﬁteractive computing and the software
}ifecycle {Howd82]. This has cqgated a situatioﬁ%similar Fo
that which occurred with the introduction of high level
languages. There exists, a large collectioq of tools but
most of which are only locally successful: specific to'the
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"In order to decrease this overhead computer scientists have

, o |
egviropment for which the tool was generated .[Bafngol.
Reasons fof failure include thes fact that most tools are
either not portable, provide ,9n1y"ﬁodest results, are
incompatible or are simply poorly engineered for humans (not

Uiser friendly) [Evan82].

Researchers have asapmed, perhaps a bit naively, that given.

adequate tools data processing personnel would use them
extensive}y. This subsumes a rather idealistic view of
human naiure, wherein people will go out of their way to
find the "best™ golution. In reality while a myriad of
different tools exist only a few are ever used extensively

let a%one synergistically.

5.1.2 INTEGRATED TOOLS “

Software designers have collectively been gullty " of "’

overlooking one very basic and important factor in the

psychology of human behavior, that being : any shaped .

response will extinguish 1f insufficient reinforcemeht is

presented. If use of a given software tool ( shaped

response) requires a great deal of overhead for little gain
(reinforcement) then the user's enthusiasm for using the

.

technique will quickly ebb away (extinguish).

a

recently proposed a new approach(~ known as "programming

L
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environmentﬂ';: to complement current software development
methodologies [Bra681]. ‘This is an_Jattempt to 1increase
enthusiasm and promote more e{fe?fiven tool wusage by
decreasiné the 6verhead fof their‘use The core of -this
approach consists of an integrated )tools gystem, which 05n
be further subdivided into the Toolbox and the Development
Support System (DSS) approéches. "A develement supp?rt
System ié a collection of iqdividual tools appropria%ely
interfaced, with a wuser front end  and ~an underlying
database. With a toolbox, the ensemble of tools, the tool
épplication and the tool output must be moré directly

managed by the user" [Bran81i].

Y
L

The toolbox is more easily assembled but 1is considered
infericor to thé DSS. The problem with a simple coylectlon
of tools is tQat‘it places a great deal of responsibility oﬁ
the .user _to properly coordinate tool usage. The toolbox
approaches also suffer from the problem of inflexible
development methodology. In other words, the tool
ehvironment*pay impose a fixedm énd complex structure of
interconnected tools, allowing for the pdssibiliﬁy to create
convoluted protocols such as: "to use tool A, you must first
use tool B, andxthq output from A is always processed by C
and D unless there is input from E" [ﬁodeZ]. This rigidity
constrains ‘the wuser and wiil likely deter him from making
further use of those tools which.are merely beneficial and

o

not absolutely essential.
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The #SS on the other hand provides for a.more'fiexible and
1é§s constricted environment thus being more conduclve to
extensive tool usage. The ‘most gmportant feature of the DSS
is the fact thai all tools and facilittes work on - a common

data object. This provides a medium by which to interface

-tools without forcing them into complex interrelationships.

Use of this database épproach also reduces the problems of

inconsistencies and synchronizations which can occur as a

-

N o . .
result of needing multiple copiPes of the same data forluse

with different tools. . ’

R

5.1.3 ABL/DSS AN INTEGRATED TOQGLS APPROACH + ~— ~— 7
~ .

The basic features of ABL: sufficient control construct,

language 1independence and tabular template are flexible

enough to accomodate the requirements of a development

-

support systgml Figure 5.1 1illustrates the general

configuration of a hypothetical ABL/DSS. This system would

.provide a set of tools for generating, manipulating and

integrating both the algorithm process and its computational
descriptidns. The assumption made. is, that access

to both tools and data is properly and adequately regulated.

A Relational data base approach seems“to be a natural data
model for Phis system. Earlier it ‘was stated that the
tabular format is what underlies ABL's .functional
cﬁaracteristics. The Relational data model does not détract

e
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FIGURE 5.1 Configuration of Hypothetical ABL/DSS °
. - .

—

(. - -

*but rather compfements these features. The reason for this

-~ {8 that the ,entities —and “associations in the Relational-

database a}e represented in a single uniform manner, namely
v

¢ in.the forp of tables [Date771.

Vs

- /
The data base would act primarily as a repository of

Abstract Programs and Abstract Machinesi The data

dictionary would keep traeck of allowable mappings'between‘
F ‘ ) ) *

these individual entities. Plausible relational gchemas for

the Abstrdet Program/Machine are as follows:

L]

2

ABSTRACT ' MACHINE RELATION: Each tuple Qrow}-in the relation
‘illustratéd in figure 5.2 is equivalent to an atomic element
“from the Abstract Machine. The attributes (columns) pf the

relation consist of the following: class of statement ('A

for action, 'P} for prediéate), statement number (intgger'~

representing cardinality of the statement) and a brbgram

-

.\:
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statement (as defined in chapter 4).

] 1 "BOOLEAN EXPRESSION"
P 2 +"BOOLEAN EXPRESSION” |
N *BOOLEAN EXPRESSION”
A LI "STATEMENT"
A 2 "STATEMENT”
g ' A N . "STATEMENT"
1 .
. ‘ TEXT,

STATEMENT IDENTIFIER
CLASS OF STATEMENT (PREDICATE OR ACTION)

" FIGURE 5.2 Relation Abstract Machine
: )
ABSTRACT PROGRAM RELATION: Each tuple in the relation
illustraated in figure 5.3 corresponds to an alternative in
the abstract program. The tuple is defined as consisting of
four attributes: clustef numﬁer (cardinality of the -cluster
group), predicate list (string representing the oréinal
sequence of predicat,eg to be evaluated), aczion list (string

representing the ordinal sequence of actions to be

'evaluated), next (the ordinal value of the subsequent

4

cluster to be evaluated).

L

Conventional "programming enviromnment® proposals
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INTEGER] STRING STRING INTEGER

) 1
K NEXT CLUSTER

IDENTIFIER
ACTION

. SEQUENCE
PREDICATE
¢ YALUES .
CLUSTER

IDENTIFIER

¢
/’

FIGURE 5.3 Relation Absﬁ}act Program

¥ [LambBé,BranB1,Howd82] view the data base as a unifying
medium, through ° which to coordinate tool usage and providé
inventory control of available software products. The data
base facilities theméelves are not used extensively as
direct development and maintenance tools. ABL/DSS does not
stop at this ‘"classical" perception of the function of a

database facility. . - 3

The ABL approach allows us  to utilize the data base

utilities in a relatively new context. This context

base store. With nventional programming languages the

‘reflectg the componeizéjﬁyﬁéture of the contents of data
data base would//pve to work at the level of non divisible

entities such as modules. For example, typical storage and

manipulakion bperations such as INSERT, DELETE, RETRIEVE and
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UPDATE would not actually be concerned with the contents
(source code/text) of the data base element Dbeing
manipulaéed. If the user wanted to change a module external
tools would have to be involved to perform ’ﬁye actual
editingi - . . | k. |

L
With  ABL/DSS stored software productg are not static

entities. 1Individual ﬁodules are decomposed into wunits
which can more effectively utilize the data base utilities.
For example.ohanéing code/documentation for an ABL progran
can be a¢complished directly by reﬁrieving the appropriate
relations agpd then using the updatghfacility tov modify the

relevant tup

4

&
Higher level manipulative operators based on Relational

hlgebra can also be used as effecient techniques for dynamic
reorganization of information at the program level [Codd82].
This can be extremely useful for increasing comprehension+
as  well as for testing and rgliability. The report
generation features of the data base system may also be used

as additional documentation tools.

+

-

Advantages of the proposed ABL/DSS system over other current
systems stem primarily from the fact that it allows more

.effective usage of the data base wutilities. Thereby

~

+ Discussed later in the chapter.
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. 5.2 PROGRAM INFORMATION

1

minimizing thé redundancy and complexity of any additional
software tools. Since this environment offerg a
potentially less demanding milieﬁ it should also decrease
fear of failure. These technicalnand psycholog{cal factors

should, provide early acceptance of the system and ensure

against disenchantment with the DSS system

!

A program can be regarded aé an element which must satisfy
the needs of three, differen£ environments
(COMPUTER/ READER/WRITER), figure 5.4 illustrates this
relationship ([TracT79]. Of these the most easily satisfied
are the COMPUTER requirements; programs must be machine
exectuaﬁle/ugderstandable. While efficiency of execup;on
("fast algorithm") can be thought of as a machine
requirement, efficiency may be more accurately viewed as a
ménagement requirement ‘or as a parameter in a cost benefit

analysis.

r .
Thé diverse and veriant needs of the READER and WRITER age

by far more challanging and difficult to satisfy. For the
READER the basic.exigent is to minimize.the amount of effort
needed to assimilate an adequate undergtanding of the
solution. Whiie the WRITER's—- goal 1is to minimize the

-
"ecognitive stress" [Shne75)] 1incurred while attempting to
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_ between these two is that the former wishes to understand

';mposes severe constraints which likely handicap both the

COMPUTER :

FIGUﬁE 5.4 A program's environmental relationship

convey an adequate solution. The fundamental difference

while the latter is attempting to communicate.

These perspectives enforce" a certain modality of
communicatiop, more specificaily they st%geotype the WRITER ‘;
as being active and the READER as passive. This assumption |
promotes the impression fhat ,cogént understanding is
primarily dependant on the WRITER. Further complicating
factors include the fact that not only must ;he WRITER cater
to the computer.he also. has to accommodate different classes
of READERS (users/managers/technical staff). It should be

obvious that this unidirectional flow of communication

WRITER's and the READER's performance.
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5.2.1 LANGUAGE CONSTRAINTS °

In a previous chapter the process of creating a progrém was
described as consisting of two distinct stages. The purpose
of the problem solving stage (ALPHA) was to discover a
solution to'a gngg\problep with preference going to the
simplest and/or the easiest model of the solution. The
second stage (BETA) involved the transformation of.the éiven
algorithm into a computer proéram. In practical situations
however the distinctive charaqteristics of these two phases

is often blurred by technical coding considerations.

The most visible and controversial of these technicalities
“involves the very domain of programming languages
ﬁhemselveé. The problem, which is of merit in itself, stems
from the fact that "the structure of a programming language
affeéts the ;ay a programmer using it thinks about
algorithms" [Shaw80]. A related difficulty with similar
arguments can be seen concerning the use of certain desién
techniques. Both programming languageé and design
techniques themselves involve the introduction of new and
irrelevant yet redundant constraints to the actual probiem
situation. Such technicalities hamper problem solving.and
usually produce nonoptimal results because the solution has
to massaged to fit within the {1mits of these superfluous

constraints.
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- 5.2.2 RESTRICTED VIEWS

A highly touted characteristic of structured control

‘constructs was that they “lent themselves well to

mathematical proofs. In fact "qtality" was intended to be a
function of the correctness of a program, as derived from
this mathematical approach to progranm validation
[Dijk76,Dijk79). . Simpler (restricted) control paths along
with appropriate blocking made it feasible, albeit
nontrivial, to cogstruct these mathematical proofs of
programs. Program proofs would eliminate the need for
program testing becaJSe this fechnique would allow for a
complete check of a program's wvalidity. These control

structures also offered hope for an automated process.

Several researchers reasoned [Dijk72,Hoar69] that simply
requiring programmers to write a proof of termination of a
loop before actually coding it wouldQ save coﬁsiderable
debugging time. It was argued that this gain would be
achieved even without the aid of automated program proofs
because programmers would gain a more intimate understanding
pf their proposged solution and hence be less prone to making
thoughtless errors.
5

The following is an example of how th;se authors believed
proofs should be written amd the manner in which programmers

should approach problems [Shie82]. The algorithm to be

formulated is intended to solve the following:.
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PROBLEM: given a set of N positive numbers contained within

8 vector, A, find the largest value, M.

SOLUTION: "start by formulating a loop invariant. For this

¢

loop the appropriate invariant is that; at the end
of the Kth pass through the loop, M >= A sub j for
each Jj, 1 through K. Once formulated, that

. invariant can be proved by induction. Having been

\ ved by induction it can be instantiated for K =

\ N and now constitutes a proof‘ that M is a maximum

of the set, which is the desired result".

\ -

3

\ These authors suggest that by treating. programming as a
A branch of mathematics progra;mmers can make use of well
\\ established mathematical properties to produce "better"
\ programs. The.problem is that nobody doés it this way, "it
\takes too long and is far too complicated" [Shie82].
)

¥
i

Pr:‘?gram proof"s may yield quality software, but at excessive
and\,\perhaps exorbitant costs. Reasons for this includes

the \\fact that the majority of programmers do not have

adequ\‘ate mathematical training. This approach may be

invalu;‘si\ble for dimportant projeéts with high safety or
econom:l\-R considerationrs, but social factors [DeMi77] are not
likely t\ég make this methodology a "product for the masses".

\ T
; .Program;ning "is not mathematiecs, nor should it be [Wein71].
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- Higher level programming systems must emphasize the use of

idescriptive languages for communication. "The concentration

must be on those aspects which aid in giving a person a

clear overall understanding rather than on those aspects

which increase the mathematical tfactability of the

descriptiéns" [WinoT77].

.5.2.3 REPRESENTATIONAL DISTORTION

One of the more important goals of any programming system
should be to diminish misunderstanding and facilitate
communication [WinoT7]. To do so requires minimizing the
amount of representational distortion incurred because of
the communication media.  Representational distortion is
defined as follows: objects are changed by the medium
throhgh which they are viewed.  Thus minimization . of
distortion requires that the 1logical structure of the
program reflecé directly the structure of the problem
[Fitt79].
- ¢

Structured programs are fundamentally tree 1like structures
[ChapT78,Turngo]. These are theoEetically easier to handle
(by .humans) then networks and unrestricted latice-like

structures. However, as Knuth [Kﬁut79] remarks it is often

_hard to believe that the serial string of alphannumeric

characters that make up these programs are in fact trees.

Indeed a fair amount of processing is required to be able to
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extract this supposedly useful treelike property of progranm

structure. When reading strings, our visual processing

T

capabilities are reduced to operating at a-very rudimentary{

one-dimensional capacity. Making more effective use of
innate visual processin;\ capabilities would {ncrease

comprehension and decrease workload.

An approprigte aaplogy might be to look at any natural
language text. zbe information contained if a text , c€an
still be had even if it is presented as a linear string,
however by the addition of visual cues such as formatting
into paragraphs, pages and chapters we reduce the amount of
processing that needs to be performed. Thus we have not

only convenience but also increased understanding.

This concept of data reduction was and continues to be ‘the
motivating force behind crude attempts to add on an extrd
level of Aimensionality to program text. This is done via
pfetty printers, which stagger text across page according to
biocking level. Experimental investigation of the effects
of pretty printing on poth maintenance an% debugging tasks
have shown small but statistically'significant increases in
programmer performance [Sayw8l,8hep8] . .
Flowghgrts were also intended <to serve as visual alds to
program understanding and development but unfortunately
experimeqtél stﬁdies have not yet been able to confirm this

3
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hypothesis [Curt81,Fitt79]." Several researchers [Yode78,0rr
79] have stated that flowcharts are not as effective as they
should be because they are too distant in form from current
software programming techniques: conventional flowcharts
hav;a not reflected the . 'change. to structured programmi‘ng
concepts. Numerou(s\&\} t_lana drawn and automated structured
flowcharting techniques. (Nassi/Shneiderman  chart, PAD,

Warnier Orr diagrams FSM‘ [Salt76], DD paths [Paig75], MTR

_ [DeBa781] have been introduced but have yet to be thoroughly

tested for effectiveness.

Unfortunately, in . spite of | potential for improving
programmer. per formance none of these adjuncts is gaining
écceptance in the marketplace. The problem may be that hand
drawn methods are much too tedious to create and maintain,
while the automated techniques are primarily post hoc aids

which are usually cumbersome to use (restrict?ive).
5.3 DOCUMENTATION T

lf:cument'ation is‘ a vital and necessary aspect of the
software production and maintenance process [\{11381].' Its
purpose is to provide information which can facilitate
understanding and/or 1illustrate .the appropriate use of: a
piece of software. The classical and- solely structural
definition of documentation includes: .internal program

documentation (comments within a program) as well as user




-

-guides and technical manuals [Gray82]. With-the acceptance

of Structur@% Programming Methodology and the Software
Lifecycle0 Model the - above definition has grown to include
documentation at other stages of software development,~ sgch
as requirements specificaﬁion and design documents.

2

5.3.1 DOCUMENTATION DEFICIENCIES

. t .
The problem is that current documentation practices do not
yield products which are effective comm%pication aids, The

documentation geneérated is usually "notoriously ambiguous,

verbose and redundant" [Your82]. The large number of

inconsistencies and errors which always seem to érop up in
documentation have prompted -some [DeMi79] to proclaim that
the only truly accurate documentation is the code itself.

~

As a development aid it doés not fare any better. This is
probably due to the ad hoc and aposterio;i manner in 'which
it is prepared. Classically documentation is produced after
the fact [Horn75] and hence is "not formally recorded until
the end of the project, by which time it is of historical
significance only" [DeMi79]. This iﬁeffectiveness is
reflected by situations such as where users will prefer to
have someone explain the system, rather than neading‘ the
appropriate manuals. A similar instance would be when users

do read the manuals yet still find theméelves perplexed as

to' how a program or package is supposed to work and what
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exactly it is supposed to do [Wils81]. Even worse are the
problems encountered when a systems analyst does not clearly
communicate what it is that the user wants or the case of &
programmer who must implement an algorithm ‘using vague
design documents [Teic77].

Other difficulties arise from the fact that each stage of

+ the Softyare Lifecycle has itg own form of documentation.

Therefore people will generally not be as proficient in

- handling documentation from other stages as they would with

their own. Such inconsistencies allow error and ambiguity

to easily propagate from one stage of the Software Lifecycle

to the next.

Some researchers [DeMa79,Your82] have suggested that manual
production and edditing are émong probable cguses of bad
documentation. People may simply be reiuctant to wg{te
documentation when they know that it will continually change
during the course of production. Automatic methods of
documentation 7 would aligviate the wide variance in

documnetation style as well ag reducing inconsistencie$ due

to documentation efforts which did not keep up with code,

design and requirements changes. ¢ ~/

.
A

Another part of the problem may lie with the attitude that

many professionals  seem to have towards writing

documentation. It'is produced in an “ad hoc manner, withthe
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. 5.3.2a CONSISTENCY

[

-

the task by proclaiming that
documentation 1is "beneath them"™ [Wils81]. This lack of

. . . - ] '
‘motivation and enthusiasm is certainly a major contributing

factor in the creation of documéntatian which is of poor,
qQuality and of questionable value. Perhaps ﬁéople do not
enjoy writing documentation bspause they lack 9onfidence in
their ab}lity to produée it. Their attitude may siﬁply be a
function of thg‘fact thaq they may not know ‘where, or even
how much, .or at what Idescriptive level ¢to ‘begin writing
ndocumentation.' These deficiencies 1in documentation 'ére'

recognized as serious drawbacks to.the software development

.

5.3.2 ABL DOCUMENTATION

o

,
How does the ABL methodologX help to alleviate problems

-9
associated with documentation? t does so in a three fold
1 ‘ -

manner: consistency, modularity and maintainability.

T

Vo
o
~ v

ABL/DSS provides .a powerful representation and storage
étructure which can be ,used ubiquitiously throughout 'the
software lifecycle. In that ABL is language indepenaent, all

"system documentation can actually be written and epresented

as ABL programs. The abstract machines in su cases uld
’ * B ’ ’

.
- 2
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of course_be comprised of natural language statements. The
ABL format provides a flexible standard which can satisfy
specific needs of, each stage of the software 1lifecycle.

This syntatic and semantic consistency should improve

- information access bétueen'groups throughout the stages of

the software lifecycle via a common database.

5.3.2b MODULAR-BUILDING BLOCKS

Internal source code documentation has(been classif?bd into
two basic functionalﬁﬁpypeé: (1) high level procedural
descriptions; these will normally proceed a given procedure
and highlight saliant features of the algorithm and attempt
to explain the 'proéesses involved, (2) léw level detailed
comgents; these are bsually found scattered throuéhoht the
source code and describe local "noteworthy" characteristics
of the program. It has been reported [Wood81,Duns78] that
generally the more effective of these two,types of source
code documentation is the high level comment. The utility
of detail level comments may have Dbeen seQerely
underestimated due to the multitude of problems associated
with its Jjudicious ' application. ABL adopts a very

conservative stance an&'easily accommodates both.

o
-

ABL'S intrinsic structure reduces the problem of deciding
WHERE, ‘HON MUCH and at WHAT LEVEL to write documentation

into the source code. The ABL format allows documentation
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to be clearly and succintly mapped unto specific structural

_components of an algorithm. ABL programs:;allow for three

different levels of documentation for source code.

PROGRAM LEVEL description is the highest level -and is >

equivalent to a procedural description. As in
conventional programming language techniqueé it

preceeds and describes the program.

CLUSTER LEVEL decription involves describifig the
logical units within the programs. As defined éarlier'
logical wunits are intend;d to be meaningful deéision :
points. Documentation at this 1level should describe

the purpose ("WHY") of the decision point.

“ALTERNATIVE LEVEL descriptions defijne each of the

alternatives within a program, Thege descriptions
concehtrate on .describing the effect of executing the

actions associated Hith each alternative.

These latter two levels taken together should illustrate the

" relationship between any two clusters or between a cluster

and terminatioﬁ., Storage of this documentation wusing:- the

Relational data model is also a relatively trivial affair.-

Higher level documentation such as procedural or cluster

level description'can be stored in a relation seperate from

either'the Abstract Machine or program relations. The

i

~
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structure of the Relation ABSTRACT MENTATION, 1is
illustrated in Figure 5.5. Lower 1level documentation, at
the Al%frnative level, can be stored as an extension to the
Abstract Program ﬁelation as showﬁvin figure 5.6. This can
be best underst&od by considering the fact that since each
tuple ih.tﬁe relati alréady represents an Alternative, the
{ Alternative Jgscription can be added as an equivalent

attribute of the tuple. .

0 PROCEDURE LEVEL DESCRIPTION

1 CLUSTER ) DESCRIPTION

L 2 CLUSTER 2 DESCRIPTION

[ ]
[

¢

/
R | CLUSTER N DESCRIPTION ‘ ®

| A

TEXT
CLUSTER IDENTIFIER

FIGURE 5.5 ' Relation Abstract Documentation

At higher levels of sysyem design where the eleﬁents of the
abstract ﬁachine consists of godules rather than statements,
another level of documentation can be added. The abstract
machine can be_ replaced by an equivdlent abstract machine
which contains dgscriptions of the modules rather than Jjust

the module name, This process effectively provides an

ACTION LEVEL description.  When combined with' the

appropriate abstract prog}am this description creates a

1
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fourth level of documentation.

LI!EGEB STRING STRING INTEGER | ALTERNATIVE 1

"~ ALTERNATIVE 2
ALTERNATIVE 3

ALTERNATIVE 'N

.7'1 f

NEXT Y ALTERNATIVE

CLUSTER  , DESCRIPTIONS
ACTION  IDENTIFIER
SEQUENCE
PREDICATE
VALUES
» CLUSTER
NUMBER
FIGURE 5.6 Relation Abstract Program with
Documentation
#

. A
Another major advantage of actually having these specific

levels of documentaﬁion means that we haveiimprovgd locality
of reference. Changes in a program no matter ho;%freqaent,
"minor" or "importanf" can be easily aﬁd adeqﬁately
recorded. Thus ABL should help 'reduce the number of
inconsistencies between "what the code does" and "what the

documentation says it does". !

.5.3.2c AUTOMATED DOCUMENTATION LY

It provides automated aid for documentation generation, both.

textual and graphical. Unlike most coriventionsal autohated

13-
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systehfi [Horn75,Arch82] these documents are not extracted
via preprocessors from the body of the software products.
Rather these documents are built up ¥rom the.individual

components described above. Thus not only can we generate

. .

numerous types and forms of documentation we are also able
to actively manipulate these various levels of

documentation. Figure 5.7 illustrates three of the

available forms of documentation.

ABL-ROUTINE BIKAKY_SEAKCH;

1. % INITIQLIZE FOR BINARY SEARCH ALGORITHM ’
< >

1. 7P NO CONDITIONS =

1. MINITIALIZEL SEARCH TO MIDDLE ELEMENT IN ARRAY ——d 2
. 1.1 TOP := MAX
. 1.14 BOTTOM :z 1 .
1. 1A REAL(TEST_VALUE) ,
1.1 MIDDLE := (TOF + BOTTOM) DIV 2

2. 2. LETERMINE STATUS OF SEARCH
< 0,0 3>

2.1 TOP <= BOTTOM .
2. JENTIRE ARRAY HAS BEEN SEARCHED AND ELEMENT 1S NOT FOUND ———ed O
2,14 FOUND := FALSE

1) 2,2P TEST_VALUE = MIDDLE AND
NOT TOP <= BOTTOM
2,2ELEMENT HAS BEEN FOUND THEREFORE TERMINATE SEARCH ceem> 0
‘ 2.2A FOUND := TRUE

2,3P NOT TEST_VALUE = MIDDLE AND
NOT TOP <= BOTTOM .
2.3NOT FINISHED SEARCHING AND NOT YET FOUND 2eee> 3

3. 3. DETERMINE WHICH HALF OF THE UNTESTED ARRARY 1S TO BE ELIMINATED
< 2, 2> ' .

3. 1P TEST VALUE > MIDDLE C
3, 1CONTINUE SEARCH IN TOP HALF OF CURRENT PARTITION ---->2
3. TA BOTTOM := MIDDLE
3. 1A HIDDLE := (TOP +'BOTTOM) DIV 2

3.2P NOT TEST_VALUE > MIDDLE i
3.2CONTINUE SEARCH IN LOWER BALF OF CURRENT PARTITION ———-) 2
3.2A TOP := MIDDLE .
5.2A MIDDLE := (TOP + BOTTOM) D1V 2




ABL-ROUTINE ' BIKARY_SEARCH;

THE PURPOSE OF THISNPROOCELURE IS TO DETERMINE IF SOME ARBITRARY
TEST VALUE IS ALREAD ART OF A SORTED LIST OF MHUMBERS.
! IF THE VALUE EXISTS TH ROCEDURE WILL SET A FLAG (FOUND) TO
! TRUE ELSE TO FALSE.

THE APPRGACH USED TO PERFORM THE SEARCH 1S CALLEL, THE BINARY
. SEARCH ALGORITHM. IN EFFECT THIS APPROACH ALLOWS US TO ELIM~
INATE HALF OF THE REMANINING UNSEARCHED LISY OF ELEMENTS WITH . .
E:ER% COMPARISON OF THE GIVEN TEST_VALUE TO A SELECTED LIST
HENT. ' '

CLUSTERS- -7
1.0 INITIALIZE FOR BINARY SEARCH ALGORITHM

1. T INITIALIZED SEARCH TO MiDDLE ELEMENT IN ARRAY

2)
.2.0 DETERMINE STATUS OF SEARCH .
. _ 2.1 ENTIRE ARRAY HAS BEEN SEARCHED AND ELEMENT IS5 NOT FOUND
2.2 ELEMENT HAS BEEN FOUND THEREFORE TERMINATE SEARCH -
i ‘ . 2.3 NOT FINISHED SEARCHING AND NOT YET FOUND
L]
" 3.0 DETERMINE WHICH HALF OF THE UNTESTED ARRARY IS TO BE ELYMINATED
4.1 CONTINUE SEARCH IN TOP HALF OF CURRENT .PARTITION
3.2 CONTINUE SEARCH IN LOWER HALF OF CURRENT PARTITION
-
| ALTLRNATIVE SLT ’
r [ Y INITIALIZLD SEAKCH TO HIDELE ELEMENT 1K AKKAY L XU 1 1 1 1 ]
. . N 1 21 1 ENTIRE ARKAY HAS BEEN SEARCHEL AND ELEMENT t Lot rt
! 1 1 1S NOT FOUND ! TR I T R N T B |
. ! 31 1 ELEWENT HAS BLEW FOUKD THEREFOGRE TERMINATE N N
IIILARCH O I 3 B T |
T NOT FINISHLY SLAKCHING AND NOT YET FOUND R T I N B B |
11 l [ T B § BT
i ) 51 1 CONTINUE SEARCH IN TOP HALF OF CURRENT PARTITION ! f 1 1 1 X1 1
' 61 | CONTINUE SEARCH IN LOWER HALF OF CURRENT & 1 1 1 1t 1
1 1 f PARTITION t ot 1L orx
ACTION SET
3 e oo e R
1t 1 TOP = MAX i : (AT I I A ‘
I 1 21 FOUND := FALSE i} TR
|13|Foum>~=ﬂws R
' § 1 & BOTTOM := MIDDLE TR TS R T I F R
1 1 51 TOP := MIDDLE i IR Y )
: !IGIBOTTOH.z‘I - 12 1ot
! ! 71 KEAL(TEST _VALUE) 13ttt
P s o ot e o e o e v e e e Y e S e e S e e - - n S - -
! 1 81 MIDDLE := (TOP + BOTTOM) D1V 2 14 1t or2r 2y
[+
L] []
' - 115
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FIGURE 5.7 Three forms of . program documentation

' f}or the Binary Search algorithm
The volume of docu?entatgqn may seem excessive, but it must
be remembered that the amount which 1s actually seen is
determined by the user: all, some, or none of it. This is
extremely important since documentation is "good" only if it

)

is useful to the individual reading it.

//

5.4 COMMUNICATION USING ABL/DSS

The ABL approach and the relational data model each help
support the most crucial measure of communication, namely
comprehensibility. ‘Some of the more pertinent aspects of

comprehensibility are listed beléw [Date77,Codd82,Barn80].

-

?

(1) The number of basic constructs are few. In fact Jthe
relational data base is built out of one single
construct, the relation (table) which 1is both simple
and highly familiar. Similarily the ABL approach is
also bqsed on its single control construct, the'Komput.
Each Komput ié represented as a table within the larger

table of the program.
(2) Distinect concepts are  clearly separated. The

relational model provides an optimal medium with which

to separate distinct concepts. The ABL methodology is
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also based on clear anq precise building blocks. 1In
fact it even allows for different levels of building
“blocks: the program is a set of clusters which in turn
is a set of alternatives. The four questions which
describe the ABL philosophy enforce and demand distinect.

seperations.

(3 Symmeéry i1s preserved. "It should not be'necessary' to
, .

present a naturally symmetric structure in an

asymmetric manner" [Date77]. Both the relational model

and the ABL approach are flexible enough to accomodate

most logical structures.

(4) Redundancy is carefully controlled. The data base
allows a normalization procedure which can ensure ﬁhat
|the same fact will not appear more than once. One
purpose of the ABL abétrac£ machine is to make
available (with minimal redundancy) all the different
actions and predicates.

’

These characteristics enhance communication for both WRITER and
READER and are generally effective through all of the stages

of the lifecycle. As a WRITER the benefits of the ABL
technique and the DSS tools approach might be summarized as
—follows: ABL/DSS provides both tools and a notation which

are consistent throughout the software lifecycle.
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REQUIREMENTS DEFINTIOF“\QND SGPECIFICATIONS
Decision table techniqués which are generic precurssors of

ABL. Decision tables were originally developed for systemé

analysis as an adjunct to . natural language text
[Maes78,Mont74]. They help to 137KZte and organize relevant

pieces of information [McDaBO,Cant71,Wart79].'

SN s TEe e fereet s et oo = Y - <

‘4
DESIGN

- o

, It supports the design process because it can be used to

illustrate and store various levels of abspfaction and

P—

| refinement (see section 4.7 ABL  Design Philosophy).
Translation from most other design methods (graphs,
/ pseudocode, flowchart) into ABL notation is also quite

trivial.

IMPLEMENTATION/MAINTENANCE

It was shown 1in an earlier chapter that ABL has the

B e e e et~

necessary and sufficient constructs to allow for a fully

implementable language. ABL has also successfgily been used

to replace the control flow constructs of other languages

N

e i S PTUREY SOFUIY 5

LHint81,Fanc7P]. Relevant data base utilities were shown to

complement the implementation and maintenance process.

TESTING, DEBUGGING and VALIDATION
\ This topic will be discussed in the next chapter.

For the READER the biggest advantage of ABL/DSS is tpat it
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safely enlivens communication by permitting the READER to
take a more active role 1in the exchange of dinformation.
Rather than Veing shéckled to the representation chosen by

the HﬁITER, the READER 1s given the opportunity to
{

interactively seek out a more suitable representation.

"Since 'the wunderstanding of a component comes from haviné

multiple viewpoints, no single organization of the
information onea printed page will b,e adequate. The
programmer needs to be able to reorganize the information
dynamically, 1looking from one view and the.n another, going
from great generality down to sﬁecifié detail, and
maneuvering around in the space ,of descriptions to view the
interconnections” [Wino771. Three points stand out frqom
Winograd's statement: (1) going from generality to speci';‘ic
detail, VERTICAL MOVEMENT in a top down design, (2) allowing
for multiple  views of the same information, LATERAL
MOVEMENT, and (3) allowing for DYNAMIC REORGANIZATION. In

the next three sections of this chapter we shall discuss how

the ABL/DSS environment acknowledges and exploits these

three requirements of the human problem solver.

’

5.4.1 VERTICAL MOVEMENT

"

-
<

' A Y
Vertical movement involves being allowed to navigate through |

differe'nt levels of software abstractions. This 1is easily

accomplished by ABL/DSS through its fund amental property of
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language independence, which allows it to treat all abstract
machines in a uniform manner. The contents of an ABL
Abstract Machine, whether natural language text or Eomputer
code, 1is of no consequence to the.ﬂDSS. To go from a
rudimentary design specification to ~a functional
implementétion simply requires that the data base
sublanguage retrieve the appropriate Abstract Machine and
Program. Since ABL/DSS only uses one basié data structure
we therefore create a pseuio-standard for all phases of the
software lifecycle. The additional benefit would be that
since everyone 1is cqmmunicating and working with the same
conceptual data model it would reduce the amount of
confusion which currently pl agues people who are not using

the same methods.

A previously stated premise was that the use of abstraction
as a problem solving tool involved:  the suppression of
Superfluous detail. This however creates a dilemma
jabstraction is in the eye of the beholder" [Pgn 79]. What
one person may consider'extraneous "too many details to be
useful" may be absolutely éssential for someone else, "not
enough detail to be useful™. The flexibility afforded the
ABL/DSS system enhances  personal communication and
productivity, as well as that of the systems group. Each
member of a team can consider a given problem at whatever
level of detail the professional feels most comfortable

with. This is of vital importance since abstraction, like
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documentation, is good'only 1f it is useful.
5.4.2 LATERAL MOVEMENT ] o

Lateral movement involves the sbility to view objects from

E

varled perspectives. It is naive to believe that one vie\'ﬂ
can possibly capture all the information about a given
object. Varying the viewing frame reveals and accentuates

[N

different aspects of the same object. This is important

because as the adage goes "a picture 1is worth a thousand
words" . We may reap trexiendous benefits by providing easy

access to as many views of a problem and its solution as P

? possible.

Conventional programming techniques arwelative'ly static

and not highly amenable to lateral maneuvering. 'This 1is

-

evident from the tremendous efforts which researchers have

expended to obtain eveﬂ-minimal changes in perspective. ABL.
on the other hand is structured in a manner which makes it
ver:ir malleable and well disposed for generating varied
representations. The following are sonﬁé\of the many visual
transformations which. can be performed on the basic tabular

ABL format.

The following views are based on the bul;ble sort algorithm
as presented by [Paig75], figure 5.8.
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-SUBROUTINE BUBBLE (A.N)

BEGIN .
FOR I = 2 STEPS 1 UNTIL N DO
. BEGIN
] : IF ACI) GE A(I-1) THEN GOTO NEXT
' J=1

LOOP: IF J LE 1 THEN GOTO NEXT
IF ACJ) GE A(J-1) THEN 6OTO NEXT
TEWP = ACJ) . ,
A = AG-1)
AG-D) = TEMP j
J=J-1 o
600 LOOP
NEXT: NULL
END
END

FIGURE 5.8 Bubble sort algorithm

ABL TABLE FORM v

Figure 5.9 is a direct translation of‘ the Bubble Sort

algorithm into ABL tabular format.

KOMPUT FORM "

By utilizing the Komput construct we offer the ability. to
view ABL programs in non-?abular format, figure 5.10. As
described in the.previous chapter the Komput 1is the only
construct in ABL and is an evolved fbrm of the ALGOL case
construct. Different alternatives are chosenQ by matching

current state vector conditions to appfopriate guard

-

descriptions. The guérd description is contained within a

set of matcﬁed square brackets Li. An addition sign , "+",
indicates that a true résponse to the guard element ﬁust be
encountered, while a negative sign, "-", is used to\indicate
that a false response is reqdired. Similarly, the asterix,

o
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> . A oL
-PROGRAM- ‘ : , ~-MACHINE-
,' -/ ' . ©
Ct VvV . . . . . ...
c2 . VvV . . . . . .
c3 AP A |
ch - N . . vV v . .
c5 U A ' .
P1 - Y N - - éﬁ - - - "P1 I >N .
P2 - - - Y N - - - - P2 A[I1 >= A[I-1]
P3 - - = - Y N - = P3 J <= 1
Py - - ~+= .= =~ - Y N P4 A[J] >= AFJ-1]
A1 1T v v e e e e e A1 I := 2
A2 A T R A2 T :5 1 4+ 1
A3 s e e .1 .. . . . A3J =1
B L A4 TEMP := A[J]
A5 s e o+ e e e . . 2 ™ A5 A[J] := ALJ-1)
A6 e | A6 A[J-1] := TEMP
A7 . . o' . . . . . "‘ A7J:'—'J-1
NEXT 2 0 3 2 4 2 5 2 4

FIGURE 5.9 ABL tabular representation of the Bubble

Sort algorithm from figure 5.8

%
"#%  indicates that this is a don't care condition. The
Komput form is less compact than the , ABL tabular{ form
because redundant actions are not‘ removed. The Komput,

e
however is close enough to conventional programming language

format+ to be easily accepted‘by the computing community

‘while still retaining the ABL clustering scheme.

v
o M

2

N

FLOW GRAPHS
ABL flow graphs offer the user the opportunity to Wiew

explicit control flow of the program in graphical form. It

a. « ! . ) ” . .
+* The author has implemented the Komput Form representation

{ .
on a compiler which executes a subset of the Pascal language

" (Appendix A). ¢

’ - 2 |
‘ ) i
o . . ,
J
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KOMPUT 1 [ TRUE )
[e): I :e2
NEXT 2 -
I} KOMPUT 2 [ I > N ) Y
i {+): (noactions) '
' NEXT O
4
* {-1: (no sctions)
: NEXT 3
KOMPUT 3 [ A[I1) %= A(I-1)] ,
f+43: I:zTa } &
\ _ MEXT 2 : .
: [-): J:=1
NEXT H
4 . KOMPUT & [ J <= 11 1

o a e

[+): 1 :=37e1

NEXT 2
{-): (noactions)
NEXT & B
, . ‘ . KOMPUT 5 [ A[J]>= A[J-11) .
{ed: Ticlad '
. NEXT 2
{ -3¢ TEMP : = A[J) .
ALY iz A[I-1) \
. AlJ=1) := TEWP
Jizd -9
) NEXT & \

¥

FIGURE 5.10 K UT representation of the Bubble Sort -
ithm

al

is a compact representation because it strips’ Eway most of
the computational details, thus allowing the user a general

overview of the program in questign. ABL flow graphs are in

- fact functionally equivalent to DD graphs (Decision to

Decision) [Pa ig75,Paig771] ./

‘The' information necessary to' produce thfe flow graphs can be
;ﬁ\%xtracted from the CLUSTER MATRIX and .the NEXT VECTOR.
_Using ABL/DSS to produce Flow Graphs would. simply require

that 1t retrieve the attributes (cluster number,next) from

. ‘ - 124 -
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FIGURE 5.11 Flowgraph representation of the Bubble
. Sort algorithm

the relation Abstract Program.

NORMALIZED TREE FORM

Unlike the flow graph which gives a static picture of the
algo;itgm, the TREE representation provides a témporgl
projection of the computational' process, figure 5.12a,.
Progression. down the tree from the root to the leaves is
equivalen£ to thé flow of computation‘spreaa across time. A
similar method has proven to be successful as a design and
scheduling tool in other areas of deciéion theory. The
technique ‘is knéwn as Pert Charts and was~ originélly.
developed for the US military to curb costly scheduling
mistakes [BrooT4]. — | ‘

’

The TREE form is composed of two basic type§\\of leaves:

.Terminal and Re-entrant, _Terminal nodes are equivalent to

“
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FIGURE 5.12a Normal Tree form of the bubble:  sort
“ 'y
program '

program exits while Re-entrant nodes depict algorithm loops.
The TREE form is constructed using the algorithm illustrated
in figure 5.12b which makes use of a node split process

(duplication of nodes).

CONVENTIONAL CODE i

Using the information available from the NORMAL TREE, we can
easily convert ABL aléorithms into conventional code, figure
5.133. For .ease of illustration I have chosen to convert

the TREE into an ALGOL 1like language based on Ledgard's

- 126 ~.
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ASSWMITIONS :

1) Ve have avaflable @ stack which is globsl to the program -
2) node U 1s initialized to Cluster 1

PEFINITIONS:

TERMINAL NODE:
13 » node whose next value was zero-(0). In the
graph they sre represented as darkened nodes.

RE-ENTRANT NODE:
I1f the current node number cen alresdy be found

a on the stack then this implies that s loop exists ' -
‘and thus 1a labeied as a Re-entrant node.

PROCEDURE MORMAL TREE(U:node)
b ‘ (" Uis & value paramcter ¥)
" 1. Initislize
1.7 MNode U 13 vistted
- print node
= PUSH node U onto the stasck
NEXT 2
2. Select = node V gonnected to U \
2.% 4f node V is a TERMINAL node
- print node V . -
NEXT 3

2.2 1f node V 18 a RE-ENTRANT node
-~ print node V with two concentric circles
- label matching node on the tree with an >
asterix
NEXT 3

2.5 if node V i3 an INTERNAL node (not » leaf)
- NOR?AL_TREE(V) .
XT 3

3. Visited all nodes connected to U

5.1 all nodes have been visited
~ POP stack i
NEXT ©

3.2 8l nodes not yet visited
. MEXT 2

v '

@
- '

v

4

FIGURE 5.12b Algorithm to Derive Normal Tree Form from
Flow Graphs / |

[Ledg75] REC2 structures and the extended case (as
described in chapter 4). The algorithm to do this

conversion is described in figure 5.13b.

(3

Subsequently it is a simple matter to proceed to 1lower

level control structures.
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BEGIN
1:z2
REPEAT
IF(I >N)
THEN EXIT (1) .
ELSE BEGIN
IF ( AMI) >= A {J-1))
THEN BEGIN \
I 21 « 1% |
" CYCLE (1) j
- END
ELSE BEGIN
J el
REPEAT
IF(Jd<¢1)
THEN BEGIN
Il a1 °
CYCLE (2)
END )
ELSE BEGIN
IF ( A[J] >= A[J-¥) )
THEN BEGIN .
J tz 1 o
R CYCLE (2)
v . END
ELSE BEGIN
TEMP := A[J)
ALJ) :z A[d=1])
A{J=1) := TEMP
J sz Jd -1
CYCLE (1)
END
END
- END (* REPEAT *¥)
END .
END
END (* REPEAT *)
END.

FIGURE 5.13a Conventional code representation of the

. bubble 4 sort algorithm

, PRODUCTION RULES

~ Production rules provide a compact notational representation

3
based on formal language theory, figure 5.14a. This

representation can be derived from inforﬁation provided by
the NORMAL TREE form. It partitions the Tree into segments
(productions) which can then be used to permit the user to
generate all possible path expressions for a. program. An
algorithm to perform the transformation of Tree to

Production rules is described in figure 5. 14b.
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ASSWMPTIONS:

1) We have the TREE form svailable and all bresnches are
appropristely lsbelled (in this case I have used lower
case alphabetic characters).

2) Productions are represented as a string of terminsls [lower
case alphsbet) and non-terminals [upper case alphabet].

3) We have available a stack which is global to the. program.

Mote in the following procedure that when a rule is said to be
finished tthe production is then associsted with the non-tersinal

eurrently at the top of the stack. Wherein the top of the stack
is initialized to the start symbol S.

-
+

? o

PROCEDURE PRODUCTION_RULES (U:node, CURRENT_RULE:string)
(* U {5 » value parameter and CURRENT_RULE 15 a verisble parameter *)
1.” Determine the status of node U

1.1 node U is a TERMINAL leaf
= finish rule
= CURRENT_RULE = null string
NEXT O

1.2 node U {s » RE-ENTRANT TERMINAL leaf
- append to CURRENT RULE the non-terminal which
corresponds to the node number
- finish rule
- CURRENT_RULE = null string

NEXT 0 -
1.3 node U is an INTERNAL RE-ENTRANT node
NEXT 2 '
1.4 node U is an INTERNAL NORMAL node
NEXT 3

2. Determine whether node U has been assigned a non-tersinal
charscter

2.1 node U has been assigned a non-terminal character
- append to CURRENT RULE the non-terminal which
correaponds to the node number for U
= finish rule
= CURRENT_RULE = null string
NEXT ©

2.2 node U has not been assigned a non-terminal character

- node U i3 sssigned to the successor of upper case
alphabet

- append to CURRENT_RULE the non-terminsl which has
been sssigned to node U

~ finish rule

- PUSH the non-terminal assigned to node U unto the stack

;ExguglEIT_IULE = null string

‘

3. Detarmine the status of paths lesding from node U

8.1 al)l branches leading from node U have bgen traversed
- 3f node U i3 INTERNAL RE-ENTRANT then P s non-
terminal symbol from the stack
NEXT ¢

3.2 al) branches leading from node U have not been traversed
select a path leading from node U

TEMP = CURRENT RULE

append the path selected to CURRENT_RULE

node V = NEXT value of current branch
PRODUCTION_RULES{V,CURRENT RULE)

1€ node U Ts an INTERNAL KDRNAL node

then CUIIEIT_IULE = TEMP

NEXT 3

ty ey
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‘FIGURE 5.14a Production Rules for the bubble sort

5.14b éorithm to derive Production Rules from

the Normal Tree form
The above 1list of transformations is not exhaustive, they
have been included to 1llustrate the point that each
transformation highlights different features. By allowing
access to many such transformations, users will be able to

quickly assimilate information pertinent ¢to their own

particular needs. This greater depth of scope should enable ,

the user to more fully appreciate and evaluate the

compleiity of the problems at hand.

5.4.3 DYNAMIC REORGANIZATION

The term dynamic reorganization in a broad sense means bgbng
able to interactively manipulaté the informafion which is
being presented. Lateral mpvement obviously satisfies this
definition and 1is an"acceptable method for accoémplishing
this. ABL/pSS however can also provide other more elegant
means with which to perform dynamic reorganization. Given

the fact that the Relational‘datab se model is soundly based

on mathematical set theory wé {an make. use of high level

operators based on Relation lgebra [Date77,Codd82].

Thus we have at bur_disposal well defined operators such as:

)
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PROJECT,  JOIN, UNION, INTERSECT, . DIFFERENCE, DIVISION.

Furthermore, the manipulation of relations under these
operators 1s closed: thus we know that we can specify '
operations on relations which must yield other relations.
In addition use of these relationally closed operators gives
us direct and 1immediate access to specific program
attributes no% easily obtainable from conventional
programming languages. For example we may retrieve
information of the following type :
> | a) List alf alternatives with a specific cluster number
b} List only the alternatives which wuse 3pecific
i predicates and/or actions |
c) List all alternatives with common next values ) .
d) List common attributes of a specific set of
alternatives

e) Retrieve all documentation pertinent to a given

cluster.

Other queries would allow the user to more fully explore
similarities and/or differences between various algorithms,
The addition of data flow information, which will be
introduced in the next chapté}, will provide for even more

finely detailed algorfthm analysis.

The purpése of this'chapter has been to provide an overview
of some of the more -significant areas and of the more

visible deficencies .inherent in conventional programming

Y
&

- 132 -




\

environments. A Relational database model was wused in
conjunction with the ABL approach to examine how these
deficiencies could be reduced to less detrimental levels.

phasis has been placed on attempting to overcome problems
associated with human weaknesses and failings rather then on

computationally dependant criigria.

\

.
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CHAPTER 6

SOFTWARE TESTING AND VALIDATION

The penultimate step in the software 1lifecycle 1is the
testing and validation of the software product produced,
This basically involves assessing the "correctness" of the
progfam. If we take the definition of a program to be a
function which describes the r;lationship of an {input

element (domain element) to an output element (range

_element), then "correctness" is interpreted to mean that a

given program will faithfully realize the appropriate

mapping [Rama82). The problem which arises is that no known

. software methodology can guarantee that the program it

generates will precisely embody 1its required function.
Hence testing and validation procedures are concerned with
the manner in which we may ascertain the veracity of any

given function.

6.1 VALIDATION TECHNIQUES

W

There are three basic and qui%e distinct modalities with
which we may approach this task of verification: exhaustive

comparison, program proofs, testing.
6.1.1 EXHAUSTIVE COMPARISON
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,The simplest and perhaps the most obvious is the technique
of Exhaustive Comparison [Adri&Z,Rama??]. This  would
involve verif§Ing' that for each domain element the program
produces a result which matches the expected (%rue) output.
If each instance succeeds we can be assured of the validity
of the program, this technique however is not eminently
practical. This can be attributed to the fact that if we
ha& access to such‘complete information, it ‘would obviate
the need for a program in the first place. Answers could be

acquired faster and with less trouble via a table 1look up

‘rather than through a program defined computatiopal process.

6.1.2 PROGRAM PROOFS

The second technique called Program Proving involves a
highly technical and optimistic approach based on the
machinery of mathematical logic [Hoar69]. We may recall

that progrém proofs were discussed in the previous chapter

in a somewhat different context. There program proofs were

intended as a conceptual framework with which to guide the
building of "correct! programs. Program verification’in the
current context is in fact the converse of this. The
purpose 1is not to be a building tool but rather to provide
an abstract notational medium with which to dis;ect and
hopefully \1solate logiéal inconsistencies from a given

.

program.
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"Program proving involves expressing ’ the program

specifications as a logical proposition, expressing

individual\ program ' execution‘ statements as 1631081

propositions, expressing program branching as an expansion

into separate cases, and perﬁprming logical transformations

on the propositions in a way-which ends by demonstrating the

equivalence of'the program anﬁ its specification" [Boeh79].

Normally the issues of termination and potentially infinite

loops are handled seperately via inductive reasoningf

) &

This approach however has just bar;ly begun to penetrate the

world of production software [Boeh79,Demi77,Dijk78]f

Primary reasons for this include several impoftant

deficiencies. First and foremost 1is the fact that even

}rivial programs are complicated and time consuming t& prove.
[Adri82,Boeh73]. Automated systems are not much he1p either

because they do not work on the more common languageg such
as Fortran‘6r C?bol; These languages cannot be accommodated
because they do no€f permit precise axiomatic definitions

which are essential for the expression of progrém statements

as logical propositions. .

&

An often quoted remark implying the superior effectiveness
of program proofs 1is that other techniques for "program
testing can be used to shoﬁ the presence of bugs, but never
to show their absence" [Dijk?é]. It should be noted
however, that prbgram proofs can be shown to be consistent

ry
L]
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with specifications uhicn,are‘thémselves incorrect, and tﬁe
fact that nothing guarantees that the proof itself is
complete and or correct, as demonstrated by [Good77]. Given
that these two limitations are considered errors we must
conclude that "program proving can be used to demonstrate
the.préseneé of errors but ne;er their absence"™ [Boeh79].
6.1.3 TESTING

The iast and most pragmatic approach involves a wide rangé
of techniques known as Program Iesting. Unlike prograﬁ
prﬁofs which provide conclusions about program behavior in a
pdstulated environmeng;. testing byovideé the user w;th
‘Taccurate information about a program's actual behavior in
its actuailenvironment" FGQod77]. The purpose of testing is
to provide a means with which we day assess various levels
of algorithm performance and thus provide the user with 3
sense of confidence.and assurance concerning the rel;abilziy
of the software. In general'thé techniques invglvéd are

posthoc and rely on both analytic and non-analytic means

to provide measures of correctness.

6.2 PROGRAM TESTING . ) .

i

Techniques for testing and test data generation fall into,

one of two comblimentary‘categories, either Functional or
©

Structual Pﬁéma??,Adr182]. Functional tesg}ng is also known .

[N
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as the black box approach, which is primairly concerned with
user visible attributes. Test data are derived apriori from
software sbécifications raéher than from posthoc algorithm
analysis based on implementati?n dependant details.

¢

ot

Structural testing oh the other hand is almost wholly
dependant on the study of the internal organization of the
softwarg. Si;ce this requires that we actually examine tke
software, this technique is alternately known as the glass
box approach. The purpose of this forﬁ of testing is ta
;Ssure that all internal operations perform acéording to

specifications.

6.2.1 FUNCTIONAL TESTING

tr
Functional teéting is. basically a refinement on the method
o} exhaustive coméafison and utilizes  more realistic
paradigms. Rather than testing the whole input domain, a
selected, noﬁ random, stratified and hopefully sufficiently

complete data sample is used. Results fr?m the chosen data

sets are then 1nferpreted and extrapolated to the general

problem domain. "Test data must be derived from an analysis
gf the functional requirements and include representative
eiements from ail the variablé'domains. These da?a should
inclbde both valid and invalid ,inputs" [Adri82]. 2rogram
gata can also be partiéioned' into both input and outpu&

classes. Tests are then run on fepresentative“data samples

5138 -
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which 1lie within each of the classes (non-extremal) and at .

the boundaries of each class (extremal). Testing based on
these sets is often also known as boundary value analysis.
\ )

6.2.2 STRUCTURAL TESTING

Structural testing i; by far the most widely used technique
for software validation éMill?H,bags78,Good77].A _ The
traditional manual method is called desk checking: going
over a program by hand. Desk checking however is more a
debugging task than an actual test;ngctechnique.//&n order
to overcome limitations of the individual the approach' was
expanded to include twoy or more participants: egoless
programming [Wein71], peer code reviews [Glas80], and chief
\programmer terms [Bake72]. Desk chécking also evolved into
mdre formal and disciplined procedures called code
walkthroughs and -inspections [Adri82], where several péople
read the software ﬁ}oduct and run throuéh a simple

simul ation evaluating it against predetermined criteria.

. \ w \

In order to describe and produce more efficient protocols‘

for assessing desirable levels of confidence from™ structural

‘analysis,] researchers have developed software tools and

o

software which permits a greater level of_ measurability.

» ’ "
Within the realm of measurability we often encounter the °

phrase "software complexity". The phrase denotes a

numerical term which is usually determined as a function of
: ) _

©
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some quantifiable software feature. Increased complexity is
inversely proportional to software "quality", thus
complexity measures provide a means. with which to guage

relative amounts of testing needed to insure reliability.

This grea of ‘software research is currently basking in the

-.aura of "great importance" and has been deemed valuable to

both academia and members of the business community
[Paig80,Wals79,Schn79]. Researchers have ' produced a
plethora of techniques with which to enumerate and

ultimately predict physical characteristics of software.

Typically, measurability is also a function of

14

accessibility. In other words how easy is it to .extract

relevant information from the appropriate software products.

" Software testing and validation already consumes 40 to 50%

‘of initial development costs, therefore we must be extremely
conscious not only -to develop different software testing
tobls but also to decrease the overhead incurred by their
use.

To do justice to this very rich and diverse field of
software physics would be far beyond the scope of this
thesis. As such the reader is réferred to the accompanying
‘fnnotated_bibliography which provides a somewhat more than
introductofy overview of ;everal of the more salient pépers

encountered within the domain of software complexity. °*
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6.3 STATIC STRUCTURAL ANALYSIS

The basis of static analysis residés in the ability to
extract and interpret both control flow and data flow
]information of a giveﬁ program. This work is either done by
shand or through the use of automatic tools such as parsers,
translators, and preprocessors [Rama77]. The purpose of
extracting control flow is to permit for a visual
multidimensiqnal representation of program behavior, whereas
data flow is used to analyze transformafions made on program

ry
, variables.

v

* . ¢

Data flow techniques %re‘conventionally used for discovering
| program anomolies such as undefined ~o§ unéeferenced
variables, as well as for bérformiqé program optimization
[Cock69,Lowr69]. Data flow is also the basis of numerous
desién and programming techniques [Dwey79,Gust77] for the
generation of conventiohal code based on data flow
considerations. Recently tﬂere has also been a fair amount

of research into functional programming, a technique whereby

code is compl%tely divorced from ‘control flow

[Back78,Back82,Ache82,Davi82]. The introduction wof these

data flow languages has sparked interest in complementary
research geared to the implementation of data flow based

machine architectures [Wats82].
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6.3.1 COVERAGE BASED TESTING

Most structural testing is primarily centered about copﬁrol
flow and 1is éxamined via coverage based testing. .%hg
underlying philosophy is that selective execution of program
paths is a viable alternative to exhaustive search. The
errors this technique attémp;s to isolate Zan be categdrizeq

_into the following classes [Good77]:

‘ (a) missing qontrol flow paths - incomplete logic
(b) inapproprigte path selection - due to incorrect
logic
(c) inappropriate Jr missing actions r. due to
pversight »
Coverage based testing can be used at several ‘levels of
refinement which exercise successively mﬁre comprehensivé
structural components. The accepted standard is as follows
[Bagg78]: )
(f) execute every statement
(2) execute every conditional branch

(3) execute all possible program paths

Paige [Paig75] has introduced an intermediate step cailed
decision to decision (DD) paths: "It 1is a portion of a

program, path beginning wi&h the execution of a branch

S

predicate and inecluding all statements up to the evaluation,

but not execution, of the next branch predicate" [Paig?Sj-

»

L
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Thus the above l1list can be expanded by

A

i
i I
!

/

;
i

P

14/
(2.5) execute every DD pat'l'n.(ﬁ«r’r

All of the above require that a program flowchart or flow

Jgding the following.

graph be extrac&gd from the program so that appropriate test

cases may be prepared [Rama74].

These graphical approaches

further allow the usar to uncover two

N

-

,//

(a) syntactically disjoint code (dead code) 1

other types of errors:

n which

the control for the program does not allow a link

to certain sections of code

(b) semantically disjoint code 1in

logically impos

executed

sible

for

which

certain paths

it is
to be

A somewhat different technique for obtaining test data 1is

called symbolic executio
defining data. These symb

data values when execu

n and
0ls are

ting ¢t

is

used

he

based

on symb

instead of

program. In

olically
actuél

symbolic

execution the effect of an assignmént statement would be to

replace the value of the left hand side Variable by a string

representing the unevaluated expression on

the rig

ht hand

side. Thus the result. of the execution would produce a

complex expression which

appropriate test data.

can

- {ug -

then

be’

used to

derive
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Mutant analysis is a ﬁethod by which programs are
interactively seeded with errors (mutants) and then run with
test data which has been previously executed. The runs are
checked against each othér to reveal errors, The success of

this approach rests upon two fundamental hybothesis:

(1) competent programmer hypothe%is - in which it is
assumed that the program which is to be tested is
nearly "correct" .

(2) coupling ?ffect - thdt tests which uncover simple

errors will also uncover more complex errors

Although relatively new and quite costly both these techniques

have been shown to be reasonably effective
[Budd78a,Budd80,Adri82], and may be extensively used in the

future.

' 6.3.2 STATIC TESTING USING ABL/DSS

At this point in the thesis it should be clear that ABL is
extremely well suited for static analysis and testing. The
most essential step towards the analysis procedure is
extracting the appropriate control flow from a progranm.
Unlike conventional programming languages with implicitly

defined control flows, ABL does not require complex and

. costly parsing techniques to obtain the relevant

information. As explained in section 4.5 of this thesis ABL

N

-
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flow graphs areJeasily derived from the appropriate abstract

programs,
L3 .
&

»

Testing of each of the four levels of§3tructural components

using ABL is also a trivial process. Without the
constraints of embedded ‘control flow, the data analysis
necessary to satisfy Fompléﬁe execution at each level of
testing is minimal. Of éourse the assumption is made that
"we have available an interactive monitor and test driving

procedure. For example:

(1) to execute each(statement it is necessary to invoke
each action or..pfedicate element in the abstract
machine

(2) to test each conditional branch requires that we
satisfy the guards for each alternative 1in the

abstract program

(2.5) to treat every DD path merely requires that each
alternative in the ABL program be executed

(3) to teﬁt every path requires that we traverse each

path exbréssions drawn from the normal tree form of

-
e

the ABL flow graph

{ '&IAll that 1is required is that we define the following
.‘\\\
J

%r@lation to hold relevant data flow information.
)
)
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ABSTRACT DATA FLOW RELATION

Each tuplesin the relation i2llustrated in figure 6.1 gives’
information about a single variable from a given
action/predicate element in the Abstréct' Machine. The
attributes of this relation consist of thé following: class
of statement ('A' for action, 'P' for p?&&icate), statement),
number (integer representing cardinality of the staement),
variable name (alphanumeric string of characters), data role
(characteristics of the variable: 'R' for referenced, 'M'

for modified}._

EXAMPLE: PREDICATE 1, 7 =x
ACTION 1. Y = Y47

> |21 |v
(W R WV T T
< 1< | NI |N
omi=x| oo |

1 VARIABLE ROLE

(REFERENCED OR MODIFIED)

VARIABLE
IDENTIFIER

STATEMENT IDENTIFIER

((‘LASS OF STATEMENT .
PREDICATE OR ACTION) 4

FIGURE 6.1 Relation Abstract Data Flow

Combining the information from the Data Flow relation‘ and
the Abstract Program relations via high level relational

operators and path expressions g&yes the user hierarchical,
' ' r
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context sensitive data flow information. With the insertion
of this data flow relation we have introduced the potential
to perform symbolic execution. This can be achieved in a
relatively uncomplicated manner through the use of
substitution, concégentation, relational algebraic operators
and other nececessary utility routines which are

synchronized and coordinated with ABL/DSS facilities.

It has been shown that mutation analysis "for special cases
like decision tables can be used to verify programs fully"
[Budd78b]l. Given that a decisio; table is a sbecial case of
an ABL program and that each cluster has at least all the
characteristics of a decision table, then it should be
possible to apply this technique directly to ABL. However,
the question of whether ABL programs are fully verifiable
using mutatién analysis has yet to be ascertained. The

implications of the 1latter provides a suitable research

topic for yet another thesis.

Maintenance costs have been shown to absorb as much as 50 to
75% of all cost incurred during the fuhctional lifetime of
any software system. A substantial pdrtion of this amount
can be attributed to the testing which must be perfomed to
verify that maintenance changes ar; correct and have not
damaged other unrelated program functions. This form of

testing is labelled Regression Testing [Adri82]. Part of

the reason for these h;gh "costs is that conventional .

{
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programming m;thods create products which are extremely
static, where even minor changes become forced operations.
For example, if during testing a change has to made to the
conditional which controls a loop then the programmer hasn
to: (1) abandon the compiled version, (2) acquire the source
code, (3) call up the text editing facility, (4) make the
appropriate changes, (5) recompile the latest version, and

(6) resume testing on. the program.

More extensive changes or simply trickier ones usually tend

to generate a mosalc approach to program refinement; wherein
the resultant quality of the new version is usually a
degraded version of the original. People in general hate to
"redo" something iwhich already exists. In their attempt to
"not waste" the previous effart they try to incorporate as
much of the old into the new. This reluctance to "redo"
tends to promote error propagation because it most often
involves introduéing housekeeping chores not relevant to the
problem at-hand, thus reducing the cohesiveness of the
previously established program ilogic. The ABL building

block approach minimizes these problems of maintenance and

selective retesting.

The fundamental ABL tabular template 1is. another
characteristic beneficial to the verification process.
Goodenough [Good77] has stated that "most software errors

result from failing to see or dea; correctly " with all
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conditions and combinations of conditions relevant to the
d;sired ope;ation of a program. An effeetive methodology
for reliable program development must focus on uncovering
these conditions and their combinations". He concludes by
stating that wuse of condition tables (extended decision
tables) make it eé;ier to "find and analyze" the requisite
.condition combinations.

Through ABL each action and predicate can be costed\énd each
alternative can be assigned a probability of execution. By
combining these @wo program attributes with the normal tree
form reprgsentatigﬁ gives us a means by which to evaluate
theoretical program behavior. This statfc profile can be
‘used to determine both relative and absolute criteria for
comparisign and optimization. Some preliminary work on this
_ area has been reported [Lebe82]. The ABL approach can be
fﬁrther utilized to establish a family of metrics whicgh can
be used to guide and bound software testing. Figure 6.2
présents a prototype set of the formulations‘accrued from
the above considerations.

-

A simple 1logical extension o% the formulations given above
can allow for a cost effective procedure to meet " individual
customer specified relia?ility constraints. This 1is
accomplished via a flexible ,tﬁee pruning °strateéy which
allows the user to engage - 'in either proportional or type

based testing schemes, dependaht on branch costs and branch
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SCP = sTatic COST OF A PROGRAM
P = cosT OF ANY GIVEN PATH -
CA = COST OF ANY GIVEN ALTERNATIVE
*$ ® COST OF EXECUTING A STATEMENT
G = COST OF EXECUTING A GUARD
PP ™ PROBABILITY OF ANY GIVEN PATH
P = PROBABILITY OF EXECUTING AN ALTERNATIVE

= SET OF GUARDS IN AN ALTERNATIVE
SET OF ACTIONS IN AN ALTERNATIVE

= SET OF ALL PATHS IN A PROGRAM

® SET OF ALTERNATIVES IN A GIVEN PATH

nx =X > O
]

°

FIGURE 6.2 Prototype® set  of , formulae ' which . can -

¥

aQ

be used to guide software testing e

.x’\

p,roSabili,ties respectively. This ¢thinning procedure is
accomplished through the ‘use of thresholds (Global or

Local), and hence can be refered td as the THRESHOLD TESTING
; ’ \,‘3

TECHNIQUE. -~ | \\\\ |



A typical use of a global threshbld could be to restrict the
lengih of program pafh expressions. Thus we could grow a
given tree, re-entrant nodes being replaced by apgroéiiate
subtrees, until the cumulative probability of the total pa"chu
falls :helow some designated value for minimym path
probability. - An alternative method would be to restrict the
size of path expressions by 1limiting the upper bo&nd 6f

permissible path cost®

The function of the local. threshold woﬁld be to discard any

branch whose probability of execution or functional coSt

does not surpass some user defined threshold level. Tnis'

can be used to limit the proportion of "less important"
“paths in a given tree. Both types of thresholds can be used
in conjunction to produce custémized -testing strategies.
Exploitation of +this technique geserves further study and
’provides gnother.topic for a future thesis proposal.

ot

6.4 DYNAMIC STRUCTURAL ANALYSIS

~

The purpose of dynamic analysis is to verify:. that program
béhévior, duriné execution, performs as was anticipated by

the static analysis techniques. "Dynamic analysis performs

both efror “hiagnosis and verification of, peéformance‘

requirements. It helps to detect and 16cate\>errqrs by
d;;glayingA the various events that occur

execution. The amount of code not exercised by any test
. i\ - .
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cases can be wused to indicate test ineffectiveness. Code

L]

sections that are most frequently executed are identified
for optimization purposes® [Rama77]. The methods used to
acquire the appropriate information falls into two /g,éneral

gategories; execution profiles and assertion chefké?'s. ’

/

1

6.4.1 EXECUTION PROFILES AND ASSERTIONS

An execition profile is primarily a list of i‘requency counts

°

" indicating how each of the program components 1is executed
during any given test run. Besides statement:, coun‘ts, other‘%
data which can be collected include: execution time of each
statement, distribution of. Io’gical Success on conditional

branches, maximum/minimum values of chosen variables, number

of loop iterations [Good77]. (Collective statistics on

Judiciously chosen data samples provides for a reasonably !

accurate (though not compléte) picture of the associated

algorithm dynamics [Chev78,HalsT73].

[

-To obtain the required information, software probes 1in the

form of -source language sStatements are 1n’serted into the

sour'ce»code.[Rama77,'Paig74]. However, since these counters

bl

significantly burden the execution of the prog‘ram, it is -

<desirable to mini.mize” the number of counters used. - Dynamic
analysis techniques often make use of graph tﬁeory for
- . ' .

_partitioning the system into. smalller subsystems .iln order to.

© ‘identify 1mpori:%nt' atbributéé as well to determine locations.
;9 .~

»
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for placing test monitors.\\A great deal of research has
.bee% expended on producing iggtrumentatioﬁ‘which can both

locate ad automatically insert probes into the software.

D o

) »* ’ .
The principal advantage of dynamic analysis 1is that it

provides for more effective management of testing
'procedures.' "In general, the most ‘acéive or frequently
executed portions of a pregram are thorbughly eested, while
the 1less active portions receive inadequate testing.

Program segments with zerd frequency counts could ge given

4 ksl

more attention in testing and singled out for early and

?

intensive testing" [Rama77].

Although formal ?rogram proofs have bee; shown to be non
feasible for larger programs, a more viable option for
improving reliability has been to"place assertions witéin
the body of the program [Boeh79). "The assertions may take
the form of range checks, state Checks,.reasonableness
checks, and inverse checks. . A range 'check ensures that
values of data are within the specified range during
execution. A state check verifies that certain conditions
hold among the program yeriebles. A reasonableness check is

applied to the input data to avo system misbehavior

, ]
resulting from abnormal ihput d An inverse check is
used to ensure the correct opera

[RamaT7T7].

system"

"1

o e e
'
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__These assertions are then executed during the course of a
) .

regular test run with violations being reported to the user.

The drawback to this technique is that we need to define a

. " high level command language as well to have available a
. i ‘prebrocessor which . can convéft ‘the assertions into
/ K 4 executable source code. erall however this approach seems

to be a practical stép towards the goal of achieving more

d

LY reliable software. A '

' e !
6.4.2 DYNAMIC TESTING USINGUABEVDSS

)} L . -~

|
!
i
|
4
{
!

. ABL/DSS is highly amenable to techniques for dynamic

% ‘ structural analysis. In terms 9f execution profiles the
following data is easily assembled witﬁouf the " “excessive
overheéd encounte}éd with conventional approacﬁeaﬂ ABL
solves some of these problems b;cauée "probes" per §; are
> unnecessary: The proposed fqnctionrof a probe is rendered
redundant. by ABL's more abstract mapping of’§ontfolhf16w ‘to
source code. For example Qction‘and p;gdfcate counts or_

costs can be computed diréétly frém "frequency counts of

e TR DI TP A € St Ko Ut Poweans e

alternatives. The following 15' a partial compilation of

L d
o

. typiecal quantitati%e dynamic characteniétics currently 1in

]

vogue, and easily obtainable using ABL tgchniqdés:'

P
*

(1) frequency of each statemeﬁt

Co A L (2) frequency of each action/predicate

; : ag (§) frequency of each clusteE
N | . ARG

2 . d ' Y ' .
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4) frequehcyvgf each alternative (DD path)
(5) minimum?mgximum of any assignment

&
statement/variable

v
N

Other mére complex and detgiled statistics may be obtained
by either . comparing or decomposing the parameters given
above. A non trivial example would _be tﬁg facility with
which ABL can track patﬁ expressions. Most of this
information can be recorded directly into the appropriate

.relations through the addition of new attributes.

Furthermo;e ABL  ¢an also be madeﬁ%o handle assertions. ‘The
extension of its infrastructyre vié postconditions permits
Gs td perform a Boolean evalua?ion/fbnqtionaliy equivalent
~ to the assertion. These post conditions may be Emplemented
through the addition of two new st%uctural components to
each of the Alternatives: (1) matrix of post condition
-predicates, (2) a NEXT vector associated with the gost
condiéion predicates. Figure 6.3 illustratés the
concatenation of post-conditions 1into t';hec ABL tabular
template. Besides flagzing errors ghe p;st-condition méan
//é&sb .be used to override. primary. control flow thereby
allowing the programctQA compensate for cértain types Bf

4

. ‘errors, thus bringing us intd the fﬁingé;'qf fault tolerant

computing.
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CHAPTER 7 }

CONCLUDING REMARKS

C\,
‘The purpose of this thesis ha;nbe;f‘to focus attention on
the' multitude of conceptual 'and technical problems
encountered by the computer scientist. We have approached
these problems by characterizing the state of the art of
software teéhnology. This endeavor has forced us to look at
both the‘ deficiencies and successes of: language, software
production methodologies, softwaré tools, software testing

and validation techniques as well as the psychology of

programming and more importantly the psychology of _problem

solving. .

Implicit to the entire domain of software engineering aré
the' issues of perspective, cueing and communication.
Although "difficulty of cqmmunicapion has become recognized
as the biggest obstacle to progress in the use of-computers"
[Date?5], I feel that this is not the most crucial aspect of

the art of computing. Rather our focus should be to gnhance

understanding and ameliorate problem éolving of which

communication is an essential component.

If computer. sc}ence is to be an extension of intellect ihen

we need to recognize that the principal component in the

‘o - 157 -'_
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melding of maﬁ to machine is the ‘human mind. Linguistic

ébility and communication alone are certainly an

insufficient basis with which to ensure the quality of

computational ability. Dijkstra [Dijk72] has stated that
"one of the most importantci:pects of ‘any computing tool is
its influence on the thinking habits of tﬁose who try to use
itn, lReaListically we cannot hope to extend intellect if we

continually and casually ignore the impact of mind.

Science in general is the acquisition of knowledge derived

from the study of things which occur. Researchers formulate
theories and aystractions~which court "why" questions. The
practice of engineering is driven by man's attempts to build
things which fulfill needs. This d;scipline is generally
guided by'a body of knowledge which séress the question of
"how". Art on the other hand is an extension of human
expression that need not question its environment yet
projects the 'subjeciive prespective of 1its creator.
Computer science is an analgamation of all of the above and
though possessing properties of each also has perspectives

unique unto itself. It is this hybridization which may

underlie its refreshing but intractable vitality.

Traditional methods of software developmént have been
"relatively ineffective" because each has attempted to
directly‘ apply techniques garnered from these pargnt
disciplines. Given that computer science heralds the next

’
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‘industrial and cultural revolution, can the ABL mcthodolog§

be expected to significantly contribute to this proéess? We |

ibelieve that - ABL is not only an academic exercise but will
\Erovide a'medium which‘)dll aid not only the discipline of

programming but its users as well.
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ANNOTATED BIBLIOGRAPHY

The articles covered in this bibliography are on the topic

)

of software coﬁplexity and comprehensibility. The papers

reviewed include several review articles as well as
theoretical and experimemtal works. The references listed
. ;\ >

do not represent a complete review of the papers in my own

bibliography “much less an exhaustive search of the

. literature. Rather, the purpose "has -been to provide a

collection of papers which while restricted in numben:would
nevertheless span the 'spectrum of iégues involved 1in this
field of research. It is hoped that the following reviews
will give the casual reader an adequate overview of the area
as well as providing a suitable starting point for anyone

wishing to begin research on the topic of complexity.

[Berl80] Does a nice review of the state of the art in.

complexity measure including the methodology for calculating
each of the foilowing':*1) Hellerman (H - entropy function)
2) McCabe (V - cyclomatic number) 3) Meyers (small change to
McCabe's V) 4) McTap program features compared to reference
base 5) Chapin Q - index Qf either program or module

complexity 6) Chen Z - based on the topological ~proper£ies

of the @raph 7) Mohanty G - entropy loading measure 8)

-
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Halstead: V, V¥, L, E, I - volume, potential volume, program

level, program effort,”inform;tion content) 9) Sullivan may
| 4 .

measure. Last but not least he presents his measure which

is called M - which is supposed to refuse total information
' N

N

contained in a program &8s H - ;Sanguage entropy. This

measure is based on the probability'distributions with which

various tokens of a program are used. Mention is made of

Zipf's law.

[Broo77] “The following po;hts deserve mention : ’1)
difficulties in programming are clearly linked to specific
features .or properties of programming languages (ie. note
Shneiderman  paper on Cobol vs Fortran) 2) experienced
programmers make same number of mistakes initially but find
the mistakes faster 3) better conceptual organization
involves reducing the cognitive load 4) offers a three step
interpretation of programming (ﬁroblem understanding,method
finding, coding) 5) claims that human problem solving
behavior is é;production system based on pairs of conditions
and aétioné/fo be performed 6) gives an ABL like appoach to
what he feels Should be a better methodology for

programming.
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[Chap79] The author provides for a brief and somewhat

restricted review of some of -the complexity measures

currently~ available including: McCabe, Zo}ﬁowgki, McClure,

..Myers, McTap. He then goes on to describe his own measure

which he calls Q. The claim is made Phat Q is an "index of
the difficulty people have in understanding the function
implemented by the software", where function is defined as
follows : "a function is a correspondence between sets of
input data of specified domains, and sets of output data of
specified ranges". A ten step ccmputa;ional procedure
(complete with example)’for calculating the Q of a program

is given; Chapin thenygoes on to do a comparison of his

measure to the previously menticngd ones in which he points

§

out some of the strengths and weaknesses of both his and
theirs. He 1includes the recommendation that the McCabe
measure migﬁt be of greater use if to obtain firm ébunts of
lines, ‘nodes and branches. The author concludes Sy making
the statement that unlike the other measures .whicp require
code, Q can be wused during design, implementation and
maintenance with or wifhout code. Also tﬁat this measure
provides for- "comﬁlexity density" rather than” the McCabe

"complexity extent",

[Chen78] - The purpoée of this paper 1is .an attempt to

demonstrate an empirical relationship between his chosen




. N \ .
complexity factor which is a function of control 1logic,

based on a topological analysis and programmer productivity.

’

He hentions that the three basic structures are. . : 1) serial.

.
vt ot s e o S oan < em

2) parallel . and 3) recurrent patterns, with the next level -

of strﬁctural entities called "functional blocks" . Hié
results reveal that tﬁere seems to be a quantitatfve
relationship between pﬁoductivity and complexity. The key

r [ . ) ~
factor seems to be the existence of "quantumcrdrops or

cliffs" in the curve which describes this relationship.

There probably exists some sort of cause/e{fect
relationship. We couid probably ﬁéﬂe a point which connects
these leaps with our limited abiiities of short tem&
memories (ie. the magic number seven plus or minus two).

The 1ideas ‘presented also seem to.correlate the concept of

"chunking", hence giving us a reason for imposing upper

bounds on certain items, such as maintaining some sort of

manageability by restricting module size this has already
been suggested by others - max 150 lines per procedure.

v

~d

-~ .. -

i

©

'development time is related t9 . longer ‘prqgrams, therefore
variables assoc&ated with ééyelopmgnt time should also be
related .to program size. The author® then 1lists fifteen
program characteristics and five programmer éﬁﬁracterisfics

which he feels are related to program development . time.

i : S - 163 -
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Efperiments were tun (using COBbL programs) fﬁBﬁ whichvhe'

attempts to 'correlate . both program_' and progyaﬁmer

gharacteristics to, the following : 1) data division sour

statements 2) working storage bytes 3) "Procedure divisionr

sodrce statements 4) procedure division bytes. Conclusions

were as follow§§: 1) no prédictive power from the. programmer
s

characteristic 2) ° three program characteristics were -

k4

| correlated with procedure “division bytes' at the 0.0005
i , g

©
u

‘[Curt79] The terms "computationmal *complexity" and
,i "psychological qomplexity" éfe defined. Thé. authbrs then
experimentally sttempted ¢to manipu}ate factors éhich they
believed would change each of "the above; Besulgs showed

t@a; 'performance was better on structured pro&ﬁams then

( unstructured ones. They also found that the metrics were

more strongly correla%ed with time to completion then the

‘ ‘ ' aécuracy of the, implementation( - (ie. " espécially on :

L]

maintenance tasks), also that the metrics were better

predictors of -performance in -‘the ' less experienced
© programmers. This 1is. important becauéelvas the authors

14
“f - suggest the more experienced programmers probably reduce the

codpitive load "chunking" by struqt&rgd techniques  and

commedting..‘Thié is probably‘the reason why people have an-

incredibly high inertial resistence for acceptence §f any

<

.. - 164 - :

level. t \ ‘ ‘ "x.

&




“®

v

™

o

t

new technique. They can npuionger use their cognitive load
reduction fechniques which they have dcquired through costly

experience. ' ’

[Feur?79] "Authors state that mainténancé costs dominate

the total cost of a large software system and that emphasis
has shifted:from "bit fiddling" (my quotes) to 1issues  of
clarity and flexibility in program struéﬁures., They were

seeking a®language independant measure so’ they decided t9o

use flow gF%phs of the programs. Some of the measures they

o

used’include;,count of ﬁodés, ratio of decision nodes to
total nodes, possiblé~ paths through graph as wéllpas mean
number of decisions per ﬁath.o They presenthn algorithm for
redueingl¢ the flow graphs to .check for stricily well
structured programs. reducing flow graph to a single a node.
No references are given for this algorithm which I belie/e
varies only slightly from the algorithm given‘by Hecht and

others. Besiaes tﬁg abové mentioned variables they also
L 3 - N -

.Studied the ‘following: 1éngth,‘ expected 1length, volume,

_ level and effort Results yielded that there\ was a
"striking dependency" between time of repair and node count
{time of repair of bugs increased with node count). ?he
auphors also revealed that there exists two types Sf errors
(eésy and herd to repair), where the easy to repair oceur
uith greater probability then bhé difficult to repair
& . . %’
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. ~; In general. Results state Halstead's. volume pgasurement is

yariety. It was also suggeste tgat the difficult to répair
.errors réquirrd a‘time comper t ich was expénentially
related to node -count, whereas the\easy to repair errors
were linearly-related to node count. 'Other findings include
';he fact that modile size is a good indicator of maintenance
performance and that the level varfabre (adjusted for size)

was a fair indicator of the performance of groups of

modules. € s

N .
. &
K J i , s
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[GqrdT79] Attémpts to. assess the amount of mental effort
required to unde¥stand a program. Three areas are studied:
"1) programmer ability 2) program. form 3) program strgcture.

This . paper 1is 1is' basically an experimental stqpy based

_ primahily on Hakstead's measure of program complexity. His

-
* .

cpiteria of complexity is based on the number of operators
and operands in a program. The paper includes’a*gooJ review

. : [ s
'of, the ‘topic.of progrémmer productivity complexity measures

ot 3 suitable or sufficient indicator of progvap clarity.
. N
Stresses fact that "algorithm" comprehension ﬁis ‘a very

important factor in program undersi;p@ing, as asseseed“from
- mafhtenance and debugging tasks. o . -
& . T,
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[Gust77] " Talks about the importance of ‘data flow in

»

program testing especially with regard to test data

\-

selection and/bsymbolic execution. Mentions briefly the.
imﬁortance of cbntrol flow as a basis for detegdin&ng.
‘complexity and ‘how it Yelated to program testing. « The
author. makes extensive use of flow diagrams to express data

“
flow,

w ' \ ~
i . .
(/ u |
! o
.

fHousBOfii%?>The author gives five causes for foor, softwarg

‘ingluding : 1 pyof'functional specification 2) i1l chosen
. internal structure 35 majﬁr programming languages are ' not
' the best tools 4) programs are A;£ adequately tested 5)

%ﬁgnitude of the task of developing software is n;t fﬁfﬁy‘
récognized. ‘He concludes’ by giving a six step method of

g design and coding which . he feels woulg? produce better

quality software. e, ' o v
4 . ' . ‘ o
! : . : 2 ‘ o . & ‘
e ‘ v o ' -,
[MaesT77] Does a review of decisibn fqble format to date

and . finds that non can ‘adequately ‘aisglay &’seqﬁential R
information. 1mportant-poinés include : 1) ;écision tabjes
should be brought back because igﬁour attémpt to satisfy the
constraints of the old s}yle cofiputer languages (ie. strict
flow chart) we were forced to distort the algorithms whereas

L 8
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‘Examples of some of thé ones chosen by Zolnowski’are 1)

decision tables are better suited to distinguish the causal

relations included ¥n__the original problem statement 2\
CoN L = - .

R - .
useless to dttéépt to optimize programs by converting them

to decision tables aq&\Qgg;,back because to really optimize
‘you would .have to get rdd 5; the constraints laid down by

the conqré;—structure of the original program . So Iong as
3 u ’
decision tables are not improved.they should be used for

generating test data predicates and fo}‘problem statement.
¢
g . B
*, 14 .

[McTaBO]» The author describes the work of Zolnowski and

| .
Simmons, he states. that although he feels that their work is

probably a good measure of fprogram complexity, their measure

suffers from four major practical defects : 1) néeds
reference bage 2) measure not static because the reference
base of programs can and does change 3) clumsy because you

: <
have to have a base béefore you can use the measure for an

individual program 4) cannot be applied to components (ie.

£

procedures or modules). The author then revieus ' the  five.

’ o . oo
criteria- used 'by Zolnowski to identify features which would

.allow . them to "éualify as program ompléxity features.

number of imperative instructions 2) average depth of if

nesting 3) total lines/of code 4) number of entry points. 5)

of code jh&ﬁed by forward transfers of cdntrol. The auphor
.- j63 -

m v - +

u

..total humber of parameters passed 6) average numgéf of lines ‘

i

)

. . N
At wgd
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summarizes the Zolnowski and Simmons measure kﬁs being a
measure fof the deviance or difference of the program being.
measured from the¥ reference base (ie. from "past
programming practices"). McTap's contribufion is to add a

sixth criteria (to five already used) for qualification as

. an appropriate feature to measure program complexgty.

v

[M11175] A rather gtraight forward paper which dwells on

the use of structurLl based testing, 'program proving and the
. H ‘

automation thereof. Also spends some time on semantic

complexity. Makes the following very important statement:

' Muse of simple programming primitives leads to significantly

véimpler backtracking operations".

'
[

L]
1

. [Salt76] A methodology is presented for transforming

system requirements into functional - structure and system
operating rules, Télﬁgxﬁbout sysééﬁ decompbsed into four)

structural elementg?‘“1).functions 2) control 3) functional

flows U4) data.. The paper basically deséribes the following—_
. : \ :

flows (system requirements) ---> (data processing req) --->

. . , ) | A
_.(a;gorrthm_construction) ~--=> (code implementation). Spénds

. . 4 .
a- good deal of time talking about finite state mach}nes
(FSM); to model control. elements. Topits listed include the

k)
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‘following : Structured FSM's, start end states, Hia[archy of
FSM's, F3M s§nthesis etc. Brief seciion on properties of
control structure (consistent,complete,reachable) and their
relationship to FSM's. _Tﬁﬁ apbendix to the paper\contains a
descriptidn of his algorithm -to structure and stratify

funétions using FSM's.

-

[Schn79] The author atteﬁpts, to ‘relate structural
characteristics of ak program (ié. via flow graphs) to a
coﬁblexity measure which he hopes 1s a valid indicator
’fstrongly related) to program .developement time, program
qualiéy and ease of debugging. He _uses graph theory to
analyse programs where he makes use of adJéceggx matricies,
reachability matricies as Qell as fundamenééﬂ circuit
matricies. He also makes wuse of trees which are deri&ed
féom th; graphs by deleteing edges 8o that no ciécuits
exist. -Makes mention of the fact that path analysis (ie

complete number of paths) can be found by. performing r;ng
sum ‘operations on the independant circui{s as described by
the fundamental circuit matrix. ABL normal tree form
. procedﬁre yields the same paths. Author states that all of
the'techniques mentf%ned could be completely automated if

the problems could be put in décision table form.
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[Schn81]" This paper 1is éssgntially a review of some of
the,lité&gture on what makes a ggod complexity measure. The
motivatiggg is again attributed to high maintenance costs.
Problem that exists 4s to isSclate those features which

affecb the "complexity" measures of-a program. The author

then questions some of the sources of performance

aifferences '(ie. programmer related or task ;elated). 'Thg
authors then points out three very importané experiments
which could be used to support my views of complexity being
related to the conceptual complexity of both the program and
the problem. It was‘ noted that there was a negative

correlation between three complexity measures : Halstead's

E, McCabe's V(G, Mills/Halstead program length) and simple

‘ -
recall of the program statements. More importantly, -

however, 1is the fact that'inéreasing positive correlations
were found wheh these measures were tested against ihé time
required to : a) modify a prégram b) debug a single error in
the program ¢) construct a progfém. Under proérammer

factors it was reported that there was a bimodal
distribution (expert, novice) ‘for bar graph (ie frefuency vs
cporrect answers) of botp short and long programs . It was

¢
cdhcluded that . programmer attributes were a 4significant

factor in these experiments. Under tgsk;}actors he
mentions Moher and Schneider's proposed five information
classifications : ‘1)( high levél semantics 2) low level
semantics 2) data structuré y) prbgram flow 5) program
modification. Their conclusions on this area are that these

>
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data reveal the inadequacy of complexitykmeasures based oak

program factors alone. .An important note is that their

} | -{' - ‘experiments did show that increased complexity of program

| flow did reduce performance of both experts and novices, by
about the same amount. General éonclusion is th?t it is
futile to attempt to encapsulate‘the concept of.%omplexity'

- within a single measure, at least for thoSe\ thgf/ studied.

\J (]

Implications are that future research should 1nvolve a

complexity measure which takes into account the following :

1) program 2) programmer 3) programmer and programming task

o
interrelationships.

N .
{

s e

[Shep79] ~\ This is an experimental study which. attempted
to check the relationship of Halstead's E and McCabe's V(é)
to three dependant variables : 1) percent correct recall of
. prograﬁ statements 2) accuracy of program modifications that,
were performed 3) time spent implementing the modifications.

It was fouhd that contol flow complexity was significantly"’

related to the first two but not the last variable, Basic

conclusions were that although thete was empirical evidence

.

, to’ support these complexity metrics the assessment of the

bsychological complexity'of'software requires more than Just

a count of operators, Operandé and contol paths. Alsp, they
i ‘ state that structured coding techniques and codmepts‘reduce

- the cognitive load of the programmer in ways unassessed by

\

AN .

a3
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the metrics, This statement supports statements made by

others who suggest that "chunking" is an important aspect of
human understanding of computer software. This might also

suggest that if programmers are allowed to . create contol

structures which allow them to toneceptualize the problems

better 3then we would probably see an improvement in

performance on both program construction and maintenance.

t

S

[Shne77] The gist of thtwepaper is that‘ "comprehension"
has become.a vital component in assuriing quality 1in
debugging and maintenance! tasks. 'The author gives a short
defintion of comprehension and then reviews some s;tuc'iies in
‘;\tie area. Interesting points are as follows : 1) being able
‘t.o ?ha_ce a program does not insures comprehension 2): as
programmers become more experienced they improve their
ability to recode ("chunking") syntax of a program into
higher level 1internal semantic structures. 3) semantic

knowledge is language independent 4) syntax is retained only

briefly. Results include finding that recall is related to
modifiability, which suggests that one way of assessing ease

! of modificapion is to test for the ease of memorization. It
b was also noted that FORTRAN with /its "cénci;e ..and
syntactically limited' form" was better for recall then’for

"+ COBOL with 163 "rich -;ynt‘&tic variability". This statement

is interpreted as meaning th.at. the greater the syntak
. '~\: . .

-
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requirements the harder it is to recode into higher level
semantic structures and that therefore we shoul® restrict

the number of control structures which the programmer has to

use.

-

o

[Sime7 7] The paper deals with an experimental cémparison
of what he calls "nest-ine" and "nest-be" structures.
Results are as follows : 1) nesting languages seem to be
better in erms 6f relating semantic information but
.predisposed fo trivial syntax omissibns 2) syntax mistakesl
are more likely in nest-be Structures 3) redundancy of
nest-ine structires make them easier to correct.

-fer?onaliy I feel that their results have been distorted by

.an interference effect '(volume of text) which might have
AN

been relieved had the nest-be structures been properly
indented. Another important . point concerns the task of
problem drafting which requires that a mental represeptation

be translated into a programming language, the ihplication
f ‘s

-being that language should bé\as\g;ose‘as possible ‘to the

~ ~
-

mental representation. tL -

A\ ~

\\ 3
[srin79]1 The basic premise of this paper is that the

nunber of decision points in a program is not a true”

£
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ﬂ'indicator of complexity because the blocks of code may or

not be highly interwoven structures. As should be

intuitively obvious the more interwoven it is, the more
knots it has hence the more complex it should be. These
authors have presented an algdritmm which restructures the
programs so that they have as few Lnots as possible.. This
paper should be read immediately after the Woodward paper

which introduces the concept of knots.

'\

[Trac79] To bring his point across the author first

describes how_ the human. brain would look like if it was

listed as specs for a new computer system (he points out -

that it has slow memory Store, limited instruction and

register;set, ioss of information in I/0 buffers -- good
poiné is that it has a virtually unlimited word size). - He
also points out ‘that programming involves two types of
tﬂought processes 1) asaocihted with problem solving 2)
ﬁan/cqmbuter communiéation usiné conventional programming

languages. States that human memory is the most significant

aspect of human thought processess which affects the
coqputer programmer; Other imporpant statements include :
1) a program should be recognized as existing in different

environments 2) the biggest pitfall affecting 'problem

solving is fixation (note- in another reference to ’the.

.effect that experienced programmers were the most resistant

- 175 -
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to change, probably in defence (subconciously) of their

."chunking" ability . which they. have acquired through long

hours of expérience./ Most people in coﬁputer science have
one language. which they pfefer -over all the rest 3)
"elimination of bushy trees " is a good method of reducing
complexity 4) describes a nine step process for describing
what programming is. The émphasis of thié paper 1s on
improving quality of. software by giving the programmer a
methodology which would allows them to produce less complex

programs, thereby enhancing readability and structure,

:

[Turngo] This paper 1is devoted to expouﬁding the
virtues of programs which have TREE 1like structures, The
author makes lmany good points as to why these structures
offer a better programming style and decreased complexity:
1) functional strength 2) heirarchial control 3) locality of
reference. Some of the advantages of tree like structures :7
1) easier to understand 2) high reliability maintenance is
easier 4) complexity is decreased beéguse’ we minimize the
interconnections between modplesi ﬁe even states desirable
exceptions to using pure tree like structures, and

implications of trees to testing and implementation.

- 176 -
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[Wals79] This paper could have been called "In praise of
McCabe's measure". He begins by making some good po s

:about how humans must neccesarily break a problem down into

smaller components so that the resulting programs will be
testable and maintainable. This is essential because the
high cost of software: is due to it  unreliability. The
author claims that the measure is simple tdﬂisé gnd allows
users to compare alternate designs in search of "the best
solution". This is accomplished by striving to eliminate
"obscure structures, cumbersome decision-making processes
and overly complicated control paths": The authors main
conclusion is that these types of complexity measures should

be applied at the design level because 1its effects

"propagate through all the ofher phases™. In summary JPe’

makes 8ix recommendations as to why the McCabe measure

should be used by softyare system builders.

~.

. _\*’

[ Wood79] This paper introduces the concept of.knots as
a complexity measure. The authors point out. that. a
structured program will Dbave =zero essential knots. Two
interesting stéfements made‘are ; 1) languages with pdwerful
control structures the layout is an important consideration
2) the McCabe measure does not show inecreasing complexity

with increased nesting level whereas the knot number does.
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- [Z01n80] The authors make mention of some of the

complexity measures availablé. The measures they cover are

based on .the following concepts: . 1

control flow, Rodule interéﬁtiqn, dafa reference, proéfmnj

. T \
contol, logical complexity, software science, composite

measures of.complexity. Authors not already covered in the -

Berlinger paper include the ' following : 1) Hansen
[ 4

(Pair(cylomatic . number, operator count)) 2) Peterson

(multiple entry loopé) 3) *Woddward ( number of knots) 4)
Cobb (cyclomatic + numbeg of lines I/0 code) 5) Glib (number
of subsystems) 6) Thayer (composite measure). He proposes a
seven step method for obtaining a complexity measure based
on four cétegories of complexity variagbles : 15 instruction
mix 2) data reference - 3) interaction/inéerconnéction )
structure/control flow. Aféer running tests on COBOL

ﬁrogramsyhe concludes that "there is a large amount of ~data

that 1indeed differe@tiates between programs within a

'language and across language usage". : .
( N
|
N t
~ .
’.
. £
‘ , - o
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APPENDIX A

\

\This appendix contains a sample program demonstrating an

impiementation of the KOMPUT construct on a compiler which
executes a small subset of the PASCAL 1language. The-
compiler was originallyq written (by the author) for the
~course: COMPILER CONSTRUCTION (N 743) and_  was latter

-
-

expanded to include the KOMPUT construct.

3\
‘ﬁ
. . ASCAL MIK1 COMPILER PAGE 1
, DATE £3/0k/02, TIME 21.05,43.
\ 1

:; PROGRAM BUBBLE;
8 (" B P
2 EEEEERER 2RI E R I RS SRR EEEEEERE SRR SRR RE E R EE RS EFRREEE ERREXRSERSEXRREE
7 THE PURPOSE OF THIS PROGRAM 1S TG SHOW THAT THE KOMPUT CAN BE
g IMPLEMENTED ON A CONVENTIONAL LANGUAGE.

10 THIS PROGRAM WILL PERFORM THE FOLLOWING:

:2 ’ ' 1) READ A SEQUENCE OF VALUES INTO THE ARRAY H

1 2) THIS SEQUENCE OF VALUES WILL THEN BE SORTED

15 ; USING A BUBBLE SORT ALGORITHM

}9{ -=-> USING THE PROCEDURE BUBBLES

18 3) THE ARRAY 15 ALSO SEARCHED FOR THE MINIMUM

19 AND MAXIMUK VALUES -

5? ] -==> USING THE PROCEDURE MINMAX

' 22 EE R RN E S R R N P E S X E NI E R R R NSNS E SR C ERE RS RERESR XS ERRRSRSARRRRS
23 ) :

2 VAR

25 H: ARRAY[1..35) OF INTEGER;

gg INDEY, COUNTNTEGER;

28 (9-0) ’ : ,

.
9
» « J
=21 - ’

B - — . e g iy s 2 e et S i

e e e 7 e S ™
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N

PASCILB‘II COMPILER ' PACE 2
DATE &3/04702. TIME 21.05.43 :

1
(‘
RSN EE RSN EE R REASENS NS RN R RN SRR RS RENRIARRREXRRRSLILENENSR
TH1S PROCEDURE WILL FIND THE MINIMUM AND THE MAXIMUM OF THE VECTOR
WHICH 1S PASSED TO IT. THE LENGHT OF THE VECTOR IS SPECIFIEL BY
THE VARIABLE N.
RS S RS RAEX RIS RERE SRR SRS SEAREASEERNANSIREREAENRESESACRERY

) '
PROCEDURE MINMAX(AI:ARRAY[1..35] OF INTEGEA; N:INTEGER);

VAR
X, MIN, MAX, U, V: INTEGER;
BEGIN

MIN:s AI[1);
Flulzs HIN;
ta
REPEA L 4
Uss AI[I];
Vix A1(141);
KOMPUT § [ (UDV), (UXMAX), (V<KIN), (VOMAX), (U<MIN) ]

[¢#,¢, «,% &7 : BEGIN
MAX := U3
HIN = V;
END;
NEXT 0

["*.-.'.']:HAXHU;
NEXT 0

[, , «, %, %) : MIN :x V;
NEXT 0

t 3
NEXT ©

, + J : BEGIN
- MAX :x V;
» NIN s U; o
END;
NEXT 0

)y = 3 2 MAX :x ¥;
NEXT 0

(-.\';'“.-,QJ:HIII:-U;
¢ NEXT 0
L .
NEXT O
WRITELN(# MISSING RULE AT KOMPUT
NEXT O

te,r,s 0 1)

ERD; (¥ END OF KONPUT 1 ®)

PASCAL MINI COMPILER PAGE 3
DATE 83/08/02.  TIME 21.05.A3.

KOMPUT D END; ,
Iia 1 «2; .
UNTIL I >s N;
IFI =N
THEN
IF AII[N) > MAX
.THE

[l

MAX :s AI[N)

ELSE
IF AI[R) < MIN
THEN
NIN :s AX[N);
WRITELN(#0 THE MAXIMUM VALUE IN THE ARRAY IS 4,MAX);
El:un:uu THE WINIMUM VALUE IN THE ARRAY 1S #,HIN);
?

(*-1)
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102

-t ed wd = b s b
0000000
DO~ N 2w

[V P R R N ]
- b b bl ald mb b il
VRN VNHWN-O

-120

PASCAL MINI COMPI

LER PAGE &
DATE B83/04/02. TIME 21,05.43,

(* .

SRS AN EE NSRRI NS E R EE KNI AR NSRS E RN ESESEEIARI S TLNS
THIS PROCEDURE WILL SORT THE ARRAY “LIST" USING THE BUBBLE SCRT
METHOD, THE NUMBER OF ELEMENTS IN THE ARRAY IS CONTAINEL IN THE
VARIABLE MAX. THE ARRAY 1S OF VARIABLE TYPE PARAMETER,

~

PROCEDURE BUBBLES(VAR LIST:AgﬁAY [1..35) OF INTEGER; MAX: INTEGER);

VAR
1'I‘.J.'I'Elﬂ": INTEGER; .

BEG
MINMAX(LIST,MAX);

KOMPUT 1 [TRUE)
[ +): BEGIN

KOMPUT 2 [ LIST(J-1) > LIST [J} ] .
[+ ]): BEGIN
TEMP:=z LIST(J=1];
LIST[J=1):= LIST[J);
LIST(J}:= TEMP;
Jizx J - 13
END;

=) deed -1
. END;

KOMPUT 3 [ J < I}
[+]):

. WEXT & -
{-1: .

-

=

wr [Mue
]
LY

KOMPUT- & [
[+]):

[-3]:

™
=

KOMPUT 0 EN

) ' .
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PASCAL MINI COMPILER ‘ PAGE S
: DATE 83704702, TIME 21,05,43.
155
156 ’ (¢ MAIN PROGRAM ¥)
157
158 BEGIN .
159 READ(INDEX); -
160 WRITELN(#1 THE NUNBER OF ELEMENTS TO BE READ ARE#, INDEX:3);
161 COUNT:= 1
162 REPEAT
163 REAL(H[COUNT));
164 WRITELN(# THE #,COUNT:2,¢ ELEMENT READ IS #,M[COUNT):5);
165 COUNT:= COUNT « (;
166 UNTIL COUNT > INDEX; )
167 BUBBLES(H, INDEX);
168 * COUNT ;= 1
169 WRITELN(#0 THE SORTED ARRAY 18 AS FOLLOWS();
170 WRITELN(# 1
17 WRITELN(#00); ¢
172 REPEAT
173 WRITELN(# ARRAY ELEMENT ¢,COUNT:2,¢ 18 EQUAL TO #,H{COUNT):5);
174 COUNT :z COUNT « 1;
175 UNTIL COUNT > INDEX; L
176 END,
177 '
L]
£ASCAL MINI COMFILER PAGE 6

“DATE B3/04702. TIME 21.05.43. -

GLﬂL VARIABLES FOR PROGRAM BUBBLES

COUNT ~~e-a) INTEGER
B ~=e==> INTEGER ARRAY [ 1..35)
INDEX e=w-v)> INTEGER
' VARIABLES LOCAL TO PROCEDURE MINMAX
1 ~e-==)> INTEGER ‘
MAX ~==e=> INTEGER
. HIN ammwed INTEGER
v eq==) INTEGER
v e==e=) INTEGER
PARANETER VARIABLES FOR PROCEDURE MINMAX -
‘ AL, ~a=we) INTEGER ARRAY { 1..3)
} 'l avese> INTEGER L’
VARIABLES LOCAL TO PROCEDURE BUBBLES W
1 ~a-a=) INTEGER
‘ J -esse) INTEGER
TEMP -=<==) INTEGER
PARANETER VARIABLES FOR PROCEDURE BUBBLES ‘
LIST ew=eed INTEGER ARRAY I V..35)
¥AX wem-=) INTEGER
COHPILAT%OI TIKE =cemed 1345 MILLISECONDS s
-~ .

(%4

o |
/ - 217 -




THE NUNBER OF
THE % ELEMENT
THE 2 ELEMENT
THE 3 ELEMENT
THE N ELEMENT
THE &5 ELEMENT
THE 6 ELEMENT
THE 7 ELEMENT
THE B ELEMENT
THE ¢ ELEMENT
THE 10 ELEMENT
THE 11 ELEMENT
THE 12 ELEMENT
THE 13 ELEMENT
THE 14 ELEMENT
THE %5 ELEMENT
THE 16 ELEMENT
THE 17 ELEMENT
THE 18 ELEMENT
THE 19 ELEMENT
THE 20 ELEMENT
THE 21 ELEMENT

T‘:E MAXINUM VA
THE HININUM VA

THE SORTED

ELEMENTS TO BE READ ARE 21
READ IS -

READ 18 kU3

READ IS 52

READ IS 65

READ IS8 765

READ 18 123

READ IS 0
READ IS ~376
READ 18 67
READ 18 -1
READ IS =76
READ IS -32
READ IS A3
READ IS 56
READ I8 (4
READ 1§ 98
READ IS 194
READ IS 63
REAL 18 22
READ 1S %
READ 18 26

LVE IN THE ARRAY IS
LUE IN THE ARRAY IS

ARRAY IS AS FOLLOWS

ARRAY ELEMENT
ARRAY ELEMENT
ARRAY ELEMENT
ARRAY ELEWENT
ARRAY ELEMENT
ARRAY ELEMENT
ARRAY ELEMENT
ARRAY ELEMENT
ARRAY ELEMENT
ARRAY ELEMENT
ARRAY ELEMENT
ARRAY ELEMENT

1 IS EQUAL TO -376
2 18 EQUAL TO -76
3 IS EQUAL TO -32
X 18 EQUAL TO

5 IS EQUAL TO -5
6 1S EQUAL TO 0
7
8
9

[ ]

18 EQUAL TO 1
13 %guu. T0 22

ARRAY ELEMENT 13 I8 EQUAL TO 56
ARRAY ELEMENT %A IS EQUAL TO 63
ARRAY ELEMENT 15 IS EQUAL TO 65
ARRAY ELEMENT 16 IS EQUAL TO 67

ARRAY ELEMENT 17 IS

ARRAY ELEMENT 18 18 EQUAL TO 98
ARRAY ELEMENT 19 IS EQUAL TO 123
ARRAY ELEMENT 20 IS EQUAL TO 194

ARRAY ELEMENT 21 (Y 5
EXECUTION TIME cwenmed

e o St

765 o
-376

37% MILLISECONDS
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