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ABSTRACT

Proposition and Security Evaluation of 2 an Analog Speech
Scrambling Device for Secure Speech Communications

Alexandros K. Goniotakis

The communication environment is very widely used, and very vulnerable to abuse
in the form of intrusion. The solution to this problem is to secure the environment.
This is made possible through the use of data cipher systems and speech secure systems,

depending on the form of the information to be protected.

One particular category of speech secure systems are analog speech scrambling sys-
tems. In general, an analog speech scrambling system consists of an analog speech
scrambling algorithm operated in a pseudorandom fashion. One way of obtaining this

pseudorandom element is through the use of a keystream generator and an initial key.

An analog speech scrambling algorithm, consisting of a hopping filters algorithm,
and an amplitude multiplication scrambling algorithm, is proposed and evaluated as
most secure with respect to other analog speech scrambling algorithms, on the basis of

certain specified criteria and operational constraints.

A particular DES (Data Encryption Standard)-based keystream generator algorithm
is then developed so as to satisfy certain criteria for a secure keystream generator. This
keystream generator algorithm in question is not only compatible with the analog speech
scrambling algorithm, but the combined operation is declared secure even for a "known

original speech” attack.

The two proposed algorithms make up the major component of the proposed ana-
log speech scrambling device. The specification of the device is completed with the
introduction of timing and synchronization circuitry required for speech signal recovery,

as well as a user interface to facilitate the use of this device.
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CHAPTER I

INTRODUCTION

1.1 THE COMMUNICATION ENVIRONMENT

Communication is the link between individual entities. It is the transfer of infor-
mation from a source to a destination through a medium. The transmitter (source), the
receiver (destination), the information conveyed between them, and the medium to con-
vey this information are all embodied within a communication environment. The parti-
cipants of the communication environment, which can at any one time act as sources or
destinations of the information being communicated, may be people, or computers acting
on behalf of people. The form of the information communicated between people, and
the form of the information communicated between computers is very different, but can
be made to be similar. People communicate with speech, which is naturally produced
while computers communicate with data. The major component of the communication
environment is the telecommunication system. It is what aliows the information to be
transferred, from one participant within this environment to another such participant.
It mainly consists of a network made up of a hierarchy of switching offices, and
appropriate transmission media, which allow analog and/or digital transmission of infor-

madtion.

1.2 INTRUSION TO THE ENVIRONMENT

Due to the great dependency of the general public on the telecommunication system
it is not only impossible to do without this system, and hence the communication
environment embodying it, but it can prove very disastrous, if the normal or expected

operation of this environment is intruded upon with malicious intent.




1.2.1 Two Forms of Intrusion

Intrusion can take one of two forms. One form can be referred to as active intru-
sion. This consists of a third party attempting to obstruct the communication path
between two users, so that the informati.n does not reach the intended receivers. The
effect of this on the users can range from frustrating to disastrous, depending on the
gravity of the information being communicated, The important thing though is that
this form of intrusion does not pass unnoticed. The users will become aware of it, and

thus informed can take appropriate measures to overcome it, or flnd other means of

communication.

The other major form of intrusion, and the concern of this work, can be referred to
as passive intrusion. This consists of a third party receiving information, not intended
for him/her, from the communication path set up between two unsuspecting users. The
effect of this on the users also ranges from frustrating to disastrous, depending on the
gravity of the information being communicated, but on a greater scale than before. This
is because in this case the communicating parties have a [alse sense of security, in think-

ing that everything being communicated is only between them.

1.2.2 Location of Intrusion

Having identified the particular form of intrusion it is appropriate to show where
this intrusion can take place, and to what extent is the telecommunication system
vulnerable to this form of intrusion. Theoretically, the intrusion can take place anywhere
within the telecommunication system along the path between two communicating par-
ties. Practically though, it will most probably take place within the local loop of any
one of the communicators, and more specifically, within a junction box closer to the
near-end of the local loop relative to a particular communicator. The intrusion, being

within the local loop, ensures that only the desired conversation is traveling through this



loop. Being closer to the near-end of the local loop, relative to either communicator
respectively, physically identifies the particular local line from other such lines. Finally,
it is practically easier to tap into a line at a junction, rather than along the body of this

line.

1.2.3 Assessment of Intrusion

Before attempting to secure the communication environment from intrusion, the
designer has to assess the possible intrusion by asking certain questions such as: Who is
the intruder, and what is the quantity and quality of his/her available resources, which
he/she can use to successfully carry out the intrusion? The latter question is directly
related to the former, since the more powerful the intruder, the more quantity and/or
quality of resources he/she will have at his/her disposal. The power and capabilities of a
particular intruder are themselves directly related, to the importance level of the infor-
mation seeked, and the importance of the involved participants or unsuspecting users.
These can range from heads of nations, to diplomats of various levels, to military person-
nel, to various government and law enforcement agencies, to banks, aiad other commer-
cial users, or to simply private users |[1]. Based on the answers to the above questions,
the designer can then decide as to what is the required security level for the particular
application, or communication environment. The required security level will be dis-

cussed later in more qualitative detail.

1.3 SECURING THE ENVIROCNMENT

1.3.1 Theoretical vs. Practical Security

Although investigation of the theoretical security can be interesting, evaluating the
practical security of a system is of greater importance. Practical security or insecurity,

does not necessarily follow from theoretical security or insecurity, respectively. In
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theory, it is assumed that a cryptanalyst has unlimited time, facilities, and funds to
compromise a system. If a system proves to be secure even under these conditions, it is
then theoretically secure. Although theoretical security can imply practical security this
is not always the case. An example of this is a system claiming to have perfect secrecy.
Perfect secrecy refers to an ideal level of security with well known properties. \With per-
fect secrecy every element of the message space, through a particular transformation,
can map into each and every element of the cryptogram space. The cryptogram space
consists of all possible encrypted messages that can result from corresponding messages
in the message space. Furthermore, given that a particular cryptogram was received
does not give any information in helping a cryptanalyst decide which message was sent.
In other words, all cryptograms are statistically independent of all messages |1]. Theoret-
ically, perfect secrecy is achievable. Its definition though inherently implies that for it to
be achieved the number of keys should be at least as large as the total number of possi-
ble messages. In this context, a key identifies a particular transformation rule from the
message space to the cryptogram space. Having at least as many possible transforma-
tions as the number of messages will ensure that all messages will map into all crypto-
grams with equal probabilities, hence ensuring statistical independence between the mes-
sage space and the cryptogram space. In fact Shannon showed (2] that if a system has
the same number of messages, cryptograms, and keys then it has perfect secrecy if, and

only if

a) for any given message m and any cryptogram c there is exactly one key
transforming m into ¢ (i.e. there is a unique transformation t with ¢ =

t(m)), and

b) all keys are equally likely [1].

An example of perfect secrecy with flve message elements, five cryptogram elements, and
five keys is shown in figure 1.1. For a few number of possible messages perfect secrecy

can also be achieved practically. On the other hand, for transmitting a reasonable
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Figure 1.1 An example of perfect secrecy [3].
amount of information a large message space is required, hence requiring an impracti-
cally large key space. If such a key space cannot be handled then the particular system

in question cannot achieve perfect secrecy in practice.

On the other hand, if a system proves to be insecure under the conditions of unlim-
ited time, facilities, and funds as pertaining to the cryptanalyst, it is then theoretically
insecure. Although theoretical insecurity can imply practical insecurity this is not
always the case, since the cryptanalyst may, and will be limited in at least one, if not all

three factors of time, (acilities, and funds.
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1.3.2 Practical Required Security Level

Every element of information has some level of importance or value associated with
it, such that this value can be translated to cost. The cost will be the cost incurred by
an unsuspecting user of the communication environment, whose copversation with
another aser is intruded upon by a third party, or inversely, the cost gained by the third
party, upon successful completion of the intrusion. Related to cost is the cover time of
the information element. The cover time is the time within which the above mentioned
cost applies to the information, and beyond which the cost of this information reduces to
zero. In practice, the required security level can be thought of as having an upper bound
and a lower bound. The upper bound on the required security level to protect certain
information- is governed by the cost, and cover time of this information. In this case
knowing the funds and/or facilities at the intruder's disposal is irrelevant This is
because it is not economically feasible for the intruder no matter how powerful to pay a
higher cost in funds and facilities than the actual cost of the information being secured,
or spend more time in compromising the system than the allotted cover time. On the
other hand, when considering the lower bound on the required security level, knowing
the funds and/or facilities at the intruder’s disposal is very relevant If these are known
with certainty then the least required security level is that which would require the
intruder to either spend more funds, make use of more powerful facilities than those
available, or using his/her available resources spend more time than the allotted cover
time. If, on the other hand, the funds and/or facilities of the possibic intruder cannot be
identified with certainty then the worst is assumed. Practically speaking, the intruder in
this case will not be thought of as someone who has unlimited funds and facilities, but
someone who has large quantities of the above factors with practical limits The practi-
cal limits on the available funds and facilities can be the present funds of the most
powerful intruder, and the most powerful computers and sophisticated analytical equip-

ment known at present, respectively. In this situation the least required security level is



that which would require the intruder to, either spend more funds, make use of more
powertul facilities than the above mentioned practical limits, or using the above practi-
cally limited resources spend more time than the allotted cover time. If the lower bound
happens to exceed the upper bound then the upper bound prevails. This would be the
case of a very powerful intruder attempting to break a very insignificant system.
Although the system in this case can be practically broken, there will be a loss incurred
by the intruder as a result of the information being worthless. This is not likely to hap-

pen.

1.4 THESIS CONTRIBUTION

Having identified the communication environment, and having identified the prob-
lem resulting from intrusion to this environment, the expected course of action is to pro-
pose a possible solution for practically securing this environment. The general solution is
to design a secure system, which can be incorporated in the existing communication
environment, and to guarantee that this system can provide the practical security level
required. There have been many instances of the solution to this general problem in the
past. This has resulted in the design of mary possible systems of variable security. At
the very least, all this previous work has led to the clarification of the problem, the
specification of the various factors contributing to this probleni, as well as the general

specification constituting a solution to this problem.

The object of this work is to draw on all the positive aspects of previously proposed
secure systems, in order to propose yet another secure system for the protection of the
communication environment. The proposed secure system is an analog speech scram-
bling device operated by a digital keystream generator. It consists of a transmitting and
a receiving unit, which in turn include a new analog speech scrambling and its
corresponding descrambling algorithms, two instances of a keystream generator algo-

rithm, and the appropriate timing and synchronization circuitry respectively. Primarily,
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the analog speech scrambling algorithm, and the keystream generator algorithm are each
proposed and evaluated independently, each with its own respective security criteria.
Following this, the two algorithms are united, forming the major part of the analog
speech scrambling device, and the security of their combined operation is also evaluated.
Finally, the required timing and synchronization circuitry, as well as a general descrip-
tion of a user interface for this device are put forth for the sake of completeness. It
should be noted that this work focuses on the security of the proposed analog speech
scrambling device, as opposed to the level of degradation that this device imparts on the

speech signal upon recovery.

1.5 THESIS OUTLINE

This work is split into six chapters; four main chapters besides the introductory
and concluding chapters. Chapter II consists of an extensive survey of previous related
works, which forms a basis for what is to follow. Chapter IIl evaluates the security of
several possible analog speech scrambling algorithms, and as a result proposes a new
such algorithm as most secure. Chapter IV puts forth a new DES-based keystream gen-
erator algorithm, showing why it was put together as such, and evaluates its security.
Finally, chapter V combines the two algorithms as part of one device, and evaluates the
security of their combined operation. It then puts forth the timing and synchronization

circuitry, as well as a general description of the user interface for this device.



CHAPTER II

SECURE SYSTEMS : SURVEY OF PREVIOUS RELATED
WORKS

2.1 DATA CIPHER SYSTEMS

To secure the environment against passive intrusion it is necessary to introduce
cipher systems, which will encipher or disguise confidential information entering the
telecommunication system, and decipher or reveal disguised information coming from
within the telecommunication system. When the information involved is data, these sys-
tems are referred to as data cipher systems. The art of designing such systems is known
as cryptography, while the process of breaking data cipher systems is referred to as cryp-
tanalysis. Data cipher systems can be classified into various categories based at least on
the secrecy of their keys (private or public), the type of transformation which these keys
perform (substitution, transposition, or algebraic), and the structure of the entire algo-
rithm (block or stream). These classifications are not depicted in any order of impor-
v.nce (eg. broader to finer classifications and vice versa). Furthermore, not all wiil apply

to all systems.

Private-key and public-key systems as their name implies are distinguished by the
secrecy of their enciphering and deciphering keys, involved in the enciphering and deci-
phering transformations respectively. In the case of a private-key or conventional sys-
tem, the enciphering and deciphering keys are either identical, or if different, are such
that each Key can be computed from the other. They are known only by the encipher-
ing and deciphering participants. One of the most famous such systems is the data

encryption standard (DES), which will be explained in detail later.

In a public-key system the enciphering and deciphering keys are different. The

enciphering key is made public so that any participant can send an enciphered message




-10-

to any other participant. The deciphering key on the other hand is secret so that only
the intended receiver of the enciphered message can decipher it. An example of this is
the RSA cipher system named after its creators Ron Rivest, Adi Shamir, and Len Adle-
man. This system consists of separating the plaintext message into blocks, and encoding
each i-th block into an integer m,. This integer is then raised to the h-th power modulo
n, to produce the ciphertext equivalent ¢, = m,h (mod n). The two integers h and n
make up the enciphering key. The deciphering procedure is similarly m, = cld (mod n)
where d is secret. The two integers d and n make up the deciphering key. The number
n is the product of two large primes p and q, h is chosen to satisfy (h, (p-1). (¢-!}} = 1,
and d is computed so that dh = 1(mod(p-1)(q-1)). The notation (a, §, 7) = 1 implies
that «, B, and 4 have a greatest common divisor of 1 (i.e. they are relatively prime).
Knowing p and g allows for the calculation of n, h, and d in that order. Knowing n and
h though, as will be the case with a cryptanalyst, it is very difficult to factor n into its

two primes p and g, 5o as to use p, q, and h to find 4 [1].

Substitution and transposition are two major methods of transformation of plain-
text to ciphertext, and vice versa. Substitution consists of replacing all the plaintext
characters by characters from another alphabet, as governed by a key, without changing
the position of these characters. There are many variations of such ciphers based on the
number of substitution alphabets used, the way in which these alphabets arc generated,
and the ratio of the number of plaintext characters, to the number of ciphertext charac-
ters per substitution. A simple exaraple of a substitution cipher is shown in figure 2.1.
In this case the key is the letter D, which implies a one-to-one correspondence between
the characters of the English alphabet, and the characters of the English alphabet

shifted, so as to start from the letter D.

Transposition on the other hand consists of rearranging the plaintext characters as
governed by a key, without changing the identity of these characters. Again, there are

various methods of transposition, a simple example of which is shown in figure 2.2. In
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Figure 2.1 Simple substitution cipher [3].
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Figure 2.2 Keyed-columnar transposition cipher [4].
this case, the characters in the key are used to produce a mixed number pattern. This is
done by numbering the characters, in accordance with their relative order of appearance
in the standard alphabet, numbering repeating letters in sequence from left to right.
The message is written as it is, row after row horizontally under the key, and then tran-

scribed column by column according to the order of the mixed number pattern.

The above substitution and transposition examples involved letters of the English

alphabet. It should be pointed out that the above concepts of substitution and

RS i3 M L B
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transposition can also be extended to include numeric equivalents of plaintext characters.
These can be sequences of binary digits, or integers representing bit positions within
such sequences. The above extension of substitution or transposition ciphers to include
numbers is simply symbolic. This is still considered as substitution or transposition

accordingly, and should not be confused with algebraic ciphers.

Algebraic ciphers involve the numeric equivalents of plaintext characters as men-
tioned above, manipulating these through algebraic operations. An example of this is
the RSA cipher system already explained. An another example of this is the Vernam
cipher. This cipher makes use of the exclusive-OR operation, to operate on the key and
plaintext (represented as binary sequences) producing another binary sequence represent-
ing the ciphertext [4]. The idea of the exclusive-OR operation as an algebraic manipula-

tion is used extensively in DES.

The final classification of data cipher systems, as block or stream ciphers, will fol-

low in the next two sections.

2.1.1 Block Ciphers

A block cipher transforms a string of s plaintext characters (an input block), into a
string of s ciphertext characters (an output block), as governed by a fixed-size key as

shown in figure 2.3.

Key

Ciphertext
s characters

Plaintext

orithm
s characters Alg

Figure 2.3 Block cipher (1].

The characteristics of the block cipher are such, that the key remains fixed relative to



-13-

the rate of incoming plaintext blocks. Furthermore, the enciphering transformation is
such, that every character of the ciphertext block is jointly dependent on every character
in the plaintext block, and every character in the key. This ensures diffusion and confu-

sion respectively.

Confusion makes jt difficult for any statistical analysis to indicate properties of the
key. Furthermore, it forces the cryptanalyst to attempt to find the whole key simul-
taneously, as opposed to piece by piece, thus requiring to solve more complex equations
[1].

Diffusion, on the other hand, attempts to spread the statistics of the plaintext over
long portions of the ciphertext. This requires the cryptanalyst to intercept longer por-

tions of ciphertext, before any attempts of statistical decipherment are made [1].

Confusion and diffusion ensure that the slightest error in the ciphertext obtained by
the cryptanalyst, or in the possible deciphering ¥ev used by the cryptanalyst, will result
in a totally different block of recovered plaintext, not at all close to the original plaintext

block. This intense error propagation is another characteristic of a block cipher.

Finally, the cryptographic strength of a block cipher is directly proportional to the
size of its plaintext block s, and the size of its key. Besides the obvious reason of
increasing diffusion and confusion, the larger the size of the plaintext block, and key
respectively. the more discouraged the cryptanalyst will be in constructing and maintain-
ing a dictionary of plaintext-to-ciphertext block pairs. This can be constructed by using
the enciphering key to map different plaintext blocks into ciphertext blocks, and then
working backwards to match ciphertext blocks, obtaining the corresponding plaintext
blocks. Obviously, this is possible only when the enciphering key is already known.

This is the case with the public-key cipher systems described previously.

The most famous example of a block cipher is the Data Encryption Standard or
DES algorithm. This was developed by IBM, and published first in 1975. After

thorough examination it was considered secure enough, and was declared satisfactory as
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a standard in 1977 by the United States National Bureau of Standards, at least for the
next 10-15 years {1]. This is a conventional algebraic block cipher which takes a plain-
text sequence of 84 bits, and a 64-bit key, and produces a 64-bit ciphertext sequence.
The 64-bit key is made up of 8-bit words or bytes, with the last bit in each word used to
maintain odd parity. These 8 bits numbered 8, 16, 24, 32, 40, 48, 56, and 64 are not
used in the calculation, leaving the algorithm with a 56-bit key. The DES algorithm
begins with an initial permutation of the plaintext block, and ends with the inverse of
this initial permutation before producing the ciphertext block. These two permutations
or transpositions, besides being inverses of one another, are key independent or flxed.
Between these two inverse permutations is the major part of the DES algorithm, a pro-
duct cipher, as shown in figure 2.4. By definition, this cipher is a transformation consist-
ing of both transposition and substitution ciphers. This product cipher is accomplished
through 16 identical rounds of computations. The input to the first round of computa-
tion is the plaintext block after being passed through the initial permutation. The input
to every successive round is the output of the previous round. Each round makes use of
one out of 16 48-bit keys, all of which are generated by first permuting the 56 non-parity
key bits of the original key, using a permutation referred to as permuting choice 1,
breaking the resulting 56-bit sequence into two blocks of 28 bits each, left shifting each
block by a prescribed number of bits, putting the two blocks together, and permuting 48
of the 56 resulting bits using another permutation referred to as permuting choice 2.
The shifting and permuting operations using permuting choice 2 are repeated 16 times,

resulting in the 16 48-bi% subkeys.

The computations performed in a particular round consist of splitting the input
64-bit word into two 32-bit left and right halves. The right half block is then passed
through a selection operation which selects the bits in this block in a semi-ordered key
independent fashion, in which 16 bits are used twice, expanding the 32-bit input bhlock

into a 48-bit output block. This is then modulo-2 added with the corresponding 48-bit
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Figure 2.4 Product cipher within the DES algorithm [4].
subkey of that particular round. The result of the modulo-2 addition is a 48-bit block,

which is then split into 8 6-bit blocks. Each respective 6-bit block is then used to select
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an integer of 1 to 15, from one of eight corresponding selection funciions or matrices.
The first and last bits of the 6-bit block give reference to the rows of a particular matrix,
while the middle four bits give reference to the columns. The resulting integer is then
converted into a 4-bit string. The result of all eight parallel selection functions are then
concatenated to produce a 32-bit block. This block is then permuted through another
key independent permutation to produce another 32-bit block, which 1s modulo-2 added
with the left half 32-bit block of the input 64-bit block of the particular round in ques-
tion. The result is a 32-bit block, making up the right half of the output 64-bit bock of
this round. The corresponding 32-bit left half of this output 84-bit block, is the original
right half 32-bit block of the input 64-bit block of this round. After the final or six-
teenth round, the left and right 32-bit halves of the final 64-bit output block are inter-

changed, before applying the inverse initial permutation {4,5,6].

Since its acceptance as a standard by the NBS, the DES has been the target of
ample controversy. Some people have attempted to point out the major strengths and
weaknesses of this algorithm, others have attempted to pursue its weaknesses in an
attempt to break the algorithm in the shortest time possible, while still others accept the
DES as it is, and attempt to find ways to use it as the basic building block in larger

secure systems.

In the paper entitled "Long Key Variants of DES” by Thomas A. Berson (7], the
existing key scheduling procedure of the DES algorithm is examined, and modifications
are proposed for increased security. Berson first makes the point that many commercial
implementations of DES precompute all 16 48-bit keys equal to 7688 bits, in order to
reduce the block processing time. This is because the key usually remains fixed for a
certain amount of plaintext blocks. In this case, by precomputing all 48-bit keys in
advance and storing them, all plaintext inputs after the first will be processed much fas-
ter. Otherwise, all the subkeys would have to be calculated, one per round, for every

incoming plaintext block. Justifying the storing of all 16 48-bit subkeys (thus requiring
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768 memory elements), Berson goes on to suggest bypassing the existing key scheduling
algorithm, and directly applying a 768-bit key to operate the remaining DES algorithm.
It is suggested that the 768-bit key be generated by a new key scheduling algorithm,
which uses a longer key than 56 bits to produce a larger key space than 250 keys, thus
more strength against an exhaustive key search attack. Since a particular 56-bit key
pattern produces a particular 768-bit key, the larger key space would result in more
788-bit keys, the upper bound obviously being 27%%  This upper bound implies the
absence of a key scheduling algorithm, and the application of a user-chosen 768-bit key
directly to the algorithm. The existing key scheduling algorithm, which uses a 56-bit
key to produce a 788-bit key, would then be a special case of the proposed key schedul-
ing algorithm. Another method would be to select a sub-sequence of 788 bits from a real

or pseudo-random number generator.

Going back to the existing key scheduling algorithm, it is pointed out that among
the 2°¢ possible keys, there are "weak” and "semi-weak” keys, which lack strength due
to the fact that they expose a symmetry or other regularity, such as resulting in subkeys
which take on only one o. two distinct values instead of 16. The author wants to point
out that the smaller the initial key, which is to generate the 768-bit key, the more
rounds will have to be performed within the key scheduling algorithm, increasing the
chances of symmetry between subkeys. On the other hand, the larger the initial key the
fewer key scheduling rounds will be performed, decreasing the chances of syinmetry.
Even with a larger key and fewer rounds of key scheduling, there can still be some
"weak” and "semi-weak” keys, though these will diminish as the key gets longer. In
fact, if a 768-bit key is applied directly with no key scheduling algorithm the person sup-
plying the key can make sure that no symmetries exist within this long key. Of course,
the author also realizes that the longer the key that will have to be supplied by the user,
the harder it will be for this user to choose every bit of this key, inaking sure to avoid

symmetries within the key, and repetitions relative to other such long keys. To remedy
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this, the author is suggesting, at least conceptually, the introduction of a "weak key
function” over the 768-bit keys, no matter how these are generated. When implemented,
this function would decide on the relative strength or weakness of a particular key,
which can then be compared with a predetermined threshold. If the key would be fouad
adequately strong it would be used, otherwise, it would be deterministically modified
until it would be declared adequately strong by the "weak key function.” The ideas pro-

posed by Berson will increase security against an exhaustive key search attack.

The second paper surveyed on the topic of DES is entitled "Drainage And The DES
Summary,” by Martin E. Hellman, and Justin M. Reyneri (8]. The object of this paper
is to first study the behavior of drainage, for a random function in general, and then
compare this with the behavior of drainage for the DES algorithm. A random function
referred to here is a mapping from a finite set into itself, such that there is no obvious
relationship between input and output. The output of this function appears to be
chosen uniformly, independent from the input. This function can be represented by a
directed graph, where each vertex is an element in the domain and range (since they are
the same), and each edge represents the mapping between two particular elements. The
random functions referred to here are such that their graphs consist of component
graphs, each component of which has one cycle. The number of vertices making up
respective component graphs, representing a random function, are referred to as the
respective drainages into these components. Before calculating the drainage into the
component graphs of a random function, the authors point out that this is not the only
information these graphs can give about the particular functions. If the random func-
tion in question is the mapping from key to ciphertext of a block cipher with fixed plain-
text, whose input key element is the previous ciphertext output, or similarly the map-
ping from one element in the key space to another element in the key space of this block
cipher, then the exact structure of the component graphs representing this function is

important. This is because the structure dictates the behavior or performance of a gen-
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eralized cryptanalytical attack against the particular block cipher described above, as
proposed by Hellman [8]. Although the exact structure of all the component graphs is
not known, the general structure is known to consist of exactly one cycle with possibly a

certain amount of "rivers” draining into it.

It was shown by Hellman that the proposed cryptanalytical attack for block
ciphers, of the above described configuration, was able to break such ciphers if their
component graphs consisted only of cycles, with no "rivers” draining into them. In this
case the cipher would be broken in VN operations, using VN words of memory, where N
is the number of elements in the key space. On the other hand, other structures of the
component graphs would not allow the particular cipher to be compromised at all by

Heliman's cryptanalytical method [9].

In this paper, the drainage of the largest component graph of a random function is
examined, by first considering the case where more than 50% of the points of the entire
graph drain into the same component. Supposing this case exists, the particular com-
ponent graph would undoubtedly be the largest, since no other component graph could
be larger with less than 50% of the points of the entire graph. The authors begin by
giving an expression for the probability density of this drainage to be

N (N-1)
i = 5] (V) [% ] ESIEt (2.1)

where -NN is the number of possible directed graphs of N points,

- (1:1) is the number of possible component graphs of drainage i from a specific

graph of N points,
- l—;T) represents the mapping of the i points in the largest component graph
into the same set of points,

[ N-i represents the mapping of all the remaining points into themselves,
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and -C(i) is the probability that the component graph of drainage i is the only com-

ponent in the entire graph of a random function.

Using Stirling’s formula to approximately calculate large factorials and taking the

asymptotic expression of C(i) to be \/E results in
i
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where k is a constant dependent on the number of points in the entire graph of the ran-
dom function. From this it is seen that the probability density remains roughly con-
stant, as the drainage of the largest component graph of a random function goes from
509% to 90%. Finding the probability density of the drainage of the largest component
graph, for-the case where this accounts for less than 5025 of the total points on the
graph, and combining with the previous results, the expected value of the drainage of
the largest component graph of a random function is 809. This implies that theoreti-
cally 80% of all the points in the entire graph of a random function are within the larg-

est component graph of this random function.

Having theoretical results as to the drainage of a random function, the authors
chose the supposedly random function relating key to ciphertext for the DES algorithm,
with flxed plaintext, to obtain corresponding experimental results. The drainage of the
largest component graph of this function was calculated, to see how close it would be to
that of a truly random function. In this case, the ciphertext output of each iteration
was fed back as the next key element of the cipher, thus mapping the key space to itself
as required in the specification of the random function previously. The points or vertices
of the graph of this function thus consisted of the entire key space of the DES algo-

rithm.

According to the DES algorithm, a particular vertex or key element cannot appear
in more than one component graph if the plaintext is fixed. Hence, in this case the ver-

tices of each component graph are mutually exclusive, from those of other component
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graphs. When considering component graphs with different but fixed plaintext input, a
particular vertex can appear in more than one component graph, but a particular map-
ping, or in other words a combination of two adjacent vertices cannot appear in more

than one component graph.

The above rules particular to the DES algorithm, as well as certain general rules
concerning the structure of a directed graph, allowed the authors to estimate the size of
the largest component graph of the function, relating key to ciphertext of the DES algo-
rithm, with fixed plaintext, in a relatively short amount of time, using a relatively few
number of starting points. More specifically, the authors fixed the plaintext to the all
zero value and then chose 100 different starting points, calculating the lengths of the
cycles into which they drained and noting when different points drained into the same
component graph. The resulting estimate was that 999 of all points or key elements
within the entire key space of DES will drain into the same, hence the largest component
graph. In other words, 999 of all keys in the DES key space will be connected as part
of one component graph. This implies that each and every element out 999 of such key
elements in the DES key space can possibly map at random into any other key element
within the same component graph. To make the experiment more complete, the authors
examined e drainage of the largest component graph of the same random function for
different values of flxed plaintext. This was accomplished by taking a pair of starting
points for every flxed plaintext, and following the same procedure as before. In total, 70
different plaintext inputs were examined. By counting how many times a pair of start-
ing points drained into the same component graph, the authors were able to estimate the
average drainage into the largest component graph over all plaintext inputs to be 80%.
This implies that each and every element out of 80% of all such key elements in the
DES key space will possibly map at random into any other key element within the same
group, irrespective of the input plaintext. Furthermore, this percentage is equal to that

of a truly random function, implying that no matter the actual fixed plaintext, the func-
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tion from key to ciphertext of the DES algorithm in the specified configuration

represents a truly random function.

The final paper to be examined on the topic of the DES algorithm is entitled " The
Importance of 'Good' Key Scheduling Schemes (How to Make a Secure DES Scheme
With < 48-Bit Keys ?),” by Jean Jacques Quisquater, Yvo Desmedt, and Marc Davio
{10]. Just like the first paper discussed, part of this paper examines an alternative key
scheduling scheme for the DES algorithm. This scheme would render this algorithm
either more secure against an exhaustive key search attack, without increasing the key
size, or similarly maintain the same security against an exhaustive key search attack as
the existing DES algorithm, using a shorter key. The paper then goes on to suggest
other key scheduling schemes external to the DES algorithm, which can generate main

keys, as opposed to subkeys, for this algorithm.

In an exhaustive key search attack the largest enemy of the cryptanalyst is the
time needed to exhaust all possible keys (at worst case), or as many keys as necessary
until the particular desired key is found. Thus, any factor to increase this time would
increase the security against an exhaustive key search attack. For the DES algorithm,

the time taken to find the desired key is at worst case proportional to

max(ty, tes) X (number of keys)

(2.3)
(number of used processors)
where -t is the time taken to execute the key scheduling scheme,
and -t is the time taken to execute the encryption algorithm without any key

scheduling.

In general t,, << t,,. Of the above factors, a designer of the DES algorithm can
increase security against an exhaustive key search attack by increasing either tg,, t,,, or
the size of the key space. Increasing the size of the key space for increased security
against an exhaustive key search attack on the DES algorithm is a well known option,

and the subject of many papers. Having already discussed this option in the first paper
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presented here, it is time to examine the other options. Increasing t,, is possible by
increasing the complexity of the existing encryption algorithm, or replacing it altogether
with another more complex such algorithin. The disadvantage of this is that it will also
increase the processing time of DES, or in other words slow down the operation of the

algorithm for the user. The option left js to increase the key scheduling time t,.

In general, the operation of the DES algorithm is such that many plaintext (cipher-
text) blocks are encrypted (decrypted), using one particular key, or in other words, the
input plaintext (ciphertext) rate to the DES (DES™!) algorithm is much faster than the
rate of change of the key. Operating the DES algorithm v ¢t these conditions requires
the same subkeys for the entire time the key remains the same, hence making it more
feasible to calculate these once when a particular key is introduced, and then storing
them for subsequent use. In this respect, increasing t,; will effectively not slow down the
algorithm for the user, but will slow down the cryptanalyst considerably in his/her
attempt of an exhaustive key search attack. In fact the authors suggest that tg is
increased such that t,, >> t,,. This is made possible by using a key scheduling scheme
involving 16 DES modules, all of which use a common key, with the output of one fed

sequentially into the output of another as shown in figure 2.5.
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Figure 2.5 The DES algorithm 16 times stronger [10].
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The input o to the first module is a publicly known 84-bit sequence. Furthermore, the
output of each DES module constitutes a particular subkey. Using this key scheduling
scheme, ty, went from being negligible (ty, << t,,) to being approximately 16t,,. Con-
sidering the 16 48-bit output subkeys of this key scheduling scheme as one long 768-bit
key, the cryptanalyst will at worst case still have to exhaust 2% 768-bit keys, but the
generation time of each of these long keys will now be 16 times longer than before. This
is similar to keeping the generation time of each 768-bit key the same as before, and
increasing the key space a factor of 16, from 2°® to 2®. Either way the new scheme
makes the existing algorithm 16 times stronger against an exhaustive key search attack.
Furthermore, the new scheme can be extended by iterating a particular DES module 18
times before producing the next subkey. This will increase the security of the algorithm
against an exhaustive key search attack by a factor of 258. Again, this can be looked
upon as increasing the generation time of each of the 2% 768-bit long keys, by a factor of
256, or similarly, keeping the generation of each of these keys the same, increasing the
key space from 2% to 2%%. Finally, the extended new scheme proposed can provide the
same security as the existing DES algorithm, against an exhaustiv- key search attack, if
the key length of the former is decreased by 8 bits relative to the key length of the
latter. It should be pointed out that there are practical limits on the increase of t,,, and
the decrease of the key space. The increase of t,, should be inversely proportional to
how often the user will change keys. The more this happens the less t,, is required to
be, so as not to slow down the overall operation of the algorithm for the user. Further-
more, the key space cannot be decreased beyond a point which would allow the cryp-

tanalyst to practically precalculate and store all subkeys for all possible keys

After proposing a key scheduling scheme to create the 16 48-bit subkeys, or one
768-bit long key for the DES algorithm, the authors examine key scheduling external to
the DES. This would be a key scheduling scheme which would constantly provide main

keys for the 64-bit key port of the DES algorithm. In this case the DES will not bhe
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operated as usual, where the rate of the plaintext input is much greater than the rate of
change of the key. Instead the plaintext input and key will change at the same rate.

T'wo methaods of continuously providing keys to the algorithm is as shown in figure 2.8.
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Figure 2.6 One-way key scheduling schemes in feedback [10].
In the first case (figure 2.6a), starting with a particular input key, the output of a one-
way function is used as the generated key, as well as the input to the next iteration of
this one-way function. The one-way function as its name implies, allows the derivation
of the output from the input but not vice versa. The constantly changing key makes it
hard for the cryptanalyst to obtain an instance of this key. Assuming this happens
though, the cryptanalyst will be able to generate the future keys to be used, in order,
but not the previous keys already used. Thus, having one key allows one to decrypt the
present and subsequent plaintext, but not ary previous plaintext. This can lead to seri-

ous problems, more so the sooner the cryptanalyst obtains an instance of the key K.

In the second case (figure 2.6b) two one-way functions in the same configuration as
before are used to operate in parallel. Starting with two distinct input keys the respec-
tive output of each is fed as input to itselfl. The generated key is then the exclusive-OR

of the output pair at each iteration. The key is constantly changing as before, making it
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hard for the cryptanalyst to obtain an instance of this key. Assuming this happens
though, the cryptanalyst will not be able to generate the previous keys already used, as
before, but also particular in this case he/she wiil not be able to generate the future keys
to be used. Thus, having one instance of the key K, allows one to decrypt only the

plaintext encrypted by this key.

One possible scheme for the one-way function used in the above configuration is the
DES algorithm, with fixed publicly known plaintext, and ciphertext feedback into the
key port. By studying the first paper presented here, it is known that no matter the
actual fixed plaintext, the function from key to ciphertext of the DES algorithm in this
configuration represents a random function, which maps 80% of its key space into the
same space. This implies that on average 8025 of the entire key space can possibly be
generated through iterative applications of DES. Although the exact structure is not
known, the general structure of the graph representing this mapping will consist of one
cycle, and possibly one or more "rivers” draining into it. It is pointed out here that the
scheme of figure 2.6a is only secure while the generated keys are part of a "river”, within
the structure of the graph, and not secure while within the cycle. This is because by
allowing a cryptanalyst to generate future keys from one instance of a key K derived,
the cyclic structure will allow this cryptanalyst to even generate previous keys by mov-
ing forward along this cycle, thus overriding this "one-way” principle. On the other
hand, the security of the scheme of figure 2.6b does not depend on the structure of the
graph representing the random mapping of 80% of the key space into itself. This
advantage is provided by the exclusive-OR in this scheme. Only if an instance of a key
K at the output of the exclusive-OR is derived, and broken into its component parts
(entering into the exclusive-OR), can the security of the scheme of figure 2.6b be reduced
to that of figure 2.6a. The latter is next to impossible, since for every derived key K of
length n at the output of the exclusive-OR there are 2" possible pairs of component keys,

which can lead to this key.

o dwes £ 3
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The schemes of figure 2.8 are block ciphers which incorporate certain principles
characteristic of a stream cipher. In particular, this refers to the key generation scheme.
As in stream ciphers, the key is constantly changing. In the schemes of figure 2.6 a new
block of key is spplied to every incoming block of plaintext. The main difference
between this and an actual stream cipher is that in the stream cipher the key will not be

generated continuously in blocks, but rather continuously character by character, and

applied as such to the incoming plaintext.

2.1.2 Stream Ciphers

A stream cipher, as shown 1n figure 2.7, consists of encrypting a stream of plaintext
characters, by combining or mixing these on a one-to-one basis with a relatively long or

infinite sequence of similar characters.

KEY
IFINITE SEQUENCE
ALGORITHM >
\ CIPHERTEXT
MIXER ——lp
PLAINTEXT DATA

Figure 2.7 Stream cipher [3].
These characters are usually bits, and the mixing operation is usually an exclusive-OR.
The long generated sequence or keystream is the result of an algorithm, referred to as
the keystream generator, whose input is a relatively short key referred to as the seed
Key.
The difference between stream ciphers and block ciphers lies mainly in the manipu-
lation of the key. In block ciphers the key interacts directly with the mixing operation,

and remains relatively constant with changing plaintext. Assuming a plaintext attack,
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all emphasis is placed on finding this key. On the other hand, in the case of stream
ciphers the keystream is constantly changing, as is the incoming plaintext. Assuming a
known plaintext attack, the mixing operation is readily reversed, and a portion of the
keystream equivalent to the length of the known plaintext is revealed. If this portion is
less than one period of the keystream (which is usually the case), then information from
this portion can be used in an attempt to either predict statistically the remaining por-
tion of this keystream (completing one period), or to somehow find the exact or
equivalent generator configuration, and seed key, that would generate this keystream.
Thus, from a cryptographer's point of view a keystream generator should satisfy the
three necessary requirements, without which it cannot be considered secure against cryp-

tanalysis. The sequence produced from the keystream generator
1) must have a guaranteed minimum length for its period,
2) must appear random,
3) must have a large linear equivalence or complexity {1].

The most commonly used type of keystream generator, or at least one that is commonly
used as a basic building block of other keystream generators, is the shift register. An n-
stage shift register comsists of n binary storage elements connected in series, and
identified as S,, 3;, ..., S,y such that S, (t) = S;(t+1). The contents of the register at
any one time identify a state. A register will change states until a particular previous
state is encountered, after which the states will enter a cycle. Correspondingly, for every
state there will be an output from the last stage of the register, which after some time

will also cycle, thus producing a cyclic or periodic sequence of bits.

The number of states through which a shift register will cycle, or equivalently the
period of the sequence it produces all depend on the actual feedback function, as well as
the initial state of the register. Keeping a constant feedback function, a particular ini-
tial state will result in a particular cycle. Another initial state from within the same

cycle will result in a translated version of this cycle. On the other hand, another initial

2 esT s A
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state outside this cycle will result in another cycle none of whose states can be found in
the former cycle. In all, there are 2" possible states which are distributed among mutu-
ally exclusive and collectively exhaustive cycles of various lengths. The smallest possible
cycle length is 1 and the largest possible cycle length is 2" - 1. The number of cycles,
and corresponding lengths of these cycles will depend on the particular function
employed. If this is nonlinear (ie. makes use of the multiplication operation) then this
dependence is unknown. On the other hand, if the feedback function employed is linear
(ie. makes use of the exclusive-OR operation) then this function will convey a lot of
information about the sequences generated by the particular shift register. The feedback
function in this case is such that
n-1

f(so(t), 85(1), ..., 5,4(t)) = Sles(t) (mod 2), (2.4)
=0

with each c,, a feedback coefficient, being equal to 1 or 0. The feedback coeflicients Cor
€y ..., ¢,y Will identify the particular configuration of an n-stage linear feedback shift

register. Furthermore, they will act as the coeflicients of the characteristic polynomial
f((x) =14 ¢;x + x>+ -+ + ¢y X" + x° (2.5)

representing this register. If the characteristic polynomial f(x) of a particular n-stage
linear feedback shift register is such that f(x) divides x®* + 1, but does not divide x* + 1
for any r < e, then f(x) is said to have exponent e where e < 2" -1. If for a particular
characteristic polynomial the exponent ¢ is 2" -1, then this is a primitive polynomial.
Such a polynomial is ¥tnown to produce one cycle of all 2" -1 possible states (excluding
the all-zero state). Obviously, this is the largest possible cycle of states that can be gen-
erated by a particular n-stage shift register. Furthermore, the sequence produced from
such a shift register configuration is thus also of length 2" -1, and is referred to as a
maximal length sequence. The statistical properties of such sequences are very well
known. Furthermore, all primitive polynomials leading to maximal length sequences are

known and tabulated. Thus, to satisfy the first of the three necessary requirements as
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to the length of a keystream, it is appropriate to use a keystream generator containing 8
linear feedback shift register, represented by a primitive polynomial. In this case, not
only is the period guaranteed to be 2" -1, but this value is also the largest possible, a

favorable factor for the impediment of cryptanalysis.

The second requirement for the security of a keystream generator, concerning the
randomness of the keystream, is important in fighting against statistical attacks on this
keystream. A statistical attack can consist of obtaining a large amount of keystream
bits, inding the distribution that best fits these bits, and then using this distribution to
predict probabilistically the keystream bits to follow. Randomness in the keystream
would not allow for such a distribution to be obtained, hence obstructing a statistical
attack. Furthermore, randomness can be built into the keystream as it is being gen-
erated. An 'example of this is the generation of keystreams with noiselike characteristics,
as will be shown later in the next paper surveyed. In this case an equivalence Is implied
between the randomness of tht generated keystream, and the randomness of noise.
Three necessary requirements as proposed by Golomb for declaring randomness within

one period p of a keystream are

1) If p is even then the generated keystream of length p shall contain an
equal number of zeros and ones. If p is odd then the number of zeros

shall be one more or one less than the number of ones [3]

2) In the generated keystream of length p, half the runs have length 1, a

quarter have length 2, an eighth have length 3, and in general, for each i

for which there are at least 2'*! rums, -;—l- of the runs have length i

Moreover, for each of these lengths which are greater than one, there

are equally many gaps (runs of zeros) and blocks (runs of ones) {3].
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3) The out-of-phase autocorrelation is constant. 3]

The final requirement for the security of a keystream generator is that the sequence
it produces has a large linear equivalence. In general, 2 particular sequence can be gen-
erated by either a linear or a nonlinear generator. Linear equivalence refers to the smal-
lest size shift register, or combined shift registers, required to generate a particular
sequence using a linear generator. This is definitely greater than the size of the shift

register required to generate the same sequence using a nonlinear generator.

Having (a complete period, or a portion of a period of) a sequence of linear
equivalence «, the objective of the cryptanalyst is to obtain the shift register
configuration and initial load required, to generate this sequence. Despite the exact gen-
erator (linear or nonlinear) used by the cryptographer to generate this sequence, the
cryptanalyst is only capable of systematically finding an equivalent linear generator

which can generate this sequence.

No matter the linear equivalence of a sequence, if a complete period of this sequence
is known, then this sequence can be generated by an ordinary recirculating shift register
having an initial load equal to some phase of the sequence. This particular sequence can
be represented by the ratio of a polynomial representing the initial load of the recirculat-
ing shift register, to the characteristic polynomial of this generator. More specifically, if
there is no greatest common divisor (ged) between numerator and denominator polyno-
mials, then the linear equivalence of this sequence is maximum. This implies that no
shift register, or combined shift registers, of shorter length than the recirculating shift
register can be linearly configured to generate the same sequence. On the other hand, if
there exist any gcd's between numerator and denominator, and these are cancelled, then
the resulting numerator and denominator polynomials represent the initial load and
configuration respectively, of a shorter linear feedback shift register than the recirculat-
ing shift register, which can generate the exact sequence in question. In this case, the

length of the resulting shift registers, or combined shift registers, will depict the linear
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equivalence of this sequence.

If a complete period of a sequence with linear equivalence o is not known, then an
equivalent linear generator which can generate this sequence can only be found, if at
least 2« - 1 consecutive elements of this sequence are known. The 2a - 1 elements define
o independent vectors (IV) of length o, representing o sequential states of the shift
register. These can be used to obtain all other states or vectors contained in the

sequeunce. This can be done either by solving a simultaneous equations of @ unknowns,

or equivalently inverting an (o x a) matrix.

Related to linear equivalence is the complexity of a sequence. Complexity is the
ratio of linear equivalence to sequence length, or in other words, the number of indepen-

dent vectors to the total number of vectors contained in a sequence.

The following paper to be surveyed is entitied "Generation of Binary Sequences
with Controllable Complexity” by Edward J. Groth [11]. The first part of this paper
shows how a linearly generated maximal length sequence of minimum complexity can be
made more complex by the introduction of nonlinear logic. Keeping the length of the
sequence constant, the particular configuration of the nonlinear logic will control the
linear equivalence of this sequence precise'y, allowing it to go from minimum complexity
to maximum complexity. The second part of this paper shows how further constraints
on the conflguration of the nonlinear logic will impose noiselike characteristics on the

generated sequence, besides its maximal length and maximal complexity.

The first point made by Groth is that using a shift register In a linear
configuration, and using the same shift register in a nonlinear configuration, the latter
will result in a sequence of higher linear equivalence or I'V count. Furthermore, if the
length of both sequences is the same, then the one generated by the nonlinear
conflguration will have a higher complexity. Two possible locations for the nonlinear
logic in a shift register sequence generator are the feedback path, and the feedforward

path. Although introducing nonlinear logic in the feedback path does increase the linear
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equivalence of a sequence, there is no known relationship between the actual nonlinear
configuration, and the precise linear equivalence. Furthermore, nonlinear logic in the
feedback path of a shift register affects the length of the sequence in an unknown way.
Thus, a particular pre-determined sequence length cannot be obtained with a particular
nonlinear logic configuration, thus violating the first requirement for a secure keystream
generator. As a result of the linear equivalence, and sequence length of a sequence being
generated by a generator with nonlinear logic in the feedback path not being controll-

able, the complexity of such a sequence is also not controllabie.

It is thus suggested by Groth that the logic in the feedback path of a shift register
remain linear, and that nonlinear logic be introduced in the feed-forward path. Further-
more, the logic in the feedback path will be such, so as to guarantee a maximal length
sequence feeding through the shift register. This will ensure that the shift register will
go through the maximum number of states, which will in turn guarantee a sequence of
maximum length at the output of the generator. An example of this is shown in figure
2.8. Here the shift register consists of 6 stages. The feedback configuration is such, so
as to produce a maximal length sequence of 2% .1 or 63 at the output of this register, and
hence at the final output of this generator. Furthermore, the IV count of such a linear
feedback shift register is 6. By incorporating the nonlinear logic in the feed-forward
path, the IV count at the output of the generator is raised to 21. This is directly related
to the 21 stages of the combined shift registers in the linear generator, needed to pro-
duce the same sequence. Thus, although the sequence length remains the same at 63,
the TV count is raised from 6 to 21, thus raising the complexity from 0.085 to 0.333, by

the use of the nonlinear logic in the 6-stage shift register.

Groth showed that in general {of which figure 2.8 is a special case), a nonlinear

feed-forward generator with shift register of length r, and one nonlinear stage, under the

. . . r(r+1
following constraints. increases its I'V count from r to —(--l
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Figure 2.8 Linear generator with feed-forward nonlinear logic
and its linear equivalent [11].

Constraints:
1) The feedback generator will produce a maximum length sequence.

2) The multipliers fed from the shift register stages of the feedback genera-

tor will have only two inputs each.

3) The span of any multiplier's input connections will not exceed the

length of the shift register of the feedback generator.

4)  Without loss of generality, the initial load of the feedback generator will

be 000 ... 001.

It is suggested that these results can be further extended. Cascading additional non-
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linear stages to the original feedback shift register, will raise the IV count of the gen-
erated sequence to a maximum value, this being the length of the generated sequence. In
turn, the corresponding complexity will be 1 (or maximum). Groth showed that this can

be achieved with r-1 layers of nonlinear logic, where r is the length of the shift register,
if the following constraint is respected.
Constraint:

All multipliers in all layers use one particular span type.
In this case, the TV count will rise from r in the O-th layer (consisting only of the linear
feedback shift register) to 2" - 1 in the (r-1)-th layer. For every shift register of length r,
the TV count of a particular layer q is related to the index of this layer by

+1
IV(r,q) = QE Pei (2.6)

1=1

where p,, is an element in the r-th row and i-th column of Pascal’s triangle (figure 2.9),

in which these rows and columns are indexed respectively, beginning with 0.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
i 9 36 84 126 126 84 36 9 1
1 10

45 120 210 252 210 120 45 10 1

Figure 2.9 Pascal’s triangle [11].

Groth found that the IV count can be made to grow most rapidly by replacing the last

stated constraint with the following constraint.
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Place a series of multipiers having spans 1, 2, 4, 8, etc. in the separate
layers irrespective of the order, and irrespective of the presence of other

multipliers.
In this case, the IV count will rise from r in the O-th layer (consisting only of the linear
feedback shift register) to 2" - 1 in the ( [log,r] ]-th layer. For every shift register ol

length r, the I'V count of a particular layer q is related to the index of this layer by

29
IV(r,q) = )b, (2.7)
1=1
where p,, is the element in the r-th row and i-th column of Pascal's triangle as men-

tioned before.

Thus far it has been shown that a shift register configured in a particular way can
act as an excellent keystream generator. This configuration consists of linear feedback
leading to a sequence of maximal length, and nonlinear feed-forward logic leading to a
sequence of maximum IV count and complexity, using a minimum number of nonlinear
logic layers. Besides increasing the complexity of the generated sequence, the nonlinear
logic in the feed-forward path can be conflgured so as to additionally impose noiselike
characteristics on the generated sequence. Noiselike characteristics may be taken as the
running rms unbalance over a certain window length of the sequence, and the distribu-
tion of lengths of runs ¢f * and O in a running window. It has been found that noiselike
characteristics can be achieved if, in addition to the first four constraints given earlier,
the following constraints are also imposed.

Constraint:
1)  All the multipliers in each layer must have different input spans.

2)  There should be as many multipliers in a given layer as an r-stage shift

register will support with one tap per stage.
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Groth points out that arranging the multiplier connections to satisfy the above con-
straints is equivalent to a generalization of the Langford problem, which is to arrange
the numbers 1, 1, 2, 2, 3, 3, ..., g, g, in a sequence (without gaps), in such a way that for
h=1,223, .. g the two h are separated by exactly h places; for example 41312432
(g==4) or 6751814657342832 (g=8). Groth suggests that g in this case is the number of
multipliers and 2g the register length. Furthermore, the numbers in the Langford
arrangement are assigned sequentially to register stages, so that two inputs of a multi-
plier are connected to the two stages with the same number. An algorithm is provided
for finding all Langford arrangements of a certain length. Applying this algorithm, the
aumber of possible Langford arrangements representing multiplier configurations, within
one nonlinear logic layer of register length r, leading to noiselike characteristics are as

shown in table 2.1.

Table 2.1 DMNumber of Langford arrangements according to Groth

Register Length Multipliers Langford
r £ Arrangements per Layer
2 1 0
4 2 0
6 3 1
8 4 1
10 S 0
12 6 0
14 7 26
16 8 150
18 9 0
20 10 0
22 11 17 702
24 12 108 144

The above Langford arrangements are available for each register, in each nonlinear logic

layer of a particular multilayer nonlinear feed-forward generator.

Groth suggests that the number of maximum-length sequences of maximum com-
plexity that can be generated by a particular generator of length r, is equal to at least
the product of the number of all maximal length sequences of length 2' - 1, times the

number of layers, times the number of Langford arrangements available for each layer.
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Here Groth should be more specific. The product of the last two factors does not
represent all nonlinear logic configurations available from a specific generator, as it is
supposed to. This value is better quantified by the number corresponding to the pro-
duct of all Langford arrangements available for each layer. Besides the above miscalcu-
lation, two other problems were encountered in the ideas put forth by Groth in his
attempt to generate sequences with noiselike characteristics. The first problem is a
discrepancy as to what is the exact definition of the span of a multiplier In the previous
analysis dealing with the relation of the complexity to the configuration of a particular
generator, the span of a particular multiplier referred to the distance between the two
stages in which the multiplier was connected, as one counts from one stage to the other.
The span following this convention comes out one number more, as compared to the
convention adopted when introducing the Langford problem. Under the latter conven-
tion, the span of a multiplier is the actual distance between the two stages on which the

multiplier is connected, excluding these stages.

The second problem encountered in Groth’s work is in the exact comparison of a
Langford arrangement to the configuration of the multipiers in a nonlinear logic layer of
a generator. In the Langford problem there are two instances of g distinct but consecu-
tive numbers starting from 1, to be arranged accordingly. The last two constraints out-
lined for obtaining noiselike characteristics do not dictate that the spans of the multi-
plier, in & particular layer, have to be consecutive from 1 to g, where g is the number of
multipliers, and one half the length of the register in that layer. In fact this is only a

subset of the spans hat can be used. In general the spans of the multipliers can be any

-;— numbers within the range 1 ... r-1. These can be arranged as in the Langford prob-

lem. This will result in many more arrangements than before, of the multipliers in a
particular layer, without violating the constraints for noiselike characteristics Since not
all types of multiplier spans are required to appear in a particular nonlinear logic layer,

using the scheme just described, caution has to be maintained in making sure that the



-39-

constraint leading to a generated sequence of maximum complexity within a minimum
number of layers is satisfled. This is carried out by making sure that at least one layer
contains a multiplier of span 1, at least one other layer contains a multiplier of span 2,
at least one other layer contains a multiplier of span 4, etc. The possible arrangements
for a particular layer will thus depend on the existing arrangements of the multipliers in
the other layers of the same ge;lerator. The number of arrangements, representing mul-

tiplier configurations for the separate layers of a particular multilayer nonlinear feed-

forward generator of length r, are experimentally found to be as shown in table 2.2.

Table 2.2 Actual pumber of Langford arrangements.

r Guaranteed one Arrangements Total Nonlinear
Multiplier of Span per Layer Logic Conflgurations

2 1 1 1
4 1 1

2 0 0
6 1 2

2 2

4 2 8
8 1 13

2 12

4 11 1716
10 1 64

2 58

4 52

8 23 4439 552
12 1 409

2 374

4 354

8 240 1.2006 x 10%°
14 1 3 428

2 3 374

4 3 256

8 2 531 9.5315 x 10'*

Besides the few problems arising in this paper the basic ideas and results behind Groth's
work are very important. They allow for the generation of secure keystreams, having

maximum length, mimmimum complexity, and noiselike characteristics.
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2.2 SPEECH SECURE SYSTEMS IN GENERAL

The basic ideas of cryptography can be applied directly or indirectly to speech secu-
rity. Speech security is made possible either through analog secure systems or digital
secure systems. Digital speech encryptors as well as analog speech encryptors operate on
digitized speech, which without the inherent properties of speech is equivalent to data.
As a result, the techniques underlying these systems are greatly influenced by data
cipher systems. Furthermore, all speech secure systems will require some element of ran-
domness in their operations. Generating pseudorandom numbers is a major operation

behind stream cipher systems. Hence, these can offer insight into the development of all

speech secure systems.

The distinction between digital and analog speech secure systems is based on the
form of the signal being transmitted. In digital speech secure systems the incoming sig-

nal is both encrypted and transmitted in digital form, as shown in figure 2.10.

Clear Scrombled
Speech digihsed digihised
npu! Analogue-to-} spaech speech
| digitol P Scrombler P> Tronsmitter |
convaorler

Scrambled Clear
digthised digitised Speech
speech speech Digiat to- outpul
> Recewver - Descrombler > analogue >
conver ter

Figure 2.10 Digital secure system |1j.
On the other hand, analog speech secure systems can be classified further into two
categories; analog speech encryption systems and analog speech scrambling systems. In
analog speech encryption systems the incoming signal is encrypted in digital form but

transmitted in analog form as shown in figure 2.11. In analog speech scrambling systems
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Clear Scrombled Scrambled
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Figure 2.11 Analog speech encryption system [1].

on the other hand, the incoming signal is both scrambled and transmitted in analog

form, as shown in flgure 2.12.

Speech Scrombled
npu! speech
ey SCrombler > Teansmuiter |

.
>

Scrombled Speech
speech outpu!

.

| Recewver

Figure 2.12 Analog speech scrambling system [1].



- 42 -

2.2.1 Digital vs. Analog Secure Systems

Technically speaking, digital speech encryption techniques have been known to
achieve the highest degrees of security, over all other speerh encryption techniques. The
implication then is that digital secure systems should be used over analog secure sys-
tems. This is not the case at present. The reason for this is that digital transmission is
still not quite compatible with today’s technical environment, the major part of which is
geared towards analog transmission. This is evident in the major classes of analog chan-
nels used for speech communication, including telephone and radio channels that are
currently standa:d. Consequently, there is justification, at least for now, in examining
secure systems which make use of analog transmission, concentrating on the improve-

ment of their security level.

2.2.2 Analog Speech Encryption Systems

As a result of the reasons mentioned in the previous section, there will be no
further mention of digital secure systems. The topic of discussion from this point on will
be analog speech secure systems. As mentioned previously, there are two classifications
of analog speech secure systems; those performing analog speech scrambling, and those
performing analog speech encryption, of which, both employ analog transmission. An
analog speech encryption system thus allows for compatibility with today’s technical
environment, while at the same time taking advantage of the high security level inherent
in digital speech encryption. This section will examine the degradation that analog
speech encryption systems impose on speech, as compared to analog speech scrambling
systems in general.

Analog speech encryption systems, and analog speech scrambling systems in gen-

eral, can be compared on the basis of security level upon encryption or scrambling, as

well as voice degradation upon decryption or descrambling, respectively. In general, the
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two factors of security and voice quality are always in conflict, or in other words,
inversely related. Maintaining a constant level of security for both types of systems at
the transmitter, these can then simply be compared solely on the basis of speech degra-
dation at the receiver. This procedure is carried out in the paper entitled "Perfect
Secrecy Encryption of Analog Signals" by Allen Gersho {12]. The objective of this paper
is to show that irrespective of the analog encryption or scrambling scheme used, if per-
fect secrecy is attained, using a finite-size digital key, then the quality of the recovered
message must inevitably be degraded. Furthermore, that this degradation is lower

bounded by the degradation achieved by analog speech encryption.

According to Gersho, analog speech encryption is simply a special subclass of ana-
log speech scrambling in general, since considering its overall operation it also manipu-
lates an analog signal into a secure analog signal ready for transmission, irrespective of
what this manipulation may be. He points out that for both these systems, the tradeoff

between security level and voice quality is controlled by the key size of the system.

A general analog speech secure system can be modeled as shown in figure 2.13.

> CRYPTANALYZER L—»i\

v

X ——»1 ENCRYPTER

v

DECRYPTER B

CLEAR CHANNEL
K A Tx

SECURE CHANNEL

Figure 2.13 Model of an analog speech secure system [12].
Here X is a random vector denoting a finite segment of a discrete-time analog amplitude
random process. There are M components to this vector having a joint probability den-
sity function denoted by py(X,. Xa. ..., Xpy). The encrypter transforms X into Y, a similar
random vector with a possibly different number of components. The transformation

from X to Y is one of many, as specified by the key K, where K is itsell a random vari-
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able that is uniformly distributed on the set 1, 2, 3, ..., N, where N is the key size. To

maintain generality, the encryption in figure 2.13 is assumed to be random, thus

represented by
Y =(X. K, w), (2.8)

where w indicates a particular point in the sample space to account for the possibly ran-
dom aspect of the encryption. This implies that given X and K there exist various
values of Y as specified by a conditional distribution. Similarly, the decryption opera-

tion by both the intended receiver and the cryptanalyst can be represented by

x = g(Y» K), (2-9)

and

X = c(Y) (2.10)

respectively. Both X and X will be degraded versions of X, but these degradations will
be minimal and maximal respectively. Degradation is deflned by the function p where
p(x, z) is the degradation between an original message x, and its degraded version z.
The value of degradation p is a nonnegative number, which increases from 0 (i.e. z = x)
with increased degradation. In the case of random vectors X and Z the degradation D is

the average distance between X and Z, such that
D = Ep(X, Z) (2.11)

An analog speech encryption system employing perfect secrecy can be modeled as shown
in figure 2.14. In figure 2.14, I is a digital message which takes on integer values from
the set {1, 2,3, .., N}. Using a key size N, as described previously, perfect secrecy is

achieved by encrypting I using
= I + K (mod N) (2.12)

to obtain J, a uniformly distributed random variable over the set {1, 2, 3, ..., N}. Since

K is by deflnition statistically independent of I, according to the above encryption rule,
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Figure 2.14 Model of an analog speech encryption system
with perfect secrecy.

J is also statistically independent of I. Assuming an ideal channel, thus disregarding
channel impairments and noise, J is transmitted to the receiver to be decrypted by the

inverse transformation of the above, namely
I=J-K (mod N). (2.13)

This is accomplished by the intended receiver, who, knowing K obtains I. It should be
pointed out that the size of I, J, and K are all the same, namely N, put forth by Shan-
non as a requirement for achieving perfect secrecy. Shannon in his development of rate-
distortion theory [13] also put forth a general method of describing the digitization of a
message vector X, known as block source coding, and which is now known as vector

quantization.

The coder (C) and reconstructor (R) of figure 2.14 represent the respective coder

and reconstructor of an N-point quantizer. The operation of these is defined by
I=cX) (2.14)
and
X =R() (2.15)
respectively.

The performance of the general analog speech encryption scheme of figure 2.14 is
thus dependent on the performance of the above quantization scheme. The latter is
measured by the degradation between X and X, which is Ep(X.X). Assuming an

optimum quantizer, the degradation between X and X for all possible N-point coder
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reconstructor pairs {C, R} is minimum and denoted by D' p(px).

Coming back to the generalized analog speech secure system of figure 2.13, Gersho

points out that this can, without any modification, be rearranged as shown in figure 2.15

r-----1
P
> -9 : 1 :
'
i 1 H !
R Y ] A ] 1 Y x :
X=-3 ENCRYPTER ->| H ! ! ] DECRYPTER |—pdp-X
] ] 1
i ] H
K 1 AL I L S 4 |
i ! !
Yy i ! 4 B |
[ ] ne oo o o= an we = - -
1 i
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Y,

Figure 2.15 Rearranged analog speech secure system model {12].

to fit the model of figure 2.16.

Y —
A
(R

Figure 2.16 Equivalent model of analog speech secure system [12].
I in this case over a clear channel is equivalent to K over a secure channel. The model
of figure 2.16 is similar to the model of figure 2.14 except for the additional side informa-
tion between the coder and reconstructor. This implies that any analog speech secure

systemn can be modeled as an analog speech encryption system with side information.

Maintaining perfect secrecy, X and Y are statistically independent. Hence, the side
information Y, in this case, cannot provide any information for the reconstruction of X.
As a result, the side information cannot improve the degradation beyond D’ p(px), as
provided by the analog speech encryption scheme of figure 2.14. D' \(px) Is thus

declared the minimum degradation. On the other hand, if the constraint of perfect
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secrecy would have been violated, such that Y and X would be statistically dependent,
then the side information would contribute to the reconstruction of X, resulting in less
degradation than D' p(px). Thus, under the constraints of perfect secrecy and the use
of a finite-size digital key, D' n(px) is the minimum degradation possible, equal to the
degradation obtained from equivalently digitizing the analog message before encryption,

as is the case with analog speech encryption schemes.

2.2.3 Analog Speech Scrambling Systems

Analog speech scrambling methods are those operating directly on speech in analog
form, without digitization, to produce a transformed waveform that is (ideally) unintelli-
gible, but from which the original speech signal can be recovered by a suitable inverse
transformation [14]. Analog speech scramblers can be further categorized as those which
operate on a continuwous-time continuous-amplitude speech signal, and those which
operate on a sampled version of this signal, or a discrete-time continuous-amplitude
speech signal. Analog scramblers of the former case are more specifically referred to as
jig-saw puzzle scramblers, as a result of their separating the incoming analog waveform
into components or pieces, much like in a jig-saw puzzle, and permuting these pieces to
disguise the message content. The central factor here is that each piece preserves the
integrity of some essential features of the original waveform [14]. Analog scramblers of
the latter case are more specifically referred to as sample-based scramblers. These con-
sist of sampling the input speech signal at the Nyquist rate, and then manipulating the
amplitude and/or time ordering of these samples. Sample-based scrambling techniques
usually lead to bandwidth expansion. Furthermore, they are extremely sensitive to
channel degradations, and will usually require an adaptive equalization technique if the

descrambled speech is to be of acceptable quality [14].

In general, all analog speech scrambling techniques which have a time-varying key

require synchronization. They need to ensure that the part of the key operating on a
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portion of the original speech signal in the transmitter, is the same part of the key
operating on the corresponding portion of the scrambled speech signal in the recelver.
This includes most scrambling techniques which have any cryptanalytical value. In
addition, generally all sample-based speech scrambling techniques require synchroniza-
tion, since in such cases a particular transformation is actually carried out on a group of
speech samples as a whole. Thus, a slight synchronization error will lead to different
groups of samples being descrambled, as compared to the corresponding groups of sam-
ples being scrambled. This makes transmission very sensitive to channel conditions.
Besides attempting to improve the existing synchronization techniques, or attempting to
provide new ones, the only other viable solution to the synchronization problem is
attempting to eliminate the requirement of synchronization altogether. Two such tech-
niques whi;:h have accomplished this are described in [15]-[18]. The general theory
behind such techniques, of which the above are special cases, is outlined in detail in the
paper entitled " A General Theory for Asynchronous Speech Encryption Techniques” by
Lin-Shan Lee and Ger-Chih Chou [19]. In this paper, the general operation of an analog
sample-based speech scrambler is first outlined, as shown in figure 2.17. It consists of
sampling the incoming analog signal x(t) to obtain discrete samples x(n), which are then
encrypted into discrete samples y(n), from which the encrypted analog signal y(t) is
recovered. Every N discrete samples of x(n) denoted as {x(rN-N+1), x(rN-N+2), .,
x(rN-1), x(rN)} form a frame, where N is the frame length, and r is the frame index.
The N samples in a particular frame are identified by an N-sample window w(n), which
is nonzero only for n==1, 2, 3, ..., N-1, and zero otherwise. The resulting windowed

speech is then represented by an N-component vector X,, as

[ X(rN-N+1) w(N-1)] [ x(0)
x(rN-N+2) w(N-2) (1)
X, = . 2 . (2.18)
x(rN—i) w(1) x,(N—2)
[ x(rN) w(0) . | %,(N-1) |
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Figure 2.17 Sample-based speech scrambler [19].
Every frame of N samples is then scrambled with respect to a particular NxN transfor-

mation matrix T, to produce the corresponding frame of scrambled signals ¥,, where

[ y(0) ]
y«(1)
=T, =] . |. (2.17)
Yr(l\.'-2)
_yr(N"‘l)J

From frame ¥,, the N samples of y(n) and hence the continuous-time scrambled signal

y(t) are readily obtained. The descrambling is similar, except T is replaced by T

It is obvious that since the reciprocal transformations T and T™! operate in frames
of samples, the slightest synchronization problem will result in the input frame of T!

being a slightly shifted version (i.e. di* :~ent from) the corresponding output frame of T,

leading to unsuccessful signal recovery.

The authors propose that the requirement of synchronization be eliminated from

the system by removing the concept of scrambling on a frame to frame basis. This is
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accomplished by increasing the size of a frame from N to N', where N' is much larger
than N. The N’ samples of a particular frame are identified by an N'-sample window
w(n), similarly as before. The resulting windowed speech is then represented by an N'-
component vector X, as

r -

[x(rN-N' +1) w(N’ —1)] x(0)
X(rN-N' 4-2) w(N' -2) x,(1)
%= ’ 2 . (2.18)
X(rN=1) w(1) x,(N' -2)
L x(rN) w(0) J _X,.(N' -1)

Obviously there will be significant overlapping, or redundancy, between samples of adja-
cent frames. This redundancy will eliminate the requirement of correct frame timing,

and will allow arbitrary frame positioning for recovering the correct signal.

Due to difficulties in finding the appropriate scrambling transformation of the N'-
component vector X,, this vector is preprocessed such that it is compressed back to size

N. This is accomplished by a particular transformation function F producing

0, = F(T(',.), (2.19)
where
[ u,(0) ]
u,(1)
o= . | (2.20)
ur(N"2)
_ur(N“l)_

The scrambling transformation T is then carried out in the compressed N-component

vector U, resuiting as

v(0)
vi(1)
v, = TG, = .| (2.21)

v,(N-2)
_v,(N—l) ]
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The vector V, is then used to obtain the N samples of y(n) and hence the continuous-
time scrambled signal y(t).

It remains to identify specifically N', the N-sample window w(n) and the function
F. To do this the authors propose, and later on show, that the asynchronous analog
speech sample-based scrambling system put forth in this paper is simply a short-time
Fourier analysis of x(n) (a time-sampled discrete signal representing original speech), cas-
caded with a short-time Fourier synthesis resulting in y(n) (the corresponding time-

sampled discrete signal representing sampled speech). N’ and w(n) are chosen to be
N’ = 2LN where L is integer, L>>1 (2.22)

and

sin [M] n=20,1,2 ..., 2LN-1

2LN
w(n) = 4] otherwise (2.23)
respectively Furthermore, the transformation F can be defined as
211
u(k) = 37 x(k+IN) k=012, .., N-1 (2.24)
1=0

A small drawback of this system is that besides the processing delay, between input
and output of the scrambler, there will be an additional delay equivalent to N’ samples.

This results from the time taken initially to collect the first N'-sample frame.

Another possible drawback is whether the degree of security in the proposed asyn-
chronous analog speech sample-ba_ed scrambling system is degraded, as a result of the
redundancy 1n the scrambled signal. The authors point out that preliminary studies on
the degree of security have been conducted, with the results indicating a very good
degree of practical security, "They do not go into any details though, thus raising doubts

as to the degree of validity of this statement.

An analog speech signal is fully described by the variation of its amplitude, with

 ame .
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respect to frequency and time. There are thus three characteristics of a signal which can
be manipulated for the purpose of scrambling. The combined analog speech scrambling
techniques of jig-saw puzzle scramblers, and sample-based scramblers can be classified
according to the particular characteristic(s) which they manipulate. Furthermore, the
collective advantages or disadvantages of each classification can be identified. ‘This is
accomplished in the paper entitled "Analog Scramblers for Speech Privacy” by Nug-
gehally S. Jayant [20]. According to Jayant, all analog scrambling techniques or algo-
rithms can be classified as one-dimensional or two-dimensional. One-dimensional algo-
rithms manipulate the time, frequency, or amplitude characteristics of an analog speech

signal, while two-dimensional algorithms manipulate a combination of the above charac-

teristics.

One-dimensional techniques which manipulate the frequency characteristic of an
analog speech signal include frequency inversion, band-shift inversion, and band split-
ting. Frequency inversion consists of multiplying the speech signal by a carrier of
3300Hz, fiitering out the higher side-band, and retaining the lower side-band, which con-
tains a set of difference-frequency components, which completely specify the speech pro-
cess. The important characteristic of this algorithm is that the carrier frequency of
3300Hz maintains the inverted signa!l in the same band as the original signal. Obviously,
this algorithm lacks cryptanalytical value since its operation 1s purely deterministic On
the other hand, if the carrier frequency is time-varying to a limited degree, the inverted
signal will not remain in the same band as the original signal. This is referred to as
frequency-hopping inversion, where the time-varying carrier offers some cryptanalytical
value. Finally, if the input speech is sampled, frequency inversion of this speech signal
will consist of inverting the sign of every other Nyquist sample [21]. Again, this has no

cryptanalytical value.

Band-shift inversion is based on frequency inversion controlled with a key. The key

allows the user to select the carrier frequency above 3300Hz, such that the extra carrier
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frequency (above 3300Hz) forces the inverted signal outside the band (beyond 3000Hz).
The part of the signal then extending beyond 3000Hz is put at the low frequency end
starting at 300Hz. The introduction of the key puts some randomness in the frequency
inversion operation. This can be seen as combining the principles of frequency inversion

and frequency-hopping inversion.

The final technique to be discussed is bandsplitting. This consists of dividing the
spectrum into [ sub-bands and permuting these sub-bands in one of f! possible ways,
based on a key. The key allows the user to select the particular carrier frequencies for
the respective bands. This algorithm is carried out by multiplying each band by the
specific carrier chosen, and flitering. A particular carrier puts a particular band in a new
particular position in the spectrum, relative to the other bands. A variation of
bandsplitting consists of using a time-varying key. This is referred to as a rolling-code

bandsplitter.

All the above mentioned frequency manipulation techniques are examples of jig-saw
puzzle scramblers. Being frequency manipulation techniques, they produce scrambled
speech signals which allow for good transmission, since they are not sensitive to real-
channel imperfections. The drawback of these techniques though is that the scrambled
signals they produce allow a spee-~h-like rhythm to pass at the output of the transmitter,

which leads to high values of residual intelligibility.

One-dimens:onal techniques, which manipulate the time characteristic of an analog
speech signal, mclude time inversion, time segment permutation (with hopping window
or sliding window), and reverberation. Time inversion consists of sampling the speech
signal within a block at the Nyquist rate, and inverting the order of speech samples in
timme within each block. This algorithm can lead to a substantial loss of intelligibility at
the transmitter, if the block length is chosen to be in the order of 128 or 256 ms [22].
On the other hand, it has the same problem as basic frequency inversion, in that it is

deterministic, and hence has no cryptanalytical value.
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Time segment permutation with hopping window (or block TSP), consists of divid-
ing the speech signal into blocks, and dividing each block into b segments. A special
case of time segment permutation is time sample permutation, where the segment length
is equal to the duration of one Nyquist sample. The smaller the segment length, the
more the number of ncaspeech-like discontinuities between segments, leading to
bandwidth expansion for the scrambled speech signal. The choice of segment duration
should refiect a compromise between the conflicting requirements of bandwidth expan-
sion (a decreasing function of segment duration), and total communication delay (an
increasing function of segment duration). Asshown in (23], a segment length of 16 to 32
ms long is a good compromise. The segments within each block are chosen and
transmitted in random order. The window remains on the current biock until all its seg-
ments are transmitted, before moving to the next block. With b==8 only 0.1S3 of all 8!
permutations allowed by this technique are considered good from the point of view of

residual intelligibility at the transmitter.

Time segment permutation with sliding window consists of dividing the speech sig-
nal into segments, and taking an initial block of b segments as above, which corresponds
to the initial window. Once one segment within this block 1s chosen at random and
transmitted, all segments on one side of the transmitted segment are moved over by one
stage in memory, and the vacant memory location is fllled with a new incoming speech
segment. The procedure is then repeated One precaution that this algorithm has to
take, is that a segment entering the biock has to be transmitted within a4 time duration
of t time segments, overriding the random selection process if necessary. The optirnal
value of t is found to be 2b from the point of view of residual intelligibility at the
transmitter, as shown in [24], as well as from the point of view of total number of per-

mutation keys as shown in (25].

Finally, reverberation consists of purposely creating echos of past speech samples,

and outputting these with each current speech sample. This 18 termed forward rever-
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beration. Reverse reverberation on the other hand, consists of creating echos of future
speech samples, and outputting these with each current speech sample. Reverse rever-
beration where individual speech sounds gradually build up, instead of decaying, allows
for lower residual intelligibility at the transmitter. This is because the human ear is less
accustomed to hearing evolving sound patterns, than it is to hearing decaying sound pat-

terns

From all the above mentioned time manipulation techniques, time segment permus-
tation with (hopping window or sliding window) is a jig-saw puzzle scrambling tech-
nique, which preserves signal bandwidth. The remaining techniques of time sample per-
mutation, time inversion, and reverberation are sample-based scrambling techniques. Of
these, the time sample permutation technique leads to bandwidth expansion, as would be
expected, while time inversion, and reverberation are special cases leading to bandwidth
preservation. All these time manipulation techniques mentioned above provide scram-
bled speech signals without any speech-like rhythm, but they are sensitive to real-
channel imperfections. Furthermore, they require extremely large values of communica-
tion delay, beyond the expected processing delay, if they are to maintain acceptable lev-

els of residual intelhgibility.

The only technique known which manipulates the amplitude characteristic of an
analog speech signal is masking. Masking of speech signals, also referred to as amplitude
scrambling, can come in various forms. One form consists of the linear addition or mul-
tiplication of pseudorandom noise amplitudes to the speech signal. This allows for the
possibility of a transmitter output that can sound like white noise, but at the cost of
reducing the speech-to-channel noise ratio after descrambling at the receiver. Another
method of masking consists of the nonlinear-modulo arithmetic of pseudorandom noise
amplitudes to the speech signal. Masking of speech signals by linear addition is a jig-saw
puzzle scrambling technique preserving bandwidth. On the other hand, masking of

speech signals by linear multiplication is a special case of a jig-saw puzzle scrambling

Biie -
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technique which does not preserve bandwidth. Furthermore, masking of speech signals
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by nonlinear modulo-arithmetic is a sample-based scrambling technique, which leads to
bandwidth expansion. Masking techniques are transmission sensitive but produce a
noiselike output at the transmitter. Thus, they are similar to time manipulation tech-

niques without the communication delay.

Two-dimensional algorithms result from cascading two one-dimensional algorithms,
such that a speech signal is scrambled with respect to two of its characteristics, as men-
tioned previously. The respective strengths and weaknesses of the two one-dimensional
component algorithms combine, and complement each other. This results in scrambled
speech signals with lower residual intelligibility, and more cryptanalytical strength than
can be provided than any one-dimensional algorithm alone. The speech-like rhythm
characteristic resulting from frequency manipulations of speech is destroyed by time
manipulations, while the high transmission sensitivity of time manipulations of speech is
complemented, by the transmission robustness of frequency manipulations. Further-
more, the time delay resulting from any time manipulations of speech within a two-
dimensional algorithm can be reduced, depending on the scrambling ability of the other

accompanying one-dimensional algorithm.



CHAPTER III

SECURITY EVALUATION OF A NEW ANALOG SPEECH
SCRAMBLING ALGORITHM USING HOPPING FILTERS

3.1 INTRODUCTION

Upon surveying previous related works on speech secure systems in general, it was
realized that although the foundations of this field have been set, its full development is
far from over. There is still room for development of new speech scrambling algorithms,
as well as of ways in which these, and others previously developed, can be combined to

enhance each others strengths, by obscuring each others weaknesses.

In the previous chapter it was made clear that digital speech encryption, although
powerful, cannot be taken advantage of at present. The reason for this is that the
telecommunication system started out with fully analog carriers, of which most remain
until present. Some have been replaced with digital carriers, and although this process is
ongoing, analog carriers still dominate digital carriers today. Thus, digital encryption

still remains as an alternative for the future.

The next best thing to digital speech encryption is analog speech encryption. This
constitutes a family of speech encryption techniques, which although employ analog
transmission, use analog to digital and digital to analog conversions to obtain an
intermediary digital signal, on which digital speech encryption techniques can be
imposed. Although very strong, this area of speech security has been fully exhausted,

especially with the constant developments of digital signal processing.

The only area of speech security which at present does not offer the highest levels
of security, but which still allows room for further development is the area of analog

speech scrambling.
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The purpose of this chapter is thus to build on previous related works, as outlined
in the previous chapter, in order to develop the area of analog speech scrambling one
step further. It was seen from {12} that maintaining the two constraints of, perfect
secrecy and use of a finite-size digital key, the degradation of an analog speech scram-
bling system cannot be less than D' \(py), where this is the degradation offered by an
analog speech encryption system respecting the same constraints. Although this pro-
vides a lower bound for the degradation of all analog speech scrambling systems respect-
ing the above constraints, the actual degradation is system dependent. Furthermore, it
was put forth in {12] that if any of the stated constraints would have been violated, then
a degradation below the minimum of D’ \(py) could be achieved. Although perfect
secrecy is very desirable it is an ideal security level which cannot be obtained and made
use of in any practical sense. Therefore, an analog speech scrambling system which can
provide a security level close to, but nonetheless inferior to perfect secrecy, will be
ensured to have a degradation upper bounded by D’ y(px). Such a security level is thus

a desirable requirement for an analog speech scrambling system.

As mentioned previously, there are various jig-saw puzzle analog scrambling aigo-
rithms, as well as sample-based analog scrambling algorithms, which can be classified
according to the characteristics (i.e. frequency, time or amplitude) of speech which they
manipulate, From [20] it was seen that frequency manipulation algorithms in general
produce scrambled speech signals which are not sensitive to real-channel imperfections,
thus allowing for good transmission, but at the price of allcwing a speech-like rhythm to
pass at the output of the transmitter. A speech-like rhythm at the output of the
transmitter results from frequency manipulation technijves, since these techniques are
nothing more than a mapping of one flnite set of phonemes to another such set. This
could be avoided by changing the particular frequency manipulation periodically, or in
other words changing the particular mapping of phonemes. Time manipulation algo-

rithms on the other hand eliminate speech-like rhythm, but are sensitive to real-channel
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imperfections and require some communication delay. Time manipulation algorithms
can be made less sensitive to real-channel imperfections but at the price of larger com-
munication delays. The transmission sensitivity of time manipulation algorithms results
from the problem of bandwidth expansion, as well as that ol preserving sample integrity.
Bandwidth expansion results from the nonspeech-like discontinuities in the scrambled
speech waveform, as a result of the re-ordering of speech samples. Preserving sample
integrity between speech samples in the descrambler input, and corresponding speech
samples of the scrambler output is difficult because of the discontinuities in scrambled
speech. These discontinuities render a particular level of distortion (as a result of real-
channel imperfections) perceptually much more objectionable, than the same level of dis-
tortion as applied to unpermuted speech, in which case successive sample distortions are
continuous 'or slowly varying. Finally, masking, or amplitude scrambling algorithms
allow for the output of the transmitter to sound like white noise, but are transmission
sensitive. They are thus similar to time manipulation algorithms, without any communi-
cation delay. The additional drawback here is that amplitude scrambling algorithms
involving linear addition or multiplication tend to decrease the speech-to-channel noise

ratio.

From the above it seems appropriate to study one-dimensional frequency manipula-
tion algorithms (in which the frequency manipulation is changed periodically), as well as
amplitude scrambling algorithms, with the possibility of combining two algorithms (one
from each category) to produce two-dimensional algorithms. This chapter etamines a
new one-dimensional frequency manipulation algorithm, which can be referred to as the
hopping fliters algorithm. Of all the frequency manipulation algorithms already known,
the one, if any, to which it resembles the most is bandsplitting with a rolling code. This
new algorithm also divides the spectrum into { sub-bands, but instead of permuting
these sub-bands as governed by the key, the key enhances or attenuates the amplitude

of each sub-band, which is equivalent to filtering the incoming speech with various hop-

o TE 2

N
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ping fllters, hence the name of the algorithm.

The other one-dimensional algorithms examined in this chapter involve amplitude
scrambling of speech, using pseudorandom noise amplitudes, via linear addition as well
as multiplication. These are referred to as amplitude addition scrambling and amplitude
multiplication scrambling algorithms, respectively. Finally, this chapter examines the
two-dimensional algorithms consisting of the hopping filters algorithm, with either of the

two amplitude scrambling algorithms.

The general operation of all five scrambling algorithms as outlined above are
described in section 3.2. Section 3.3 then evaluates these algorithms on the basis of per-
fect secrecy, residual intelligibility at the output of the transmitter, and cryptanalytical
strength. By crossing these three factors, one of the five algorithms is chosen and

optimally configured so that its particular operation
1) approaches perfect secrecy very closely,

2) provides least residual intelligibility at the output of the transmitter by

resembling white noise as much as possible, and

3) offers maximum cryptanalytical strength as a result of offering the larg-

est number of possible transformations for the incorning speech signal.

3.2 PROPOSED ANALOG SPEECH SCRAMBLING ALGORITHMS : ONE-

DIMENSIONAL AND TWO-DIMENSIONAL

The first of three one-dimensional analog speech scrambling algorithms to be
described is a new frequency manipulation algorithm [26) This algorithm consists of
choosing a particular hopped filter from a group of n hopped filters, and passing the
incoming source analog speech signal through this filter for a certvain period of limne,
before hopping to another filler at a rate to be discussed later. Each hopped filter is a

piece-wise combination of seven unity-gain bandpass fiiters, which are mutually exclusive
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and collectively exhaus. the frequency band 200Hz-2400Hz. Following each bandpass

fllter is a gain control device, which enhances or attenuates the incoming signal by one of

several bullt-in factors or levels, as chosen from by a short binary codeword. The out-

puts of all seven gain control devices are then added to produce the final output of this

algorithm as shown in figure 3.1.

m(t)
hy(t) m,(t
R 1 W l d,(0)
200Hz-400Hz
> bt Malt), dor(t)

400Hz-600H 2z

hq(t) ha(t)

Y

600H2-800H2z

hy(t) m,(t)

800Hz-1100Hz

hy(t) y(t)

1100H2-1400H 2z

hyft) ho(1)
1400Hz-1800H z

hs(t) (1)

dor(t)

d,p(t)

1800Hz-2400H z

1-4
BITS

DEVICES

l

ydt)

Figure 3.1 Details of the hopping filters algorithm.
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The seven short binary codewords are respectively parts of seven pseudorandomly gen-
erated secret codes, which are produced independently from, but simultaneously with

each other, and are the topic of the next chapter.

The time duration for which a particular hopped filter will be used is practically
upper-bounded by Ty = 1.25 ms for reasons to be explained later, and lower-bounded
by the time needed to generate seven 1-bit codewords in parallel (the smaliest codewords
that can be generated). The lower bound thus depends on the clock frequency of each
code generator, which is selected as 3200Hz for reasons to be explained later As a
result, the fastest available timing signal has a period of T, = 0.3125 ms. This provides
the lower bound on the time duration for which a particular hopped filter will be used.
These bounds restrict the number of bits in a particular short codeword (which is the
same for all seven such short codewords), from 1 to 4. As a result, the number of gain
factors or levels, by which each unity-gain bandpass filter output can be enhanced or
attenuated, as chosen by the seven short codewords, range from 2' (= 2) to 2' (== 16).
This leads to the number of possible piece-wise hopped filters n to range from 27 to 167

{_: 228), as well as the hopping rate (Fl-) between fliters to range from L to -

P T, 4T,
respectively. At this point, it might seem that the more the hopped filters to choose
from (i.e. 2%) the higher the security of the algorithm. This is true if the cr/ptanalytical
attack consists of trying to find the particular hopped fillter used, through exhaustively
applying all possible inverse filters to the scrambled signal. Since this number of hop-
ping filters is inversely proportional to the hopping rate, the residual intelligibility will
be increased. On the other hand, if the cryptanalytical attack consists of simply listen-
ing to the scrambled signal then a lower residual intelligibility is required, which implies
a faster hopping rate. Since the hopping rate is inversely proportional tc the number of
hopping filters, then fewer hopping fiiters will be necessary Since the cryptanalyst will
follow the attack which best serves his/her purposes, it is up to the designer to provide a

compromise between the two conflicting factors of maximum possible number of hopping
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filters, and maximum possible hopping rate, thus providing overall security. This

compromise will be resolved later with a design choice as to the actual value of Tg.

Let the source input analog speech signal to the hopping filters (HF') algorithm be a
band-limited speech signal between 200Hz and 3200Hz, represented by the stochastic
process m(t). At any particular time t the probability density of m(t) "is characterized
in general by a very high probability of zero and near-zero amplitudes (related to pauses
and low-energy segments of the speech waveform), by a significant probability of very
high amplitudes, and by a monotonically decreasing function of amplitudes in between
those extremes” [27]. Furthermore, let the output signals of the seven bandpass filters in
this algorithm, which are filtered versions of m(t), be represented by the stochastic
processes rh,(t) ... m,(t) respectively. Finally, let thz control inputs of the HF algorithm
be seven identical but independent PAM processes. The levels of each of these processes
are the gain factors by which a particular frequency band, represented by a particular
stochastic process rh(t) ... rh,(t), can be enhanced or attenuated, as chosen by a particu-
lar pseudo-randomly generated codeword. The seven PAM processes are represented as
d,p(t), ..., dyp(t), ..., dyp(t) such that

+00
djp(t) = 35 gr(t-kTe)Dyp(k) . (3.1)

k=-00
D,g(k). ..., Dyp(k) are seven identical, but independent uniformly distributed discrete-
time stochastic processes, and gg(t-kTy) is a gate function defined as

1 i kTp < ¢ < (k+1)Tg

gr(t-kTg) = {0 if otherwise ' (3.2)

where 0.3126 ms < Tp < 1.25 ms depending on the design choice to resolve the
compromise outlined above. Refer to figure 3.1 for the details of the Hf algorithm as
described above. The final output of this algorithm is denoted by the stochastic process
yY«t). which based on the above description is

7
Ye(t) = S my(t)dyp(t) . (3.3)

I=1
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The second and third one-dimensional algorithms to be described are known algo-
rithms of amplitude scrambling. One of them consists of linearly adding an analog signal
to the input source analog speech signal (figure 3.2), while the other consists of multiply-

ing the input source analog speech signal by an analog signal (figure 3.3).

m(t) ~ 4 > ¥alt)
0
dA(t)
D/A
1-4
BITS

Figure 3.2 Details of the amplitude addition scrambling algorithm.

m(t) ——>] X ——> yult)

da(t)

D/A

1-4
BITS

Figure 3.3 Details of the amplitude multiplication scrambling algorithm.
In both these cases the analog signal is made up of various dc levels, which are the out-

puts of a D/A converter to which the inputs are short codewords produced from the
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code generator Using the same reasoning as in the timing of the hopping filters algo-
rithin explained previously, the time duration for which a particular dc level will multi-
ply, or be added to the input source analog speech signal ranges from T, = 0.3125 ms
w0 T, == 1.25 ms Furthermore, the length of the codeword choosing a particular level
will range from 1 to 4 bits, and as a result the number of possible codewords at the
input of the D/A, or number of possible levels at tlhie output of the D/A will range from
2! (== 2) to 2* (=16) Similarly, as before a compromise will have to be reached between
the maximum possible number of levels to multiply, or be added to the incoming speech
signal, and the maximum possible rate of change between these levels These are two
conflicting factors both of which contribute in different ways to the security of the algo-
rithm. This compromise will also be resolved later with a design choice as to the actual
value of T,

As before, let the source mput analog speech signal to these two amplitude scram-
bhing algorithms be a band-limited speech signal between 200Hz-3200Hz, represented by
the stochastic process m(t) Furthermore, let the control input to these algorithms be a
PPAM process represented by d (1), such that

da(t) = 30 ga(t-kTL)D4(K) . (3.4)

k=-00
DA(k) s 2 uniformly distributed discrete-time stochastic process, and g,(t-kT,) is a gate
function defined as

| ITKTA< t <(k+1)T,

Ea(l-kT,) = {0 if otherwise ' (3.5)

where 03125 ms < T, < 1.25 ms depending on the design choice to resolve the
compromise outlined above. The levels of the PAM process d(t) are the levels which
are added to, or multiply the input speech signal m(t), as shown in figure 3.2 or figure

3.3 respectively.
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The input to both of these candidate algorithms is m(t), while their outputs are

Ya(t) = m(t) + d(t) . (3 6)

and

Ym() = m(t)dA(t) (3.7)

for the amplitude addition scrambling (AAS) algorithm, and the amplitude multiplica-

tion scrambling (AMS) algorithm respectively.

The first of the two-dimensional analog speech scrambling algorithms consists of
the HF algorithm described above, followed by the AAS algorithm in that order, with
the combination referred to as HF-AAS. The ourput of the HF algorithin (3 3) 1s used as
input to the AAS algorithm (3.6). Maintaining the input of this overall two-dimensional
analog speech scrambling algorithm as m(t), and referring Lo the output as z,(t) then

7
z,(t) = | S my(t)dip(t) | + dat) (.8)

I=1

The second of the two-dimensional analog sperch scrambling algonthms consists of
the HF algorithm described above, followed by the AMS algorithm in that order, with
the combination referred to as HF-AMS. The output of the HF algorithm (3 3) 15 used as
input to the ANS algorithm (3.7). Maintaining the input of this overall two-dimensional
analog speech scrambling algorithm as m(t) and referring to the output as z,,(t) then

7
z,,(t) = [ Syriy(t)dgp(t) | da(t) . (39)

I=1

3.3 SECURITY EVALUATION OF PROPOSED ANALOG SPEECH SCRAMBLING

ALGORITHMS

The first objective of this analysis is to find the cross-covariance

Cm(n)=E [m(t)v(t+r)] -E [m(t)]E [v(t H’)] (3.10)
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[28], between the input process m(t) of each analog speech scrambling algorithm, and the
output process v(t) of the same algorithm shifted by an amount 7, thus v(t+7) with
respect to this shift. This is carried out so as to examine the degree of correlation
between the input and output of a particular algorithm, with respect to a time difference
of 7. The smaller this correlation the lesser the amount of information resulting at the
output of the algorithm, with regard to the input of the algorithm. Thus, the ideal value
of cross-covariance for a scrambling algorithm is zero. This would imply that the input
and output are statistically uncorrelated, and hence the statistics of the output signal
would convey no information as to the statistics of the input signal. This is a slightly
weaker condition than, but nevertheless, resulting from the idea of perfect secrecy, which
implies that the output of a scrambling algorithm is statistically independent from its
input [12].

The first algorithm to be examined in terms of cross-covariance is the two-
dimensional HF-AAS algorithm. The output of this algorithm is as shown in (3.8), and
the shifted version of this output shifted by 7 is

7
2o(1+7) = [Z‘t‘hl(t+r)d|p(t+r) + da(t+7) . (3.11)
j==1

Substituting (3.11) for v(t+7) in the definition of cross-covariance (3.10),

=1

E [m(t)z.(t+1)] =E [m(t)l [émn(vw)du*(wf) + dA(t'+T)] l
=

1=1

= E [é m(t)m|(t+‘r)du.-(t+f)} + E [m(t)dA(t,+-r)]

= §7]E [m(t)m,(t+r)dlp(t+r)] + E [m(t)dA('+r)] . (3.12)

=1

The PAM processes d,p(t+7), ..., dyp(t+7) and d,(t+7) are independent of the speech

process m(t) and its flitered versions rh,(t-+7), ..., thy(t-+7), hence
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7

E [m(t)z,(c+r;] = []EE [m(t)lh,(H—r)]E [d|r((+‘f)] ] + E [m(t)]E [dA(H»r)] .

(3.13)

At this point a constraint is put on the PAM processes d,p(t+7), ..., d;p(t+7) such that
their levels have a constant mean u,p, ..., figrp respectively. Since the levels of these PAM
processes are to be the same for each, then pp = ... = pgp == pip. Furthermore, the
same constraint is applied to the PAM process d,(t+7) and its mean is g,. As a result,

E[d,p(t+7)] = ... = Eld;p(t+7)] = e and E[d(t+7)] = p, for all t

E [m(t)z,(t+r)] == ”FlélE [m(t)m|(b+r)] + u,E [m(t)]

7
= ugE [m(t)zxm(t-f-r)} + pLE [m(t)] (3 14)
=1

Also

B [m ] [n0+n] =& [mw]e [

=B [m(t)] [IEE [m.(w-r)d,r(wr)] + B [d,\(wr)] | .
=1

7
E lil,(t,+r)d|p(t+1’) + dA((«+T)]
=1

(3 15)

The PAM processes d,p(t-+7), ..., dqp(t+7) are independent of the filtered speech
processes 1h,(t+7), ..., M4(t+7), hence

E [m(t.)]E [z,(t+r)] —E [m(t.)] SE [mI(t-i-T)]E [d,p(wr)] +E {d,\(wr)” .

I==1

(3.16)
Putting the same constraints on the PAM processes as before E[dp(t+7)] = ... =

E|d,p(t+7)] = pr and E[d(t+7)] = p, for ail t.

}SE [x‘hl(H-r)] + BAE [m(t.)]

f==1

E [m(t)]E [z,(b+r)] = jgE [m(t)]

= ppBE [m(t,)]E [ém,(w-r)] + u,E [m(t,)] (3.17)
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The cross-covariance then becomes

{=1 =1

7 7
Crna(T) = M [E [m(n)z;m.(w)] - E [m(t)]E {2m,(t+r)] ] . @as)

Since the bandpass fllters are of unity gain, mutually exclusive, and collectively exhaust

the band 200Hz-2400Hz then,

y(t+7) = m(t+7) (3.19)

el

where m(t+7) is m(t+7) filtered by a bandpass fliter of unity gain and bandwidth
2001z-2400Hz Since speech m(t+7) ranges from 200Hz to 3200Hz, for all intents and

purposes m(t+1) == m(t+7) and hence,

7
T iy (t+1) & m(t+1) . (3.20)
f=1

The cross-covariance then becomes

Crns (7} = nr (E [m(t)m(t+r)] -E [m(t)]E [m(t+r)] ). (3.21)
which is the product of the mean of the seven identical PAM processes representing the
HF algorithm, and the autocovariance of the input process m(t).

The second algorithm to be examined in terms of cross-covariance is the two-
dimensional HF-AMS algorithm. The output of this algorithm is as shown in (3.9), and

the shifted version of this output shifted by 7 is

7
Z(t+7) = Erh.(t+7)d|p(t+r)]dA(t+r) . (3.22)

=1

Substituting (3.22) for v(t-+7) in the definition of cross-covariance (3.10),

=1

7
E [m(m)z.,.<n+r)] =E [m(c) S thy(t-+r)dyp(t+7) ] dA<t+r)]

= é E [m(t)ﬁh(t+1’)d“:‘(t:+1')dA(t+T)] . (3.23)
=1
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The PAM processes d,p(t+7), ..., d;p(t+7) and d o(t+7) are independent of each other as
well as independent of the speech processes rh,(t+7), ..., iy(t+7) and m(t) hence,

E [m(t)zm(t+r)] = éE [m(t)xil|(t+r)]E [d|p(t+r)]E[dA(t+r)] . (3.24)

I=1

Again, the constraint of constant mean pp, ..., fisp IS put on the PAM processes
d,p(t+7), ..., d,p(t+7) respectively. Since they are identical processes (1.c. same levels)
their mean is p,p = .. = Y, = pp. Furthermore, the same constraint is applied to the
PAM process dj(t+7) and its mean is u, As a result, Eld,p(t+7)] = .. =
E([d;p(t+7)] = pp and E[d,(t+7)] = p, for all t Then
7
E [m(t)zm(t+r)] = uAuFE]E [m(t)m,(t—+~1)]

7
== g pupE [m(t)gm,(wr)} . (3 25)

=1
Also

7

E [m(t)]E [zm(t+r)] —E [m(t)]E [ llgml(t+r)d|p(t+r) dA(t+r)]

7

=B {m(t)] Y E [m,(m+r)d,p(t+r)dA(m+r)] l (3 26)

The PAM processes d,p(t+7), ..., d;p(t+7) and d 4(t+7) are independent of each other as

well as of the speech processes m,(t+7), ..., m,(t+7), and hence

TE [m;(L-H) ] E [d,,-(H r)] B [d ALt ‘r)]

E [m(t)]E [zm(t+r)] =E [m(t)]

(3.27)

Putting the same constraints on the PAM processes as before, E[d,p(t+7)] = .. ==
Eld,;p(t+7)) = pp, and E[da(t+7)] = p, for all t. Then

7

B [m() |2 [em(t+n] = nase® [0 | 558 [mien

I=1

7
= p,prE [m(c)]E [gm,(wr)} . (3.28)
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The cross-covariance Cy, (7) then becomes

1=1 1=1

7 7
szm(T) = J\HF lE [m(t)zml(t—f-‘r)] -E [m(t)]E [Eml(H-‘r)] l . (3.29)

Using the same reasoning as before, (3.20) applies, and is substituted in (3.29).

Hence
Crny (7) = pabtr (B [m(t)m(H—r)] -E [m(t)]E [m(c+r)] ). (3.30)

which is the product of the mean of the seven identical PAM processes representing the
HF algorithm, the mean of the process representing the AMS algorithm, and the autoco-

variance of the input speech process m(t).

The last three algorithms to be examined in terms of cross-covariance are the one-
dimensional HF algorithm, and the one-dimensional AAS and AMS algorithms. The out-
puts of these algorithms are as shown in (3.3), (3.6), and (3.7), and the shifted versions of

these outputs shifted by 7 are

7
Yt+7) = D iy(t+ndyp(t+7) . (3.31)
I=1
Ya(t+7) = m(t+7) + do(t+7), (3.32)
and
Ym(t+7) = m(t+7)d(t+7) (3.33)

respectively. Substituting (3.31), (3.32), and (3.33) for v(t+7) in the definition of cross-
covariance (3.10), and following similar steps as in the previous calculations of cross-

covariance results in the cross-covariances of these algorithms being

Cuy () = ur (E [m(t)m(H-‘r)] -E [m(t)]E [m(c-i»r)] ). (3.34)

Cmy.(r) =E [m(t)m(t+1’)] ~-E [m(t)]E [m(t-i—‘r)] , (3.35)
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and
Cry (D = A (E [m(t)m(t+r)] -E [m(t)]E [m(H—r)] ) (3 36)

respectively. The code generators choosing between the various levels of the PAM
processes discussed so far are not biased in any way As a result, the levels of each PAM
process at any particular time have a uniform distribution Given this fact, and tighten-
ing the constraint of constant mean to a mean of 0 for all the PAMN processes implies
that the sum of the levels should be O The single PAM process representing the AAS or
AMS algorithm requires the same levels for the scrambling, as well as the descrambling
procedures, with a one-to-one correspondence. The seven identical PAM processes
representing the HF algorithm require that their levels in the scrambling procedure are
multiplicative inverses of their levels in the descrambling procedure, and vice versa,
again with a one-to-one correspondence. Choosing the levels of all the PAM processes
accordingly results in pup = p, = 0, and making use of the fact that the speech process
has zero mean amplitudes for any particular time t (E[m(t)] = E[m(t+471)] == 0) (27|,
then the cross-covariances derived so far all become O, with the exception of that of the
AAS algorithm. The latter cross-covariance is R, (7), which is equal to Eim(t)m(t+7)],
and is the autocorrelation of the speech input process m(t). Thus, for all the algorithms
except that of AAS there is no correlation between input and output. As a result, when
dealing with any of these algorithms a cryptanalyst cannot obtain information as to the
statistics of the input signal to the algorithm, by observing the statistics of the output
signal from the algorithm. In the case of the one-dimensional AAS algorithm the above
does not hold since the autocorrelation of the speech process is nonzero, as will be shown
later. Thus, this particular algorithm does not measure up (o the others for analog

speech scrambling, and is thus not examined further.

The second objective of this analysis is to find the autocorrelation between the out-
put process z(t) of each algorithm, anc the shifted version of the same process 2(t+7),

with respect to the amount of shift 7. This is carried out so as to examine how close the
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autocorrelation of each algorithm is to the autocorrelation of white noise, which is
NO
Ry (7) = —2—5(7) (3.37)

[29]. This autocorrelation implies that no matter how close in time two samples are
taken, they are uncorrelated. This is the ideal autocorrelation desired for the output of a
scrambling algorithm. It would imply that the information contained in one sampile of
the output signal, would never appear again in any future output signals, no matter how
close they are taken in time to the original signal. Thus, the cryptanalyst would not be
able to conflrm any information obtained, by relating to each other a few close samples
in time, of the output scrambled signal Furthermore, the closer the autocorrelation of
the output signal of an analog speech scrambling algorithm is to a delta function, the
more the éutput will sound like white noise. Of course, the delta autocorrelation func-
tion of white noise can never be attained, as will be made clearer later when reference is

made to the corresponding power spectral density.

The first of the two-dimensional analog speech scrambling algorithms to be exam-
ined in terms of autocorrelation is the HF-AAS algorithm. The output of this algorithm
is as shown in (3.8), and the shifted version of the output shifted by 7 is as shown in

(3.11). Autocorrelation is defined as
Ry(7)=E [v(t,)v(t+1')] (3.38)

[28]. Using j as a dummy variable in (3.11), and substituting (3.8) ard (3.11) for v(t) and

v(t+7) respectively in (3.38) results in

I=1

4 7
Ryp () =E “ Smy(t)dyr(t) | + dA(c)] ‘ [2m1($+7)djp(t+1‘)] + dA(Hf)]]
1=1

7T 7 7
= 5 BB [mOmytnd@dri | + 5B [myerndpcndao |

1=1)=1 J=21

7
+ Y E [m.(c)d,p(c)d,\(wr)] +E [dA(n)dA(c+r)] . (3.39)

=1
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As before, all the PAM processes are independent of each other, as well as independent

of the speech process and its filtered versions, hence

R, (1) = sy [k [m,(t)mj(t-f-r)]E [dlr(t)d“(t+‘r)]l

I=1}=1
1=}

+on E[m,(t)mj(t.+r)]E[d,p(t)]E [djp(wr)]l

I=1j=1

i)

+
Wi

E [m,(c+r)]s [d,p(s+r)]E [d,\(m)] l

—
-

E [m.(t.)]E [dlp(t)]E[dA(t-i-f)]] +E [dA(t)dA(L+T)] . (3.10)

+
e~

Applying the constraint of constant mean to the PAM processes, and following the same
reasoning as before, E{d,p(t)] = E[d,p(t+7)] = ... = E[d;p(t)] = Eld,p(t+7)] = pp, and

E[dA(t)] = E[ds(t+7)) = p,. Then

7 7 7
Rezl™ = LR (NRe(n) + 86”5 DRy (7)
I==1 I=1j==1

19£)

7 7
+ beia DB [+ | + weua DB [min) ] + Refn) . (3.41)
=1 I==1

where le(r) is the autocorrelation of the i-th flltered speech process, Rm,m,(') is the
1)

cross-correlation of the i-th and j-th flitered speech processes, Rd“,(f) is the autocorrela-
tion of the i-th out of the seven identical PAM processes representing the HF algorithm,
and Rq,(7) is the autocorrelation of the PAM process d,(t) representing the AAS algo-
rithm. Since the seven PAM processes representing the HF algorithm are identical, their

autocorrelations are equal and hence, Ry (7) = ... = Ry, (7) = Ry, (7). Thus,

7 7 7
Ry () =R, TRy (1) + 5" T T Rpe (1)
1)
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7 7
+ uriAE [)Jm,(wr)} + tpppE [Em‘(t)} + Ry (7). (3.42)

J=1 1=1

Using the same reasoning as before, and replacing dummy variable i for j in (3 ?0), as

well as noting that a varjation of (3.20)

7
¥ my(t)=m(1) (3.43)
f==1

applies, results in

l.l. 1) - de T ERm(T + pF E Elem](T)
=1j=1

15£)

+ Pply (E [m(H—r) + m(t)] ) + Rq,(7) . (3.44)

The second of the two-dimensional analog speech scrambling algorithms to be
examined in terms of autocorrelation is the HF-AMS algorithm. The output of this algo-
rithm is as shown in (3.9), and the shifted version of this output shifted by 7 is as shown
in (3.22). Using j as a dummy variable in (3.22), and substituting (3.9) and (3.22) for
v(t) and v(t-+7) respectively in (3.38) results in

(r-—E

f==1

7
[gm.(t)d‘p(c ] (da(®)) [gm,(wr)d,p(wr)] (dalt+n) ]
J=1

7 7
= 2 EE [ml(t)mj(t-}'T)d",‘(t.)djl,‘(t+T)dA(t)dA(t+1')] . (3.45)

IE VL

As before, all the PAM processes are independent of each other, as well as independent

of the speech process and its flltered versions, hence

R, (1) = éé E [m,(t)mj(t-i—r)]E [dlp(t)djy(wr)]E [dA(t)d A(t—i—r)] )
1=)

Tl PRt USRS PR( X~ -

P B T T N Y
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+ 273 27: E [m‘(t)mj(t+r)]E [dn‘(‘)]E [d)p(H-r)]E [dA(t)dA(t-H)] l .

I=1)=1

1)
(3.46)

Applying the constraint of constant mean to the PAM processes, and following the same
reasoning as before, E{d§(t)] = E[d,p(t+7)] = .. = E[d;p(t)] = Edsp(t+7)] = pp, and

E[dA(t)] = E[d(t+7)] = p,. Then

7 7

7
R, (1= RdA(T)lERm‘(T)R a7 + #p’Ry A(r)lguglf{mlm’(r) . (3.47)
154

where Rm‘(f), lem,(r). Rd,,,(T), and RdA(‘r) are as defined previously. As before, Rd,,(f) =
15}

o = Rq_(7) = Ry(7), thus

7 7 7
Rzmzm(r) = RdA(‘r)RdF(r)Z‘le(r) + p,,’RdA(r)E Elem’(T) . (3.48)
1=1 j=1)=1
15£)

The two one-dimensional analog speech scrambling algorithms remaining for discussion
(after eliminating the AAS algorithm, because of its poor cross-covariance in relation to
the other algorithms) are the HF algorithm, and the AMS algorithm. Following similar
steps as in the cases of the two two-dimensional algorithms, the autocorrelations of these

one-dimensional algorithms become

7 7 7
Ry,_v,(T) = RdF(T)ERmI(T) + ﬂpzz ERm,m,(T) , (3.49)
=1 |_‘;Jq—|
and
Ry 5. (1) = Ry(1)Rq (1) (3.50)

respectively. Respecting the constraint of zero mean for all the PAM processes as dis-
cussed before, up = 0 and u, = 0. Since speech amplitudes have zero mean, and since

the correlations that exist among these amplitudes depend on the time difference
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between them, then according to (28] the process representing speech, in this case my(t) is
Wide Sense Stationary (WSS). According to [30] if a WSS process is applied to the input
of a time-invariant linear network with transfer function H(f), then the output power
spectral density is the product of | H(f) | 2 and the input power spectral density. In this

case each bandpass fllter is a linear time-invariant network. The autocorrelation ij(r),
and the power spectral density smj(r) at the output of the j-th bandpass filter are related

as follows:
F [ij(r)] = S, (1) (3.51)

For all bandpass flilters
7 7
TF [Rm’(r)] = £Sa(N (3.52)
)=1 )=1

7 7
F [2 Rm,(r)] = 5 [H(0)|%sa(0)
=1

=1

7
=S,(N3 |H(N| 2. (3.53)
=1

Since the bandpass filters are of unity-gain, mutually exclusive, and collectively exhaust
the band 200Hz-2400Hz then

7
F [ERm,(T)] = Sp(0) | X(N ]2, (3.54)

1=1
where X(f) is a unity gain bandpass fllter with bandwidth 200Hz-2400Hz. Since the
voice bandwidth is 200Hz-3200Hz, if speech signals above 2400Hz are disregarded, as also
approximated previously, then Sy(f) | X(f) | 2 = S (f). Thus,

7
F [ gnm,(r)] ~ S, (f) (3.55)
]

=1
JélRm,(T) ~ 7 [su(0]

~ R(7) . (3.56)
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The autocorrelations of the four aigorithms examined above can then be summarized as

shown below.

Case 1. HF-AAS
R, (1) = Ry (Rp(7) + Ry, (D) (3.57)

Case 2. HF-AMS

Rzmzm('r) = RdA(T)RdF(T)Rm(T) (3.58)
Case 3. HF

R,m(-r) = de(r)Rm(r) (3.50)
Case 4, AMS

R, , (7) = Ru(MRy (1) (2.60)

Refer to figure 3.4 for the long time (55 s) averaged autocorrelation of speech denoted
C(n), in terms of Nyquist samples n (125 pus ), as a result of speech from two males and

two females.

Figure 3.4 Long time autocorrelation function of speech [27].
The top curve represents low pass-filtered (OHz-3400Hz) speech, and the bottom curve
represents bandpass-flltered (200Hz-3400Hz) speech. Both curves are normalized by the
expected (time-averaged) value of squared amplitudes, or the average power of speech.
For purposes of analysis, points from the bottom curve were used to obtain a polynomial

representing this curve. This polynomial denoted by C,(7) is of degree 10, and represents



.
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the autocorrelation of speech (200Hz-3400Hz) in the interval | 7] < 1.25 ms, since auto-
correlation is an even function. The product of this polynomial, and the average power
of speech R,,[0]( = E[m?*(t)]) is the autocorrelation of speech R (7) used in the analysis

of the various analog speech scrambling algorithms. Hence,
Rn(7) == Rp[0]Cy(7) for| 7| € 1.25 ms. (3.61)

An upper bound had to be chosen for the hopping rate in the HF algorithm, or for the
time taken to change levels in the AMS algorithm. This is because the longer it takes
for the changes to occur the easier the human ear may adapt to the current situation,
and begin to understand what is being said. Since the autocorrelation curve available

ranged up to 1.25 ms, for analysis purposes the upper bound was chosen to be 1.25 ms.

In general, a PAM process changes levels every T units of time but malntains a cer-
tain level for ¢ units of time (the duty cycle factor), such that ¢ < T. The autocorrela-
tion of such a process consists of triangles each of base 2c, and centered at multiples of
T with height cR([s]/T', where s is the time in discrete time units between the PAM pro-

cess and its shifted version (figure 3.5).

A
- cR(0)
R(7) T
) -T -C 0 C T T

Figure 3.5 Autocorrelation of a PAM process (28)].
Applying this general form of the autocorrelation to the PAM processes at hand, where

c=T, the autocorrelation of each of these processes consists of triangles each of base 2T



and centered at multiples of T with height R(s]. Thus, for the seven identical PAM
processes d,p(t), ..., d;p(t) representing the HF algorithm, and the one PAM process

d,(t) representing the AMS algorithm, the autocorrelation functions are

+00
Re(r) = 5 e(r-sTp) [(s+l)RdF[s] — SRy [s+1] + "I*T: (Ragls+1] - Ry ls]) ] (3.62)

8==-00

and

+00
Ry (1) = 3 &(7-sT,) |(s+1)Ry,[s] - SRy, [s-+1] + —%;-[RdA[s+1] —RdA[s]]] (3.63)

8=~00

respectively, where Rgq[s]. Rg,[s+1], Rq,[s], and Rg,[s+1] depend on the levels of the

PAM processes, and

1 ifsTp <7< (s4+1)Tk
&(msTe) = \o i otherwise (3.64)
and
g(r-sT,) = 0 if otherwise ’ (3.65)

where Tg and T, are between 0.3125 ms and 1.25 ms, as discussed previously.

From the conditions and constraints imposed on the levels of the PAM processes so
far, the levels of the seven identical PAM processes d,p(t), ..., d;p(t) representing the HF

algorithm can be defined as o = (&p;, Py, £Ps,s ..., £P ), Where kg is the number of

2
levels. The mean is then defined as
1
pp=—Ya,=0. (3.66)

The autocorrelation in discrete time units s (multiples of Tg) was found to be
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1 XF
—%Na? ifs=0
KF 1=
2 . (3.87)

1 (2
— Eal] if s50

z
kp® L=y

Ry ls| = E [DFODF.] -

Similarly, the levels of the PAM process representing the AMS algorithm can be defined

as # = (+q,, +4q,, +4q3,, ..., £q k,)» Where k, is the number of levels. The mean is then
=z

1 A
”A=T2ﬂl=0. ' (3.88)
Al=1

The autocorrelation in discrete time units s (multiples of T,) was found to be

] A
— NP ifs=0

L P
Ry,Js| = E [DAOD ] =1y . (3.89)
L 58) e
ka® U=
Combining (3.68) and (3.67), and substituting in (3.62) results in
Ry, (0] [1 —-LT-L] it | 7] < Tg
Tp
Ro( = {0 if otherwise (3.70)
Similarly, combining (3.88), (3.69), and substituting in (3.63) results in
Rq.[0] Y kY | 7] < Ta
A TA
R0 = lo ir otherwise (3.71)

Substituting (3.61), (3.70), and (3.71), in (3.57), (3.58), (3.59), and (3.60) results in the

following autocorrelations:
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Case 1a) HF-AAS (Tp < T,)

Rz,z.(f) ==

RalofRell [1 = L) (C9) + Regor |- LEL) i 1e) <y

RdA[O][l— -JF’L] fTe < |[7] ST, (3.72)
A

0 if |7]| > T,

Case lb) HF'A.A.S (TF 2 TA)

R, () =

R flRa(0) [1- 5] (e + roor (1= LEL) e ey <y
A

Ry, [O]Ry[0] [1 - -J;P-T-I—] (Cu(n) Ty L |7] £ Tp (3.73)
F

0 if |7] 2> Tp

Case 2a) HF-AMS (T < T,)

Pt = lo i 7] > Tp

ReoRo 0lRni0} (1~ AZL) [1- Ll (cyim) o) <

(3.74)

Cave 2b) HF-AMS (Ty > T,)

RuOlRy0Ra(0] (1~ LEL) (1= L) (cym) w171 <,

RN = lo i |7 > T4 (3.75)
Case 3. HF
R [0]R,[0] ll - JéLl (C(n) i 7] < T
Ryod™ = o if otherwise (3.76)
Case 4. AMS
Re,JOIR0] [ 1 - JﬁL] (M) I |7] < Ta
Rywal™ = {0 if otherwise (3.77)

Given the autocorrelation functions of the outputs of each algorithm, the

corresponding power spectral density functions are easily obtained through numerical
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integration. These can then be compared to the power spectral density of white noise.
A similar power spectral density would be ideal for the scrambled signal at the output of
a speech scrambling algorithm, since it would hide the frequency characteristics of the
input speech signal, as well as any frequency manipulations performed on this signal. Of
course, the power spectral density of white noise can never be attained since this would
imply that the speech scrambling algorithm provides infinite bandwidth, and hence

infinite power.

Having the functions for the autocorrelations of the outputs of the various analog
speech scrambling algorithms, the final objective is to find the best algorithm, and the
optimal configuration of this algorithm, by finding the best possible combination of
number of PAM levels for the PAM process(es) in this algorithm. The remaining criteria

in this case, defining the best algorithm optimally configured, is that this algorithm

1) provides the least residual intelligibility at the output of the transmitter

by resembling white noise as much as possible, and

2) offers maximum cryptanalytical strength as a result of offering the larg-

est number of possible transformations for the incoming signal.

The first comparison is carried out between the two two-dimensional algorithms.
Since the number of levels of a particular PAM process can range from 2 to 16, the two
two-dimensional analog speech scrambling algorithms are compared for the four extreme
cases of (kgk,) = (2,2), (2,16}, (16,2), and (16,16) as shown in figs. 3.6, 3.7, 3.8, and 3.9
respectively, while keeping the actual values of the levels in each case the same between
the two algorithms. Furthermore, the autocorrelation functions are normalized by the
average power of the output scrambled signals in each case accordingly. As a result, it is
found that in all of the four cases outlined above, the statistics of the HF-AMS algo-
rithm approximate those of white noise more closely than do the statistics of the HF-
AAS algorithm. In fact the same thing is found to apply irrespective of the actual PAM

levels used in each case. The HF-AMS algorithm is thus chosen as the better of the two
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1 Y L T
0.8 .
HF-AAS (2.2)
6 F\\“"" _ Hr-aMs (22) .
R, (7) /
Ry (0)
0.4l Y
0.2 T
o 'y 1
0 1 2 3 4

Figure 3.6 Autocorrelation comparison of the two-dimensional
algorithms using (2,2).

1 T T T
0.8 .
L \\ o HF-AAS (2.16)
0.6 - ,
Rw(0)
0.4
0.2
0 }
0 1 3 4

2
-
T,

Figure 3.7 Autocorrelation comparison of the two-dimensional
algorithms using (2,16).
two-dimensional analog speech scrambling algorithms compared.
Next, the various possible combinations of the number of levels for the AMS algo-
rithm chosen above are compared. Keeping constant the number of levels in the seven
identical PAM processes representing the HF algorithm, while varying the levels of the

PAM process representing the AMS algorithm, results in the plots of figs. 3.10, 3.11,
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1 ¥ ] T

0.8 -
HF-AAS (16,2)
0.6 ‘;Hr-uxs (18.2) -
Re(7) i

R O .
0.2 -
0 v

-0.2 ! A

Figure 3.8 Autocorrelation comparison of the two-dimensional
algorithms using (16,2).

1 T Y ¥
0.8 ’
HF-AAS (18,18) -~
0.6 HF-AMS (16,16)
Rl a ‘/
oy 04
0.2
0
-0.2 : : :
0 1 2 3 4
T

T

Figure 3.9 Autocorrelation comparison of the two-dimensional
algorithms using (16,18)}.

3.12, and 3.13. In any case, it is seen that the autocorrelation of the output scrambled
speech signal deviates more and more from those of white noise, as the number of levels
of the PAM process representing the AMS algorithm increase from 2 to 16. Furthermore,

this two-dimensional analog speech scrambling algorithm is such, that the plots of

(kg,k,) are identical to those of (k,.kp). As a result, keeping constant the number of

gmeonnd
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0.6 HF-AMS (2.2)
Ruwl?) " HF-AMS (2.4)

R,_.(0) o HF-AMS (2.8)
0.4 /HF-AMS (2.19) .
0.27 "
o 3 i
0 1 2 3 4
L
Te

Figure 3.10 Autocorrelation of the HF-AMS algorithm
using (2,2), (2,4), (2,8), and (2,186).

HF-AMS (4,2)

4 HF-AMS (4.4) )
/ HF-AMS (4.8)
/ HF-AMS (4,16)

Figure 3.11 Autocorrelation of the HF-AMS algorithm
using (4,2), (4,4), (4,8), and (4,18).

levels of the PAM process representing the AMS algorithm, and varying the number of
levels, from 2 to 16, in the seven identical PAM processes representing the HF algorithm,
results in the statistics of the output scrambled signal deviating more and more from

those of white noise.

5 et Ren Tt Sl S
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1 ¥ ¥ T
0.8 -
HF-AMIS (8,16) i
0.6 ‘:;’HF-AMS (8.8)
R. (f) HF-AMS(',‘)
b . / HF-AMS (8,2 -
Ripaa(0) /
0.2
ol
- o . 2 2 4 2
0 1 2 3 4
S

T

Figure 3.12 Autocorrelation of the HF-AMS algorithm
using (8,2), (8,4), (8,8), and (8,186).

1 ¥ T T
0.8 -
a——HF-AMS (16.16)
0.6 F \\ja—"HF-AMS (10.8) i

/HF-AMS(MA)
HF-AMS (16,2)

-0.2 1 ;] 1
0 1l 2 3 4
=
T.

Figure 3.13 Autocorrelation of the HF-AMS algorithm
using (16,2), (16,4), (16,8), and (16,16).

The above results, concerning the two-dimensional HF-AMS algorithm can be sum-
marized by a directed graph (figure 3.14), where each combination is a node, and each
directed edge joins two combinations pointing in the direction of the worst combination
(i.e. combination which results in statistics furthest from those of white noise). From

the directed graph it is seen that the statistics of the combinations (2,18) or (16,2) and
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BEST (2.2

Y

(2.4)
(4,2)
o) (4,4)
(2,18) (4,8)
(16,2) (8,4)
(4,16)
(16,4) (8.8)
(8,16)
(16,8)

WORST (16,16)

Figure 3.14 Combinations resulting in best to worst statistics
(4,4) have to be further compared, and the statistics of the combinations (4,16) or (16,4)
and (8,8) have to be further compared. These comparisons are shown in figs. 3.15, and
3.18 respectively. As a result, two more edges are added to the directed graph of Aigure
3.14, and redundant edges are removed resulting in the ditected graph of figure 3.17.
This shows all the possible distinct combinations for the number of levels of the PAM
processes representing the HF-AMS algorithm, in the direction from best to worst, as

governed by how the statistics of each compares to those of white noise.
Another arrangement of the possible combinations of figure 3.17 is from best to

worst, with respect to the number of combined possibilities of hopping filters and ampili-

tude scrambling levels (i.e. the more, offering the largest number of possible
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1 T T Y
0.8 -‘
0.6 HF-AMS (4.4) 7
Ry (1) ‘7HF-AMS (2.18) or (16.2)
R -4 i
0.2T -
0
_o . 2 g4 'l 2
0 1 2 3 4
-
Te

Figure 3.15 Autocorrelation of the HF-AMS algorithm
using (2,16), (16,2), and (4,4).

o.6r g HF-AMS (8.8)

n /HI-‘-AMS (4.16) or (16.4)
R, , (7
_R,_,_(o) 0.4 “
0.2T “
0|
-0.2 * ) :
0 1 2 3 4
L
T

Figure 3.16 Autocorrelation of the HF-AMS algorithm
using (4,16), (16,4), and (8,8).

transformations for the incoming speech signal), as shown in figure 3.18. Considering
both of these arrangements, the only combinations which are among the top (half) best
are (16,2) and (8,2). Since (186,2) is statistically identical to (2,16), (8,2) is statistically
identical to (2,8), and from figure 3.10 it is seen that the combinations (2,16) and (2,8)

are statistically very close, then (16,2) and (8,2) are also considered statistically very
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BEST (2,2) > 8:‘8 N (é:g)) | g‘*;slg; Ll (49)
o [l (oo [T (R

Figure 3.17 Strictly directed graph of best to worst statistics.

BEST (16,16) (16,8) (16,4) P (16,2)

(8,2) te (8.4) {«] (8,8) <] (8,16)

(4,10) (4.8) > (4.4) ™ (4,2)

WORST (2,2) e (2.4) l (2.8) f«q (2,16)

Figure 3.18 Best to worst combinations for minimum to maximum number
of possible transformations

close. Furthermore, since the combination (16,2) provides more hopping fiiter possibili-
ties, this is chosen as the best compromise combination of number of levels to define the

two-dimensional analog speech scrambling algorithm already chosen.

In comparing the two one-dimensional anajog speech scrambling algorithms (figure
3.19) it is seen that these are statistically identical. On the other hand, the HF algorithm
provides more possible hopping fllters than the AMS algorithm provides possible levels,
for all cases of 2, 4, 8, and 16 PAM process levels. As a result, the HF algorithm is
chosen as the best one-dimensional analog speech scrambling algorithm. For this algo-

rithm it is seen (figure 3.19) that the smaller the number of PAM levels the better the
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0.8 1
pmmnemevee HE o AMS (16) N
0.6 HF or AMS (8)
HF or AMS (4)
R,z(7 4 HF or AMS (2)
R, (0 "~ ° /
0.2
ol
-0.2 : *

Figure 3.1 Autocorrelation comparison of the one-dimensional algorithms
using (2), (4), (8), and (16).

statistics of its output speech scrambled signal. On the other hand, it is known that the

larger the number of PAM levels the more the available hopping filters.

Finally, ir comparing the HF-AMS algorithm using the previously chosen combina-
tion (16,2), with the HF algorithm alone using any possible number of PAM levels, it Is
seen that the two-dimensional analog speech scrambling algorithm has better statistics
than the best statistics possible (ie 2 PAM levels), with the HF algorithm alone, as
shown in figure 3.20. Furthermore, the two-dimensional analog speech scrambling algo-
rithm with the chosen combination provides more combined possibilities of hopping
filters, and amplitude scrambling levels, than the one-dimensional analog speech scram-
bling algorithm provides hopping filters with the maximum number of possible PAM lev-
els (i.e. 16). As a result, the two-dimensional analog speech scrambling algorithm involv-
ing hopping fllters with 16 PAM levels, and amplitude (multiplication) scrambling with 2
PAM levels is found to be the best algorithm from those examined, providing a
compromise between the desired statistics of its output scrambled signal, and the max-

imum number of possible hopping fliters and amplitude scrambling level combinations.

e ecman
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1l T T T
0.8 .
0.6 HF-AMS (16,2) -
Run(?) " _HF(2)
Ry (0) /
0.4l .
0.2 .
o Il
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Figure 3.20 Autocorrelation comparison of the two-dimensional HF-AMS
algorithm using (16,2) and the one-dimensional HF algorithm using (2).

3.4 CONCLUDING REMARKS

The secur’'ty of various analog speech scrambling algorithms has been evaluated,
based on how statistically uncorrelated the output of each scrambling algorithm was to
the input, approaching perfect secrecy at best, on the degree to which the statistics of
the output of each scrambling algorithm resembled those of white noise, attaining least
residual intelligibility at best, and furthermore, on the number of possible transforma-

tions offered for the incoming speech signal, maximum at best.

As a result, based on the criteria outlined above, a new hybrid hopping
filters/random amplitude multiplication scrambling (HF-AMS) algorithm was chosen as
most secure. The security of this algorithm is valid only under.certain constraints on the
PAM processes invoived. This algorithm should be operated "vith 16 PAM levels for
each of the seven PAM processes representing the hopping filters algorithm (i.e. leading
to 268 435 456 possible hopped filters), and 2 PAM levels for the PAM process represent-

ing the amplitude multiplication scrambling algorithm. This implies hopping between
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filters every 1.25 ms, and changing linear amplitude multiplication levels possibly every
0.3125 ms. Further constraints on the 8 PAM processes require that these are uniformly
distributed, statistically independent of each other, and have zero mean. Assuming that
every PAM process is uniformly distributed, the constraint of zero mean is satisfied if
the levels of these eight PAM processes are chosen, such that for every PAM level in a
particular process the additive inverse of that level exists within the same PAM process,
and the multiplicative inverse of that level exists within the corresponding descrambling
PAM process. The actual values of these levels is not important, but should respect the
general specifications outlined for the telephone system. The remaining two constraints
for the 8 PAM process, namely uniform distribution within the levels of a particular
PAM process and statistical independence between these PAM processes, are only

assumed in this chapter, and will be supported in the following chapters to come.




CHAPTER IV

SECURITY EVALUATION OF A NEwW DES-BASED
KEYSTREAM GENERATOR

4.1 INTRODUCTION

An analog speech scrambling algorithm alone simply dictates a general procedure to
be followed for scrambling speech. Such an algorithm is not efficient if it cannot be used
by more than one user. Furthermore, if the same algorithm is used by more than one
user then security is threatened. To resolve this issue an algorithm is designed in such a
way that the general procedure is made public, and can be used by all, while at the same
time making it possible to easily conflgure many instances of this algorithm. Each
instance of this algorithm will dictate a particular distinct procedure different from that
of all other instances, and identified by a key, the key used to configure the particular
instance of the algorithm in the first place. The key referred to here not only tailors the
algorithm for a particular user, but allows this user to change the configuration of the
algorithm at will, creating a random operation of this algorithm, as random as the choice
of key. This idea of using a key to manipulate the operation of a particular speech
scrambling algorithm stems from cryptography, where keys are used in block or stream
mode to manipulate the operation of data cipher systems. In fact, the particular
methods of generating and applying keys to data cipher systems can be directly carried
over to speech scrambling systems. As a result, most, if not all speech scrambling sys-
tems make use of digital keys in block mode, stre am mode, or a combination of both as

will be seen in this chapter.

Stream mode consists of generating and applying a sequence of bits referred to as a
keystream, bit by bit, to the input, be it data or speech. In this mode, knowing a small

portion of the input, as well as the corresponding output, readily allows for obtaining a
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small portion of the keystream, proportional in length to that of the known input. Since
the keystream is continuously being generated and hence continuously changing, the
cryptanalyst’s focus in this mode is to be able to predict a larger portion, or the entire
period at best, of the generated keystream from a relatively short known portion of this

keystream.

Shift registers are the most commonly used means of generating keystreams, but
not all configurations of shift registers satisfy the requirements for a secure keystream
generator as outlined in chapter II. One very common such generator is the linear feed-
back shift register of length n, with primitive characteristic polynomial. All sequences
produced from such a generator are known to have the maximum length of 2"1, as well
as to satisfly Golomb’s three randomness postulates also outlined in chapter II. The only
drawback wit,h such a generator is its linear equivalence. A linear feedback shift register
of length n has a linear equivalence of n. This implies that upon observing 2n-1 ele-
ments of this sequence, the linear feedback shift register configuration can be recon-
structed so as to generate the rest of the elements. Thus, a relatively short portion of
the sequence allows for generation of the entire sequence. This is very undesirable in
terms of security. As shown in [11], this drawback concerning the linear equivaience of a
linear feedback shift register can be remedied by introducing nonlinear logic in the feed-
forward path of such a shift register. In this way the linear equivalence can be made to
be maximum, or 2"-1, wtile also maintaining a sequence length of 2"-1, hence maximum
complexity of 1. This configuration will satisfy the first and last requirements for a
secure keystream generator, as outlined in chapter II, while affecting the random appear-
ance requirements of the sequence as deflned by Golomb’'s postulates. As shown in [11],
this can be remedied by appropriately changing the nonlinear logic configuration in the
feed-forward path, so that it not only provides maximum linear equivalence and com-
plexity as it did before, but in addition injects randomness into the generated sequence

by imposing on it noiselike characteristics.
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Block mode consists of applying an entire fixed length block of bits, representing a
key, to an equally long block of input at once. The same key is generally applied to
many consecutive blocks of input. In this mode, knowing a few blocks of input as well
as their corresponding output blocks does not allow for the key to be readily obtained.
Unlike stream mode, the cryptanalyst’s focus in this mode is to obtain the key block

from known input-output block pairs.

Knowing several input-output block pairs, one way of attempting to obtain the key
would be to try and exhaust all possible keys, in order see which is responsible for the
transformatior., within these pairs. This can be made more difficult by increasing the
key length, and hence the key space, making the exhaustive key search procedure very
time consuming and hence impractical. Two methods of increasing the key size of a well
known block cipher, the data encryption standard algorithm, as explained in chapter II,

are put forth in {7} and [10].

Knowing several input-output block pairs, another way of attempting to obtain the
key would be to collect these pairs forming a code book. Since the general procedure
consists of maintaining a fixed key for many input blocks to come, future output blocks
would be compared with output blocks already in the code book, obtaining the respec-
tive input blocks. This type of attack, as well as the exhaustive key search explained
above, can both be stopped by changing the key at a faster rate, to the point where a
key is changed with every incoming input block, as shown in flgure 2.6b, and as put
forth in {10]. The rate of change of the key in this configuration combines the principles
of block mode with those of stream mode. With this configuration the cryptanalyst does
not focus only on trying to obtain a particular key from a particular input-output block
pair, since this is now more difficult to do. In fact, if such a key block is found the cryp-
tanalyst will attempt to predict past and future key blocks relative to the known key
block. These attempts will be rendered futile by the two one-way functions and the

exclusive-OR operation respectively.
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It is suggested in [10] that the two one-way functions can be represented more
specifically with the DES algorithm. In this configuration the DES algorithm will have a
fixed publicly known plaintext, and its output fed back into the key porv. The two DES
modules will be initiated with two different secret keys, and then allowed to run continu-
ously. This particular configuration of the DES algorithm can be viewed as a random
function, mapping the key space of DES into the same space as put forth in [8]. More
specifically, it is shown that irrespective of the fixed plaintext, cach and every key out of
80% of all such keys making up the DES key space can possibly map into any other key
at random within the same group. This applies to both DES modules leading to the

exclusive-OR of their outputs to also be random.

Another point of interest for the configuration of figure 2.6b is the repetition period
of the keys at the output of the exclusive-OR. As with any random function mapping a
finite set into itself, the function mapping the key space of the DES algorithm into the
same space, with fixed plaintext, will eventually lead to periodic repetition of the same
output keys. As this occurs with both DES modules in the configuration of figure 2.6b,
the output of the exclusive-OR will also eventually lead to periodic repetition. While the
period of repetition can at maximum be about 80% of the entire DES key space, the
minimum guaranteed period of repetition, which is more important for security purposes,
is not known. This period of repetition will depend on the initial input keys and fixed
plaintext of the respective DES modules. As a result, the repetition period at the output

of the exclusive-OR is also not known.

The objective of this chapter is to combine the stream mode sequence generator of
[11], a variation of the block mode DES key scheduling algorithm of (10|, and 8 linear
sequence generators in order to create a strealn mode DES-based keystream generator
capable of generating eight practically independent long secure keystreams These will
be such so as to satisfy the requirements for a secure keystream generator, as outlined in

chapter II. Section 4.2 formally proposes the new DES-based keystream generator. Sec-
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tion 4.3 outlines the development of the idea of this keystreamn generator, showing why
it was put together as such. It shows that the decisions regarding the development of
this generator were based on how well it satisfied the requirements for a secure keys-

tream generator outlined earlier.

4.2 PROPOSED DES-BASED KEYSTREAM GENERATOR

The newly proposed DES-based keystream generator can be divided into three main
sections, as shown in figure 4.1. The first section consists of a main multilayer nonlinear
feed-forward generator, as described in [11]. The shift registers in this multilayer genera-
tor are of length 64, thus producing an output sequence of length 2%%1 or 1.8447x10'".
As shown in [11], the minimum number of layers of shift registers of length 64 required
for a sequence to have maximum complexity is q, such that 64 < 2% < 2(64) is satisfled.
This implies q = 6. There are thus 6 layers of shift registers alternating between 6 layers
of nonlinear logic. Every nonlinear logic stage manipulates parallel input from one shift
register, and feeds it serially to the next such register. The output of the last nonlinear
logic stage is the output of this section. Each nonlinear logic stage is allowed to be
configured by the user, with the constraint that not only maximum complexity is
achieved with a minimum number of layers, but that also the resulting sequence has
noiselike characteristics. Unlike the others which do not require any configuration, the
very first shift register is allowed to be configured and initially loaded by the user, with
the constraint that this configuration consists of linear feedback, leading to a maximal
length sequence. The configuration of all the nonlinear logic stages, the configuration of
the linear feedback shift register, and the initial loading of this register make up one

part of the secret key of the entire keystream generator proposed [31].

The second section of the keystream generator is made up of a variation of the
DES key scheduling algorithm put forth in [10]. It consists of a sliding window 64-bit

serial to purallel converter, which produces a 64-bit word for every input bit resulting
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from the first section. Each 64-bit word is then fed to the data port of an instance of
the DES algorithm, as well as to the data port of an instance of the inverse of the DES
algorithm. These algorithms are configured so that their outputs are fed back to their
respective key ports, with the initial input to each key port being the all zero key.
Furthermore, the outputs of both these algorithms are exclusive OR’ed, resulting in the
final output of this section. For each incoming bit to this section there is one 64-bit
word being produced. Since the input sequence to this section has a period of 2°%-1 this

section will produce 2°%-1 64-bit words per cycle [31].

The third section of the proposed keystream generator consists of eight subordinate
linear feedback shift registers, each of length 8, and operating in parallel. These are
allowed to be configured by the user, with the constraint that each produces a distinct
maximal length sequence. This configuration of all the subordinate linear feedback shift
registers make up the remaining parts of the secret key of the entire keystream genera-
tor proposed. All the 8-bit shift registers are parallelly initialized by consecutive 8-bit
sequences, making up one 64-bit sequence. Each 64-bit sequence is the result of the
second section of the proposed keystream generator. It is possible that the 8-bit initiali-
zation sequence can lead to a particular subordinate linear feedback shift register having
the all zero state. This is avoided by feeding the eight bits of the initialization sequence
into a NOR gate. The output of the NOR gate, as well as the most significant bit of the
initialization sequence are then fed through an OR gate, whose output is the input to
the most significant bit position in the respective shift register. Finally, every second
period of 255 bits for each of the eight output sequences, resulting from each of the eight
subordinate linear feedback shift registers, is complemented. The output of this section,
which is also the final output of the proposed keystream generator, produces eight (2’“—1)
by (25-1) or 4.7030x10%)-bit sequences, which will be shown to satisfy the requirements of
secure sequences [31]. Furthermore, it should be pointed out that seven of the eight

keystreams produced are passed through seven corresponding 4-bit S/P converters,
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Figure 4.1 Proposed DES-based keystream generator.
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whose outputs are used for the control of the hopping filters algorithm. 'The last keys-
tream Is used as is, to control the amplitude multiplication scrambling algorithm, while
the same keystreamn passed through a 2-bit S/P converter is used as the control signal of
a 4x4 multiplexer in the timing circuit of the transmitter unit. Similarly for the receiv-

ing unit.

4.3 SECURITY EVALUATION OF PROPOSED KEYSTREAM GENERATOR

Having finally proposed the scheme of the new DES-based keystream generator, it
is appropriate to outline the development process that led to this scheme, justifying the
presence of its major components. This development process was based on certain
requirements outlined in the theory of chapter II, as well as on actual simulations of the

scheme proposed and variations thereof, where necessary.

Ideally, simulation of a particular scheme would require the generation of one
period for each of the eight keystreams, repeated for all secret keys applied to this gen-
erator. Due to limitations of time and computing resources, simulation was selective and
scaled down, but justified as adequate nonetheless, to yield conclusive results. Of all the
possible secret keys that can be applied to the generator, yielding many possible
configurations of this generator, any one secret key can be used in the simulation as long
as it conforms to the design specifications. The secret key should be such, that the
linear feedback shift register within the multilayer generator produces a maximal length
sequence. Furthermore, this secret key should be such, so as to configure the nonlinear
logic at every layer of the main multilayer generator appropriately, in order to produce a
sequence with noiselike characteristics and maximum linear complexity at the output of
the first section of this generator. Finally, the secret key should be such, so as to ensure
that the eight subordinate generators are distinctly configured to produce maximal
length sequences. Although every different key will produce a different set of eight keys-

treams, the statistics (i.e. autocorrelation and cross-correlation) of various sets of
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keystreams will be more or less the same, as long as their respective keys follow the same
design specifications, and use the same structure of the keystream generator algorithm.
Thus, without loss of generality, a particular key will be selected for the simulations.
This key will result in eight keystreams each of length 4.7039x10%! bits. Since working
with such lengths is impractical considering the available computing resources, the keys-
tream generator was scaled down. This was accomplished by scaling down the main
multilayer generator from a length of 64 to a length of 8. This results in the length of
each of the eight keystreams being 65 025 bits, as opposed to 4.7039x10%! bits. The
simulations are carried out for the purpose of performing certain statistical tests on their
results. The design of this keystream generator algorithm is such, that the results of the
statistical tests can only improve (i.e. from the point of view of the designer) with
length. It thus suffices to show that the required statistical properties of the scaled

down versions of the eight keystreams generated through simulation are satisfied.

The original idea for the keystream generator involved the use of eight linear feed-
back shift register generators, each of length 64, configured to produce eight distinct
maximal length sequences of length 2°%-1, or 1.8447x10' bits. The drawback of this
scheme is that it produces sequences which do not have a large linear equivalence, as is
required for security. The above scheme would result in eight keystreams each of linear
equivalence equal to the length of the shift registers, thus 64. As compared to the
lengths of the sequences that this scheme would produce, the linear equivalence men-
tioned would result in a complexity (which ranges from 0 to 1) of 3.4604x107'%, To
resolve this issue the eight linear feedback shift registers were replaced by eight mul-
tilayer nonlinear generators [11], as described in {32], but with shift registers of length
64, producing sequences of length 1.8447x10" bits. By choosing the nonlinear logic
appropriately, the resulting sequences, in addition to having maximum length, each have
maximum linear equivalence equal to the length of the sequence, resulting in maximum

complexity of 1. Furthermore, the configuration of nonlinear logic was responsible for
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imposing noiselike characteristics on the output sequences, and doing all this with the
minimum number of required layers, namely 6. Before formally examining this scheme
fcr satisfaction of the requirements for a secure keystream generator, as outlined in
chapter II, it was realized that this would not be practical to operate, in the sense that it
requires a large amount of key material. This key material would be about 8 times that
of the proposed heystream generator, and a burden to the user. To resolve this, a
compromise was reached between the use of eight linear feedback shift registers, and the
use of eight multilayer nonlinear generators. It was decided to use one main multilayer
nonlinear generator of shift register length 64, and 8 subordinate linear feedback shift
register generators each of length 8 and maximal length configuration, in such a way
that every 64-bit sliding window sequence, produced by the main generator, would be
usea to initialize simultaneously all 8 linear feedback shift register generators. Using this
scheme, the main multilayer nonlinear generator will supply a large linear equivalence
(i.e. increased security) for all eight generated keystreams, with a reduced amount of key
madterial. Furthermore, the eight linear feedback shift registers will provide a means to
produce 8 keystreams from the single keystream of the multilayer generator. Each of
the linear feedback shift registers will allow for its unique configuration from the others,
hence ensuring a unique keystream. Finally, each 255-bit sequence produced from a par-
ticular initialization of a particular linear feedback shift register will be a maximal length
sequence. This will allow for the autocorrelation of a particular keystream (at least
within a 255-bit shift) to resembie that of a maximal length sequence, a desired property

for ensuring randomness as outlined in chapter II.

As a result of initializing the subordinate generators peripdically for every 255 bits
produced by these generators, a drawback to this scheme results. This is the great
dependency between the 8-bit initialization sequences of one subordinate generator, and
the same generator one 255-bit period later, one being a shifted replica of the other with

the addition of one bit. This produces undesirable results for the autocorrelation
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(beyond the 255-bit shift) of the particular keystream resulting from this generator,
hence affecting the randomness properties of this keystream. Without loss of generality,
a scaled down version of this keystream generator scheme was simulated, specifically for

one subordinate linear feedback generator, using the secret key SK1 shown in figure 4.2.
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REGISTER LENGTH
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Figure 4.2 Key material SK1 used in simulation.
The autocorrelation of the keystream KS1 produced as a result of this simulation is as
shown in figure 4.3. The dependency mentioned earlier, between consecutive initializa-
tion sequences of a particular subordinate generator from one 255-bit period to the next,
shows up in the autocorrelation plot as 'spikes’ spaced about one 255-bit period away
from each other. The height of these 'spikes’ diminish to about 0 when half of the origi-
nal initiating sequence has been shifted away from the particular subordinate generator.
This occurs after four 255-bit periods have elapsed. This scheme thus violates one of the
three requirements for randomness, requiring that the out-of-phase autocorrelation of the
generated keystream be constant. To remedy this violation it was thought appropriate
to add a module between the main multilayer nonlinear generator and the eight subordi-
nate linear feedback generators, which would dissolve this dependency between consecu-

tive initialization sequences of a particular subordinate linear feedback generator. This
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Figure 4.3 Autocorrelation of keystream KS1 resulting without the use
of the DES-based key scheduling scheme.

module introduced here is none other than a variation of the DES key scheduling algo-
rithm introduced in {10]. The variation consists of using the DES algorithm and its
inverse, as opposed to two instances of DES. As a consequence, the key ports of both
DES and DES™? can be initialized with the all zero sequence or key, as opposed to two
different secret keys. Finally, the data ports of both DES and I.)ES'l do not contaln a
fixed sequence, but instead, sliding window 64-bit sequences produced by the main mul-
tilayer nonlinear generator. Besides dissolving the dependency between consecutive ini-
tializing sequences of a particular subordinate linear feedback generator, the variation of
the DES key scheduling algorithm of {10] also provides a one-way function, between the

sliding window 64-bit sequences produced by the multilayer nonlinear generator, and the
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corresponding 64-bit sequences used to initialize the eight subordinate linear feedback
generators. This enhances security by discouraging a cryptanalyst from attempting to
work backwards. As explained in {10}, having two one-way functions tied with an
exclusive-OR is far more secure than only one one-way function. Furthermore, changing
one of the DES modules in the DES key scheduling algorithm of [10], to a DES™ module,
relaxes the requirement of needing to initialize the key ports of those modules with two
different 64-bit sequences. At this point, a scaled down version of the improved keys-
tream generator scheme was simulated, specifically for the same subordinate linear feed-
back generator as before, using the same secret key depicted in figure 4.2. The auto-
correlation of the keystream KS1' produced as a result of this simulation is as shown in
figure 4.4. It is seen that the introduction of the module between the main generator
and the eight subordinate generators is responsible for removing the undesirable 's.pikes',
or in other words breaking the dependency between the initialization sequences of a par-
ticular subordinate generator. One other requirement for the randomness of a particular
keystreamn as outlined in chapter II is that the number of ones is one more or one less
than the number of zeros. In the case of the above keystream generator, a particular
keystream out of the eight generated can be divided into 1.8447x10" 255-bit sequences,
such that each 255-bit sequence is a maximal length sequence. Maximal length sequences
have well known properties one of which is that they always contain one more one than
zeros. As a result, the sequence resulting from a particular subordinate generator in this
case will contain 1.8447x10'® more ones than zeros, thus violating one of the require-
ments for randomness. To remedy this violation it was decided to complement every
second 255-bit sequence of bits being generated. This way every second 255-bit sequence
will consist of one more zero than ones. Since there is an odd number of 255-bit
sequences making up the entire generated sequence, the resulting generated keystream

will consist of one more one than zeros, thus satisfying the requirement.

Having traced the development process of the keystream generator, and having
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Figure 4.4 Autocorrelation of keystream KS1' resulting with the use
of the DES-based key scheduling scheme.

reached the particular scheme proposed in section 4.1, it is appropriate at this point to
examine the extent to which this scheme satisfles all the requirements, as specified in
chapter II, for a secure keystream generator. The requirement for the number of ones

being one more or one less than the number of zeros has been satisfled for this scheme as

shown previously.

Another requirement for randomness specifies the fraction of the number of runs of
both ones and zeros that should occur for the various run lengths, as well as the rela-
tionship between the number of runs of ones and the number of runs of zeros, for each
particular run length. Upon simulation of a scaled down version of the above keystream

generator for a particular keystream, using the key depicted in figure 4.2, it was found
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that the runs requirement is somewhat violated as shown in tables 4.1 and 4.2.

Tahle 4.1 Consistency of runs (of both ones and zeros) expected and obtained.

Length Runs
Contained | Least Required Expected

1 16 337 4 16 324

2 8 158 8 8 162

3 4 084 16 4 081

4 2 025 32 2 041

5 1 020 64 1 020

6 512 128 510

7 256 258 255

8 251 512 Not Applicable
0 4 1024 Not Applicable
10 0 2 048 Not Applicable
11 0 4 006 Not Applicable
12 1 8 192 Not Applicable

Table 42 Breakdown of number of ones to pumber of zeros.

Length Runs
Ones Zeros
1 8 172 8 165
2 4 077 4 081
3 20368 | 2048
4 1 015 1010
5 513 507
6 254 258
7 128 128
8 128 123
9 1 3
10 0 0
11 0 0
12 0 1

The runs requirement to be satisfled happens to be one of the well known properties of
maximal length sequences. The irony in this case is that the keystreams generated are
piece-wise made up of 255-bit maximal length seguences concatenated together. The
individual pieces of a keystream thus satisfy the runs requirement, while the entire
sequence as a whole does not. This is a result of common, ending and starting bits
between consecutive 255-bit sequences, thus allowing runs to overlap between these

sequences. Furthermore, runs of length greater or equal to two might be divided



H
H
)
2
%
¥
"\

¥

t

P S T

(= oo mv ez s

e e e

oy o rr

- 100 -

between the beginning and end of a particular 255-bit sequence, thus creating two runs
of shorter length from one larger run. These possible discrepancies at the beginning and
end of a particular 255-bit sequence force the consistency of runs of this sequence to
deviate from those of a maximal length sequence. As a result, the consistency of runs for
the entire keystream deviates from the required consistency as outlined in chapter II, but

not much.

The final requirement for randomness is a constant out-of-phase autocorrelation.
Without loss of generality, a scaled down version of the proposed scheme was simulated
(see Appendix A) using key SK1 depicted in figure 4.2. The autocorrelation of the keys-
tream KS1" produced as a result of this simulation is as shown in figure 4.5a, with a
more close-up view shown in figure 4.5b. From this it is seen that the constant out-of-
phase autocorrelation requirement is satisfled. Because this keystream generator pro-
duces eight keystreams to be used simultaneously, an additional requirement related to
autocorrelation that should be imposed on the eight keystreams is that of constant
cross-correlation between them. Simulating the scaled down version of the adjacent
keystream to the one already produced by using the secret key SK2 depicted in figure
4.6, and cross-correlating this keystream KS2” with the one already obtalned, results in
the cross-correlation depicted in figure 4.7. This is practically constant and zero, hence
satisfying the additional requirement, and declaring keystreams produced from this keys-

tream generator as random.

The next requirement to be satisfied is that the keystreams produced from the pro-
posed keystream generator have a guaranteed minimum length. The first section of the
proposed keystream generator scheme is guaranteed to produce a sequence of maximum
length, as a result of the linear feedback shift register configuration at its base. This
sequence will then be 2%%1 or 1.8447x10" bits long. The second section of the proposed
keystream generator is made up of the DES key scheduling module. As mentioned in

the introduction, the original configuration of this module as put forth in [10] is such,
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Figure 4.5a Autocorrelation of keystream KS1' resulting from proposed
keystream generator.

that the repetition period is particular to the initial input keys and fixed sequence on the

data ports of the two instances of the DES algorithm, and thus cannot be guaranteed in
advance. The variation of this module though as put forth in the proposed keystream
generator is such, that a repetition is guaranteed to occur whenever the sliding window
i 64-bit input sequences to the DES, and DES™! algorithms, as well as the initialization of
‘ the respective key ports of these two algorithms with the all-zero key begin to repeat.
The first of these requirements is ensured by the repetition of the (2°%-1)-bit sequence at
the output of the first section of the proposed keystream generator. On the other hand,
the second requirement pertaining to the repetition of the initialization of the key ports,

with the all zero key, will have to be forced as such periodically. If the key ports of the
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Figure 4.5b Close-up view of in-phase out-of-phase boundary of
autocorrelation of KS1”

DES and DES™! algorithms are not initialized periodically as required, then the 64-bit
sequences at the output of the second section of the proposed keystream generator may
have a period much greater than 2%%-1 (a definite advantage), but without any guarantee
(a serious disadvantage). Initializing the key ports periodically guarantees 64-bit
sequences of minimum repetition period 2%4.1, at the output of the second section of the
proposed keystream generator. Each of these 64-bit sequences then initializes the eight
linear feedback shift registers simultaneously. Logic is provided to ensure that these
shift registers are never initialized with the all zero state. These registers being of maxi-
mal length configuration, and length eight, each generate a sequence of guaranteed

minimum period 28%.1 or 255. Thus, for each and every initialization sequence out of

sl v O
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Figure 4.6 Key material SK2 used in simulation.

2%%.1 such sequences at the output of the second section of the proposed keystream gen-
erator, there will be another sequence generated of period 255. Thus, each of the 8
sequences produced from the proposed keystream generator will have a minimum

guaranteed period of (2°%-1)(2%1), or 4.0739x10%’, thus satisfying the minimum

guaranteed period requirement.

The final requirement for a secure keystream generator is a large linear equivalence.
In general, linear equivalence is the least number of memory elements required to gen-
erate a sequence in a linear fashion. The linear equivalence of a sequence generated
linearly is the length of the shift register generating this sequence, while the linear
equivalence of a sequence generated nonlinearly is much larger than the length of the
shift register. As shown in [11], the linear equivalence of a sequence from a nonlinear
generator can be made to be maximum, equal to the length of the sequence generated.
Related to linear equivalence is the number of bits required to define the rest of the
sequence. This in general is equal to min(2a-1, L), where « is the linear equivalence of
the sequence, and L is its length. A large linear linear equivalence would then imply the

requirement of a large number of bits to define the remainder of a sequence, with the
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Figure 4.7 Cross-correlation of keystreams KS1' and KS2™ produced
from proposed keystream generator.

upper bound being all bits within one period of the sequence. Because of the direct rela-
tionship between linear equivalence and the number of bits required to define the
remainder of a sequence, the proposed keystream generator is evaluated with respect to
the latter. It will be shown that the number of bits required to define the remainder of a
sequence, generaied by the proposed keystream generator, is practically equal to an
entire period of this sequence. The main multilayer nonlinear generator making up the
first section of the proposed keystream has maximum linear equivalence. This implies
that no fractional part of a sequence resulting from this generator can define the

remainder of this sequence. Since this sequence is fed to the second unit of the proposed
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keystream generator through a 64-bit sliding window, no group of 64-bit input sequences
to the second section can define the remainder of 64-bit input sequences to this section.
Because of the exclusive-OR operation leading to the output of the second section of the
proposed keystream generator, no output 64-bit sequence from this section or group of
such 84-bit sequences can define subsequent output 64-bit sequences from this unit.
These are the input sequences to the third section of the proposed keystream generator.
Thus, no initialization sequence or group of such sequences can define subsequent initiali-
zation sequences for a particular linear feedback shift register. Since the third section
consists of linear feedback shift registers of length 8, knowing the first fifteen bits of one
of the eight keystreams will allow for the configuration of the respective linear feedback
shift register, as well as its initialization sequence to be revealed. This will allow for the
next 240 bits of the corresponding keystream to be readily generated. After this part
though the initialization sequence will be changed, and the new initialization sequence
will not be obtainable from the previous such sequence. As a result the next 255 bits
will not be known until this new initialization sequence is generated and hence revealed.
Knowing the new initialization sequence or the first eight bits of the next 255-bit
sequence will allow for the rest 247 bits of this sequence to he revealed. Similarly, for all
following 255-bit sequences. Since a particular keystream is made up of 2%4.1 255-bit
linearly generated sequences, one would have to know a fraction of each 255-bit sequence
to be able to obtain the rest of this 255-bit sequence. Furthermore, for a fraction of a
particular 255-bit sequence to be generated, and hence revealed, all previous 255-bit
sequences have to be generated. Table 4.3 shows the lengths of the sequences within a
particular Keystream that can be generated, as compared to th.e lengths of the sequences
required for these generations. Table 4.3 shows that the percentage ratio of required bits
to generated bits rises to 99% for the first 97 255-bit sequences. This implies that to
generate the first 24 735 bits 899 of these bits are required to have been generated pre-

viously. This includes all 96 previous 255-bit sequences, as well as the first eight bits of
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Table 43 Number of bijts required to generate other bits.

Sequence Length CoRatio of
Required Bits | Generated Bits | Required to Generated
15 255 5.88%
263 510 51.57%
518 765 687.71%
773 1 020 75.78%
1 028 1275 80.63%
24 488 24 735 99.00%

the 97th 255-bit sequence. Only these latter 8 bits are actually required for the genera-
tion of the 97th 255-bit sequence, but these will not be revealed until all previous 06
255-bit sequences have been generated. Extending table 4.3 it can be seen that the last
255-bit sequénce of a particular keystream cannot be generated, before zll previous 255-
bit such sequences, as well as the first eight bits of the last sequence, have been revealed.
Since 255(2%-2)+8 =~ 255(2%%-1), the number of bits required to define the remainder of a
keystream, generated by the proposed keystream generator, is practically equal to the
entire period of this keystream. Since this would be the resulting effect of maximum

linear equivalence, the requirement for a large linear equivalence has thus been satisfied.

4.4 CONCLUDING REMARKS

This chapter put forth a DES-based keystream generator operating in stream mode and
producing eight keystreams simultaneously instead of one. This generator basically con-
sists of three sections, one operating in block mode placed in between two operating in
stream mode. The resulting keystreams of this generator, each consist of the concatena-
tion of 2%%-1 255-bit maximal length sequences, with zero cross-correlation between them.
All 255-bit sequences within a particular keystream are generated with the same maxi-
mal length sequence generator, but with different initialization sequences, resulting in

different starting points. Without loss of generality a scaled down version of this keys-
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tream generator, operated with a particular key, was simulated. This simulation proved
helpful, in showing that the proposed keystream generator more or less satisfied all

requirements necessary for a secure keystream generator.



CHAPTER V

A NEW ANALOG SPEECH SCRAMBLING DEVICE

5.1 INTRODUCTION

The two previous chapters have put forth two algorithms, one for performing ana-
log speech scrambling, and one for generating pseudorandom keystreams. Both these
algorithms were chosen among others in their respective groups, as being most secure,
and the security of both has been evaluated on the basis of respective criteria within the
respective chapters. The underlying objective of proposing these two algorithms and
evaluating their security was so as to eventually put them to work together, making up
an analog speech scrambling device. This is accomplished by introducing some addi-
tional circuitry for timing and synchronization, as well as a user interface between the
user of the device and the algorithms. The goa! of this chapter as outlined in section 5.2
is to show how the two algorithms can work together, by evaluating their security as a
whole. Furthermore, section 5.3 introduces the timing and synchronization circultry
required for all parts of the device to operate effectively, as well as the user interface

allowing a user to take advantage of this device.

5.2 SECURITY EVALUATION OF THE ANALOG SPEECH SCRAMBLING AND

KEYSTREAM GENERATOR ALGORITHMS IN UNISON

The analog speech scrambling algorithm proposed is a two-dimensional algorithm,
which passes the analog speech signal through two phases. The first phase consists of
separating the frequency components of the speech signal between seven bands, and
manipulating these distinctly within each band. The frequency manipulation consists of
enhancing or attenuating the frequency components by any of 16 possible levels, for a

duration of 1.25 ms. This is equivalent to configuring a particular filter, and passing the
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incoming speech signal through this filter for a duration of 1.25 ms, after which the
conflguration of the filter changes. The total number of possible filters is set at 268 435
456. The filtered output speech signal is then passed through an amplitude multiplica-
tion scrambling algorithm, in which it is multiplied by one of two possible levels for a
duration of 0.3125 ms. This algorithm, operated with the specified number of filters and
amplitude multiplication levels, was found to be most secure on the basis of its output
being statistically uncorrelated from its input, on its output statistically resembling
white noise as much as possible, and furthermore on the number of possible transforma-
tions it offers to the incoming speech signal. To support this level of security, the PAM
processes whose levels are responsible for configuring the fiiters, as well as operating the
amplitude multiplication scrambling algorithm, should be statistically independent of
each ot,her.' Furthermore, the levels within a particular PAM process should have zero
mean, and a uniform distribution. The burden of supporting the above mentioned secu-

rity level is thus placed on the system or algorithm selecting the various PAM levels.

The keystream generator proposed makes use of a secret key and in return provides
eight long practically independent secure keystreams. It consists of a multilayer non-
linear generator operating in streamn mode, and a DES-based key scheduling algorithm
operating in block mode. Together they provide 2%%-1 64-bit sequences, each of which is
broken up into eight 8-bit sequences, and used to initialize eight 8-bit linear feedback
shift registers in parallel. These shift registers each produce one period of a 255-bit max-
imal length sequence, before being reinitialized. This is repeated until all 2%%-1 64-bit
sequences have been exhausted, thus resulting in eight parallel keystreams each of length
4.7039x10%' bits. This keystream generator was put together as such so that its keys-
treams satisfly the three requirements of guaranteed minimum period, large linear
equivalence, and randomness. The latter requirement is satisfled by satisfying three
other requirements, namely a discrepancy of only one between the number of ones and

the number of zeros in one period of the keystream, a certain specified cousistency of
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runs, and a constant out-of-phase autocorrelation.

It is now obvious that the analog speech scrambling algorithm and the keystream
generator algorithm can be put to work together. More specifically, the eight keystreams
produced by the keystream generator will be used to choose between the various PAM
levels of the eight PAM processes of the analog speech scrambling algorithm. The bur-
den is thus on the keystream generator to ensure that the PAM processes of the analog
speech scrambling algorithm are statistically independent, and that the levels within a
PAM process are uniformly distributed, and have zero mean. The constraint of zero
mean is readily satisfled by choosing the value of the levels of the PAM processes
appropriately. The constraint of uniform distribution on the eight PAM processes
implies that the probability of a particular PAM level occurring is equal to the probabii-
ity of any other PAM level occurring, for a particular PAM process. This means that a
particular PAM level within a particular PAM process will have no effect or influence on
the next level of this PAM process, hence no statistical dependence between PAM levels.
On the other hand, the constraint of statistical independence between levels of different
PAM processes implies that a particular level, within a particular PAM process, will not

dictate a past, present, or future level of another PAM process.

Before attempting to show to what extent the proposed keystream generator will
support the constraints necessary for the secure operation of the analog speech scram-
bling algorithm, it is appropriate to examine what are the possible ways in which the
cryptanalyst may attack the analog speech scrambling device, based on the amount of

information he/she may have.

One source of information that the cryptanalyst is believed to have ample of is
scrambled speech from the output of the analog speech scrambling device. Let this type
of attack be referred to as the "scrambled speech only” attack. For the proposed analog
speech scrambling algorithm, and hence the proposed analog speech scrambling device to

be able to withstand such an attack, tLe proposed keystream generator of this device
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should be able to satisfly two weaker constraints than those of uniform distribution of
PAM levels within a PAM process, and statistical independence between PAM processes.
These are the constraints of maximum in-phase and constant out-of-phase autocorrela-
tion of a particular PAM process, as well as constant cross-correlation between any two

PAM processes respectively.

The autocorrelation constraint is a weaker constraint than that of uniform distribu-
tion of the PAM levels within a PAM process. The former constraint implies that PAM
levels within a particular PAM process do not resemble previous or subsequent levels
within the same PAM process. Even if this constraint is satisfied there still may be cer-
tain known relationships between PAM levels, which allow one level to be obtained
from another, thus violating the uniform distribution of PAM levels constraint, even

thougih these levels have no visible resemblance.

The cross-correlation constraint is a weaker constraint than that of statistical
independence between PAM processes. The former constraint implies that PAM levels
between two different PAM processes do not resemble each other. Even if this con-
straint is satisfled there still may be certain known relationships between PAM levels of
different PAM processes, which allow for one level to be obtained from another thus
violating the statistical independence constraint between PAM processes, even though

levels between these processes have no visible resemblance.

Assuming no loss of generality from the simulation of a scaled down version of the
proposed keystream generator configured with a particular chosen key in the previous
chapter, the autocorrelation and cross-correlation plots of keystreams resulting from the
simulated scheme are shown in figure 4.5 and figure 4.7 respectively. From these it is
seen that the autocorrelation and cross-correlation constraints are satisfled by the pro-
posed keystream generator. As a result, the analog speech scrambling device can with-

stand a "scrambled speech only” attack.
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Another source of information that the cryptanalyst may have obtained, by some
means other than descrambling, is original unscrambled speech corresponding to known
scrambled speech. Of course, the cryptanalyst is not considered to have ample original
speech, but enough to qualify for what may be referred to as a "known original speech”
attack. This type of attack exceeds the previously mentioned "scrambled speech only”
attack in strength, because the cryptanalyst has some original speech in addition to
ample scrambled speech. Thus, he/she has the flexibility to perform a "scrambled
speech only” attack, as well as 2n attack on the generated keystreams. The latter con-
sists of using the original speech to scrambled speech relationship, to obtain portions of
the keystreams equivalent in length to portions of the known original speech. There
even exist tools like the spectrograph which can help the cryptanalyst in this procedure.
Having portions of keystreams, the attack on these keystreams then consists of attempt-
ing to predict the remaining respective portions of these keystreams, or portions of other
keystreams. Obviously, because of the larger amount of information assumed to be at
the cryptanalyst’s disposal, this attack is much more powerful than the "scrambled
speech only” attack. As a result, the analog speech scrambling device would be con-

sidered most secure if it could withstand this attack.

For the proposed analog speech scrambling algorithm and hence the proposed ana-
log speech scramibling device to be able to withstand an attack on the keystreams as
part of a "known original speech” attack, the proposed keystream generator should he
able to satisly the two constraints mentioned earlier of statistical independence between
PAM processes, as well as uniform distribution of the PAM levels within a PAM process.
In a few words, these constraints should be satisfied in order to withstand an attvack on
the keystreams as part of a "known original speech” attack, because as mentioned previ-
ously this attack will allow the cryptanalyst to obtain portions of the respective keys-
treams. The cryptanalyst will use these portions in an attempt to find relationships

between them, so that he/she can then use these relationships to generate future por-
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tions of keystreams in advance so as to descramble forthcoming speech. If the con-
straints of statistical independence between PAM processes and uniform distribution of
FPAM levels within a PAM process are satisfled, then even if the cryptanalyst obtains the
portions of keystreams he/she cannot use them in any productive way because there will
be no existent relationships between these portions to be found. As a result, the attack
on the keystreams will be unfruitful. The security level offered by the analog speech
scrambling algorithm earlier, contingent upon satisfaction of the constraints of statistical
independence between PAM procusses, and uniform distribution of PAM levels within a
particular PAM process, must thus be the same security level required to withstand an
attack on the keystreams as part of a "known original speech” attack, since this is also

contingent upon satisfaction of the same constraints.

The analog speech scrambling device would be considered most secure if it could
withstand a2 "known original speech” attack. As mentioned previously, such an attack
can be looked upon as a "scrambling speech only” attack, as well as an attack on the
keystreams. As shown previously, the analog speech scrambling device can withstand a
"scrambled speech only” attack. Whether or not this device can also withstand an
attack on the keystreams will depend on whether or not it can satisfy the constraints of
statistical independence between PAM processes, and uniform distribution of PAM levels

within a particular PAM process as mentioned earlier.

The above constraints are partially satisled, but may be totally satisfled in all
practical consideration. This is because an attack on the keystreams will yield some
information to the cryptanalyst but not in any practical way. As mentioned in the pre-
vious chapter, having the first 15 bits of a keystream one can obtain the configuration of
the respective linear feedback shift register, and thus obtain the next 240 bits of this
keystream. Since four bits are required to define a PAM level for any of the seven PAM
processes representing the hopping fllters algorithm, knowing the first four consecutive

PAM levels will allow the prediction of the next 58 such PAM levels. Furthermore, one
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bit is required to define a PAM level of the PAM process representing the amplitude
multiplication scrambling algorithm. Thus, knowing the first 15 consecutive PAM levels
will allow the prediction of the next 240 such PAM levels. To obtain any further infor-
mation the cryptanalyst would then have to know the first eight bits of every 255-bit
sequence of the keystream following the first. He/she would thus have to know the first
two PAM levels to obtain the next 61 PAM levels of this sequence, assuming this keys-
tream is applied to any of the seven PAM processes representing the hopping fllters algo-
rithm. Furthermore, the cryptanalyst would have to know the first eight PAM levels of
a particular 255-bit sequence to obtain the following 247 PAM levels, assuming this keys-
tream is applied to the PAM process representing the amplitude multiplication scram-

bling algorithm.

A complete keystream is made up of 2°%%-1 255-bit concatenated maximal length
sequences. It is seen that PAM levels of a particular PAM process can be obtained fiom
previous PAM levels resulting from within the same 255-bit sequence. On the other
hand, PAM levels of a particular PAM process resulting from a particular 255-bit
sequence cannot be obtained from previous PAM levels, resulting from another 255-bit
sequence. This is because there is uniform distribution of PAM levels across the 255-bit
sequence boundaries. Since having knowledge of various PAM levels throughout the
entire keystream is impractical, the PAM levels can be considered practically uniformly

distributed.

The remaining constraint of statistical independence between PAM processes
implies that there should not be any relationship between PAM levels of different PAM
processes. The eight different PAM processes are controlled by eight different keys-
treams, and the eight different keystreams are generated by eight independent differently
configured linear feedback shift registers. Thus, there is no relationship between PAM
levels of different PAM processes, at least between PAM levels defined by the keystream

portions coming after the initialization sequences of each 255-bit sequence. The indepen-
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dence of the PAM levels defined by the initialization sequences of each respective keys-
tream can be questioned since they are not generated as independent entities, but rather
as one entity in the form of a 64-bit word. In other words what is questioned here is
how dependent are the 8-bit sequence portions of a particular 84-bit word, resulting from
the second section of the keystream generator. Beyond the exclusive-OR operation the
second section consists of the DES and DES™! algorithms. Every bit of a particular DES
or DES™ output is a function of all bits of the data port and key port of the respective
algorithms. Thus, all bits within one word resulting from either the DES or DES™! algo-
rithms are related to each other through the data port and key port bits. This relation-
ship though is not visible outside the DES or DES™! algorithms. Finding such a relation-
ship would be equivalent to breaking the DES algorithm. This, besides being very
difficult due to the strength of DES, it is also further discouraged by the nonlinear
operation of the exclusive-OR within the second section of the keystream generator,
which provides a one-way mixing operation of the outputs of the DES and DES™ algo-
rithms, thus hiding either one. As a result, every 8-bit initialization sequence is practi-
cally independent from other such sequences within one particular 64-bit word. Thus,
the PAM levels defined by the initialization sequences resulting from different respective
keystreams can be practically considered statistically independent. Consequent to prac-
tically satisfying the required constraints mentioned above, the analog speech scrambling
device can also withstand an attack on the keystreams, thus being able to withstand a
"known original speech” attack. The proposed analog speech scrambling device, involv-
ing the proposed analog speech scrambling algorithm and proposed keystream generator

operating together, can thus be considered most secure.

5.3 THE ANALOG SPEECH SCRAMBLING DEVICE PROPOSED

Although in the previous section the analog speech scrambling device referred to

the combined secure operation of the analog speech scrambling algorithm, and the
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keystream generator algorithm, there is slightly more to it. There is additional circuitry
necessary for the operation of the device as a wnole, as well as circuitry necessary for
providing an interface between the device and the user. A formal description of the

entire device follows.

The proposed analog speech scrambling device consists of two main units, one per-
forming the scrambling operation on outgoing speech, referred to as the transmitter unit,
and one performing the descrambling operation on incoming speech referred to as the
receiver unit. The transmitter unit and receiver unit can each be further divided into
three sub-units. The first sub-unit of the transmitter unit consists of the analog speech
scrambling algorithm as put forth in chapter 1II. Correspondingly, the first sub-unit of
the receiver unit consists of an analog speech descrambling algorithm. This is similar to
the analog speech scrambling algorithm, with the difference that the scrambled speech
input to this algorithm is first passed through the amplitude multiplication scrambling
algorithm, and then through the hopping filters algorithm. The PAM levels of the PAM
processes representing the amplitude multiplication descrambiing algorithm in this case
are such, that division is effectively performed on the scrambled speech as opposed to the
multiplication operation in the transmitter unit. Furthermore, the PAM levels of the
seven PAM processes representing the hopping filters algorithm in this case are such,
that the scrambled speech is passed through the inverse filter configurations relative to

the fiiter confilgurations in the transmitter unit.

The second sub-units of both transmitter and receiver units consist of independent

versions of the DES-based keystream generator, as put forth in chapter IV.

Finally, the third sub-units of the transmitter and receiver units consist of timing
and synchronization circuitry respectively. These are needed to maintain the generation
of the keystreams, and to keep the operation of the receiver unit at either end of the
communication path synchronized with the operation of the respective transmitter unit

at the opposite end, a basic requirement for reliable recovery of original speech at the
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recejver.

As shown in figure 5.1, the third sub-unit of the transmitter unit of the analog
speech scrambling device is mainly responsible for controlling the timing in the

transmitter unit.
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Figure 5.1 Timing circuit in transmitter unit.
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It consists of & subtractor, a 4x1 multiplexer, two oscillators, a main timer, a one-frame
timer, four analog switches, and three manual switches. Part of this sub-unit manipu-
lates the already scrambled signal resulting from the scrambling algorithm, by subtract-
ing from it one of four possible binary signals of various frequencies produced by the
main timer. The frequencies of these signals are multiples of two from each other, and
the choice between them is controlled through the 4x1 multiplexer, using two bits from a
S/P converter of length two at the output of the keystream generator responsible for
operating the amplitude multiplication scrambling algorithm. Before pressing the third
manual switch, the first manual switch should be set accordingly so as to choose either
the 2800 Hz oscillator output, or the 3200 Hz oscillator output, through the first analog
switch, to appear as input to the third analog switch. The 3200 Hz oscillator output
should be chosen at the beginning of a session between two communicating parties, or
throughout such a session if necessary, while the 2800 Hz oscillator output should be
chosen at the end of a session between two communicating parties. When the third
manual switch is pressed it acts as a clock to the latch whose input is wired high, and
thus latches s high which selects the already chosen oscillator output through the third
analog switch. The latched high disables the operation of the second manual switch
through the OR gate, and selects the output of the third analog switch (which is one of
the oscillator outputs in this case) to pass through the fourth analog switch as output of
the transmitter unit, thus resuiting in the output of a sync. clock to the receiver. When
pressed, the third manual switch also sends a pulse to the one-frame timer which in turn
produces an end-of-frame pulse after 160 ms. The latter pulse resets the latch to low,
thus choosing to pass the scrambled signal through the thir.d analog switch and thus
stopping the oscillator signal from being sent to the output of the transmitter unit after
160 ms. Furthermore, resetting the latch to low enables the second manual switch once
again, allowing through the fourth analog switch the choice between the original speech

signal when the select is low, and its scrambled version when the select is high to pass to
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the receiver. From this point on, the third analog switch will remain with its select low
until the third manual switch is pressed once again. The end-of-frame pulse besides
resetting the latch sends a signal through the second analog switch, for either of two
purposes as chosen by the first manual switch. At the beginning of a session between
two communicating parties, and throughout this session, the position cof the first manual
switch is such, so as to allow the signal through the second analog switch to load the
most recent reference key status on the device, and initially start or restart the main
timer. Similarly, at the end of a session between two communicating parties the position
of the first manual switch is such, so as to allow the signal through the second analog
switch to store the most recent reference key status, and finally stop the main timer.

The notion of a reference key status will be explained shortly.

As shown in figure 5.2, the third sub-unit of the receiver unit of the analog speech
scrambling device is mainly responsible for providing the synchronization in the receiver
unit. It consists of an adder, 2 main timer, an oscillator, one manual and one analog
switch, two band pass filters, two envelope detectors, and two sync. delays. Part of this
sub-unit performs the descrambling procedure corresponding to the scrambling procedure
performed by the analogous part of this sub-unit in the transmitter unit. The manual
switch is used to control the analog switch in choosing between scrambled speech or
descrambled speech to appear at the output of the receiver unit. Besides the scrambled
speech signal there are two other signals coming into the receiver. These are the 3200
Hz oscillator output and the 2800 Hz oscillator output from the opposite-end transmitter
unit, having duration of only 160 ms. Only one such signal can come into the receiver at
any one time. When this happens, the signal is identified by handpass filtering is passed
through an envelope detector, and used for either of two purposes depending if it is
identified as the 3200 Hz signal or the 2800 Hz signal. The 3200 Hz signal is used to
load the most recent reference key status on the device and initially start or restart the

main timer of the receiver, in synchronization with the opposite-end transmitter. The
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Figure 5.2 Synchronization circuit in recelver unit.
2800 Hz signal is used to store the most recent reference key status, and stop the main

timer of the receiver, again in synchronization with the opposite-end transmitter.



- 130 -

Having fully described the operation of the proposed analog speech scrambling dev-
ice, it remains to propose a user interface which can facilitate the user’s use of this dev-

ice. The need for a user interface arises from two factors namely,
1) alarge key material, and

2) the need to make efficient use of the large period of the generated keys-

treams.

Practically, the entire configuration of the keystream generator is left to the user’s dis-
cretion through the key material. The key material includes the maximal length
configuration of the 64-bit linear feedback shift register at the base of the main mul-
tilayer nonlinear generator, as well as the maximal length configurations of the eight
subordinate linear feedback shift registers. The constraint here is that these

configurations have to lead to maximal length sequences. In this case, for a shift register

g(2t-1)

of length L there exist L

possible configurations to choose from, all leading to dis-

tinct sequences at the output of the shift register. These conflgurations can either be set
through switches on the device itself, or supplied by the manufacturer as plug-in
modules. Furthermore, the key material includes the nonlinear logic conflgurations for
all six layers of the multilayer generator, as well as the initial condition or initial load of
the 64-bit linear feedback shift register at the base of this multilayer generator. The
multiplier connections within each nonlinear logic layer should satisly certain con-
straints. They should be such that the minimum number of nonlinear logic layers are
used, producing a sequence at the output of the multilayer generator which has max-
imum linear equivalence, and noiselike characteristics. It was found through simulation
that changing the nonlinear logic of at least one layer, or changing nonlinear logic
between layers leads to a different sequence being generated at the output of the mul-
tilayer generator. The number of all possible nonlinear configurations among all layers
was found through simulation for registers up to length 14, as shown in table 2.2. There

is no closed form function relating the length of the shift registers in a multilyer
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generator, to the number of all possible nonlinear logic configurations among all layers,
leading to distinct sequences at the output of this multilayer generator and hence at the
outputs of the keystream generator. These configurations can be supplied by the

manufacturer as plug-in modules identified numerically.

There are 2%4-1 possible initial loads for the 64-bit linear feedback shift register at
the base of the multilayer generator. It was found through simulation that changing the
initial load of this shift register resulted in the same sequence with difftcrent phase at the
output of this generator. Furthermore, two sequences of different phase at the output of
the multilayer generator were found through simulation to produce different keystreams

at the outputs of the keystream generator.

The required key material is for the operation of one keystream generator. The
analog speech scrambling device proposed has two such keystream generators, one for its
transmitter unit, and one for its receiver unit. There are thus two sets of key materials
required for the operation of the device. The keystream generator of the receiver unit of
a particular device will consist of the key material identifying the opposlte-end user,
while the keystream generator of the transmitter unit of this device will consist of the
key material identifying the owner user of the device, with respect to the opposite-end
user. Thus, a particular user may be identified by a different key material depending
with whom he/she is communicating. The user interface can thus be used to store the
large amounts of key material as well as to easily load this key material on the device

when necessary.

Any keystream at the output of the keystream generator has a length of
4.7039x10%! bits. Since this keystream is generated at the rate of 3200 Hz, one period of
this keystream will theoretically be generated in approximately 46.6 billion years. The
security benefits of having long keystreams are not fully exercised, if every time two
users engage in a communication session their respective sets of keystreams are gen-

erated once again from the very beginning. In this way, only a very short portion of

o s
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each keystream (the same size on average) will be used repeatedly, thus giving the cryp-
tanalyst further opportunity to compromise the device. The user interface can thus be
used not only to store the initial key material identifying two users, and allow easy load-
ing of this key material, but to also maintain a reference key status for every subsequent
communication session between these two particular users. The reference key status will
consist of key material as well as tae states of all shift registers in the keystream genera-
tor algorithm. The reference key status will be loaded on the device at the beginning of
a particular communication session between two users, and its updated version stored
back into the user interface at the end of this communication session. It is possible that
at some point within a communication session the users may feel that they are losing
synchronization, as a result of not being able to understand what each other is saying.
This can be:- resolved by loading once again the same reference key status that was
loaded on the device at the beginning of this particular communication session. The
user interface should allow all the reference key material between the owner of the dev-
ice and a particular user to be stored under this user’s name, for identification purposes.
Similarly for all other users. Furthermore, all this reference key status information may
be stored in encrypted form, possibly encrypted by the DES algorithm, and the portion
referring to a particular user decrypted when necessary for use. This serves as a precau-
tion against someone stealing the memory units containing all the reference key status
information. Finally, as an added precaution to prevent others from tampering with the
analog speech scrambling device, a password system should be employed allowing only

authorized users to make use of this device.

5.4 CONCLUDING REMARKS

The analog speech scrambling algorithm of chapter III and the DES-based keys-
tream generator of chapter I'V are compatible. Together they make up the major part of

an analog speech scrambling device which can be used for secure speech communications
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even under a "known original speech” attack. The remaining portion of the device con-
sists of timing and synchronization circuitry, needed in order to keep the keystream gen-
erator of the transmitter of one device, running synchronously with the keystream gen-
erator of the receiver of the opposite-end device, a basic requirement for reliable recovery
of original speech at the receiver. Finally, as a result of a large key material and the
need to make efficient use of the large period of the generated keystreams, a user inter-
face is suggested, which allows a user to load the appropriate key material easily on the
device. Furthermore, it will allow the status of all shift registers as well as the key
material, collectively referred to as the reference key status, to be stored after the end of
one communication session between two users, so that it may be loaded as is again on

the device at the beginning of the next communication session between these users.



CHAPTER VI

SUMMARY, CONCLUSIONS AND FUTURE WORK

8.1 SUMMARY AND CONCLUSIONS

The telecommunication system offers endless services tc the public within the com-
munication environment, either directly, or indirectly through computers. As a result, it
is very widely used, and thus very dependent upon by most, if not ali To be able to
satisfy aluicst everyone at everyone’s own will, and many times simultaneously, the
telecommunication system has to be vast, fiexible, and easily accessible. These qualities,
besides making the telecommunication system very useful, they also make it very vulner-
able to intrusion with malicious intent. Such intrusion can be active or passive. Being
an environment in which the slightest inoperation or deviation from the expected opera-
tion can create problems, active intrusion can be disastrous. Passive intrusion on the
other hand can be even more disastrous as a result of providing a false sense of security,
which is why it was made the concern of this work. In assessing possible intrusion one
has to realize that the capabilities of the intruder, and the resources at his/her disposal,
will be proportional to the possible gains as a result of this intrusion. This is in turn
proportional to the importance of the information being communicated. Furthermore,
an intrusion can theoretically take place anywhere within the telecommunication system,
but is more practically apt to occur as close to the end-user as possible. Similarly, it is
just as practical to secure the telecommunication system at that point. The amount of
security required will depend on one’s assessment of the threat of possible intrusion. It
may be that a particularly high security level can be attained in theory, without being
able to support this level of security practically. On the other hand, a particularly high
level of security may be attained in practice, which under theoretical conditions may be

meaningless. Assessing the threat of intrusion practically, results in choosing a practical
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security level appropriate for a particular intruder, if this intruder is known. On the
other hand, if an intruder is not known then worst-case conditions should be assumed,

but within practical limits.

After assessing the threat of possible intrusion, and settling on a particular required
security level, the next step is to actually provide this security. This can be done
through the use of secure algorithms in the form of a system or device placed as close to
the end-user as possible. The general form of such a device would consist of two distinct
algorithms. One would be responsible for disguising the confidential information enter-
ing the telecommunication system, or similarly revealing the disguised information com-
ing from the telecommunication system. The other algorithm would be responsible for
operating the former in a random fashion, through the use of a key or keystream accord-

ingly, as would be required for security purposes.

One class of secure algorithms are those operating on data, and leading to data
cipher systems. Data cipher systems can be further classified into various categories
based at least on the secrecy of their keys (private or public), the type of transformation
which these keys perform (substitution, transposition, or algebraic), and the structure of
the entire algorithm (block or stream). A block cipher transforms an input block of
characters into an output block of characters as governed by a fixed-size key. On the
other hand, a stream cipher consists of encrypting a stream of plaintext characters, by
combining or mixing these on a one-to-one basis with a relatively long or infinite
sequence of similar characters. The difference between stream ciphers and block ciphers
lies mainly in the manipulation of the key. The basic ideas behind data cipher systems
can be applied directly or indirectly to speech security. This is mainly as a result of
digitized speech resembling data, as well as speech secure systems in general requiring

pseudorandom operation.

Speech secure systems can be classified into three categories; digital speech secure

or encryption systems, analog speech encryption systems, and analog speech scrambling
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systems. Digital speech encryption techniques have been known to achieve the highest
degrees of security over all speech encryption techniques. Despite this, these are not
readily used since digital transmission is still not quite compatible with today’s technical
environment, the major part of which is geared towards analog transmission. The next
best thing to digital specch encryption is analog speech encryption. An analog speech
encryption system allows for compatibility with today’'s technical environment, while at
the same time taking advantage of the high security level inherent in digital speech
encryption. Although very strong, this area of speech security has been fully exhausted,
especially with the constant developments of digital signal processing. The only area of
speech security which at present does not offer the highest levels of security, but which
still allows room for further development is the area of analog speech scrambling. Ana-
log speech scrambling algorithms can be classified as one-dimensional or two-
dimensional. One-dimensional algorithms manipulate the time, frequency, or amplitude
characteristics of an analog speech signal, while two-dimensional algorithms manipulate
a combination of the above characteristics. Frequency manipulation techniques produce
scrambled speech signals which are not sensitive to real channel imperfections, and hence
allow for good transmission. Furthermore, they allow a speech-like thythm to pass at
the output of the transmitter leading to high values of residual intelligibility. On the
other hand, time manipulation techniques provide scrambled speech signals without any
speech-like rhythm, but they are sensitive to real channel imperfections. Furthermore,
they induce large values of communication delay. Finally masking, or amplitude manipu-
lation techniques are transmission sensitive, but produce a noiselike output at the
transmitter. They are similar to time manipulation techniques without the communica-
tion delay.

This work examined one-dimensional frequency manipulation as well as amplitude

scrambling algorithms, in addition to various combinations of these as . ¥o-dimensional

algorithms. The one-dimensional algorithms consisted of the already known linear addi-
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tion and multiplication algorithms, as well as a new frequency manipulation algorithm
referred to as the hopping filters algorithm. This algorithm divides the spectrum Into
seven sub-bands, similarly to a rolling code bandsplitter, but instead of using the key for
permuting these sub-bands it uses it to manipulate the amplitude of the frequency com-
ponents in these sub-bands, which is equivalent to flitering the incoming speech with
various hopping filters. The filtering operation within a particular sub-band is
represented by one out of seven statistically independent PAM processes with uniformly
distributed PAM levels. Furthermore, the level to be added or multiplied in the ampli-
tude addition or multiplication scrambling algorithms respectively is alsc represented by
such a PAM process. These algorithms were first evaluated in terms of how statistically
uncorrelated their output was to their input, or in other words how close they came to
perfect secrecy. This was carried out by finding the cross-covariance of the respective
algorithms. It was found that the amplitude addition scrambling algorithm can never
attain statistical uncorrelation between input and output, and was thus discarded. The
remaining algorithms were able to achieve statistical uncorrelation of input to output,
hence approaching perfect secrecy, under the constraint of their processes having zero
mean. These algorithms were then evaluated on the basis of how closely their autocorre-
lation resembled that of white noise. This was crossed with the conflicting requirement
of maximum cryptanalytical strength, as a result of offering the largest number of possi-
ble transformations for the incoming speech signal. Of the four remaining algorithms it
was found that the one satisfying the above criteria, as closely as possible, was the two-
dimensional algorithm consisting of the hopping fliters algorithm followed by the ampli-
tude multiplication scrambling algorithm. Furthermore, the ideal combination of
number of PAM levels was found to be 16 for each of tiie seven PAM processes
representing the hopping filters algorithm, resulting in 268 435 456 possible hopped
filters, as well as 2 PAM levels for the PAM process representing the amplitude multipli-

cation scrambling algorithm. This implies hopping between filters every 1.25 ms and
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possibly multiplying by a new level every 0.3125 ms. The results of the above security
evaluation hold as long as the 8 PAM processes have zero mean, are statistically

independent, and their levels are uniformly distributed.

Having chosen a particular analog speech scrambling algorithm as most secure, a
pseudorandom element was required to operate this algorithm in a correspondingly pseu-
dorandom fashion. Since speech readily lends itself to stream mode, a particular keys-
tream generator was necessary, similar to that which would form the basis of stream
cipher. The only difference is that the required algorithm should provide 8 keystreams
simultaneously and independently. A scheme for this keystream generator was
developed based on the requirements that it produce random keystreams, each having a
guaranteed minimum length and a large linear equivalence. The randomness requirement
itself represented three other requirements, namely a discrepancy of only one between
the number of ones and the number of zeros, a certain specified consistency of runs of
ones and runs of zeros, as well as a constant out-of-phase autocorrelation for each keys-
tream. The proposed keystream generator algorithm was a combination of three sec-
tions. The flrst section consisted of a multilayer nonlinear generator, and supported the
requirements of minimum guaranteed keystream length and large linear equivalence. The
second section, developed from a DES-based key scheduling algorithm, enhanced the
large linear equivalence, supported the randomness requirement of constant out-of-phase
autocorrelation, and contributed to the requirement of minimum guaranteed keystream
length. Finally, the last section consisted of eight maximal length linear sequence gen-
erators, each with a complementing facility. These contributed to the minimum
guaranteed Keystream length requirement, and supported the requirement concerning the
relative number of ones to number of zeros in a keystream. The proposed keystream
generator algorithm satisfying the above requirements resulted in eight keystreams with
zero cross-correlation between them, each made up of 2%4.1 255-bit concatenated maxi-

mal length sequences.
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Having the major components of an analog speech scrambling device these were
then put together and evaluated as a whole with respect to security. More specifically,
they were evaluated on the basis of being able to withstand a "known original speech”
attack, which is more powerful than, and covers, a "scrambled speech only” attack.
Thus, to be able to withstand a "known original speech” attack the analog speech
scrambling device should be able to withstand a "scrambled speech only” attack, as well
as an attack on the keystreams. It was found that the autocorrelation and cross-
correlation requirements, imposed on the cight keystreams controlling the eight PAM
processes, allowed for the ability of the analog speech scrambling device to withstand a
"scrambled speech only” attack. To be able to withstand an attack on the keystreams,
the analog speech scrambling device should have a keystream generator, whose eight
keystreams control the eight PAM processes in such a way that these are statistically
independent, and have PAM levels of uniform distribution, the two conditions originally
assumed when evaluating the security of the analog speech scrambling algorithm alone.
It was found that the DES-based key scheduling scheme within the keystream generator
algorithm, as well as the distinct configurations of the eight subordinate generators, con-
tributed to the production of the eight keystreams in such a way that these satisfied the
requirement of statistical independence between PAM processes. Furthermore, the linear
equivalence of the generated keystreams although not strictly satisfying the requirement
of uniform distribution of PAM levels, satisfied this requirement within all practical con-
siderations. Thus, with the support of the keystream generator algorithm the securi?;
evaluation of the analog speech scrambling algorithm holds. Furthermore, the analog
speech scrambling algorithm can withstand an attack on the keystreams, allowing this
device to withstand a "known original speech” attack, and hence allowing for this device

to be declared as most secure.

Having the major components of an analog speech scrambling device, and having

declared the combined operation of these components as most secure, it was necessary (o



introduce the timing and synchronization circuitry of this device. This circuitry allows
for the operation of the receiving unit of one analog speech scrambling device, to be syn-
chronized with the operation of the transmitting unit of the opposite-end analog speech
scrambling device, a basic requirement for recovery of the original speech at the receiver.
This is accomplished through the transmission of a preamble at the beginning and end of
secure operation, sent from the transmitter at one end, to the opposite-end receiver.
Finally, to complete the analog speech scrambling device, a user interface was put forth,
which would allow storage and retrieval of the large key material applicable to any com-
bination of two users. Furthermore, this would allow for the keystream generation
between communication sessions of two particular users to be continuous, as opposed to
reinitializing the keystreams at every communication session between the same two

users. This allows the full advantage of having keystreams of large periods.

6.2 FUTURE WORK

This work may be considered as one-sided since most of it concentrated mainly on
the analog speech scrambling algorithm, as opposed to the coresponding analog speech
descrambling algorithm. One course of action for future work is to go through a similar
analysis as the one in this work, but for the analog speech descrambling algorithm. This
analysis could be split into two cases as governed by the input to the descrambling algo-
rithm. One case would consist of the input being basic scrambled speech, while the
other would consist of scrambled speech as well as additional noise and channel degrada-
tions imposed, which would be inevitable in a more realistic system. It would also be
interesting to analyze the eTect of lack of synchronization between corresponding
transmitting and receiving units. Obviously, the evaluation carried out in all these cases
would not be on the basis of security, but rather on the quality of speech measured
through speech degradation. At the onset of these analyses an acceptable level of degra-

dation should be decided upon, and this made the basic requirement.
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Finally, the entire system, consisting of a transmitter and a receiver can be simu-
lated. Towards this direction this work has already provided the simulation of the keys-
tream generator through the simulation program in Appendix A. This represents a
scaled down version of the proposed generator scheme. Given the appropriate key
material, it can produce each of the eight keystreams one at a time. Having this part of
the simulation it then remains to simulate the analog speech scrambling and descram-
bling algorithms, as well as to provide a suitable input signal, which represents the ana-
log speech signal most appropriately. The results of the scrambling as well as descram-
bling algorithms can then be observed, and compared to the analytic results, which

include the results of this work.
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APPENDIX A

The following program referred to as "regtogdes.p” was written to simulate the opera-
tion of the DES-based keystream generator used in the proposed analog speech scram-

bling device.
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program simcode(input, desin, inlindat, output, codout);

const
POINTS = 65025;
MAXLENGTH = 8;
MAXLAYER = 3;
SUBSP = 1;
MAINSP = 64;

type
layerind = 1.MAXLAYER;
inex = 1. MAXLENGTH;
binary = 0..1;
binarr = array[inex] of binary;
intarr = array(inex] of inex;
contstuff = array(layerind] of binarr;
spanstufl = array|(layerind] of intarr;
multistuff = record
taps : binarr;
contents : contstuff;
spans : spanstuff;
length,layers : integer;
end;
linstufl = record
taps, contents : binarr;
length : integer
end;
bin64 = array|1..64] of binary;
bin48 = array(l1..48] of binary;
keyarr = array(1..16] of bin48;
bin28 = array(1..28] of binary;
int16 = array|(1..16] of integer;
bin32 = array(1..32] of binary;
selfuncarr = array(1..32] of int186;

var
inlindat, desin, codout : text;
maingen : multistuff;
subgen : linstuff;
subnum, b, base, m, s, t, tot, val : integer;
pmcle, pmcld : bin28;
pmc2, selectt : bin4s;
numshift : int18;
perm : bin32;
iperm, invperm, dat, keyl, key2, initcond, outword : bin64;
selfunc : selfuncarr;
mainoul, subout, tog, orsum : binary;
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function power(bas, expon : integer) : integer;

var
t, pow : integer;

begin
pow = 1;
for t :== 1 to expon do
pow == pow * bas;
power == pow
end;

function complement(bitt : binary) : binary;.

begin
if bitt =1
then
complement = 0O
else
complement 1= 1;
end;

function orr(bittl, bitt2 : binary) : binary;

begin
if (bitt1 = 1) and (bitt2 = 1)
then
orr:= 1
else
orr ;= bittl + bitt2;
end;

function logicand(bittl, bitt2 : binary) : binary;

begin
logicand :== bittl * bitt2
end;

function xor(bitt1, bitt2 : binary) : binary;

begin
xor := logicand(bitt1, complement(bitt2)) + logicand(complement(bitt1), bitt2)
end;

function togle(bitt : binary) : binary;

begin
if bitt = 1
then togle := 0
else if bitt = 0
then togle := 1;
end;
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procedure update(sp : interr; var reg : binarr; lenreg : inex; var upout : binary);

type
tapstufl == record
left, right : binary;
first : boolean
end;
tapstor == array|inex] of tapstuff;

var
tapsearch : tapstor;
sum, prod : binary;
t : integer;

begin
for t := 1 to lenreg do
begin
tapsearch|t].left := 0;
tapsearch{t).right :==0;
tapsearch[t].first := true
end;
for t := 1 to lenreg do
if tapsearchisp(t]].first
then
begin
tapsearch(spit]].left .= t;
tapsearch(sp(t]].first := false
end
else
tapsearch(sp(t]].right := t;
sum == U,
for t := 1 to lenreg do
if not(tapsearchit].first)
then
begin
prod := logicand(reg(tapsearch(t].left], reg{tapsearch(t].right]);
sum :== xor(sum, prod)
end;
upout == sum;
for t := lenreg downto 1 do
reg(t] ;= regt - 1];
end;

procedure generatornonlin{var gen : multistuil; var genout binary);

var
resbit, shiftbit, xorsum : binary;
t : integer;

begin
xorsum = 0;
for t := 1 to gen.length do
if gen.taps|t] =1
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then
xorsum := xor(Xorsum, gen.contents{1]t]); |
shiftbit := xorsum; \
for ¢t := 1 to gen.layers do
begin
update(gen.spans|t], gen.contents|t], gen.length, resbit);
gen.contents|t]{1] := shiftbit;
shiftbit :== resbit
end;
genout :== shiftbit
end;

procedure generatorlin(var gen : linstufl; var genout : binary);

var
xorsum : binary;
t : integer;

begin
xorsum := 0,
for t := 1 to gen.length do
if gen.taps(t] =1
then
xXorsum := xor{xorsum, gen.contents|t|);
genout := gen.contentsgen.length];
for t .= gen.length downto 2 do

gen.contents(t] :== gen.contents|t-1];
gen.contents(1] := xorsum
end;

procedure storshift(var reg : bin64; siz : integer; bitin : binary);

var
t : integer;
begin
for t ;=1 to (siz- 1) do
reg(t] ;== reg(t+1];
reglsiz] := bitin;
end;

procedure shift(var sh : bin28; shiftval: integer);
var

t, m : integer;
temp : binary;

begin
for t := 1 to shiftval do
begin
temp := sh{l};

for m := 1to 27 do
sh{m] := sh{m+1};
sh([28] := temp
end;
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end;
procedure keygen(totkey : binB4; md : integer; var skeys : keyarr);

var
¢, d : bin28;
t, keyind, direc : integer;

begin
fort :=1to 28do
c[t] := totkey[pmclc[t]);
fort :=1to 28 do
dft] := totkey[pmc1d|t]);
for keyind := 1 to 16 do
begin
shift(c, numshift[keyind]);
shift(d, numshift(keyind]);
if md =1
then
direc := keyind
else
direc := 17 - keyind;
fort:= 1 to 48 do
if pmc2[t] <= 28

then
skeys([direc]{t] := c[pmc2[t]]
else
skeys(direc]t] := d[(pmc2[t] - 28)];
end;
end,;

procedure des(datin : binB4; var key : bin64; mode : integer);

type
biné = array(1..6] of binary;
bin4 = array|1..4] of binary;

var
s, W, ind, row, column, resval : integer;
lefdatin, ridatin, selres : bin32;
datselect, sum : bin48;
subkeys : keyarr;
bitsin : bin6,
bitsout : bin4;
tempstor : binary;

begin
keygen(key, mode, subkeys);
fors :=1to 32 do

begin
lefdatin(s] := datin[iperm[s]);
ridatin(s] := datin[iperm(s + 32]]
end;

for ind =1 to 16 do
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begin
for s: =1 to 48 do
begin
datselect|s] := ridatin(selectt[s]);
sum(s] := xor(datselect(s], subkeys{ind}is}])
end;
for s :=1to 8do
begin
for w := 1to 6 do
bitsin{w] := sum/{(6 * (s - 1)) + w};
row := ((4 * (s - 1)) + 1) + ((2 * bitsin[1]) + (1 * bitsin[6]));
column := (8 * bitsin[2]) + (4 * bitsin[3]) + (2 * bitsin[4]) + (1 * bitsin[§]) + 1;
resval := selfunc(row][column)];
for w :=—= 4downto | do
begin
bitsout|{w] :== resval mod 2;
resval := resval div 2
end;
for w ;= 1to 4 do
selres((4 * (s - 1)) + w] = bitsout|w];
end;
fors :=1to32do
begin
tempstor := xor(selres[perm/is]), lefdatin|s]);
lefdatin(s] := ridatin(s);
ridatin(s] := tempstor
end;
end;
fors:= 1to 64 do
if invperm(s] <= 32
then
key|[s] ;= ridatin[invperm|s}]
else
key|s] := lefdatin|invperm(s] - 32];
end;

procedure initdes(var wword : bin64);

var
t : integer;

begin
fort:= 1 to 64 do
wword[t] := 0O;
end;

begin
reset(desin);
reset(inlindat);
rewrite(codout);
readin(desin);
form:= 1to8do
begin
fort := 1 to 8 do
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read(desin, iperm|((m -1) * 8) + t]);
readIn(desin)
end;
readln(desin);
form := 1to 8 do
begin
fort :=1to 4do
read(desin, perm[((m -1) * 4) + t});
readin(desin)
end;
readIn(desin);
form := 1to 8 do
begin
fort :=1to 8 do
read(desin, invperm|[((m -1) * 8) + t]);
readln(desin)
end;
readin(desin);
form:= 1to 4 do
begin
fort :=1to 7 do
read(desin, pmclc{((m -1) * 7) -+ t));
read In(desin)
end;
readin(desin);
form : = 1to 4 do
begin
fort :=1to 7 do
read(desin, pmeld[((m -1) * 7) + t]);
readIn(desin)
end;
readln(desin);
form := 1to 8 do
begin
fort :=1to 6 do
read(desin, pmc2{((m -1) * 6) + t));
readin(desin)
end;
readin(desin);
form := 1to 8 do
begin
fort :=1to 6 do
read(desin, selectt[((m -1) * 6) + t)]);
readIn(desin)
end;
readin(desin);
form = 1t0 16 do
read(desin, numshift[m]);
readIn(desin),
readin(desin);
readin(desin);
form := 1to 32 do
begin
fort :=1to 16 do
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read(desin, selfunc(m](t});
readin(desin);
if (m mod 4) = 0) and (m <> 32)
then
readin(desin)
end;
readln(inlindat);
readIn(inlindat);
readin(inlindat, maingen.length);
maingen.layers = round(ln(maingen.length)/In(2));
if maingen.layers < (In(maingen.length)/In(2))

then
maingen.layers := maingen.layers + 1;
readIn(inlindat);
for m := maingen.layers downto 1 do
begin

for t := 1 to maingen.length do
read(inlindat, maingen.spans|m|(t]);
readin(inlindat);
end;
readIn(inlind at);
for t := 1 to maingen.length do
read(inlindat, maingen.tapsit));
readin(inlindat);
readln(inlindat);
for t := 1 to maingen.length do
read(inlindat, maingen.contents|1][t]);
readin(inlindat);
readIn(inlindat);
readIn(inlindat, subnum);
readin(inlindat);
readIn(inlindat, subgen.length);
base := (subnum - 1) > subgen.length;
readln(inlind at);
for t := 1 to subgen.length do
read(inlindat, subgen.taps(t]);
readin(inlindat);
initdes(key1);
initdes(key2);
tog == 1;
for t := 1 to ((((maingen.layers - 1) * maingen.length) + (MAINSP - 1))) do
begin
generatornonlin(inaingen, mainout);
storshift(dat, MAINSP, mainout)
end;

for m := 1 to (power(2, maingen.length) - 1) do
begin
generatornonlin(maingen, mainout);
storshift(dat, MAINSP, mainout);
des(dat, keyl, 1);
des(dat, key2, -1);
for t := 1 to MAINSP do
initcond[t] := xor(key1[t], key2[t]);

B
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orsum ;= 0;
for t := 1 to subgen.length do
orsum :== orr(orsum, initcond |base+t]);
for t := 2 to subgen.length do
subgen.contents(t] := initcond|base+t|;
subgen.contents(l] := orr(initcond[base+1], cornplement(orsum));
tog := togle(tog);
for t ;=1 to (power(2, subgen.length) - 1) do
begin
for s :=— 1 to SUBSP do
begin
generatorlin(subgen, subout);
subout := xor(tog, subout);
storshift(outword, SUBSP, subout)

end; !

if SUBSP = 1 ;
then 3
writeln(codout, outword(1):1) 1

else §

begin 3

tot := 0; K

for b := 1 to SUBSP do g

begin 3

val ;= outword[b] * power(2, (SUBSP - b)); i

tot :== tot + val q

end; i
writeln(codout, tot:2) K

end; 1

end,; ]
end; 3
end. :
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The following are the permutation and selection functions particular to the DES algo-
rithm. They are used as input to the program regtogdes.p, in order for part of this pro-
gram to simulate the operation of the DES algorithm.



IPERM

68 5042 34 26 18 102
60 52 44 36 28 20 12 4
82 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
574041332517 91
595143352719 113
61 53 45 37 20 21 135
63 55 47 390 31 23 157
PERM

16 7 20 21

29 12 28 17

1152326

5183110

2 82414

3227 3 9

191330 6

2211 425
INVPERM

40
39
38
37
36
35
34
35

8 48 16 56 24 64 32
7 47 15 55 23 83 31
6 46 14 54 22 62 30
545 13 53 21 61 29
4 44 12 52 20 60 28
3 43 11 51 19 59 27
2 42 10 50 18 58 28
141 94617 5725

PMCI1C

57 49 41 33 2517 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
PMCI1D

63 55 47 39 31 23 15
7 62 54 46 38 30 22

14

6 61 53 45 37 29

2113 5282012 4

PMC2
14171124 1 5
32815 62110
231012 426 8
16 7272013 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 20 32
SELECT
3212345
456789
8 910111213
1213141518 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 20
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2820303132 1

NUMSHIFT

1122222212222221
SELECTION FUNCTIONS

S1

14 413 1 21511 8 310 612 5 90 0 7
015 7 414 213 110 61211 98 5 3 8
4114 813 6 2111512 9 7 3105 O
1512 8 246 1 7 511 31410 0 613
S2

151 814 611 3 4 9 7 21312 0 510
313 4715 2 81412 0 1106 911 5
014 71110 4131 5 812 6 9 3 215
13810 1 315 4 211 6 712 0 514 9
S3

100 914 6 315 5 11312 711 4 2 8
137 09346102 8514121115 1
136 4 9815 3 011 1212 51014 7
11013 06 9 8 7 41514 311 5 212
S4

71314 306 910 1 8 51112 415
13 811 5615 0 3 4 212 11014 9
106 9 01211 713151 314 5 2 8 4
315 0 610 113 8 9 4 51112 7 214
S5

212 4 171011 6 8 5 31513 014 9
1411 212 47131501510 3 90 8 6
421111013 7 815 912 5 6 3 014
11 812 7 114 213 615 0 910 4 5 3
S6

2
7

121101598 2 6 8 013 3 414 7 511
1015 4 2712 956 113149 011 3 8
91415 52 812 3 7 0 410 11311 6
43 2120515101114 1 7 6 0 813
S7

411 21415 0 813 312 9 7 5106 1
13011 749 11014 3 512 215 8 6
14111312 3 7141015 6 8 0 5 9 2
61113 81 4107 8 5 01514 2 312
S8

1328 461511 110 9 314 5 012 7
11513 810 3 7 412 5 611 014 9 2
71 4 1 01214 2 0 6101315 3 5 8
2114 7410 8131512 9 0 3 5 611



