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Abstract

Quantile Estimation by Orthogonal Polynomials
Bo Yang

This thesis proposes a smooth alternative to the conventional sample quantile function
as a nonparametric estimator of population quantile function. We view our functions
as approximations of the sample quantile function rather than that of true quantile
function. Thus, a kind of two-stage procedure is involved: the true quantile function is
estimated by the sample quantile function and the sample quantile is approximated
by an orthogonal polynomial. The proposed estimator has the same asymptotic
distribution as the conventional sample quantile. Monte Carlo studies are conducted

to compare the proposed estimator with the sample quantile.
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Chapter 1

Introduction

The estimation of population quantiles is of great interest when one is not
prepared to assume a parametric form for the underlying distribution. In addition,
quantiles often arise as the natural object to estimate when the underlying distribution
is skewed. Assume that F(z) is an absolutely continuous distribution function with
corresponding probability density function f(z). Define the quantile function Q(p)
to be the left continuous inverse of F given by Q(p) = inf{x: F(z) 2 p}, 0 <p< 1.
The function GYp) has derivative given by @'(p) = m when it exists and it is
called the quantile-density function. For 0 < p <1 define & to be the pth quantile
of F satisfying & = Q(p). We assume throughout that f(&) >0.

Let Xi, X3, - -+, X, be independent and identically distributed with c.d.f. F,
and let X(5) < X(g): -+ £ X(n) denote the corresponding order statistics. A traditional
estimator of & is the pth sample quantile given by Qp) = X(ing}+1), Where [np] denotes
the integral part of np. The main drawback of sample quantiles is that they experience
a substantial lack of efficiency, caused by the variability of individual order statistics.

Some alternatives to the conventional sample quantiles, as the estimators of
the population quantiles, have been proposed by Parzen(1979, p. 113), Reiss(1980),
Harrell and Davis (1982), Kaigh and Lachenbruch (1982), Kaigh (1983), Falk (1984),
Yang (1985), Brewer (1986), Padgett(1986), and Sheather and Marron (1990).
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Suppose that K is a density function symmetric about 0 and that h — 0 as

n — oo. Parzen (1979) proposed the kernel quantile estimator

PO =3 | JE, K- paiXeg (11)

where Kj(u) = h~1K(u/h). Clearly, PQ(p) is a weighted average of the order statis-
tics X(), for which { is close to p more heavily than those X{; for which 4 is far
from p. Reiss (1980) used the above estimator to test hypotheses concerning the
population quantiles. Yang’s (1985) estimator is given by
n .

YQ®) = 3 (0Kl - P Xy (12)
In the same paper, Yang also established the asymptotic normality and mean squared
consistency of PQ{p) and YQ(p). He showed that PQ(p) and YQ(p) are asympto-
tically equivalent in mean square and gave the mean square convergence rates of the
two estimators. Falk (1984) investigated the asymptotic relative deficiency of the
sample quantile with respect to PQ(p). Padgett (1986) generalized the definition of
PQ(p) to right-censored data. Sheather and Marron (1990) gave several improved

kernel quantile estimators as follows:

n N |
su) = 3 K2 - pig (13)
SM0) = oI Kal gy PV (14)

SMytp) = S (S~ PIXg.
T K52 - p)
They also established asymptotic equivalences between YQ(p), PQ(p), SMi(p), SMa(p),
and SM;(p).
L- estimators with much different motivation are included in those proposed

by Harrell and Davis (1982) and Kaigh and Lachenbruch (1982). Since E(Xpnp41)

(1.5)



converges to Q(p) = F-!(p), Harrell and Davis took an estimator of E(Xnpj+1) as
the estimator of Q(p) given by:

ﬁ)l F;l(t)t("+l)7"(l - t)(n+l)(l—p)—ldt
Bl(n+1)p,(n+1)(1 - p)]
where B[(n+ 1)p,(n+ 1)(1 — p)] is the normalizing constant of the beta distribution
with parameters (n 4+ 1)p and (n + 1)(1 — p). The Harrell-Davis estimator can also

HD(p) = (1.6)

be written as

T [(n+1)
HD(p) = .;[ izl T((n+1)p)I((n+1)q)

where g = 1 — p [ Maritz and Jarrett (1978)]. Although Harrell and Davis did not use
such terminology, this is exactly the bootstrap estimator of E(X([ng+1)). In this case,

x t(n+])p—l(1 - t)(n+l)¢-ldt]X(.-) (1.7)

an exact calculation replaces the more common evaluation by simulated re-sampling
(see Efron 1979, p.5). Seather and Marron (1990) demonstrated an asymptotic equi-
valence between PQ)(p) and HD(p) for a particular value of the bandwidth A.

For a fixed integer k, let Y1), Y(), ..., Yx) be the ordered statistics of a sub-
sample of size k randomly selected without replacement from the complete sample
X1y, X() -+ X(n) . Then a sample quantile estimator of Q(p) based on the sub-
sample would be ¥{j;)41). Kaigh and Lachenbruch (1982) defined their alternative

quantile estimator JCL(p) to be the average of all sub-sample quantile estimators from

n
all ( b sub-samples of size k. They showed that their estimator may be written as

KL(p)= Mfk (::1) (:::)Xm (1.8)

=0

where r = [p(k + 1)]. Sheather and Marron (1990) also established the asymp-
totic equivalence between PQ(p) and F. L(p) where the bandwidth is a function of k.
This relationship together with the optimal bandwidth theory [Sheather and Marron
(1990), section 2] provided a theory for the choice of k that minimizes the asymptotic
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MSE of KL(p). See Kaigh (1988) for interesting generalizations of the ideas behind
KL(p).

Kaigh (1983) pointed out that HD(p) is based on ideas related to the Kaiyh-
Lachenbruch estimator. The latter is based on sampling without replacement, whereas
the former is based on sampling with replacement in the cuse k = n. A referee has
pointed out one could thus generalize HD(p) to allow arbitrary k, and this estima-
tor as well as other generalizations were proposed and studied by Kaigh and Cheng
(1988).

Brewer (1986) proposed an estimator of &, based on likelihood arguments.

His estimator is given by

BQ(p) = 2:‘{ [% r(i)I;((Zt 1)+ 1)p"“(l =P X (1.9)

It was also shown to be asymptotically equivalent to PCXp) [see Sheather and Marron
(1990)).
A kernel type estimator of F(z) is

F(x)= [ oo(nh)" gx(l(‘—,:i)dt (1.10)

Then Q(p) = inf{z|F(x) > p} can be another estimator of Q(p).

Our thesis is to propose and study another alternative to the sample quan-
tile in an attempt to improve the precision of estimation of population quantiles and
smooth the sample quantiles. The alternative estimator is a linear combination of or-
der statistics and may be viewed as “ quantile estimation by orthogonal polynoinials”
obtained by a Fourier expansion of the sample quantile over a series of orthogonal
polynomials.

In general, the effective performance of nonparametric function estimators
is critically dependent on the choice of a “smoothing parameter”. If not enough

smoothing is done, the estimate will be “rough”, showing features which do not



represent the function being estimated. On the other hand, if too much smoothing
is done, important features of the curve may not show up since they are essentially
smoothed away (Marron, 1986). In our estimator, the smoothing parameter is the
number of the terms of orthogonal polynomials N. From the simulation studies, we
can see that when N :=: 10, the estimator can achieve a very good approximation of
the true quantile function.

In Chapter 2, the alternative estimator and some of their asymptotic proper-
ties are discussed. In Chapter 3, we employ Monte Carlo stimulation to cornpare the
alternative estimator with the conventional sample quantile estimator. The computer

program for the simulation studies is given in an appendix.




Chapter 2

Quantile Estimation by

Orthogonal Polynomials

2.1 Approximation of Functions by Orthogonal
Polynomials

Let {¢i,z > 0} be a sequence of functions orthogonal with respect to a non-
negative weight function w on B, usually R (real space) or [0,1). Then ¢; should

satisfy the following conditions:

0 i#j

[ e)ta)ti(a)dz = { L in

We will define (f,9) as [puw(x) f(x)g(z)dz. So

(60 8i) = [,w(x)qs.-(z)rp,-(z)dz

Consider the problem of finding the best approximation to f(z) generated
by the orthogonal sequences ¢1(z), #2(z), ..., dn(z). With a simple computation,



we can get the best approximation as follows:
N
z)= a;i\T
Fz) '; ¢i(z)
where a; = [pw(z) f(r)di(z)dz.

In this section we generalize this special approximation problem by consi-

dering approximations generated by an infinite orthogonal polynomials.

Definition 1 An infinite series of the form T2, ¢i(z) is said to converge to the
Junction ¢(z) if the sequence of partial sums Sy(x) = Y3, $i(T) converges to ¢(z).

Lemma 1 Let {¢i(x) } be a sequence of orthogonal polynomials. A series of the form
Y2, 0idi(x) converges te an function ¢(x) if and only if 32, |ai|* < 0o and, in that
case, we have a; = [pw(T)dz)di(z).

(See Luenberger (1969) ).

Lemma 2 (Bessel’s Inequality) Let f(z) be a function and suppose {¢i(x)} is a se-
quence of orthogonal polynomials. Then

U0 < AP

=1

where || f| = /(f, f)-

Since Bessel's inequality guarantees that 32, |(f, %)[? < oo, Lemma 1 gua-
rantees that the series 3°%2,( f, #;)¢i converges to some function.

Definition 2 An orthogonal system {¢;} is called complete in Ly(B) if for any func-
tion f € Ly(B), [p f(z)di(z)dx = 0, for all i, implies f = 0 almost everywhere.

Example 1 Consider Lz[~1,1] consisting of square-integrable functions on the inter-
val [-1,1). With Gram-Schmidt procedure, the independent functions 1,z,23,...,z"

produce a sequence of orthogonal polynomials {$i}2;. It.turns out that

¢i(z) = "2"; lﬂ(x)’ t=12,...,

| R



where the Fi(z) are Legendre polynomials

(27 - 1))

We now show that this sequence is a complete sequence of orthogonal poly-
nomials in Ly[-1,1]).
Assume that there exists an f € Ly[—1,1] orthogonal to each z", then we

F(z) =

uave
/_lla:"f(z)dx= 0 forn=0,1,2,....
The continuous function
F(z)= [ fde
has F(—-1) = F(1) = 0, and

[Le'F@)ds = ZSF@)k - [ 2=
=0
for n=0,1,2,.... Thus the continuous function F is also orthogonal to the polyno-

mials.
Since F'is continuous, the Weierstrass approximation theorem applies. Given

€ >0, there is a polynomial

G(z) = g;a;a:‘
such that B
|F(z) - G(z)] <€

for all £ € [-1,1]. Therefore, since F' is orthogonal to the polynomials,

1 1
[/F@de = [ F@)Fz) - Ga)lds
¢ /_'l \F(2)\dz

< o3 [ IF@)Pdc}h

IA



So we get

/_'l |F(z)dz < 2€.

Since ¢ is arbitrary and F is continuous, we have that F(z) = 0, and there-
fore, f(z) = 0 almost everywhere. So the sequence of the orthogonal polynomials is

complete.

Definition 3 A complete system {¢;} is called a basis in Ly(B) if for every f €

Ly(B) there is a unique convergent series ezpansion 3 a;¢;.
Definition 4 The sequence {X,} is said to converge in Ly(B) to X if and only if

Jim E(1X, - XP") =0

It is known that

Lemma 3 A system is complete on Ly(B) if and only if

/ £ gag, for all f € Ly(B)

(See Devroye and Gyorfi (1984) ). This is called Bessel’s equality. In that case, we

actually have convergence of the partial sums in Ly(B):

Theorem 1 If f € Ly(B), and the system is complete, then
N
U= w0, asNoeo
==

(See Sansone (1977), p.23.)
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2.2 General Properties

Let X, X3, ..., X, be a random sample drawn from a population with
continuous density function f, and {¢s}2, be a sequence of orthogonal polynomials
on a set B, then a; = fp f(z)@i(x)dz can be estimated without bias by

1 n
ani = ;;fﬁi(xj)

and f(z) can be estimated by

o) = 3 onih(2).
or |
fu(2) =~ ;KN(-'”’ X;)
where N
Kn(z,X;) = ;¢a($)¢e(xj)~
The partial sum is defined as "
Sm(f) = ga@i

From Devroye and Gyorfi (1984), we have )

Lemma 4 Let f,, be an estimate of f by orthogonal polynomials with m = my, terms,

and let f have the ezpansion -
aidi(z
2 0i(2)
and a; = [p f(x)Pi(x)dx. Assume also that all ¢;’s are absolutely integrable on B.
Then

IA

E( / o= < [15alh) = N1+ B[ 1o~ B

< [1Sal) -+ [ VB EGI)

< [1Sah - N1+ 7 [ VEEX)

E([1fa=1) 2 Maa{ [1Sn() - flg [ Bllfa = BRI
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Lemma 5 Let f € Ly(B), then the estimate f, of f by orthogonal polynomials with
m terms has the following ezpected Ly error:

E(f(fa-fP) = 331 [1-e+ 3 ot

i=m+

l m ©0
< ;;/ﬁﬁ?‘*-ia%la?
» [f@Kn(z, 2z + 3 ok

f=m<+1

2.3 Asymptotic Properties of Qn(p)

We shall view our functions as approximation to the conventional quantile
function, rather than the true quantile function. Thus, we need only assume that the
sequence of orthogonal polynomials is complete in the class of step function on (0,1).

Let Q be the traditional sample quantile function of an independent sample
{X;,1 £ j < n} from an unknown distribution F. The generalized Fourier expansion

of Q, to "N terms”, is given by

Onto) = 3 ).
and
Q) = X(oal1)
where X(3) < X(3) <+ £ X(n) are the order statistics of the X;’s.

Then we have

4 = [ QE)di(prelp)dp
- [ Xinp+1)9i(P)w(p)dp
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. .
= /f Xoydi(p)w(p)dp + /; Xoydi(p)u(p)dp+ - - - + /“l'.'." Xin)di(p)w(p)dp
= 3K [, hiautop

J=1
So
On(p) = ggxm /; di(@)ulz)dedi(p).

) e =315 f $i(p)di(yu()dz) Xy,
2 fa® )

The estimator can also be re-expressed as

Qn(p) = fn_:ajxu)

J=1
where N
a; = ; /,; ¢i(z)di(p)u(z)dz.

Thus, Qn(p) is an L-statistic. Following David (1981, p.273), @n(p) is asymptotically
normally distributed.

The efficacy of the orthogonal polynomial method rests on the simplicity of

the choice of N, and on the ease with which the constants d; can be calculated.

Lemma 6 Let F be a twice differentiable distribution function, having finite support
on R!. Assume {infocp<1 f(F~'(p))} >0 and supyepcy |f'(F-1(p))| <oo. Then

supogp<1 Q) - Q) — 0. ae.
(See Csorgd (1983) ). From Chung(1974), we have
Lemma 7 Convergence a.e. implies convergence in probability.

ie
Q(p) - Q(p) = 0 in probability asn— oo
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Lemma 8 If N/n! = 00 as n — o, then

EQn(p) - Q) - 0

This can be derived directly from Theorem 1. Thus we get

Qup)~ Q) in L

Lemma 9 If X, converges to 0 in Ly, then it converges to 0 in probability.
(See Chung (1974)). Therefore, we have
QN(p) - Q(p) — 0 in probability as n — oo (i.e. N — 00)
Theorem 2 If N/n — o0 as n— 0o, then
Qn(p) - Q(p) = 0 in probability as n — oo

Proof. Since

1Qn(p) - Q(P)] < |1Qn(p) - Q)| + 1Q(P) - QP)]

Let
= {p: 1Qn(») - Q)| < 5}
B={p:1Q() - Q®)| < 5}

and
C={p:1Qu(r) - Q)| S &}

Since

AnBCcC

1Actually, N can be often chosen much smaller than the sample size n.
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We have
AuB2oC

where

A= {p: 1Qv(p) - Q)| > 3)

B= {p:1Q(r) - Q)| > 3)
and

C={p: 1Qn(p) - Ap)| >¢}
So we get

P(C) < P(A) +P(B)

where P denotes the probability measure induced by F. With the assumption that
Qn(p) - Q(p) = 0 in probability as n — 0

Q(p) — Q(p) = 0 in probability as n — 0

lim P(A) = Jim Plp: |Qu(p) — Qo) 2 5} =0
lim P(B) = Jim P{p: Q) - Q(p) 2 5} = 0
So
dim P(C) < Jim P(A) + lim P(B) =0
i.e.

QN(P) — @(p) = 0 in probability asn — 0

Simulation results presented in the next chapter indicate the proposed quan-
tile estimator is a promising alternative over the sample quantile function in terms of

the smoothness and mean squared error.
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Chapter 3

Simulation Studies

3.1 Simulation Studies

Monte Carlo simulation studies were conducted to compare the performance
of the proposed estimators and the sample quantile for five families of distributions
(Exponential, Normal, Gamma, Uniform, Triangular). Legendre polynomials were
used to estimate the quantile function QN(p), because they provide a complete or-
thogonal basis.

Legendre polynomials of order n can be written as

Pu(t) = 5o (@ 1)

The sequence is orthogonal and complete in L*[-1,1).
Furthermore, a total orthogonal sequence in the space L*[a,b] is L,, where

1 t—-a
) t) = Fa(s), 1+ 2+—
Lﬂ "pn"p“ pﬂ() (3) s=1+ ?—a

The proof follows if we note that a < ¢ < b corresponds to —~1 < s < 1 and the
orthogonality is preserved under this linear transformation ¢ +— s.

We thus have a total orthogonal sequence in L?[0,1] for the compact interval
[0,1).
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With easy computation from the formulas above, we have

_@ninia
Ln(p) - n! dp"p (p_ 1)
where n = 0,1,2,.... The first several terms are given as follows:
Lo(p) =1

Lip) = V3(2p-1)
Ly(p) = V5(6p° — 6p+1)
Ly(p) = V7(20p° - 30p* + 12p— 1)
And the weighted function for the Legendre Polynomials is w(p) = 1.

Because it is difficult to compute with this form in the computer, we use the

recursive formula:
Lu(p) = (anp + bn) Ln-1(p) — caLin-2(p)
(see Luenberger (1969) P.75), n = 2,3,..., with

1
a,.=2 4—-71'2-

1
bn=“‘/4—;§
_ n+1n-~-1

“=\2m=3 n

The simulation was performed for five families of distributions that are com-

monly used. These distributions are shown in Table 1.
The mean squared errors of an estimators were used to measure efficiency,

for example -

MSE(Qn(p)) = E{Qn(p) - Q)Y
MSE(Qp)) = E{Q(1) - Q@))’
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These mean squared errors -onsidered in Table 2 were estimated based on
10,000 independent Monte Carlo trials. The simulations were done on the Fisher
workstation in the Department of Mathematics and Statistics of Concordia Univer-
sity. The exponential, normal, gamma, uniform, and triangle random numbers were
generated by a SAS program or VAXII of Concordia University.

From the 10,000 samples, the estimated mean squared errors (MSE) of the es-
timators Qn(p), Q(p) were computed, and the ratios of these estimated mean squared
errors MSE(Q(p))/MSE(Qn(p)) were calculated.



Table 3.1: Distributions Used in Simulations

Distribution Density
Exponential f(z) = Bezp(--fz), x>0
Normal flz) = o 6exp‘-2—ﬁl-
Gamma f(x) = Wz"“emp(—x/ﬂ)

Uniform fe)=qly asz<b

if0<z<h
Triangular f(z) = {2(11-_,') j;'thxSl where 0 < h < 1.

18
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Table 3.2: Ratio of the Mean Squared Error of Q(p) to that of Q}v(p) (n = 100,

N = 40)

P Exponential Normal Uniform Gamma Triangular
0.05 1433735 1.317731 0.957361 0.768605 1.251294
0.10  1.255647  1.192206 0.995385 0.939847 1.167362
020 1.086199  1.143584 1.053124 0.990225 1.132148
0.30 1.072435 1.124017 1.114974 1.006874 1.115211
0.40 1.084842 1.067263 1.075361 1.013774 1.095464
0.50 1.087808  1.050122 0.978547 1.023494 1.063327
0.60 1.086553  0.959671 1.092713 0.991433 1.024368
0.70 1050166 1.043096 1.078536 1.006323 0.991075
0.80 1.030233 1.096827 1.085785 1.041024 0.983681
0.90 1120960 1.127729 1.248530 1.090807 0.962156
0.95 1201535 1.071169 1.074269 1.113792 0.893721
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Figure 1. Plots of the Sample Quantile, Proposed Quantile Estimator and
True Quantile of Exponential Distribution with n=100 and N=20.
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Figure 2. Plots of the Sample Quantile, Proposed Quantile Estimator and
True Quantile of Gamma Distribution with n=100 and N=20.
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Figure 3. Plots of the Sample Quantile, Proposed Quantile Estimator and
True Quantile of Normal Distribution with n=100 and N=20.
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Figure 4. Plots of the Sample Quantile, Proposed Quantile Estimator and
True Quantile of Tranigular Distribution with n=100 and N=20.
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Figure 5. Plots of the Sample Quantile, Proposed Quantile Estimator and
True Quantile of Uniform Distribution with n=100 and N=20.
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3.2 Appendix Computer Program for Simulation

Studies

This is a computer program written in C language. The random numbers
are given by a program by SAS. From this program, we can get the estimation of the

quantile estimation by orthogonal polynomial.

#include ""head.h"
#define N 100
#define INT_N 500
float L{N];
float 1(i,t)
int i;
float t;
{
int j;L[0]=1.0;
L{1)=s8qrt(3.0)*(2.0%t~1.0);
for(j=2; j<=i;j++)
L{j1=((2.0*8qrt(4.0%j*j=1.0)/j)*t-sqrt (4.0%j*j-1.0)/j)*L[j-1]+
(8qrt((2.0%j+1.0)/(2.0%j=3.0))*((1.0~j)/j))*L[j-2]1;
return (L[i]);

main()
{
int i,j,k,m,mi;
float ghat,lamda,x[n],L1[N];
FILE »fp,*gp;
system("ra -f ghat.dat");
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for (mi=0;mi<datanumber ;mi++)
{
if ((fp=fopen("gensort.dat","r"))==NULL)
{
printf("Can’t open file");
exit();
}
for(m=0;m<mi;m++)
for(i=0;icn;i++)
fscanf (fp,"%f" ,&x[0]);
for(i=0;idn;i++)
{
fscanf (fp," %" ,&x[i]);
}
fclose(£p);
for (m=4 ; m<n;m+=5)
if (m==4 | |m==n-6| |m%}10==92&m<n-6&£&m>4)
{
ghat=0.0;
lamda=((float)m)/n;
1(N-1,landa);
for(i=0;i<N;i++)L1[i}=L[i];
for(j=0;j<n;j++)
for(k=0;k<INT_N;k++)
{
1(N-1, (j*INT_N+(float)k)/(n*INT_N));
for(im0;i<N;i++)
qhat=ghat+x[j1+((1.0/(n*INT_N))+L[i])*L1[i];




!

if((gp=fopen("qhat .dat”, "a"))==NULL)
{
printf("Can’t write file");
exit();
}
fprintf(gp, “%f\n",ghat);
fclose(gp);

#include "head.h"

main()

{

FILE *fp,*gp;
float f;
int i,j;
if ((fp=fopen(“gensort.dat","r"))=aNULL)
{

printf("Can’t open file");

exit();
}
if ((gp=fopen(“"gen2p.dat", "w"))==NULL)
{

printf("Can’t write file");

exit();
}

for(i=0;i<datanumber;i++)

25



26

for (j=0;j<n;j++)
{
fscanf(fp,"%f",&f);
if (j==5]]j==n-513>58&j<n-5&%j%10==0)
fprintf(gp,"%f\n",f);
}
fclose(fp) ;fclose(gp);

#include "head.h"
main()
{
float i,j,k,x[n];
FILE *£p,*gp;
int m,mi;
if((fp=fopen("gen.dat","r")) ! =NULL&&(gp=fopen("gensort.dat","w")) !=NULL)
{
for(m=0;m<datanumber;m++)
{
for(m1=0;mi<n;mi++)
{
fscanf (fp,"%*d %f",&x[m1]);
}
sort(x);
for(mi=0;mi<n;m1++)
{
fprintf (gp,"¥f\n",x[m11);



}
fclose(fp);
fclose(gp) ;

sort(x) float x[];
{
float y;
int i,j;
for(i=0;i<n;is+)
for(jm=i+1;j<n;j++)
if(x[il>x[j]1)
{
y=x[il;
x[i)=x[3];
x[j1=y;

#include "math.h"
#include "stdio.h"
#define n 100
main()
{
int i;
FILE »fp;
if ((fp=fopen("q.dat","w"))==NULL)
{
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printf("Cannot write");
exit();

}

for(i=5;i<n;i+=5)

if(i==5| |i=~n-5]|i>588i<n-542i%10==0)

fprintf(£p,"%f\n", -log(1-i/100.0) );

fclose(fp);

}

#include "head.h"
#define N 40
#define INT_N 100
main()
{
int i,m,p;
float ghatsum,f,f1,q[11];
FILE »=£fp;
if ((fp=fopen(“q.dat","r"))==NULL)
{
printf("Cannot read");
exit();
}
for(i=0;i<=10;i++)
fscanf(fp,"%f",2qlil);
fclose(fp);
system("rm -f sum.dat");
for(p=0;p<=10;p++)
{
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qhatsum=0.0;
if ((fp=fopen("ghat.dat","r") )==NULL)
{
printf("Cannot read”);
exit();
}
for (m=0 ;m<datanumber ;m++)
for(i=0;i<=10;i++)
{
fscanf(fp,"%f",&f);
if (i==p){qhatsum+=(f-q[i] ) *(£-q[i]);
}
}
fclose(fp);
if ((fp=fopen("sum.dat","a"))==NULL)
{
printf ("Cannot write");
exit();
}
fprintf (fp,"%f\n",qhatsum/((float) datanumber));
fclose(fp);

for(p=0;p<=10;p++)
{
ghatsum=0.0;
if ((fp=fopen("gen2p.dat","r") )=sNULL)
{
printf("Cannct read");
exit();



}
for(m=0;m<datanumber ;m++)
for(i=0;i<=10;i++)
{
fscanf(fp,"if",&f);
if (i==p){ghatsum+=(f-q[i])*(f-q[il);

}
fclose(fp);
if ((fp=fopen("sum.dat","a"))==NULL)
{
printf("Cannot write");
exit();
}
fprintf (fp, "%f\n", qhatsum/((float) datanumber));
fclose(£p);
}

#include "head.h"
#define N 40
#define INT_N 100
main()
{
int i,m,p;
float qhat([11],qbar([11];
FILE *£p,*gp;
if ((fp=fopen("sum.dat","r"))==NULL)
{
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printf("Cannot read");
exit();
}
it ((gp=fopen("quo.dat","w"))==NULL)
{
printf("Cannot write");
exit();
}
for(i=0;i<11;i++)
fscanf (fp,"%f",&qhat[i]);
for(i=0;i<11;i++)
fscanf(fp,"¥f",kqbar[i]);
fprintf(gp," P \tghat  \tgbar  \tgbar/qhat\n");
for(i=0;i<11;i++)fprintf(gp, 0.%02d\t%f\t{£\t%f\n",
i==076:i==10796:10%i,qhat[i],qbar[il,qbar[il/qhat[i]);
fclose(fp);
fclose(gp);
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This is a computer program written in C language. The random numbers
are given by a program in SAS. From this program, we can get the estimation of the

quantile estimation by orthogonal polynomials.

#include "head.h"
#define N 100
#define INT_N 6500
float L[N];
float 1(i,t)
int i;
float t;
{
int j;L[0]=1.0;
L[1)=sqrt(3.0)*(2.0#t-1.0);
for(j=2;j<=i;j++)
L{j]=((2.0*sqrt(4.0%j*j-1.0)/j)*t-sqrt(4.0%j*j-1.0)/j)+L[j-1]+
(sqrt((2.0*j+1.0)/(2.0%j-3.0))*((1.0-j)/j))*L[j-2];
return (L[i]);

main()

{
int i,j,k,m,mi;
float ghat,lamda,x[n],L1[N];
FILE »fp,*gp;
system("rm -f ghat.dat");
for (m1=0;mi<datanumber;mi++)

{
it ((fp=fopen("gensort .dat","r"))==NULL)



printf("Can’t open file");
exit();
}
for(m=0;m<m1;m++)
for(i=0;i<n;i++)
fscanf (£p,"%r",2x[0]);
for(i=0;i<n;i++)
{
fscanf (fp,"if",&x[i]);
}
fclose(fp);
for (m=4 ;n<n ;m+=5)
if (mw=4 | {m==n-6| |m%10==9&&m<n-642m>4)
{
qhat=0.0;
lamda=((float)m)/n;
1(N-1,lamda);
for(i=0;i<N;i++)L1li]=L[i];
for(j=0;j< ;j++)
for (k=0;k<INT_N;k++)
{
1(N-1, (j*INT_N+(£loat)k)/(n*INT_N));
for(i=0;i<N;i++)
qhat=qhat+x[j]*((1.0/(n*INT_N))»L[i])#*L1[i];
}
if ((gp=fopen("qhat.dat”, "a"))==NULL)
{
printf("Can’t write file");
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exit();
}
fprintf(gp, "%f\n",qhat);
fclose(gp) ;

#include "head.h"

main()

{

FILE *£p,*gp;
float £;
int i,j;
if ((fp=fopen("gensort.dat","r") )==NULL)
{
printf("Can’t open file");
exit();
}
if ((gp=fopen("gen2p.dat", "w"))==NULL)
{
printf("Can’t write file");
exit();
}
for(i=0;i<datanumber;i++)
for(j=0;j<n;j++)
{
fscanf (fp,"%f" ,&1);
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if(j==5||j==n-5|]j>5&&j<n-6&&j%10==0)
fprintf(gp,"if\n",1);
}
fclose(fp) ;fclose(gp);

#include "head.h"
main()
{
float i,j,k,x[n];
FILE *fp,*gp;
int m,mi;
if ((fp=fopen(“gen.dat","r")) !=NULL&&(gp=fopen("gensort .dat","w")) !=NULL)
{
for(m=0;m<datanumber ;m++)
{
for(mi=0;m1<n;mi++)
{
fscanf (£fp,")*d %f",&x[m1]);
}
sort(x);
for(mi=0;mi<n;mi++)
{
fprintf(gp,"%£f\n",x[m1]);

}
fclose(fp);




fclose(gp);

sort(x) float x[];
{
float y;
int i,j;
for(i=0;i<n;i++)
for(j=i+l;j<n;j++)
if(x[il>x[j1)
{
y=x[il;
x[i)=x[j];
x[j1=y;

#include "math.h"
#include ''stdic.h"
#define n 100
main()
{
int i;
FILE *£p;
if ((fp=fopen("q.dat","v"))==NULL)
{
printf("Cannot write");
exit(); '
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for(i=5;i<n;i+=5)
if(im=5| |i==n-5| | i>5&&i<n-58&i%10==0)
fprintf(fp,"%f\n", -log(1-i/100.0) );
fclose(fp);

#include "head.h"
#define N 40
#define INT_N 100
main()
{
int i,m,p;
float qhatsum,f,f1,q[11];
FILE =£fp;
if ((fp=fopen("q.dat", "r"))==NULL)
{
printf("Cannot read");
exit();
}
for(i=0;i<=10;i++)
fscanf (fp,"%f",&q[il);
fclose(fp);
system(“rm -f sum.dat");
for(p=0;p<=10;p++)
{
ghatsum=0.0;
if ((fp=fopen(“ghat .dat","r"))==NULL)
{
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printf ("Cannot read");
exit();
}
for(m=0;m<datanumber ;m++)
for(i=0;i<=10;i++)
{
fscanf (fp,"%f",&f);
if (i==p){qhatsum+=(f-q[i] ) *(£-q[i]);

}
fclose(fp);
if((fp=fopen("sum.dat","a"))==NULL)
{
printf (""Cannot write");
exit();
}
fprintf (fp,"%f\n",qhatsum/((float) datanumber));
fclose(fp);

for(p=0;p<=10;p++)
{
ghatsum=0.0;
if ((fp=fopen("gen2p.dat","r"))==NULL)
1
printf("'Cannot read");
exit();
}
for (n=0 ;m<datanunmber ; m++)

for(i=0;i<=10;i++)

38



}

fscanf (fp,"%f",&f);
if (i==p){qhatsum+=(f-q[i])*(£-q[il);

}
fclose(£p);
if ((fp=fopen("sum.dat","a"))==NULL)
{
printf("Cannot write");
exit();
}
fprintf (fp, "%f\n", ghatsum/((float) datanumber));
fclose(£fp);

#include "head.h"
#define N 40
#define INT_N 100

main()

{

int i,m,p;

float ghat([11],qbar(11};

FILE *fp,*gp;

if ((fp=fopen("sum.dat","r"))==NULL)

{

printf(“"Cannot read");
exit();
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}
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if ((gp=fopen(*'quo.dat","y") )=aNULL)
{
printf("Cannot write");
exit();
}
for(i=0;i<11;i++)
fscanf (fp,"¥%f",&qhat[i]);
for(i=0;i<11;i++)
fscanf(fp,"%f" ,&qbar[il);
fprintf(gp," P \tqhat  \tqbar  \tgbar/gqhat\n");
for(i=0;i<11;i++)fprintf(gp, "0.%02d\t%f\t%L\thf\n",
i==075:i==107965:10*i,qhat[i],qbar([i],qbar[il/qhat[i]);
fclose(fp);
fclose(gp);
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