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_ construct and determine the structure of the corresponding semi-groups. ’

: evoluuon of quantum mechanical systems, which are subject to randomly

. Quantum Stochastic Procesees and Dyna{nical semi—Groups

ABSTRACT , N

N N

.

Fatemeh Afsharnejad

. l
Two problems haye been studred in this dmsertatwn, quantum

stochast1c proceses and quantum dynamical semi-groups and their
generators For an arbitrary one—parameter semi-group, defming the

infinitesimal generators under d1fferent contmmty conditions, we can

Twq such classes\ of semr-groups, namely quantum_stochastic processes,.
’ ' i / .
and dynamical semi-groups have been considered, and the relationship

»

betweefl them is analyzed,

The theory of stochastic processes was developed by Davies (2]
around 1969, in an attempt .to describe mathematically the time

»

repeated measurements,

: . \
The concept ‘of a dynamical™ semi-group was developed by

Kossakowski [14] in 1972, The theory of dynamical semi-groups starts

from certain basic assumptions on the nature of a general time evalution *

\of a physical system, and one can deduce condjtions under which these

-

De

éemi—groups describe quantum. stochastic processes in the above sense,

?
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We apply the general theory t:o the ume evoluttén of a quantum
mechamcal systenm, to a good appronmatton by g1ven a ceztain class of
Specxﬁcally we look at a q:in-l/Z zmsteﬁ\

evalving in t:ime via a dynamical sem1-group and an unsbable system

dyna mical semi-groups.

decaymg in the presence of randomly tepeated measurements.
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' -one~dimensional projection operatcrs are not preserved,
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———————————

, ‘ e .
We study in this dissertat'ion, thej mathematical description of
physical systems, which in the cburse of their time evolution, unéergo
measurements at randomly repeat:ed‘ times. The descripton is quantum
mgcbanical; S0 that in the background one has a separahle Hilbert space
& , with the statéq of thqughysical system 'under consideration, being
given by th; normalized, positive trace class operators on it. Any such
gtate g evolves in ﬁm: as a result of two processes. Firstly, it evolves
as a result of the sxstém dynamics.,‘ in between two acts of observation
made on the system. This evolution ..is‘ governed by a Hamiltonian H
fwhich is a self~adjoint operator on . ) and is time reversinle, Moreover,

it preserves pure states, in the sense that if g is the state g evolved to

time t, as a result of this evolution alone, and if @ is a one-dimensional

" projection operator, then so also is Qe Secondly, the state ¢ changes,

4

each time a measurement is made on the system. This change is
irreversible in time and hence the combined ‘evolition of the -system is

irrevegsible Jand takes "pure" sgtates into “mixed" states -— ie,,

7

l

i

Consider, for examgle, a tyﬂcal photon experiment, A 'weak beam
of light is directed into a-photoi';: coul

&

split into two parts

e
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-which are directed into different counters. Then the numbers of photons

1

arriving at each counter is a random variable and depends sg:rongly on

whether the.néht is coherent or incoherent. There may be a statistical

these semi-groups and how the generators uniquély fix them,

cotrelation between the arrivals of 'the photons at the two counters. :
F] ’ .

-

-We intend to study a mathematical ‘model for such a situation The

framework for, this deecnpﬁon is a quantum mechanical - theo:y of~

stocastic processes, whmh we discuss in Chapter 3.
E.B. Davies.and J.T. Lewis had introduced in [1] a model. of

quantum probability theory, to

provide a mathemgﬁcal framework for
studying changes that occur in quantum mechanical states as a result of o

a measurement performed upon it, Then, in 1969, Davies continued this

work and developed a theory of quantum stochastic processes, which

concerns successive cbservations of a system during its evolution in timé

under certain fixed exterior Epnditions. “ . ~
Among the results in)/‘Chapter 3, given'a stochastic process, we

obtain a one-parameter semi-group determined by it, A related c;)nqcept ) -

is that of a dynamical semi-group which we study in Chapter 4.

Following the work of Kossakowski (13, 14), we study the generators of

Chapter 5 illustrates the interconnection between Chapters 3 and
4 by means of an example, |

@




CHAPTER 2

Mathematical Preliminaries

. ~ o

The purpose of this chapter is to introduce Some of the

fundamental concepts (mathemaﬁcal b;ckground) and deﬁrm:ipns which
will be used through this work

A

Section-1; Measure Theory /

A}

A d-field F on a set X is a non-empty collection ‘of subsets of X
_which "is closed under complements, countable unions and countahle
intersections, Every 3-field contains the enpty set @ :and the whale
space X as members. I Xis any topological space, then C(X) denotes
the space of all complex~valued continuous functions on X and CR(X)

" the space of all real-valued continuous functions. The Baire d~field of X

is the smallest &~Field with respect to which.all continuous functions are
measurable, while the Borel & ~field is the smallest &-field containing all

open sets, In general, the Baire é-field is contained in the Boreld-field,

If X is a compact Hausdorff space, therg is a natural .one-one
correspondence between ' !

@ the positive linear functionals on CR(X)r

(14 the Baire measures bén L .

e | N

»
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(iii) p the Borel measures on X which are reqular in.the sense'

that for all Borel sets E : /

-

J4(E) = Sup {NK\): KcE and K is'compact ). C 1 -

If X is a compact Hausdorff space, the fo]loying' three conditions are
equivalent: |

() X is second countable (there is a countable base to the |

topplogjbf X); . _(" '
‘ @) X is-metrizable; ’

4

@i)  Cg(X) is separable (contains a countable dense set).

If these conditions are sadsgzd then the Baire and Bfrel \3 -fieldd
: : .

. o
caincide, and every Borel measure on X is regular.

-

v
'Y

In quantum-méc;harﬁcél mea.mrement'theory it is almost always the
case that a measurable quam:i;:y takes its values in a locany-compa&
.space X -which is second cbuntable, actua]:‘l.y X ¢ R", The one-paint
compactification of X i8 a compct metrizahle space X obtained by |
adjoining one point, called @, to X. There is a vonefone ;orrespondence
/between the (finite) Borel measures on X and the Borel measures m. on’

1

X such that Ju( o) = 0, 4

v LN
+

1

From the mathematical point of view almost every theorem can be
exl:er)aed from a compact metriahle space ko a compact Hausdorff space
by replacing the word "Borel" by "r Borel® or "Baire".

.
' {

&

- (4)

-
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v Weuséthésymbol:?eto denoteacomplt;x Hﬂbertspacewithan "
inner product < (p,y> wtﬂ.chiscomplexlinearin(pandconygatelinearm h ,
Yo L(Qc)shalldenotethesetofallbwndedoperatorsonyt a’nd':f(?.) ) (
the Banach,space of all ttace c]as operatozs on JL(cf. Definition 222

below),mﬂurespecttothetrace—norm. Wedenot’ebyff'(wtheﬁanach o \

space of self-adjint trace class operators with the trace norm and by'
'I'S(ZC)+ the positive cone of trace class operators (T (). B

R 4 - N
Definition 2.2.1 .

Pal
&

. An operator A~i'n L(%)iss&idtobg%elf—ad?ojnt& A =A%, (A% is
the adjoint operator of A in LiEN.a issaic?to be compact if { Acpn}
has a nocm convergent subsequence for every ngrm‘bo'unded ence “
{ cpy }in ¥, | - o

If A is compact then | A | is also compact. with non-negative .-
eigen values { A, } -whezewegmulmbe-nl-mu)’i
n=l

IfA = A wedeﬁneuxeppédﬂveandnegadvepampfand A" of
" Atobe ‘ ‘
o : - _lal~-a
A+.|Al+A y A '-L-Lz-o—*
\‘ 2 .
oy

K
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¥, ' " K " ' ¢ ] *
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r ’ -~ o ) ‘ :
i > L& ' . A
\ s ’ 7 (') -
4 , - . ﬁ Y ° » / »
. . g , '
. v v ‘
v ' " ‘.Q . * ‘ ' . ' ¢
N ks . péfinition 2.2.2 ' ‘
. ot . ‘ ’ \{/N , oo -
NN —~ vEe ‘ :
b, ' -“We say that A is of tza}e class if it has finite trace norm, where -
Sy ‘ ' - ' .
H . . , )
R T M & ° > . . ‘ )
; ) i ' ' All. = A .
i B LYV S |
N T S C o ‘
. Now if { ¢p, }is am orthonormal basis in # and ae T(¥) the sum’
1 ! " ] ’ d‘,
! v -
1 \.' ) ’ m’ L
. tr[A]’nZ< ACPn;(?n)
y ' J ’ } LY
) -4 S .
‘ tely convergent and- independent (of the orthonormal basis
v‘ﬁ?’ - * . ' * !
R g
o~ ~

y o ‘ ‘ \

=3 The linear finctional tr: i(ﬂ)#tdeﬁnek,% A->t[Al=

. . R Z( qun‘,‘cpn;isnom bounded and satisfies

AT 1 ST 1 £ Y AN VAET @)
/x! A is compact and self adgoint with eigenvalues { A }'the,n

4

ST NIV S AW »
Y . KD n - . —

¥

.

Ay

. -

e
v

. If this sum is finite then °

m.-m./ ;
A
¥
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C tr(A]=) A ' ' -

I Ac T, (@' then . 0

)

wialslalg - v -

~

~

For anérbit.rary element A€ 'Zfs (50), both AT and A lies in

T (%) ana, ,

-

“

J

. 4y N -
. lally =02t Fllamll
\‘— . oY . ..
’ ( . ‘ N ' / ' ‘. o
Definition 2.23 ; B
' + L .!' s *

«

. Lt 'ﬂ’s (4€) be the real Banach space of self-adjoint trace dlass -

" linear operators on £ .. Elements of '\7'3 (#) will be denoted by 0,3/ A, ...

The.norm in ’CIS () is given by the formula

P
[

o .
“ . C : \
T le g supgn; | ey |

-~ . '

v)hgte‘ the supremum E taken over all orthdn:)tmal and complete bases
; . .

{x tand{y Tin%. o
WS, ' : R .
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Section 3: State Space and Observakble

]

FS

The matenal of this section and the next is derived from Davies
3
and Lewis [‘l ] and Dav1es (2] The. resu]rs will be needed in the next

chapter.

< ) L1 P L4

The set T, (#) of self-adjoint trace class operators on the Hilbert

" space 4 forms a real ~Bamach space V. uﬁder the trace norm, and the

states form a positive norm closed cone v in . The states are defined
as the non-negatwe trace class operators of trace one, elsewhere ca.ued

dene:.ty matrices, Ly , . ..

3' o : . ¢

+ e -

Definition 2,3.1 B - “ ‘ N

A stat §>__a_ isatnple(v,v &)cordstjngofa@nach

space v, a closed cone V which generat-es V. and a linear functional tr

L4

on V such that i v , ' ¢
o : - .
) kel )=|igll - for angev.& - S
A linear functional ¢pon V is said to be positive if « .
¢ [91?-0 ' _ for a]l.gev+. S e
. -, > 1 Ped g .
¥ - Vo
. (8) _ i
- : ,

J e e T —_
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A linear mappin; T':V—;V is said to be positive i!f"l“(if+ )c v,
Every positive linear wfunctional on a state space :s ,nec&saﬂl‘y
continuous: and boungled. The set of all positive linear mappings on V
forns a closed cone L' (V) in the ]mear space L(V) ;caken with the norm
.  topalogy of all boinded bhear mappings of V into itself.

a

i}

. 2.3.2

¥ o . ‘ N - !
A state Q is a non-zero element of v*, satisfying trg=1..

. Let V' be the Banach spgce/dual to V which can be identified
with the space of bounded self-adjoint operators on &2 .
- . b . ;
“ p . !
‘= Definition 233 o - ‘
. Anobseryab]eisatﬁpie(x,F,a)cpnsis:ingofasetXwith'a.‘
? R S a 4 N
. & -field F of subsets of X, and a mapping 3 ; F—> V satisfying:
‘ @ cofaE fa), . . foral EcF; T
. o, (i " ax) =1 the identify operator on &£
_ - ) foreach countable family { E ) of pairwise disjoint sets in F,
\ i . : ' ‘ . . T
{ ‘ - A »
: T @ ' )
- [ . . - a( 4] Ei ) '%’&(Ei )' s . "
. . - . \ =] + isl - " o 5 ~ -
’ ’ i ‘qj > {L ¢ . . ¥
. e |
* T os
‘ . - » /_‘ g . 'J
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where the right hand side converges in the weak operator =

/ topology of V*. The Borel space (X, F) is called the value
. gpace of the observahle (X, P, a ).
' 4
Definition 2,3.4 . -

An instrument is a triple (X, F, £ ) consisting éf—a Borel space (X,F)
and a mapping &§:F - L" (V) satisfying
' o
W triaXigl=tr(g) YgeV;

(ii)  for each countable family { E; } of pairwise disjoint sets in F,

. 03] .
&(U E) =§:&(Ei )
' im] 1= ‘

where the series conyefges in the strong operator topalogy.

‘If .1 and £2 are instruments on X and Y respectively with values
in a state space V, then we define the composition E,onXxxyY,of el
following €%, denoted by & 0 €%, by

E.(exF) = EXE) €4F),  for allsubeets of E¢ X and P ¢ Yo

i

10y

J N Py
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Section 4: Samg]gs;me K S

—

-

“To define a quantum stochastic  process, we need to develop the

:

notion of an event and a sample space,

L4

Suppoee we are given an apparatus which reco:ds events for
example, the space time pm.nt at which a photon is absorbed, Each event

' is represented byapo_int(x,t)e:(x(o,cn)wheret>0:sthet1me at

2}
which the event occurs and % € X, where X is a separable locally

Bcompact Hausdorff space representing the set of possible values of some

' Definition 2.4.1

\

observable the apparatus is measuring,

) ' A

A sample point is defined as a seuence of events
{ ( Xi0 ti)’ i=1,2,...} such that 0<t1<§2... and either the sequence
terminates or t_ =>m as n—>® . The case n=0 gives rise to the sample

point 2 with no events,

RO

S e mete® aaa hima
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Definition 2.4.2
For each time t>0, we define the san:ple space xt as the set of all .
Einiﬁepsequenca { (7%1, ti)‘ i=l,2,...}n } of events of arbitrary finite length
n, such that each x i is the position of an event and tle( ot ] Le.: L
Xe =08 1o &) (g Bl £) |
The sample space is a Borel space in a natural way; a]so &w is defined-as
the set of-all sample points and is a Borel subset of

w , Y
U {“[ Xx(Qomo)}k - . ‘ . . : .
m=0 n=0 ’ :
Given any & t>0, there is a continuous map A : X x xt‘?l‘-‘-?» Xéﬂ: Co
efined by: R ' " ':
’ m mén : ‘ / i
’ ‘ ’ . / :
> ‘ . . ~ < / 4
where (2., U)) = [y, r.i)/ . : L if ;L- k<n )
) - /

/
xfp<k$m,4;11.

/,

and (2., U) = (X, _ /8 . +t)

~
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P continuous-time Markov chain, v

'CHAPTER 3

v guan&mstodmaﬂcém

)
The material in this. chapter consists of an introduction to the
- theory of quantum stochastic processes (Davies (2] and (3)).

A stochastic process is a family of random variables Xer where t is |

A parameter runing over a suitable index T, If the index T is countable
set, ie: T = {0, 1 2, 3}y then we call X, a discrete-tine stochastic
process, and if T 1scontinuous, we call it a continuous-time process, A

‘ céndhuous;mne stochastic‘; process { Xer £ 2 0}, inwanalogy- with the
deﬁnmnn of a discrete-time Mprkov-chain (4, chapter 4 and S} is a

R o

ot >
e

Stochastic ptoceesa for which T = [0, © ) are particularly
1mpo:tant here. In c]assical probability theory [see 1], if the sample °
.space (_Q,/A.)lsastandard Borel space and the state space V is the
Aspaceofallbopnded Borelmeamreson.().,thisstatgspacehasallthe
properties laid downinsecd;)r}fiof‘c;!\\apter 2, and e have - |

-2V TS B ‘ - forall peV.

13) L
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' 'such‘ processes,

A random variable is defined as a Borel map « :{l-> R where
(R, F) is a Borel space. We define the associated measurable observable
(‘R, F,3.) by putting a(E) =X -1 forallE€F.

. » u E .

We shall define a quantum stochastic proceesincloqe'analngy with
the classical case, and eventually obtain a generalization of )the latter,

- This will be followed by a discussion concerm':}g the classification

of a class of stochastic processes, in which we analyze the structure of -
|

Al
b4

i

%

Section 1: The Basic Formulation
4 .

In this section we formulate the idea of a stochastic process in-.

. the general situation, Throughout this section, we suppose that the state ~—
- space (V, tr) consists of V = 7, () and tr, the normalized trace on V.

1 - n‘ -

SO ~ (14)




St Yors

c ey -

’andisindeéendentofthépast,obtaﬁﬂngésampleﬁo;ntintheset

‘Definition 3.1.2

Coat s . | -
\ +

{‘ A quantum stochastic process on X, V is a family of instruments .
. 2 : :
£.% Gefined on x

& V  for all t2 0 satisfying the following.
A b s—éi;no A (X1Q) =y VeV , (3.1) -
o @ (et (xgh = [g], VoeV, 20 (32
- " (i) forall geV ands, 0, -

& (7, €5 (Eigh = € 0 EIPXEg) = E¥0UPRENG)  (3.3).

LY
»

is defined as in @21, k\ ‘

The last condition says thatl thg. evoihtion after time t depends
only on the state ét"timg t, and the e;laludnn is homogenous in time, It
isa gergeralization of the Chapman-Kolmogorov equation. The instrument
&,t(E,.g) i; the state at tine £ having the Markovian property (4}, that

. the conditional distribution of the future state at time t+s, given the
present state at t and -all past states, depends only on the present state

Al

E ¢ X at the later time,
. R E
' The following proposition whose proof may be found in [2].will be
. important later, S e "

D

e

~
’
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Proposition 3.1.1

- tr{Tte)] = trig)

4 , {

vaen a stochastmc process E;_ t we obtain a one-patameter
semi-group on V as follows. If we define T, : V>V by
T, (g) = &, (X.rg)
Then T, l"Tg’bounded positive linear operator mappmg Vinto v satlsfying

for all gevandt 20

s

\

since 'A.(;(sx xt)ax we obtain T .T

s+t S t st»t

Chapman-Kalmogorov equations. The continuity condition (3.1) shows:

that Tt isa stronély continuous one~parameter sem;—group onV,
, ' S
There is another semi-group of interest on V that we can define,
Writing 2 for the sample point in X, which consists of zero events, we
define the bounded positive operator S, * v — vV by '
t,. +
| S, (g) = &(Z.g)' V20 and geV
and - 0gtris, (gNgtrigl

Moreover, as A.(Z, Z) = Z we have Ss St = Ss+t forals, t 0.

3

It is not obvious however, -whether thxs senu-group is strongly
continuous Itjis necessary now to make a further mmpuon about the
stochastic process, that there exists a. constant k< such that

b (65 (X, - Zog) S Kt tr [g):

e

from the (generahzed) .

Veevi and 0 (3.4)
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a

This states that the stochastic process has a bounded interaction rate. In

eygorder to investigate the implication of this we introduce the Borel sets,
— Az = {all sample points in X r containing exactly n events},

and - ' .

4 . m -
t B: U ﬂm-{allpmntSmx containing atleastnevents}
f=n
obsexv'm u@u,,;’ *

e " m_ .n
- »sn: ‘ﬂ\meq A (A x Ay

Let mn and’let .E‘ be the famny of all mbsets a of (l,...,m)

conta:mngexactlynpombs. Fora F and1<r<mdefinec

¢

- 1. by
- m 1 t
. C e ’xm‘lt: J.frvéa .
¢ a,r
\l . i N
B . .,
m"'l v if rea. ’
Then define D:'n" c ‘x’t by . | ER | e
n’ \

Dt'm ae‘r? h(ca'l oc: ’ .m) .
clearly D] | ¢ Bf} ; conversely the characteristic functions of these
setssatisfy

: ')(,(B )x) = lim X.(Dt'm)(x) for all x€X,.

an
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Now for.any stategg ev+ the hypothesis of a bounded interactioirate K

implies that o
tr (650f v g pmk e “‘91 Vgevt

(m-n)! nt m"

(3.5)

*2,9) > A-ktym)™

and letting m —»m we obtain

-kt
islgll e " ulg]
as the semi—grouth is strongly continuous and

t N 7
Tle) = 5,(g) + E5BY @)

‘it follows from equation (3,5) that S¢ is also a strongly continuous

ong—parameter semi—group on V, ie.

\:—->0 Si(g) =é:)m0 T(Q) =¢.
lfsing the projection mapping J¢ from Aé = X*(0,t) onto X then we define

}t(E,g)a't'la.t(:rt'l<E).g) B JREE)

‘and observe that j satisfies all of the axioms for an instrument tin’

chapter 2, sect:ion 3) except that instead of

er (45x, g)l-tr[g} : . VgeV '
we have . .
et +
< X <ktr ,. V ’3;7)0
g g™ (gl gker el - Vae @an.

Equation (3.5) implies that
(18) e

.
C¥e T .
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N

-1 s =1 t

T Q ~gR T (sg-9) + Firigh+ 00 (3.8)

We wish to show that } t converges as t —»0, but this is
technically difficult at this péint. If we as‘tﬂe/fcr‘thg moment that wt

‘ converges to a limit as t—>0 and the infinitesimal generitors 5 Of T,

—

and H of S have a commdn dense domain D then/ftom (3.8) w obtain
i

the fallowing evolutwn equation @ )
-—i-(g) = H (Q) +J(X,Q) S s (3.9
This equation is precisely the version of the K oborov

@forward-equation relevant to this generalized stochasuc proc

Secdcth: St:tucmreofsmchmticm

B ' [
1 We now start the analysis of stochastic processes introdiiced in the
érevious section. 'Throughout this section we shall suppose that
N ;

N

V= tfs (4) where ¥is a given separahle Hilbert space, and we shall ¥ -

suppose that the. stochastic process has an interation rate bounded by
the constant K< . -
ﬂ"e one~parameter Semi-qroup Tt has the property that for an

n{E } n-l of Xer and any gev"'

a9) L0 .

. .
- e o A T



2 Tt &
T (Q ) = & XQ) =c§=:r& (EQ)

‘(En arf Borel seh? of Xt). e

4
R

-

'l;he abovew equation is telling us that 'rt will -transforxﬁ pure states
into mixed states, As t increases T (g) will bécome more mixed rather
t;han pure, Buti from the manner in which St is defined, such an argument
does not apply to that semi-group, even though as t increases we have a
transformat].on Q.= S (9) which will g1ve us more information about
bﬁt this information is not enough to figure.out whether S( @) becomes
pure or mixed.~Therefore it is reasonahble to sappcsgp that the evg]ntxon
S, is pf the 'simélest kind", which we shall interpret m g;bysical terms,
that if ¢ isa {:ure.state; 50 also is s.(g) for all £30.

*

°

As a consequence of theofeﬁ\_ 2.3.1 in (3] there exists a strondly

~ R -~ . \
continuous one-patameter contractixzn semi~group B, on )14 lsuch that

o

,1 * i v Ve
N Sl =B.g B « (3.10)
gince’, ekt trlQl < tr[st(g)] < tede) for all gev”
we see that . . ‘
By | etn S PL A—

we shall say more about the infinitesimal generator z of B, later.

The following lemma will be needed <in the proof of theorem

o2 L.

¢

, (20) LT e

———

LR

o ety s g
3
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Lemma 3.2,1 : \, . e . ‘

* .

Let Bt be -a strongly continuous bounded semi~group of opérai:&ts

on d¢ and let S, be the corr&epondmg strongly continuous semi~-group on
- ‘ v T (R).Ifglev is such that

t-l

converges in the “weak operator, topology to a limit in V for some
’ gequence tn —> 0, then gi is in the domain DH of the inﬁm!:eﬂmal

generator H of st‘

Givenasequencet ->-0 we define . - ‘
p' = { gev- t (S (g) ~ Q) converges in the weak operator

topologytoa]imx}:mv}
« and’ve define BY g ) as the said limit for ¢€D', Then D 3 D, and H' is
. . 4 * y

°

an extension of H, If we can show that (I - ') is dqe—one then since
(I - 4) maps D}; one-one onto V by ((A7) in [3)), it follows that Dé = D',
Note that since each Sy V —% V is continuous for the weaic operator.

topology, D' is invariant under the action of . ‘

Fa

v

. ‘ .

-

[ AT




Suppose there exists some non-zero g&D' such that :
B S H‘)gsﬂ . Jle H'g=g /) - ? o
Letcp ‘be a weakly coptinuous functional on V such that P(Qr= : dlet - ..
‘Qt-;}“ebesuchthat?;;éo,ﬁwedeﬁnaf:R >Rby ‘ {
D f£B) = cp(St(g)C)/C | ‘ ) ‘»?"‘ ' ‘
then £ is cont:muous, PR and _ : CoN T
JHm ot {€(t+t - € (t)) :
t; —0. . : .
’ =hm {t *(s ()T =S W(QITY }
t-—)UCP e 5 L .
Hr ‘{s (t—.i (s (Q) )éi/;} N 5 | |
=4m e 1/ e, ;
t—-)O‘(P DA N ST o
= 95 H'QIT) _ &S (Q)E) E
G |« A ‘ I
4 o . j
s : Y |
o= f (t) o ’ . T : 3 .
| i 2
. 2
The set {t20, £ (t)f> e t,/2 } is therefore on-empty, closed and "
has no right-hand end paint, . This contradicts We fact that f is a ﬂ
bounded functior; and leads to the conclusion that (I - 4" is one-dne,
~ L '
r<

{22) ¢ \
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Theorem 3,2.1

):/-.\‘
v~ ‘ _
e domaips’ of the infinitesimal generators of T, and S, are ]
_ S utesimal generat g and 5, are equal.
Moreover for all geV, j,t(x,g ).converges in trace norm as t—> 0, .
‘ : ! .
i [ ‘
- - ; -
Proof .
' , N 4 -~ - » ‘
-

Ifgevandg-aredeﬁnedby Lm ~
. - Then by. equat:mn (3.7) the operators - J (X, ¢ 1) are umformly
bounded, and there e:usts a sequence t, —>0 such that p (x, 54

converge in the weak operator topology to limits 3 € LS(K’) . (A in
[3)) and equation (3.7) ingly that 3 ¢ V* and |

tf &) SK.ulQ <. - . - \./'

h

operatortopologyof J (X,g)ast -0,

..'1
r
h v
' A
4 -
- -
g PR - s
i A
- Y
}‘." [N
” . 7 o
i . -
- .
L3
¢ ; :
\
y - .,
' (23) -
. ’
' ¥ ﬁ:" ‘.‘:
ad v
L} ’ N -

xfa =3, -3, then &eV,"é"tr<K ||g||trand6isthelimitmtbe weak"

¥



" Now suppose Q& V+h D by the above argument, lemma 3.2.1 and.
‘equauon 3. B) we see that @ is in the domain of the infinitesimal
generaeor of Tt’ From (3.8) it now fonb\ws that } (X,q )‘ converges in

" trace norm as t—>0, But sinoe the domdin of the infinitesimal generator
 of T, is dense in V so. J,t(x,g) converges in trace norm to a limit in V

" as t>0 for all QeV. Again by equation (3.8) we conc.lnde that the
domain of the mﬁx{teamal generator of 5 and T, are equal,

We next want to consider the convergence as t=>0 of ; (E,¢ ffor
arbn:rary E ¢ X and geV. In order to use separabﬂity arguments, we are
* forced to change the problem someWhat. The 3 are not instruments in :
the sense of {11 becanse they do not satisfy the normalization conditions
50 we make the fonowing slight modiﬂcatxons.

1 .

-

*If X is a separable locally compact Hausdorf;. space and (V, tx) i

' ‘statespace,aboundedstochasﬁckemel bt on X, V can be,defined in
three possm]e way;.

(s1) }1 is a bounded positive d-add:hive measure on the&-ﬂeld

[

ofaorelsemmethaluesin L(v,v) ’ .

i

(52) ' F is a hilinear mapt:(,2 s(x) XV -> V, where B(X) is'the ‘ ‘
space of bounded Botel functions o X suc £

. , i . s
-t . . ,

AU @4 .
f
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r

S g +_° + : +
S W) EfeB(X) and geV’ then J(fq) eV
) 1 0g £ 1 in B(X) and geV” then JL(f ,o) converges to

& o€ +Q) in norm.

: ™
(s3) 3.3 is a hilinear map J 3t CR(X)xv—W where CR(X) is the

_space of continuous functions of compact support on X,

such that

) Efe cpx)’ andgev’ then J(f @) eV, I
(id) For some constant K<a"

I, sl X ligll max flgt)): x X},

From now on we shall take ;t as bounded stdchastic: kemels in

the sense of (53), the advantage bemg that C (X) has a countable 'dense

[
o ~
.

—

i.emua 3.2.2

| IEXBmmpactthereenstsasequencet -)-Ooftheﬁorm
m hl
t, = 2 N and abounded stochastic kernelJon X such that for all

fecC (X) and geV} (€ ;@) converges in trace notmtog(f ,g)

{25)

e e R a A=
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. A g
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Using the separability of Cr (X) and V, the uniform boundedness of
" 2" , and the compactness of {Ac Lg (22) l|all <1} in the weak operator
T q:opology there exists a sequence tn=2 M and a bilinear map
J CRlXhxV L ) |
such that for all f & Cp(X) and geV, ;; e +Q ) converges in the weak

operator topalogy to g (€,9).

If £ & Cp(X)" and geV" then it follows that g(f',g)'go e L)’
and n '
| . .
el (€,9)] ¢lim inf tr( )y (€ Q)¢ K trig) <o
’ —>m N ' C

by ((Al), in [31). 50 ;L (£ ,0)eV, and. ;Lis a bounded stochastic ke/el. A
.

Moreover, if Q ev and 0 ¢ £ <-Cl then
' t, , . S n
tr[}(pl.g)l- lim't'r[;L (C}.g)l ‘ : .

2 lim mfc:r; (f.gn+nm Anf tr [ 1~ Q)

* > ™
2t (E QB tx_tgii-f )l P
X ’ , ;‘f ) - _
= tr{ $(1,9)) \‘5‘ ] S ‘

~.(26)

sty e DS

e et veae e v mt o vm e R




T the urtique operator ReLs(‘ée) * such that for allgeV

which implies that

Y

t
im L Q)= e HIE ,Q)) -
> } g g "9

therefore, by ((Al) in [3]), 3 (€ ,¢) converges in trace to Z(f ) e

'
.
~

3
s

Definition 3,2,1

The total interaction rate R of the quantum stochastic process is

4 B ”
AN

tl g R] = a{(,g)] = lin e §5(K,9)]

Lemma 3.2.3

X 3D, where D, is the Gomain in & of the infinitesimal
. generator 7 on semi-group By then )
| <RE,%> = -2 Re <2 %,%> @A) }

If ¢ is an arbitrary state in V then tr[st(g)] is differentiahle and
Fers (o) = R S0 - (i -
N . : ,

/
;

‘re

@n

P,
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T A 4 mbess s g e e bt e SIS+ i o T T T e

'

If ;e D, then [£><E| D since
un s (T ><t) - (o<t
60 |

= lim {7 |B,C -%><E] + ¢t 8.5 >< B;:‘C_, -5

=l ><E] + [E><ag .

Taking the trace of both sides of equation (3.8) it follows that
<f,0> +‘<l; ,z';; + tr{y(x,|?;><§|i = 00 :
which gives equation (3.11)’“for}a11 states @ = 1z><t| wit:h‘genz. Since
¢ € D, implies B.Le D, for all £ 0; it follows.that if g liesin |
L = linear span [ % ><¢}): ze Dz]_g,v\
Y;le see fhat ' P

. ‘/ // .

| uis(Qll=tigl- [ wis(qiRles (3.13
this being the integral version of equation (3.12), Since L is dense in V
50 equation (3.13) depends’ continuously on @ it halds for all § € V.
Differentiating this now proves equation (3.12) for all Qev.

W

“28)
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Commm ¢ . . ‘

Equation’ (3,12) gives a clear reason why we call R the total
interaction rate, since tr{S.( ¢ )] is defined as the probability of no

_ interaction between the quantum systé‘m and the measuring apparatus up
to time t, we note that the interaction rate is independent of the state
'iff R is a scalar multiple of the identity operator. This clearly is an

unreasonable condition if the measuring apparatus is lgcaljsed in some

1

finite region of space,

¢
Having completed the preliminary work we can now prove the main
theorem of the section, ‘

,
. \ o~
-

Theorem 3.2.2 . ! ~ g—

Let &,t be a bounded stochastic process on X, V_where X is a

separahle locally compact Hausdorff space and V= J,(®)for a separable

Hﬂbes§ space 4, If the sem-group S, takes pure states to pure states
then E.° is uniquely determined by the infiniteaimal generator % of the .
semi~group B_ on & and a bounded stochastic kernel ;C on X, which are

¢

- related by the equation

(%, 5><5 1= -2 Re <7%,%>  foralljep,. ;

" 11

. : Lt .:; . (29) . o

o a |
——— 7T ——



If £50, £€ Cp(X) and g€V then, using that fact that & has a
bounded interaction rate, by equations (3.3) and (3.6) v

t] ~m
~mpome 272" )L i Mg 2 )
} 3 = Z-m{Ithl-r} ; £, 208

whe‘:e 2™ denotes the largeset integer less than or equal to 2™, Using
lemma 3.2,2 it follows, letting mn--)-m, that

t .
bA: .g)ft'l{ S, (£/5,3)ds (3.14)

for all t;E), fe CR(X) and Q €V, the ir;teger existing as a vector valued
norm-convergent Riemann integral. The above integral in fact exists in
the same sense for all £ € B(X) and using familiar dominated convergence
arguments f&r the ordinary Lebesgue inteqgral,

t
[ ets, g (€ 15,000 G,

where BeL (3('.) is arbitrary, we see that the equation (3.14) hclds for all
£ € B(X). Therefote, for allg eV and EeB(x).

.

‘(€ ,g)=km L7UE )
" in the trace norm, . I

(30)

S~
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This greatly improves lemma 3,2.2 and shows that it is not
necessary to assume that X is comp:'act, and proves that 92 is uniquely . K
determined by £ - - | .

m o E
Now 1et.0<r1<t1<...<r n<Ees ¢ and {Ei}i p e Borel sets in X, :

8. } - . ‘ , ' .
and let E ¢ X, be the Borel set defined by S ' S
m o )
then by its defining properttesf '
. v ) ‘
£ 51

o ’ £ - ‘ .
t m
& (E,g)gg;g’ (ti-ri)[st_tmj Em , t -t _1¢.-S .tlg B ri?}

[

"'i(sristi et t =, ;L Eq s I, JeeeS -tl tl-s]_;El sl-rl)s stl"’ds ;
e & simplifymg

. P .
&€, )= <sf jE S Em_l...;fglsslg d8y..a8 . o

This shows that for g'.e v, s;_’ and g détermine &.t(E.,g) for any
the form of eﬁuation (3.12). and hence for any Borel set E.

e

-g : L
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Definition 3.2.2
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&
2 and [ are called the infinitesimal generators of the stochastic
process & %, The fallowing result shows that the stated conditions on Z
and } are the only ones necessary for them to be the generators of a

stochastic process, o .
>
\

Theotem 3.2 L K

Let X be a-separable locally compact Hausdorff space and V= TS
the state space of a separable Hilbert space & . Let Z be the
infinitesimal genesator of a strongly continuous one~parameter-=con-

traction B, on &, and;fbeaboundedstochasdckemélon X, V such that -

for gl L€ D, : - L L
trl ¥ (X,|5><g D= -2Re <23,5> . N
‘Then there exists a urfique stochastic process a:cgthat 2,1 areits
infinitesinal generators, o |
. T ;
mﬁ e 4 ¢ *

-t

We define S’Sindependently on each of the sets A:‘:_i X, If n=0
: : !
we construct the semi-groups S, and B, from 7 and define
\

™

. \

Lo . &
) . fe tor f
) . . . .
€ . . B
\

e L
s
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AL

Y . | ,
& (2,g)=S,(Q)=B,QB, . . Y20 and geV.

-

If n21 and 0<t1<.,.<t n <t there is a uniqué bounded stochastm
on X" such that if El"“’gn c X

@

kernel [ £y boreenit

(E, E, w. E_,Q)=S s - N
J Eyreaty 1 2 a’S t-tny’ By tyte1 TR S T

In order to apply theorem 4,2,2 in (3] we, regard 8; as a' bounded

stochastic kernel on a set of one element. -If E is a Borel set.in A’Q and

. ‘ . v
.- to.n ’
0<t1<...<t n §t we define E X by

Cc
tl,...'tn - »

o

_ . .. 4
I . n N o }
?ﬁi . = {( X l‘".l‘xn ) H (xt'tt )FlGE}. \/

<]

We then define the bounded stochastic kernel &; on A7 by

‘ >
¢

F.;L {E/Q)= X €t B Lt 11y 3:26)

0<’c1(...<tn$t |
if 0 te [} (x,9) $'K tr (Q] .=
for all Qe V", then it is inmediate that o
"E o ]l‘q 3 v ) -

n.n « . +
ogr 155 g KLl VeeV. | BN

e

\I ' ‘ * -
‘ .
] e
N ‘
° .
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» ”‘ * b
.l - . la -
hd | ™
'//"‘ ' §
s s H
* s L ¢ ‘.
3 S - E«t(Evgkio & EnRyQ), e
N . . n= _ :
: ? . L ’
‘ . equahon (3.17) implies that this series converga. Indeed
«‘ - s A
" ~ 0 t&r [&(xt,g)k e tr(g] v A4 gev e
o Equation (3,3) is now' immediate from equation (3.16). boos
. . : | \ .,\\ , ) , I )
oL If we define T,:V—>V by : o
. -‘\L‘/T (g )= E.t(xt)g) * 3 .
] .
. then it follows from equation (3.17) that: for all Qev,
: . [T Y . ‘Q '
’ \ ) t b ;
. N ¥ - A ’ 2 .
i | T ( g )=5,( g)+£$t iy s a8 + 0 ) u;
AT SR B T
f ‘ ! i . 2 ¢ . .
. =st(g)+t2x£g/)+0(t) . o Bae |
< ) /\ N - 3
, as b—-)O, it .proves equation (3.1). 1.e., it shows that &t is strongly '
}
L 3continuousfxthesemseofthedeﬂmt:lonofstochastix:process.
A' 1
- ) S .
[
. A Final!y bytahngthetraceofbothmdesofequations (3.18)and
\ S~ differendadrg, ?.vu, by lemma 3.2.3 ' ,
* \ v -, . r ? : \ N
: i,' ¥ .
t e ) e - ” g
; - g R S (ag‘)f . .
i . . . [ v * 4 ' ‘
. : R |
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Le'%u'[Ttg] = 0 . , < fOta]l,?GV. LI

So tr [T,Q I=tr [Q] ) C o A i‘.orfa.llqgeVandtgo / .

- which is equation (3.2),

et N »

' This conclydes the proof \mab\&t is a stochastic process,

Among the vadous results presented in this chapter, the most
“ix'nportant on:e was the\"derivation of tlr';e 'differential equation (3.9), aﬁd
relatively we showed hov; to reconstruct the stochastic process frou; this .
differential equation, We then. obtain t;vo semi~groups S, and'Tt, given
the st:ocﬁ%stxc process. The senu-groups can be determmed by and"'
constructed from their infinitesimal generators too,

——
u“ﬁ . (\
,
.o

In the following chapter, we make a getailed study of these
. generators. )
s .

‘

f\/
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.

Semi—Groups and Generators

’

1

‘ This chapter .consists of an int;roduction to the theory. of
semi-groups of bounc;ed linear operators in a Banach space %X . It is
éoncei'nJed with the. problem of determining the most general linear

" bounded operator valued function T,, £0 which satisiFles:

R

T.T

.
.

A

Subsequently, we construct the infinitesimal generator L of T, defined

as: .
. o
] '
L=s-ln 7 (1, -1, L
t 0
\ ¥ .
where 1 is the identity operator on the Banach space x.

B

Here we are only concerned with the Banach spaie}}' Ty (%).
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Section 1; Semi—Groups

-

o
e s

-
P

- Let T (#) be the Banach space of self-adjoint trace class linear
/

.operators on ¢t . A function T, on [ 0, ) with values in Ts () is.

defined to be a one-parameter semi-group on 'TS ($2).

¢

)

Definition 4.1.1

t

»

Let { Ter t30 } be a 6ne—patameter family ‘of bounded linear .

operators on '3’5 () satisfying the conditions:

Te Tg ™ Trpg ‘ . ' Yts 2 0, (4.1)
TO = L ) M ‘ (4.2) !

Then { Tt } 13 called a one~parameter Semi-group,- Tt is said to be

strongly measurable if for each £ e 3’8:(3@'). T, (%) is the limit almost

everywhere of a sequence of step functions. i.e, for any § € er (&),
‘ -

' "t:he'ree)dstsasequence{tn}stlch.t_!}at"l‘t ( 2 ) is a sequence of step

n
functions of el&me'nts in % . and

_ g D

Ttn( < )->Tt(§) a.e,

(37)
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such that £y, and

o
]

Dunford and Hille (9] showed that if T is strongly measurable and || T, |- "

is bounded in each mtetval[oc,ﬁ ) 0<a<ﬁ<oo, then T, (?;)Jsstrongly

" continuous for t20 and [ € 7; (&), (For more details and proofs of the

above statements, cf, Phillips [7), Hille and Phillips [9]'.)

Here we show brieﬂy that the first hypothesis of this theorem
unpheﬁ the second,

Proposition 4,1,1

, IF { T, } is strongly measurahle, then Il T, || is bounded in each

interval [ o, B ], 0< < <00,
Y,
Proof .o .
Making use of the uniform boundednestheorm[cf.lﬂ ],n:is
mfﬂci.enttoshowthatll'rfﬂisboundedm[u‘ @ ] for each

fe 7, (%) Suppose on the contrary, that || T.f || is not bounded for
some f. Then there will exist a y¢[ o, R ] and a sequenge {t. } ¢ [, ]

A-"Ttnfll?_'n - L w23, .

4
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d

On the other hand, since ||'T>tf I| is measuratle, there will exist a
constant M and a measurable set F ¢ [6. ¥ 1 with m(F)>¥/2 such that

i o
gap || T F | ¢ m.
tEF Co

' Now set En = {{ tn " )e ne?n[O,'tn 1}, Then En is measurable and for n

sufficiently large m(E ) 2 ¥/2. : -

il

. For vl € Fnlo, tn] we have

om

ngliT e<lT, _ Nl Teel gl _ Nim ,
= ,tn '8 tnnql YL |= tn-rL l .
Therefore
3 - n ; , L] . %
> % : .
Ml | forallt € £
N,

/

_ Hence denoting lim sup E, = E, we see that_
‘ n

It ll=0 . ' forallt €E and m(E)} ¥7/2.

$Q‘”’,"):his contradicts the fact that || T, || is finite-valued for £ € (0, ),

"
i - ".

Thus, || T, || is bounded, Le. 1 T, || g M.

I
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So from the last statement of this proposition, we get the second resulk:

- that Tt: is continuous for t>0, -

Definition 4.1.2

\
.

The semi-gioup T, is said to be strongly continuous if

s-lim  Tf=f for each £ €J_ (&)  (4.3)

\ !
From now on, we consider the semi~group “Tt' to_be .strongly

continuous on [0, ) with Tg=1 (I stands for the identity operator on
T en. o

pefinition 4,13 - | | <

wveconev*('a't)inﬁ" (Uf)lsthesetofall“

sem:.-posn:lve definite elements of 'J’ (%¢). v (uc) cana]sobedeﬁned
_as faollows: . L _ ,

V) = {geT (K ligll p =trgh . - (9

S0 g€V;$3C)iff'|g||tr'tfg holds, (cf,14). |

(40)
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The Banach space Ts (4¢) is the smallest linear space in which

the set P('%¢ ) of all density operators can be embedded,
- More prgcisely

RE) =lgev @) sllgly =11

From tfhe proposition 4.1.1, if in particular Mgl that is if,
ENFSe
Then the semi-group { 'rt } is called a contraction semi-group,
We introduce now the notion of a dynamical semi~group, whi.ct; isa
strongly continuous one-parameg:ef‘ contragting semi-group of trace
preséwing linear operators on Ts ().

4

. Definition 415 S o
)

rs

AfamilyS(J(’,)-{T Dﬂ}ofnnearopetatomon 3‘ (#) issaid -

to be a dynamical semi-gronp of a quantum- system provided the

'followmgocnd:ﬁpnsare satisfied: - -

i

(41)
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E.E

' (iv)

© Lemma 4.1.1

, + + oy
T, : Vg (?{,)-a-.vs_(‘éu

T ll e =liglly -

Te Tg = Thug

s~-lim Tt=I.
té 0

for all ¢ €V, (¥).and £30, °
Vs 20

Let S be a linear operator on 'J's (). The conditions

_—

T ()
and

' (a)
®)

are equivalent, -

it +
SV (H )=V, g:e)

I 'sgll = Ng

Isgll, slgll.
tr(sg)=trg

.

i ) +
~ VY ge Vs,(E‘C)

Vo geT (&)
A4 Qe'fs ().

The implication @), (i) — (a), (b) has been shown by Koesakowski
(13].  Suppose now that the conditions (a) and (b) hald, Taking (4.4) into

e e 6 e e o s g e | e o &
3

i

\
I
1
{

\
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o

Ighermoe shisglyglshy ~ ©

ho]ds, ie., ||Sg Iltl;"llglltr and tI(Sg)"”Sg”tr fora.ugev (3(’,)
sincegev (:e)iffllgll =trg,the1astequalityimp]iesthat

Sg e VS (32) whenever Qe vs”(ae) ie, ‘ .
{ ‘ . o ’ . ' ’ —‘ -
StV (3€ ) > v (%), ; - |
Taking Definition (4.1.5) and Lemma (4.1.1) into account we have
AN
§ Theorem 4.1.1

Afamnys(;fe)-{ wr £20 } Of linear” operators on T (36)153
dynandcalsemi—groupiffthefollowmg conditions are satisFied

ﬁ) - (T Q) ":trg ‘v’geﬁ';(k()andtgo - ‘ /

@ Noglgsgl, = foral gel (Hyamd e

N

ot et " el T A

PR Y

TR T e it S e SR AT A A Ik T iAot b e o 8
. -

. (did) Ty Tg = Trye bs20 ;
iv) s-lim T, =L : o ‘
tév 0 L T
! i
. 2
- |
v g
~ |
N 7t S
, Ty
2 ' l
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Section 2; The Infinitesimal Generator .

We now undertake a further study of the structure of the
semi~groip G = .{ T, }. Throughout this section we assume that T, is
strongly continuous for t>0, The infinitesimal generator A of T, is
defined as ' '

1
Ap=glT -1k

Ag =. s-é_i;nw Atg .

- whenever the limit exists, i,e, A is the linear operator whose
v - ‘

domain is the set

.

»

‘D(A)--’{g*e‘ﬁ‘s(zo;gmwt'l (T, -DQ existsin T (%)

" It is clear that D(A) is a linear subsp;ce of "J’s (&) and for gé D(A), %

Ag =lim ¢l
>0

the vector 0, Actually D(A) is larger, We shall prove that D(A) is dense
n T, K | .

(Tt: -1 Q. D(A)is n‘on-empty; it contains at least

We start by showing that D(A) never reduces to the zero-element,

We set

(44) .



p
Pq =£Tsyds fory € T (), 0< p <00 (4.5)

then

£
Ay q’p’%’ J;[Tt:'”TsYdS -

A
1 .
. d."?:'tj,'[Tt:-rs-Ts]Ych
£+ t
1 1
At(?(.‘» =Ft[ ?3 Y d&. ‘E‘!T&-y dé

- which will tend to { TB - TI ly as t—> 0%, Henée every element of the
" type cp{3 belongs o D(A), (9]

Now let R, be the range of the transformation Tt' >0, Clearly
. // . ,
Ra> Rp , if «<B.,
We define R = U[ R , o >0). Thus R is the smallest linear subspace

) cqntairﬂngtheréngespaceofGandRisdemein 'Ts(?(,).

" Theorem 4.2.1

If [ T,; £0 ] is strongly continuous, then D(A) is dense in R, the

two sets have the same closure, and the range of A is contained in R.

v

(45)
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Proof
s v . . .

5 I peR there emstsanS)Oandayeﬁ' (?C)slchthatcp-T%y \/
The element o, defined by (4.5 belongs to D(A) A R and /\
Lim ("] = ’
: o B TP @
that is every point of R lies in the closure of D(A) N R. Conversely, if
y €D(A), then ‘
lim T. Y=Y

>0t ' .
7) that yeR. It fallows that the closure of R and D(A) coincide, Finally,

A

A

if y€D(A), then AtyeR and so does A . s
A
.o . / 4 L : - 4
Theorem 4.2.2
- . | g o | MR A :\
If T, is strongly continuous for £>0, then for Q € D(A) o
| ) .
* - ’ ,. . .‘ ‘
$1,0) =AT,g) =T(AQ),"  ©0  (4.6)
K .
, ®
» Broof
We have ,
4 . {4—\
- 1 y
f +§ T, 1g = A3(T g ) =Ty (Ay g )
o ‘J 5“‘ ’ »
\ (46)
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, ,E[Tt-g'Ttlg'(Tt-z).Ag IR 4

’

H

Since the right-hand side tends to T (A Q) as [ 0%, we.see that

TAQ )‘ € D(2), And A(Tt":g ) = Tt(A Q ). So that the r:ight-—sidedﬁerivative
of 'I'tg' exists and satisfies (4.6). It is easy to see also that the

left-sided derivative exists, For that we make use of the fact that Tt is

©

strongly continuous at t>0.

-1
. . L
and this tends to T (A q ) as},->0"; which satisfies (4.6,

.

of

°

We next consider the problem: What properties should an operator
® -

A possess in order to be the infinitesimal generator of a semi~group. G of

>
.

linear operators? » ' ' DI

o

We consider the sémi~group G, in particular the properties of its

generating operator A and its resolvent R( A. , A). We use the definition '

of the resalvent of the geherator {9] to be the Laplace transformation of

the semi-group G, i.e. .

4
e2) :
AS !

RA,A)=je T ds K@
2 :

s

D

Namely, R( A , A) satisfies the"mequality .

(47)
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for some’conscagk M. [cf, 9] .

& .

A3 A . ’ ’ \ .

A necessary and sufficient condition that a closed linear operator

A ‘generates a semi-group.G = { T, >0} such that H‘I!tllu\g\m is that D(A)
be dense in “Ts (#) and o ) S

MR g™ Ce S
P , U p \\n L

' : - Coon

e e m—— . \

for A >D;“n-l,2;3h.wg’ M.

B

B i -

s . M -+ ’ kN
R . .

. : . SR \

~

R

Proof

We hote that the twa iriequalities (4,7) and (4.8) are equiValent-as . -

~

RO (0 )= D7t ROV R T '
. ‘. . . . . ) lf/

the necessity is now -immediate. A By Theorgm (4.Iu2.1), for T, with
% . . s
infinitesimal generator Ay D(A) is dense in Ts (%), Purther for A.>0

P * .
r o ® ‘ ¢ .
1 s ’ BN ' 5
Theorem 4,2.3 - ' - a '

P S,

oA e At ¥ P
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. m v . ) )
; R(?\.,A)g=§e Tggds 4 - _Vgeffs(é’ﬁ) o )
;’ X . ' .r‘ ’ )

and hence .
A ’ -'A.s

P LN W A)gz (-S)T?ds
since || Tttlguvveobta{in :
. : i \
p -Xs | . )
o R™ (s a) | g $je s mas, {Lll ¢ D2
\ . N A
which is formula (4,7), .
J ’ ! » f‘%-

L . ' ‘ 3
- This' result is very close to the original Hille-Yosida Theorem,

# which now appears as corollary,
. ¢ ’
¢

LY

Further, if M=1, and if (4.8) holds for n=1, then it automatically

' helds for n21; this proves the Hille-Yosida Theorem, namely, (
. )
b
Corollary 4,2;1 .

If A is a closed linear operator with dense domain, if R( A ; A)

| exists for A >0, and i o | :
: o dlrgagr Ca, W9 ..
« then A Jst.hemﬁnir.aimal generatorofasemi—group (T, ] such that
= ||T||<lfort>0 (
3 f { %,
[} n ’ //
g " 5 . (49)
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Applying the Hille~Yosida Theorem to a dynamical semi-group
S (&) = T.,t20hir fallows that there exists a linear operator L on
T sﬁ(é‘(i) caliled'the generator of dynamical semi~group S (J€), whose

domain is dense in T, (%), with the property
£(Te)=L(ng)=T, (L) « S7SL)

for all ¢ € D(L). Moreover, T, t20 is the solution of (4.10) with the
initial condition Tog =g VY g eD(L).

l

qQ "
Now using the Hille~Yosida Theorem and Theorem {4.1.1) we

~ immediately get:

~

Theorem 4.2.4

A linear operator L with domain D(L) and range R(L) both in
T s (%€ ) generates a dynamical semi-group S (42 ) iff the following

conditions are satisfied
o ‘
() The domain D(L) is dense in T, (§¢) '

(id) R(AI~- L)=Ts(§€)
@  Jxg- Lg"uZX"‘Q“u forajlge D(L) and each A >0

v) tr(Lg)=0 - V¥ g €D(L)

(50) - ‘
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- Proof “»

The implication in one directionis trivial, since if L generates
the dynamical semi~group.s( 36 Yo condﬂ:?)& (1)-)- (iv) holds. Conversély, ‘

" we have to shomf that if conditions (i) — (iv) are satisfied, then L is a
generator of a dynamical semi-group S\(~ J2 ). Conditions (i) and (ii) have
been proved in Theorem (4.2.1), since T, is a strongly continuous
semi-group, (ifi) Using the heuristic correspondence principlé (see (9],
E:hapte: 11), since the lresolvent isgivenby R{IA , L) = (AI - L)-]‘, then

\for Q €D(L) we have R(A., L)Q = (A1 -1) -lg » A0,
\ - L )

N Taking the trace norm of both sides, we get:

~ _ : ©
( el : N
(/. y e allAg-Lell. \
_ But by virtue of the Corallary (4.2.1), || R(A, 1 [l § A ™%
; . thsimplies - . |
: © Ing-tgll 2Migl, 30,

. . "
: -« Which proves (iil), X '

Using Theorem (4.1.1) and Definition (2.2,2), for ¢ € DIL),
Lg € D(L), we have ‘ '
e UL @ )=t T, (Lg)l=twlLgl

51)
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On the other hand by equation (4.10)

wlLT,g )=t [§(T,g) =gl gl=Ferigl=0.
Hence,

tr{ L Q M0 '
which completes the proof. .

‘ N
Other necessary and sufficient conditions for the existence of a

generator can be found using the rgsult of Lumer and Phillips [11). To
introduce this idea, we need the fo]]owmg definitions, ' ’

+

Definition 4.2,1(cf,12]

To each pair { & ,g } of elements of/TS () there con:esponds'a
real nuthber { @, ¢ ], called semi-inner product in '3"8 (&), in such a way
that: o -

W - [e+g.Tl=1&T)+Ig,T) Vi,g,zeN(d) -
(A3, gl=Na,gl  ,  and Areal
t3,21=Malf>0 for & 40
) raegllghally gl |

L ]

E

|

S R ()

3

N e T e
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Definition 4,2,2(cf, 11]

*
. < A]inearoperatoronTs(ye)%sc{a]]eddiﬁpaﬁve(wihhtespectto
S la,ghiE o
| [g,Lglg0 .forg‘eD(L).
®

Definition 4.2.3(cf, 14]’

| Let Eg bethespectral measure cor;espondingmge?' (&), To

each element g € T (%) we associate a linear operator signg on the
sanach space T ()" (Gual to I () defined as fallows

© signg = j (signd.) E9 dx - R % B 3 .

0 .& " where L

‘ L, >0

" Egnl =N 0, A =0 )

LA -, A<O0 ' )

' _AS an example, a semi~inner product in ’3'3(30 is defined by’

(2,9 1= 8]l telisigna) g) BN (S Y

, -

=

“ dearm
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Theorem 4.2.5 \ ‘

A linear operator on "Ts(:fﬂ) generates a dynamical semi-group

S(% ) in T(40) st ’
e . L
@  The domain D(L) is dense in J (&)
@ - RE-L) =T () A=,
G (g Lglgd V ¢ € DL,
(iv) tr{Lg];O \ ‘ Vee DL

Proof

Sia{ce T, is a strongly continuous semi-group of coﬁtraédﬁn
operators. Then , "
Tl -ghel=Tgigl-[gug]
=17,¢ +21-llgl?

| using (4.11) and (4.12), we get

t (r,g-ghgl=IT.g.ql-lIgl?g0.
Hence, for Q € D(k)

‘ a1 S :
[e/,Lel=ln t " [(To~@)eQ)<O,
Qrhg o* .3~ 8 ‘? s

X

- b e b S (S o8 A e T
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Thus, the generator L is dissipativg. Moreover, it is showh in .
Theorems (4.2.1) and (4.2.4) that (1), (i), and’ (iv) are satns&ed
Conversely, if L is d:mpatwe, we see by Lemma 3.1 of [11] that
h(ar-ot Il ¢ L for all A>0, By assumption R(I-L)= TLE) sok-l
is in the resalvent set of L. Denoting resolvent of 'L at) by R()\; L), it
follows that ~,

BrA:; D ¢l ROA; L) "tr <\t A0
which satisfies (4,9), Since D(L) is assumed to be dense in 'TS( ),
therefore, it now follows by Hille-Yosida Theorem that L generates a

dynamical semi~group S{ ). .. : 1

»
Now if the linear operator L is bounded on Ts‘ &), then only the .

two following conditions are necessarty in order for it to be a géneratoré"

of S(£) | : : ' X
@ ° (grLglg0 Ve Tt#)y
@, wlLgl=0 'V ge T (%),
." -

(55)
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CHAPTER S

An Ekamp]e and Comments - ‘%5

~

1

»

In this _chapter, we introduce an example on physical grounds. The
aik is to describe the time evolution of a state ¢ which is subject to
random measurements. The time evalution of a quantum mechanical

{
system is given by a dynamical semi-group; so we expect, then, that for

any given state 9 at time t=0 will uniquely determine another state Q t '

at time t40, As a result of this evolution g transforms to g, at time t,
and the transformation ¢ — Q¢ i.s strongly continuous, The time
evalution of a system of quantum mechanics can be described in the
form'of spin 1/2 system or systém of decaying unstable elementary

Let us consider a two-dimensional Hilbert space & ,.ana if we
assume ¢ to be a state at t=0, entering a bubhle chamber and decaying
there [15] and [16], then at random times '9 £ will be the state ¢ evalved
_to time t, assuming tha}: a measurement is made on g ¢+ We assume that
for all Q€ T(&L), Q. is given by Zé( g )» where Zt isa semi—gro;xp on
T Eﬂ), We now study the nature of Zt in a specific example. But before
- introducing the problem and giving all calculations, we neeq to ‘introduce
same of the concepts to be used here,

(56)
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Definition 5.1

_'A stochastic dynamical process is a strongly continuous semi-group

Zt : T () >T(ge), for t e rY; such that

W .VZ‘=I
G [t- { [

" Clearly a stochastlc dynamlcal process [ is a generalization of the ,‘
usual time evolution of quant:um mechamcs Le, for )

A

g € T (&), | gt‘izt,(g).

v

Ztmayﬁe written as the sim of two parts,[iandzjg,andzt . . .
can be given by.explXt), where X is an infinitesimal generator. |

[

-

Let H be the Hamiltonian operator mapping pure states into pure \

states, and J be a bounded positive linear Operai:or pri T (%) mapping

pure states mto mixed states. Then, using the tesult of Davies [2] and

also [17], we may write the differential equation

. dq¢ .
L .29t e’ R P

1

(57)

(5.1) -
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where

7= "1H" ?\/2 s

A denotes the mean frequency of reduction and R is a bounded linear

, openator on & , (deﬁned in Chapter 3). The integral form of the -

d1fferentzal equation (5.1) is then given by: ’

9, =L, (g) = expltz)g expita’ ) + . L )
t
Rl *
A exp (641 219 g, ) exp (et 277 a (5.3
specifically we take in (5.3) : I
- ' . '
01 . ' f4 0
SO e
. \1 0 . : 02
. Ty a\y
\then by (5.2) ° , :
) -2a - ’
2= ( )' A b -
"'i -l N ! \ i

Consider the formal series

.2

| b . T '
Y =5, + Kldﬁst"’tl*“ A !dtlgz'dtzstJtlJtz
n—l

+7\n° dtlfdg‘_?+...+ 5, tl t,_2...‘J Fue o (54)

Where St and J, are positive operators such that:

(58)




. Zi(g) =S, (9') = exp (2t) g exp (z't)

»

—_—

‘. o S

= exp [ -iHt - A/2 Rt )gexp [ it - A/2Rt]  (5.5)

and t ST
n 2 N

Ny Zt‘g)'k{dﬁst"tl”‘ idtl Sodtzst"tl"tz*"" | (5.6)

) e

where L ’
N . :
Jo=S,J5 . h(s.'n

t

)

We should note. that }:t (Q)in (5.4) is~the formal peries we would have

" for’ Q¢ - &

Therefore, to complete[t () for our example, one can find -
[{.( Q) and):]g ( g ) separately, then Z{+ Ztn will give usZt.
Now to ﬁndztl ( Q ), we take (5.5) and, considering the calculations of
’ 10
‘Appendix, i.e. (Al) into account, so for ¢ = ( )e'I‘(Z(.) we have,

0o ‘)
I o . . | . |
Y (¢ |
-3t " ' 2 3AL
e (Coshu-z-—-%- Is:nhu? Qnu (-4)sinha§(Cost\ut/2 - 7\/2 Sinhd%

-3t - M -3at

ST t : t 2_—-2 : 12 t
Zin 16 sinh by ] (C@df —-%-'Sinh 1'2') 4o 16 sinh ax
\‘

)(5 9) . A ‘ .~

W Faalie s

A M SO R i T 5 ¢

e L o U WeIPy R
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£

£y =

(

for ¢ € T(3), we have . ]
z:lI( . fl f2
e' 9 i
3 4
gt A i:;; A2
=" = smhg-(Coshwi —&-&nhocz &-(1-—0(2)
(Coshzoct--z“-einhZutHi(uAg ) Coshat ~ ' 3;;{;“1;4;5. -
, * T« %3 P
. . /
s3A° +2t-75-] oLy
X o '
-37\.t . .’Tﬁ'

A L. 2
— (Cosho§ -2 sinha ) [;(1 {:;)

. 44422, -2 3 5
(;oshzu: dsinl::Zo(t)+u(l+-z)Coshott o‘+82:.r.5mh«ta

“7
X i 2 _ .27 - ' . v« 7
-mf-atali-a K] o ]
~3nt ‘
€ dnho [ (1—-%‘%)(005?120(!: lmn2ut)+-(1+ )Coshou:
Zie( z PZAN
- \
2 ? ; o
_ 823 sinhut + 2t 4 22 ~ -
'k 2~
3Ae . -
--L—sinho(}-[ (l—-A-z)sinhZuttBégsinh«t

o4 : ’ )

- 20+ %;)]

(60)

I .
Also to find )_, (g ), We take (5.6), (5.7) and (A2) into account, .

i 9,41k ki Pa b A $ e  w u
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5 A A : o
(A)) since 2-= . , then the characteristic equation
Y 4 A /
- ' ¢p (r) is as: ‘
cp(r)=27\2+r2+3lr+1=0
rw r= =3A 4+- >" -4
2 -
‘ sothediagonalmetrixisas:\
['3
'3x A. - 4 P N . D h’
’ —= ) : . .
~ A
. =1 o N
'. o3 AT -4
P B Sl
. . ) ) +

and, . RS i ) ‘\'(
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Therefore

zt
t .
,=m-eA o)

r.‘
A -J:\'.z—tz

21(-}?\, - 4)

A +~sz

21'\‘2 .‘12

‘.z)
I4 . )

w

I3

@

-3At/2
- t_A t
£ ey (Cosh(xz Smhdz )
=3At/2
= inhoc
L, == @ smho&z
-3 At/2"
y = sinhocf( xz o)
24
~3At/2 t 7L
r,.=¢e (Coshoiz + sinha 3. )
B LY
where o =\/ )\2 -~ 4
)) 2t ‘ g
| ‘and € = (m ) L At m’|r
ol . —j\
. i A+ '
* 2 a1
m = , (m!-)
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e ot

i o Mt o W em =

ey e

Thus,

2t 2,
ot ( 1 2)
S i3 I

~ING2 B Nt
Zl =£ (C@jdi —;—Smhu-z—)

Z3NE/2.2 A2
al-n\ ¢
Zzse '———"21« Sinhcl’i

) 2 3t
(g ) =@ gez .

J=S_, J 8§ where

- *
I -7 -tz
S,(g)=l_,(gl=e ge =

+3 At ‘

g, =€ (Coshas +4 sinho$) 2

3At

-

-

‘ !
-

-

"(A2) To figure, out the second sum, ZJ:, we have first to find -

(/.

5
N
9 9

. e .2 b kA t
g, =g A -aIsinhug(Coshorgt 2 oo

~
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N , : \ -
. 5 ,{
S W __<'
’ 3 kt ‘ . . . < i
95 =Szl o= AD)sinhaCesnag+ & sinhad)
It
‘Q
94 *Tx? (Kz-az)zsinh.zq%
4 , ' a o
and A , -
J{g ) = Py Q P + P,Q Py, where P, and P, are two projection
_operators on £ such that : o
@ P)+Py=1I
() J(B, + P,) = J(B)) + J(P,),
Py and P, are given as following: -
O G A G
P, = ’ P, = \
' \o o 2 L N0 1
thus,
: ' | '
| - .
Jo )= . \ ' .
“ s o of . o
- \ . ‘
therefore, J, is as: ‘
Jt.'(l 2) ‘ C o
. J3 J4 v - . " :
. " 4
!
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« where, ! ’ )

- 2 t2
J, = (Cosho(z lzsinhqi)

( ?\. ) A t,2
J, = —TSmhd—(Cosha- --l&nhd}-)(Cosho(-k —Smhd-z-)

3 = L la ) SInhot-E)Cosho(—f--""-Sinhai-)(Coshu- lsinha-)

7 ‘ /
2_.22 ) 2

Ry e W T I L I
4= Py - sinacosag A, s

J

‘Changing t by tl in the above matrix, we can get Jp -

1 -
<J5 Js) ;
J = , ‘ ‘
1 J, J |

7 Y8/

2 2 op2 1 )2
Jg = (cosn®o tys- 25 sinn’utyh)

3 = ‘—4—)31:&1ouc,mccastw:,/z —-sinhmt./z)(Coshat./z+—Slnhd.t./h)

2
J-( = 1 Sinhdh/,_(Ccshat./l+ -—-Smhut./z)(COShott./z —Sinhdtq/z) '
‘ 2,2

" "dg = "—i"—-:z’-'—’-mza m/,_(Cosh 2ty - Asinh? atb_)

4

Secondly. to completezt, we have to find 5, Jtl for the integral. part of (5.4).
§Fot the convenience, we set:
Cosh«xt/Z-A, Cosh & t‘/a.'A‘l

-
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Sinhdt/2=B, Sinh o tl/a_‘al - :

et Yoo akm 2 4% b W e

Ch e g e i

S0,
C C E
S, = ( 1 2) . -
! C3 C ‘ : |
C =€‘3kt[(l\-—-8) (A “l%B 2 ‘-——-z-“ x) B(A- -A-B)B (A, +L’B 13- X )2]
1 . 4et ! o
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=S (o -3 2g) Bl(A 25 Ka + 28 (@222 :
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2 2 (——1—— -
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2, o2 A Ap 2} | a
; (BUBy(B + =B NA - TB)) J . _
-53 At . ’ 22
. ‘a2 22 . A l
c, 4/."2 (R &) {B(A 'F'B)BI(AI -a'-Bl)(Al"'—Bl) + 4ot. B
2,,2 A242
By(Ay~ 2 Bl)]
therefore, ‘
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Z Q)= lfdtlst"t1+°" .
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