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Abstract

Recognition of Handwritten Numeral

Using Neural Networks

Weigian Dai

A new recognition system has been developed and implemented to solve the diffi-
cult real world problem of handwritten numeral character recognition. In the system
Fourier descriptors were used as features and a backpropagation model of neural
network as the pattern classifier.

A new backpropagaton learning algorithm for the neural network has been devel-
oped and its performance has been evaluated. The new algorithm was derived from a
new evaluation function instead of least mean squares. Simulation results show that
this new algorithm is superior to the standard backpropagation model. The problem
which occurs in the training sequence in which the standard backpropagation model
fails is solved by the new algorithm. The newly developed backpropagation model is

a promising approach to handwritten numeral recognition.
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Chapter 1

Introduction

Research on the recognition of the handwritten numerals is a challenging field. A
number of handwritten recognition systems have been proposed and tested. The
problem of handwritten numerals recognition is both practical and complex. Even
though it is easily formulated. a considerable amount of research has been devoted
to solve it due to its comp 2xity.

In this work. a new handwritten recognition system is presented. which uses neural
network as pattern classifier. The me-lified back-propagation model is presented and
results are discussed.

Recognition of the handwritten numerals is a standard task performed by human.

To get an idea how lilumans do it we have to explore mechanism of the human brain.

1.1 Brain vs. Digital Computer

Conventional digital computers are extremely good at executing sequences of instruc-
tions that have been precisely formulated, with the “stored program” representing
the processing steps that need to be done. The human brain, on the other hand, per-
forms well at such tasks as vision, speech, information retrieval, and complex spati»

and temporal pattern recognition in the presence of noise and distortion — tasks that



are very difficult for sequential digital computers to do.

A Visual pattern recognition task such as reading numerals or distinguishing
shapes - a task that can be easily accomplished by human beings - presents significant
difficulties to those attempting to design information processors to do the same thing.
The solution to this design dilemma apparently resides in the brain itself.

How does the brain accomplish this? The human brain has more than 10 billion
neural cells, which have complicated interconnections and constitute a large scale
network. Hence, uncovering the neural mechanisms of the higher functions of the
brain is not easy. However, the recording can be made from, at most, a few cells
simultaneously. Although we can obtain fragmentary knowledge, understanding the
mechanism of the network as a whole proves difficult. It is not vet understood how
this massively parallel interconnected system of neurons allows us to store, represent,
retrieve, and manipulate data such as numeral patterns. Up to now, we do not know
how the brain stores the image data and how it learns to recognize the patterns like

handwritten numerals. However, we can do this thing well.

1.2 Modeling Approach to the Neural Network

Neurobiologists and neuroanatomists have made substantial progresses. Painstak-
ingly studying the structure and function of the human nervous system, they came
to understand much of the brain’s "wiring”, but little of its operation. As their
knowledge grew, the complexity of the human brain was found to be surprising.
Improved understanding of the functioning of the neurons and the pattern of its
interconnection have allowed researchers to develop mathematical models to test their

theories. Experiments can now be conducted on digital computers without involv-

o



ing human or animal subjects, thereby solving many practical and ethical problems.
From early works it became apparent that these models not only mimic the func-
tions of the brain, but they were also capable of performing useful functions in their
own right. Hence, two mutually reinforcing objectives of neural modeling have been
defined: first, to understand the physiological and psychological functioning of the
human neural system; and second, to produce computational systems (artificial neu-
ral networks) that perform brainlike functions. It is the latter objective which forms
the major focus of this thesis.

Therefore, a modeling approach using neural network models continues to gain
importance, as pointed out by Fukushima [10]. In the modeling approach, there is
a need to study how to interconnect neurons to synthesize a brain model, which is a
network having the same functions and abilities as the brain.

When synthesizing a brain model, it is necessary to follow the physiological ev-
idence as faithfully as possible. For parts not yet clear, however, a hypothesis is
constructed and the model should follow the hypothesis. Then the behavior of the
model is analyzed and simulated. The simulation results are compared with that of
the brain. If any discrepancy is found in the behavior between the model and the
brain, the initial hypothesis should be changed and the model should be modified
accordingly. The behavior of the model is tested again. This procedure is repeated
until the model behaves in the same way as the brain. Although one still needs to
verify the validity of the model by physiological experiment, it is probable that the
brain uses the same mechanism in the same way.

Once a model has been completed, simplification of the model will make it easy

to understand the essential algorithm of information processing in the brain. This



algorithm can be directly used as a design principle for new information processing.

The basic artificial neural networks are biologically inspired: that is, they are
composed of elementary functions of the biological neuron. These elements are then
organized in a way that may (or may not) be related to the anatomy of the brain.
Despite this superficial resemblance, artificial neural networks exhibit a surprising
number of the brain’s characteristics. For example, they learn from experience, gen-
eralize from previous examples to new ones, and abstract essential characteristics
from inputs which may contain irrelevant data.

Imagine a computer that learns. Information is fed into it, along with examples
of the conclusions it should be reading or feedback on how it is doing - or the
machine may even be left on its own. The computer simply runs through the material
again and again, making mistakes but learning from them, until finally it attains the
proper state to carry out the task successfully. Such behavior is quite human, and
naturally so: for the design of the machine’s information processing system, a neural
network, was inspired by the structure of the human brain-its nerve cells, their
interconnections, and their interactions- and by comparing of what the brain can do.

Artificial neural networks have made many impressive demonstrations of its capa-
bilities: a network has been trained to convert text to phonetic representations, which
are then converted to speech by other means [34]; and a neural network-based image-
compression system has been devised [4]. All these networks use the backpropagation
network, perhaps the most successful of the current algorithms.

It has to be noted that the study of the modeling approach to neural networks
have been given many terms in the literature: artificial neural networks, connectionist

models, parallel distributed processing models, and self-organizing systems. The term
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“artificial neural networks” has been adopted as the preference throughout this thesis.

1.3 Pattern Classification and Neural Networks

Pattern recognition is a very broad field that includes various subjects such as char-
acter reading, medical diagnosis, weather prediction, and speech recognition.

Recognition of handwritten patterns, after more than three decades, is still a
challenge for today’s researchers [37, 36). The difficulty is nct only due to the infinite
variations and great distortions of characters from one individual to another, but
also there are variations from one experiment to another, even when dealing with the
same individual.

Numerous character recognition systems have been proposed and implemented
in many ways. The recognition techniques vary widely according to the features
chosen, the way these features are extracted, and the classification scheme used.
Both theoretical and practical aspects of classification schemes have been studied
extensively by Suen et al[37].

Because the character recognition problem is related to the replication of human
functions, it is natural to consider the neural network approach to the character
recognition system.

A number of people have investigated this technique and some researchers have
developed several models which are capable of recognizing visual patterns. For a good

introduction to artificial neural networks for pattern classifications see Lippmann [22].
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1.4 Introduction to Pattern Recognition System

Automatic pattern recognition has been a very active field during the past two
decades. The increasing attention given to this research field is due to the demand
of large volumes of information processing. The ultimate goal is to develop a flexible
system which can classify characters in varying positions, orientations and dimen-
sions in the image plane. Additionally, such a recognition system should be tolerant

to a certain degree of random variations in shapes.
1.4.1 Basic Structure of a Character Recognition System

Figure 1.1 shows the block diagram of a basic character recognition system. It con-
sists of the three main components, namely, sensor, image preprocessor and feature
extractor, and pattern classifier. Sensing involves the digitization of character image
by an optical scanner and binarization if necessary. The image preprocessor and
feature extractor can be divided into two stages: preprocessing and feature extrac-
tion. Preprocessing mainly involves enhancement and filtering of the digitized image.
preparing it for the next stage. In the feature extraction stage, numerical measure-
ments or structural properties representing the characteristics of the input images are
extracted. The extracted feature will give maximal information about the pattern.
In the selection process we preserve those features which exhibit good discriminatory
qualities. The third component of the system involves the classification and identi-
fication of the character images into their respective classes. The extracted {eature

information is fed into a categorizer which makes a classification of the unknown

samples.
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Figure 1.1: Block diagram of a recognition system
1.4.2 Pattern Recognition System Using Neural Networks

In the study of the architecture of neurons in the brain and sensory nerves, it has
been suggested [30] that humans perceive shape by performing comparisons to forms
already stored in the brain. This comparison is performed invariant of various shape
transformations such as scaling of size, translation, and rotation. The neurons can
implement operations that are invariant to these transformations [14].

Recent advances in the field of artificial neural nets have opened the door to a
new approach to pattern recognition problems. These nets offer several advantages
over the traditional recognition techniques, most notably high computation rates and
greater degree of fault tolerance provided by massive parallelism.

As mentioned before, traditional image recognition approaches require three phases:
image preprocessing: feature extraction to reduce the dimension of the problem to

a computationally manageable size and classification of the image using its features.

g
1



Our approach shares the first and the second stage with the traditional structures.
However, in the classification stage, a neural network is used in place of a conven-
tional classifier. There have been attempts to merge the second and third stages into
one when using neural network. This may eliminate the need for explicit feature
extraction. However, biological studies of the human visual system suggest that it
relies on features extracted from the visual stimuli, e.g. edges and texture content.
Therefore, we believe that utilizing features instead of the image itself is an appro-
priate action. Thus, to investigate any possible gain achieved by using a neural net,
one must compare the obtained performance with that of traditional classifiers. The
experimental results obtained in our study show that we can actually do better with

a neural network which justifies its use in place of a conventional classifier.

1.5 Proposed Character Recognition System

The principal aim of this thesis is to define a new character recognition method which
can simulate human ability to learn from the experience (training) and identify the

characters automatically. The basic structure of the system includes three parts:
1. preprocessing - noise elimination.
2. feature extractor - extraction of the Fourier descriptor and topological features.

3. pattern classifier - neural network approach to pattern classification.

1.6 Outline of This Thesis

In this thesis, a new handwritten character recognition system has been implemented

and tested on a data base of handwritten numerals provided by the US post office.



Chapter 2 explains how the features of characters are extracted and why they are
sufficient for the handwritten character recognition system.

Chapter 3 presents the background of a neural network and the history of a
backpropagation model. It also explains the necessity to modify the backpropagation
learning model for pattern recognition.

Chapter 4 presents and discusses the simulation results for the standard and
modified model. The simulation results prove that the modified model is superior to
the standard model.

Chapter 5 concludes the thesis and points to the future research directions.



Chapter 2

Feature Selection

Recognition of handwritten characters was and still remains a difficult problem due
to the large degree of variability of the data [35). Not only there is a change and
distortion of characters from one individual person to another, but also there are
variations from one instance to another, even when written by the same individual.
A large number of techniques have been applied to shape recognition problems [20].
Shape analysis. boundary line encoding (8] and polygonal approximation (28] tech-
niques are usually quite simple, however, they are not rotationally invariant. Another
related approach involves the reduction of shape information through certain contour
scanning or tracing schemes [21]. This approach yields descriptors that are invariant
with respect to translation, shift and size. The development of slope and curvature
codes for shape description leads to miore general concept of intrinsic equation (9], in
which the information code along a curve may be considered as a function of the arc
length.

Since each character can be, in general, represented by a closed contour of line
segments, we can obtain useful information by tracing the boundary of the charac-
ter periodically. Fourier descriptor are obtained from expanding the boundary or

related quantities into Fourier series. Resulting features may be chosen so that they
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are invariant with respect to translation, rotation, shift and size of similar shapes
(29, 44, 11]. Moreover, these features lead to a significant compression of shape in-
formation. In this chapter, two kinds of Fourier descriptors are investigated, and the
reconstruction of handwritten numerals from the Fourier descriptor is also discussed.

Unfortunately, Fourier descriptors alone are not sufficient to discriminate all char-

acters for the following reasons:

o Fourier descriptors describe only the outer contour of a binary pattern. Certain

—

numerals, like "7" and "9", "1” and "0", have similar outer contours.

o The rotational invariance property of the Fourier descriptors does create diffi-
culties in dealing with numerals that are similar in shape and their differences

can be attributed to rotation and/or 1eflection, such as 2 and 5, or 6 and 9.

In order to distinguish these ambiguous characters, additional features such as

internal topological features (hole), are used.

2.1 Fourier Descriptors

In this section we will present two different types of Fourier Descriptors to encode
the outer contour of an image. Training and testing results obtained from these FDs

will be presented in Chapter 4.

2.1.1 Zahn and Roskies’ Fourier Descriptors

Fourier descriptors given in [44] are defined as follows: assume that 7 is a clockwise-
oriented simple closed curve with parametric representation Z(l) = (z(l), y(!)) where
lis the arc length and 0 <1< L, see Figure 2.1. Denote the angular direction of ¥ at

point [ by 8(1). Define the cumulative angular bend function ¢(!) as the net amount

11



Figure 2.1: Polygonal representation of numerals.

of angular bend between starting point [ = 0 and point I. So &(!) = 6(1)—60(0) except
for possible multiples of 2= and ¢(L) = —2x. Note that if 9 winds in a spiral then
|o(1)| can achieve values larger than 2. Finally, we define ¢=(¢) as

(1) = )+t 2.1)

where ¢ ranges from 0 to 27. Note that ¢°(1) is invariant under translation, rotation,
and changes of the perimeter L (scale). Upon expanding ¢°(¢) into a Fourier series
we get

¢ (t) =po+ Z(ak cos kt + by sin kt). (2.2)
k=1

In polar form the expansion is

@° (1) = po + Z Ay cos(kt — ay) (2.3)
k=1

where | Ay, o) are polar coordinates of {aj, b;). These number (A; and a;) are

Fourier descriptors FD's for curve 4.



Suppose that v is a polygonal curve with m vertices W, ..., Vn—1 and that the

edge (Vi-1,V}) has length Al;, angular bend at vertex V; is A¢; and L = YT AL

With these definitions ( see Figure 2.1) it is not hard to verify that

and

Where

Normalization

k
#(l) =3 A
1=1
k k41
forZAl, <I< ZAI.'

i=1 =1

1
o= —« — Z Z IkA(,'bk
k=1

a, = ——1- Z Ay sin 2rnl

nw k=1 L

1 & 27nl,
b, = — ) A¢

nw Z P cos L

(2.4)

By definition of ¢~ the amplitudes A, are invariant to translation, rotation and

changes in size. Since a,’s carry information about the starting point, it is useful to

normalize the starting point. To normalize the starting point we scan the image of

a numeral from left to right and top to bottom and take the first black point as the

starting point of the boundary 7.

2.1.2 Granlund’s Fourier Descriptors

The FD’s given in Granlund [11] are defined in a different way than in [44]. Assume

again that 4 is a simple, closed curve with representation Z(l) = (z(1),y(!)), where |

13



is the arc length along y. A point moving clockwise along the boundary generates the

complex periodic function u(!) = z(I)+ jy(!) with period L. The FD’s are defined as

L .
an = % [ et (2.8)
and
u(l) = Y. a,emi/Lh (2.9)

We can easily obtain FD’s for a polygonal curve. Using the notation of Figure 2.1,

we have
L m
In = gazgs & (b = BT (2.10)
where
k
=Y IV, =Vl (2.11)
1=1
Vigr — Vi
by = ———— 2.12
T e = V] (2.12)

and 1j is the starting point.

Normalization

In order to normalize the characters for scaling, rotation. position, and the starting
point, the coefficients are normalized to a “standard” orientation. The Fourier co-
efficients can be transformed as follows: ap = 0 and a, = a, * se’(*+") for n £ 0,
The parameters ¢ and a are chosen so that a; and a_, have zero phases and s is a
scale facter which equals to 1/|a;|. This is equivalent to rotation and shifting the
starting point so that the a; and a_, components describe a fundamental ellipse with
its major axis along the x-axis.

There are two problems related to normalization. First, the magnitude of a_,

may be zero. In that case the phase angle becomes indeterminate. Second, there are

14



two possible orientations, which satisfy the zero phase angle of a; and a_, condition.
An additional 180° rotation and —L/2 starting point shift would also satisfy the
zero phase condition. In order to mitigate these difficulties we present alternative

normalization schema [12]. A new set of Fourier coefficients a,, is defined as follows:

o Set ay = 0.

°a, = lla!hej("’”“) , for all n # 0, where ¢, and a are chosen below.

The above transformation scales and shifts the phase of original Fourier coeffi-

cients.

o Find the largest coefficients a;» in the set {ax, -4 <k <6, k # 0,1} and set
_ S(a1) - é(ax)

t() k- -1 ) (2‘13)
a= -k'é(“l:_): ;"’(“*')5 (2.14)

where ¢(a,) is the phase of ay.

The cu-ve 7(1) = a16V¥VL 4 4. e227"L has |k — 1| fold symmetry. So there
are |k* — 1| relative starting point shifts, multiples of I‘z{'f that satisfy the zero

phase condition. Hence. rotate and shift the starting point so that
i, = a, & HEIER ;= 0,1, ., (k= 1] = 2). (2.15)
to maximize the following criterion:

Y Re{da}|Re{dy}|. (2.16)
This criterion effectively chooses the normalization that orients the axis of one
of the main lobes of the |k* — 1]-fold functional shape a,e* + a;.e/*"t, where
t = 2nl/L, along the positive x-axis and the starting point on the contour

corresponding to that lobe is the farthest point from the origin.

15




2.1.3 Reconstruction of Patterns

One of the main advantages of the Fourier analysis of characters is significant data
compression. We have found that for almost all of the characters analyzed in this
study, only 30 FD’s had significant values, while the remaining coefficients were
negl.zibly small.

Figure 2.2 illustrates the original and Figures 2.4 - 2.5 reconstructed characters
using the above normalized Fourier descriptors. The 30 normalized FD’s were used
to reconstruction of numerals. In figure 2.4, 15 pairs of Ax. o, were used. In figure
2.5, 15 complex harmonics were taken. It is clear that the reconstructed numerals

preserve the inherent ‘eatures of original characters.

2.2 Internal Shape Descriptors

Topological properties are useful for global descriptions of regions in the image plane.
Simply defined, topology is @ study of the properties of a figure that are not affected
by any deformation, as long as there is no tearing or joining of the figure. These are
sometimes called rubber-sheet distortions. If we define as a topological descriptor the
number of holes in the region, it is evident that this property will not be affected by
stretching or rotation. Topological features are determined from the internal holes
described by two numbers, the minimum and maximum distance from the top of the

numeral to the hole taken relatively to the height of the numeral (see Figure 2.6).

16
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Figure 2.2: Original numerals.



2 222 4 2 2 222 a
33 33333 333
S5 d F Y YLy gy
5 5§ 5853 S5 5 8 s
6 46 6 6 6 6 & {4 b &
77 0 7 7 3 ) 27 2 7
S E T8 83 90 98
7759279 9

Figure 2.3: Outer contours of numerals from Figure 2.2,



Figure 2.4: Reconstructed numerals from Figure 2.2 using Zahn and Roskies’ method
with 30 FD's.
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Figure 2.5: Reconstructed numerals from Figure 2.2 using Granlund’s method with
30 FD’s.



Figure 2.6: Parameters required to extract topological features from a numeral.
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Chapter 3

Neural Networks —
Backpropagation Model

In this chapter, the basic knowledge of the artificial neural networks is presented,
followed by a review of development of the perceptron model. The backpropagation
model, adapted in this work. is then discussed in detail. At the end of this chapter

the modified backpropagation model is presented.
3.1 Fundamentals of Artificial Neural Networks

Artificial neural networks are biologically inspired; that is. researchers are usually
taking into account the organization of brain when considering network configurations
and algorithms. Knowledge about the brain’s overall operation is so limited that there
is a little guidance for those who try to emulate it. Hence, network designers must
go beyond current biological knowledge, to seek structures that can perform useful
functions. In many cases, this necessary shift discards biological plausibility; the
brain becomes a metaphor; networks are produced that are organically infeasible or
require a highly improbable set of assumptions about brain anatomy and functioning.

Before we can start the discussion of the artificial network, the human nervous

system is described - an entity that successfully performs the tasks to which our



Dendrites

Figure 3.1: Components of biological neuron.

artificial systems only aspire.

The human nervous system, built of cells called neurons, is a very complex system.
An estimated 10" neurons participate in perhaps 10® interconnections over trans-
mission paths. Each neuron shares many characteristics with the other cells in the
body, but has unique capabilities to receive, process, and transmit electrochemical

signals over the neural pathways that comprise the brain’s communication system.
3.1.1 The Biological Neuron

The neuron is the fundamental building block of the nervous system. It is a cell

similar to all cells in the body; however, certain critical specializations allow it to

perform all of the computational and communication functions within the brain.
Figure 3.1, shows the structure of a pair of typical biological neurons. Each

neuron consists of three sections: The cell body, the dendrites, and the axon, each
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with separate but complementary functions.

Functionally, the dendrites receive signals from other cells at connection points
called synapses. From there, the signals are passed on to the cell body where they are
essentially averaged with other such signals. If the average over a short time interval
is sufficiently large, the cell “fires”, producing a pulse down its axon that is passed
on to succeeding cells. Despite its apparent simplicity, this computational function
accounts for most of the known activity of the brain. Underlying it, however, is a

complex electrochemical system.

The Cell Body

The neurons in the adult brain do not regenerate; they must last a lifetime. This
means that all of the components must be continuously replaced and the materials
renewed as needed. Most of these maintenance activities take place in the cell body.
where a wide variety of complex molecules are manufactured. In addition, the cell
body manages the energy economy of the neuron and regulates a host of other activ-
ities within the cell. The outer membrane of the neuron’s cell body has the unique
capability of generating nerve impulses, a vital function of the nervous system and

central to its computational abilities.

Dendrites

Most input signals from other neurons enter the cell by way of dendrites, a bushy
branching structure emanating from the cell body. On the dendrites are synaptic
connections where signals are received, usually from other axons. In addition, there
are numerous synaptic connections from axon to axon, axon to cell body, and dendrite

to dendrite. The function of these is little understood, but too widespread to be
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insignificant.

Unlike electrical circuits, there is usually no physical or electrical connection made
at the synapse. Instead, a narrow gap called the synaptic cleft separates the dendrite
from the transmitting axon. Specialized chemicals that are released by the axon
into the synaptic cleft diffuse across to the dendrite. These chemicals, called neural
transmitters, pass into specific receptor sites on the dendrite and enter the cell body.

More than thirty neural transmitters have been identified. Some are excitatory
and tend to cause the cell to “fire” and produce an output pulse. Others are inhibitory
and tend to suppress such a pulse. The cell body combines the signals received over
its dendrites and, if their resultant signal is above its threshold, a pulse is produced

that propagates down the axon to other neurons.

The Axon

An axon may be as short as 0.1 millimeter, or it can exceed 1 meter in length,
extending to an entirely different part of the body. Near its end, the axon has
multiple branches, each terminating in a synapse, where the signal is transmitted
to another neuron through a dendrite or, in some cases, directly to a cell body. In
this way, a single neuron can generate a pulse that will activate or inhibit hundreds
or thousands of other neurons, each of which can in turn (through its dendrites) be
acted upon by hundreds or thousands of other neurons. Thus, it is this high degree
of connectivity rather than the functional complexity of the neuron itself that gives
the neuron its computational power.

Dendrites extend from the cell body to other neurons where they receive signals

at a synapse. On the receiving side of the synapse. these inputs are conducted to



the cell body. There they are summed, some inputs tending to excite the cell, others
tending to inhibit its firing. When the cumulative excitation in the cell body exceeds
a threshold, the cell fires, sending a signal down the axon to other neurons.

The basic functional outline is very complex and has many exceptions; neverthe-

less, most artificial neural networks model only these simple characteristics.

3.1.2 The Artificial Neuron

The artificial neuron was designed to mimic the first-order characteristics of the bi-
ological neuron. In essence, a set of inputs are applied, each representing the output
of another neuron. Each input is multiplied by a corresponding weight, analogous to
a synaptic strength, and all of the weighted inputs are then summed to determine
the activation level of the neuron. Figure 3.2 shows a model that implements this
idea. Despite the diversity of the network paradigms, nearly all are based upon this
configuration. Here, a set of inputs labeled z, x2....,7, is applied to the artificial
neuron. These inputs, collectively referred to as the vector x. correspond to the sig-
nals which go into the synapse of a biological neuron. Each signal is multiplied by an
associated weights w;. wa. ..., wn, before it is applied to the summation block, labeled
y.. Each corresponds to the “strength” of a single biological synaptic connection.
The set of weights is referred to collectively as the vector w. The summation block,
which corresponds roughly to the biological cell body, adds all of the weight inputs
algebraically, producing an output that we call net. This may be compactly stated
in vector notation as follows:

net = wx



net = 1w + Tow; + T3w3 + ... + Towy
Figure 3.2: Artificial neuron.

3.1.3 Activation Functions

The net signal is usually further processed by an activation function f to produce
the neuron’s output signal, o. This may be a simple linear function,
o= f(net)

where f is a threshold function, and

o =1 1f net >T

o =0 otherwise

where T is a constant threshold value, or a function that more accurately simulates

the nor:linear transfer characteristic of the biological neuron and permits more general

netwerk functions.




0 = f(net)

Figure 3.3: Artificial neuron with activation function.

In Figure 3.3 the block labeled f accepts the net output and produces the signal
labeled o. Normally the f processing block compresses the range of net, so that o
never exceeds a certain preset lower limit regardless of the value of net. f is called a
squashing function. The squashing function is often chosen to be the logistic function
or "sigmoid” (meaning S-shaped) as shown in Figure 3.4. This function is expressed

mathematically as f(z) = 1/(1 + e~"¢). Thus,
o=1/(1+e")

By analogy to analog electronic systems, we may think of the activation function
as the one which defines a nonlinear gain for the artificial neuron. This gain is
calculzted by finding the ratio of the change in o to a small change in net. Thus,
gain is the slope of the curve at a specific excitation level. It varies from a low

value at large negative excitation, and it drops back as excitation becomes very large
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Figure 3.4: Sigmoid function.

and positive. Grossberg(1973) found that this nonlinear gain characteristic solves
the noise-saturation dilemma that he posed; that is, how can the same network
handle both small and large signals? Small input signals require high gain through
the network if they are to produce a usable output; however, a large number of
cascaded high-gain stages can saturate the output with the amplified noise(random
variations) that is present in any realizable network. Also, large input signals will
saturate high-gain stages, again eliminating any unusable output. The central high-
gain region of logistic function solves the problem of processing small signals, while
its regions of decreasing gain at positive and negative extremes are appropriate for
large excitations. In this way, a neuron performs with appropriate gain over a wide
range of input levels.

This simple model of the artificial neuron ignores many of the characteristics of
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its biological counterpart. For example, it does not take into account time delays
that affect the dynamics of the system; inputs produce an immediate output. More
importa..t, it does not include the effects of synchronism or the frequency modulation
function of the biological neuron’s characteristics.

Despite these limitations, networks formed from these neurons exhibit attributes
that are strongly reminiscent of the biological system. Perhaps enough of the essential
nature of the biological neuron has been captured to produce responses like the

biological system, or perhaps the similarity is coincider*al.

3.2 Development of Neural Network

McCulloch and Pitts (1943) showed how neural-like networks could compute, the
main problem then facing researchers in this area was to understand how such net-
works could learn.

The first idea came from Donald Hebb's [13]. Hebb proposed that a reasonable
and biologically plausible change would be to strengthen the connections between
elements of the network only when both the presynaptic and postsynaptic units
were active simultaneously. The essence of Hebb's ideas still persists today in many
learning paradigms. The details of the rules for changing weight may be different,
but the essential notion that the strength of connections between the units must
change in response to some function of the correlated activity if the connected units
still dominates learning models.

Probably the first such attempt occurred in 1951 when Dean Edmonds and Marvin
Minsky built their learning machine. It had three hundred tubes and a lot of motors.

It needed some automatic electric clutches. The memory of the machine was stored
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in the positions of its control knobs, 40 of them, and when the machine was learning,
it used the clutches to adjust its own knobs. Although Minsky was perhaps the first
to build the network, the real beginnings of meaningful neural-like network learning
can probably be traced to the work of Frank Rosenblatt. Rosenblatt invented a
class of simple neuron-like learning networks which he called perceptrons. In [25]
he gives a clear description of what he though he was doing: Rosenblatt pioneered
two techniques of fundamental importance to the study of learning in neural-like
networks: digital computer simulation and formal mathematical analysis, although

he was not the first to simulate neural networks that could learn on digital computers.

3.3 Perceptron and Representation

Perceptron, a two layver neural network. involves only input and output units in which
a set of input patterns arriving at the input layer are mapped directly to a set of
output patterns at the output laver. As shown in Figure 3.5, there is no inlernal
representation. These networks have proved useful in a wide variety of applications.
This 1s what allows these networks to make reasonable generalizations and performs
reasonably on patterns that have never before been presented. The similarity of
patterns in a system is determined by their overlap. The overlap in such networks is
determined outside the learning system itself - by whatever produces the patterns.
The proof of the perceptron learning theorem([31] (Rosenblatt 1962) demonstrated
that a perceptron could learn anything it could represent. It is important to distin-
guish between representation and learning. Representation refers to the ability of
a perceptron (or other network) to simulate a specified function. Learning requires

the existence of a systematic procedure for adjusting the network weights to produce
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Figure 3.5: Two-layer artificial neural network

that function.

The two-layer network is seriously limited in its representational ability; there
are many simple machines that the perceptron cannot represent no matter how the
weights are adjusted. Minsky and Papert [25] (1969) have provided a very careful
analysis of conditions under which such systems are capable of carrying out the
required mappings. They show that in a large number of interesting cases, networks

of this kind are incapable of solving the problems.

3.4 Multilayered Neural Network Model - Back-
propagation Model

Figure 3.4 shows the neural network model consisting of multiple layers, which was
originally proposed by Bryson and Ho [2] and independently rediscovered by Werbos
in 1974 [41], by Parker in 1985 [27] and D. E. Rumelhart et al in 1985 [33, 32].
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Figure 3.6: Multilayered Neural Network Model

The bottom layer of the network is called the input layer, the upper layer is called
the output layer, and the intermediate layers are called the hidden layers. Each
layer consists of a number of cells called units. Each element of the input vector
corresponds to a simple unit in the input layer. The output signal from the output
layer is equivalent to the output of a discriminant function. Each unit is connected
to all units in the layers above its own. Each connection has an unbounded positive
or negative weight associated with it. The output of the network is a function of the
inputs and the weights.

Consider the single neural unit j with n-input, as shown in Figure 3.4. The output
o, of unit j is a function (called the activation function) of the total input fed to that
unit,

o; = f(net,).

The inputs to the unit are the weighted outputs from all previous levels. Thus, net,
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is defined as
net; = ij,-o, + 0,
i

where w;; is the weight of the connection from the ith unit to the jth unit, o, is the
output of the ith unit, and the summation is over all units feeding into unit j where
8; is a variable bias with function similar to a threshold. Note that o; can be defined
recursively in terms of its inputs. For the input layer net,, = ¢,,, m is an input unit
and 1,, is the mth input value.

We use sigmoid function,

1
0, = f(net)) = T3 enety” (3.1)

as an activation function. This activation function has the feature of being non-
decreasing and differentiable and its range is 0 < o, < 1. As a result we have a
nonlinear classification problem. The training of the network is obtained by the back

propagation algorithm described in the next section.
3.4.1 Representation of the Three Layer Neural Network

A number of people have studied the capabilities of multilayered perceptron like neu-
ral network model. Nilsson {26) showed that a finite number of points can be divided
into two arbitrary sets using three-layered perceptrons. Lippmann [22] conceptually
explained that three-layered perceptrons can form convex decision regions. In more
recent studies, Huang and Lippmann [15] reported that three-layered perceptrons can
also form non-convex decision regions. Irie [16] proved that an arbitrary function can
be represented by three-layered perceptrons with an infinite number of computing

units if the input-output characteristics of them satisfy some conditions.
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3.4.2 Multilayered Neural Network Learning Algorithm -
Backpropagation Learning Algorithm

To train the network, we use an extension from the one layer gradient algorithm to a

multilayer algorithm, called the back propagation algorithm. The name refers to an

iterative training process in which the output error is propagated back through the

network and is used to modify the weight values. The error signal E is defined by

1 2
E=ZEP=3ZZ(tpj—°pj) ) (3.2)
p “r
where summation is performed over all output nodes j. and op, is the desired or
target value of output 1, for a given input pattern p vector. Once the outputs from
the internal units and output units have been calculated for each input pattern p,
the direction of steepest descent in parameter space is determined by the partial

derivatives of E with respect to the weights and bias in the network,

_OE, __OE, Onety,
du,, Onctp, Owy,
0E, 0
= - ) 0
Onet,, aw],(g wpkOpi +9))
OE,

" Onet,,

= 6,0, (3.3)

Opy

and

dE, __OE, Onety,
a0, Onet,, 00;
_ 0E, 0 '
- 0net,,j00](zw"kopk+0’)

k
= &, (3.4)

where we define

9E,

Onet,,

6PJ =




To compute 6,;

aEP _ 6Ep Bo,,j

6= — =— 3.
P Onety,  Oop; Onety; (3.6)
where
aopj
Bnet,, (1 = 0p;)0p;. (3.7)
When node j is an output node,
0FE, d 1 2
30,,, ao,,, :2; (tp; = 05)" = —(p; — 0py), (3.8)
and when j is an internal node,
QEH Z 8E 3netpk
Joy; - ancipk 80N
= 10pi 0
; (')net,,k Bo,,, Z,:uk opi +04)
_ 0E, .
~ Dnety
= —Zé,,ku‘kr (3.9)
k

Therefore, quantities 6,; can be calculated in parallel for all output units j as

bpy = (tp; — 0p;)(1 = 0p5)0p;, (3.10)

where j refers to a unit in one of the intermediate layers, é,, can be calculated using
(3.7) and (3.9) in (3.6) as |
8pi = (1= 0p5)0p, 3 Sprwijy (3.11)
k
where summation is over all units k, which receive signals from unit j. Equation
(3.11) shows how the analysis proceeds from the output layer to the previous layers.
Using (3.10) and (3.11) in (3.3) and (3.4), we obtain - the steepest descent di-

rection from a current weight-bias configuration. The weights w,, and biases 8; are
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changed according to

Awy(n) = 7Y 6,00 +adw,i(n — 1) (3.12)
)

Ab,(n) = 73 6,; +aAbi(n —1), (3.13)
P

where n is equal to the number of epochs (in one epoch all the input training patterns
are presented to the network), 7 is the learning rate, and a is a constant which
determines the effect of past weight changes on the current direction of movement in
the weight space.

3.4.3 Implementation of Backpropagation Learning Algo-
rithm

The following algorithm describes the learning process.

1. Initialize Weights and Offsets

Set all weights and node offsets to small random values of magnitude less than

1.

2. Present Input and Desired Outputs

Present a continuous valued input vector fg,7y,...,in; and specify the target
outputs to,t1,...,tm=1. If the network is used as a pattern classifier, then all
target outputs are set to zero except for the one corresponding to the class of
the input. That target output is set to one. On each trial a new input might
be present or samples from a training set could be presented cyclically until

weights stabilize.

3. Calculate Actual Outputs
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Use the sigmoid nonlinearity from above to calculate outputs o, in the output
layer.
. Adapt Weights

Use a recursive algorithm starting at the output nodes and working back to the

first hidden layer. Adjust weights and bias terms by

w,.(n) = w,-.-(n - l) + Aw_,-,-(n)
= wjiln = 1) +7)_ 8piopi + aAwy(n —1)
P

0,(n) = 6,(n—1)+Ab,(n)

0,(n=1)+1)_ 6, +alAb,(n-1)
p

In this equation w,,(n) is the weight from hidden node i or from an input to
node j at epoch n, o,, is either the output of node ¢ or is an input, 75 is a gain

term, and &, is an error term for node j. If node j is an output node, then

bpy = 0p, (1 = 0p;) (1, — 0p,),

where 5, is the desired output of node j and o,, is the actual output for the

pattern p. If node j is an internal hidden node, then

bpy = 0p;(1 - 0py) Z Spkwiik,
k
where k is over all nodes in the layers above node j.

. Repeat by going to step 2 until the total error E in Eq.3.2 is less than a certain

value which depends on the application. In this work, that value is set to 0.4.
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3.4.4 Problems with the Backpropagation

Multi-layer networks are quite versatile and can be used in many applications [3, 42].
The strength of neural networks lies in their ability to generate any decision regions
as long as the network consists of at least three layers {22]. However, because of
digital computer numerical round-off error, the learning process is often impeded, the
learning algorithm falls into a false solution, in which all the derivatives in equations
(3.3) and (3.4) of standard backpropagation are numerical zero but the error is not
small. This stops the iteration learning process.

As pointed out in [1], the problem is that the output units é,; = (t,, — 05, )(1 —
0p;)0p, can be numerically zero not only when o, — t,, but also when o,; — 0 or
o, — 1. This leads to é,, = 0 for internal units as well, resulting in all derivatives
equal to zero, which means that the network will lose its learning ability.

One way to deal with the problem is to restart the process at randomly chosen
starting points [33]. This method is impractical for a larger training data base. An

alternative solution is proposed by introducing a new energy function.

3.5 Modification of Backpropagation Learning Al-
gorithm

When neural network is used as a classifier, we expect only one of the outputs to be
high corresponding to the input class. The remaining outputs should be low, so that
the target value is either 1 or 0 [22]. For given output 0; and the target value t,; = 0,

the corresponding output unit can be evaluated by
—(1 = tp,)In(1 ~ o),

(see Figure 3.7). If the target value is t,, = 1, then the output unit can be evaluated
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Figure 3.7: Evaluation function for an output unit having corresponding to t,; = 0.

by

—1p, Inoy,,
(see Figure 3.8), where 0 < 0,; < 1. So that, a new energy function could be defined
for each pattern by:

E, = =Y ((1 =ty,)In(1 = 0p,) + ty;In 0p;) (3.14)

The above function can be used to evaluate each of the outputs, as well as the
entire set of patterns. By substituting this newly defined energy function, Eq.(3.14)

into Equation (3.8), we obtain

OF, 0

oy 80,,; - (tpiInop; + (1 —t5;) In(1 — 0p5))
= -t L + (1= 1tp;) ! (3.15)
= Pl Op;j »J 1- Opy 10
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Figure 3.8: Evaluation function for an output unit having corresponding to 1, = 1.

For the output node, Equation (3.10) can now be rewritten as:

0E,
" On elp,

JdE, 0oy,
"~ Doy, Onet,

bp; =

= 1, -0, (3.16)

For internal node, é,; remains unchanged (see Equation (3.11)).
Comparing equation (3.16) with (3.10), one can see that the term (1 — o,)o,, has
been eliminated. Therefore, the problem of false solution in the original learning

algorithm is solved through the introduction of the new energy function, Eq.(3.14).
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Chapter 4

Simulation Results and
Discussions

In the previous chapters, the use of Fourier descriptors as feature vectors and the
neural network as pattern classifier (both standard and modified backpropagation
model) have been discussed extensively. In this chapter, these features and the
classifier will be used in classification experiments with handwritten numerals. In
section 4.1, the collection of the sample data used in the training and testing and
its preprocessing will be discussed. In section 4.2, the rejection criterion for the
handwritten numeral recognition is defined. Following a brief introduction of the
experimental procedure in section 4.3, the simulation results are presented in the
following order. First, in section 4.4, a small set of samples are used to train and test
different configurations of the neural networks. Second, in section 4.5, a large set
of samples are used to train and test the recognition system developed in this work.

Finally, in section 4.6, a discussion on the classification results is given.



4.1 Data Collection and Preprocessing

4.1.1 Data Collection

As Le Cun et al [5] pointed out, the performance of the numeral recognition system is
highly test-set dependent. A system may successfully recognize 99% of test data con-
sisting of well-formed numerals but score only 80% when confronted with the poorly
formed digits that are both routinely produced and easily recognized by people. To
avoid such situations, the zip code images collected by the U. S. Postal Service from
the dead letter envelopes at different locations in the United States were used as the
test data set. Preprocessing was carried out from the original zip codes images to
produce 6,000 hinary images of isolated digits. Most of the images were fairly clean;
however, a significant fraction was distorted. The defects are quite common among
marom

5's”, in which the top horizontal stroke is often missing. More discussion of difficult

characters in this data base can be found in Mai [23].
4.1.2 Data Preprocessing

The zip code is first segmented into smaller images each of which contains only one
numeral. The segmented image is then binarized. A filter is applied to eliminate
certain small spots in the image, which could be mistreated as holes during the
feature extraction stage.

Each image is further processed by the border following algorithm presented in

the following section.
4.1.3 Border Following Algorithm

In the literature on digital picture processing, a number of algorithms can be found

for “following” the border of a simply-connected object (e.g. [7, 39, 24]). However,
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Figure 4.1: Samples of collected numerals from the U.S. post office.
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some of these algorithms fail to visit every border element in succession for some
simply-connected object.
In this section, a border following algorithm from [43] is presented and used to

extract the border of a numeral.

Definitions and Notations

The image of the numeral is assumed to be a rectangular ordered array, with M rows
and N columns. Elements of an image wi: 1. values 0 and 1 are called 0-elements and
1-element, respectively. Let z;,1, ...,7s denote eight elements in the neighborhood
of an arbitrary element 14 in the image as shown in Table 4.1, and let S. S;, and S;
denote three sets of integers (1,2....,8), (1.3,5,7), and (2,4, 6, 8) respectively. It is
assumed that the first row, the Mth row, the first column, and the N'th column are
all filled with 0-elements. These rows and columns are called the frame of the image.

DEFINITION 1 (neighborhood). A set of elements 74 : k € §; is called the -
neighborhood of the clement z¢. Similarly a set of elements x4 : k € S is called the
8-neighborhood of the element (.

DEFINITION 2 (connectivity). Two elementsa; and a; with a common value are
said to be 4-connected (3-connected), if a sequence of elements yp(= a,),y1, ..., yn(=
a,) exists, such that each y; is in the 4-neighborhood (8-neighborhood) of y,—;(1 <
¢ < n) and all y, have the same values as a; and a.

DEFINITION 3 (connected component). Each equivalence class of elements de-
fined by 4-connectedness is called a 4-connected component. An 8-connected com-
ponent is defined in a similar way. A connected component of 0-elements is called a

0-component, and that of 1-elements is called a 1-component.
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Table 4.1: 8-neighborhood Pixel z .

DEFINITION 4 (hole). Any connected component of 0-elements which does not
contain the frame of an image is called a hole. A connected component of 1-elements
with no hole is said to be simply connected, and otherwise, multiply connected.

The border following algorithm [43] can then be stated as follows,

Find the starting point of the pattern’s outer boundary and the direction
of pixel movement by scanning the pattern from left to right and from top
to bottom. The first non zero pixel is the starting point yo and z is an
arbitrary element in the 8-(4-) neighborhood of yo. Elements are searched
for clockwise starting from zo, in the 4- (§8-) neighborhood of yo and the
first 1-element found is named y,. Then the search for 1-elements in this
neighborhood of y, is resumed clockwise from yq. and y, is then chosen in
the same way as y;. This procedure is repeated, and the sequence of 1-
elements y3, ¥4, ...1s determined successively until y,, = yo and ymy1 =0
hold for the first time. The sequence of 1-elements yo, ¥1, Y2, ery Ym—2, Ym=1
is called a border line and each of yo, 1, ..., ym—1 an element of the border

line.

Applying the above stated border following algorithm, we construct a border line,

consisting a sequence of coordinates of the border elements of a handwritten numeral.

in



4.2 Rejection Criterion for Numeral Recognition

In practical applications, the user is less interested in the raw error rate than in the
number of rejections necessary to reach a given level of accuracy. The appropriate
ratio of rejections to substitutions will vary with the application, but, in general, the
number of rejects should exceed the number of substitutions {40]. In the course of
this project, we measured the percentage of test set that must be rejected in order
to get 1% error rate on the remaining test set.

The rejection of patterns is incorporated into the neural network with two rules
based on the output values at the output layer. The first rule is to reject a pattern
when the highest activation level among the outputs does not exceed the threshold (
{1 ). The second rule is to reject a pattern when the difference between the highest
and the second highest value of the activation is less than (¢;). Otherwise, the pattern
will be classified to the class associated with the highest activation level in the output
layver.

The rejection thresholds (¢, and t2) were obtained from the test set. The perfor-
mance of the classifier was measured by setting the output unit activation criteria.
which must be attained in order to accept a classification. For activations below
this level the pattern is rejected as unclassifiable. It has been found that in order
to obtain a misclassification rate no higher than 1%, 12.6% of the pattern must be
rejected, see Table 4.5. It is expected that a patient human could achieve the same

error rate by rejecting about 5% of the patterns [5).
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4.3 Experimental Procedure

All the experimental tests were carried out in two stages: Firstly, feature vectors,
including both FD’s and topological features, were extracted from all the input pat-
terns. Allsuch feature descriptors were stored in a pattern file, for later use. Secondly,
a neural simulation program carried out to train and test. The simulation program
was developed by the PDP group and modified by myself due to the fact that the
original program has the difficulty to incorporate negative values in pattern descrip-
tor as an input pattern. The simulation program was also modified to incorporate
the program developed in section 3.5.

Feature extraction was carried out on the SUN 386i and training was performed
on the MIPS M120/5 machine which is 4.1 times faster than the SUN. The training
of 4000 patterns took about 4 seconds computer time for each sweep. The number of
sweeps need to train the network variant according to network structure and training
patterns. The network was trained until it stabilized, that means the total error fell

below 0.4, a 100% recognition rate was obtained for the training patterns.

4.4 Results on the Standard Model

Results presented in this section were obtained from the simulation on a small set of
samples (200 patterns for training and another 200 patterns for testing) and a rela-
tively large set of samples (1000 patterns for training and another 1000 patterns for
testing), extracted from our data base (also see [6]). The standard backpropagation
model was used as a pattern classifier in this simulation.

There were two goals for this experiment.

o To determine the size of the neural network, i.e. the number of internal units.
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¢ To determine the number of Fourier descriptors in feature vectors.

The tests ware carried out by first extracting the outer boundary of each numeral,
then for each numeral a set of FD’s were computed. Each pattern was represented by
FD’s and or topological features. The resulting neural network thus had a variable
number of inputs, 10 outputs and a variable number of hidden units. The training

of the network was stopped, when the total output error dropped below 0.4.
4.4.1 Number of Hidden Units

Figure 4.2 presents the test results with the recognition rate plotted versus the num-
ber of the hidden units. 15 harmonics of the Granlund’s FD were used as inputs with
the total of 30 inputs for the neural network. A total of 200 patterns (20 patterns
from each class of the numerals). were used for the training and additional 200 pat-
terns were used for testing. Figure 4.2 shows the best recognition rate of 75%, which
corresponds to 90 hidden neural units.

As discussed in section 3.4.1, three layvered neural networks can classify all kinds
of mappings when the number of hidden neuron goes to infinity. However, this is
not a very practical result. For a given application a finite number of neurons is
needed in order to make the mapping possible. Test results in Figure 4.2 show that
the minimum number of hidden neurons required was about 50. When the number
of hidden neurons was less than 50, the total error of the training patterns never

dropped below 0.4.
4.4.2 Number of FD’s

Figure 4.3 presents the testing results on the recognition rate in the case of varying

number of Granlund FD's used. Again the same number of training and testing
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Figure 4.2: Recognition rate vs. number of hidden neurons for Granlund FD’s alone
for 200 training and 200 testing patterns.

patterns were used as in Figure 4.2. Figure 4.3 shows that the optimal number of
FD's is about 20. Figure 4.3 also shows the effect of the learning rate n on the
recognition rates.

Pairs which are often misidentified are (6,9) and (1,0). It can be concluded that
the FD's alone are not enough to classifier these patterns. The recognition rate can
be improved by adding topological features.

Figure 4.4 shows the effect of the number of hidden neurons on the recognitinn of
the feature vectors composed of Granlund FD'’s and topological features. The same
number of training and testing samples were used. The recognition rates are higher
than those shown in Figure 4.2 in which only FD’s are used. It can be seen, by
comparing Figures. 4.4 and 4.2, that the change in the number of hidden neurons

has less effect on the recognition rate than that change inclusion or exclusion of
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Figure 4.3: Recognition rate vs. number of FD’s for Granlund FD’s for 200 training
and 200 testing samples.

topological features. Further tests using Zahn and Roskies's FD’s reveal that the
recognition rate with their descriptor is substantially lower than with Granlund’s
FD and is in the range of 30%. The convergence did not occur for fewer than 50
hidden neural units even after 4000 learning sweeps. The number of iterations for
convergence decreased generally as the number of hidden neural units increased.
This concludes that the approach of Granlund’s FD is superior to that of Zahn and
Roskies’s FD.

4.4.3 Results from Training Relatively Large Training Sam-

ples

In thi= experiment, 100 patterns for each of numerals 0-9 were used to train the
neural networks. Another 1000 patterns were used to test the resulting network. The

recognition rates were 84% for the Zahn-Roskies approach with topological features
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Figure 4.4: Recognition rate vs. number of hidden neurons for Granlund FD’s with
topological features for 200 training and 200 testing samples.

and 92% for Granlund approach with topological features. The results are shown in

Tables 4.2 and 4.3 respectively.

Comparing the results obtained with smaller testing sets and relatively larger

sets, it can be seen that a larger training set will result in a higher recognition rate.

However, further tests show that when the training set gets larger than 2000 patterns

in total, it is not easier to keep the total training error below 0.4. This means that

the network may not be able to classify correctly even some of training samples.

4.5 Results from Modified Backpropagation Model

Results presented in this section were obtained, except specified, from the simulation

on the modified backpropagation model [19, 17, 18]. The network configuration is

based ox the 34 inputs (Fourier descriptors and 4 topological features) and 10 outputs



Out
0 1 2 3 4 5 6 7 8 9]Reject
In

0 8 0 1 1 0 0 7 1 0 2| 0

1 0 9 0 0 0 1 0 1 O O O

2 0 171 0 6 7 0 2 5 1 0

3 0 0 18 2 5 0 2 2 3| o0

4 1 0 2 28 4 1 2 0 5| 0

5 0 0 8 0 08 o0 0 3 7| o

6 1 0 1 0 2 08 1 8 2| 0
,{ 7 0 1 0 9 4 2 0 17 0 6{ 0
} 8 0 210 0 1 1 1 0 8 1 0
f 9 0 0 2 5 4 6 1 4 5 73| 0

Overall results

The number of rejected numerals = 0 (0.00%).

Table 4.2: Confusion table for Zahn-Roskies’ approach with topological features

The number of numerals correctly classified = 827 (82.7%).
The number of numerals misclassified = 173 (17.3%).

Out
0 1 2 3 4 5 6 7 8 9]|Reject
In
0 96 o 0 2 0 0 O 1 1 O 0
1 0 100 0 0 0O O O O O O 0
2 2 0 83 0 4 0 2 5 2 2 0
3 0 0 2 92 0 2 1 1 1 1 0
4 0 0o 0 191 1 1 2 2 2 0
5 0 60 2 0 191 0 O 1 5 0
6 1 0 1 0 0 0 94 0 2 2 0
7 0 1 2 0 0 1 1 94 0 1 0
8 2 1 1.1 0 0 1 0 92 2 0
9 4 0o 0 0 2 2 0 1 0 9 0

Overall results The number of numerals correctly classified = 924 (92.4%).

The number of numerals misclassified = 76 (7.6%).

The number of rejected numerals = 0 (0.00%).

Table 4.3: Confusion table for Granlund's approach with topological features.
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Out
0 1 2 3 4 5 6 7 8 91 Reject
In
0 189 0 0 1 1 0 1 2 3 3 0
1 0 199 0 o0 0 o0 0 1 0 0 0
2 0 1 189 0o 2 2 2 1 1 2 0
3 1 0 3 19 o0 3 3 0 0 0 0
4 2 0 2 0 183 0 1 0 1 1 0
5 1 0 1 2 1 189 3 0 0 3 0
6 1 0 1 2 0 2 18 3 2 0 0
7 0o 0 3 2 3 2 1 189 0 0 0
8 1 0 2 1 0 1 0 0 195 0 0
9 0 O 2 0 6 2 2 0 3 18 0

Overall results

The number of numerals correctly classified = 1897 (94.85%).
The number of numerals misclassified = 103 (5.15%).

The number of rejected numerals = 0 (0.00%).

Table 4.4: Confusion table for Granlund FD's without rejection.

and a variable number of hidden neurons. The network was trained on 4000 patterns
that is for 400 patterns for each class of numerals and a total of 2000 patterns were

tested.
4.5.1 False Solution

As mentioned in 3.4.4 section, the false solution problem occurred when a training
set got larger. Figure 4.5 clearly shows that the old training algorithm gets stuck
in the "local minimum”. The total error for the whole training set never goes to
zero. In fact, the output values are totally different from the target ones, and 7 of
the 4000 numerals were misclassified. Keeping the same configuration as used in
Figure 4.6, while using modified BP algorithm instead of the original one, the total
error for all training set could be reduced to less than 0.4. For comparison purpose,

the total error presented in Figure 4.6 was calculated the same way as the total error
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Out
0 1 2 3 4 5 6 7 8 9 | Reject
In

0 179 o0 0 o0 o0 o 1 0 2 0] 18
1 0 195 0 0 0 0 0o 0 0 0 5
2 0 0 165 0 1 1 1 0 0 0 32
3 0 0 1 1735 0 0 1 0 0 0| 23
4 0o 0 0 o0 158 0 o0 O O 2| 40
5 1 0 0 0 0 176 0 0 O 1| 22
6 o o o0 1 ©0 o0 173 0 0 0| 26
7 0 0 1 0 1 1 0 171 0 0 26
8 o 0 0 06 o0 o0 0 0 170 0| 27
9 0 0 1 0 1 0 0 0 0 165 33

Overall results

The number of numerals correctly classified = 1728 (86.40%).

The number of numerals misclassified = 20 (1.00%).

The number of rejected numerals = 252 (12.60%).

Table 4.5: Confusion table for Granlund FD’s with rejection.
Out
0 1 2 3 4 5 6 7 8 9 | Reject
In

0 % o 2 5 0 0 4 2 3 4 0
1 0 199 1 6o o 0 0 o0 o0 O 0
2 2 0 188 13 5 7 1 4 6 4 0
3 0 0 11 184 1 1 0 2 1 0 0
4 1 o 2 0187 5 0 0 2 3 0
5 2 2 12 1 0 172 0 4 3 4 0
6 2 0 1 0 3 0 188 0 7 0 0
7 0 1 4 5 3 3 0 181 0 3 0
8 0 0 5 1 1 0 10 0 182 1 0
9 o0 0 5 0 8 &5 0 6 2 114 0

Overall results

The number of numerals correctly classified = 1804 (90.20%).
The number of numerals misclassified = 196 (9.80%).

The number of rejected numerals = 0 (0.00%).

Table 4.6: Confusion table for Zahn - Roskies FD’s without rejection.
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Figure 4.6: Improved convergence ability obtained with the modified learning algo-
rithm.

36



96

Without Rejection
94F -

881 4

Classification rate

86

84 .
With  Rejection

PUEERY Sahduhd
PO Sd
ane
v

g2t -

80 < A I I ) A 1 I I I
60 70 80 9% 100 110 120 130 140 150 160

Number of hidden units

Figure 4.7: Improved classification result from large training set obtained with the
modified learning algorithm.

in Figure 4.5.
4.5.2 Classification Results

The recognition results are obtained from the neural network classifier with 160 hid-
den units and are presented in following tables. Tables 4.5 and 4.4 present results
using Granlund's FD's with and without rejection. Table 4.6 is the result of using
Zahn-Roskies’s descriptors without rejection. Comparing these tables with the pre-
vious tables, the classification rates are better than those with the smaller training
set.

Figure 4.7 shows the recognition rate as a function of the number of hidden units.
It can be seen that the classification rate is higher when the number of hidden units
is increased. In the case with rejection, the number of hidden units has more effect

on the classification rate than in the case without rejection.
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In our experiments we obtained better recognition rates using Granlund Fourier

descriptors than using Zahn and Roskie’s FD’s.



Chapter 5

Conclusions

The basic objectives of this work were to develop and validate a pattern recognition
system for handwritten numerals. This system has been implemented by using the
Fourier descriptors together with the topological features of the numerals as features
and the neural network as the pattern classificr.

Simulation results have shown that the use of FD’s as features for numeral recog-
nition was a reliable choice. The results also proved once again that the performance
of the Granlund's FD's is better than that of the Zahn and Roskies’s FD's [12]. In
addition, the use of the topological features of the numerals reduced the confusion
rate,

The modified learning algorithm for the neural network is not only two times
faster than the original learning model in [33], but it also eliminates the false solution
problem which exists in the original learning algorithm during the training stage.

With FD's topological feature vectors and the modified learning model to the
neural network, 95% correct recognition rate has been achieved on the testing set of
2000 samples based on 4000 training patterns. A 100% classification rate was achieved
on the training data set which is very difficult to achieve with the conventional

classifier.
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Future Research Directions
Although the use of the backpropagation model for pattern recognition is very

successful, there still are a number of unsolved problems related to this model.

o There is no guarantee that the network can be trained in a finite amount of

time.

o It is very difficult to predict the optimal number of hidden neurons required for

a reliable classification rate.
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Appendix A

Handwritten Character
Recognition Verification System

As part of this work, a handwritten character recognition verification system (CRV'S)
has been developed. The purpose of this system is to provide a tool to facilitate
system developer in testing his/her recognition system. The CRVS provides the

following utilities.
e Test the data from the image data base.
o Interactively write your own test handwritten image on the screen.
e Interactively change the image data.

A diagram of the basic system is shown in Figure A.1.

The system was developea on the SUN386i workstation. The image data base
is stored in system with different classes of numerals stored according to different
files. The file is organized in the sequence of image pattern. Individual image data
is stored in two bytes following the image pixels information. The first two bytes
are used to store the dimension of the image pattern(number of rows followed by the

number of column). Each pixel will take one bit of disk memory(binary file format).
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m ' Find Binary to Feature Pattern
—— Image no. Text Extractor Classifer
Text to
icon
lcon Editor

Disk A system disk which used for storing the image data.

Find Image No. A procedure for searching the pattern which requires the user to
enter the image no. which they want to test the system.

Binary to Text A procedure for translating the binary file format text file format.

Text to Icon A procedure for translating the test file format to icon file format for
displaying the image on the icon editor.

Feature Extractor Two kinls of feature extractor are used in this work.

Pattern Classifier A neural network will be used as a pattern classifier.

Figure A.1: Block diagram of an interactive handwritten recognition verification

system




So the image stored in my system is almost 8 times smaller than the original image
when one byte in used to store one pixel(text file format). It saves a lot of disk space(
almost 1/8 disk space).

For image processing, a text file format is preferred. There is a routine which
translates the binary file format to the text file format. There is also a file format
translation from the text file format to iconedit file {38] format for displaying the
image on the icon edit.

The user can test similar patterns by modifying them with the iconedit to see
whether the pattern is recognizable as a check of the system’s robustness. This can
be easily accomplished. The user can load the image data to iconedit, then use the
mouse to modifv the pattern interactively, the features extracted from the newly
created image then pass through the pattern classifier to verify the classification
result. Using this interactive software. one can easily find the weakness of the features

and improve the pattern classification results,



