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Abstract

Recognition of Symbols and Characters on Engineering Drawings
and Maps

Fady N. Said

The need for a Geographic Information System (GIS) that analyzes scanned paper
engineering drawings and maps has led many researchers - in the ficlds of pattern
recegnition, image processing, and document analysis - to consider this commercial
and industrial demand as a new challenge.

My aim is to recognize different kinds of graphical symbols and alphanumeric
characters, found on Engincering Drawings and Maps, where the graphical symbols
are used to indicate their location, and the alphanumeric characters constitute the
engineer’s explanations or legends. Having different types of engineering drawings
and maps - airport maps, street maps, construction drawings, etc. - will add to
the complexity of the problem, along with the noise introduced to the image of the
scanned document, the different orientations and scales present, and the problem of
segmenting touching or overlapping symbols or characters.

In trying to solve this problem, a dynamic set of hybrid neural network classifiers
based on the modified error backpropagation algorithm has been built . ‘The classi-
fiers are combined with some segmentation algorithms and related image processing
algorithms. The networks were trained and tested on different types of drawings and
maps collected from different industrial sources. One network per symbol is built so
that adding a new symbol to the set of symbols to be classified doesn’t affect, the
previously trained weights of the networks, thus resulting in a set of independent
training and testing networks. In addition, each network has its own number of hid-
den neurons, values of the learning and momentum rate, and the sigmoidal function’s
parameter that are chosen automatically by the system during the training phase.

Moreover, the vertical and horizontal histograms are combined with the connected

i



components techniques to segment a paragraph of text into separate symbols and
characters.

As for the architecture of the neural networks, a method for finding the neigh-
borhood of the optimal number of hidden neurons is discussed in chapter 3. This
method was designed by experimenting on adding and removing neurons from the
hidden layer while training the network. Modifying the values of the parameters of
the Modified IError Backpropagation is also employed. The network never diverged on
any training set tried or fell in a local minima. Consequently, segmenting paragraphs
of text, extracted from engineering drawings, into separate lines and patterns fails
only when a pattern is connected to another, or when a pattern is distorted, as shown
in chapter 4. The performance of the networks was tested on the CEDAR. d: tabase
of numerals, where a recognition rate of 94.02% and a reliability rate of 97.24% were
achieved, with an error rate of 2.66% and a rejection rate of 3.32%. When recognizing
5 symbols on a (7000x6500) binarized map using Hausdorff’s method alone, 464 False
Positives occur. After combining the dynamic set of hybrid neural networks with
Hausdorfl’s method, the number of False Positives dropped down to 16. This work,
as a whole, stands as a solid basis in building a hybrid GIS that would be able to

process other types of documents.
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Chapter 1

Introduction

1.1 The problem

Document analysis can be viewed as a multi-level problem, as shown in Figure 1.
It starts by categorizing documents into different classes. For example, a scanned
engineering drawing and a scanned payment slip are both documents but they fall
into two different classes because the structural contents differ in both. This leads to
having subclasses in the same class. For instance, under the engirecring drawings class
we can have subclasses for electrical and mechanical engineering drawings respectively.

The second level of complexity of the problem is the development of a software
system that can automatically extract and recognize predefined models (representing
lines, symbols, or alphanumeric characters) by the user from the document class. This
part can be divided into the following steps: scanning and preprocessing, segmenta-
tion, and recognition.

The third level of complexity in analyzing documents is simply building a knowledge-
based and a data retrieval system that can handle gueries on the previously created
database in the second level.

Specifically, we are tackling the second level of complexity in an attempt to present
a hybrid system that can segment and recognize user predefined models in maps and
engineering drawings, and that can recognize paragraphs of text containing alphanu-

meric characters and some special symbols.



e Categorizing documents into
different classes

Software development
¢ Scanning and preprocessing

® Segmentation and recognition

e Building a knowledge-based and
a data retrieval system

Handling queries

Figure 1: Document analysis as a multi-level problem.
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1.2 The proposal

I claim that the key to solve the document analysis problem is to start by building a
main classifier that classifies the documents into classes, then building a class-system
for each document class respectively.

It is proposed to develop a hybrid ncural network classifier (NNC') that can adapt
its learning (training) process to different document subclasses in the same class, and
attain a good performance status on new documents belonging to the same class.
The NNC is based on the modified version of the error backpropagation training
algorithm. described in Chapter 3. The architecture of the neural network (NN) is
built in a dynamic way in which the number of neurons in the hidden layer is not
fixed throughout the training process of the network. Morcover, the user has the
ability to add new models (of characters, digits, or special symbols) to be extracted
and recognized.

As for the segmentation and extraction of the model from the scanned document,
we have used two methods. The first method was the histogram method that we used
to segment paragraphs into scparate lines. The second method was the connected
components method combined with some intelligent case dependent. techniques which
was used in segmenting an extracted line of text into separate patierns (characters,
digits, or special symbols). As a third method, the directed Hausdorff distance method
was subsequently adapted and used for segimenting and extracting symbols from maps
and Engineering drawings. Consequently, cach model was then presented to a neural
network classifier. The first two segmentation methods were implemented by me and
used in the TRIGONIX! project, while the third was implemented at CRIM? by Eric
Reiher and was used in the CRIM project solely

!TRIGONIX Inc. asoftware company, located in Montréal, specialyzing in processing enginecring
drawings and maps from different industrial sources.

2CRIM, Centre de recherche informatique de Montréal, a centre of excellence active in bridging
the gap between the industry’s needs and the universities’ latest researches.



Chapter 2

Related Work in the Literature

The problem of automatic recognition of handwritten characters, digits, and symbols
found on different types of documents has long been one of the important and chal-
lenging topics that many well known international researchers have tackled ever since

the mid sixties.

2.1 The neural network classifiers

2.1.1 Introduction

For many decades, one of the goals of mankind has been to develop intelligent ma-
chines. We expect these machines to perform all complex and dangerous tasks so
that we can enjoy a more fruitful life. The era of machine making began with the
discovery of simple machines such as lever, wheel, and pulley. Many other inventions
followed thereafter. Nowadays, engineers and scientists are trying to develop intelli-
gent machines. Artificial neural networks stand as an example of such machines that
have great potential to further improve the quality of our life.

The recent field of neural networks has its roots in the recognition that the brain
performs computations in a different manner than do conventional digital computers.
Computers are extremely precise and fast at executing sequences of instructions that

have been formulated for them. A human information processing system is composed



of neurons switching at speeds about a million times slower than computer gates. Yet,
humans are more efficient than computers at computationally complex tasks such as
speech understanding, face recognition, and shape recognition. Unfortunately, the
understanding of biological neural systems is not developed enough to address the
issues of functional similarity that may exist between the biological and man-made
neural systems. Although computers outperform both biological and artificial wural
systems for tasks based on precise and fast arithmetic operations, artificial neural
systems represent the promising new generation of information processing networks.

The ability of a neural network to perform computations is based on the aim
that we can reproduce some of the flexibility and power of the human brain by
artificial means. Moreover, the network computation is performed by a dense mesh
of computing nodes and connections. They operate collectively and simultancously
on most or all data and inputs. Neurons are the basic processing clements of neural
networks, (sometimes referred to as nodes or units). Neurons can he considered, in
some cases, as thresholds that fire when their total input exceeds certain bias levels.
They usually operate in parallel and are configured in regular architectures. Also,
they are often organized in layers, where feedback connections within the same layer
or toward adjacent layers are allowed. Each connection strength is expressed by a
numerical value called a weight, which can be changed in the process of training the
network.

Most neural networks must be taught or trained. They learn new associations,
new patterns and symbols, and new functional dependencies. The Learning process
corresponds to parameter changes. To sum up, a programmer can consequently select
the architecture of the network, specify the characteristics of the neurons and initial
weights, and choose the training algorithm for the network. Then, patterns from the
training set are presented to the network as input so that it can acquire knowledge
from the input. As a result, the network assimilates the information that can later

be recalled by the network in the testing process.



2.1.2 Evolution and advancement

The field of neural networks, also referred to as neurocomputing, has an interesting
past history and a solid promising future. It all started with McCulloch and Pitts,
(48], in 1943 when they presented the first formal model of an elementary computing
neuron, and included all necessary elements to perform logic operations so that the
neuron functions as an arithmetic computing element. Even though at a time the
model was not widely used for the vacuum tube computing hardware description, yet
it laid the groundwork of the future developments.

Accordingly in 1949, the Hebbian learning rule was introduced by Donald Hebb,
[20]. it is a method for updating neurons connections. Hebb stated that information
can be stored in connections, and postulated the learning technique that had profound
impact on the future developments in this field. Then, in 1958, Frank Rosenblatt, [50],
introduced the perceptron network which was a trainable machine capable of learning
to classify certain patterns by modifying its connections. His intelligent idea laid the
groundwork for the basic machine learning algorithms that we still use nowadays.

Consequently, in 1960, Bernard Widrow and Marcian Hoff, [60], invented the
Widrow-Hoff learning rule which minimized the mean squared error during training
involving pattern classification. Unfortunately, research in the field of neural net-
works went through a slowdown because the existing machine learning theorems were
too weak lo support more complex computational problems, because of the modest
computational resources available then. Later in 1969, Minsky and Papert disclosed
the deficiencies of the perceptron model in their book called Perceptrons, [47]. Most
of the researchers left the field except for a few including Teuvo Kohonen, Stephen
Grossberg, James Anderson, and Kunihiko Fukushima.

Nevertheless, important pioneering research was conducted by some researchers.
For instance, in 1980, the Japanese researcher Kunihiko Fukushima developed the
neocognitron, a class of neural network architectures, [12], [10], [13], and [11]. Also
Tuevo Kohonen developed in 1977, [30], the associative memory models and improved
it in later publications in 1982, [31], 1984, [32], and 1988, [33]. In parallel, Stephen
Grossberg developed the adaptive resonance networks in 1974, 1982, [17], [18]. In



1982, John Hopfield introduced the recurrent neural network architecture for asso-
ciative memories, [26], [27]. Last but not least, §. Dreyfus pointed out the fact, in 7]
and [3], that the first authors of the optimization approach for multilayer feedforward
networks were Bryson and Ho in 1969, and Kelly in 1969 too.

A decade after the other, the use of ncural networks in providing solutions to
different applications is becoming a factual directive especially in reasoning, decision
making, quality control, speech and vision systems. Add to this the fact that most
universities have introduced some introductory and advanced courses that teach the
principles, theory, and the algorithms’ implementations of the different types of net-
works. I believe that neural networks will still spen not only within the coming three
or four decades producing new methods and algosithuns, but also it will even keep on
expanding in parallel to the biological understanding of the functioning of the human
brain as well. The coming discoveries of new neural-based algorithms and techniques
will prove my claim, because il we were to create a human-like machine, we should
emphasize on combining the artificial intelligence principles applied in creating smart
expert systems in a neural network environment. An environment that is capable
to learn, generalize and most importantly adapt itsclf to new sets of data (scenes,

objects, maps, symbols, etc).

2.1.3 Basic components

An artificial neural network is composed of an input layer, one or multiple hidden
layers, and an output layer. The input layer is composed of units which have values
(signals). They are connected, most of the time, with a bias value to the units of the
layer following it. In other words, cach unit receives input from the previous layer
and computes its output signal, which in turn will be used as input to the following

layer. Thus, we end up having three types of units:
e input units which receive data from outside the system,
e output units which send bhack the system’s results, and

¢ hidden units between the input and output layers.



Calculations are executed further from one layer to another, until the results
of the output layer are calculated. Then, in the training phase, using the error
backpropagation algorithm, an error signal is calculated and is propagated back to
the latter hidden layers, and thus adjusting the weights of the connections between
the layers according to a selected learning rule. Training the network is categorized
into two processes, supervised and unsupervised learning,.

The process of training the network by providing it with the input patterns and
their desired output is called supervised learning. On the other hand, the process
of presenting the patterns without their desired output to the network and the net-
work consequently classifying the patterns into different clusters is called unsupervised

learning,.



Chapter 3

The Neural Network Classifier

3.1 Introducing the accumulated knowledge no-
tion

The terms brain and mind are often used interchangeably. When we speak of the
brain, we are at times referring to the cognitive functions of the mind. On the other
hand, the mind has no physical structure. Thus, cognition and the mind still largely
inhabit the realm of philosophers and are only just beginning to emerge as subjects of
scientific study. First, the brain was looked at as being similar to a complex telephone
exchange, but this analogy changed when computers appeared.

In his book Circuits of the mind, Leslie Valiant states explicitly that the brain
doesn’t actually resemble the electronic computer, rather it is the mind, [56]. The
neurocorler, the brain’s outer layer, which has a large size relative to the rest of
the brain is the main distinction between the human brain and other animal brains.
It is in this folded layer, which is about 200 cm? in area and on average 2 mm
thick, that functions associated with the mind’s higher activities seem to oceur, [56).
The neurocortex contains around 10® neurons, each with about 40,000 connections
with other neurons on its output extensions (referred to as dendrites) and about the
same number on its input extensions (axons). However, we should consider these

configurations of the number of neurons, and their respective number of connections



as an estimate, because they differ in numbers from one human to another, especially
the number of connections.

Within this context of huge number of neurons and diverse ways of interconnec-
tions, we, humans, are able to think, act, and communicate. Without the neurocortex,
humans become incapable of doing explicitly anything. I claim that ever since these
neurons are created in the brain of the infant (before being born), they start their
own encrypted journey of building connections between one another through which
sending and receiving signals between any two connected neurons is established. Con-
nections between those neurons are extremely essential. Without them, neurons are
incapable to communicate. Without communicating, neurons fail to learn or respond.
As an analogy, neurons that fail to learn become like the memory locations which the
central processing unit, CPU, of a computer fails to address and make usc¢ . Thus,
because of the everyday learning process that the brain passes through, new connec-
tions between neurons are established while some old connections are eliminated or
lost.

Connections between neurons are perceived to exist in either of the following

manners:

e some connections are considered to contribute to the desired results, and thus

they will be strengthened by increasing the weight value, and

e some conncctions don’t contribute to the desired results, and thus they will

weaken by decrcasing their weight value.

This process of updating the weights of the connection between neurons is widely
labeled as the process of learning. This very important discovery by the neurolo-
gists have inspired many researchers, who later became the pillars of the Neural
Metworks field, to invent many neural network architectures with different types of
connections and formulas for updating the connections’ weights.

Still the brain can label and record, or retrieve and verify instances in a totally
undiscovered manner. We can just speculate and give viewpoints on how a brain
functions but not more. Take for instance, the classical problem of differentiating

between cats and dogs. The brain can easily differentiate between the two, while it
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remains as a complex problem for computers to do so. Apart from that, the human
brain can recall past instances quite precisely. Not only this, but also it can add to
its knowledge new instances of the same class (like two different types of animals,
subclasses, that fall under the same class of say cats), or create a new class for every
first-time processed instance. This leads us to conclude that once an instance is
processed and validated by a human, it is labeled by his/her mind and vecorded in
his/her brain.

This ongoing and resident process is the cornerstone of the brain’s main task. In
other words, the brain and the mind together yield a new notion called the acewmu-

lated knowledge.

3.2 The modified error backpropagation algorithm

Backpropagation is the basis for training a supervised neural network. Static back-
propagation is used to produce an instantancous mapping of a static (time indepen-
dent) input to a static output. These networks are used to solve static classilication
problems such as optical character recognition (OCR).

At the core of all backpropagation methods is an application of the chain rule
for ordered partial derivatives to calculate the sensitivity that a cost function has
with respect to the internal states and weights of a network. In other words, the
term backpropagation is used to imply a backward pass of error to cach internal node
within the network, which is then used to calculate weight gradients for that node.
Learning progresses by alternating propagation forward the activations and backward
propagaling the instantaneous errors.

We have implemented the modified error backpropagation algorithm (KBPA) to
build a classifier for our problem. Actually, we first implemented the standard al-
gorithm and then we went for the modified one in order to compare the results and
see the difference. It was obvious that the modified algorithin used to converge with
less iterations, while the standard EBPA took more iterations and sometimes it failed
because of the local minima problem, and this was clearly detected while testing the

convergence of the network on different training sets. However, after introducing
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our modifications to the EBPA, this situation no longer detected, and thus the local

minima problem was solved.

3.2.1 Notations used

Below is a list of the variables used thronghout this chapter.

o sample? is the value of the input unit at the jth neuron.

e W/} is the value in the weight matrix, at time T+1, between the jth input
unit and the ith hidden unit in the hidden layer. Note that T+1 is the time
when the current pattern is being presented to the network, time T when the
previous patiern was presented, time T-1 when the pattern before the last one

was presented.)

e b}, is the value in the bias vector, at time T+1, that connects with the ith

neuron in the hidden layer.

o W}l and W} are the values in the two weight matrices, at time T and T-1
respectively, between the jth input unit and the ith hidden unit in the hidden

layer.

e b}, and b}, are the values in the two bias vectors, at time T and T-1 respectively,

that connects with the ith neuron in the hidden layer.

o IW,;} is the value in the weight matrix, at time T41, between the jth hidden
unit and the ith output unit in the output layer.( Please note that a similar

declaration applies to Wy{ and Wy.)

e b, is the value in the bias vector, at time T+1, that connects to the ith neuron

in the output layer.( Please note that a similar declaration applies to b}, and
b%-)

e nin is the number of input units in the input layer.

e nhid is the number of hidden neurons in the hidden layer.

12



e nout is the number of units in the output layer.

e hid' is the output calculated at the ith neuron in the hidden layer.

e out' is the output calculated at the ith neuron in the output layer.

e perris the error calculated of the current pattern being presented to the network.

o terr is the total error calculated in one complete iteration, that is, the total

error of all the patterns found in the training set.
o Ao’ is the error signal calculated at the ith neuron in the output layer.

o Apig' is the error signal calculated at the ith neuron in the hidden layer.

7 is the learning rate.

A is the constant term used in the activation function.

e « is the constant term for the momentum we used.

3.2.2 Improvements on the method of Krzyzak et al.

Even though we have seen so many papers related to using the backpropagation algo-
rithm for classifying patterns, let us refer to a paper entitled Unconstrained Handunrit-
ten Character Classification Using Modified BackPropagation Model by A. Krzyzak
et al, [34]. At this stage, we have to admit that we didn’t implement all the contents
of the paper, because we wanted to introduce our own modifications to the error
backpropagation algorithm, EBPA, which are described fully in this subsection.

Accordingly, we will start by briefly presenting the contents of the paper, then
we will either defend or reject the modifications presented in the paper. Finally, we
will present our work and show the modifications to the KBPA. This will help in
introducing a new strategy in finding the neighborhood of the number of the hidden
neurons, which will discussed thoroughly in a try to answer questions such as: “Why
is it so important to find the neighborhood of the number of hidden neurons? How
to find this neighborhood?” etc.

13



'The modifications introduced in {34] consist of using a new delta error signal for the
output neurons (units):

Aput = (desired — out)
which means that the authors eliminated, from the standard formula, the term:

(1 - out) x out
and deduced that by doing so, *the local minima problem is eliminated”. They sup-
ported their statement by saying that in the standard formula:

Aout = (desired — out) x (1 — out) x out
Aout can be zero not only when desired = out, but also when out = 0 or 1. So the
derivatives are zeio, which means that the network will lose its learning ability. This
new formula was tried, and after lots of testings and experiments, we found that it is
only trying to bridge the gap of a specific situation that they are trying to solve which
is the case when the desired values equal either 0 or 1. So, we started studying its
generality, in the sense of: Would this formula still prove to be more efficient than
the standard one if the desired outputs are mapped to [0.05, 0.95] instead of [0, 1)?

Aflter mapping the desired outputs to [0.05, 0.95], the problem of having desired
values equals 0 or 1 was solved, which was one of the problems they were facing.
Moreover, the actual output out was mapped to the range [0.05, 0.95], which was
another reason for the authors to support their need for having this new formula.

We did not stop at this theoretical level, but also implemented the alternative idea
and compared the results. The comparison proved our suspicion that the mapping
criterion of desired and out would better fit to solve the problem which they were
trying to avoid.

And thus the formula becomes:

Aout = N X A x out x (1 — out) x (desired — out)
We also tried to use the formula:

Aout = (1 — out?) x (desired — out)
derived from substituting the term

out x (1 — out) by (1 — out?)
At that time. our module was good enough, i.e. converging with a less number of

iterations, so we preferred not to use it at the final stage even though the network
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was also converging to a total error less than 0.005 per iteration.

Krzyzak et al. used the Fourier Descriptors to represent the outer contour of
the pattern combined with extracting the number of “hoies representing internal
topological feature of the pattern” for its ability in dividing the class:
{0,1,2,3,4,5,6,7,8,9} directly into 3 subclasses:
{1,2,3,5,7},{0,4,6,9 } and { 8 } which stands respectively to a zero hole,

one hole and 2 holes in the tested pattern.

3.2.3 The general architecture of the network

The input to the neural network was a (26x26) binary image of the pattern. The
reason behind presenting the binary image of the pattern was that we wanted to
build a network that will train on the image of the pattern rathicr on some features,
because the network will have to accommodate itself to new types of symbols, which
are completely unpredictable in size or shape. The network has only one hidden layer.
The size of the hidden layer is dynamic (not fixed). However, the number of hidden
neurons in the hidden layer is bounded between a maximum of 250 and a minimum
of 5. As for the TRIGONIX project, as shown in Figure 2, the output layer consisted
of a total of 43 output neurons, 26 neurons for the alphabets, 10 for the numerals,
and 7 for a set of seven special symbols, { (, ), [, ], /. \, - } . In the CRIM project,
we fixed the number of output neurons to 2, one for the symbol itself and the other

for its False Positives.

3.3 Modifications introduced

Now that we have discussed the paper [34], we will emphasize on our modifications
and improvements. Throughout this section, we will refer to the work done related
to the TRIGONIX project. Figure 2 shows the network’s architecture.

The output layer is made up of 43 units (neurons). Tke first 26 units are for the
character set, then 10 units are reserved for the digit sct, and the 7 units left are

reserved for the 7 new symbols. On the classification or the testing phase, the unit
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[The architecture of the N.Net classifierl

OO0 .- OO0 The output layer
X /‘\ Xy

(OOCO The hidden layer

The binary image, being the
input to the neural network

As we can see, the network is
fully connected.

| N.B.: The modified Error Backi
: Propagation algorithm is:
: implemented. -

Figure 2: The architecture of the neural network.
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with the higher output will win over the other units, thus leading to the classification
of the currently tested pattern to its respective class.

In the same token, the input tc the network is only the (26x26) binary image of
the pattern. No smoothing, removing noise, or any other kind of preprocessing to the
image has been done. However, we have only normalized the size of the image into
(26x26) in trying to decrease the number of connections between the input layer and
the hidden layer, especially after we have decided to use the fully connected network.
It is true that the locally connected network will lead to similar good results, and
at the same time it will result in a smaller number of connections. The reason for
choosing the full connection is to allow adding some statistical features to the input
layer. It is known that a full connection is better for such a situation. Another reason
for deciding on the fully connected network is to permit either increasing or decreasing
the number of hidden neurons in the hidden layer. In the case of a locally connected
network, we discovered that the problem of “forgetiing some patterns that have been
already learned in previous iterations” was a scrious problem which we wanted to
avoid, especially as we wanted to build a smart network that will not forget what it
has learned in previous iterations.

Having decided on building such a smart network, the choice of training the net-
work again on old weight matrices (that were the results of previous training batch
processes) while keeping the same training set but adding to it some more samples
was implemented. This experiment was done to sce if the network would tend to for-
get some previously learned patterns. Fortunately, the problem of “forgetting what
has been previously learned” was surpassed if we try to train the network to learn
some other patterns.

The training samples of the patterns for this experiment were selected from text,
paragraphs extracted from different, types of engineering drawings from TRIGONIX
Inc.
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3.3.1 Modifying constants and parameters

3.3.2 Modifying the formulas

Following are the steps of the algorithm implemented, including the modifications to
the formulas.

First, the weight matrices and bias vectors of the hidden layer and the output layer
are initialized into values in the range of [-0.75, 0.75]. Second, the pattern is presented
to the network at the input layer. Third, the output of the hidden layer is calculated

using this formula:

nin—1 .
hid' = f( Z (wn* x sample') — by,')  Vie {0,...,nhid — 1} (1)

1=0

where the activation function used is the sigmoid function:

1

@)= T

Then, the output of the output layer is calculated using the formula:

nhid—1 . .
outi = ('3 (whh x hid’) — by') Vi€ {0,...,nout — 1} (3)

1=0

and is then limited into the range [0.05, 0.95] using these conditions:

0.05 if out’ < 0.05
out' = ¢ 0.95 if out’ > 0.95 Vi€ {0,...,nout — 1} (4)

out' otherwise

Fourth, perr the error value of the pattern, currently being presented to the network,

is calculated using the formula:

(desired’ — out")2 (5)

[ ey

perr =
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perr is the calculated error of the sample being presented with respect to its desired

output. The total error per iteration is calculated and kept in terr using the formula:

terr = terr + perr (6)

Consequently, the error signal of the output layer and of the hidden layer are com-
puted. At the same time, the weights and biases of the output and hidden layers
are updated respectively. The formula of the error signal of the output layer is the

following:

Dowt' =1 x A x out’ x (1 — out') x (desired — out') Vi€ {0,...,nout — 1} (7)

The term n x A was added to the formula of the standard error signal of the output
layer, ([63], p. 189). The justification in keeping out' depends on the fact that after
mapping out’ into the region [0.05, 0.95] , the case of having out' = 0 is climinated.
The constant term 1 x A was added to the formula heuristically.

The weights of the output layer are adjusted in the following way;

wel = wa? X x A x Dgu' x hid + o x (wy ¥ — wy") (8)
w?OU — UJ')\U (9)
w2lu — wZZlJ “0)

where w3, belongs to the final results’ weight matrix, and wi, & w3} belong to the two
matrices that are used in calculating the momentum term . For more explanation
on the notation, please refer to the subsection entitled Notations used.

Another modification made to the algorithm, was the updating of the values of the

bias vectors, while training, using the formulas:
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bg-z' = bg;l — Aomi + a X (b2l' X bZOi) (11)
bzo‘ = bzl' (12)

bgli = 12'22l (13)

At the beginning, this modification (of the bias vectors) was implemented without
any previous knowledge of its impact on the performance of the network, having
only the intention that the bias plays an important factor in calculating the outputs
of the hidden and output layers respectively, which was derived from the fact that
the Matlab software package has the utility of generating random bias vectors and
updating them in the training process. So, after generating these random biases, we
modified them while training the network, but the novelty of this approach is that
these biases are modified the same way the weight matrices are updated.

Consequently, the error is propagated back to the hidden layer using the error signal

formula:
) nout-1 )
Sud =1 X A x hid x (1 = hid) x 3 (Dot x we*) Vi€ {0,...,nhid — 1}(14)
k=0

The original formula was modified by replacing the term 1/2 x (1 — hid'®) ([63], p.
189) by the term 5 x A x hid' x (1 — hid’). Then the weight matrices of the hidden

layer are calculated using the following modified formula;

wi2” = wig" X Apig' x sample’ + a x (wy™ — wie") (15)

The same formula is applied for updating the bias vectors of the hidden layer, with
two minor changes in (11) where A, is replaced by 8:4', and b, is replaced by bi,,
( same for b, and b,).

To sum up, all of the steps mentioned above are applied repetitively to each sam, .2

pattern in the training set, thus constituting one iteration. After each iteration, we
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check whether the total error terr is less than or equal to a desired minimum total
error per iteration (set by the user), in this case 0.005 . Hence, the training process
will terminate when terr < 0.005 .

Finally, the values of 7, A, and o were also modified during the training process.

3.3.3 Initialization of weights and biases

Though the pace of the research was conducted to accomplish the two (TRIGONIX
and CRIM) projects and write my thesis, there emerged an experimental idea which
can be summarized by saying: there is (there must be) a relation between the number
of neurons in a layer L and the initialization of its respective weight and bias matrices.

Throughout this thesis, the initial weights and biases fall in the range of [-0.75, 0.75).

3.3.4 The error function and the minimization process

The error function is calculated by taking the sum squared of the difference between
the desired and the actual output. Consequently, the minimization process adopts the
Steepest Descent algorithm (which is the first order method). Its advantages are that
it’s easy to be implemented on digital computers, and that it displays good results
on well behaved functions in reaching the neighborhood of function’s minimum very
quickly. On the other hand, its disadvantage is that the progress of minimization
is very slow near the minimum point. This is related to the path followed in the
steepest descent minimization. This fact forces us to search for another alternative
or another minimization algorithm to adopt. One of these methods is the Newton'’s
Method, which is a second degree method. One of its major advantages is that if the
current position (point) on the curve is close to the minimum, then it converges very
quickly.

One could directly conclude that a combination of both methods will prove to be
very practical. In other words, starting with the Steepest Descent method when we
are away from the minimum, and switching to Newton’s Method when we reach the

neighborhood of the minimum enable us to reach the minimum quickly.
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3.4 Dynamic versus predefined architectures

3.4.1 Locally or fully connected?

This is totally related to the type of input to the network. In other words, if the
input to the network is a binary or grey-scale image only, then locally connected is
preferable. On the other hand, if the input has some statistical features, then fully
connected is better. However, if a combination of both inputs is to be used, then it
is hard to choose which one is better, except after experimenting on both. Here we
have to keep in mind that the convergence of the network is faster in the case of a
Jocally connected because the number of connections will be obviously less than in

the case of a fully connected.

3.4.2 The input and output layers

The input to the network is a normalized two dimensional, 2D, array of the pattern’s
binary image. Many cxperiments have been conducted on different sizes of the 2D
array. When normalizing the patterns into (16x16) 2D array, the network used to
converge faster because it had less connections. But, when the dimension of the array
was set Lo (24x24), the network used to take more time per iteration, and thus longer
to converge. The reason is simply because the latter (24x24) dimension employs more
computations to an additional 320 input neurons, especially that all the networks are
fully connected.

Two approaches were implemented concerning the output layer. The first one was
implemented in the TRIGONIX project. The output layer consisted of N number of
neurons corresponding to an N number of patterns. As for the CRIM project, since
the objective was to build a dynamic NNC that is capable to add new or eliminate
old patterns, one NNC per pattern was built and the output layer consisted of two
neurons only, corresponding to the pattern itself and the other corresponding to its

False Positive!.

For a definition of the False Positive, please refer to chapter 5, section 5.3.1.
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3.5 The hidden layer

While creating the architecture of any artificial neural network that has one or more
hidden layers, the designer is faced with the problem of deciding on the number of
neurons to be set for each hidden layer. After lots of heuristic trials on different
numbers of neurons, the decision will depend on the performance of the network.
Throughout this section, a method of finding the neighborhood of the optimal nun-
ber of hidden neurons for an error backpropagation neural network with a single
hidden layer is proposed. Simulation results are done on recognizing unconstrained

handwritten numerals.

3.5.1 Introduction to the problem

During the past 2 decades, there has been a large number of researchers who have
dedicated their work to the building and discovering of new notions and axioms in
neurology and in artificial neural networks. Many new networks have been introduced
(e.g. SOM, BAM, ART, CPN,...), especially those which can contain hidden layers.
Moreover, some effort has been devoted to the analysis of the hidden layers, sce e.g.
[14], [16], and [29].

On page 31 of his book Digital Neural Networks, Dr. S.Y. Kung [35] depicts
the fact that: “The number of hidden-units is directly related to the capabilitics of the
network. For the best network performance(e.g. generalization), an optimal number
of hidden-units must be properly determined.” However, the author neither described
how to find that “optimal number of hidden-units” nor provided some hints on how
to proceed. And since the book was published in 1993, we took it for granted that if
there was anybody who wrote about this critical point, then the author with his huge
and selective references must have at least cited or referenced it when he talked about
this problem. Some of the constrained guidelines will be presented in order to find
the number of hidden units in the hidden layer. Some other papers addressed this
issue but, to our knowledge, none of them tackled this subject the way we intend to.
Also, during my attendance of a tutorial entitled Neural Networks for Industry

given by professor Geoffrey Hinton, [24], who has made a considerable contribution
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to the field, I had the chance to describe the method to him. He was impressed
with my approach and asked me for results and whether the network will converge or
not. Professor Hinton agreed cautiously on my theoretical blind prunning of hidden
neurons, because he reserved his final opinion about it to see its experimental results.
The rest of this chapter describes the intuition behind its theory, and the simulation
results. Explicitly, the problem that we are trying to solve is directly related to the
architecture of the network. Thus, in trying to optimize the number of neurons in
a hidden layer, we are actually optimizing the size of the network - its architecture.
Once the architecture of the network has been optimized, convergence will be achieved
more quickly while training because the size of the hidden layer wili be optimized and
consequently, the performance of the network will be improved.

Up to this stage, the burden is left with the designer to decide on how many
neurons to choose for a hidden layer, which is done most of the time heuristically.
Yet, whether the number of neurons chosen was optimal, one can hardly judge! Even
though the performance of the network might be good and acceptable, we have to
seek an optimal architecture of the network. It can be proved that the performance
of the network with an optimal architecture will always be better, and in the worst
case the same, but never worse. So why not optimize the size of the hidden layers,
i.e. the architecture of the network?

Consequently, let us go back to the roots of Neural Networks, to Neurology, and
study [51] how our brain functions when learning to solve a problem. Then, we will
try to mimic the formulas (or relations) we have deduced, implement those relations
and check the results achieved. First, let’s raise the following question: “Do we think,
focus, concentrate the same way when we read a daily magazine, or when we read
a letter from our manager stating that we are fired?” Certainly not, because the
latter will force us to reserve and use more memory of our mind in trying to think
why we were fired, the reasons behind that, and its financial consequences on us, for
example. This will cause us to use more “neurons” in order to get some quick answers
to the latter questions. In contrast, if you are reading or just flipping the pages of a
magazine, then you don’t need to exert much pressure or use lots of “neurons” because

such tasks are easily executed. In the same token, there are plenty of examples that

24



support our claim, like preparing for a final exam versus watching a movie, etc.

3.5.2 The neighborhood of the optimal number of neurons

in a hidden layer

The state of the art of our method is the following: there is a relation between the
number of hidden neurons and the process of learning, and that forms the basis of
our research. In other words, if the error function is decreasing towards the minimum
over a certain period of iterations (which was set to 4 during siinulation), then this
means that the current number of hidden neurons is good. But, let us try to optimize
it by decreasing the number of the hidden neurons. How can we decrease its value?
There are two methods, one prunes the hidden neurons that were not learning during
that period of iterations, [25] and [29], and the other chops off a constant number of
neurons from the hidden layer. As a matter of fact, the first method proves to be more
practical since we will not lose some neurons that have previously learned well. To do
this, we need to keep track of all the neurons at hand, and for simplicity, we decided to
choose the second alternative. However, even if we are losing some knowledge in blind
pruning, this knowledge will be gained throughout the next iterations. Furthermore,
as far as the first method is concerned, the connections will be changed so that
calculating the perr and terr will result in the same values of the currently finished
iteration, but not for the following iteration.

In this approach, atter decreasing the number of hidden neurons, we start again
the study of the curvature of the error function over the same period of iterations.
In case the error function starts to diverge away from the minimum of the function,
then we increase the number of hidden neurons by a certain number of neurons (not,
necessarily equal to the number of neurons deleted in the case of a converging function,
as explained above). This process takes place while the network learns the patterns
from the training set. However, there must be a lower bound and an upper bound
for the number of hidden neurons, set by the user. During our simulation, we set the
upper bound as 120 and the lower bound as 5. Therefore, during training, we are not

only interested in letting the error function reach its minimum, but also be able to



optimize the number of hidden neurons and end up with an optimal architecture of

the network which is capable of displaying good results at the generalization level.

3.5.3 Simulation results

The performance of the network was examined by recognizing unconstrained hand-
written digits from the CEDAR database, which contains digits collected from the
U.S. Postal Services’ dead letters. Here, we see that it is worthless to compare the
final recognition rate with our previous experiments on the network because the num-
ber of hidden nnits in the hidden layer used to be chosen heuristically, whereas in
these simulation results the number of hidden neurons is automatically decided by
the method. The reason for having a neighborhood of the optimal solution, rather
than the optimal soiution is also stated.

Accordingly, while studying the curvature of the error function to decide on
whether to add (or remove) more neurons to (or from) the hidden layer, the number
of iterations was set to 4 in case of convergence, which means that we have to reduce
the number of neurons in the hidden layer by 10. On the other hand, in case of
divergence, the number of iterations was set to 3 iterations, implying that we have to
increment the number of the hidden units by 5. Note that the number of neurons to
be added (5) or removed (10) was fixed in our implemention, but it need not be fixed
this way.

Figure 3 shows the graph of finding the neighborhood of the optimal number of
hidden neurons. As one may notice, the initial number of hidden neurons was 80, then
it reached the value of 20 twice until it ended up oscillating between 30 and 40. (Note
that only in Figure 3 adding or removing neurons was set to 10.) Consequently, after
many experiments with our method such as changing the initial value of the lower and
upper bounds, changing the number of iterations for either or both of the converging
and diverging situations, and training the network on different sets of data, we finally
agreed that finding the optimal number of hidden neurons cannot be achieved at the
generic level, because the process of finding it is related to the special context in which
the network (having the hidden layer) was trained. One of the most important factors

is related to the quality and quantity of the training sets. In other words, training
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The graph for Snding the optimal number ot hidden neurons
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Figure 3: The graph for finding the neighborhood of the optimal number of hidden
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IYigure 4: This graph shows that the network converged to 10 hidden neurons.

the same network on two different training sets may (sifficiently and not necessarily)
lecad to two different optimal solutions. llere, it is noteworthy to declare that the
optimal solution for the larger training set is to be considered. In our simulation,
the training set was made up of 2000 digits consisting of 200 patterns for each digit,
mainly the bad set added to it some patterns from the good set. For instance, the bad
st consisted of 193 samples of the numeral 5, so we added 7 more samples from the
good set. As for the other numerals, the first 200 samples were considered.

Morcover, Figure 4 represents the graph of the number of hidden units with respect
to the number of iterations. These results were achieved aficr we removed 97 patterns
from the previous training set, which even humans could not recognize correctly.
When the error function was decreasing or increasing slowly, we kept track of the
amount of change in the value of the error function (starting from the first iteration
until the current iteration) and depending on it, the number of hidden neurons was
incremented or decremented. Thereafter, we continue the training process.

Even though the optimal solution that we got in this case is 10 hidden units only
in the single hidden layer, yet the existing oscillation in the graph raises the following
question: Is it true that the number of hidden units should be at least equal to the

number of clusters (in our case 10 clusters), and are we able to reduce it further?
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0 1 2 3 4 5 6 T 3 ) Rej | Total | Error
0291 1 0 0 0 0 4 0 0 0 4 300 5
1] 0 28 2 1 0 0 3 0 3 0 6 300 9
21 2 0 281 2 0 0 0 2 0 0 13 1 300 6
3| 2 1 2 280 O 2 0 1 2 0 10 | 300 10
41 0 0 1 0 281 2 0 1 0 1 11 300 S
9] 2 1 2 0 0 278 1 0 1 2 13 | 300 9
6| 2 0 2 2 1 0 286 O | 0 6 300 8
710 0 0 1 0 0 0 284 O 6 Y 300 7
81 0 0 2 4 0 2 0 0 275 2 15 | 300 10
91 0 0 0 3 2 0 0 3 0 281 i 300 3

Total: | 98 | 3000 80

Table 1: The Confusion matrix of the testing set consisting of 3000 patterns from the

CEDAR database.

Presently, although some may directly disagree with the idea, we leave the answer to
this question for future research.

Now that the neural network classifier, NNC, has been trained, we will test its
performance on a testing set made up of a new set of 3000 patierns, from the CEDAR.
database. For each pattern, i.e. numeral, the first 300 samples are chosen from the
bad set in case it contained more than 300 samples, otherwise more samples are taken
from the good set in order to have 300 samples per pattern.

The threshold for rejection was set at 45%. Table 1 shows the confusion matrix
and the results achieved in terms of the error, rejection, recognition, and reliability
rates.

80 patterns were recognized incorrectly resulting in an error rate of 2.66%, 98
rejected patterns resulting in a rejection rate of 3.32%, so the recognition rate was
94.02% and the reliability was equal to 97.24%.

Such results are considered to be good and can further be improved if some sta-
tistical features are employed. For instance, Table 1 shows that 6 instances of the
numeral 7 were missrecognized as a 9, and that 3 instances of 9 were missrecognized
as 7 resulting in 9 missclassification errors between the 2 classes. Such problems could
be avoided when the number of holes, breakpoints and endpoints, calculated for each

instance, are used for training and testing.
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Classifier Recognition
NNC 97.24
Binary Image 96.61
Binary Polynomial 96.72
Histogram 97.38
Morphology 97.75
Chaincode 98.05
GSC 98.23

Table 2: The recognition results of 6 classifiers compared to NNC.

3.5.4 Comparing the results

Compared to the performance of other researchers’ classifiers, [41], NNC performs
fairly well as can be seen from Table 2. The bad set of the CEDAR. database was used
since it is the worst testing set. The classifiers chosen are based on many approaches.
The features extracted include horizontal and vertical projection profiles, the number
of pixels of the pattern, contour information, number of end points, break points,
circles, straight and slant lines, concave and convex curves, etc. The classification
methods range from neural networks, binary polynomial, histogram-based, dynamic
programrning, and tree classfiers. The NNC has no features extracted, which is similar
to the Binary Image classifier that had a recogntion rate of 96.61%, while the NNC
achieved a better performance of 97.24%. Lee and Srihari, in [41], claim that it is
hard on most classifiaction algorithms to generalize when no extracted features are
cmployed. To probe further, please refer to [19], [37], [41], [44], [54], and [55]. In a
word, although the NNC’s performance is not the highest among all of the cited work
of other researchers, yet it is the highest between those classifiers that have the same

input as the NNC, a binary image of the symbol only.
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Chapter 4
Segmentation Algorithms Used

Segmentation is the art of separating a certain pattern from its background and
neighborhood. The problem of segmentation has always been a hard and challenging
topic to tackle. Nick W. Strathy of CENPARMI has conducted research in trying
to solve this problem and has contributed to the field in many papers published in
highly technical international conferences and journals, in addition to his Master’s
thesis, [53)].

Considering his suggestions, I chose to use the vertical and horizontal histograms,
and the connected components segmentation algorithms for the TRIGONIX project.
This project deals with the segmentation of paragraphs and the recognition of al-
phanumeric characters extracted from engineering drawings.

On the other hand, a modified version of the Hausdor{’s distance method [49],
developed by Eric Reiher of CRIM, was used to extract symbols from the maps to be
presented to the neural networks classifiers, NNC. To probe further on the HansdorfP’s

distance method, please refer to [28].
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4.1 Segmenting paragraphs of text from engineer-
ing drawings

Figures 5, 6, and 7 are samples of the paragraphs that are passed to the NNC to be
recognized. These paragraphs, as we can see, contain different font types and sizes

which add to the complexity of the problem.

4.1.1 Line Segmentation

Since we will be receiving paragraphs containing more than one line, we had to break
the paragraph into separate lines. The method used is simply the Basic Horizontal
Histogram of the whole input paragraph. Iigure 8 shows a sample of the input
paragraphs, and figure 9 shows the result of segmenting the paragraph into lines.
Removing noise that might be present between lines (like dots, dashes, and straight
lines resulting from improper scanning or from underlining some words of the currently
segmented line) is done cfficiently.

Figure 10 shows the result of segmenting a paragraph that has an underlined word.

4.1.2 Pattern Segmentation and Normalization

Now after segmenting the paragraph into separate lines of text, we start segmenting
cach line of text into separate patterns. Then, we normalize it into a 26x26 array to

be presented later as input to the neural network classifier.

Pattern segmentation

No matter how efficient and good the performance of a stand alone classifier is, the
absence of a precise pattern segmentation algorithm causes the recognition rate of that
classifier to drop down. As for segmenting each line into single separate patterns.
we tried two methods, the Basic Vertical Hisiogram method, and the Connected
Components method. Figure 11 shows the results of both methods when experimented

on words containing patterns that lie below or above other patterns. We can see that
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Figure 5: An original input paragraph.
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Figure 6: An original input paragraph.

I —

|THERMAE FIT PER BPS 4012 EXCEPT OMIT STRESS
RELIEF.

ilNSTALL USING WET POLYAMIDE EPOXY PRIMER

PER BPS 4465I.

125
BLEND FLASH TO CONTOUR WITHIN .02 MAX, \/
MACHINE MARKS MUST BE PARALLEL TO
PARTING LINE WITHIN 15°,

‘ Figure 7: An original input paragraph.
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THERMAL FIT PER BPS 4012 EXCEPT OMIT STRESS
RELIEF.

INSTALL USING WET POLYAMIDE EPOXY PRIMER

PER BPS 445l1.

BLEND FLASH TO CONTOUR WITHIN .Q2 MAX,
MACHINE MARKS MUST BE PARALLEL TO
PARTING LINE WITHIN 15°,

Figure 8: The original input paragraph to be segmented into separate lines.

THERMAL FIT PER BPS 4012 EXCEPT OMIT SIRESSH

INSTALL USING WET POLYAMIDE EPOXY PROME‘R

BLEND FLHSH TO CONTOUR WITH!N .02 MAX

MRCH:NE MARKS /V\UST BEE PHRHLLEL 1O
PARTING LINE WITHIN 15 °,

Figure 9: The results of segmenting the paragraph into lines.
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NOTE:
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BAsSES * 3 yo 21 [NcLUSIVELY.

Removing noise present between lines of text.

DRAFT INTERRUPTER , MANOMET LR £ £ LOWIIETER

Figure 10: Removing noise while segmenting the paragraph into lines of text.

the Basic Vertical Histogram method resulted in a segmentation error while trying to
segment the three conseculive patterns E, S, and §into one pattern - which is wrong.
On the other hand, the Connected Components method was able to correctly segment
them into three scparate patterns.

Even though the Connected Components method is better than the Basic Vertical
Histogram method, yet it has a defest. If the patterns had holes (i.e. disconnected)

as in figure 12, then it will produce wrong results.

Pattern normalization

Since the input to the neural network classifier is a (26x26) binary image, we had
to normalize the segmented patterns into that size. The method used for normal-
ization is quite simple; it maps the black pixels in the segmented pattern into their
corresponding pixels in the (26x26) binary image. It assumes that the (26x26) binary
image is initialized to be blank before each normalization process. The normalization

function maps the coordinates (a;,b;) of each black pixel in the original 2D-array to
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The origimal word to be segmented.

STRESS]

The Basie Verticy) ‘ The Connected

] [i.\[()g““]] resulis, Components resulis

¢ 3

\ - |

Figure 11: Comparison between the Basic Vertica histogram and the Connected
Components methods: the first three characters S. T, and 12 were correctly segmented
by both methods.
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(SALEM BROSSIVS FOR FURNACT )

The Connected Components
method will fail here.

Figure 12: In case we had a pattern that has unconnected parts (components), then a
wrong segmentation may occur, which will result to a misclassification in the testing
phase.
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its corresponding coordinates (a,, ;) in the desired (26x26) 2D-array. The equations
of as, and b, are the following;
as = (desrow X a1 [/07Gr0u)

b.‘! = (descol X bl/orgcol)

4.2 Segmenting map symbols

Figures 13 and 16 show samples of the maps that need to be processed. Figures 14
and 17 display the results after applying the Hausdorfl’s distance method only. Notice
the large number of False Positives present in these two figures. T'he reason for having
so many False Positives is because of the the Hausdorfl's algorithm parameters are
set in order not to miss any symbol from the map. Yet, some symbols are missed
occasionpally.

However, to solve the problem of eliminating the False Positives we combined the
Hausdorfl's algorithm with a set of NNCs to decrease the number of False Positives
and to reconfirm the classification of the symbols into their respective classes, [49).
Figures 15 and 18 show the results of combining the HausdorfI's distance method
with the DSHNNC.

Briefly, the Hausdorff distance measures the degree of mismatch bet ween two sets
of points by measuring the distance of a point of one set that is farthest away from
any point of the other, and vice versa. This distance can be used to determine the
degree of mismatch between two objects that are superimposed on one another. The
Hausdorff distance is not sensitive to symbols touching or overlapping cach other.
It can thus naturally be used to first locate possible candidates. The symbols can
be located in different scales and orientations. The scaling range starts from 30%
less than the original model of the symbol up to 30% larger than the original model
of the symbol with a 5% scaling step. For each scale value, the model is rotated
22.5°, starting from 0° to 337.5°, searching for possible matches after which they are
horizontally rotated before they are passed to the DSHNNC. Then, each symbol iy
normalized into a square binary image that should not be less than (16x16) because

the image of the symbol would lose part of its information, especially that they are
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originally ranging from (256x200) to (50x50) but not limited to this range.
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Figure 13: An original region of the map to be processed, Ellipses are the symbols of

interest.
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Figure 14: The Ellipse symbol’s matches, using Hausdorff’s distance method alone,
found in the region of the map.

42



0

S

\

Figure 15: The results after passing all the Ellipse matches to a set of NNCs to filter

out the False Positives.
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Figure 16: Another original region of the map to be processed, Filled Triangles are
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the symbols of interest.
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Figure 17: The Filled Triangle symbol’s matches, using Hausdorff’s distance method

alone, found in the region of the map.
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Iigure 18: The results after passing all the Filled Triangle matches to a set of NNCs
to filter out the False Positives.
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Chapter 5

Results Achieved

Throughout this chapter, recognition results will be presented on the following data:

o the CEDAR database of numerals
e paragraphs of text from the TRIGONIX database, and

e special map symbols from the CRIM database.

A user interface was built and Figures of the interface utilities are presented in
Appendix B.

Please recall that a threshold is used in the testing phase. When the values of
the output neurons are calculated, we find the two neurons that have the highest
values compared to the others. Next, we check if the difference between these two
units is greater than the given threshold, then the current pattern is rejected, else it
is classified into the same class of the neuron that has the higher value between the
last two.

Training and testing the network was done on a SPARC station 10 that has 64 MI3
(mega bytes) of RAM (random access memory), with 50 M1z speed. It is important
to note that the machine was not fully dedicated to our examinations meaning that
the machine was connected to a network of other machines from which other users
used to login to that machine too.

Please note that the reason for having spikes is related to changing the values of

the eita, alpha and lambda parameters, and the number of hidden neurons. In the

47



case of changing either one or more of the parameters (eita, alpha, lambda), the error
function is less affected and the spikes would be small, as they appear, for example,
in Figure 20. On the other hand, when the number of hidden neurons is changed, the
spikes are higher especially when the number of hidden neurons is incremented, as it

explicitely shows in Figure 19.

5.1 The CEDAR database

The CEDAR database of numerals is made available by the Center of Excellence
Jor Document Analysis and Recognition, a research center, at the State University of
New York at Buffalo, directed by Dr. Sargur N. Srihari. This database consists of

numerals extracted from zip-codes of the United States Postal Services office.

5.1.1 Training and testing the network

Many different architectures of the network were implemented and tested to check
whether the network will converge and be able to generalize well. Hereafter, only two
will be shown.

The first examination process

'The architecture of the network is the following;:
e an (18x18) binary image is presented to the network as input,
e 40 neurons' constitute the hidden layer, and

e 10 output neurons constituting the output layer.

The network was trained on 11550 patterns collected from the first six directories of
the CEDAR database. The network achieved convergence after 8 hours of training,
and Figure 19 shows the error function (Y-Axis) with respect to the number of iter-

ations (X-Axis). Later, we examined the performance of the network on a subset of

Ychosen from the neighborhood of the optimal number of hidden neurons
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Figure 19: The graph of the error function for training a network made up of 18x18
input binary images, 40 hidden neurons and 10 output neurons.
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0 1 2 3 4 5 6 7 8 9 Rej | Total | Error
01335 1 1 1 0 2 1 0 1 0 13 355 7
1y 0 275 1 0 0 0 0 1 0 0 12 | 289 2
21 3 | 189 3 1 1 2 0 4 0 20 224 15
310 0 2 186 O 4 1 0 2 0 13 | 211 9
4 0 1 0 0 172 0 0 0 0 1 9 183 2
51 0 0 1 3 2 101 1 0 1 1 7 117 9
6| 2 0 2 0 | 0 232 O 1 0 7 245 6
71 1 0 1 1 3 0 0 198 2 2 13 | 221 10
81 0 1 0 1 3 0 0 0 17 1 14 | 191 6
91 0 0 0 1 4 0 0 2 9 166 15 214 16

Total: | 123 | 2227 | 82

Table 3: The Confusion matrix of the bad testing set, after training on the first six

subdirectories from the CEDAR database.

the bad testing set from the CEDAR database containing 2227 numerals. Table 3

shows the confusion matrix of the testing set.

After setting the threshold to a value of 0.5, out of the 2227 patterns 82 patterns

were misclassified resulting in an error rate of 3.68%, and 123 patterns were rejected

resulting in a rejection rate of 5.52%. Thus, the recognition rate was 90.79%, and the

reliability rate was 95.24%.

The second examination process

We carried another eramination process (training and testing) using the following

architecture:

e a (1%x16) binary image is presented to the network as input,

e 80 neurons? constitute the hidden layer, and

e 10 output neurons constituting the output layer.

2chosen from the neighborhood of the optimal number of hidden neurons
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0 1 2 3 4 5 6 7 8 9 Rej | Total | Error
0]344 O 0 0 0 0 1 0 l 0 9 355 2
11 0 284 1 0 0 0 0 0 0 0 4 289 l
21 2 0 195 1 1 0 0 0 1 0 20 22 5
310 0 4 179 0 S5 O 0 l 1 18 [ 208 i1
41 0 1 0 0 171 O 1 1 | l T 183 H
51 1 0 0 2 0 96 O 0 3 0 15 117 6
6] 3 0 | 0 2 0 231 0 0 0 S 245 6
71 0 0 0 0 5 1 0 208 1 ] 4 220 8
81 0 0 0 3 1 1 0 0 174 1 11 191 6
91 0 0 0 0 ) 1 0 2 0 165 3 181 8

Total: | 108 | 2213 58

Table 4: The Confusion matrix of the good testing set.

Test set | Error | Rejection | Recognition | Reliability
Good set | 2.62 % | 4.88 % 92.50 % 97.24 %
Bad set | 4.46 % | 6.46 % 89.08 % 95.43 %

Table 5: The classification results of the good and the bad testing sets.

We trained the i.~twork on the full CEDAR training sct, made up of 18,468
patterns. The set is made up of 2866 patterns for the 0, 2544 patterns for the 1, 2047
patterns for the 2, 1731 patterns for the 3, 1676 patterns for the 4, 1459 patterns for
the 5, 1722 patterns for the 6, 1616 patterns for the 7, 1453 patterns for the 8, and
1354 patterns for the 9. Figure 20 shows the error function of the training process.

The network was tested on the two ditferent testing sets from the CEDAR
database, the good set and the bad set. The good set consists of a total of 2213
patterns, while the bad testing set is made up of 2599 samples. The threshold for
rejection was set to a value equal to 0.5. Tables 4 and 6 show the confusion matrices
for the good set and the bad set.

Results of the error, rejection, recognition and reliability rates are shown in Table
5. A comparison between the accuracy of the NNC and other researchers’ classifiers
(same as in section Comparing the results, Chapter 3) is shown in Table 7, where

the top first 2 choices are considered while classification.
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Figure 20: The graph of the error function for training a network made up of 16x16
input binary images, 80 .idden neurons, and 10 output neurons.



0 1 2 3 4 5 6 T S 9 Rej | Total | Frror
01407 O 0 1 1 2 6 1 2 1 11 432 11
1 1 331 2 0 0 0 2 l 0 0 S 2145 6
21 3 1 253 2 2 1 1 1 1 0 30 295 12
3 1 0 5 215 0 b} 0 0 2 2 30 260 15
41 0 1 0 0 210 2 2 2 1 3 13 234 11
5 3 2 0 T 0 155 0 0 3 0 23 193 15
6] 3 1 2 1 3 0 255 0 0 0 16 281 10
T 1 0 0 0 5 | 0 219 |1 3 | 241 11
81 0 0 0 3 1 2 0 1195 1 Iy | 217 8
9( 0 0 0 1 8 | 0 3 ] 185 12 201 14

Total: | 168 | 2599 116

Table 6: The Confusion matrix of the bad testing set.

Classifier good set  bad sel
NNC 97.24 95.43
Binary Image | 98.33 96.61

Table 7: The recognition results of the Binary Image classifier compared to NNC.

5.2 Results of segmenting and recognizing

alphanumeric characters

5.2.1 The neural network classifier

We followed the same terminology as described in The Neural Network Trainer
section. The only thing different is that the testing process will use the final results of
the weight and bias matrices (calculated in the training process) to test and classily
patterns form the testing set of paragraphs. In the testing process, the pattern is ei-
ther misclassified, rejected, or classified correctly. A threshold value, thualue decided
by the user, is used for rejection. This is done in the following manner: We first
calculate the output vector out and find the first and second units with higher output

values, maz! and maz?2 respectively. Then,

if (mazl-maz2 < thvalue) = the pattern is rejecled
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else if(code # marcodel) = the pallern is misclassified

else the pattern is classified correctly.

where code is the current pattern’s identification { read from the testing set), mazcode!
is the index to the unit that has the highest output in the output vector out, mazl
and mar? are the two highest values of the neurons in the output layer, and thvalue
holds the value of the threshold used (0.25).

While testing the performance of the neural network classifier, we found that the
network had conflicts between [ and I, and between O and 0 (zero). A solution to
that problem was implemented and it is described below. It p:uved to decrease the

error rate of misclassification.

Differentiating between / and !

After calculating the values of maz! and maz2, we first check if any of them corre-
sponds to the neuron of /or 1. If so, then we check whether the pattern that preceded
it was a character or numeral. If it was a character (or a space), then the pattern is

classified as an I, otherwise it is classified as a 1.

Differentiating between O and ¢

Second, if mar! and maz2 didn’t correspond to neither I nor 1, we do the same thing
as for O and 0. However, if the pattern that preceded it was a character (or a space),

then the pattern is classified as an O, else it is classified as a 0.

5.2.2 Results

Since the results of line and pattern segmentations were already shown in chapter
4 entitled Segmentation, only the results of classification will be presented in this
subsection. The neural network classifier was trained on a training set made up of
2245 patterns that were extracted from more than 40 sample paragraphs. It took the
network 9 hours and 14 minutes to converge. The performance of the neural network

classifier was examined on 12 new sample paragraphs. Results showed a recognition
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rate of 92.46%, an error rate of 3.22%. and a rejection rate of 1.32% per segmented
patterns, and not per processed paragraphs. The problems faced are mainly related
to pattern segmentation. that is some parts of the patterns which caused an error
or rejection, have been cut or partially distorted. Morcover, the absence of a huge
database that contains irstances of each pattern for cach font that is used at diffes ont
scanning levels has its impact on the performance of the network.

However, we should consider that the neural network classiier was also trained
on a small training set which is not uniformly distributed. By uniform distribution
we mean the following:

Given a data set S made up of .X patterns, then:

3 exactly N samples Y pattern P, where i € {1,...,X} (16)

Figures 21, 22, ..., and 29 represent the paragraphs that were used for testing
and their respective results. The ampersand @ character symbol is not considered
as a symbol to be recognized in this application, but it is used to point out that the
current pattern has been rejected by the classifier, and thus it will be saved n a file
for further training in the future. In addition, the punctuation maorks were not
considered to be part of the patterns set that we intended to segment and recognize
throughout this application. Please note that the paragraph in Figure 21 contains
some symbols like; (, ) / and - . Notice that we had a misclassification in this case;
D was misclassified with an O, the fourth word in line three.

In Figure 22, Pattern 5 was rejected because initially the training set didn’t have
more than 15 samples. Pattern d is simply a lower case and wasn’t even considered
for training, and it is very critical and important to have it rejected rather than
misclassified.

In Figure 23, we had a problem of segmentation because we had a blank line cut-
ting the paragraph irom the top to the bottom, in the middle, and passing through
some patterns. Segmentation errcrs emerged when we were segmenting them. Cer-
tainly any mistake in segmentation will directly result in a recognition error of the

pattern. Example of those cut patterns are b the first character of the fourth word in
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The input paragraph:

‘—

TRANSFORMATEUR

DIS). 6.9 KV-CB/A2 (5334-T41)

DECL. OU PERTE DE 250 VCC

Its respective output:

TRANSFORMATEUR

DIS] 69 KV-CB/A@ (5334-T41)

DECL OU PERTE OE 250 VCC

R

Iigure 21: A paragraph iested with its respective output.
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The input paragraph:

T-5(d-6)
RELACHE
DE CHARGE
EAU DE
SERVICE

Its respective output:

T-@ (@-6) |
RELACHE
DE CHARGE
EAU DE

SERVICE

Figure 22: Example of a paragraph that has 2 rejected patterns, 5, and d.



the seventh line, £ the fourth character of the third word in the fifth line, and R the

sixth character of the second word in the second line. In the same token, Figure 25
had one charac'er, A in the second line, rejected because it was not fully connected.

The paragraph in Figure 24 had only one rejected pattern. The reason is related
to the small size of the training set. Such problems will not be faced later because
these patterns will be presented to the network for training.

If a new character or symbol was presented to the network in the testing phase,
the network will tend to reject it as is the case with @ in Figure 26. This character
will be saved in a file for future training of the network.

After many experiments on the TRIGONIX database of paragraphs, we found
out that most of them contained patterns that were not fully connected, which was
a result of scanning and binarizing the engineering drawings and maps. That is why
some characters were rejected, because they were not fully connected. In trying to
avoid this problem, a heuristic approach was introduced to the standard connected
components segmentation algorithm, CCSA. Simply, it checks if the minimum dis-
tance, dym, between two distinct labeled regions, reg; and reg,, is less than 3 pixels
width, then the two regions are connected and considered as one region, as in Formula
17.

tf dpn between reg, and reg, < 3 then reg, and reg, are merged into reg;.(17)

I'igure 27 shows the testing results before the modification was introduced to
CCSA where some patterns were rejected. On the other hand, Figure 28 shows the
testing results of the same pattern after modifying CCSA where all the previously
rejected patterns were correctly recognized. Figure 29 shows the results of another

tested paragraph.
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The input paragraph:

SAUF INDICATIONS CONTRAIRES, TOUS LES |

~ L [d Id -
NUMEROS D INSTRUMENTS SONT PRECEDES
DU Ne U.S.I. 67340.

UTILISER CE BOYAU LORS DE MANIPULAT
DU FILTRE MODERATEUR.

VOIR AUSSI EN b-7 POUR VENTILATIO!
GENERALE

Its respective output:

SAUF INDICATIONS @ONTRAIRES TOUS LES

NUMEROS D INSTF@UMENTS SONT PRECEDES
DU NO U ST 67340

UTILISER CE BOYAU LORS DE MANIPULAT
DU FILTRE MODI@RATEUR

VOIR AUSSI EN I@-7 POUR VENTILATIOI
GENERALE

Figure 23: A paragraph showing some of the segmentation problems encountered.
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The input paragraph:

LES ANNEAUX NORD ET SUD DES BOUCLIERS
SE DEVERSENT DIRECTEMENT DANS
LE CAISSON DU REACTEUR

Its respective output:

LES ANNEAUX NORD ET SUD DES @OUCLIER
SE DEVERSENT DIRECTEMENT DANS

LE CAISSON DU REACTEUR

IFFigure 24: This tested paragraph had only one rejected pattern.

60




The input Paragraph:

RELAIS A MINIMUM DE COURANT

RELAIS DIRECTIONNEL A MAX. DE COURANT

RELAIS DIFFERENTIEL DE PROTECTION

Its respective output:

RELAIS A MINIMUM DE COURANT

RELAIS DIRECTIONNEL @ MAX DE COURANT

RELAIS DIFFERENTIEL DE PROTECTION

Figure 25: Another paragraph containing a character that was mal-segmented.
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The input Paragraph:

LES PIQUAGES SUR LES COUDES ET LA
TUYAUTERIE SONT DESTINES A LA MESURE I
DU DEBIT ET A L' EQUILIBRAGE DU SYSTEME
LORS DE LA MISE EN SERVICE.LES VANNES
D'ISOLEMENT DE L'INSTRUMENTATION SERONT
FERMEES APRES LA MISE EN SERVICE. LES
LECTURES SONT EFFECTUEES A L'AIDE
D'INDICATEURS PORTATIFS.

Its respective output:

LES PI@UAGES SUR LES COUDES ETLA
TUYAUTERIE SONT DESTINES A LA MESURE
DU DEBIT ET A L EQUILIBRAGE DU SYSTEME
LORS DE LA MISE EN SERVICE LES VANNES
D ISOLEMENT DE LINSTRUMENTATION SERONT}H
FERMEES APRES LA MISE EN SERVICE LES
LECTURES SONT EFFECTUEES A L AIDE

D INDICATEURS PORTATIFS

S

Figure 26: The character @ was rejected because it was new to the network.



The input Paragraph: ]

RELAIS A MINIMUM DE TENSION
RELAIS A EQUILIBRE DE PHASE

RELAIS THERMIQUE D' INTENSlTE
 RELAIS THERMIQUE D' INTENSITE

4

Its respective output: /

RELAIS A MINIMUM DE @ENSION
RELAIS A EQUILIBRE DE PHASE

RELAIS THERMIQUE D I@TENSITE
RELAIS THERMIQUE D I1@TENSITE

Figure 27: This tested paragraph had 3 rejected patterns before improving the CCSA.
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The input Paragraph:

RELAIS A MINIMUM DE TENSION
RELAIS A EQUILIBRE DE PHASE

RELAIS THERMIQUE D' INTENSITE
| RELAIS THERMIQUE D' INTENSITE

Its respective output:

RELAIS A MINIMUM DE TENSION
RELAIS AEQUILIBRE DE PHASE
RELAIS THERMIQUE D INTENSITE

RELAIS THERMIQUE D INTENSITE

-

p
/)

Figure 28: This tested paragraph was completely recognized after improving the
CCSA.
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The input Paragraph:

LES ANNEAUX NORD ET SUD DES BOUCLIERS
SE DEVERSENT DIRECTEMENT DANS
LE CAISSON DU REACTEUR

Its respective output:

LES ANNEAUX NORD ET SUD DES BOUCLIERS

SE DEVERSENT DIRECTEMENT DANS
LE CAISSON DU REACTEUR

Figure 29: This tested paragraph no rejected patierns.
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5.3 Results of segimenting and recognizing

symbols

5.3.1 Definitions

The following definitions are used throughout this section:

e False Positive: Before combining the Hausdorff method with the neural net-
work classifier, we used to have some patterns being labeled as a symbol (say
Cross) but in fact it was not. This led to a false matching of the symbol with
extracted data (which is close enough in shape to that symbol) from the map.
Since the extracted data is not the actual symbol, we labeled it as a False Pos-
itive and trained the network to learn how to separate the class of the False

Positive from the class of its actual symbol.

e Rej: It stands for rejection. When the difference between the output of the two
ncurons in the output layer is less than a given threshold TH, the pattern is
rejected. For example, given a network whose output layer consists of 2 neurons
Nl and N2. In the testing phase, when a pattern P is presented to the network,
N! and N2 have calculated values of V1 and V2 respectively. P is rejected if
the difference between V1 and V2 is less than TH.

5.3.2 The architecture of the neural network classifier

Figure 30 shows the general architecture of our network where the number of units
in the input, hidden or output layers can be modified. The output layer is made up
of 2 units (neurons). One unit is for the symbol itself and the second is for its False
Positives. In the classification or the testing phase, the unit with the higher output
will win over the other unit, thus leading to classifying the currently tested pattern
as its respective class. In case the difference between the outputs of the two units is
less than a certain threshold, the pattern wiil be rejected. The input to the network

is a normalized (26x26) binary image of the pattern.
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The architecture of the N.Net classifier

The output layer

(OOCO The hidden layer

The binary image, being the
input to the neural network

As we can see, the network is
fully connected.

N.B.: The modified Error Back !
Propagation algorithm Is:
implemented. !

Figure 30: The architecture of the neural network for each symbol.
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The output layers

The hidden layers

As we can see, the networks are
all fully connected.

o e e s e e =y

.N.B.: The modified Error Back
\ Propagation algorithm is
1 implemented.

The binary image, being the
input to the neural networks

Figure 31: The dynamic architecture of the combined neural networks.

Later, when the network of each symbol will be combired with the Hausdorff’s
system, the architecture of the networks will be implemented as shown in Figure 31.
Since adding a new symbol to be classified is optional, we chose to build one network
per symbol. Thus, if a new symbol, S,, is to be added, all we have to do is to create an
additional network Net, associated with »,. In the training phase, Net, will be trained
on a data set representing samples of S, and its False Positives.

This approach is better than having one neura! network whose output layer con-
sists of neurons where vach neuron corresponds to its respective symbol. In such a
case, adding a new symbol, will cause a change in the network’s connections (archi-
tecture) and thus forces us to train the network again on the data set which should

contain the samples of all the symbols.
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5.3.3 Results

Please note that all of the training and testing sets were produced vy the Hausdortt's
method. Figures 32, 33, 34, 35, and 36 show paits of the map that wes used for
creating the training sets of the 5 symbols, shown in Figure 50. Parts of the map

that was used or testing are shown in Figures 13 and 16.

Results of the Cross symbol

Training was done on a data set made up of 49 patterns, consisting of:
e 10 patterns rcpresenting the Cross symbol, and
o 39 patterns being False Positives.

Figure 37 shows the graph of the error function. Note that the network converged
after 16 iterations with a total crror value per iteration less than 0.005 per iteration.
The network took 21 minutes and 46 scconds to converge. Fven though the network
was trained on a SPARC station 10, yet the load average was ranging between 2,14,
1.99, and 1.84. This means that if we train the network on a machine that is dedicated
to our application, then the processing time will be much less.

Testing was done on a data set made up of 87 patterns, consisting of:
e 5 patterns representing the Cross symboi, and
e 32 patterns being i‘alsc Positives.

Table 8 shows the confusion matrix of the testing set after presenting it to the
network.

Results show that 82 False Positives (originally considered as Cross symhols by
the Hausdorff method) dropped down to 4, and that 5 of them were rejected. On the
oiher hand, one of the Crosses was considered as a False Positive. The recognition
rate was 88.51% {(73+4)/(87)}, and the reliability was equal to 93.90%,
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Figure 33: A part of the map that was used for creating the trammg sets of the
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Figure 34: A part of the map that was used for creating the training sets of the
symbols.

False Positive Cross | Rejected
FFalse Positive 73 4 5
Cross 1 4 0

Table 8: Performance of the Cross NNC on the testing set.
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Figure 35: A part of the map that was used for creating the training sets of the
symbols.

Results of the Ellipse symbol

Training was done on a data set made up of 135 patterns, consisting of:
e 61 patterns representing the Ellipse symbol, and
e 74 patterns being False Positives.

Figure 38 shows the graph of the error function. Note that the network converged
after 16 iterations with a total error value per iteration less than 0.005 per iteration.
The network took 35 minutes and 34 seconds to converge.

Testing was done on a data set made up of 178 patterns. The set consisted of:
e 48 patterns representing the Ellipse symbol, and
e 130 patterns being False Positives.

Table 9 shows the confusion inatrix of the testing set after presenting it to the

network.
Results show that the 130 False Positives (originally considered as Ellipse symbols

by the Hausdorff method) dropped down to 12, and that 10 of themn were rejected.
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Figure 36: A part of the map that was used for creating the training sets of the
symbols.
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Figure 37: The error function graph of the Cross symbol.
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Iigure 38: The error function graph of the Ellipse symbol.
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False Positive LEllipse | Rejected
False Positive 108 12 Y]
Ellipse 0 i 7

Table 9: Performance of the Ellipse NNC' on the testing set.

The rest (i.e. the 108 patterns) were identified correctly as being False Positives. It is
good that none of the Ellipse patterns were recognized as being False Positives, and
that’s why we see a zero in the intersection of the first column (I'P) with the second
row (E). However, 7 of the Ellipse patterns were rejected. The recognition rate was
83.71%, and the reliability was equal to 92.25%. Figure 39 shows the patterns of the
False Positives that resulted in an error, whereas Figure 10 shows the patterns of the
Ellipse symbol that were rejected. Such problems will be eliminated when training, is

done on a large data set.

Results of the Transformer symbol

Training was done on a data set made up of 178 paticrns, consisting of:
o 48 patterns representing the Transformer symbol, and
e 130 patterns being Ifalse Positives.

Figure 41 shows a graph of the error function. Note that the network converged
after 34 iterations, with a total error value per iteration less than 0.005 per iteration.
The network took 43 minutes and 17 seconds to converge. Figure 42 shows some
instances of the Transformer’s symbols found in the training set, that, were extracted
by Hausdorff’s method and labeied manually by the user. Notice the presence of
some instances of the Transformer’s False Positives that were labeled as Transforaer’s
symbols.

Testing was done on a data set made up of 117 patterns, consisting of:
» 51 patterns representing the Transformer symbol, and

e 66 patterns being False Positives.
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Figure 39: The instances of the Ellipse's False Positives that caused errors.



Figure 40: The instances of the Ellipse symbols that were rejected.
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Figure 41: The error function’s graph of the Transformer symbol.

False Positive Transformer | Rejected
False Positive 61 2 3
Transformer 20 21 10

Table 10: Performance of the Transformer NNC on the testing set.
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Figure 42: Some instances of the Transformer symbols present in the training set.
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Table 10 shows the confusion matrix of the testing set after presenting it to the
network.

Results show that the 66 False Positives (originally considered as Transformer
symbols by the Hausdorfl method) dropped down to 2, and that 3 of them were re-
jected. The rest (61) were identified correctly as being False Positives. One drawback
shows in the number of Transformers (20) that were recognized as Valse Positives.
The reason is that severe noise was present in both the training and the testing sets.
The recognition rate was 70.09% and the reliability was equal to 73.85%. Figure 13
shows the Transformer’s False Positives that were rejected. Although the Transformer
symbol shows in ail of its instances, shown in Figure 44, they were rejected becanse

of the severe noise present.

Results of the Filled Triangle symbol

Training was done on a data set made up of 1077 patierns, consisting of:
e 72 patterns representing the Filled Triangle symbol, and
e 1005 patterns being False Positives.

Figure 46 shows the graph of the error function. Note that the network converged
after 34 iterations, with a total crror value per iteration less than 0.005 per iteration.
The network took 1 hour, 49 minutes and 26 seconds Lo converge.

Testing was done on 4 data sel made up of 499 patterns. The set consisted of:
e 32 patterns representing the Filled Triangle symbol, and
e 467 patterns being False Positives.

Table 11 shows the confusion matrix of the testing set after presenting it to the
network. Results show that 467 False Positives (originally considered as Filled Tri
angle symbols by the Hausdorff method) dropped down to 5, and that 14 of them
were rejected. Figure 47 shows the False Positive patterns that were misclassified.
The rest (448) were identified correctly as being False Positives. We lost 19 Filled

Triangles, shown in Figure 49, because they were recognized as being False Positives,
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Figure 43: The instances of the Transformer’s False Positives that w.re rejected.



Figure 44: The instances of the Transformer symbols that were rejected.
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Figure 45: The insta of the Transformer symbols that caused errors.
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Figure 46: The error function’s graph of the Filled Triangle symbol.
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False Positive Filled Triangle | Rejected
False Positive 448 5 14
Filled Triangle 19 H 8

Table 11: Performance of the Filled Triangle NNC on the testing set.

and 8 patterns because they were rejected. Figure 48 show the patterns of the Filled
‘Triangle that were rejected. The recognition rate was 90.78% and the reliability was
equal to 94.97%.

Previous Results achieved

Table 12—(a) shows the results that were achieved when the neural networks object
codes were incorporated into the main interface code (during October, 1995) at CRIM
when the last voting decision was taken by the Hausdorff’s system. Figure 50 shows
the ideal samples of the symbols that is used by the Hausdorfl algorithm.

We can see the improvements reached compared to the performance of the Hausdorff’s
distance method alone as shown in Table 12—(b). If we compare the number of False
Positives as in Table 13, we notice that it has dropped down from 464 to 16 after
combining the ausdorff’s method with the dynamic set of hybrid neural network
classifiers, DSHNNC.

The currently modified networks were not yet incorporated and tested with Haus-
dorff’s method at CRIM, after which the final recognition results will further improve
because of the multiple expert (the neural networks and Hausdorfl’s) system where
there are cases when the system, at CRIM, takes the last decision based on the neural
networks’ response and the Hausdorfl’s calculated parameters. This means that the
DSHNNC will be used to help minimize the number of False Positives, [49]. Out of
the latter presented samples of the passed symbols to the DSHNNC, as in Figures 39,
40, 47, 48, and 49, it is explicitly seen that these samples should be preprocessed and
cleaned before presenting them to DSHNNC for either training or testing and which
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Figure 47: The instances of the Filled Triangle’s False Positives that caused errors.
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Figure 48: The instances of the Filled Triangle symbol that were rejected.
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of the Filled Triangle symbol that were

49: The instances



(a)
Hausdorff + DSHNNC

Symbol Correct Missed False Positive.
Cross 4 1 3
Ellipse 48 4 7
Transformer 25 4 3

Filled Triangle 15 18 3
VTransform 10 8 0

)
Hausdorfl’s Method alone

Symbol Correct Missed False Positive.
Cross 5 0 4
Ellipse 50 2 162
Transformer 25 4 86
Filled Triangle 32 1 178
V'Transform 18 0 34

Table 12: Combining Hausdorff’s algorithm with DSHNNC.

The False Positives table

Symbol Hausdorff + DSHNNC | Hausdorff
Cross 3 4
Ellipse 7 162
Transformer 3 86
Filled Triangle 3 178
VTransform 0 34
Total 16 464

Table 13: Improvements to the number of False Positives.
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Figure 50: An ideal sample of the 5 symbols used.
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stands as a future direction.
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Chapter 6

Conclusion

6.1 Major accomplishments

6.1.1 The neighborhood of the optimal number of hidden

neurons

In conclusion, the method proposed here is a fast technigue for finding the neighbor
hood of the optimal number of hidden ncurons in a hidden layer. After this stage, if
finding the optimal number is the designer’s aim, then only one process is left to be
done, which is simply running the same proposed method with the new npper and
lower bounds of the neighborhood, and setting the number of neurons to be added or
removed to 1 neuron only. This will eventually lead to the optimal number of hidden
neurons.

At the beginning, the idea of finding an optimal number of hidden neurons was
perceived for its relational dependency with the way the human brain responds to
tasks of different complexity levels. Later, after many experimental results, a neigh-
borhood of the optimal number of hidden necurons was explicitly detected, and a fast
method of finding it is proposed while attaining convergence to the network being
trained.

To sum up, this method proves to be reliable with the maodified error backprop-

agation algorithm. It can be embedded in any other similar algorithms. Thus as a
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future directive, we seck to generate some formulas that govern this criterion. We
also intend to extend our work to study a way to deal with addition and deletion of
one (or more) hidden layer to a network, and its effect on the curvature of the error

function and on the general performance of the network.

6.1.2 Segmentation of paragraphs of text

A combination of the vertical and horizontal histograms and the connected compo-
nents segmentation algorithms is presented as a trial to quickly segment paragraphs

of texts, extracted from engineering drawings and maps.

6.1.3 Building a dynamic set of hybrid neural network clas-

sifiers

A method of building a dynamic set of hybrid neural network classifiers, DSHNNC,
is presented. Adding a new pattern to be classified is fairly easy. All we have to
do is to train its respective newly created NNC and add the NNC to the DSHNNC
architecture. As for the case when deciding to remove a pattern, not willing to
recognize it anymore, then only the NNC associated with that pattern will only be
removed form the DSHNNC architecture. In this way, the training process over the
data sets of the patterns is completely pattern dependent. In other words, training

is done for cach pattern’s NNC separately.

6.2 Minor drawbacks

6.2.1 Weights and biases

The idea of having a relation between the number of neurons in a given layer and the
initialization of its respective weight and bias matrices remains as a future work for

us to accomplish, or for other researchers to pursue.
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6.2.2 Towards the optimal number of hidden neurons

Even though we were able tu find some relations and map the.n into conditions (below
the state of a formula), yet we still believe that we must do some future research on
this promising criterion in order to reach some formulas and prove their consistency
and generality not only with the error backpropagation algorithm, but also with the

other networks that have hidden layers.

6.2.37 Segmentation of paragraphs of text

The current segmentation method proves to be fast and efficient with untouching
characters, however it becomes less efficient. when it encounters touching characters.
More research as to segmenting touching characters on the same line or from two

consecutive lines is to be employed as a future direction.

6.2.4 Map symbol recognition

While examining the performance of the dynamic sets of the hybrid neural network
classifiers, DSHNNC, we suffered a lot from two problems. First, the instances of the
symbols were full of noise. This led to having unclean sets of databases for training
and testing, which is the second problem faced. Thus, new types of preprocessing

techniques are to be sought for such types of noise.
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Appendix A

Current applications based on

backpropagation

To sense the degree of importance of the backpropagation algorithm, this Appendix
presents a summarized survey of some sclected neural networks software systems,
found in the literature. In addition, this Appendix helps in broadening the view of
the reader to a wide variety of different applications where neural networks techniques
and algorithms can be used to solve problems.

Please note that the companies listed in this Appendix are not the sole compa
nies that produced application using the backpropagation algorithin. However, they
are some of those active software companies that arc recognized by the computer
magazines.

BuildNet, a softwarc package of Adaptive Solutions!, allows the user create
custom products using backpropagation. It offers a command-line and Motif style
interface, as well as an interface C library functions.

Propagator, an application developed by ARD CORP. % is a backpropagation
neural network development system with a graphical interface. It features speed,
simplicity, training with validation, optional input noise, three dynamic graphs, up to

5 layers and 32,000 nodes per layer, data scaling, and C/C++ source code generation.

! Adaptive Solutions a software company in Beaverton, Ore. 97006, (800) 48-CNAPS
2ARD CORP., a software company in Columbia, Md 21045, (800) 969-2731
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It comes with a free technical support and money-back guarantee is included. It can
run under Sun, Windows and Macintosh.

Guffy software® developed the BP++ which is a C++ neural network library
for constructing backpropagation neural networks. It includes the source code for.
BPWin is a Windows package for interactively creating and training backpropagation
neural networks that can be saved and later embedded using BP4-+-.

Nnetlib ’C° Programmers Library, developed by Lever Software Systems?,
contains functions and data structures that implement neural networks specifically
for C programmers. It currently supports backpropagation, Hopfield, Kohonen, and
counterpropagation. It runs under Windows and DOS.

havBpNel++, developed by hav.Software®, is an embeddable feedforward and
recurrent backpropagation C++ class library. It includes double precision with special
scaling for high resolution data and large dynamic range. The source code is available.
1t is available for DOS, Windows (QW and DLL), and UNIX (PC, SUN, HP, RS6000,
and SGI) platforms.

Neural Nelwork Toolboz 2.0, developed by the MathWorks Inc?, is a collection
of MATLAB functions for designing and simulating neural networks. The toolbox
includes learning rules, transfer functions, and training and design procedures for the
perceptron learning rule, the Widrow-Hoff rule, and variations of backpropagation.
It also includes unsupervised training functions that use associative learning rules for
competitive layers, feature map layers, and Hopfield networks. The Toolbox integrates
with MATLAB, a numeric computing visualization environment, and runs under
various platforms.

NeuroDimension Inc.” developed NeuroSolutions which is a Windows based
neural network simulation environment that supports static, fixed-point, and trajec-
tory learning through backpropagation, recurrent backpropagation, and backpropa-

gation through time. It provides the flexibility needed to construct a wide range of

3Guffy Software a software company in Rochester, N.Y. 14624, (716) 594-2836.

4Lever Software Systems a software company in Utica, N.Y. 13501, (800) 638-7250.
Shav.Software a software company located in Richmond, Texas 77406-0354, (713) 341-5035.
6The MathWorks Inc. a software company located in Natick, Mass. 01760, (508) 653-1415.
"NeuroDimension Inc. a software company in Pittsburgh, Pa. 15276, (412) 338-6779.
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learning paradigms and network topologies.
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Appendix B
The User Interface

A user interface was built using the C programming language and under the Mo-
tif/UMIX environment. Figures 51 and 52 show samples of the output generated
by the system. Figure 51 shows the window in which the confusion matrix shows
the recognition results of a certain testing experiment, and Figure 52 shows the map
being processed.

The system has other utilities like:

e changing the initial values of the parameters used in the training phase, Figure
53

traaning the network as shown in Figure 54

testing the performance of the network, Figure 55

¢ processing engineering drawings, Figure 56, and

adding/removing symbols from the DSHNNC, payment slips, etc.
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Figure 33: The interfacc allows the user to initialize the values of the parameters and
the network's architecture.
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Figure 55: The pop up window of the testing phase.
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araphic informati®h System

TenlegarTangwphe

LES PIQUAGES SUR LES COUDES ET LA
TUYAUTERIE SONT DESTINES A LA MESURE
DU DEBIT ET A L'EQUILIBRAGE DU SYSTEME
LORS DE LA MISE EN SERVICE.LES VANNES
0' ISOLEMENT DE L'INSTRUMENTATION SERONT
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LECTURES SONT EFFECTU¥ES A L'AIDE
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Figure 36: The input and output paragraphs as shown by the user interface.
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