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ABSTRACT

Redundancy Resolution Based on Manipulability and Dexterity Measures

with Application to REDIESTRO

Xi Ji Shao

Muny dexterity measures, based on either kinematics or dynamics, have been
defined for characterizing manipulability and dexterity of manipulators. But so far, most
of the work which deals with the application of these measures focuses on the design of
manipulators. In this thesis, two applications of dexterity measures are developed for
redundancy resolution of manipulators. One approach deals with an optimization problem
based on kinematics while another is concerned with an optimization problem based on
dynamics. Severul dexterity measures based on both kinematics and dynamics are dis-
cussed and compared. The first approach based on kinematics concentrates on constrained
optimization with a kinematic conditioning measure. In this approach, a conditioning
measure of the Jucobian matrix is optimized while the end-effector of a manipulator tracks
a desired trajectory. This ensures that the system sensitivity in both velocity and torque is
reduced. The second optirmization approach based on dynamics is concemed with optimal
control involving the dynamic conditioning index (DCI). Optimal control theory is used to
design an optimal control for a manipulator based on minimizing the DCI while the end-
effector tracks a desired trajectory. An integral type performance index which results in a
global optimization scheme is used. The optimal control problem is formulated as a two-
point boundary-value problem. The effectiveness of the approaches is demonstrated by
means of simulation for a three degrees of freedom redundant planar manipulator. Finally,
simulation results for a seven degrees of freedom redundant isotropic manipulator, REDI-

ESTRO, are presented.
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CHAPTER 1 INTRODUCTION

1.1 Background

After the first robot began working in a factory in the early 1960, applications of
and research on robot manipulators have developed rapidly. Today manipulators are used
in the factory, office, field and many other aspects of our daily lives. Manipulators are
becoming more and more important, especially in space, deep ocean and hazardous envi-
ronments. There is no doubt that manipulators play an important role in the modern world.
Manipulators have been developed for different uses. For example, “industrial” manipula-
tors are employed in a wide range of manufacturing processes such as parts assembling,
materials handing and material welding. Hazardous material handing manipulators have
been used to remove bombs and hazardous material.

In general, manipulators can be classified as kinematically nonredundant and kine-
matically redundant based on the number of degrees of freedom. A manipulator is said to
be kinematically redundant if it possesses more degrees of freedom than necessary for per-
forming a specified task. Otherwise, it is said to be nonredundant. For example, in two-
dimensional space, a planar manipulator with three joints is redundant for achieving end-
effector positions in the two-dimensional space without considering end-effector orienta-
tion, but it is nonredundant for a task involving both position and orientation of the end-
effector. Similarly, a manipulator with seven or more joints in the three-dimensional space
is redundant because six degrees of freedom are sufficient to achieve any arbitrary position

and orientation of the end-effector in the manipulator’s workspace.




Nonredundant manipulators are restricted in some applications such as singularity
avoidance and obstacle avoidance. By contrast, redundant manipulators possess dexterity
and versatility because of the infinite number of joint motions which result in no end-
effector motion. This characteristic can be considered in various applications such as sin-
gularity avoidance [1] - [4], obstacle avoidance [5] - | 8], joint limit avoidance [9]{10] and
energy minimization [11] - [13]. On the other hand, redundant manipulators have several
disadvantages. For example, redundant manipulators have more joints and actuators, more
complex structure, and more complicated control algorithms.

In any case, since recundant manipulators provide dexterity and versatility in appli-
cations, research on redundant manipulators is an active area. In recent years a number of
different approaches have been proposed for development cf redundant manipulators.
Developing techniques to achieve end-effector trajectory control while satisfying addi-
tional task performance is known as the redundancy resolution problem. The approaches
for redundancy resolution for manipulators can be classified based on several viewpoints.
For instance, one may consider particular applications and classify these approaches based
on the use of redundancy, such as singularity avoidance [1] - {4], obstacle avoidance [5] -
[8], and joint torque minimization [11] - [13]. In addition, based on the control level, one
may classify these approaches into three categories: redundancy resolution at the position
level, redundancy resolution at the velocity level and redundancy resolution at the acceler-
ation level [ 14]. Mereover, one may classify these approaches based on mathematical for-
mulations: local optimization and global optimization [14]. In all these approaches for
redundancy resolution to date, it seems that very few approaches consider redundancy res-
olution based on well-conditioned control for redundant manipulators. For example, when
the Jacobian matrix is used as the transformation matrix which maps the end-effector
velocity to the joint velocity, not much attention has been paid to the error propagation
caused by the conditioning of the Jacobian matrix while the end-effector tracks a desired

trajectory. It is well-known that there are a number of advantages, such as good servo




accuracy. noise rejection and singularity avoidance, when a manipulator works in well-
conditioned configurations. Therefore, in this thesis, we take into account the kinematic
and dynamic conditioning of redundant manipulators by developing redundancy resolu-

tion schemes that incorporate optimization of kinematic and dynamic measures.

1.2 Motivation and Objectives of the Thesis

For a redundant manipulator the kinematic transformation from joint space to task

space is given by
x = f(q), (1.

where x describes the end-effector position and orientation and g denotes the joint dis-

placement. Differentiating equation (1.1) with respect to time, we obtain

X =J(q)4q, (1.2)

)
where J (g) = —f is the Jacobian matrix, ¥ denotes the end-effector velocity and ¢ rep-
dg

resents the joint velocity. For given end-effector velocity X, there are several approaches
which solve equation (1.2) to obtain the joint velocity ¢ and most of them involve an
inverse of the Jacobian matrix. However, very few approaches take into account the rela-
tionship between the accuracy of the solution and the condition number of the Jacobian

matrix. In addition, the relation between the joint torque T and the end-effector force £, is

expressed as [15]

t=J(9)f, (1.3)




Salisbury and Craig [16] recognized that the condition number of the Jacobian matrix
affects the error propagation, but they only considered the condition number of the Jaco-
bian matrix in the kinematic design. Essentially, the condition number of the Jacobian
matrix acts as a magnification factor for Cartesian space measurement errors.

Recently, Angeles, Ranjbaran and Patel [17] designed an isotropic seven-axes
manipulator which achieves the minimum condition number for its Jacobian matrix at cer-
tain configurations. The main propose of such design is accuracy. Therefore, one of the
objective of the thesis is to develop algorithms for redundancy resolution which ensure
that the condition number of the Jacobian matrix is as small as possible while the end-
effector tracks a desired trajectory. Hence the error propagation, which is affected by the
condition number of the Jacobian, is reduced. We call this scheme redundancy resolution
based on optimization of kinematic measures (RROKM).

In addition, the motion &f a manipulator is described by the dynamic equation

Mg)g+C(q.9)g+g(q) =1 , (1.4)

where M(g), C(q,4)q, g(q) and T denote the mass matrix, centrifugal and Coriolis
torque, gravity torque and joint torque, respectively. Many dynamic control approaches
which require expressing the dynamic equation in state-space form, and simulations which
require obtaining the joint accclcration g, involve the inverse of the mass matrix. Ma and
Angeles [18] defined the dynamic conditioning index (DCI) which takes into account the
condition number of the mass matrix. Several design examples are given in [19]. Taken
one step further, another objective of this thesis is to develop an approach which mini-
mizes the DCI along a desired Cartesian space trajectory. Thus the system sensitivity is
reduced when the mass matrix is used as a transformation matrix. We call this approach

redundancy resolution based on optimization of dynamic measures (RRODM).




In this thesis, the local optimization technique will be used for the RROKM scheme
and the optimal control theory will be used for the RRODM scheme. The local optimiza-
tion is based on instantaneous information while the global optimization considers whole
information. But, in general, global optimization requires extensive computation. To date.
since software for solving local constraint optimization is available, we can solve
RROKM to see how kinematic conditioning measure affects system sensitivity. But this
software is not sufficient for redundancy resolution based on optimization of dynamic
measures. Therefore, global optimization using optimal control theory is considered. solv-
ing RRODM we can also see how dynamic conditioning measures affect system sensitiv-

ity.

1.3 Thesis Outline

The remainder of this thesis consists of five chapters.
Chapter 2 gives an overview of some common approaches for redundancy resolu-
'

tion of manipulators. These approaches will be classified into two categories based on the
mathematical formulation: local optimization and global optimization. Local optimization
considers instantaneous information while global optimization takes into account informa-
tion over the entire trajectory. Advantages and disadvantages of both local and global opti-
mization are discussed. This overview of local and global cptimization approaches is
helpful for the development of the RROKM and RRODM schemes which are given in
Chapter 3 and 4, respectively.

Chapter 3 deals with a local optimization problem for redundant manipulators:
redundancy resolution based on optimizing kinematic measures (RROKM). Several kine-
matic dexterity measures of manipulators are discussed and compared. The conditioning
measure of the Jacobian matrix is exploited in the RROKM scheme. This scheme opti-
mizes the conditioning measure while the end-effector tracks a desired trajectory. This

ensures that the system sensitivity is reduced when the Jacobian matrix is used as a trans-




formation matrix. The approach is illustrated by an example consisting of a 3-D planar

manipulator.

Chapter 4 concentrates on a global optimization problem for redundant manipula-
tor: redundancy resolution based on optimizing dynamic measures (RRODM). While
kinematic dexterity measures are based on the Jacobian matrix, dynamic dexterity mea-
sures consider the dynamics of a manipulator. Consideration of the dynamics is important
for high speed and high accuracy motion. The dynamic conditioning index [18] is used in
the RRODM scheme. Therefore, the redundancy is used to ensure that the mass matrix is
as well conditioned as possible along a desired Cartesian space trajectory. The approach is
illustrated by an example of a 3-D planer manipulator.

Chapter 5 is concerned with applications of both the RROKM and RRODM
schemes. Both schemes are applied to an isotropic redundant manipuiator, REDIESTRO
that was designed and constructed at McGill University [17].

Finally, Chapter 6 concludes the thesis and suggests ideas for further research in

this area.
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CHAPTER Q, REDUNDANCY RESOLUTION

BY LOCAL AND GLOBAL
OPTIMIZATION

2.1 Introduction

Although the availability of redundant degrees of freedom can provide dextrous
motion of the robot arm, proper exploitations of this redundancy present a challenging and
complicated problem. Redundant manipulators have a characteristic of “self motion™, i.e.,
an infinite number of joint trajectories cause the same end-effector motion. In general,
redundant manipulator control schemes must generate a set of proper joint angle trajecto-
ries which cause the end-effector to track desired trajectories and at the same time satisfy
additional constraints. There are many methods in solving this redundancy resolution
problem. These methods can be classified into two fundamental approaches based on the
mathematical formulations.

The first approach, which is based on local path information, is referred to as a local
optimization approach. The performance criterion in local optimization s instantaneous.
The advantage of local optimization is that its computation is relatively simple and hence
it is suitable for real-time implementation. However, local optimization cannot in general
provide a solution that is optimal over the whole trajectory. In addition, local optimization
may cause some undesirable effects such as non-cyclic motion [1]. Some drawbacks of
local optimization can be overcome by a global optimization approach.

Global optimization is based on information about the entire trajectory. The perfor-

mance criterion for global optimization is an integral type. A globally optimal solution can




therefore be obtained. However, a global optimization approach is generally vary expen-
sive computationally.

A large number of papers have been published for solving the redundancy resolu-
tion problem. In this chapter, we will briefly review some of the common approaches of
local and global optimization. These will be helpful for putting into proper perspective the

redundancy resolution schemes developed in Chapter 3 and 4.

2.2 Redundancy Resolution by Local Optimization

The forward kinematics relationship of a manipulator is given by
a=f(q), (2.1

where 1A denotes the m x 1 vector of positions and orientations of the end-effector in the
task space with respect to a fixed reference frame, g is the n x 1 joint displacement vector,
and f(g) represents the m x | forward kinematics vector function. Typically, equation
(2.1) is very nonlinear. Manipulator position control schemes often require the solution of
the forward kinematics problem as well as its inverse - the inverse kinematics problem.
While the forward kinematics can be computed very easily for most manipulators, the
inverse kinematics problem is much more difficult. Analytical approaches are available
for a class of nonredundant manipulators (e.g., wrist-partitioned type). But for the general
case one has to resort to numerical techniques.

Differentiating equation (2.1) with respect to time, one can obtain

x=J(q)q, (2.2)

of . )
where J = 8—{; is the m xn Jacobian matrix of the end-effector. For non-redundant

10




manipulators m = n, and redundant manipulators m < n. Equation (2.2) describes the rela-
tionship between joint velocities and the end-effector velocity. Hence a manipulator’s
kinematic control problem involves the solution of this equation, i.e., for a given end-
effector velocity x, it is required to find the solution of joint velocity 4.

Similarly, at the acceleration level, it is required to solve the following equation

(obtained by differentiating (2.2)):

J(@)g = x=1(q)g 2.3

for g.

Although equations (2.1) - (2.3) describe both redundant and non-redundant manip-
ulators, the solutions for redundant manipulators are much more difficult, and redundancy
resolution is a very active area of research. The following section will briefly review some

of the important techniques for redundancy resolution.

2.2.1 The Pseudoinverse Approach

The pseudoinverse approach is a method to solve systems of linear equations of the

form:
Ab = gz, (2.4)

where A is an m X n matrix of full rank, b is an n X 1 vector and z is an mx 1 vector.
When n<m, we have an overdetermined set of equations, while for m < n, we have an
underdetermined set of equations.

For redundant manipulators, the system of equation (2.2), is underdetermined. One

solution is given by

1




g=Jx, (2.5)

where

g=7um 2.6)

Although the solution (2.5) has been used in many manipulator velocity kinematic control
schemes, it has many drawbacks as pointed out by Klein and Huang [1]. The main draw-
back of this pseudoinverse approach is that it cannot guarantee generation of cyclic
motion and does not avoid singularities. Further discussion on cyclic motion can be found
in [2]. One treatment of the problem is given in [3].

Solution (2.5) has also been developed by Whitney [4] who resolves redundancy by

solving the following constrained optimization problem:

1.74,,.
iq Wq

Minimize p

0, @7

Subjectto x-J¢

where W is an n X n positive definite weighting matrix. The solution of (2.7), which is

calied the weighted pseudoinverse technique, is obtained as

-1
i = @wvI@h T@w (28)
The main feature of the weighted pseudoinverse is that one can choose W to emphasize the

role of some comiponents of X while de-emphasizing other components. When W is cho-

sen as an identity matrix, equation (2.8) reduces to

12




-1
g =11l 2.9

which is the same solution as that given by equations (2.5) and (2.6). As in the pseudoin-
verse approach, the weighted pseudoinverse approach does not avoid singularities.
Note that the solutions in (2.5) and (2.8) are special forms of the general solution of

equation (2.2). In fact, the general solution of equation (2.2) can be written as 117}
g =Jtx+ (I-ITJ)B, (2.10)

where I is an nxn identity matrix, B is an n x 1 arbitiary vector, and (I-7tJ) is an
n % n null space projection matrix. The first term on the right-hand side of equation (2.10),
which has the form of (2.5), is called the minimum norm solution, and the second term on

the right-side of equation (2.10) is referred to as the homogeneous solution. The projection

matrix (I—J¥J) projects the arbitrary vector § onto the null space of J. Hence (I-T*.1)p
generates joint motion only, but does not contribute to any end-effector motion. Therefore,
this motion is referred to as the self-motion of the manipalator. This general solution was
used by Liegeois [5]. The arbitrary vector B may be chosen in order to generate trajecto-
ries which exploit the redundancy in a manipulator in some useful manner. This provides
many applications such as singularity avoidance [6] - [9], obstacle avoidance [10][41],
joint limit avoidance {11]{12] and energy minimization [13][14]. Various techniques have

been developed to determine the vector B, including the gradient projection approach.

2.2.2 The Gradient Projection Approach

This technique tends to move a manipulator gradually toward the optimum config-

uration which is associated with a gradient performance criterion while the end-effector

13




tracks a desired trajectory.
If we choose a smooth function h, which represents a desired performance criterion
as:
h=h(q), (2.11)

then the arbitrary vector 8 in equation (2.10) can be defined as

B=Vh(g)), (2.12)

o/ . .
where Vii(g) = = is the gradient of A(q). Hence the homogeneous solution is obtained

dg
by projecting V /i onto the null space of the Jacobian matrix. This scheme has been widely

used in solving various redundancy resolution problems.

In the case of singularity avoidance, Yoshikawa [8] proposed to select the arbitrary
vector 3 as

B=Vh(gk, (2.13)

where 4 is the manipulability measure defined by [9]

h(q) = Jdet (JJT) (2.14)

and the scalar constant k is taken to be positive if h(g) is to be maximized and negative if
h(g) is to be minimized. A larger value of & optimizes A(qg) at a faster rate. However the

maximum allowable value of & is limited by bounds on the joint velocity. A computer sim-
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ulation in [8] shows that the manipulator keeps as far as possible from a singular configu-

ration by choosing the arbitrary vector as (2.13).

To avoid obstacles, Yoshikawa [8] defined the performance criterion as
1 T
h(@) = 5(9-)"W(q~q,). (2.15)

where g, is an # X 1 constant arm posture vector which is necessary for avoiding an obsta-

cle, and Wis an n x n diagonal constant matrix. Hence the arbitrary vector B can be writ-

ten as
B=W(g-g)k. (2.16)

In [8], Yoshikawa demonstrated that the manipulator successfully avoids the obstacle.
One major problem of the gradient projection method is its complexity when

applied to real-time kinematic control. As shown in the above section, if we apply the

equation (2.10) directly, we have to determine Ji and its null space projection matrix in
order to obtain the minimum norm solution and the homogeneous solution. Although the

Gaussian elimination method proposed by Klein [15] reduces the computation time, the

method still requires the computation of JJT which has numerous disadvantages. Dubey,
Euler and Babcock [11] developed an efficient gradient projection method in which the
computation of the generalized inverse of the Jacobian is eliminated. They also used this
algorithm in an application involuting joint limit avoidance.

In the algorithm in [11], the joint velocity ¢, which satisfies equation (2.2) can be

written as
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G = gptkay (2.17)

where ¢, is any particular solution in the range space of J and satisfies X = J(¢) ¢, and

gy is a homogeneous solution which satisfies Jgy = 0. If n = m+1, we can rewrite

X =.J(g)qas
i= )4 (2.18)

where v is the first column of the Jacobian matrix, and Jp is an m X m matrix. If we
assume that the first element of ¢, is zero, then from equation (2.18), we can obtain the

particular solution as

0
g, = . 2.19
dr L—xlzl (2.19)

Similarly, assuming that the first element of ¢ is equal to one, by solving the homoge-

neous solution

v Jav =0, (2.20)
we obtain
q "[ : } (2.21)
N = 1,0 :
"'J;'U
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Aiso, we recall that the minimum norm solution of (2.2) is given by

g =Jix. (2.22)
For equation (2.17), the square of the 2-norm of ¢§ can be expressed as
1gl% = ||dp+kdn|® = (dp+kin)" (gp+kdy) . (2.23)

. . .3 . .
We differentiate || ¢ll~ with respect to & to obtain

gl g .
S = (Urtkdy) 4y (2.24)
Nan?
By setting ”6(2'” = (), we obtain
T
(- dhiy azs
angd N

Substituting equation (2.25) into (2.17), we get

.T.

. . qdrin |,

g = qk-[———.r. }m- (2.26)
NN,

Equation (2.10) with (2.13) can be rearranged as
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g=Jx+ (I-I°0)B
=P x+k(I-IF])Vh

= Jt (x=kJV h) +kV h. (2.27)

According to equations (2.19), (2.21) and (2.26), and replacing X by (x—kJV h) , the solu-

tion of equation (2.27) is obtained as

dpdn
d=4r[—.?.—h*}é/v+k‘7h‘ (2.28)
NN
where
0
Ip = (2.29)
i [q’ (i=kIV h)}
and
iv=| (2.30)
= =1 '

1t should be noted that the pseudoinverse of the Jacobian matrix is not required in the solu-

tion (2.28¥), (2.29) and (2.30).

2.2.3 The Damped Least-Squares Approach

1t is well know that the solution of the pscudoinverse control for redundant manipu-

lators does not exist at singularities [16]. In the neighborhood of a singular point, even if
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the pseudoinverse approach can find the solution, the operation of the manipulator may
become unstable because the condition number of the Jacobian matrix becomes very
large, so that a small error, such as measurement error or computer round-off, occurring in
the input may produce a very large error in the selution [17) [18). Therefore, it is impor-
tant for manipulator control to plan joint trajectories that avoid singular points.

To address the singularity avoidance problem, the damped least-squares method
was independently proposed by Wampler [19], and Nakamura and Hanafusa [20]. The
damped least-squares method involves a trade off between a large solution for joint veloc-
ity ¢, and a large residual end-effector velocity error ¢ = Jg—x. Then, instead of solving
the equation X = J(q) g exactly to obtain ¢ = (0, we minimize the scalar positive qua-

dratic function:
y = W+ ¢ W4 (2.31)

where Wy and W, are m xm and n x n positive definite weighting matrices respectively.

To obtain the solution ¢ which minimizes y, we differentiate y with respect to ¢ to yield:
a—\; = 20TW, (Jg=3) +2W,q = 2(TW,J +W,) =207 W, (2.32)
oy , ,
By setting £ = 0, we get the optimal solution:
R T
g= (JWJ+W,) J Wi (2.33)

Note that (JTWIJ+ W,) is positive definite. This implies that singularities do 1.0t occur
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even if the Jacobian matrix J loses rank. In fact, when W, = 0, equation (2.33) reduces to

the exact solution of (2.2). Equation (2.33) gives an “approximate” solution. Near singu-

larities, W, causes the damped least-squares solution given by (2.33) to be feasible instead
of having a large magnitude. However, W, has the undesirable characteristic of causing

tracking errors even when a manipulator is far from a singular configuration. In fact, at

distances from singular points, a weighting matrix W is not necessary. Therefore, instead
of using a fixed weighting matrix W, as in the Wampler’s formulation [19], Nakamura and
Hanafusa [20] suggested that W, should be adjusted automatically to a large value in the

neighborhood of singularities and a small value away from singularities in order to obtain
feasible solutions in the neighborhood of singularities and reduce tracking errors away

from singularities. Nakamura and Hanafusa propose that the weighting W can be a func-

tion of the manipulability measure as follows:
W, = diag(w), (2.34)
where

W, (1-w/wg)?  for @<,
® = (2.35)
0 for w2,

and

w = Jdet(JJT) (2.36)

is the manipulability measure infroduced by Yoshikawa [9]; w, is a constant value of the

damping factor at singular points, and wy, is a threshold that represents the boundary of the

neighborhood of singular points.
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In order to apply the damped least-squares technique to their Reconfigurable Mod-
ular Manipulator System (RMMS), Kelmar and Khosla {21] modified the damping factor

w. Instead of defining an absolute threshold w/w, Kelmar and Khosla proposed the ratio

of two subsequent values of the manipulability measure, w, , ;/w. Then, the improved

damping factor is defined as

Wy (1=w, /w)?  for wi, /w,<{
w = (2.37)

0 otherwise

where { is an appropriate constant obtained from experimental results [21]. Comparing
equations (2.35) and (2.37), one finds that it is not necessary to determine the threshold of
the singular boundary in (2.37). Hence, this method can be used in a situation where no
information about singularities is available.

Another method for defining the damping factor was proposed by Chen and

Lawrence [22] and is given by

W = COOQ'T(i- (2.38)

The mctivation for this formulation is the fact that near singular points, small changes in
the end-effector velocity X require large joint velocities. This formulation does not require
much computation. In [23], Wampler and Leifer extended the damped least-squares
method to the acceleration level.

Although local optimization methods provide simplicity in the formulation and
computation of solutions, they have several drawbacks as explained in the previous sec-
tion. Some disadvantages of local optimization methods can be overcome by global opti-

mization methods which are briefly discussed below.
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2.3 Redundancy Resolution by Global Optimization

Although the heavy computation involved in global optimization precludes its use
in real-time control, it may be a preferred solution in some off-line schemes. To date, glo-
bal optimization techniques have been used in several applications for redundant manipu-
lators such as minimum-time trajectory planning [32] - [37] and minimum-energy control
[38] - [41]. To use global optimization for redundant manipulators, in general, there are

two main mathematical methods: calculus of variations and optimal control,

2.3.1 Calculus of Variations

A fundamental problem in the calculus of variations is that of minimizing z. perfor-

mance index I in an integral form [24]

Py
= [p(g.4,p)dp. (239)
Po
If we set
g =u=f(q,up), (2.40)

the integral (2.39) can be expressed as

Py
= [p(gup)dp. (2.41)
Po
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To minimize T, we define the Lagrangian / as

| = p(g u,p)+ATu, (2.42)

where A is denotes the Lagrange multiplier. The necessary conditions for a minimum are

given by the Euler-Lagrange equations

ol d dl
—_—a 43
35 dp 3 (2.43)
and
ol
3 = 0. (2.44)

Clearly, if we replace the independent variable p by time ¢, consider g the state variable
and u the control variable, the calculus of variations can be directly applied to redundancy
resolution of manipulators, i.e., for a redundant manipulator, we consider the problem of

minimizing the performance index

Ui
r= jp (g, 4. t) dt, (2.45)

to

subject to the m x 1 kinematic constraints

x—f(q) = 0. (2.46)

The Lagrangian equation becomes
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[ =p(q.q,0n+A (x=f(q)), (2.47)

The necessary conditions for a minimum are given by the equations

ol 40l
—a__ = 48
dg didg (2.48)
and
al
5 = x=f(q) = 0. (2.49)

Using the calculus of variations to solve the global optimization problems for

redundant manipulators, one may choose the performance index as

l
R B S
r=| 54" Wqd, (2.50)

Iy

where W is an n X n constant positive definite weighting matrix. Then, the Lagrangian

equation can be written as

1. .
I = 54"Wg+AT (x=f()) . @51
Substituting (2.51) into (2.48), we get

wg-J"AT = 0. (2.52)
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Equation (2.52) gives

g = WHT, (2.53)
Differentiating (2.49) twice with respect to time yields

¥-Jg-Jg = 0, (2.54)
and substituting (2.53) into (2.54), we obtain

-1 .
AT = Wy =gy (2.55)

Eliminating A7 in (2.53) using (2.55), we have

-1 .
g =w T w7y (i=ig). (2.56)

Equation (2.56) has been obtained independently by Kazerounian and Wang [25], and
Martin et al [26]. Note that (2.56), which satisfies the necessary conditicns (2.48) and
(2.49), does not consider boundary conditions. For specifying uniquely the solution ¢,
boundary conditions have to be taken into account. In general, we may consider the initial

and final values of x which satisfy (2.1) and (2.2) at the initial time t;; and final time I, ie.,

x(1) = f(q(1)) atz = tyand { = (2.57)

|
“3‘

x(t)y =J(g(t))g (1) at? = tyand t = (2.58)

|
SN
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Equation (2.56) with the boundary condition (2.57) and (2.58) defines a second-order dif-
ferential equation system. Solving these equations we obtain a minimum for the objective
function (2.50) for a given trajectory.

Another application using the calculus of variations is proposed by Suh and Holler-
bach [27). They solved the global torque optimization problem and compared the global
optimization approach with the local optimization approach. In addition, instead of deriv-
ing directly the necessary conditions for solving the optimization problem, Won et al. [31]
obtained an approximate optimal solution by using Fourier series which are determined by

exploiting Powell’s method.

2.3.2 Optimal Control

The most general optimal control problem consists of four parts: the plant or pro-
cess, the performance index, the final state constraint, and the class of admissible control-
lers | 28] [29].

The plant or process relates the state of response y(t) to the input or control u(t) by

the time-varying differential equation
¥ = Fy@@,u),n. (2.59)

The process is linear or nonlinear, and of nth order, i.e., described by a set of a first order

differential equations.
With the process defined by (2.59), the general performance index P can be written

as

iy
P =0y, i)+ [Liy®,un,ndr, (2.60)

ty
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where y(t) denotes the state vector at the instant r. The performance index P is taken to

depend partly on the final state ¥(t7) and partly on the behavior of the system in reaching

this final state. If it is desired to give no special weight to the final state, then ¢ can be set
to zero.

If the final state is either completely specified, or is subject to a constraint, then one

can define a final-state constraint vector as
o (y(tp,1) =0. (2.61)

Note that the roles of the final weighting function ¢ and the fixed final function ¢ are dif-
ferent - ¢ is a function of the final state which we want to make small, while ¢ is a func-

tion of the final state which is required to be exactly zero.

By defining the Hamiltonian equation [28]{29]

H(y,ut) =Ly, u,t) +ATF (y,u, 1), (2.62)

we require that the optimal controller satisfy the necessary conditions which are given by

the state equation

. OH
y= = = F(y,ut) (2.63)

and the costate equation

T

dy + dy’
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The optimal control input u* can be obtained by the stationary condition:
P P Yy

8H oL [oFY
et [éﬂ A =0, (2.65)

Then the formulation of the optimal controller becomes the two-point boundary-value

problem (TPBVP) which satisfies the following boundary conditions [28][29}:

Y (#y) = Yo (2.66)

T
g 8¢T] }

d_)‘(t)+':——+l:———— Y+ H

oot Lo

!

T
dt; =0 (2.67)

[5[3]+]

where yj is the given initial value and ¥ is a vector of constant multiplier associated with
the final-state constraint.

In the formulation of the optimal control discussed above, equation (2.63) is just the
constraint equation, or the system equation. The constraint equation and the costate equa-
tion are coupled differential equations and, together, they define a TPBVP. In general, we
are not concerned what A is, but we note that solving for A is an intermediate step in find-
ing the optimal input u*.

The optimal control problem discussed above is based on the assumption that the
control variable u(t) is unconstrained. The condition for the optimal input u* satisfies

equation (2.65). If the control variable u(t) is constrained to lie in an admissible region R,

for example,

u(t) €N NeR_, (2.68)

c
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Pontryagin et al. [30] show that the stationary condition (2.65) must be replaced by

H (), u(®). A(1)) = min Hy (), u(t),A())  for all ueR, (269

C

where * denotes optimal quantities. Equation (2.69) can be written as
H* (y().u(),A(0)) SH(y (1), u(t),A(r))  for all ueR.. (2.70)

The optimal control with condition (2.70) is called Pontryagin’s minimum principle, We
can see that Pontryagin’s minimum principle becomes useful for cases of constrained con-

trol variable problems. For example, the control condition is easy to satisfy. Although the

.. oH : : - :
control condition — = 0 looks straightforward, sometimes it is not easy to find

du
oH

Fi 0, even in the case of the unconstrained problem. Also, Pontryagin’s minimum

principle does not require the differentiation of H with respect to u.

Although the optimal control problem requires a large amount of computation, sev-
eral researchers have tried to employ optimal control techniques in redundancy resolution
of manipulators. Some schemes of redundancy resolution using optimal control strategies
consider manipulator dynamics. The dynamic equation of a rigid-link manipulator is given

by

M(gq)§+C(q,.9)g+g(q) = 1, .71

where

M (g): nXn mass matrix of manipulators,
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C(q, g)qg:nx 1 vector of centrifugal and Coriolis forces,

£(q): n x 1 vector of gravity effects,
g n x 1 vector of joint displacements,
T n x 1 vector of joint torques.

T

T
Ifwesety = [)’1 yz] = [4¢] » equation (2.71) can be written as
y=F1), (2.72)

where

3]

F = 1 | ) (2.73)
M (Y [C(ypy)y,tg I+ (M (y))t

In general, there are two major applications of optimal control techniques in redundancy
resolution: minimum-time control and minimum-energy control.

The minimum-time control problem may be considered as a special case of the
more general optimal control problem. The minimum-time control problem deals with

minimizing the performance index
P= I 1dp (2.74)

i.e..L=1and ¢ = 0, with the constraints
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c(y(),t(n) <0. (2.75)
The minimum-time control problem involves the determination of a trajectory which min-
imizes the travel time from a given initial configuration to a specified final configuration.

This implies that a manipulator moves its initial configuration to its final configuration as

fast as possible under the constraint (2.75). With the Hamiltonian equation

H=1+\F, (2.76)

the minimum-time control problem is obtained by solving the following TPBVP:

y=F(1), 2.7
: oF"

3 = [a‘] A, (2.7%)

))

oH [oF7
—_— = — = (
- [ au} A =0, (2.79)
MF|_, =-1, (2.80)

=
with 1 initial and final conditions

y(ty) = yg» (2.81)
y(ty) = yp (2.82)

where y, and yyare given initial and final configurations. In addition, the dynamic equation

(2.72) can be written as
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y=Ay+B(»t , (2.83)
where
Y2
Aly) =| : (2.84)
M7 (y) IC(y, y)ya+8(yy)]
and
B(y) = 0 (2.85)
M1y :

To solve the constrained optimal control problem, instead of using (2.79), we attempt to

obtain

H (v(1),t(t). A (1)) = min H{ (), T(), A (1)) (2.86)

without violating the constraint (2.75). We assume that the control constraint is

—T, ST, (2.87)

where 17, denotes the bounds on the joint torques. Using (2.83) in the Hamiltonian, we

have

H=1+A(A0) +B)1) = 1+ A0 +MB () 1. (2.88)

Cleatly, by minimizing H with respect to T, taking into account the constraint (2.87), we




obtain

T, for 7\78(_\') <0
(1) = 2.89)
-1, for ATB (») >0

Thus, this control scheme is of “bang-bang” type whose value depends on the sign of the

switching function ATB (») . This minimum-time solution was obtained by Niv and Aus-
lander [32]. Other attempts to solve this problem by simplifying the manipulator model
resulted in non-optimal solutions [33]. More applications of minimum-time control can

also be found in [34] - [37].

For the minimum-energy control problem, the performance index P, in general, can

be written as

Iy
. 1y
P =9(q1),q(1), 1) +I(§q7W1q+%t7wzt)dt. (2.90)

Iy

where W, and W are positive definite constant weighting matrices. Minimizing the per-
formance index P implies that the joint velocity ¢ and the joint torque T are to be kept
bounded in the entire workspace according to the relative magnitude of the elements of W
and W,. For example, if it is more important to keep joint velocities small, the diagonal
elements of W, should be selected to have larger magnitudes than these of Ws. If smull

joint torques are more important in the control process, then the converse would be the

case. The Hamiltonian equation can be written as
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H= %4Twlq'+ %ITWZT +MF = %ygwlyz + %‘ETWZ‘E +ATF (2.91)

Then the minimum-energy control problem satisfies the following TPBVP:

y=F(1), (2.92)
4 = [%ﬂrm Wy, (2.93)
%'—: = W,T+ {S—HTA =0, 2.94)
with the boundary condition
y(ty) = ¥o. (2.95)
(%3—? -A) = 0. (2.96)

I=I/

One application of the minimum-energy optimal control problem for manipulators was
given by Nakamura and Hanafusa [38]. They solved the problem for both kinematics and

dynamics. For kinematics, they minimized the performance index

P = j ' gdt (2.97)

subject to X=J¢ = 0. For dynamics, they minimized the performance index
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Y
P=| Trdr (2.9%)

Iy

subject to y—F (y, 1) = 0. In addition, Yen and Nayurka [39] applied a quasi-lineariza-
tion method to solve the optimal control problem for torque optimization for a manipula-
tor, and Hu and Goldenberg [40] developed an algorithm for torque optimization for
multiple redundant manipulators. Khadem and Dubey [41] dealt with the energy immuni-
zation problem incorporating obstacle avoidance.

From the brief overview above, we can see that redundancy resolution, both by
local and global optimization, did not consider system sensitivity. Some researchers have
taken the conditioning measures into account in order to reduce system sensitivity, but
only in the context of manipulator design [42] [43] [44] [45]. Therefore, this thesis will
develop two approaches for redundancy resolution based on optimization of kinematic
and dynamic measures to see how conditioning measures affect system sensitivity from a
control perspective. Constraint optimization technique and optimal control theory will be

used.
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CHAPTER 3 REDUNDANCY RESOLUTION

BASED ON OPTIMIZATION OF
KINEMATIC MEASURES

3.1 Introduction

A variety of techniques for resolving redundancy for kinematically redundant
manipulators have been proposed. The most effective aspects of these techniques include
generalized inverse techniques [1] - [5] and the extended Jacobian method [6] - [10]. In
addition, some algorithms seek to obtain solutions which optimize certain secondary per-
formance criteria. These include singularity avoidance [11]{12], obstacle avoidance
[13]{14][16], energy minimization [3], and torque minimization [15}. Redundancy resolu-
tion based on optimizing kinematic measures (RRQKM) that is developed in this chapter
ensures that a redundant manipulator always works along a well-conditioned trajectory,
i.e., the Jacobian matrix is as well-conditioned as possible while the end-effector of the
redundant manipulator tracks a desired trajectory in Cartesian space. A well-conditioned
Jacobian matrix ensures that measurement and numerical rounding errors do not increase

significantly as a result of transformations using the Jacobian matrix.

3.2 Development of the RROKM Scheme

The proposed scheme is optimal in the sense that the condition number of the Jaco-
bian matrix is as well-conditioned as possible while the end-effector tracks a desired Car-

tesian space trajectory. To solve this problem, a constrained optimization method is used.

4]




There are several such measures for redundant and nonredundant manipulators, e.g., see
[19][20}[23]]24]. These measures are based on the Jacobian matrix and can be expressed
in the terms of its singular value decomposition [18]. Although all these kinematic dexter-
ity measures can be used in an objective function in the optimization, we use only the con-
dition number [23] and the isotropy measure defined by Kim and Khosla [25] in our
RROKM scheme. The isotropy measure of Kim and Khosla (we shall call it the KK isot-

ropy measure) yields a more efficient computational scheme than the condition number.

3.2.1 Kinematic Dexterity Measures for Manipulators

An important characteristic for manipulators is a high degree of dexterity. A num-
ber of different kinematic dexterity measures have resulted in many different criteria for
quantification. These measures include the manipulability measure [19], the determinant
[20], the condition number of the Jacobian matrix [21][23], the KK isotropy measure [25],
smallest singular value [26] and kinematic conditioning index (KCI) {27]. When the con-
dition number is its optimal value of one, the resulting manipulator has been defined as
isotropic [23](27]. Isotropic manipulator has one important characteristic, mainly, the
transformation accuracy. In addition, when the condition number is in optimal value, sen-
sitivity in both velocity and torque is a minimum. Kinematic dexterity measures for robot
manipulators are mainly based on the Jacobian matrix.

Recalling that, for kinematically redundant manipulators, the forward kinematic

model is deiined by
x = f(q), 3.1

where x denotes the m X 1 vector of positions and orientations of the end-effector in the

work space with respect to a fixed reference frame, g is the n x 1 joint displacement vec-
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tor, and f(gq) represents the m x 1 forward kinematic vector function. The differential

kinematic model is written as
* =J(g9)qg, 3.2

oJ , : . .
where J = 55 is the m x n Jacobian matrix of the end-effector. 1t will be assumed in the
rest of this thesis that the matrix J has been made dimensionally homogeneous by normal-
ization using a “characteristic length” where appropriate {29]. For redundant manipulators

n > m so that the general solution to (3.2) is typically presented as [1][12]{17]

g =Jx+ (I+JH B, (3.3)

where J© denotes the pseudoinverse Jt = J7 (.IJT)-l if rank(J) = m, (I-JtJ) is a pro-
Jection operator onto the null space of J and B is an arbitrary vector in joint space. The
second term in (3.3) is called the homogeneous solution to (3.2) because it results in no
end-effector motion. Oftzn, the homogeneous solution is used to optimize some secondary

criteria under the constraints of the specified end-effector velocity.

For m # n, let J have the singular value decomposition [18]:

J = USVT, (34)
where the superscript T denotes the matrix transpose, and U and V are m xm and nxn
orthogonal matrices, respectively. If J has rank m and 7n >0, then S is an m x n matrix of

the form;
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S = F"] (35)
00

where L is an mx m diagonal matrix denoted by diag (o) with &, the non-zero singu-

lar values of J, ordered as

012022...Zom>0. (3.6)

Several kinematic dexterity measures can be expressed based on the singular values of the
Jacobian matrix, for example, the manipulability measure [19], the condition number
[21]{23], smallest singular value [26] and the KK isotropy measure [25).
A. The Manipulability Measure

The menipulability measure was defined by Yoshikawa [19]. Based on the singular

value decomposition, this measure can be expressed as

m

M, =[] o, = ddet(ll). @.7)

1=1

In order to graphically describe manipulability in the workspace of a manipulator,
Yoshikawa defined the concept of a manipulability ellipsoid. If the n joint velocities are

normalized so that
Gl = (3 +¢2+...4¢}) <1, (.8)

then the manipulability ellipsoid has principal axes o, u,, 6,u5, ..., G, u

s WhEre u; is




the ith column vector of U. The volume of the ellipsoid is proportional to the manipulabil-
ity measure, so that the farther the manipulator is from a singularity position, the higher
the manipulability measure, i.e., the larger the volume of the manipulability ellipsoid.
When m = n, i.e., for non-redundant manipulators, the measure of manipulability
reduces to the determinant of the Jacobian matrix J. This has been used to evaluate wrist
configurations by Paul and Stevenson [20].
B. The Condition Number
The condition number is expressed as the ratio of the largest singular value to the

smallest (non-zero) singular value of J [21]:

Q

M,

b
A

(39)

m

When all singular values have the same magnitudes, i.e., 6; = ©, the condition number

has a minimum value of one and the sensitivity in both velocity and torque is the smallest.
Salisbury and Craig [23] used M, in an optimization criterion to obtain ideal dimensions
for their articulated hand manipulator. In [23] the condition number of the Jacobian matrix
is considered a measure of the kinematic accuracy of manipulators. However, Chiu [24]
questioned the use of the Jacobian condition number as a measure of accuracy, but this is

based on the fallacy that if f, denotes the end-effector force vector and f, denotes the

error in f,,, then f, and df, are linearly dependent vectors. Hence the relative force error is

independent of the manipulator kinematics. We will show that the input and output rela-
tive errors in the linear system with the form (3.2) is the same only when the input error
and input vectors are linearly dependent and also illustrate by simulation for a planar

manipulator in section 3.3.




C. KK Isotropy Measure
Kim and Khosla [25) proposed a measure of isotropy as a ratio of the geometric
mean and the arithmetic mean of the eigenvalues of the Jacobian matrix J. This definition

can be expressed in the form of the singular value decomposition of J as:

m 1/m
(ITe
M, ==t 7 (3.10)
3 1 n
m !

It should be noted that O <M, < 1. When all the singular values of / have the same magni-
tudes. i.e.. 6, = ©. this measure has a maximum value of one. The computation of Mz is

more efhcient than that of Ma.

D). Smallest Singular Valuve
Klein and Blaho [26] suggested that the smallest singular value can be used as a

measure of dexterity:

(3.11H

M,

m'

This measure indicates the distance of J from singularity.

3.2.2 Formulation of the Problem of RROKM

In kinematic control, we wish to solve for the joint velocity vector ¢ in (3.2) for a

given end-effector velocity vector x. Therefore, this involves the generalized inverse of
the matrix J. In general, if the Jacobian matrix is not singular, the numerical inversion of J

and the solution of (3.2) are always possible. However, if any errors appear in measuring
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or rounding-off X in (3.2). they may be magnified in computing ¢ depending on the condi-

tion number of J. To see this, let us suppose that X of (3.2) is perturbed by 83. The relation

)
1

_ . by : .
between the relative error of the perturbation —— and the relative error of the solution

AL
i0q .
G can be expressed as [21][22]
b 6 / 1 8—”‘
.—(I—Scnnd(.l)hl——}l, (3.12)
L q jo A

where cond (J) denotes the condition number of the Jacobian matrix J (see Appendix).
Thus. the relative error in ¢ can be an amplification by a factor cond(J) of the relative
error in X. In this sense cond(/) quantifies the sensitivity of the problem of solving
J§ = x.Itis obvious that a small change in ¥ may cause a large change in ¢ when J is ill-
conditioned (i.e.. cond (J) » 1).

Therefore. the problem of RROKM requires that the Jacobian matrix J be as well-
conditioned as possible while the end-effector tracks a desired trajectory. Itis, thus. neces-

sary to solve the following optimization problem:

Optimize M, (q(1)),

Subject to x,()-f(g()) =0, (3.13)

where x 1) is the desired end-effector trajectory and M, (g (1)), i =1, 2, 3 or 4, is one of
the measures of conditioning defined in Section 3.2.1. This is an equality constrained opti-
mization problem. The MATLAB function constr [28] can be used to solve the probler
The function uses a Sequential Quadratic Programming (SQP) method [2F]. At each itera-

tion, a Quadratic Programming (QP) problem is solved. Also, at vach iteration an estimate
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of the Hessian of the Lagrangian is updated using the Broyden-Fletcher-Goldfarb-Shan-
non (BFGS) formula.

This is a local optimization problem, and the initial configuration of the redundant
manipulator is assumed to be at a local optimum. The optimization problem is solved at
each sampling period while the end-effector follows the desired trajectory. Solution of the
problem ensures that corresponding to each sampled point on the desired end-effector tra-

jectory, the condition number of the Jacobian matrix is as well-conditioned as possible.

3.3 Simulation Examples

In this section, several simulation results for a three-link revolute-joint planar
manipulator are presented to illustrate the RROKM scheme.

Consider the three-link revolute-joint planar manipulator (m=2, n=3) shown in Fig
3.1. If we do not consider the end-effector orientation, this manipulator has one degree of
redundancy. The forward kinematics and the Jacobian matrix of the manipulator are given

by

Lo, +! +1
x=f(q) = 161 700 T30 (3.14)
15141813+ 13853

and

I(g) = [‘(1131'”2512'*'133123) = (812t 13813) —l3813 (3.15)
heytheptilses  heptlieys  lyey

respectively,  where ¢, = cos(q,), €y =cos(g;+q,), s, =sin(q)),

$12 = sin (¢, +¢,), and so on. Assume that the link lengths are /; = I, = l; = 1 m.
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The end-effector is required to track the desired trajectory which is chosen as

X X Y t 1 . t
= Pa (1g) + (Pa(t) =Py (1)) (;}-ﬁsm (Znt—))

xz(1) = d = | I, (3.16)
Xy P ) + D) —ph (1) (1——9in (27tl))
a\lp d d\To §
f 1, 2m 1

1
where 1, and #yrepresent the initial and final values of time, x,(15) = [p; (t,) pz (,U)}

T
and x, (1) = [p;( ) l’ﬁ(’f):| denote the initial and final values of the end-effector

positions in Cartesian space.

q

Fig. 3.1 Three-link revolute-joint planar manipulator.

All the kinematic dexterity measures described in Section 3.2.1 can be used as
objective functions in the optimization. The RROKM scheme ensures that the condition
number of the Jacobian matrix is as well-conditioned as possible while the end-effector
tracks the desired trajectory. However, instead of using the condition number of the Jaco-

bian matrix as the objective function directly, we use the KK isotropy measure as the
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objective function. It will be shown later that both measures yield the same resuit. The KK

isotropy measure can be written as

2 172

0.2)
M. () = (,z, : ) Jdet (JJT)
’ 1< ,  trace(J) /2
5 2 ©; (3.17)
1=1

( (111282+1][3523)2+ ([113323_’_1213‘93)2_*_ (121353) 2) 172

(B4 2024 3034 20 lycy + 20, l3003 + 4y l505) /2

The last equality in (3.17) results from substituting (3.15) for J for the 3-link planar

manipulator. For /; = I, = [; = 1 meter, (3.17) reduces to

1/2
( (."2+S23)2+ (S23+S3)2+S32)

Ms(q) = (34 0y + Cpp+205)

(3.18)

Therefore, the RROKM scheme is obtained by solving the constrained optimization prob-

lem:

172
((S3+593) %+ (533 +55) 2+ §3%)

Minimize f(q) = -M3(q) = - 34 ¢yt cy3+ 20,

A

Subject to xg— e+ e +ise) =0

XY= (18, + a5 g + 13553) = 0. (3.19)

Note that the KK isotropy measure is a concave function which has a maximum value of

one. The objective function therefore takes the minus sign since
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Maximum f(x) = = Minimum (=f(x)). (3.20)

T
The initial end-effector position is x, (7,) = [Pfi(’o) I,Z(,o)] = [0,8 (ﬂr and the

T T
final end-effector position is x,(f) = [I’fi(’f) P';(’f)} = [25 0] - In this simulation,

the initial configuration of the manipulator is selected to be optimal, i.e., M5 (q) is a local

maximum. At every sampling instant while the redundant manipulator is moving along the
desired trajectory, the optimizer minimizes the given objective function subject to the con-
straints, and determines the joint angle vector that is associated with the optimal value of
the objective function. The solution is therefore locally optimal.

The simulation results are depicted in Fig. 3.2. Fig. 3.2 (a) shows the configurations
of the redundant manipulator in which the objective function is the KK isotropy measure,
and Fig. 3.2 (b) shows the variation of the condition number M; and the KK isotropy mea-
sure M along the trajectory. For comparison, Fig. 3.3 (a) shows the configurations of the
redundant manipulator when the objective function is the manipulability measure (M1(¢)).
The variation of the condition number of J and the manipulability measure along the tra-
jectory is depicted in Fig. 3.3 (b).

Although the simulation shows that both the condition number and the KK isotropy
measure give the same simulation results, the analytic expression of the KK isotropy mea-
sure is easier to compute and more useful in practice. The condition number of the Jaco-

bian matrix of the three-link planar manipulator can be written as

3.21)

T+ .T2-4A )1/2
T-Jr-a8 )

cond(J) =—=———=(

1




T = trace (JJT) = B +205+ 313+ 21,050+ 2115055+ 41, 15c4 (3.22)

and

A =det(JIT) = (Ily5y+ 113530 2+ (11355 + Ll353) 2+ (Llys3) 2 (3.23)

For !/, = I, = l; = ] meter, the terms T and A become

T = 6+2c,+2cy;+4cy (3.24)
and

A = (5y+557) 24 (593 +55) 1+ 53, (3.29)

Comparing (3.21), (3.24) and (3.25) with (3.18), we see that the computation of the KK
isotropy measure is much simpler. More details on the comparison of the condition num-
ber and the KK isotropy measure can be found in [25).

Comparing Fig. 3.2 (a) with Fig 3.3 (a), we can see that the motions of the three-
link planar manipulator using M as the objective function are smoother than those using
M, and M3. However, using M, and M3 in the optimization reduces system sensitivity.
The simulations below will show the effect of measurement or rounding errors on the
RROKM scheme. The simulation results are compared by choosing different objective
functions in the optimization. The kinematically redundant manipulator is the same as the
one considered previously. The desired trajectory of the end-effector is as specified by

(3.16). The end-effector is required to move from the initial position
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Fig. 3.2 (a) Configurations obtained using the RROKM scheme
when the objective function is the KK isotropy measure.
(b) The variation of the condition number M; and the KK
isotropy measure M3.
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Fig. 3.3 (a) Configurations obtained using the RROKM scheme
when the objective function is the manipulability measure.

(b) The variation of the condition number M, and the

manipulability measure M.
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T T
xy(1,) = [pf,(zo) p;(ro)] = [1 0.2

to the final position

T T
%) = iy piep] =203

in one second (tf= 1).

Fig. 3.4 (a) shows the motion of the three-link planar manipulator using the
RROKM scheme. The objective function is the KK isotropy measure. Fig. 3.4 (b) depicts
the motion when the objective function is the manipulability measure. The condition num-
bers which correspond to the motion in Fig. 3.4 (a) are smaller over the entire trajectory
than those corresponding to the motion in Fig. 3.4 (b). This is shown in Fig. 3.5, where the
solid line represents the condition number corresponding to Fig. 3.4 (a) and the dashed line
represents that corresponding to Fig. 3.4 (b). Next, we suppose that the end-effector veloc-

ity X is perturbed from X to X + &x, where

. [o.001%
ox = .
0.0001%,

Fig. 3.6 (a) depicts the relative error in the end-effector velocity in task space (the dotted
line). The relative errors in the joint velocities are shown by the solid line for the motion in

Fig. 3.4 (a), and the dashed line for the motion in Fig. 3.4 (b).
184]]

According to inequality (3.12), the relative error Tar is bounded by the relative
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Il 8]

error —— times cond(J). However, if 8x and x are linearly dependent vectors, i.e., the

xli

perturbation in task velocity has the form

(sz

5% = [wﬂ = oz, (3.26)

where o is a scalar, then both task and joint velocities have the same relative errors. To see
this, let 8¢ be the change in joint velocities corresponding to the change 8x. Then, from
(3.2) we get

ox = Jdg. (3.27)
Multiplying both side of (3.2) by ¢, we get

0 = ax = aJg = Jag. (3.28)

Comparing (3.28) with (3.27), we have

3¢ = agq. (3.29)

The relative error in task velocity is given by

151 folel _
R (3.30)

and the relative error in joint velocities is
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1&gl fofigll _
T = hen (33D

The above result can be illustrated for the planar manipulator by setting

5 = (00015
10001,

The simulation results are plotted in Fig. 3.6 (b). The 2-norm has been used to compute the

relative error plotted in Figures 3.6 (a) and (b).
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Fig. 3.4 Configurations obtained using the RROKM scheme. (a) With the

KK isotropy measure. (b) With the manipulability measure.
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Fig. 3.5 Comparison of the condition numbers corresponding to the motions

in Fig. 3.4: — for 3.4 (a); ---- for 3.4 (b),
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Fig. 3.6 Comparison of the effects of two different perturbations.
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CHAPTER 4 REDUNDANCY RESOLUTION
BASED ON OPTIMIZATION OF
DYNAMIC MEASURES

4..1 Introduction

In this chapter, we consider the problem of redundancy resolution based on opti-
mizing a dynamic measure (RRODM). For many years, researchers have studied the prob-
iem of dynamic control of manipulators to achieve high speed or high precision motion.
Several researchers have used optimal control to achieve minimum-time motion [1][2][3]
and minimum-energy motion (4]{5]{6] for manipulators. In this chapter we will focus on
the problem of redundancy resolution and control based on optimization of dynamic mea-
sure. That is, the redundant manipulators will exploit redundancy to be as close as possible
to dynamic isotropy [7] while tracking a desired end-effector trajectory. Dynamic isotropy
ensures that the mass matrix of the manipulator is as well conditioned as possible. Hence,
system sensitivity is reduced when the mass matrix is used as the transformation matrix in
a control strategy.

In this chapter, after presenting several dynamic dexterity measures, we develop a
control strategy involving RRODM. Then, in order tc show the effectiveness of the
RRODM scheme, we consider the system sensitivity by comparing the simulation results

with and without minimizing the dynamic conditioning measures.
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4.2 Development of the RRODM Scheme

The dynamic equation of motion of a rigid-link manipulator can be written in the

form (see equation (2.70)):

M(g)g+C(q,9)g+g(q) = 1. 4.1)

The RRODM scheme that is discussed in this section will ensure that the problem of
tracking a wrajectory is carried out in an environment that is dynamically as well condi-
tioned as possible. The controller for this control scheme will be developed such that the
manipulator tracks a desired trajectory while minimizing a dynamic dexterity measure.
Several dynamic dexterity measures for manipulators will be discussed in this section.
Optimal control theory is the main tool in the development of the RRODM scheme. The
formulation for the controller developed for the RRODM results in a two-point boundary-

value problem (TPBVP).

4.2.1 Dynamic Dexterity Measures for Manipulators

A. The Generalized Inertia Ellipsoid

The generalized inertia ellipsoid (GIE) suggested by Asada [8] is an approach for a
geometric representation of manipulator dynamics. The GIE configuration of a manipula-
tor in its workspace is useful for the analysis and design of manipulators. Asada defined

the generalized inertia tensor as

-1
M () = LM (@I ()] (4.2)
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where J(¢) is an m X n Jacobian matrix and M(q) is the n X n mass matrix associated with
the joint displacement g. By examining the eigenvalues of M, (¢) , he suggests that the
GIE can show how the manipulator accelerates in various Cartesian directions. Asada
defined a graphical ellipsoid associated with the GIE. The axes of the ellipsoid are associ-
ated with the eigenvectors of the generalized inertia tensor M,(g), and the reciprocals of
the square root of the corresponding eigenvalues provide the lengths of the axes of the
ellipsoid. The conditioned points in the manipulator workspace are indicated by the vol-
ume of the ellipsoids. The well-conditioned points in the workspace are indicated by large
volume ellipsoids while the ill-conditioned points in the workspace are indicated by small

volume ellipsoids.
B. The Dynamic Manipulability Ellipsoid
Yoshikawa extended the kinematic manipulability measure [9] to a dynamic manip-

ulability measure [10]. Based on the relationship between the acceleration of the end-

effector and the joint torques:

3= = IM[1-C (¢, §) g-8 ()], (4.3)

the measure of dynamic manipulability is defined by

W, = Jdez[J(MTM)"JT], (4.4)

where X is the m x 1 end-effector acceleration vector, and J is the m X n Jacobian matrix.

Like the kinematic measure of manipulability, we can express JM"! by its singular value

decomposition:




Mt = uzvl, (4.5)

where U and V are m x m and n X n orthogonal matrices, respectively and

T = ["i 0], (4.6)
00

where the (non-zero) singular values ¢, can be ordered as
0,2022...20",>0. 4.7

Hence, as was done for the kinematic measure of manipulability, we can define the

dynamic measure of manipulability as

w, = T]o, (4.8)

C. The Dynamic Conditioning Index

Recently, Ma and Angeles [7] introduced the dynamic conditioning index (DCI)

which is defined as

1
o= inTQn, (4.9)

where Q is a diagonal weighting matrix, and 1 is a vector which represents a measure of

the distance between the real mass matrix and an ideal mass matrix for the same manipula-

65




tor. By defining an n X n error matrix

El] Elz .aa Eln
E(q) = M(q)—el = |En En2 o ol (4.10)
Enl En2 E,m

where M(q) is the n x n mass matrix of a manipulator, / denotes the n X n identity matrix,

and € is defined as

€ = %trace[M(q)], 4.11)

we can get the vector 1 which consists of n(n+1)/2 components:

. 4.12)

The DCl is a quadratic form and describes the dynamic conditioning of the mass matrix. A
mass matrix of the €/ is said to be dynamically isotropic [7], i.e., it has the best condition-

ing possible (condition number = 1). We will use this index as a criterion in our RRODM

scheme.
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4.2.2 Formulation of the Problem of RRODM

The forward kinematics of a manipulator are defined by

x=f(q), 4.13)

where x isan m X 1 vector in the task space and g is an n X 1 vector in the joint space. Dif-

ferentiation of (4.13) with respect to time yields the differential kinematics:

1=J(g9)4. 4.14)

The nonlinear equation of motion of a rigid-link manipulator can be written in the

form

M(g)g+C(q.9)g+g(q) = T. (4.15)

Equation (4.15) describes the manipulator dynamics without any payload. Now, by detin-

ing the state vector

y = H = [g], (4.16)
Y2

vquations (4.13) and (4.14) can be written as
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x = f(y,)

and

X = J(yl))’2~

Equation (4.15) can be expressed in the state space form:

y=F(1),

where
r
F(yyt) = Fl = y2 ?
F2 N()’p)’z)*‘D()’})T
N(pya) = =Dy [C(ypy)ya+g (y)]
and

D(y,) =M'@).

4.17)

(4.18)

4.19)

(4.20)

4.21)

4.22)

The RRODM requires that the end-effector of a kinematically redundant manipula-

tor tracks a desired trajectory while minimizing a dynamic conditioning measure. Hence

the RRODM can be formulated as the following constrained optimization problem:
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Yy
Minimize P = @ (y((z).1)) + [L(y. T D dr, (4.23)
l!

Subjectto y = F(y, T,1), (4.29)

where the terms in the performance index P are given by

OO (1) 1) = 2eIW e+ 2el Wi, (4.25)
L(y,t,1) = p+ %tTRH %eTSe, (4.26)
— 4.27)

¢ = i-%,, (4.2%)

er=e (tf) . (4.29)

In (4.26), p is the dynamic conditioning index [7] given by

- %nTQn- (4.30)

In (4.25), (4.26) and (4.30), W, W5 and § are m x m positive definite weighting matrices,

and Rand Q are nxn and n(n+1)/2xn(n+1) /2 positive definite weighting matri-
ces, respectively.

The optimization problem presented in (4.23) and (4.24) is an optimal control prob-
lem. Optimal control theory can be used to solve this problem. The performance index
described by (4.23) is minimized over the entire motion of the end-effector of the manipu-
lator. Minimizing the first term in (4.26) controls dynamic conditioning because it causes

the mass matrix involved to be close to dynamic isotropy (€/) . The second term in (4.26)
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represents the control energy and the third term in (4.26) ensures that the end-effector
tracks the desired trajectory. Equation (4.25) specifies constraints on the final state of the
end-effector.

Note that the optimization problem is characterized by compromise and trade-offs
of different criteria via appropriate choices of the weighting matrices in the performance
index. For example, if conditioning is considered to be very important, a larger value of O
should be chosen relative to the other weighting matrices. If it is more important that
tracking error be very small, then the value of S should be much larger than that of Q or R.

An optimal controller is designed based on a model of a plant and involves optimi-
zation of a performance index. We assume that the plant is described by the general non-

linear equation
yy =F(y(),u(t),1), (4.31)

where y(1) is a state variable and u(?) is a control input. The performance index which is to

be optimized over a fixed time interval 1, < 7 <, can be written in the general form:

l
P =0 )+[Lyw,uw),nad, (4.32)

ty

where Yty denotes the state vector at the final instant ¢ = tr. Thus, @ is taken to depend on

the final state and L depends on the behavior of the system in reaching this final state.
The optimal control problem is then to determine the optimal input u*(z) over a

fixed time interval 1, <t < fto drive the plant (4.31) along a trajectory y*(t) such that the

performance index P is minimized and the final state satisfies
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oy ().t =0, (4.33)

where ¢ describes the constraint on the final state of the system. An outline of an approach
for solving this problem was given in Chapter 2. The approach is based on introducing

Lagrange A and v, and defining

Iy
P=oGu). 1) +¥ 0y (), 1) + [ (H o) =My dr, (434)

fy
where the Hamiltonian, H, is defined as
H(v,u,t) = L(yur) +AMF (. u,1) 4.35)

The necessary conditions described in Chapter 2 are obtained by applying a small incre-

ment to (4.34) and setting it zero, i.e., dP = 0 [11][12].

The optimal control problem with the performance index 4.32)

Yy
P=o((p.tp+[Lyn,u),nde (4.36)

’0
is called the Bolza problem [13]. In the case that L = 0, the performance index reduces to

P=oy{).t. (4.37)

The optimal control problem with the performance index (4.37) is called the Mayer prob-
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lem [13).1f ¢ = 0 in equation (4.32), then

4
P = JL(y(t),u(t),t)dt. (4.38)

'0
This problem is called the Lagrange problem [13].
In addition, the performance index can be chosen based on an application. If it is

required to drive the system from an initial state 1, to a final state £ in the minimum time,

the performance index should be chosen as

Yy

P= j dr. (4.39)
{

The optimal control problem with the performance index (4.39) is called the minimum-
time problem. The minimum-fuel problem can be obtained by defining the performance

index

Vi
P = j luldt. (4.40)

i

o

In a fixed time interval, if we want to minimize the energy throughout the intermediate
state and also the final state, then the performance index to be minimized in the minimum-

energy problem is

72




p=1

where W, R and S are positive definite weighting matrices.

s
-ij(tf) Wy (tf) + J [%yr(t) Sy(n + -12-147 (N Ru (t)]dt .
{

(44D

If it isrequited to track a desired trajectory y{f) while minimizing some criteria, the

performance index (4.32) should be employed with

= er y
(P()’(tf),ff) = i‘th(f
and

L(yut) = %eTSe + %uTRu,

where,

I

¢

y() =y, (1),

e =Y (tf) _yd(’f)

(4.42)

(4.43)

(4.44)

(4.45)

and W, S and R are positive definite weighting matrices. The weighting matrices W and 5

in (4.42) and (4.43) determine the tracking errors of the system. By selecting appropriate

weighting matrices W and S, the tiacking errors can be reduced to acceptable values. In

practice, it is generally necessary to run several computer simulations to adjust the weight-

ing matrices until a desired performance is achieved.
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4.2.3 Derivation of the Optimal Controller

Since the Hamiltonian function for the given problem is

Hy,t,t) =Lyt +MF, 10, (4.46)

the state equation is given by

y:

&

Y2
= F(y,t,1) = , (4.47)
’ {N (11, 72) +D (y,)tJ

which is exactly the same as (4.20) and the costate equation is obtained as

T
j\ = —a_li = —a_L_l:_a_f:] A
dy ay dy
T
oL oF | oF,
L R (4.48)
oL oF, oF,| |X,
|

Noting thatin (4.20) Fy = y,, F5 = F(y;,y,) and L = L(y,), we have
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oL ) T
) 'a}—,l'*'[a—)j;[N(.‘l,}z) +D(,»1m] kz.

(4.49)

A+ [33‘3 [N (¥ )‘z)]}rxz

The stationary condition gives:

oH _aL [OF "
ot ot [ﬁ]

= a._L+ _é—t— }\'l
ot |9F,| |A,

oF 7T
= Rt+[ ‘] A,
ot 2

Rt+D(y) 2, (4.50)

from where we obtain the optimal input 7" :

* = -R'D(y A, . (4.51)

Substituting equation (4.51) into equation (4.49) yields 4n equations with 4n unknowns

Y1. Y2 7», and A, (M(y-), C(y1.y2) and g(yy) will be written as M, C and g hereafter):
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Y1 =,
. 1 1 p-1 1,7
1 Yo = =M (Cy,+g)-M'R (M) 0,
| y ﬂlkm—ﬂ&+ j%M*Wy+@+M4FWM”fX]H”
| 1 ayl [ayl 2 2 2
. b i T
hy = =A, + [5}?[” (Cy2+g)]] A,y (4.52)

The final condition is determined by (2.67). The final time #;in our appliation is fixed, so
(ltj = 0 and the second term of (2.67) is automatically equal to zero. Because y(.ff) is not

fixed, dy(t¢) is not zero. Therefore, it is required that [12]{11]

ad
20

-N| =0 (4.53)
4 ,

(Note that there is no function ¢ in our application (see (2.67))). Substituting (4.25) into

(4.53) we get

a 1 )T ) ! }T > =
a—)-‘[—z-(fwl(f‘i‘ 5(] W:Lf] = lll:ll' (4.54)
The initial condition

y(ty) = Yo, (4.55)

where y,, is given. Equation (4.52) with the boundary conditions (4.54) and (4.55) denotes

a two-point brundary-value problem (TPBVP).
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4.3 Simulation Examples

The RRODM scheme results in a TPBVP which can be solved numerically in a
number of ways. Many computer routines are currently available for solving the nonlinear
TPBVP. One routine which uses the “multiple shooting” method is BVPMS in the IMSL
library [ 14]. To describe this method, we consider Fig. 4.1. The differential equations with
boundary conditions are integrated by initial value methods from one boundary to the
other boundary. Several trial integrations are performed until both boundary conditions are
§atisﬁed. The integration of the differential equation resembles the trajectory of a shot

from a gun (the initial boundary value) to a target (the final boundary value).

1st
3rd
Y AN
2nd final
boundary
- value

initial
houndary
value

Fig. 4.1 Dlustration of the multiple shooting method for solving a

TPBVP.

To illustrate the RRODM scheme, we consider the planar three-link manipulator in
a horizontal plane as shown in Fig. 3.1. For the dynamic equation (4.15) of the three-link

manipulator, the mass matrix M is a 3 x 3 symmetric positive definite matrix:
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where

and

The matrix C is defined as

[Mll M12 M13
M2] M22 M23 ’

M =
LMBI M3y My,

M|, = a;+2acy+2bcy+2dcy
My, = ay+acy+bcy+dey
M3 = a3+ bcayy +2dcy

My = My

May = ay+2dc,

M')‘; = (13+d(‘3

Ms = My
My = My
My = aq

a, = (m]+mz+m3)l¥+ ("12"‘"13)/%"'"’31.%
a, = (n12+m3)1§+"’3’§

a, = m31§'

a = (my+m3)lil

b = mylil4

d = mylyls.

7%

(4.56)




0 h3(2¢,+42) h3 (2, +29,+4)

C = |hy4, 0 My (24, + 245+ ¢3) | 4.57
h31qy h3a (24,+45) 0
where

hyy = ~h3p = —ds;.

The robot link lengths are chosen as /| =/, = I3 = 1 meter, and the link masses are
chosen as m; = m, = my; = 10 kg. The weighting matrices which appear in equations

(4.52) - (4.54) are chosen as follows: R™' = diag (500), S = diag (10000),
Q = diag (0.01), W, = diag (1000) . and W, = diag (1000) . The end-effector of the

manipulator is required to track the trajectory specified by equation (3.16). The initial

boundary conditions are given by
7
y1 (1) = [=35°135° -1357 (4.5%)
T
¥l =[o00q] . (4.59)

The final boundary condition are specified by equations (4.54) and (4.55). The forward

kinematic equation of the manipulator is:

fly)) = I:IlC‘I+IZC12+I3C121:l (4.60)

181408+ 18y
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where y, = [y“ Y12 )’n]T = [(h 92 43]T’ ¢y = 08 (yy), €3 = Cos(yy+yp2).
sy = sin(y;), §;5 = sin(y,; +y,,), and so on. The Jacobian matrix is specified by
equation (3.15).

For the three-link planar manipulator, the optimal controller consists of 12 differen-
tial equations which are given by equations (4.52) with 12 boundary conditions (6 initial
boundary conditions given by (4.58) and (4.59); and 6 final boundary conditions specified
by (4.54)). The optimal control problem was solved using the IMSL routine DBVPMS in
double precision. The routine DIPRK in the IMSL library was used to solve the 12 equa-
tions corresponding to (4.52) at each “shot”. If we take m shooting points (including the
initial and final boundary points), then a system of 12 x m nonlinear equations are solved
by Newton’s method.

The simulation results are shown in Figures 4.2 - 4.5. The configurations of th.
three-link planar manipulator resulting from the RRODM scheme are plotted in Fig. 4.2.

The end-effector moves along the straight line in one second from the initial point

[1.4647 -0, 1(,23]T to the final point [}.8 (. ]]T. The tracking error of the end-effector is
shown in Fig. 4.3, where the solid line denotes the tracking error in the x direction, and the
dashed line represents the tracking error in the y direction. It should be noted that in
RROKM, the end-effector tracking performance is achieved by satisfying the constraint in
(3.13) which results in zero tracking error. In RRODM, however, the cnd-effector tracking

performance is obtained by achieving a compromise between the minimization of K,

t/ Rt and ¢’ Se. Therefore, the tracking error may not be exactly zero. Fig. 4.4 shows the
variation in the DCI along the trajectory. Note that the magnitude of DCI depends on the
weighting matrix Q. The optimal joint torques are depicted in Fig. 4.5, where the solid,

dashed and dotted lines denote the torques applied at joints 1, 2 and 3, respectively.
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Fig. 4.2 Robot configurations resulting from RRODM.
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Fig. 4.3 End-effector tracking error resulting from RRODM.,
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Fig. 4.5 Joint torque resulting from RRODM.
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The system sensitivity with regard to dynamics can be shown by rewriting the

dynamic equation (4.15) as

§ =M (1-Ci-g). 4.61)

Solving (4.61) involves the inversion of the mass matrix M. The inversion of the mass
matrix also appears in the well-known linearization techniques [15]]16]. More discussion

on the issue of the invei.ion of the mass matrix can be found in [7].

Let T = t-Cg—g. equation (4.61) can be rewritten as

Mg = 1. (4.62)

When we compute the joint acceleration § for dynamic control or dynamic simulations,

suppose that the right-hand side of (4.62) is perturbed from T to T+87, the relative

change of the joint acceleration is

————” 5q|| <cond (M) ——"“ 8~t" (4.63)
gl <l

Equation (4.63) shows that the relative change of the joint acceleration can be a magnifica-

tion of the relative change in T by a factor equal to the conditicn number of the mass
matrix M, i.e., cond(M) quantifies the sensitivity of the problem of solving (4.62) for §.
In order to show how the system described by equation (4.62) is sensitive to the
condition number of the mass matrix M, we use the RRODM with Q = 0, i.e,, without
minimizing the DCI. The simulation results are shown in Fig. 4.6, 4.7 and 4.8. In addition,

Fig. 4.9 shows the variation of the condition number of the mass matrix M when the
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RRODM with Q = diag((.01) is used, which corresponds to Figs. 4.2 - 4.5, while Fig. 4.10
shows the variation in the condition number of M when Q = 0. Comparing Figs. 4.9 and
4.10 we see a significant increase in the condition number of M when minimization of DCI
is not included in RRODM scheme.

Finally, we assume that the right-hand side of equation (4.62) is perturbed from

roo_ .. - . - L
T = [%l T, %3] to T+ 37, where, 8T = [0-00”1 0.0017, 0,000113] . Using the 2-norm

to calculate the relative error, Fig 4.11 shows the relative error resulting from RRODM
that includes DCI, while Fig. 4.12 depicts the relative error when the RRODM does not
include DCI.
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Fig. 4.6 Robot Configurations resuiting from RRODM without DCL
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CHAPTER 5 REDUNDANCY RESOLUTICN

FOR REDIESTRO BASED ON
OPTIMIZATION OF KINEMATIC
AND DYNAMIC CONDITIONING

5.1 Introduction

The RROKM and RRODM schemes presented in the previous chapters have the
same goal - that of improving accuracy. The RROKM scheme considers the conditioning
of the Jacobian matrix of a manipulator, while the RRODM scheme is concerned with the
conditioning of the mass matrix. In this chapter, both schemes will be applied to an isotro-
pic redundant manipulator with seven revolute joints. First, we describe the isotropic
redundant manipulator. Then, the applications of both the RROKM and RRODM schemes
will be presented via computer simulations using a kinematic model in the case of
RROKM and a dynamic model in the case of RRODM. In the RRODM scheme, the
dynamic equations of the manipulator are generated using the Newton-Euler dynamics

algorithm.

5.2 The Isotropic Manipulator

The isotropic manipulator called REDIESTRO (REDundant Isotropically
Enhanced Seven-Turning-pair RObot) was designed and assembled [1] at the McGill Cen-
ter for Intelligent Machines (CIM). The main feature of the manipulator is kinematic isot-

ropy. i.e., at certain points in its workspace the condition number of the Jacobian matrix of
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the manipulator is equal to one. Therefore, for control schemes such as rate control and
force feedback control which involve transformations using the Jacobian matrix, REDI-
ESTRO can be made to perform operations with high accuracy in the neighborhood of the
isotropic configurations.

REDIESTRO is a seven-axes, revolute-coupled redundant manipulator. The

Hartenberg-Denavit pararneters of REDIESTRO in the notation used in [2] are given in

Table 5.1.
Table 5.1 Hartenberg-Denavit Parameters of REDIESTRO
Link i a,(mm) b,(mm) a, (degree) | g (degree)
1 0 0 -58.31 q;
2 231.13 -22.91 -20.0289 q,
3 0 36.93 105.26 43
4 39%.84 0 60.91 44
5 0 -471.59 59.88 ds
6 135.59 578.21 -75.47 ds
7 234.44 -145.05 0 q7

Home configuration g;.7(degree):

91_7=1[0 -11.01 9194 113.93

Characteristic Length = 220.6505 mm

Maximum Reach = 1488.0 mm

Intable 5.1, @; ., b, @, _,, g; are the link length, joint offset, twist angle and joint

angle, respectively.
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5.3 Application of the RROKM Scheme

The Jacobian matrix of REDIESTRO is a 6 x 7 matrix that maps the 7 x | vector
of joint angular velocities to the 6 X 1 vector of Cartesian (end-effector position and orien-

tation) velocities. It can be computed using the expression [4]:

-

7= |AXPyEaXDy e 2 X Py 5.1)
‘] :2 LS 27

where z, is the unit vector along the ith revolute joint and p; is the position vector from the

origin of link frame {i} tothe origin of the end-effector frame {7} .
The desired trajectory is chosen such that the end-effector moves along a straight

line with a hixed end-effector orientation:

T
2 (0 = [pan w (0] (5.2)

where w, (1) is a 3 X 1 end-effector orientation vector with a fixed value equal to its ini-

tial value:

ol (1)
w, (1 = 0,(t) = b (1), (5.3)

w3 (1)

and p(t)is a 3 x 1 desired end-effector position vector which is given by
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Palty) + [pg (1) =pyay)] [1—% sin (Zn%)}
Pq (1) Iy 2% 1
: : : 1. t
Pa (1) = |py(n| = |Palty) + [1’:1(?])—1’:1(((,)][L—rSln(zn—)] . (5.4)
° t; 2w e
p:i(t) z z : t I . t
Lpd(tu) + [py (1)) —py (1) ] [}}_ﬁ sin (M’_j)]_

where p7. p} and pi represent the X, Y and Z components of the position vector respec-
tively and r,, (1,=0) and rfdenote the initial and final value of time. The actual end-effecton

trajectory is computed using forward kinematics of REDIESTRO based on its Hartenberg-
Denavit parameters. The initial home configuration of the manipulator is an isotropic one

given by

1 .
g = [0.0° —11.01° 91.94° 113.93° ~2.26° 150.25° 63.767 . (5.5)

The end-effector position p, which corresponds to this configuration is

T
P, =p.(ty) = [0.0618 02314 0.1747) - (5.6)

The end-effector of the manipulawor is required to move from the point p, (¢y) = p, (1)

to a point

T
pa(t) = [0.5618 0.7314 0.1747] (5.7)

along a straight line described by equation (5.4) in one second. The joint angle trajectories

are given in Fig. 5.1. The condition number of the Jacobian matrix is plotted in Fig. 5.2,
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and the KK isotropy measure is shown in Fig. 5.3. Fig. 5.2 shows that the condition num-

ber of the Jacobian matrix has the minimum value (=1) in the isotropic (home) configura-
tion. In Fig. 5.3 this corresponds to the maximum value (=1) for the KK isotiopy measure.

In addition, while the motions obtained by the pseudoinverse control are usually
noncyclic [5)]6](7], the RROKM scheme can generate cyclic motions. Fig. 5.4 shows the
joint trajectories in a cyclic motion in which the robot end-effector tracks a circular trajec-

tory of 1adius r = 0.25m with the center at

[coey cz]r = [0.311% 0.2314 0.1747] " (5.8)

The desired circular end-effector position trajectory is given by

¢, +rcos (0.5 +m)
pg(t) =1 cy+rsin (0.5mt) |. (5.9)
C.

P

The initial configuration of the manipulator is the isotropic home configuraiion. The varia-
tions in the condition number of the Jacobian and the KK isotropy measure are shown in

Fig. 5.5 and Fig. 5.6, respectively.
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Fig. 5.1 Joint trajectories of REDIESTRO resulting from RROKM.
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5.4 Application of the RRODM Scheme

The dynamics of REDIESTRO can be expressed in the matrix form:
=M(@)g+C(q.9)G+g(q)- (5.10)

where, g, ¢, G, g and T are 7 X 1 vectors, and M(q) and C (q,q) are 7x7 matrices.
Equation (5.10) was computed using the Newton-Euler algorithm, e.g. see [3]. This algo-

rithm enables us to compute the joint torque T corresponding to a given set of values
((g. q.g) ) of the position, velocity, and acceleration of each joint. The inertia tensors "'I,.

link masses m,, and the location of the center of gravity iP( of each link of REDIESTRO

are given in Table 5.2, Table 5.3 and Table 5.4 respectively. These parameters are given in

the notation of [2].
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Table 5.2 Inertia Tensors (kg m?)

“q Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7
9 0.89926 | 0.02573 1.6620 | 0.09297 | 0.8284 0.6541 2.4e-5
XX
‘q 0.31342 | 0.13223 0.7860 - 0.8881 0.7019 0.6714 | 1.136e-3
¥)
9 (0.62745 | 0.11099 0.9387 0.8753 0.1317 0.0374 | 1.135e-3
22
‘7 -2.7e-5 -().0045 0.0001 -0.1203 | 0.00009 | -0.00839 0.0
i3
] 0.3698 0.0012 0.1221 -0.0204 | 0.26852 | 0.04574 0.0
3
‘7 -1.2e-5 -0.0404 0.0003 0.1411 2.00016 | -0.12596 0.0
X2
Table 5.3 Link Masses (kg)
Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7
| e
, 17.313 5.58 28.586 7.390 5.987 2.557 0.2
Table 5.4 Centers of GGravity (m)
P, Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7
— e e e —————————
X 0.00048 | 0.1155 | -0.0011 | 0.3071 0.0 -0.0919 | 0.06345
y -0.1607 | -0.0036 | -0.1176 | -0.0408 | -0.1326 | 0.03434 0.0
z -0.1186 | -0.0618 | -0.1170 | 0.0699 | -0.3209 0.49 -0.0034

101



The Newton-Euler algorithm computes the required joint torque for given joint

position, velocity, and acceleration. However, for the RRODM scheme, we need to com-
pute the matrices M(g) and C (q. ¢) , and the vector g(g). Note that the mass matrix M(q)

is a function of g only. Therefore, to find M(q), we let ¢ = 0 and the gravity force = (

(this results in g(g) = 0). In this case, the dynamic equation (5.10) reduces to:

1= M(q)§. (5.1

Equation (5.11) gives a linear relation between the joint torque and the joint acceleration.

Now, if we apply as input a joint acceleration vector § = v , where v, denotes the ith col-

umn of the 7 X 7 identity matrix. we can compute the ith column of M(q) using the New-
ton-Euler dynamics algorithm. Also, let G = C(q,4) ¢+ g(g), we can rewrite the
dynamic equation (5 10) as:
T=M(g)4§+G. (5.12)
Then setting g = 0, we get
1=0G. (5.13)
Hence the vector G can also be obtained using the Newton-Euler dynamics algorithm.
Note that the mass matrix and vector G are computed discretely in time. If the sampling

period is small, the matrix M(q) can be considered constant between two successive sam-

pling instants. Equation (4.53) can be reduced to
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Y1 =Y

T
¥y = -MIG-MTIRTE (M) T,

A, = —[—aﬂ}TQn—JTScw —a—[M“G]:ITl

: oy, [ay; o

. P i T

Ay = =2, +b—y—2[M' G]] A,. (5.14)

The mass matrix M(g) is updated at each sampling instant.
The desired end-effector trajectory is given by equation (5.2). The end-effector is

required to move from

T
Pa(ty) = [0.0618 0.2314 0.1747] (5.15)

to

T
Patt) = [0.1618 0.3314 0.4747] (5.16)

in one second. The weighting matrices are chosen as follows: W = diag(1500), W, =

diag(1500), R = diag(50) and S = diag(2000). The sampling period is 1/30 second. The
simulation results are shown on Figures 5.8 - 5.12. In Fig. 5.12, the sclid line denotes the
condition number of M(q) with Q = diag(0.01), while the dashed line represents the condi-
tion number of M(q) with Q = 0, i.e., without considering DCI. Fig. 5.12 shows that the
conditioning M(q) is better when DCl is included in the RRODM scheme.
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Fig. 5.7 Joint trajectories for REDIESTRO resulting from RRODM.
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Fig. 5.9 (a-d) Joint torque history resulting from RRODM.
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Fig. 5.10 (e-g) Joint torque history resulting from RRODM.
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Fig. 5.10 Variation in DCI for REDIESTRO resulting from RRODM.
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Fig. 5.11 Variation in the Condition number of M(g) for REDIESTRO
resulting from RRODM with DCI (—) and without DCI (----).
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CHAPTER 6 CONCLUSIONS AND FUTURE
WORK

6.1 Conclusions

The main contributions of this thesis are two new redundancy resolution schemes
based on optimization of kinematic and dynamic conditioning: redundancy resolution
based on optimization of kinematic measures (RROKM) and redundancy resolution based
on optimization of dynamic measures (RRODM). With these approaches we can see how
conditioning measures affect errors. Both approaches have been applied (via simulation)
to REDIESTRO, a seven joint kinematically isotropic manipulator.

The RROKM uses local constrained optimization techniques, i.e., the solution is
optimal at each sample point on the desired trajectory but not necessary optimal over the
whole trajectory. This results in an efficient computational scheme. When the Jacobian
matrix is used as a transformation matrix, the condition number of the Jacobian matrix
affects the propagation of errors such as numerical rounding errors and measurement
errors. In the RROKM approach, a conditioning measure is optimized while the end-effec-
tor tracks a desired trajectory. This ensures that the condition number remains as small as
possible along the trajectory. Hence error magnification resulting from the conditioning of
the Jacobian is reduced. In addition, since a singularity is characterized by an infinite con-
dition number of the Jacobian matrix, constraining the condition number ensures that the
manipulator is kept as far away from singularities as possible. This in turn reduces sensi-
tivity with regard to velocity and torque computations, and provides better control of the

manipulator.
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The RRODM approach is a global optimization approach based on optimal control
theory. An integral type of performance index is chosen so that the resulting solution is
optimal over the whole trajectory. The optimal control strategy results in a two-point
boundary-value problem (TPBVP) which is solved numerically using a complete nonlin-
ear dynamic model of the manipulator. In general, extensive computation is required to
solve the TPBVP. The RRODM optimizes a dynamic conditioning index (DCI) while the
end-effector tracks a desired trajectory. This ensures that the DCI is as close to isotropy
(optimum conditioning of the mass matrix) as possible while the end-effector tracks the
desired trajectory. This improves the performance of dynamic controllers that iavolve
transformations using the mass matrix. The RRODM approach requires significantly more
computations than the RROKM approach. The performance of the scheme is character-
ized by several weighting matrices which are selected using several simulation runs. The
choice of these weighting matrices allows a designer to achieve a balance between
dynamic conditioning, tracking errors, and magnitude of the required control torque.

Simulation results for a 3 DOF re.volute joint planar manipulator and REDIESTRO,
a seven DOF revolute joint kinematically isotropic manipulator, are given for both

RROKM and RRODM schemes.

6.2 Suggestions for Future Work

Manipulator designs considering both kinematic and dynamic dexterity measures to
utilize redundancy have been investigated for several years. However, manipulator control
that takes into account various conditioning measures as they affect transformation accu-
racy and system sensitivity has not received much attention. This thesis has provided an
approach that shows the feasibility of developing such control schemes. A major issue is
the amount of computatior: required by the proposed schemes. Future work is required to

develop strategies (perhaps suboptimal ones) to reduce the amount of computation.
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In Chapter 3, we note that the computation of the KK isotropy measure is more efti-
cient than that of the condition number. This was shown by comparing the expressions for
calculating the KK isotropy measure and the condition number in the case of a three-link
planar manipulator. But comparisons between computation of the KK isotropy measure
and that of the condition number for general manipulators would be useful in manipulator
design as well as control. The RROKM scheme in Chapter 3 is a local optimization
scheme. For completeness, it would be useful to develop a global scheme where the kine-
matic measure is optimized over the whole trajectory.

As discussed in Chapter 4, the performance of optimal control is characterized by
weighting matrices. One can achieve a trade-off between tracking error, control input
energy, and dynamic conditioning by selecting appropriate values of the weighting matri-
ces. The choice of these matrices is not particularly straightforward. In this thesis they
were selected based on computer simulations of a few sample runs. Therefore, it is neces-
sary to develop more systematic procedures for selecting these weighting matrices.
Finally, the solution of the TPBVP is very computation intensive so that online (real-time)
solution of RRODM is not possible. However, it may be possible to generate a class of tra-

jectories for which the solutions of the TPBVP may be considerably simplified.
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APPENDIX SYSTEM SENSITIVITY AND
ERROR ANALYSIS

I Sensitivity and Condition Number of

a Square Matrix

Let A be a square nonsingular matrix, so that A™exists and is unique. Consider the

linear system
Ax = b. (Al)
The exact (unique) solution of (A1) is given by
x=A"b (A2)
Suppose that b in (Al) is changed to 8b. This small change may come from experimental
data, rounding errors, noise or perturbations. Then, the solution of the system is changed
from x to x + Ox:
A(x+0x) = b+6b. (A3)

Equation (A3) implies that

Adx = &b (Ad)
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and hence

5y = A”'8h. (AS5)

Therefore, an upper bound on dx is given by

| 8x) < A=l 8n). (AG)

where Il + |l denotes an appropriate vector and matrix norm, such as the 2-norm [1]. Note

that the relation Ax = b implies that

bl <Al (A7)

From (A6) and (A7) we obtain the following important result concerning relative errors:

l| x| |35
~—— — <Cond(A) ——, AR
Ty < Cond (A) (A%)
where the condition number of A is defined as
cond(A) = A7 1A). (AY)
ox
Equation (A8) shows that the relative error in the solution H can be a magnification by

1135

a factor cond(A) of the relative perturbation ol

. When 4 is close to being singular, i.e.

114



the cond (A) is very large, the system may be very sensitive in which a small change in

185

8 .
Al causes a large change in M Note that cond (A) =1, where the equality holds

flxl

for a matrix with the best possible conditioning such as an orthogonal matrix or 2 matrix

of the form o/ where o. ia a scalar and / is the identity matrix.

II Sensitivity and Condition Number of a

Non-Square Matrix

When A is a general m x n matrix of full rank m, the solution of the linear system

Ax = b can be found by the pseudoinverse method:
y = ATb+ (1-ATA)z, (A10)
where AT denotes the pseudoinverse and
At = AT (aa") (Al1)
Let ™ be the minimum-norm solution of the system Ax = b. Thatis,

> = Afb (A12)
or

AX" = b (A13)
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and note that

bl < HAITN™ . (A14)

Again suppose that b is perturbed to b + &b, and the corresponding solution is changed to

xT + 0, ie.

X +8x = At (b+3b). (A15)
This implies that
Sa = At Sb (A16)
and
181 <llat il sby. (A17)

Combining (A14) and (A17) and rearranging, we obtain

|| 8 ||
[l

I8bll _
el

185

_llA lyay heol T

ond(A) ——— (A18)

K] fi8bl

This implies that the relative error =—— can be as large as the relative perturbation —— Bl

lx™ |
multiplied by cond (A). Thus, the condition number of a non-square matrix plays the

same role as that of a square matrix [2].
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