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'”}»the case of.abelian groups. * '

¢
ABSTRACT

I . ' >

RELATIVE $NJECTIVITY FOR GROUPS AND MODULES

\ :
Serge Aloneftis
} ’ e

This thesis is a study of article [1] concerning ~
& -

absolutg-direct summand (a.d.s.)%modulés and article [ 7]
* concerning qpaéi-pfojective abel;aﬂ groups. The a.d.s.

J . ! . - .

modules are characterized by the property that for every

: ¢ -
.decomposition M= U ® V, V is U-injective. These module§ .

B ’ .
. and quasi-continuous modules over a right noetherian ring

3 1

, of dimension one are characterized.
) € ! c

~ . -

Qu;si-érojective modules:  defined dually to o
- 1

. A - . ' ' .
gquasi-injective modules and these are characterized in

+

.
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‘ # INTRODUCTION - \ -
' The object of this thesis is the study of absolute

direct summand R-modules ([1]), R a ‘ring, and quasi-
T +

projective abelian groups ([7]). The former were first

‘defined by L. Fuchs ([5, p.73]) as those modules M with ~

\‘ the property that every complement of every direct summand .
of M is itself a direct summand of M. In [5, p.93,
Exercise 11(b)] he has given a complete description of the €
non-mixed absolute direct summand aqbelian groups. The
aﬂbsolut'e direct summand prgpgrty is more géneral than that
of quasi-continuity ([10] ) and the implicati;ans injectivity
* guasi-injectivity = continuity = quasi-continuity = I
absolute direct sﬁmmand, hold. An in}portant property of
gquasi-continuous modules, that‘ which states that; 'a'ny two
complementary direct summands are relatively injectiv/e is
in faﬁt a characterizing property of the absolute direct

summand modules.

Q )

'lIt is shown in [l] that when- R is right noetherian; an .
absolute direct summand module has the form VOU where V is
injective, U reduced and tl"xere are no non-zero parjgial
" monomorphisms V -+ U. If U is also absolute dire¢t summand ; g

and the word "monomorphism" is replaced by "homomorphism" D

these conditions become sufficient. Further, it is shown ’
* that a homogeneous, decomposable} absolute direct summand
-, V4
o ‘ :
-1 - -
' o
o - -{ - o : -, e

— . : N N - R a1k Rk T Sy
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A

module is quasi-injective. Using the above, a complete
description of these modules over a commutative naetherian

domfain of dimension one is given. The case of a right

: attinign ring also admits a description of its absolute

s “ i
direct summand modules. The techniquesAdeveloped apply

also to quasi-continuous modules over a commutative
noetherian domain of dimension one and a characterization

of such modules is given as well.

“In (7], a complete description of the quasi-<projective

" abelian groups is derived after a few lemmas which are

stated and'proved for modules over an arbitrary ring. By

dualizing some of these lemmas, the torsion quasi-injective '

abelian groups are easily obtained. Finally, using the

above, the absolute direct summand groups can be described.

It is seen that the existence of.absolute direct summand

. . . r
abelian groups that are not quasi-continuous is 'due to the

existence of indecomposable abelian groups that are not’

\

_ uniform.

In'what follows, all rings are rings with unit and all

modules are right modules. For an R-module M, E(M), End M.
and Aut M denote the injective envelope, R—endomorphism
and R—automorphism rings of M respectively. ann(X) denotes

the right annihilatoer of a subset X of a module.

f

<



I

a

CHAPTER 1

General Results on Absolute Direct Summand Modules

Defini:tion 1.1 Let M be an R-module.

, i) M is called an absolute direct' summand module

(a.d.s.) if for every module decomposition

M= U6V and for'every complement submodule
Wof Uin M, M = U @ W holds.

ii) M is called quasi-continuous if M is invariant

under all projectors of E(M).

Proposition 1.2 Let R be a ring and M an R-module. Then

i) If M is indecomposable it is a.d.s.
ii)- If M is quasi-continuous it is a.d.s.

iii) 1fM=0/'M isa.d.s. then for each a € A M is

also-a.d.s.

Proof: i) is obvious. ii) Let M= U @ V and let W be a
complement of U in M; then E(M) = E(U + W):® E' =

E(U) ¢ E(W) 8 E' for some submodule E' of E(M), If Ty Ty

and 7, are the canonical projections of E(M) onto E(U),

3
E(W) and E' respectively, then M C n (M) + 7, (M) + my(M) C
(MOAE(U)) + (MANE(W)) + MNE' = U+ W + MNE' since U is a
direct summand and W is closed in M, hence M= U® W@ (MNE').
Now UN (W @ édﬂE') = 0 implies MNE' = 0 so M=U® W. ' -

iii) Pix a €7, let Ma = U 'OV and let C be a complement of

. e e ow m . »
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UinMa. let D=Co ( © MB) so that UN D = 0 and let

a=BEA
E be a complement of U in M containing D. Then M= U @ E

so Ma = (U + E) ﬂPMa = U +, (EnMa) by the modular law since
"

'Ug_M.a' . UNE= 0 implies’'Un (E NM) = 0and E 2 D implies

0‘ .
ENM 2DNM 2C nM =¢ and so by the maximality of C,

Er'\Ma=C. Thus Mu=U@C. O

S~

Definition 1.3 Let M and N be R-modules. N is called

“M—injective if every partial homomorphism M+ N (that is,

a homomofphism of a submodule of M into N) extends to "

homomorphism M-+ N.

Proposition 1.4 Let R be a ring and M an R-module.: M is
a.d.s. if and only if for every decomposition M = U @& V,

V is U-injective.

i v

-Proof: - Suppose M ig a.d.s., let U CU be a submodule and

let ¢:U' -~V be a homomorphism. Put X = {u - ¢ (u)|yeU'};

then x{is a submodule of M 4nd if Scexnv, X = :p - ¢(u')j for .

some UEU', u=x + ¢(u) € VNU' = 0 since ¢(u) €V apé so

u.= 0 and x = 0. So an = 0, there is a complement C of V

£

Tin M conta:.nmg X and then M = c QV. If uGU, u=c +v,

4.

c€ C, VEV (unlquely) and the map ¢ U+v defined by ¢(u) = v
if a homomorphi‘sm. If u€y', u=u- ¢(u) +¢(u), u-¢ (u) €c,

v 80 ¢(u) = cb(u) and so $ is an extension of § .

L3
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Y(u) +vevVvthisM=C@gV. 0

.

Co;lversely, suppose M = U @& V,-’V'U—injective and let C

be’ a complement submodule of V in M. Let U' = U N (V& C);
if ueU', u=c + v, c€C, VEV so we can define a
homomorphiém $:U' >V by ¢(u) = V which extends to ¢:U-+V

- v

by assumption. Let W€ U and put D = (u - Y(u))R + C; if

" v€EDNV then v = ur - Y(u)r + ¢ for some r €ER, c € C hence

ur = v +-yp(u)r - ¢ with v + ¢(u)r € V, ur € U' and hence
p(ur) = v+ Y (u)r showing that v = 0. Thus DNV = 0 and
since D' 2 C, the maxirpality of C shows that D= C so that
for each uEU,‘ a - w(ui €EC. If x€M we have

X=u+v=ou-=-y(u +P(u + v with u€U, vE€V, u - Yy(u) €¢,

N,

\
Remarks i) Imitaging the proof of (3, p.23] we will show

that \} is U-injective if and only if HUCV where

H = Homp (E(U), E(V)): Suppose first that HUCV and J{.et

¢$:U' -V be a partial homomorphism U=+ V; considering ¢ as a
map into E(V) it extends to $:E(U) - E(V) and then ¢|y is the
required extension of ¢ . Conversely, assume V in U-injective
and let h€EH . Let Q = {x€U|h(x) €V} a submodule of'U .

The homomorphism h = h|Q:Q»V extends to El':U-»V" and }-11

gives rise in turn to ;’2 € H such that BZIU = ﬁl - IfQ =10

.then (h2 - h)Uu = 0 since hz(U) = }-11(U) cCVvV. In this case

“since V is essential in E(V), VN (h, - h)U = 0; then there

Y 4 -y
exists a non-zero y€V and an x€U such that y = (h, - h) (x)

‘and so since Bz(x) = Ei(x) € V we have h(x) = Hl(x) -y€ V.

= xX€Q =y = 0'a contradiction. Hence Q = U .

°

.
At b et Y. S S



ii) ~An a.d.s. module M satisfies a weak form of the

M where each M is”’ Yer
Ao o

exchange property: , IFEK=MON=@®
guasi-injective and isomorphic to a direct‘smmna.nd of M .

then there exigt submodules MO'L c Ma such that K= M & (QAM&) .
This .can be shown easily by replacing quasi-iﬁjectivity with

relative injectivity in the proof of- [6, Theorem 3] :

n
Assume N = 0 . There is an o € A and a submodule M& = 0 of

Ma such - that MOM& = 0; otherwise, MnMa would be essential

in Ma for all a €A, then, QA(MnMa) would be essential in

K and since eA (MnMa) C M, M would be essential in K
contrary to assumption. Let M' be a submodule of K maximal
with respect to the properties a) M' = @AM&, M& submodule - .
Of M_and b) MNM' = 0 . The claim is that K = M @ M'.

Let ¢:K~K/M' be the natural epimorphism. Since MNM' = 0, |
¢ |M is a monomorphism so that ¢(M) is an a.d.s. submodule i
of RK/M'. 1In fact, $(M) is essential‘in K/M'; far, if there
Jli.s a k€K such that 0 xk + M' € K/M' and (kR + M') N ‘¢(M) = 0

,in K/M' then (kR + M') N M= 0'in K and if k = k +...+k

]
1 n
v < i - -
a; €A, kaiEMai" 1s4isn, and(f A *{al' "','an}' then
n . "
kR +M'" = & M' @(M' + k R) contrary to maximality
ael' @& 1 %4 ®y

of M'.. Hence K/M' C E(¢(M)) and for each qa €A, oM ) C R/M
c E(¢(M)): For each o € A let xpa be an isomorphism from Mu
onto a.direct summand of ¢ (M) and put ¢ (M) = xpa(Ma') G'ﬁa
so that E(¢(M)) = E(p (M )) © E(ﬁa) . For each a €4,

~1
dﬂl’a :

Jprojections of E(¢(M)) onto E(wa(Ma)) ’ E(ﬁa) respécti;/ely, -
, R .

v, (M) > E(6(M)) and if 'rr(;, n; denote the canonical

-6 -
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. o _ !
we have 1% ¢ Yty (M)~ E( (M) and )A : | |

o -1 . - . A N P \
7{2 b ‘B‘a : tpa.(Ma) > E(Mu) . Since wa(Ma) is quasi lpjectlve/
: : a C a . v
and M a.d.s., S0 fact, .y ¢££i°‘) —C-iwa(Ma) and T, ¢(Ma) c M,
"and ‘so ¢)(Ma) C ¢(M) for each o €A ., Hedce ¢ (M) = K/M' and
= ‘ N .

N\ o it £ollows that M and M gengrate K" ,
. ) ’

4 [ . » 1 Vo4 . -
In general, a.d.s. modules do not satisfy the exchange
property. For example, Z as a module.over itself is a.d.s.

but does not satisfy. the e'xchange property in view of the

E

fact that Endz

%2 Z and [15, Proposition 1} . | «

Corollary 1.5 If M = .0 @& V is an a.d.s. '5mo'dule where U

-
”

hgs a tprsion-free element then V is injective.
. / % . «

. Proof: Baer's criterjon for injectivity .states that an
9oL ‘ . o
R-module N jJis injedi:ive if and only if N is RR-iE_jectiv'e. !
) v If uEU jis.torsion free then R W uR C U and by U-injectivity

of V and Baer's criterion it follows that V° is injective.. O

*
1

g

Remarks i) Thisbcoroliary shows that a ring R is . ;
d A ~ semisimple artinian if and only i‘{;very R-<module is a.d.s. * Co %
. . . ' . . ¢ |
JFor, if R is.semisjimple art/gnian, every R-module is |

i

. . :
injective hence a.d.s. and if every R-module is a.d.s. and
L3 . " Y

[P

M is an R-module then,RR ® M #s’a.d.s. Hence M is injective

» showing that R _is semisimple artinian. ' ‘//

~ o

g \ ' N ' P

-

ii) 1f évery idempdtent of R is'central then RR is a.d.s._
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1

.t ] . . ‘ . ‘
Theé reason for this isdthat the assumption implies in

b . ,
essence that if ecR_is an 1dempotent,_HomR(E(eR),
+ : ’ . ,

E{((1 - e)R).) = Q'= HomR(E((l - e)R), E(eR)) so that there
are no non-zero partial homomorphisms between any two

complementary direct summands of Rpoe

>

( Corollary 1.6 If M= U ® V is a.d.s. and there is a
+ . ' ’ B ) : 9 .

non zero monomorphism ¢:U + V then U is quasi-injective.
by ~=

\

‘{ Proof: Let U' be a submodule of U and y:U' + U a
v . homomorphism. The maf ¢¢~l: $(U') - U.extends to

i a:¢(U) » U since ¢(U') € ¢(U) € V and U is V-injective. . ...

Then if wu€U', a¢(u) =y ¢_l ¢ (u) = y(u) hehce ad i§ the

¢ v

required extension of ¢ . 0O

[N
. ‘}
*

L f

Remarks This corollary permits Us to_ generalize corollary

a" ! » . I3 »
4.4-0f [10] . If M is an R-module then M is J-quasi-injective

(N) (i) is a.d.sl

4
. quasi=-injective by (2, Coroqlary 2] hence a.d.s. Now

( N)is a.d.s. but that there is an infinite

(1)

suppose that M

index set I spch that M

M(ru is not guasi-imjective a

() (1) g (W

is not a.d.s. Then by
. - (2, proposition 1] |,

contradiction in view of the fact that M

(1)

' ‘¢ and corollary 1.6 T IEM is a.d.s. for eJery I, then

é‘ég? . - |
) o M(I) o M(I) is a.d.s. hence M(I) is gquasi-injective showing
. .

- -

-8 -

if and only if M /}s a.d.s. if and only if M
R ﬂ .
» for every indé@ set I : If M is Z-quasi-injective the M(D” is



‘Corollary 1.7 fiﬁ?t R be a right Noetherian ring and M an

A e

that M is Zlquasi—injectivg{ The same for corollary 4.5

of [l0] : A ring R is gquasi-Frobenius if and only if'RR(N)‘ )
is awd.s. If Ry is quasi-Frobenius then RRQ’) is in fact -
(N)

is'a.d.s. f ) :
R -

then - (1) is a.d.s. for every I so that by corollary 1.5

injective hence a.d.s. Conversely, if R

] ‘ . .. s . - 13 *
13R(I) is injective TFor each I . If P is a pro;ectlw
R-module thére is an index set I and an exact sequence

- o
RRCD - P =0 which splits showing that P is injective.

Then by [4, Theorem A] R is quasi-Frobenius.

If R is a Tight noetherian ring then every R-module has a >

~maximal injective .submodule (14, Exercise 4.1] which is a

direct summand and so its complementary direct summand is
- / o I ,
reduced, that gé, it contains no injective submodules
\ ! ”

except 0 . 1In this case the following result holds. L,

- h ﬂ-\%

Ty

a.d.s. R-module. Then M. = U @ V where V is injective,

U reduced and there is no non-zero bartial.monomorphism

VU, 3 “ - . oy
. ’ < | )

Proof: The first part was étated above. If U = Ollet

£' : V' > U be a partial monomorphism V = U and assume

f' # 0; then f' extends to f:V - U and flE(Vk) is’a

ﬁonomorphism since V' is essential in E(V') . Then f(E(VQ))

is a non zero submodule of U a’ contradiction. a

¥
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e

-then M = U ® VwhereU is reduced indecomposable, V= -

‘VEV is a torsion-free element then ann(u) N ann{v)

/

'
Ve

Corollary 1.8 1ILet R be a right noetherian ring such that
> .4 .

Rp. is uniform and let M be an a.d.s. R-module. If M is

decoﬁposable, not injective and has a torsibn-free element

injective torsion and there is no non-zero partial
mon6ﬁ0rphism vV-—-U.

» P

Proof: U 2 0 and it only needs to be shown that it is .

s
a

ind’composéble and V torsion. If V has a torsion-free
. |
element then U would be injective by corollary 1.5 a \

contradiction since U is reduced. If x=u + v &M, UETU,

0
O L]

4

jinge V is torsion, ann(v) = 0, so U has a torsion“free

and since RR is uniform either ann(u) =. 0 or ann(v)

LY .
element. If U = Ul ® U2, Ui z 0,1 =1, 2 again if

= + € U u, € U, i ion= ; i the
u ul u, U, ul Ul is a torsxonﬁfree element either

ann{u,) = 0 or ann(u

1 2)

or U1 is injective since U is a.d.s. . In both cases we

have 'a contradiction thus U is indecomposable. &

«

-

0 so that either U, is injective "



‘UxcC, s DZ'. We now show that D is C-injective by‘dsing

CHAPTER 2
The Case of\a Right Noetherian Ring

~ .

Sy
Y
>\.\\
‘.

ﬁ"‘:\
We will now assume that R is a right-Noetherian ring. We

know from corollary 1.7 that an R-module M which is a.d.s.

has the form M- = U 8 V, U reduced, V injective and there

is no non zero partial monomorphism V - U. If U =z
t . I -

then V is necessarily torsion. By replacing the word

’

"monomorphism" by "homomorphism" below, we dbta;n conditions

" that are sufficient for a module to be a.d.s.

Proposition 2.1 Let R be a right noetherian ring and M

¢

an R-module, whére M = U @ V, U a.d.s. and reduced and v "
injective such that there is no non-zero bartial

homomorphism V - U. Then M is a.d.s.

4

. g ' . .
Proof: Let M=C ® D; we can write C = Cl @ Cz, D= Dl n} DZ'

where‘Cl,‘Dl are injective and C, ,D2 reduced. By

[12, Lemma 1.1] C, ® D, is reduced and the préject%on L
sending V:into C1 @ Dl isa monoﬁorphism. Then

C1 ® bl = q(Vv) & V' fgr some injective submodule V' and

since v N (Cl o] Dlx Cw(v), v' N v.= 0 hence maximality

. 0f V.shows V' = 0. Thqé,v ] Cl o Dl and consequently

<

remark (i) following proposition 1.4. Let

4

< ¢:Cl ® E(Cz) - Dl 0 E(Dz) be a homomorphism-by the matrix

- 11 -




reduced gince R

of homoinorphisms ¢ij = s ¢ ii i =1, 2, where Ty ii

are 'the relevant canonical projeiyégps;and injections’
n .
t

respectively. Then ¢il(cl) CD 0 since 915

({
1 #9127

Qcorresponds to a partial hdﬁomogghism vV -+ U: if ¢12 = 0,

&
since D, is essential in .E(D,), D, N ¢ (C;) = 0 and if
. t

X = {cfscl l¢12(c)'€ D,} then X ik a non-zero submodule

of Cl and ¢12 | x: X = D, is a non-zero.partial homomorphism

1

-\
and finally ¢22(C2) C D, since

" § is a.d.s. Hence ¢:C; ®C, > D @D, . O

2 1 2

Example If R is a commutative noetherian domain and P = O

is & prime ideal of R then R @ E(R/P) is a.d.s. . Ry is

\ R # E(RR) =‘f1eld of fFactlons of R and RR

is uniform, E(R{P) is'injective_and torsion hence there is

no non-zero partial homomorphism E(R/P) -+ R . For example
L} ' .
the Z -module Z @'Z(p®) is a.d.s., pE€Z ajprime.

S
I

Proposition-2.2 Let R be a right noethe ian ring. Suppose

M= 9 Ma where for each a €A Ma is a.d.s. and for°a = 8 in

A

A ,‘HomR(E(Ma), E(MB)) = 0 . ghen M ié

.d.s. .

-

Proof: Assume M=.U ® V. The condition HomR(E(Ma),_E(MB))==b,

‘", For each mE€M_ , we have m/= u + v where

g F g
u = ZmQEU , vV = Zuaev rm,_ N EM

M - M
o

A}

. If oo 2 B8 the

correspondence m — m is a homomorphism M, - Mm which is

B

- 12 -
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therefore zero so for each a €A, o =.8,.we have mu»= 0=n,

a
. 4 .
and so mBEU, nBEV which implies that MB = (MBnU) ® (MBnV).
It follows that V = eA(MunV)" U e @A(MaﬂU). We must show

that V is U-injective. Since R is right noetherian,
o

E(U) 8 E(V) = [8,E(M_00)] @ [EAE<Maer)1;1et $:E(U) - E(V)
be a homomorphism and put d’a = q>iOt where ia are the relevant
‘ Canonical injections so that ¢a:E(MahU) > E(V). If g = o

" and TTB:E(Vy) - E(MBHV) is the canonical projection,
H N -+ ‘ . . =
T ¢u'E(Ma U) E(MBOV) so_that g dg 0 and hence

¢

q>a(MaﬂU) < Ma NV and hence ¢ (U) SV showing V U-injective. O

N o n i i .S.
a(E(Ma 0)) ¢ E(Ma V). Since Ma is a.d.s

~Note that the above proposition is a partial converse to

proposition 1.2 (iii). -

k
Corollary, 2.3 Let R = % Re, be a right noetherian ring

where e,, 1 = 1, ..., k are central orthogonal idempotents

g i
and Xeio= 1. Then an R-module M is a.d.s.. if and only if
. l ' 14

Mei is a.d.s. for each 1 = 1, ..., k.

[4
‘ k kK -
_Proof: If m€M, M= mel = ]me, so M =]Me, . If
N 1 1 i 1.

k _ k
1535kandeMe.n'Z Mei,m='z mie; = mye,,
- jzi=1 Kk J=i=l
mi,ijM andm=mjej=mje.= | Z_~ Meiej=Oso’that

k k. )xa=l :
M= ti)Mei . E(M) = ? E(M)ei so that E(M)ei is injective for

each i =1, ...,%k. Also Mei c E(M)ei, and in fact since

M is essential in E(M) and f?r each 1 < j'< k,

- 13 -




O k X ’ .
) EMhe, N | Me, = Q, Me., is essential in E(M)e. so
- 3oLk i o , j
jai=l . v
E(fe. ., Since clearly Hom_(E(M)e., E(M)e.) = 0 :
. -] - R i 3
\ hif_i # j, by propositions 1.2 and 2.2 the conclusion

E(Mej)

1\ ~ follows. O

3

; Definition 2.4 Let M be an R-module (R right noetherian).

Then by [12, Theorem 2.5] E(M) = & Ea where each Ea is

. . A

4 »

\\ injective indecomposable. We say that M is a homogeneous
\‘ module if the E, are pairwise isomorphic.

\ We will show that a homogeneous a.d.s.. R-module is either
\\ indecomposable of quasi-injective. Let M = U ® V be a
homogeneous a.d.s. module. We can write E(M) = E(U) & E(V)

v where, say, E(U) = '(BA Eu , E(V) = er EB the E “, EB belnfg

\  indecomposable injective and Ea L B8 for all a,B€ AVT

{12 Theorem 2.7] . Put U = E NU, V, = E, NV: then ’
AU o o

B 8

“E‘(Ua), = E, . E(V ) = E, and since R is right noetherian

)
f g . (@AUa) = 9 E, = E(U) so. that @Aer is essential in U.
Si\n:flarly eI‘VB is’essential in V. Now fix this notation.

 Lemma 2.5 U % V, for all a€A and for all B&T .

8
Proof\ Let o €EA, BET andw ~vE IIJ 1s the
\ Fo = Bg v Vap
restrlc\:lon of a homomorphlsm E(U) = E(V) hence )
waB cx an' e VB . Similarly tp B is the restriction of ,

a homomorRhism E(V) - E(U) so was = aBle: g > Uy -

A

- 14.-
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Clearly t])';'é = ‘;;é so waB :Ua N VB‘ . O

We will need the following result. Let R be a right

noetherian ring and Aa’ a€A, B B €T R-modules such that

BI
Aa is BB - injective for all a« €A and for all 8 €T . Then

9AA0L is erB'B flnjectlve: Let hEHomR(E(GrBB), E(@AAa); since

R is right noetherl.an ~E(<BI,BB) = @I,E(BB), E(@AAOL) = OAE(Au)

and if haB = ﬂahls :E(BB)~ i E(Aa) where My 1B are the

relevant canonical projection and injections, haB(BB) c Aa'

~

» " C '.
since Aa is B‘3 I‘BB) co Aa

- injective hence h(e n

- Proposition 2.6 Let R be a right noetherian ring and M a

homogenecus a.d.s. R-module, If Mbis .decomposable then it

is quasi-injective. \

Proof: We use again the terminology established above. .
We can assume without loss of generality that
Card A < Card T ; then there is a subset TI'' C I with

Card T' = Card A and an isomorphism @ Ua - GBI,,V‘ which

A 8
extends to a monomorphism U - V since M in a.d.s. and

G)AUa essential in U. Then by corollary 1.6 U is quasi-

injective hence U = &)A(UnEa) ] Ua and each ‘Ua is quasi-

A

injective. Now let vEV, v=e, +...+ e eiEEBi’

1
BiEI‘ . Since V ® VBi is-a.d.s. for each i, the identity

Vgi > VBi extends to oi:V - vBi and then the .homomorphism

n
o:vV g_a VBi defined by o(v) = Zoi(v) is an extensioan of the
. . n n . } n

. identity ? VBi - ? YB':‘_’ it follows that Vv ela VBi ® Ker o

' 1Y .
3 ko)
‘v
- 1% -
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and we have v = g(v) + (v - o(v)). Since @.V, is

g
o n'
essential in Vv,—vR N (tf vBi) 2 0 so g(v) = 0; then
n : n
v - g(v) € Rero N (@ Eg;) hence v -g(v) = 0 since @ Vg,
n 1 1 1 1
is essential in ? EBj_.‘ Thus v = g {v), e, € VBi’ l<isn

and V)=. (i;I,V3 . This shows that M is a direct sum of
isomorphic quasi-injective submodules and by the result

above M is gquasi-injective. O , .

We can now give a complete description of a.d.s. modules

over two kinds of rings. First we need the following lemmas.

Lemma 2.7 -~ Let R be é-commutative noetherian domain of’
dimension one. If M is a torsian R-module then M = aM My
where M is the family of maximal ide;ls of R and
M, ="{x€M | ann(x) is a P-primary ideall.

) ~
Proof: That Mp is a submodule fo‘r each P €y follows from
{i3, p.-153 corollary‘l] . We now show that M = ZM Mp .
Let 0 = x€M then 0 = ann(x) G.R and ann(x) = 0, NQ, ... ﬁQ;1
where the Q primary with dist.inct radicals, say
/Qi = Pi’ l1sisn. Any two distinct Pi are comaximgl’
so P, + Pj = R and Qiif Q:I, = R if i = j. Then it is easy
to see that for each 1, 2 £ 1 < n, we have ;
Q1Qp.--Q; 1 ¥Q; = Rand then R= (Q; + Q;)(Q;Q; * Q5)...

(Q Q-+ Q_

l + Qn) = Q2 Q3 . . '. Qn + Ql Q3 - e no’ Qn + . -'¢
Ql Q2 v Qn-l as can easily be 'shown by induction. Hence
n ' n
1 = )q, where q; € T Q. and x = ) xq; . For each i,’
1 i=zj=1 g 1

Vi

- 16 -




. Theorem 2.8 [1] .

1<is<n, ann(xq;) 2 Q, so that again by [13, p.153

corollary 1] ann(xq,) is P.-primary and hence xq. € M_:
b 1 l 1 pi

Thus M = z Mp . That this sum is direct follows from
M

maximality of PE ¥. O

We remark here that E(M)p = E,(Mp) is equal to the
P-component of the decomposition of E(M) so that Mp is

homogeneous for each PE€ M [i2, Theorem 3.3]. If P, P'E€Y

¢

Mp is a.d.s. for each PE‘M.
t

[]
L3 a

Let R be a commutative noetherian domain

‘of dimension one. Then an R-module M is a.d.s. if and only

if it satisfies one of the following conditions:
), i) M is indecomposable or injecgive.

ii) M is torsion and for every maximal ideal P

P

of R, Mp is indecomposable or quasi-injective.

iii) M has a tors:.on-frae element and M=U® YV
‘wl'(ere U is reduced lndecomposable, V injective
torsion and there is no non-z&ro partial
homomorphism V + U.

-

Proof: The modules in (i), (ii) and (iii) are a.d.s. by
propositions 1.2, 2.1 and 2.2. Conversely, if M is not

injective, decomposable and a.d.s. we have two cases. If

and P‘= P' then it is easy to see that HomR(E:(M)p , E(M)p,) =

-

~ hence by propositions 1.2 and 2.2 M is a.d.s. if and only if




o—

M is torsion we get (ii) from proposition 2.6 -and Lemma 2.7.
If M has a torsion free element then ¢orolla;y 1.8 applies,,
sO M=U® V where U =2 0 is reduced indecomosable, V
injective torsion and ;hére are no non—zéféﬂpartialo
monomorphisms V - U. Assume there is a non-igro partial
homomorphism V » U then it extends to a non-zero
homomorphism V + U whose restriction ¢ on some indecomposable
injective summand E of V is non-zero. Also there is an
indecomposable ihjective éummand E' of E(U) such that »f

m':E(U) » E' is the canonical projection, 7'¢(E) N E' = O.

:fEL ~ E(R/P) for a maximal ideal P of R (L2, Proposition 3.1]

and if we consider R/P as a submodule of E', n'¢(E) D R/P

... and UDR/P. W= {x€E| n'$(x) ER/P} is a submodule of E

and if 5 = "'¢|W’? &(W) = R/P, W/Ker$ ~ R/P and hence

W/Ker¢ is irreducible. Then by [8, Lemma 2],

HomR(W/Kera, W) = 0 thus W/Ker$ is isomorphic to a submodulé
of W and we have a nonjéero partial monomorphism V -+ U

a contradiction. O

Proposition 2.9 Let R be a commutative artinian ring,

k
R= @® Re, , e
1 1

i " ei, where each Re, is a local ring with
maximal ideal P, . Then an R-module M is a.d.s. i1f and only
if Mei is indecomposable or quasi-injective for each i.

Y

Proof: The existence of such a decomposition for R is

".given for example by [9, Theorem 7.13]. If i = j then

- 18 -




~

HomRiE(Mei), E(Mej)) = 0 and for each i, every -

indecomposable injective direct summand of E(Mei) is
R-isomorphic to E(Rei/Pi) so that Mei is homogeneous. The
conclusion then follows from propositions 1.2, 2.2 and

2.6 . 0O

\

Theorem 2.10 Let R be a commutative noetherian domain of -
dimension one. Then an R-module M is quasi-continuous if

and only if

L4 i) M is guasi-injective, or
~

4
g ii) - M= U ® V, V injective torsion, U torsion-free
uniform.
q ' A
Proof: First it is clear that if M is indecomposable then /
it is quasi-continuous if and dnly if it”is uniform. Assume
that M is ‘indecomposable and quasi-continuous. If M‘has a

’

torsion-free elemenf then it is torsion-free hence we

-

have, (1i). If M is torsion, since E(M) 1§ tndgcomposable,

© \E(M) ~ E(R/P), P a maximal ideal of R hence by [8, Lemma 2]

we\héve (i1). Now assume M is decomposable and
quasi-continuous. If it has a torsion-free element a;d is— "
not quasi-injective we have (ii) by Theorem 2.8. If it is
torsion, we héve M= GM Mp wherg M= set of maximal idea\]\.s ‘

of R. Since each Mp is also quasi-continuous, by

Theorem 2.8 each Mp is quasi~injective. Then M is ?

quasi-injective because if P, P'€M and P =» P' then

./\
ek s,
i,

N e 19 -~ . ! ‘ S




5

e —

¥

HomR(E(Mp), f(M )) = 0,

P

Conversély, if M is as in (i)

then it is quasi-continuous (10] . Assume M as, in (ii).-

~

Let E(M) = E; ® E, and 7, , 7, the corresponding canonical |

projections; also EXM) = V.9 E(U) and since'E(U) is

indecomposable we can assume without loss of genérality
. €

-

that E(U) is a direct summand of E; . Then
= \ -',,
= 4 = +
T (UtV) =5 U+ V=U+mVCU+VNE CM and |
T,(U+V) =7, VCVNE, CM hence M is quasi-continuous. O°
L
‘ . L]
\ ) ( .
- R
\ . ‘.
[»]
. U s 4
£
r® :

z
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Quasi projective abelian groups

™~ : .o ' ‘ . Y ;
- i

Definition 3.1~ An R-module M is called quas}-projectivé if

for every submodule N of M and for eyery R-homomorphism *

a

$:M - M/N there is an R-endomorphism ¥ of M such that the

‘ . M . ) , c. ."
. % Y / 1‘1’ b ‘ . @ -

M~ M/N : o

n‘ ’ . » ) 4? A?r
N o - n{ é- 4
is commutative where nﬂis the natural epimorphism.’

diagram

Example: Projective and completely redQCLbfe modules a;é

o

!
quasi-projective.

/

. - )
E ' e
1 ‘ '

» .

Lemma 3.2 Everyt direct summand of a quasi-projective
N ° . . ! , -

module is‘quasi-projective.

! . /

A .

é;ggiz LéF M= M1 o Mz be'a quasirprojectivenR-moduia, C 1
let N C Ml'bé a  submodule and'¢:M1 - Mi/N a %omombrph%sm. ' o
If 7:M ~» Ml'is the'canonicaluprpjection then . | N
¢m:M > M,/N C M/N and there is a Yy €End; M §uéh that - jﬂ . . t .{
\n? = ¢ Yhefe nﬁM + M/N is the natural epimorphism. If . l
i:My + M is the ;gnonicél injection then nyi = ¢7i = ¢,'
w.i:Ml - Ml‘gnd is‘the req?ired ﬁomomqrﬁhiSm. a |
a . L T .. o
Lemma 3;3h_,If M is Quasi;projectiVe qpa ﬁ c M‘iSva fﬁlly ) ot
. . - : | . ) !
o tas ST o
/ ) . %



invariant submodule then M/N is quasi-projective.

Proof: Recall that N is a‘fully invariant’ submodule of M
if for all f€Enq M we have £(N) C N. Let M'/N C M/N

be submodule where N C M' C M and let ¢:M/N - (M/N)/(M'/N) ',

T

be a homomorphism. Let £:(M/N)/(M'/N) v MM,

f((m + N) + M'/N) == m + M' and nN:M -+ M/N, M >~ M/M?,

Ny
n:M/N - (M/N)/(M'/N) the natural epimorphisms. There is
v . '!I

a y €Endy M making the diagram

commutétive,‘i:ﬁat is, nM.w = f¢nN . Since y(N) C N we can

define a homomorphism ¢ :M/N =+ M/N by ¢(m + N) = y(m) + N, "

mEM. We theg.Jla1Le_ﬁiub_nﬁj*;;ﬂ,.JIL'__=_thL_nN'_henceﬁq‘ul,,—L¢w

since £ is an isomorphism and ny an epimorphism and § is
athe required map. O ¥
o Examg‘le If.n€2 , Z(n) is gquasi-projective.

3 v
‘ - ]
ta

Lemma 3.4 If Mi(ie I) are quasij-projecti\'re\ R-modules such

that for every submodule N of M = @

I Mi we ~ha.ve N = OI(NnMi),

then M is quasi-projective.

{

-_22-
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PN

. Proqf:

4

If N EI_'M is a submodule then M/N = GI.(Mi/Ni)

where Vi€, Ni = Nr\Mi . If\i z j then every hémomorphism"

Mi i M./Nj is zero; for, otherwise there exist submodules

N' C M, Then the

¢

N' C M.,
A7 =3

submodule S

. [} ] l ‘
such that f‘Mi/Ni N Nj/Nj 2 0).

{m+neM oN!|Ef(m+N')=n+N,} is a
. 1 ] % i ]

subdirect sum of M, and‘N;.' . On the other hand we have by

® N, a
]
contradiction‘sinci the projection of S into My and N:"l are

onto. - ) "
r / : °

Thus every homomorph:.sm $: e (M./N.) acts component-
I

assumption that S = (M;NS) & (Mj ns) = NJ',.

. wise and it is no,w easy to see that M is. quas:.-project:we. a

v

o

Lemma 3.5 If N is a submodule of a quasi-projective
module M such that M/N is isomorphic to a direct summand
of M, then N is also a direct summand of M.

Let A be a direct summand of M'with m:M -+ A, .

4 A
EE¥ 1Y

-

-

< .

O VU
-
} - . .

»

e L . T

+-M-the prejection and injection, and let a:A » M/N.
~If n:M -*‘M/N is the natural épimdrphism, there is a

Y GEn@R M making the diagram

. \:- ~
. , 4
' T . 1
[v
M—* A y M/N ,
n
v
M )
. ’ ) .

RS VUV PR

PR ST
.



e

*

commutative, that is, am = ny§ . The seguence
0~ N~ M 1 M/N % 0 is exact, the homomorphism xpia-
sends M/N into M and ny ia L = aric * in the identity

map of M/N hence the sequence splits and MM NO (M/N) . O

el

L )
Lemma 3.6 Let N Be a submodule of the quas:.-projectlve
4

module M such that there exists an epimorphism e:N -+ M.

-

Then M is isomorphic to a direct summand of N.
Proof: Put K= Kere and let g:N/XK A M be the isomo;;phism

induced by € . Let a:M -~ M/K be the injection defined by
" ‘ ‘

‘MY N/KC M/K so that ac is the identity on N/K and®

n:M » M/K the natural .epimorphism.. Since M is

' quas:.—progectlve there is a ¢ € End M such that n = a ;

s:.nce o (M) € N/K v(M CN hence ws is a homomorphlsm
N/K » N and n ¢ € =at is the J.dentlty on N/K .’ Thus the
exact sequence 0+ K->0N 3 N/K =+ 0 splits and

NvKON/KvKGOGM. O

”

°

Lemma 3.7 If N is a submodule of a quasi-projective

module M then Card'(EndR(M/N)) s Card(Endp M) .

Proof: Define Y:End_ (M/N) - End M by letting y(a) be the
R-endomorphism of M such that n¢ (a¢) = an which exists by
quesi-projectivity of M, where n:M » M/N is the natural .

epimorphism. For a, BE Endp (M/N), ¢ (a)- = ¥ (B) implies

.-
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an = ny(a) = ny(B)N= Bn impliés o = B since n is

epimorphic, hance ¢ is an injection. 01
- *

. A
Before giving a complete description of the' quasi-projective

‘abelian groups we state the following results all of which

*

can be found in [5]°

1) " If F is a free abelian‘groué and pn a prime
power then F/pnF is a direct sum of cyclic
groups each of order pg.

2) ° A bounded pgre'subgroup of an abelian.gfopp Glis

' a direct summand of G. [5, Theorem 24.5]

3) Every p-group contains a baéégisubgroup R

(5, Theorem 29.2] .
p 4) If G is an arbitrary countable torsion abelian T

group then Card(Aut G)h = 280 3

» -, ]

» [5, p.229, Exercise 21] .
’

5) » Every tqrsion abelian group is-a direct su% of #
p-groups (Lemma 2.7). .
"6 For any torsion-free abelian group G
. ) y ian group G, W

L - ‘rank<G) < Card(G) < rank(G) - Ry (5, p.32].

'Theorem 3.8 f7] . An abelian group A is quasi—projecéive

.if_and only if it is: ‘ : !
i) free, ot - ¢ ‘ .

ii) a torsion group suéh that' every p-cohponent Ap

is asdirect sum of cyclic groups of the same !

order pn .




o

Z(p™) © 2(p

v

L]

~ ' . .
Proof: Free groups are clearly guasi-projective. Now

let A _be as in (ii). For each prime p there is a free
n 'n

P bl n N. Pp

group Fp‘ such thaf: Ap '_\; Fp/p ,Fp or some p_E,\ P B\

is a fully invariant subgroup of F so by Lemma 3.3

n N
Fp/p p Fp is guasi-projective. Then by Lemma 3.4, oA
n _ . 4
_ » P . S . .
- A v o (F P 1s quasli-projective.
A @p p = p( p/p ) quasi-proj

p

Conversely, assume A.is quasi-projective and torsion so

_that A = @p‘Ap»' By Lemma 3.2, every Ap is gquasi-projective.

If Ap is ncig: reduced then it contains a s'ubgroup isomorphic -

-

to Z2(p”) which is a direct summand’of Ap hence. 2 (p”) is \
quasi-projective; but then if X ® 2(p®) is a non-zero

subgroup, %Z(p”)/X » Z(p~) and by Lemma 3.3 X is a direct *
summand of Z(p”) & contradiction since z(p®) is | -

indecomposable. Thus Ap is reduced. Also Ap cannot have

direct summands of the form Z(p") @ Z(pn) for n < s ”

if at did, Z(pm) ® Z(pn) would be quasi=projective and
if ‘f:z(p“,‘) - z(pn), is the epimorphism x = x (mod pn) then

z(p") ~ z(pM/Ker £ v (2(p™ @ z(p")) / (Kerf @ z(p")) so

t

by lemma 3.3 Ker f @ z (p™)  would be a direct summand of

n) and hence Kenf would be a direct summand’

~of Z(pm) a contradiction since Z(pm) is indecomposable.

Let B be ‘a.bas'ic subgroup of Ap and assune it haéz direct

‘Summands qf the form Z(pm) and Z(pn) with n # m. Let =«

Bm be the direct sum of all thc-_) direct summands of B that’

are of the form Z(pm) and similarly fo.r. Bn . Then Bm ® Bn

A
rye

v

et

26 =



N\

‘ and hence a direct summand of A_ . If AP =B ® X

L 4 ) “ 6 . ‘f

L4 ’

is pure .and bounded hence a direct summand of Ap a

contragiction since then Ap has a didrect“ summand of the -

.

form\z(pn) ® Z(pm) . Thus B is a direct sum of cyclic

-

groups each of order pn , N €N1,‘ hence' pure and bounded

P
then X v A_/B is injective so X = 0 since Ap is reduced .

and so A_ = B » ' N K

. & " ‘
Now assume A is quasi-projective and torsion-free. If .
rank(A) = r let F be a free subgroup of A of rank r .°

End A is countable because A is countable and every

a

endomorphlsm of A .lS determined by its restrlctlon on F,
hence by Lemma 3.7 Er;dZ (A/F) is at most countable. Then‘
'by {4) above A/F is finite', so A is finitely generated;
by ti'le fundamental theorem for finitely generated' abelian
groups A is free., 1If rank (Ai is infinite, -by- (6) above-

2 , |

rank(a) Card A, there is.a free group F with

H

Card A arrd an epimorphism F+ A . F is also . |

rank (F),
1somorph1c to a free subgroup of A of the same rank so by
Lemma 3.6 A is isomorphic to a dlrect summand of F and

hence- is free.

Finally A cannot be mixed; otherwise, the torsion part T

of A is non-zero and a-fully invariant submodule so that i

"

A/T is qua'si-projective; since A/T is also torsion-free it ;

-

is free by gbc\ave, so A= T ®&F, F.n A/T (the exact

sequence 0 - T = A - A/T splits). Since T = Q0 = F by
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—
assumption, there is a cyclic direct s't'lmrhand z2(p") of ‘ )
T and on epimor;fbhism g:F ~» Z(pn)'so _that Z(pn) v F/Kere. -

By Lemma 3.2 F ® Z(pn) is.‘quasi-projective, “

(F @ 2(p™))/(Kexrs @ Z2(p™) » 2(p") , by Lemma 3.5

Kere @ Z(pn) is a direct summand of F 6 Z(pn) thu§ Ker e

is a direct summand of F;  this is a contradiction because
then, the exact sequencé 0 -+ Kere = F » Z(i?n-) + 0 ‘splits. |

o

a

.
. .3

Remarks We can use the dual -of Lemma 3.5 to show that a

torsion abelian group A is quasi-injectivé if and only if

every p -component A. is a direct sum of isomorphic cyclic
, P P ¥

or quasi-cyclic groups,z(pn) . (n < =) ., The dual states:
If M is z'a‘quasi—injective_ module and NCM is a submodule\.'
isomorphic to a direct smmnand‘o.f M then N is itself a
direct summand of M. The proof follows Ieasil; from that
of Le_nima 3.5 by reversing the arrows. Now if A is a
quasi-injective, torsion abelian grou;‘J so is each A,
(dual ‘%f Lenya 3.2). A, cannot have flirect summands of
the form ’(pm) ® Z(pn) , N < m; otherwise, Z(pm') ® z(pn)

would be quasi-injective. Then, since the subgroup

n

m-=n
, 2P

{o, p™~ feee s (PT=1) pm-é} of z(p™) is
is.omorphic to Z(pn), it is a direct summand of

Z(pm) ® Z(pn) and hence‘ of Z(pm) a contradiction. The
rest of the argument is as in the proof of Theorem 3.8.

Conver;sely, if A is an abelian g\rbup such that each Ap

-

!
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is a direct-sum of isomorphic cyclic groups, it follows

directly from the definition of quasi—injectivity that
P : - *

each Ap is quasi—-injective; then A is quasi~injective

because I-IomZ (E(Ap) ' E(Ap.)) = 0 whenever p = p' .

-

It is easy to”see that there is no quasi-injective

submodule of Q containing Z except Q itself.—~ It follows

from this that a torsion-free abelian grou'p A is
quasi-injective if and Jdnly if it is 'is?morphic to @I‘Q
where Card I = rank A, that is,u if and only if it isﬂ
divisible. /

-*

Now, if A is a mixed quasi-injective abelian group, and

T its torsioh submodule, then A = T & F since T is closed ’

in A{ where F is torsion-free. Since F is also

guasi-injective, it is divisible; also by Corollafy 1.5,
N :

T is divisible so A is divisible. Thus we have that a

non-torsion abelian group is qﬁasifinjective if and only

if it is divisible. This result is also an easy

consequence of Bauer's criterion for injectivity and of

N ’

[6, ILemma 2] .

Now we can determine the a.d.s. abelian groups using the
above, Theorem 2.8 and [5, Corollary 24.4] . They are the

indecomposable groups, the quési-injective groups and

groups of the form V ® U where V is divisible torsion

(a direct sum of quasi;cyclic groups Z(p*®)), U reduced

v
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indecomposable with no non-"zero partial homomorphisrs -

{or monomorphismé) V - U. (Equivalently we caﬁ -say

U indecomposablé-and not diwvisible.) -

Examples (i) The 2 -groups 2, Z ® 2{p*) are

. quasi-continuous but not quasi-injective, p€Z a prime.

(ii) The additive group of p-adic inteée;'s is a.d.é. but
not quasi-continuous: By [11, Theorem 18] it is .
‘indecomposable, torsion-free of infinite rank. It ‘is
also not divisible because it is not isombrphic to a

' .
direct sum of copies of Q. Hence by Theorem 2.10 :

" it is not quasi-continuous, but’it is a.d.s. since it

-

C . ,
is indecomposable. In fact the existence of a.d.s.

4

groups that are not quasi-continuous is due to

(e

abelian
. the existence of infecomposable abelian groups that are

not uniform. . o

——
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