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ABSTRACT

OPTIMIZED SCHEDULING FOR REPETITIVE CONSTRUCTION PROJECTS

Khaled A. El-Rayes, Ph.D.

Concordia University, 1997

An object-oriented model is presented for optimized scheduling of repetitive
construction projects such as: high-rise buildings, housing projects, highways,
pipeline networks, bridges and tunnels. The model provides a number of practical
features, and incorporates newly developed aigorithms for scheduling of repetitive
construction projects including: 1) a resource-driven scheduling algorithm for
repetitive activities; 2) an interruption algorithm; and 3) an optimization procedure.
The scheduling algorithm identifies the scheduled start and finish times as well
as the assigned crew for each unit of a repetitive activity. The algorithm provides
a schedule that complies with precedence relationships, crew availability and
crew work continuity constraints, and considers the impact of a number of
practical factors commonly encountered during scheduling. The interruption
algorithm generates feasible interruption vectors for each repetitive activity in the
project and provides added advantage over available formulations that consider
arbitrary user-specified interruption vectors. The optimization procedure is based
on a dynamic programming formulation. Unlike available dynamic programming
formulations, the present formulation is capable of incorporating cost in the

optimization process, thus offering valuable support to project team members in



minimizing the overall cost of the project.

For each repetitive activity in the project, the present model assists the planner in
selecting the optimum crew formation and interruption vector from a set of possible
altemnatives. As such, the model can be used to evaluate the impact of different
project acceleration strategies (i.e. multiple crews, increased crew size, overtime
policies, or additional shifts) on the overall cost. The present model is implemented
as a prototype software system. The system is developed as a 32-bit windows
application that supports user-friendly interface including menus, dialoc < :.es,
and windows. A number of application examples are analyzed to illustrate the
use of the model and demonstrate its capabilities. The model can be used as a
decision support system for generating optimized schedules for repetitive
construction projects. This should contribute to cost-effective delivery of

constructed projects.
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BEC"
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DRUC:
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NOMENCLATURE
Project cost in $.
Binary array indicating the availability status of crew n on site, where
AS[n]=1 indicates that crew n is available and AS[n] = 0 indicates
otherwise.

Money value of project duration in $.

Base equipment cost rate before overtime premiums (in $ per day)
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Base labor cost rate before overtime premiums (in $ per day) for
activity i.

Base output rate before overtime (in units of measurement per day)
for activity i.

Crew formation n of activity i.

Local optimum predecessor crew formation that yields the minimum
overall cost (COC',) of crew formation C'y.

Total project overall cost (in $) up to crew formation n of activity i.
Identifies crew number assigned to unit k.

Project duration in days.

Duration to construct the first repetitive unit or section.
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Total Direct cost (in $) for crew formation n of activity i.

Daily road-user cost in $/day.

The earliest possible start time of unit k due to crew availability.

Equipment cost rate ($ per day) for crew formation n of activity i.
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Scheduled finish time of unit k.
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Eelative humidity as a percent.
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Vm:
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CHAPTER 1
INTRODUCTION

1.1 Repetitive Construction Projects

Repetitive construction projects consist of a number of similar or identical units. A
unit could simply be a typical floor in a high-rise building, a model house in a
housing project or a typical section of a pipeline network. Other examples of
repetitive projects include the construction of: highways, airport runways, railways,
bridges, tunnels, sewer mains and mass transit systems. In the literature, the term
linear projects is also used to refer to this class of projects (Arditi and Albulak,
1979; Dressler, 1974; Mawdesley et al. 1989; and Selinger, 1980). In a repetitive
project, construction activities can be either repetitive or non-repetitive. In a high-
rise building, for example, the concrete activity that is repeated in each typical floor
can be considered repetitive, while the excavation activity that is performed only

once can be considered non-repetitive.

Vorster and Bafna (1992) suggested that repetitive projects be divided into two
categories. In the first, repetitive activities have identical durations in all units, and
can be represented graphically by two straight inclined lines as shown in Figure
1.1(a). An example of this category is a housing project, where the same set of
activities performed in constructing a typical house is repeated in all housing units

within the project. In the second category, repetitive activities do not have identical
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durations, and can be represented as shown in Figure 1.1(b). An example of this
category is highway construction, where the time required for excavation may vary
from one section to another. In this thesis, these two categories of projects will be
referred to as fypical, and non-typical repetitive projects respectively, and the

general term repetitive projects will be used to refer to both categories.

Repetitive Repetitive
AUmt Excavation Foundation AUmt Excavation Foundation

6
5
4
3
2

~ Time (days) Time (days)

— N W oW O

> 1
S 10 15 20 25 30 35 5 10 15 20 25 30 35

(a) Typical (b) Non-Typical

Figure 1.1 Repetitive Activity Types

The majority of real world repetitive projects in construction can be classified as
non-typical. The variation of an activity duration from one repetitive unit to another
can generally be attributed to variations in the quantities of work encountered
and/or crew productivity attained in performing the work in these units. For
example, in earthmoving activities the quantity of excavation in each unit can be
different because of the site topography, and productivity may vary from one unit to

another due to the type of soil being excavated, learmning curve effect, and/or



weather impact (Moselhi and EI-Rayes 1993(a)).

1.2 Challenges in Scheduling Repetitive Construction

In a repetitive project, a construction crew that is assigned to construct an activity
in a number of repetitive units is often required to move from one unit to another.
Scheduling the construction operations of this crew should be done in a such way
to allow for maintaining crew work continuity in order to avoid unnecessary crew
idle time (Ashley 1980, Birrell 1981, El-Ryaes and Moselhi 1997, Kavanagh 1985,
and Reda 1990). As such, scheduling repetitive activities should be resource-
driven so as to maximize the efficiency of resource utilization. A challenging task in
scheduling repetitive activites is to develop and apply a resource-driven
scheduling procedure that embraces flexibility and accounts for practical factors

commonly encountered during construction.

As stated earlier, a repetitive construction project often includes repetitive as well
as non-repetitive activities. Each of these two types of activities requires a unique
scheduling technique. Non-repetitive activities can be scheduled using a traditional
network-based tehnique. Repetitive activities, however, require a technique that is
capable of providing resource-driven scheduling. The integration of the two
scheduling techniques in an efficient operating scheduling model is a second
challenging task (Chrzanowski and Johnston 1986, Moselhi and El-Rayes 1993,

O'Brien 1985, Russell and Wong 1993).
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A third challenging task in scheduling this class of projects is to select an optimum
crew utilization option for each activity in the project so as to minimize the project
duration or total cost. Minimizing the project duration is a more complicated
process for repetitive projects than that for non-repetitive ones. For non-repetitive
projects, the acceleration of critical activities results in a shorter overall duration for
the project. For repetitive projects, however, this is not always true, due to the
compliance with the crew work continuity constraint. In order to illustrate this fact,
Figure 1.2 presents a project with five repetitive activities that are sequentially
constructed. Figure 1.2(a) represents the schedule when normal productivity rates
are achieved for all activities. Accelerating the critical activity of Beams, for
example, produces a longer rather than a shorter overall duration for the project
(Figure 1.2(b)), and decelerating or relaxing the Foundation activity results in a

shorter duration for the project (Figure 1.2(c)).

Figure 1.2 illustrates that minimizing the duration of a repetitive project can be
achieved by selecting an optimum crew utilization option for each repetitive activity.
In this thesis, thé word crew formation is used to describe a crew utilization option
that may involve one or more construction crews with or without overtime policy.
When faced with a project involving many repetitive activities, most of which have
their own sets of possible crew formations, the challenging question confronting
the project scheduler is: "Which is the optimum crew formation for each repetitive

activity in the project ?".
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Scheduling of repetitive construction projects is also affected by weather impact
and learning curve effect. Weather impact has been reported to be one of the
main factors causing delay and cost overruns on construction projects (Baldwin et
al. 1971, Koekn and Meilhede 1981, and Laufer and Cohenca 1990). Leamning
curve effect causes the time required to perform a given construction activity to fall
progressively as the same activity is repeated in a number of repetitive units. This
is due to the fact that skill and productivity in performing tasks improves with
experience and practice (Thomas et al. 1986). As such, leaming curve affects the
duration and scheduling of repetitive construction projects (Arditi and Albulak 1986,
Diekmann et al. 1982, Drewin, 1982, and Hijazi et al 1992). Accordingly, it is of
practical value to consider the impact of weather and/or leaming curve effect on
scheduling of repetitive construction projects. Accounting for weather impact

and/or learning curve represents a fourth challenging task.

1.3 Research Objectives

The objective of this study is to develop a model for scheduling of repetitive

construction projects that addresses the above mentioned challenges. In order to

fulfill this objective, the following research sub-objectives are identified:

1) To provide a procedure for the integration of repetitive and non-repetitive
scheduling techniques in an efficient operating scheduling model.

2) To develop an algorithm for resource-driven scheduling of repetitive activities

that complies with precedence relationships, crew availability and crew work
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3)

4)

5)

6)

continuity constraints, and enables the consideration of a number of practical
factors commonly encountered during construction.

To provide an optimization procedure for generating least cost or minimum
duration schedules that can be applied to all types of repetitive construction
projects.

To automate the generation of feasible interruption options to facilitate the
identification of an optimum crew formation and its associated optimum
interruption option for each activity in the project.

To provide a procedure that enables the consideration of weather impact
and/or learning curve effect on scheduling of repetitive construction projects.

To develop a prototype software system for scheduling of repetitive
construction projects that a) incorporates the above algorithms and procedures;
b) enables regular as well as optimized scheduling of repetitive construction
projects; and c) provides user-friendly interface to facilitate input and output of

scheduling data.

1.4 Related Applications

The proposed scheduling model can be applied to optimize the schedule of all

types of repetitive construction projects, however one interesting application is

highway construction and restoration projects. These projects often cause road

closure and traffic congestion, resulting in lost time and money for the travelling

public and local economy. In order to minimize such adverse effects,
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transportation agencies are currently exerting pressure on highway contractors to
minimize construction time. Over the last few years, many of the state highway
agencies across North America have started to apply a number of contracting and
bidding methods in an attempt to reduce the construction duration of this class of
projects. Bidding on cost and time is one of the most popular methods currently
being used and its use has steadily increased after it was recommended by the
Federal Highway Agency in the United States in 1991 (Herbsman 1993, and

Herbsman et al 1995).

Bidding on cost/time is also known as (A + B) method, where "A" represents the
project construction cost and "B" represents its duration. In this method,
contractors are asked to bid on both the project cost and duration, and the major
criterion for winning is the lowest total combined bid. The total combined bid

combines the project cost and the money value of its duration as follows:

TCB = A + B = A + (D.DRUC) (1.1)
where, TCB = total combined bid in $, A = project cost in $, B = money value of
project duration in $, D = project duration in days and DRUC = daily road-user cost
in $/day. DRUC is estimated by transportation agencies to represent the economic
benefits of the road to the public and local economy. It often includes the public
cost arising from the absence of the road such as those associated with additional
travel time, travel distance and fuel expenses. The DRUC values were reported to

vary from $1000/day to a maximum of $200,000/day in 101 highway projects



analyzed by Herbsman (1995).

Highway contractors bidding on cost and time contracts are under a growing
pressure to optimize their resource utilization so as to minimize both time and cost
of these projects. A contractor attempting to reduce project time often utilizes
additional resources which leads to additional project costs, and therefore the
objective of minimizing project time often conflicts with that of minimizing its cost.
The proposed model for optimized scheduling can be applied to highway
construction projects in order to establish an optimum balance between project
time reduction and its associated additional costs. This assists a contractor in
formulating an optimum resource utilization strategy for delivering the project,

ensuring maximized profit.

1.5 Thesis Organization
Chapter 2 presents a literature review of scheduling techniques used for repetitive
construction projects. In addition, a number of practical factors that affect the

scheduling process are discussed.

Chapter 3 introduces the analysis and initial design stages of a proposed object-
oriented model for scheduling of repetitive construction projects. The analysis
stage presents a field study and proposed object and dynamic models. The initial

design stage describes classes, scheduling calculation and consideration of
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weather impact in the proposed model.

The detailed design of the proposed model is described in Chapters 4 and 5. In
Chapter 4, practical factors that affect resource-driven scheduling of repetitive
construction activities are first discussed, and a proposed flexible algorithm for
resource-driven scheduling is then presented. A numerical example is analyzed to

illustrate the use of the algorithm and demonstrate its capabilities.

Chapter 5 presents the design stage of the scheduling optimization functions
incorporated in the present model. It describes two newly developed algorithms for
generating feasible interruption options and performing scheduling optimization. A
numerical example from the literature is analyzed to validate the algorithms and

demonstrate their capabilities.
Chapter 6 presents the implementation stage of the present object-oriented model.
The chapter describes the development of a prototype software system, and

outlines its main modules, limitations, and input and output.

In chapter 7, the results of this research are summarized, the main contributions

are stated, and recommendations for future research are presented.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The development of a project schedule serves several purposes before, during,
and after the construction stage. Before construction, the schedule provides
planned start and finish dates for individual activities as well as the project. This
information is often demanded during the bidding stage according to the stipulation
of many contracts. Moreover, the schedule is used to identify the resource
requirements for the project in order to plan in advance the timely allocation of

needed materials, [abor, equipment, and money.

During construction, the schedule works as a guideline for executing the project. In
order to control the project, the actual performance is measured and compared to
the schedule to evaluate the progress of work. This enables early detection of
deviations from the planned performance and accordingly initiating corrective
actions, if needed. After construction, the as-planned schedule can be compared
to the as-built schedule to facilitate analysis of claims and disputes that may arise.
In addition, analyzing the as built schedule provides valuable historical data that
can be used in future projects. For construction projects, in general, a number of
traditional scheduling techniques are available in addition to those specially

developed for repetitive construction.
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2.2 Traditional Scheduling Techniques

During world war I, Henry L. Gantt developed a graphical display for relating the
progress of work to a time schedule (Antill and Woodhead 1990). This was in the
form of bar charts that represent work activities. Depending on the time scale of
the chart, the length of bars represents the duration assigned for each activity. In
spite of the advent of network planning methods, the bar chart schedule is still
widely used in construction work because of its graphic and easily understood
format (Nunnally, 1987). The bar chart, however, does not illustrate the logical
interrelationships among project activities, and cannot identify the critical activities
affecting project duration (Chrzanowski and Johnston 1986, and Stradal and

Cacha 1982).

In order to overcome the limitations of bar charts, the network techniques were
developed for scheduling construction projects during the period 1956-1958 (Antili
and Woodhead 1990). Network techniques enable the identification of the critical
activities that affect the project duration. Currently, there are two common types of
networks for representing the project activities and the interrelationships among
them. The first is the arrow diagram method (ADM), where activities are
represented by arrows and the nodes connecting these arrows are considered
events or milestones. The second type is activity on node diagram and often called
precedence diagram method (PDM). In PDM, activities are represented by nodes

and the arrows connecting them depict the interdependencies among these
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activities. ADM considers only one type of precedence relationship (finish to start),
while PDM enables the consideration of different types of relationships (finish to
start, start to start, finish to finish or start to finish). More detailed information about
network scheduling techniques can be found in (Antill and Woodhead 1990; Harris

1978; O'brien 1965; and O'brien 1969).

Network scheduling techniques have been criticized in the literature because they
focus on project duration and give little consideration to maximizing the efficiency
of resource utilization (Birrell, 1980; Davies, 1974; Canadian Construction
Association Business and Contractor Relation Committee 1974; and Kavanagh
1985). Birrell (1980) criticized the use of CPM and PERT in construction and
argued that they were originally developed for military and industrial environment,
where the United States national security emphasized the completion of the
project and gave little consideration to the efficient use of resources. In
construction, however, he suggested that contractors are much more interested in
efficient use of resources more than early project completion. Kavanagh (1985)
also criticized CPM for the same reason, and described it as a poor model of the
construction process because it does not include the priorities of the controller (i.e.
the site superintendent), who is most concemed about resource utilization not

critical paths.

The application of traditional scheduling techniques to repetitive construction
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projects has been widely criticized in the literature because: 1) they produce
complex and redundant schedules for repetitive projects (Johnston et al. 1986,
Reda 1990, Suhail and Neale 1994, and Stradal and Cacha 1982); and 2) they are
incapable of maintaining work continuity for crews that are assigned to repetitive
activities (Selinger 1980, Reda 1990, Russell 1990, and Russell and Wong 1993).
The complexity and redundancy of the produced schedules can be illustrated
using a housing project example as the one presented in (Carr and Meyer, 1974).
The example involved the construction of 200 simple housing units. The
construction work of a single housing unit was broken down into 24 activities which
can be represented by a simple network. A project network for the construction of
200 similar units requi.res 200 repetitions of the simple network of the 24 activities.
The resulting network of 4,800 activities for the whole project is highly complex and
its representation of the project includes significant redundancies. This complexity

and redundancy problem increases directly with the increase in repetitions.

Traditional scheduling techniques are also incapable of maintaining crew work
continuity, even if resource allocation is utilized. Crew work continuity provides for
an effective resource utilization strategy, particularly for repetitive activities. Crews
working on such activities are often involved in movement from one repetitive unit
to the next, and should be scheduled in such a way to allow for a crew to finish
work on one repetitive unit, then be able to move promptly to the next without

delay. The application of crew work continuity during scheduling leads to
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maximizing the use of leaming curve and minimizing idie time of each crew (Ashley

1980 and Birrell 1981).

2.3 Scheduling Techniques for Repetitive Construction

As a result of the above mentioned limitations of traditional scheduling techniques,
a number of alternative techniques have been proposed in the literature for
scheduling of repetitive construction projects. These techniques attempted to
maintain crew work continuity constraint and can be grouped into two main
categories. The first includes techniques designed only for fypical repetitive
projects (Al Sarraj, 1990; Arditi and Albulak, 1986; Carr and Meyer, 1974; NBA,
1966; and Lumsden, 1968), and the second includes techniques that are suited for
both; typical and non-typical repetitive projects (Selinger, 1980; Johnston, 1981;

Chrzanowski and Johnston, 1986; and Russell and Caselton, 1988).

Most of the techniques that were developed for scheduling of repetitive projects fall
in the first category. Such techniques are often called the Line of Balance (LOB)
(Al Sarraj, 1990; Arditi and Albulak, 1986; Carr and Meyer, 1974; NBA, 1966; and
Lumsden, 1968). As stated earlier, many repetitive construction projects are of the
non-typical type, thus rendering the LOB type techniques inadequate. The second
category of scheduling techniques are often called the Linear Scheduling Method
(LSM) (Selinger, 1980; Johnston, 1981; Chrzanowski and Johnston, 1986; and

Russell and Caselton, 1988). LSM techniques can be used for scheduling both
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typical and non-typical repetitive projects, thus have apparent advantage over the

LOB type techniques.

Other techniques for scheduling of repetitive projects have also been proposed in
the literature using other names including: Vertical Production Method (VPM)
(O'Brien, 1975; O'Brien, 1984; and O'Brien et al. 1985), Chain Bar-Charts
(Mawdesley et al. 1989; and Perera 1981), Fenced Bar-charts (Melin and
Whiteaker, 1981; and Melin, 1984), Time-Space Scheduling (Oldrich and Cacha,
1982), Repetitive Project Modelling (RPM) (Reda, 1990), Simulation of Repetitive
Networks (SIREN) (Kavanagh, 1985), Construction Management System
(Pedersen, 1972), Velocity Diagrams (Roech, 1972), and Cascade Networks (Rist,
1972). All these techniques share the same concept of maintaining crew work

continuity during scheduling of repetitive activities.

2.3.1 Line of Balance (LOB)

The line of balance (LLOB) technique was developed in 1842 by the U.S. Navy for
planning and control of repetitive projects (Lumsden 1968). LOB was originally
developed for industrial manufacturing applications, with the objective of
determining the resources and speed for each stage of manufacturing in order to
achieve the required output rate. Scheduling of repetitive projects is similar to that
of a factory production in maintaining the continuity of work for operating crews. In

1966, the LOB technique was modified from its original manufacturing industry
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purposes to enable its application to housing projects in the construction industry
in a published report by the National Building Agency (Programming 1966). The
developed LOB scheduie was presented in the form of a diagram, where the
number of housing units was plotted versus time and the repetitive activities were
represented by inclined bars. Ever since that report, the literature has revealed
several scheduling techniques for repetitive projects which were also named LOB
and shared the same concepts (Arditi and Albulak, 1979; Arditi and Albuiak, 1986;

Al Sarraj, 1990; Carr and Meyer, 1974; Harbert 1976; and Lumsden, 1968).

Arditi and Albulak (1979 and 1986) suggested that the large majority of planners
use CPM only in non-repetitive projects because it is not an effective tool for
repetitive construction. They tested this hypothesis by using both network analysis
and LOB to schedule the same repetitive project of highway surface dressing to
enable a comparison of the two techniques. They concluded that the LOB
schedule brings better insight to the project situation, requires less time and effort
to produce and provides a smoother flow of working crews than that of the CPM.
They cautioned, however, that LOB is sensitive to errors in duration estimates and
that the degree of detail of LOB must be carefully evaluated, as the graphical
representation of too many activities can be hard to understand and that of too
few activities of little use. In addition, they pointed out that a major difficulty in
preparing LOB diagram lies in plotting overlapping activities having the same rate

of output, and suggested using different colors for representing such activities.

17



Another solution for that latter problem of graphical representation has been
proposed by Mansur (1989) and Hegazy et al (1993) in the form of an enhanced
schedule representation, which splits the LOB diagram to two parts (i.e. top and
bottom) and presents critical activities on the top part of LOB diagram and the non

critical ones on the bottom part, thus avoiding overlapping of concurrent activities.

Stradal and Cacha (1982) proposed a graphical method for scheduling of repetitive
projects which is similar to LOB, however it was named "Time Space Scheduling
Method". They used this method to schedule project examples of pump
foundation, apartment complex, multistory concrete building, a road section and a
railway bridge. They concluded that this scheduling method provides smooth use

of resources and simple graphical presentation.

In an attempt to provide an alternative to the graphical method of LOB, Al Sarraj
(1990) provided a mathematical formulation for LOB to facilitate finding the start
and finish times for each activity in every unit, the available buffer time for each
activity in every unit, and information about the intersection place between
succeeding activities. In another attempt, Hegazy et al. (1993) provided a
computerized formulation of LOB in the form of a prototype PC-based computer
program (BAL) for scheduling and control of repetitive projects. The scheduling
calculations of BAL are based on LOB formulation provided by Harris and

McCaffer (1989). Another variation of LOB was proposed by Birrell (1980), who
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introduced a construction planning and control model. The objective of the model
was to achieve efficient resource utilization by maintaining crew work continuity
constraint. The model is similar to LOB, however it is in a matrix format that
includes two axes representing time phases and unit locations, where each crew

flows through the matrix along its designated diagonal path.

Suhail and Neale (1994) proposed to combine the use of CPM and LOB
techniques to schedule repetitive construction projects. They proposed using a
LOB diagram to identify the required number of crews to complete each repetitive
activity in the project. They also suggested using a CPM to create a number of
typical networks equal to the number of typical houses. The start-events of these
typical networks are linked to a start milestone activity such as project-start, and
the finish-events to project-completion. As such, all the typical networks become
subnetworks and can float between the project-start and project-completion
activities. The number of the required crews for each typical activity calculated by
LOB, is then used to perform resource allocation in CPM network. This approach
utilizes CPM to schedule repetitive activities, and as such it is incapable of

maintaining crew work continuity.

Thabet and Beliveau (1994) proposed to incorporate work-space constraint in
scheduling repetitive work in a multistory building. They introduced a scheduling

model which attempted to define and quantify work-space as a function of two
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parameters: work-space demand and work-space availability. The model proposed
a procedure to compare work-space demand to work-space availability, which
results in prompt scheduling of an activity without delay if demand is less than or
equal availability. Otherwise, one of three scheduling actions is selected to account
for the lack of work-space. These actions are: 1) decrease production rate; 2)

interrupt flow of activity; or 3) delay activity start.

For scheduling of repetitive projects, LOB scheduling technique has apparent
advantages over traditional ones. The LOB technique is demonstrated to have
significant advantages including: maintained work continuity, resource-driven
schedule development and informative schedule representation (Hegazy et al
1993, and Reda 1990). Although of the above mentioned advantages of LOB, its
use as a scheduling technique for repetitive projects has been also criticized in the
literature. Kavanagh (1985) suggested that LOB was designed to model simple
repetitive production processes, and therefore it does not transplant readily into the
complex construction environment. The inability of LOB to model the leamning
curve effect which is an important characteristic of repetitive projects has also
been criticized by Ashley (1980). Arditi and Albulak (1986) discussed visual
problems associated with the LOB graphical presentation in the case of
overlapping activities having the same output rate as mentioned earlier. The LOB
also assumes that the duration of all repetitive units of a given activity are identical,

which limits the application of LOB to typical repetitive projects only. As stated

20



earlier, many repetitive construction projects are of the non-typical type, thus
rendering the LOB type techniques inadequate (Moselhi and El-Rayes 1993(b),

and Hegazy et al 1993).

2.3.2 Linear Scheduling Method (LSM)

Linear Scheduling Method (LSM) is similar to LOB technique in maintaining crew
work continuity, however it is capable of scheduling non-typical repetitive projects
(Selinger, 1980; Johnston, 1981; Chrzanowski and Johnston, 1986; and Russell
and Caselton, 1988). Another difference between LOB and LSM is the graphical
presentation. Instead of the two parallel lines in LOB, each activity in LSM is
represented by only one line of constant or sometimes changing slope which
represents the activity rate of production. Figure 2.1 depicts the two different
graphical representations of LOB and LSM for the same repetitive activity

(excavation).

Johnston (1981) described the basic format of presentation for the LSM method as
having two axes. One axis plots time while the perpendicular axis plots repetitive
unit along the length of the project, and repetitive activities are represented by
diagonal lines. He suggested that the most significant advantage of LSM is the
simplicity with which it can convey a detailed work schedule. In an attempt to
evaluate the capabilities of LSM, Chrzanowski and Johnston (1986) applied both

LSM and CPM to schedule a roadway project in order to identify the advantages
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and disadvantages of each. They concluded that LSM has several attributes, the
most obvious of which is its simplicity, and suggested that the user of LSM
receives fairly detailed information (e.g. job progress, resource allocation and work
flow through the project), without being confronted with the numerical data found in
network methods. Chrzanowski and Johnston (1986), however, noted some of the
limitations of LSM namely: 1) the difficulty of integrating non-repetitive activities in
LSM diagrams; and 2) the fact that LSM is essentially graphical, and cannot be

adopted to numerical computerization as readily as network methods.

Repetitive Repetitive
A Unit A Unit
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5 5
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31 3 ©
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(a) Line of Balane (LOB) (b) Linear Scheduling Method (LSM)

Figure 2.1 Graphical Representation of LOB and LSM

2.3.3 Simulation Models

In other attempts, simulation models have been proposed for scheduling of

repetitive projects (Harris and Evans 1977, Ashley 1980, Kavanagh 1985, and
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Abourizk and Halpin 1990). Harris and Evans (1977) presented a simulation game
for a repetitive project of road constructions. The game involved 120 individual
players, who were asked to make weekly decisions about resource utilization for
the activities of the project. Based on the decisions of each player, the simulation
game is run to report the project duration and cost to help the players understand
the consequences of their decisions. Harris and Evans (1974) mentioned that thfs
simulation game can be used for teaching purposes to tfrain students and

construction managers.

Ashley (1980) proposed a simulation model for scheduling of repetitive projects
that attempted to resolve the crew availability problem by adopting a queuing
model. The model is implemented using GPSS simulation language, and is based
on the concept that repetitive units are organized in a queue to be served by the
assigned crew. In 1985, Kavanagh introduced an extended simulation model that
is based on the same queuing concept and implemented it using the same
language. The model, however, was extended to enable the inclusion of non-
repetitive activities and a simplistic consideration of learning curve effect and
weather impact. Although these two simulation models attempted to resolve the
crew availability problem, they do not maintain crew work continuity constraint
which result in idle crew time. In his recommendations for future enhancements,
Kavanagh (1985) recommended that the ability of enforcing crew work continuity

be provided, and weather impact be modeled more accurately. Abourizk and
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Halpin (1990) reviewed basic techniques used in simulation and presented an
example of an earth-moving operation to demonstrate the use of such techniques.
For simulation of construction operations, they presented a review of: 1) modeling
of input data (i.e. identifying an appropriate distribution, estimating parameters of a
given distribution, and testing for goodness of fit); 2) analyzing output data (i.e.
checking for normality and estimating mean, variance and probabilities); and 3)

validating resuits.

In other attempts to consider uncertainty in scheduling repetitive construction,
Dressler (1974) proposed a stochastic model for scheduling linear construction
sites. The model utilized a stochastic linear programming formulation to consider
the variability in crew productivity on linear construction sites. The formulation,
however, is limited to single repetitive construction activities and cannot consider
logic precedence relationships among succeeding repetitive activities. As such, the
formulation cannot provide a schedule for a repetitive construction project

comprising of a number of succeeding repetitive activities.

The above scheduling techniques have been applied to schedule a wide variety of
repetitive construction projects. Such applications included housing projects (Carr
and Meyer, 1974; and Ashley, 1980), high rise buildings (O'brien, 1975; Mangin,
1979; and Larame, 1983), highway and road construction (Harris and Evans,

1977; Johnston, 1981; and Chrzanowski and Johnston, 1986), pipelines (Dressler,
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1974; and Levine et al. 1976), and pavement construction (Arditi and Albulak,
1986). It should be noted, however, that none of the above discussed techniques

attempted to optimize the scheduling of repetitive construction projects.

2.4 Considerations in Scheduling Repetitive Construction

The literature indicates that scheduling repetitive construction projects is affected
by: 1) integration of repetitive and non-repetitive activities; 2) optimized scheduling;
3) ieaming curve effect; and 4) weather impact. These factors and their impact on

scheduling repetitive construction projects are discussed in the following sections.

2.4.1 Integration of Repetitive and Non-repetitive Activities

Repetitive projects are characterized by the presence of large number of repetitive
activities, along with a number of non-repetitive activities. An example illustrating
this fact is a high-rise building project. At early stages, activities including: move in,
excavation and foundation are considered non-repetitive activities because they
are carried out only once. After the initial stage of construction, the high-rise project
reaches a certain point where the type of work changes to the repetitive mode.
This usually happens as the construction of the first typical floor begins when all
tasks that are repeated in the above floors are considered repetitive activities.
Concrete superstructure, masonry, glazing, and drywall are examples of these

activities (O'Brien 1985). Crews assigned to repetitive activities move continuously

25



from one floor to the upper as the work progresses.

Chrzanowski and Johnston (1986) criticized Linear Scheduling Method (LSM)
because its use is limited to repetitive activities and does not cover non-repetitive
activities. The problem of scheduling repetitive projects arises from the fact that
repetitive activities require different scheduling technique from that used for non-
repetitive ones. The non-repetitive group of activities in the project can be
scheduled using traditional network-based techniques such as the critical path
method. Repetitive activities, however, require techniques that are capable of
providing a resource-driven schedule that satisfies job logic, crew availability and
crew work continuity constraints. Integration of the two scheduling techniques, in

an efficient operating scheduling model is, therefore, of practicai value.

For scheduling purposes, O'Brien (1975 and 1985) suggested that a high-rise
building can be considered as a hybrid project that can be separated to two distinct
modes of construction: 1) non-repetitive mode (e.g. excavation) and 2) repetitive
mode that starts as the construction of the typical floor begins. He recommended
that the non-repetitive portion of the project be scheduled using network
techniques, and the repetitive portion using "Vertical Production Method" (VPM),
where VPM is a graphical method that is similar to LOB. He also recommended
that the two distinct schedule formats (i.e. network and VPM) be carried out

separately and combined in a narrative report.
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In 1983, Laramee studied the construction process of two high-rise buildings in
order to formulate specifications for a planning and scheduling model for high-rise
buildings. Although that model proposed a merge algorithm between the network
technique and techniques for repetitive activities, it did not account for practical
factors affecting the scheduling of repetitive activities such as: 1) type of activity
(i.e. typical or non-typical); 2) various types of precedence relationships; 3) crew

availability period on site; and 4) activity interruption.

In 1993, Moselhi and El-Rayes proposed an object-oriented model for integrating
the scheduling of repetitive énd non-repetitive activities. In their model, two types
of activities were considered: Repetitive and Non_Repetitive. In order to account
for different possibilities of generalized precedence relationships connecting these
two types of activities, three different types of precedence relationships were
infroduced in the model: Regular_Relation, Repetitive_Relation and
Hetero_Relation. The model utilized objects to represent different types of
activities and relationships. The design of these objects incorporates and

integrates the two scheduling techniques for repetitive and non-repetitive activities.

Russell and Wong (1993) presented a construction management system
(REPCON) for scheduling of repetitive projects. REPCON attempts to combine the
non-repetitive and repetitive activities within the same model. The development of

the system is based on a family of five planning structures: continuous, ordered,
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shadow, cyclic and non-repetitive activity. The first four structures represent
different types of a repetitive activity (e.g. a continuous activity maintains crew work
continuity while an ordered activity allows work continuity to be interrupted). The
precedence relationships among these five types of activities can be defined as:
typical and non-typical. The typical relationship is used to link repetitive planning
structures and the non-typical relationship is used to link non-repetitive activity to a
repetitive activity. REPCON provides the ability to combine repetitive and non-
repetitive activities within the same model, however it is not capable of providing
optimized schedules for repetitive projects. Russell and Wong (1993) stated that
their current implementation does not provide for formal optimization in terms of
minimizing duration, direct cost or total cost. In addition REPCON does not

consider the impact of weather nor [earing curve effect in the scheduling process.

2.4.2 Optimized Scheduling

Minimizing the project duration is a more complicated process for repetitive
projects. than that for non-repetitive ones due to the compliance with crew work
continuity. The problem of optimizing the schedule for a repetitive project can be
illustrated through the use of a simple project example as the one discussed later
in chapter 5. The project example consists of four similar sections or units, each
includes five repetitive activities: excavation, foundations, columns, beams, and
slabs. For each of these activities the following number of possible crew formations

can be: 1, 2, 3, 3, 4 and 2, respectively. A combinatorial approach can be used to
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solve such a problem by generating all possible combinations and selecting the
one that provides the minimum project duration or overall cost. This enumeration
approach becomes infeasible when the size of the problem increases (Cooper and
Cooper, 1981). For this simple example, the enumeration approach requires

calculating the project duration for 72 possible combinations of options.

For a general repetitive project consisting of | activities and N possible crew
formations for each activity, the number of possible combinations is N'. For
example, a repetitive project consisting of 20 activities associated with 5 possible
crew formations for each activity can be solved using the enumeration approach by
calculating the project duration for 5% possible combinations (approximately 100
trillion) . This clearly illustrates that the enumeration approach becomes more and

more infeasible as the size of the problem increases.

Another approach for optimizing the schedule of repetitive projects is by utilizing
optimization techniques such as: linear programming (Perera 1982 and 1983, and
Reda 1990), and dynamic programming (Selinger 1980, and Russell and Caselton
1988). Existing linear programming models assume that repetitive activities must
have identical durations, and thus cannot provide solutions to non-typical repetitive
projects. Available dynamic programming provide a flexible methodology that
overcomes the limitations of linear programming models, however their

optimization criterion is limited to the minimization of the overall duration of the
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project. While this may lead to the minimization of the indirect cost of the project, it

" does not guarantee its overall minimum cost.

2.4.3 Learning Curve

In repetitive construction projects, the time required to perform a given construction
activity tends to fall progressively as the same activity is repeated for a sufficient
number of successions (Hijazi et al 1992). This phenomenon is known as the
learming curve and it is based on the fact that skill and productivity in performing
tasks improves with experience and practice (Paulson, 1975). The improvements
are due to several factors including: 1) greater familiarity with the task; 2) better
equipment and crew coordination; 3) improved job organization; 4) enhanced
engineering support; 5) better day-to-day management and supervision 6) more
effective use of tools and methods; and 7) increased efficiency of material supply

systems (Thomas et al. 1986).

The leaming curve theory states that whenever the production quantity of a
product doubles, the unit time will decline by a certain percentage of the previous
unit time which is called the learning rate. The hypothetical learning curve can be
divided into two phases: an operation-learning phase and a routine-acquiring
phase as shown in Figure 2.2. In the operation-learning phase, labor productivity
increases rapidly as workers gain knowledge and learning of the operations to be

performed. In the routine-acquiring phase, more gradual improvement in labor
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productivity occurs due to becoming more familiar with the operation routine.
Beyond the end of the routine-acquiring phase (i.e. the standard production point),
no further productivity improvements occur due to the levelling off process as
shown in Figure 2.2 (Thomas et al 1986). There are a number of available
mathematical models that have been developed to model the learmning curve
phenomenon based on historical data. Thomas et al (1986) suggested that such
models can be grouped under five basic types: 1) the straight line model; 2) the
Stanford "B" model; 3) the cubic power model; 4) the piecewise (stepwise) model;

and the 5) exponential model as shown in Figure 2.3.

The straight line model was originally developed by Wright (1936) for modeling the
production of airplanes, and is based on the assumption that the leaming rate
remains constant. The Stanford "B" model is a modification of the straight line
model to account for acquired experience in the first few cycles. The cubic model
assumes that the leamning rate may vary over time to account for acquired
experience in the first few cycles and the levelling off in improvement as the project
nears completion (Carison 1973). The piecewise model is an approximation of the
cubic model in the form a linearized model. The exponential model was developed
by the Norwegian Building Research Institute and was described in a United

Nations report (Effect 1965).
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The most commonly used model for construction industry is the straight-line model
due to the difficulty associated with estimating the parameters describing other
models (Thomas et al 1986, Hijazi et al 1992, Gates et al. 1976, Diekmann et al.
1982, and Drewin, 1982). The name "straight-line" is commonly used because the

model can be represented by a straight-line on a log-log scale.

Figure 2.4 shows a straight-line leaming model for the manufacturing of the
century series aircraft data. The data relates the direct-work hours per pound and
cumulative number of planes (Jelen and Black, 1983). The curve shows a constant
rate of time reduction (learning rate) as the aircraft number doubles. This leaming

rate (R) was found to be the same every time the production was doubled as

follows:

R = Dy/D; (2.1)
where,
Dj: time required to construct the | repetitive unit or section;

and Dg;: time required to construct the repetitive unit or section number 2j.

The leaming rate (R) reflects the improvement in productivity rate because of
learning curve effect. This rate mainly depends on the specific type of work
involved (Hijazi et al 1992, and Tanner 1985), which can be determined based on
historical data obtained from field observations during previous work. In a study by

the Economic Commission For Europe (Effect 1965), the learning rate (R) was
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reported for different construction activities as shown in Table 2.1. The rate varied
from 95% for entire structures to 80% for formwork panels. The R values were
derived from data of previous report published by the Economic Commission For

Europe (Cost 1963).
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Cumulative plane number

Figure 2.4 Learning Curve for Century Series Aircraft (Jelen & Black 1983)

Table 2.1 Learning Rate for Construction Activities (Effect 1965)

Construction activity Learning rate
@) (R) x 100%
(2)
Entire structure (e.g. high-rise buildings). 95%
Activities involving many operations (e.g. carpentry, electrical 90%

work, plumbing, and concreting).

Activities involving few operations (e.g. masonry, painting, 85%
and floor and ceiling tile).

Activities involving few operations (e.g. formwork panels, bar 80%
bending, field fabrication of trusses).

Plant manufacture of building components (e.g. doors, 90% - 95%
windows, and prefabricated concrete panels)
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Figure 2.5 shows the same data of the Century series aircraft plotted on a log-log
scale. In this graph, the relation between the two variables is represented by a
straight line with a negative slope (Slope). The slope can be calculated from the

original learning rate (R) as follows:

Slope = logR/log2 (2.2)

The negative slope of the line indicates that the time necessary to construct a
repetitive unit is a fraction of the duration of the first unit. Given the slope of the line
(Slope) and the duration of the first repetitive unit (D4), the required duration to

construct the | repetitive unit (D)) can be calculated as follows:

D; = D.G)" (2.3)
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Figure 2.5 Learning Curve for Century Series Aircaft on a Log-Log Scale

(Jelen and Black 1983)
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Arditi and Albulak (1986) recommended that the possibility of incorporating
leaming curve into planning and scheduling of repetitive projects requires further
research. Hijazi et al (1992) suggested that the essence of repetition and continuity
inherent in repetitive construction projects allows for such a phenomenon to occur.
They concluded that a repetitive project duration is often overestimated when the
effect of leaming curve is not considered. In another study, Gates and Scarpa
(1978) suggested that the learning curve phenomenon affects the selection of the
optimum number of crews to construct a repetitive activity. An increase in the
number of crews leads to a decrease of the number of repetitive units assigned to
each crew, and accordingly fails in fully benefiting from the leaming curve
phenomenon. It is, therefore, of practical value to consider such a phenomenon

during scheduling of repetitive construction projects.

2.4.4 Weather Impact

Repetitive construction projects (e.g. pipelines, bridges, and highway construction)
are often constructed in an outdoor environment. Weather variables on site are
hard to control, and construction often has to proceed in cold or hot temperatures
under different humidity conditions, exposed to wind and possible precipitation.
Weather impact has been reported to be one of the main factors causing delay
and cost overruns on construction projects (Baldwin et al. 1971, Koehn and
Meilhede 1981, and Laufer and Cohenca 1990). In a survey conducted on Ohio

contractors (Koehn and Meilhede, 1981), it was reported that winter construction
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causes an increase in project cost up to 60% which illustrates the significance of
weather impact on construction productivity and cost. This was the reason that
Johnston (1981) recommended that the variations in productivity rate due to
weather should be incorporated into the schedule calculations of repetitive

activities.

The impact of weather on construction activities can be in the form of reduced
labor productivity and/or work stoppage. Reduced labor productivity effect is
generally attributed to reduced human performance due to heat or cold stresses
resulting from the combined effect of temperature, humidity and wind velocity.
Weather related work stoppage is attributed to the inability of construction crews to
work under severe weather conditions of heavy rain, snow and/or gusting wind. In
attempts to identify the impact of weather in the form of reduced labor productivity,
a number of studies have been conducted to establish the relation between labor
productivity and weather conditions for a number of construction trades including:
electrical work (National Electrical Contractors Association 1974), masonry (Grimm
and Wagner 1974, and Sanders and Thomas 1991), equipment and manual tasks
(U.S. Amy Cold Regions Research and Engineering Laboratory 1986), and

general construction (Koehn and Brown 1985).

The National Electrical Contractors Association conducted a study in 1974 to

measure the effect of temperature on productivity (Effect 1974). The study was
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performed in an environmental chamber where temperature, humidity, and air
velocity were monitored and controlled. The performance of simple tasks was
studied under various weather conditions. The study established a wide range of
productivity factors for electricians, considering the impact of effective temperature
and humidity as shown in Table 2.2. Effective temperature is used to account for
the cooling effect of wind, and is calculated based on actual temperature reading

in °F and wind speed in mph as shown in Table 2.3.

In 1974, Grimm and Wagner studied weather impact on mason productivity over a
period of nine months. During the construction of 283 test wall panels, the
productivity of 51 masons were measured on site and correlated with temperature
and humidity. The study provided a chart depicting the impact of temperature and
humidity on mason productivity as shown in Figure 2.6. In a research conducted in
Hanover, N.H. by the U.S. Army Cold Regions Research and Engineering
Laboratory (1986), the effect of temperature on construction productivity of both
manual and equipment construction tasks was reported. An upper and lower
productivity levels were identified as shown in Figure 2.7. In ancther report
provided by the Department of the Navy (1969), a sample of data relating
temperature, relative humidity and wind speed to productivity factor of

underground pipeline construction was presented (see Table 2.4).

In another study, to quantify climatic effects on construction, by Koehn and Brown
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(1985), historic data of different construction crafts were utilized to derive two
nonlinear relationships relating construction productivity in general to temperature
and humidity. The two formulas were derived after performing regression analysis
for a diverse mixture of 172 historical data points which were originally obtained for
different construction trades (e.g. excavation, masonry, electrical, carpentry, and
labor). Each of the two formulas is applied for a certain temperature range, the first
is for cold weather (from -20 to 50 F) and the second for hot weather (from 70 to
120 °F). The productivity factor is considered unity for the temperature range from

50 to 70 °F. The two equations representing the productivity factor of general

construction for both cold and hot weather are:

PF, =0.0144(T) - 0.003 13(&) — 0.000107(T2) — 0.000029(H? ) — 0.0000357(T)(H) + 0674 (2.4)

PF;, = 00517(T) - 0.0173(H) — 0.00032(T2) - 0.0000985(H2) — 0.000091 I(T)(H) ~ 1459 (2.5)
where,
PF¢ productivity factor of general construction for cold weather;
PF: productivity factor of general construction for hot weather;
T: temperature in °F;
and H: relative humidity in percentage.
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It must be noted that before applying the above two equations, they must be
nomalized as a function of their respective maximum values to represent

productivity factor as a percent of maximum productivity.

In other studies aimed at considering the impact of weather on work stoppage,
Cantwell (1987) established the daily rainfall thresholds that causes the work to
stop for the whole day. Thresholds were provided for seven activities based on two
surveys of contractors and visual observations as shown in Table 2.5. In the same
study, it was assumed that if the daily rainfall exceeds the threshold, the activity is
stopped for the whole day. In another study by Smith and Hancher (1989), the

threshold was assumed to be daily accumulation of 0.1 inch or more.

In other studies aimed at considering the impact of weather on scheduling
construction projects, Laramee (1983) and Hegazy (1993) have proposed monthly
productivity factors representing the impact of weather on construction productivity
in general. For example, a monthly productivity factor of 0.7 is used for the month
of January to indicate that the modified productivity rate due to weather is
considered to be 70% of that achieved in ideal weather conditions. This provides a
simplified approach to account for the impact of weather on scheduling

construction projects.
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Moselhi and Nicholas (1990) proposed a hybrid expert system for construction
planning and scheduling that considers the impact of reduced labor productivity
due to weather. The system schedules the project and determines the early start
and finish dates of each activity. Based on these dates, predicted temperature and
humidity are extracted from the database and applied to Koehn formulas
(Equations 2.4 and 2.5) to calculate the productivity factor of weather sensitive
activities. Based on these productivity factors, the system generates automatically
a revised or “as-possible” schedule. This hybrid system provides a practical
approach to quantify the impact of weather on construction scheduling, however it
assumes that all construction activities are equally affected by the same weather
conditions. It also does not consider the impact of weather related work stoppage
of construction activities. In 1996, Wales and AbouRizk proposed a simulation
model for construction projects that considers the impact of precipitation and
temperature on the duration of construction activities. The model generates the

occurrence of weather variables and modifies activity durations accordingly.
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Figure 2.6 Weather Impact on Masons Productivity (Grimm & Wagner 1974)
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Figure 2.7 Weather Impact on Construction Productivity (U.S. Army 1986)
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Table 2.4 Weather Impact on Piping (Department of Navy 1969)

Climatic Ambient Relative Wind Labor Efficiency
Zone Temperature Humidity Speed (%)
(degree F) (%) (mph)

Temperate 0 - 10 40-50
Temperate 30 20 20 60
Temperate 70 40 5 100
Temperate 90 50 9 60-70
Temperate 105 30 5 30
Tropical 75 60 5 90
Tropical 85 70 20 70
Tropical 92 78 5 50
Tropical 98 90 calm 3040
Desert 87 20 calm 90
Desert 95 15 15 80
Desert 120 5 40 0-5
Desert 125 10 10 10
Desert 110 40 30 40
Arctic 40 30 10 90
Arctic 0 - 2 50-60
Arctic -10 - 20 30
Arctic -20 - calm 30
Arctic 40 - 40 0

Table 2.5 Impact of Rain on Work Stoppage (Cantwell 1987)

Threshold Value
Activities Local Non-Local Visual Overall
Survey Survey Survey
Demolition - 0.313" - 0.30"
Foundations 0.80" 0.278" 1.06" 0.30"
U.G. services - 0.278" 0.51" 0.30"
External walls 0.41" 0.164" 0.14" 0.15"
Floor slab - 0.081" - 0.10"
Roof steel 0.41" 0.147" - 0.15"
Roof finish - 0.082" - 0.10"




CHAPTER 3
PROPOSED SCHEDULING MODEL

3.1 Introduction

This chapter presents the development of a computer model for optimized
scheduling of repetitive construction projects. The model is designed embracing
flexibility and practicality to ensure a wide range of possible applications to real-life
projects. In an attempt to investigate the nature of the scheduling problem and
identify various factors affecting it, a field study of a real-life repetitive construction
project was conducted. The findings of both this study and a comprehensive
literature review are carefully considered in the development of the scheduling
model. The development of the model is based on object-oriented modelling which
consists of three stages: analysis, design and implementation (Rumbaugh et al
1991). This chapter presents the analysis and design stages of the proposed
scheduling model. The design stage is also covered in Chapters 4 and 5. The

implementation stage of the proposed scheduling model is explained in Chapter 6.

3.2 Object-Oriented Modelling

In Object-Oriented Modelling, large and complex problems are decomposed and
modelled as a set of objects. An object, in a model, often represents a real-world

object such as: a physical object, concept or abstraction with crisp boundaries and
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meaning for the problem at hand (Rumbaugh et al 1991 )- An object encapsulates
both data and functions. For example an object representing a construction activity
encapsulates the required scheduling data (e.g. early start and finish dates) and
scheduling functions (e.g. scheduling algorithm). A group of objects with similar
properties (data), common behavior (functions) and common relationships to other
objects can be grouped into a class. For example, all objects representing project
activities such as excavation, foundation, concrete, etc. can be grouped into one

class.

Object-Oriented Modelling utilizes several major concepts: abstraction,
encapsulation, inheritance, and polymorphism (Rumbaugh et al 1991, and Weiner
and Pinson 1988). Abstraction identifies the essential characteristics of an object
that distinguish it from all other types of objects and thus provide crisply defined
conceptual boundaries (Booch 1994). Encapsulation and data hiding are the
centerpieces of object-oriented modelling, they bind data and associated functions
tightly together. Both data and functions form a new entity: an object which is a
variable declared to be of a specific class. Inheritance allows classes to be
organized in a hierarchy, in which each class has an immediate parent or super-
class, and each super-class can have several immediate children or sub-classes. If
a number of sub-classes have some identical functions, it is not necessary to
duplicate these functions for each sub-class. Instead, they can be defined for the

super-class, and will automatically be inherited by all of the sub-classes (Powell et
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al, 1989).

In the literature, there are varying notations for graphical representation of the
components of an object-oriented model (Booch 1994, Rumbaugh et al 1991, and
Taylor 1992). For consistency, a notation system similar to that proposed by
Rumbaugh et al (1991) is utilized in this thesis. As stated earlier, the development
of an object-oriented model consists of three stages: analysis, design and
implementation (Rumbaugh et al 1991). The analysis and design stages of the

proposed scheduling model are described in the following sections.

3.3 Analysis

Analysis is the first stage in developing an object-oriented model. In this stage, a
model of the real-life problem is built. The model should provide a precise
abstraction of what is required to be done and how it can be done. The analysis
stage outlines the model objects and their relationships and the sequence of
operations that occur in the model. It produces: 1) an object model to outline the
static structure of the model; and 2) a dynamic model to explain the sequence of
operations (Rumbaugh et al 1991). The first step in the analysis stage is to provide
a comprehensive understanding of the nature of the real-life problem. In an
attempt to investigate the nature of repetitive scheduling and identify various
factors affecting it, a field study of a real-life repetitive construction project was

conducted.
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3.3.1 Field Study

The project considered in this field study involved the construction of 35 housing
units in East Montreal as shown in Figure 3.1. The objective of the study was to
examine and monitor the day to day construction operations of a repetitive project
and collect data relevant to construction scheduling. Site observations and relevant
data were recorded using written notes, photos and videotapes. Over a period of
two months during November and December 1992, discussions were conducted
with various subcontractors and construction crews and the day to day
construction activities of the housing project were observed including: excavation,
foundations, form-work, concreting, wood framing, installation of prefabricated
wooden roof trusses, installation of doors and windows, masonry, fiber-glass
insulation, electrical rough-in and finishing, plumbing rough-in and finishing, gyproc

wall, painting, carpeting and project main water and sewer connections.

The site observations that were found to be relevant to the development of a

scheduling model for repetitive projects can be summarized as follows:

1) The housing project included repetitive as well as non-repetitive construction
activities. For example, the wood framing activity was repeated in each house
and can be considered a repetitive activity, while the main water and sewer
connections were done only once for the entire project and can be considered
a non-repetitive activity.

2) Repetitive construction activities can be either typical (i.e. activity durations are
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considered identical in all houses) or non-typical (i.e. activity durations may
vary from one housing unit to another). The variation of an activity duration
from one housing unit to another can be attributed to variations in the quantities
of work encountered in constructing different types of housing units as shown

in Figure 3.1.

Tetephons: 3160 362-8353

Figure 3.1 Montreal Housing Project
3) For a given repetitive construction activity (e.g. masonry), muitiple crews are
often utilized to work simultaneously on a number of houses.
4) Some construction crews cannot stay on site for the entire project duration.

Due to out of site commitments, such crews can be assigned to work only
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during a limited availability period on site.

5) The order of constructing the project houses (i.e. repetitive units) may vary from
one repetitive activity to another.

6) Construction crews emphasized the significance of maintaining their work
continuity once they move on to site. They prefer to finish work in one house
and then be able to move promptly to the next without having to wait for
another trade to complete its work.

7) During the month of December, the impact of cold weather on reducing crew
productivity and increasing construction costs was evident, especially for
construction crews that had to work outdoors such as masonry as shown in
Figure 3.2.

8) In this housing project, construction crews repeated the same activity in a
number of houses, moving from one to another. As such, a repetitive unit in this

housing project can be considered a single house.

Figure 3.2 Winter Conditions on Site
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3.3.2 Repetitive Unit

Repetitive construction projects consist of a number of repetitive units. A repetitive
unit could simply be a house in a housing project, a specific length of a highway
project or a typical floor in a high-rise building. As stated earlier in the field study, a
repetitive unit in the observed housing project was considered to be a single
house. Unlike housing projects, some repetitive projects do not have a unique
definition of what constitutes a repetitive unit. In highway construction, for example,
crews repeat the same activity and continuously move in a line along the entire
length of the projéct. As such, there is no physical limits or space that clearly

defines the size and scope of a repetitive unit which can be any 1 km. or any other

length.

A primary consideration in identifying the scope or size of a repetitive unit is to
prevent work interference among succeeding construction activities. In a highway
construction project, for example, a crew assigned to the base activity may need at
least 500 meters (i.e. % km.) of space separating it from the earthmoving crew of
the preceding activity in order to avoid interference between the operations of the
two working crews. In such a case, the scope of a repetitive unit can be identified
to be a length of % km. of the highway project as shown in case 2 of Figure 3.3.
This ensures that the base crew is not scheduled to start working in the first 2z km.
of the project until after the earthmoving crew has completed all its work in the

same % km, preventing interference between the two crews. In other repetitive
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construction projects, the scope of a repetitive unit can be identified similarly.

The impact of varying the scope of a repetitive unit on scheduling of repetitive
construction can be illustrated using a simple example of a highway construction
project. The example project involves the construction of a 6 km. stretch of a
highway and can be broken down to three main repetitive activities: earthmoving,
base and paving. The precedence relationship among the three activities is finish
to start with no lag time. For each repetitive activity, a single crew is assigned to
construct the entire project length, moving in a continuous line along the 6km.
stretch of the highway. Figure 3.3 shows two different cases of repetitive unit
scope and their impact on project scheduling. Case 1 of Figure 3.3 assumes that
the 6km. stretch of the highway is divided into 6 repetitive units, each of a 1 km.
length. Case 2 of the same figure, however, assumes that the same highway
stretch is divided into 12 repetitive units, each of a ¥2 km. length. Although the
number of repetitive units in case 1 is half that of case 2, the duration needed to
construct any activity in a single repetitive unit in case 1 is double that of case 2.
As a result, the overall activity duration required to construct the entire 6 km. for
any of the three activities is unchanged in both cases as shown in Figure 3.3. This
holds true for other unit sizes and other repetitive projects as well, indicating that
the size of a repetitive unit does not affect the total duration of individual repetitive

activities.
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Figure 3.3 Impact of Repetitive Unit Size on Scheduling
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As shown in Figure 3.3, the overall project duration in case 2 is slightly shorter than
that of case 1, although the overall activity duration of each of the three activities
is unchanged. The reason is that splitting the repetitive unit from 1 km. (case 1) to
Y2 km. (case 2) allowed the first unit of the second activity (base) to start earlier
(i.e. after the completion of the earthmoving of ¥z km. in case 2 rather than 1 km.
in case 1). As a result, the base activity in the entire project started and finished
earlier in case 2 compared to case 1 by a difference equal to the duration of
earthmoving activity in ¥2 km. Similar situations apply in succeeding activities which

result in a slightly shorter project overall duration.

As shown in Figure 3.3, the scope of a repetitive unit has no effect on the overall
duration of individual repetitive activities, however it has a slight effect on the
overall project duration. Reducing the size or scope of a repetitive unit results in a
shorter overall project duration, however it increases the risk of work interference
among succeeding activities. Therefore, it is recommended that the size of a
repetitive unit be reduced as much as possible without causing interference among
succeeding construction activities. It should be noted that identifying the scope of a
repetitive unit is achieved among other things (e.g. work break-down structure) in
the planning stage of a repetitive project. All commercially available scheduling
systems (e.g. Primavera, Open Plan, etc.), albeit not for repetitive construction, are
limited to project scheduling stage and do not address the planning stage.

Similarly, the scope of the present model is limited to the scheduling stage of a
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repetitive project, however the above analysis was deemed necessary to provide

the planner with a better understanding of what constitutes a repetitive unit.

3.3.3 Object Model

The purpose of an object model is to represent the structure of the model objects
in terms of their data, functions and relationships to other objects. An object model
should capture concepts from the real-world that are important to the application.
For example, an object model for the scheduling of repetitive construction should
identify objects that are essential to the scheduling process such as construction
activities and relationships. The object model is represented graphically with a
diagram to show the model classes, their hierarchy and association with other
classes. As shown in Figure 3.4, the notation for a class is a box which may
contain up to three sections. The top, middle and bottom sections of the box

represent: class name, data and functions, respectively.

Inheritance is one of the main concepts in object-oriented modelling, and it allows
for creating a hierarchy of classes. Such a hierarchy consists of a single overall
super-class at the root, with sub-classes branching out into sub-classes. The
highest levels of the hierarchy are the most general, while each lower level is more
specialized than the one before it. Once a characteristic (i.e. data and/or function)
is defined for a certain super-class, all the sub-classes beneath that definition

inherit that characteristic. Each class in the hierarchy represents a certain level of

55



specialization, and can inherit characteristics from more general parent classes.

For example, both repetitive and non-repetitive construction activities can be

modelled as two specialized sub-classes of a more general super-class

representing construction activity. As such, the shared features of repetitive and

non-repetitive activities can be abstracted in their super-class (i.e. construction

activity) and inherited by the two sub-classes (i.e. repetitive and non-repetitive

activities). As shown in Figure 3.4, the notation for inheritance is a triangle

connecting a super-class at a higher level of the hierarchy to its sub-classes at a

lower level.
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In the present scheduling model, an object model is developed to outline the
classes of the model. The classes included in this object model are identified to
facilitate the modelling of repetitive scheduling. The findings of both the field study
and the literature review indicate that a repetitive construction project includes two
types of activities: Repetitive and Non-Repetitive as shown in Figure 3.5. In order
to account for different possibilites of generalized precedence relationships
between these two types of activities, three different types of precedence
relationships are designed in the present model. The first type is Regular-Relation,
where the predecessor and successor activities are of the non-repetitive type as
shown in Figure 3.5 (Relation a). The second type is Repetitive-Relation which
defines the logical precedence relationship among two repetitive activities
(Relation b). The third type is Hetero-Relation which can depict the relationship
between either two specific units of two separate repetitive activities (Relation c),
or two activities of different types (Relation d) (i.e. the predecessor is a Non-
Repetitive activity and the successor is a specific unit of a Repelitive activity, or

vice versa).

Hetero-Relation provides added flexibility and practicality to the present scheduling
model. It is capable of representing a precedence relationship between two
repetitive activities in two different units (Relation d), a needed feature in facilitating
the modelling of construction requirements and job constraints in real-life projects.

For example in a high-rise building project as the one shown in Figure 3.5, it is
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sometimes required that the drywall activity on a specific floor should not start until
after the completion of two higher floors of the preceding glazing activity to ensure
a weather-tight environment for drywall construction. In the present model, a

Hetero-Relation can be used to specify such a relationship.

concrete structure masonry glazing drywall

-La)—b Regular relation

=

AR

% Repetitive relation
Repetitive activity © (@)

Hetero-relation
Figure 3.5 Activities and Relationships of a Repetitive Project
The present object model makes use of data encapsulation and inheritance
concepts offered by object-oriented modelling in order to develop a properly
derived and organized hierarchy of classes as shown in Figure 3.6. At the top of
the hierarchy, there is the most generic class: Project-Data. This class includes
only one character variable called "name" which is considered to be an identifier
and a common data to all lower level classes or sub-classes in the hierarchy as
shown in Figure 3.6. At the second level of the hierarchy, Activity and Regular-

Relation classes are derived from the super-class Project-Data. At the third level of



the hierarchy, Non-repetitive and Repetitive classes are derived from the super-
class Activity, and Repetitive-Relation and Hetero-Relation classes are derived

from the super-class Regular-Relation.

The lower level classes in the hierarchy represent. an increased specialization
while higher level ones represent more generalization. An Activity class can
encapsulate the data (e.g. early start and finish dates) and their behavior
(functions) in a general way as shown in Figure 3.6. Using inheritance, Non-
Repetitive and Repetitive activity classes can inherit all the features of Activity
class, and include additional specialized data and functions. As such, much of the
coding of the super-class is reused in the derived sub-classes, avoiding duplication

and benefiting from the shared data and functions among different classes.

In addition to the classes of the hierarchy, there are three classes that are included
in the model and have associations with the hierarchy classes. The three classes
are: Project, Date, and Crew-Formation. In addition to inheritance, there can be
other types of association among classes of the same model. For example, each
Repetitive activity object can have one or more associated Crew-Formation
objects. As shown in Figure 3.6, the notation for such an association is a line
connecting the two classes which may have a darkened circle at its ends indicating
one or more associations. An association is often implemented in programming

languages (e.g. C++) as a pointer from one class to another.
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3.3.4 Dynamic Model

The object model, discussed in the previous section, describes the static structure
of an object-oriented model. It shows the structure of objects and their
relationships to one another at a single moment in time, however it does not show
how the attributes of the objects change over time (Rumbaugh et al 1991). The
objective of a dynamic model, on the other hand, is to describe the sequences of
operations that occur to the objects of the model over time. The main concepts in a
dynamic model are states and messages or events. A state of an object is the
values of its attributes at one point in time. Over time, objects send messages to
one another, resulting in a series of changes to their states. A message is a
stimulus from one object to another, which may lead to changing the state of the
receiving object, returning a message to the original sender object and/or sending
a message to a third object. The pattern of messages, sfates and state transitions
of an object can be represented by a stafe diagram. A dynamic model generally

includes a number of state diagrams, each representing a specific class.

A state diagram relates messages and states, and can be represented by a graph
whose nodes are states and whose directed arcs are messages or state
transitions as shown in Figure 3.7. A state representing one object can receive a
message from an external class as shown in Figure 3.7 (Rumbaugh et al 1991). In
the proposed scheduling model, a dynamic model is formulated which includes a

number of state diagrams. The state diagrams of the proposed model are
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explained later in the scheduling calculation (section 3.4.11).

7 State 1
: do: funtion 1()
State 2
do: funtion 2()

Figure 3.7 State Diagram

3.4 Design

Design is the second stage in developing an object-oriented model. It involves
object design which expands and builds upon the outcome of the analysis stage
to provide a detailed design for each object in the model. The design of an object
entails design of data structures as well as functions or algorithms which are
required to achieve the purpose of the object. As such, object design provides a
detailed design of the data and functions encapsulated within each object of the
model. In the proposed scheduling model, each class is designed to facilitate the
modelling of repetitive scheduling. The design of each of the model classes (i.e.
data members and functions) is briefly described in the following sections. For
each class, this includes a brief discussion of the class, its data members, and its
main member functions. A computer code outlining a more detailed list of data

members and member functions for each class is included in Appendix .
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3.4.1 Project

Project class is designed to represent the characteristics of a repetitive
construction project. This type of projects include different types of activities and
relationships which are represented by various objects in the proposed scheduling
model. In order to enable effective management of these objects, Project class
should be able to perform the main functions of a search table (i.e. store, access,
and retrieve various objects). There are different methods for implementing a
search table. The simplest method is an array of objects. A second method
involves constructing a linked list of objects. The third method is the most efficient
and involves an advanced level of complexity, it provides a search table by
creating a binary search tree (Weiner and Pinson, 1988, p. 106). This third method
is utilized to design Project class which provides a flexible search tree that can

include and manipulate various activity and relationship objects.

Project class is not limited to homogeneous objects only. In fact, it can include and
manipulate all the heterogeneous objects included within in a repetitive project (i.e.
Repetitive activity, Non-Repetitive activity, Regular-Relation, Repetitive-Relation,
and Hetero-Relation). The utilization of inheritance and polymorphism in
implementing a binary search tree for manipulating heterogeneous objects is
discussed in more detail in (Weiner and Pinson, 1988, p. 170). A similar approach
is used to design and develop Project class. To enable the inclusion of

heterogeneous objects, Project class is composed of muiltiple nodes, each of
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which includes a pointer to a generic Project-Data object. This pointer can point to

any specific object of the sub-classes of Project-Data class (e.g. Repetitive-Activity

or Regular-Relation).

Project class is designed to perform a number of functions including: 1)

determining the presence of an object in the project; 2) inserting a new object to

the project; 3) sorting project activities; 4) initiating scheduling calculations; 4)

displaying scheduling results; 5) saving project data to a binary file; and 6) opening

a binary file and retrieving project data. The data members and main member

functions of Project class are listed in Tables 3.1 and 3.2, respectively.

Table 3.1 Data Members of Project Class

Data Data Type Description

data a pointer | a pointer to an object derived from Project-Data
(e.g. Repetitive or Non-Repetitive activities).

cost_day integer project time value in $/day.

no_non_repetitives | integer number of non-repetitive activities in the project.

no_repetitives integer number of repetitive activities in the project.

project_duration float project duration in days.

project_cost float project total cost in $.

project_start a pointer | a pointer to a Date object including project start.

weather_sensitivity | integer a variable indicating user-specified option for
considering weather impact on scheduling.

leaming_curve integer a variable indicating user-specified option for
considering leaming curve effect on scheduling.

optimization integer a variable indicating user-specified optimization

option. Values of 0, 1 or 2 indicates no
optimization, minimum duration optimization or
minimum total cost optimization, respectively.
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Table 3.2 Main Member Functions of Project Class

Function Description
insert() inserts a new object to the project
is_present() determines the presence of an object in the project

sort()

start_scheduling()

sorts project activities
initiates project scheduling calculations

save_file() saves project data to a binary file
open Eﬁile() opens project data from a binary file
3.4.2 Date

Date class is designed to represent the calendar dates for the start and finish of

different activities in the project. Date class is designed to perform a number of

functions including: 1) determining the weekday for a calendar date; 2) adding an

activity duration to a calendar date; 3) subtracting a duration from a calendar date;

and 4) calculating productivity factor due to weather impact for a specific

construction trade. The data members and main member functions of Date class

are listed in Tables 3.3 and 3.4, respectively.

Table 3.3 Data Members of Date Class

Data Data Type Description
day integer calendar day of the month (i.e. 1 to 31)
month integer calendar month of the year (i.e. 1 to 12)
year integer calendar year (e.g. 1997)
weekday strinJg calendar weekday (e.)g. Monday)
Table 3.4 Main Member Functions of Date Class
Function Description
operator + adds an activity duration to a calendar date
prod_period() | estimates productivity factor due to weather for a specific
construction trade over a given period (e.g. Sept. 12 to Oct. 3)
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3.4.3 Project-Data

At the highest level of the model hierarchy is Project-Data class which is the most
generic one as shown in Figure 3.6. This class serves as an abstract class at the
top of the hierarchy, from which more specialized classes can be derived. It also
forms an interface between all the classes of the hierarchy and the Project class.

The data members and main member functions of Project-Data class are listed in

Tables 3.5 and 3.6, respectively.

Table 3.5 Data Members of Project-Data Class

Data | Data Type Description

name | string an identifier and a common data member to all lower level
classes in the hierarchy

Table 3.6 Main Member Functions of Project-Data Class

Function Description
get_name() returns the object name to an outside inquiring object

3.4.4 Regular-Relation

At the second level of the hierarchy, Regular-Relation class is derived from
Project-data as shown in Figure 3.6. It is derived from the parent class (i.e. Project-
Data) which entitles it to inherit all the data members of the parent class (i.e.
name). In addition, Regular-Relation includes more specialized set of data and

functions that models its own requirements and behaviour. This class is designed
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to represent the general precedence relationship among two non-repetitive

activities. This relationship type can be either : finish to start (FS), start to start

(SS), finish to finish (FF), or start to finish (SF) with or without lag time. The data

members and main member functions of Regular-Relation class are listed in

Tables 3.7 and 3.8, respectively.

Table 3.7 Data Members of Regular-Relation Class

Data Data Type Description

pred_name | string name of predecessor activity

succ_name | string name of successor activity

Apred a pointer a pointer to predecessor activity object

Asucc a pointer a pointer to successor activity object

type integer precedence relationship type (i.e. finish to start, start
to start, finish to finish or start to finish)

lag lag time in working days

Table 3.8 Main Member Functions of Regular-Relation Class

Function

Description

send_mess_succ()

send_mess_pred()

is invoked during forward pass scheduling by a message
from its predecessor activity object. In response, this function
sends a message to the successor activity object which
includes early start and finish dates of the predecessor
activity and relationship type and lag. This message also
invokes the successor activity object to modify its early start
date and start forward pass scheduling.

is invoked during backward pass scheduling by a message
from its successor activity object. In response, this function
sends a message to the predecessor activity object which
includes late start and finish dates of the successor activity
and relationship type and lag. This message also invokes the
predecessor activity object to modify its late finish date and
start backward pass scheduliﬁ;.
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3.4.5 Repetitive-Relation

Repetitive-Relation represents the precedence relationship between two repetitive
activities. It is derived from Regular-Relation at the third and the lowest level of the
hierarchy. In addition to the data and function members inherited from the parent
class, Repetitive-Relation includes the data member listed in Table 3.9. The
member functions of Repetitive-Relation are similar to those of Regular-Relation,

however they exchange messages with Repetitive activity objects.

Table 3.9 Data Members of Repetitive-Relation Class

Data Data Type Description

no_relations | integer number of repetitive units linked in the two successive
construction activities by this relation

3.4.6 Hetero-Relation

Hetero-Relation represents a precedence relationship between either two different
activity types or two activities at different repetitive units to provide added flexibility
to the scheduling model as previously mentioned in section 3.3.3. This class is
derived from Regular Relation at the third level of the hierarchy, and it includes two

additional data members as shown in Table 3.10.
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Table 3.10 Data Members of Hetero-Relation Class

Data Data Type Description
pred_unit_no | integer identifying number of a predecessor repetitive unit
succ_unit_no | integer identifying number of a successor repetitive unit

It should be noted that one of these two variables is automatically initiated with
zero if its activity is specified by the user to be non-repetitive. Otherwise, these
variables are initiated with the appropriate repetitive unit number as specified by
the user. The member functions of Hetero-Relation are similar to those of
Regular-Relation, however they exchange messages with two types of activity

objects (i.e. Non-Repetitive and Repetitive).

3.4.7 Activity

In the other branch of the hierarchy, Activity class is derived from the parent class
(Project-Data) which entitles it to inherit all the data members of the parent class
(i.e. name[10]). In addition, Activity includes more specialized set of data that
models its own requirements and behaviour as shown in Table 3.11. It should be
noted that this class does not include member functions of its own, however it
includes the generic data which applies to both repetitive and non-repetitive
activities. It foorms an intermediate level class, from which more detailed and

specialized classes can be derived (i.e. Non-Repetitive and Repetitive).
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Table 3.11 Data Members of Activity Class

Data Data Type Description
Rpred a pointer | a pointer to a predecessor relationship object
Rsucc a pointer | a pointer to a successor relationship object
no_pred integer number of predecessor non-repetitive activities
no_succ integer number of successor non-repetitive activities
mess_pred integer a counter indicating number of messages received

from predecessor non-repetitive activities

mess_succ | integer a counter indicating number of messages received

from successor non-repetitive activities
possible_ES | integer early possible start date of activity
possible LF |integer late possible finish date of activity
actual_start | integer actual start date of activity
actual_finish | integer actual finish date of activity

weather_type | integer a variable indicating activity weather sensitivity.
Values of 0, 1, 2, 3, 4, 5 or 6 indicates insensitive to
weather, masonry, electrical, labour tasks, manual
tasks, underground piping or general construction,
respectively

3.4.8 Non-Repetitive Activity

At the third and the lowest level of the hierarchy, Non-Repetitive Activity class is
derived from Activity. This class is designed to represent the characteristics of non-
repetitive activities of the project. The data members and main member functions

of Non-Repetitive class are listed in Tables 3.12 and 3.13, respectively.

Table 3.12 Data Members of Non-Repetitive Class

Data Data Type Description
quantity fioat quantity of work in units of measurement
productivity float crew daily output in units/day
prod_factor float productivity factor due to weather impact
mat_cost_unit float material cost rate in $/unit
lab_cost_day float labour cost rate in $/day
equipicosi__ day | float equipment cost rate in $/day
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Table 3.13 Main Member Functions of Non-Repetitive Class

Function

Description

modify_ES()

modify_LF()

start_forward__
calculations()

start_backward__
calculations()

display_calendar_
dates()

is invoked during forward pass scheduling by a message from
its predecessor relationship object. The message includes
predecessor early start and finish dates, and precedence
relationship type and lag. In response to the message, this
function modifies the possible_ES data member of the activity
object

is invoked during backward pass scheduling by a message
from its successor relationship object. The message includes
successor late start and finish dates, and precedence
relationship type and lag. In response to the message, this
function modifies the possible_LF data member of the activity
object

is invoked by a message from its predecessor relationship
object. It calculates activity duration and sends message to
successor relationship objects containing information about
scheduled early start and finish dates of the activity

is invoked by a message from its successor relationship
object. It calculates late start date and sends message to
predecessor relationship objects containing information about
scheduled late start and finish dates of the activity

displays activity scheduling results

3.4.9 Repetitive Activity

This class represents the special characteristics of the repetitive activities in the

project. The data and functions of this class are designed to consider factors

affecting scheduling of repetitive activities. At the third level of the hierarchy, this

class is derived from Activity class. In addition to the data and function members

inherited from its parent classes, Repetitive-Activity includes data members listed

in Table 3.14. The main member functions of this class are listed in Table 3.15.
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Table 3.14 Data Members of Repetitive Class

Data Data Type Description

no_units integer number of repetitive units

no_crew_ integer number of available crew formations

formations

chosen_formation | integer identification number of the selected optimum
crew formation

no_rep_pred integer number of predecessor repetitive activities

no_rep_succ integer number of successor repetitive activities

mess_rep_pred integer a counter indicating number of messages
received from predecessor repetitive activities

mess_rep_succ integer a counter indicating number of messages
received from successor repetitive activities

quantity a pointer | a pointer to a float vector of size [no_units] that
includes quantities of work of all repetitive units

interruption_vector | a pointer | a pointer to an integer vector of size [no_units]
that includes interruption to crew work continuity
in all repetitive units

execution_order a pointer | a pointer to an integer vector of size [no_units]
that includes user-specified order of execution
throughout all repetitive units

PES a pointer | a pointer to an integer vector of size [no_units]
that includes possible early start date of all
repetitive units

Rep_pred a pointer | a pointer to predecessor Repetitive-Relationship
objects

Rep_succ apointer |a pointer to successor Repetitive-Relationship
objects

crew_formations a pointer | a pointer to available Crew-Formation objects
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Table 3.15 Main Member Functions of Repetitive Class

Function Description

modify_ES_array() | is invoked during forward pass scheduling by a message from
its predecessor relationship object. The message includes
predecessor early start and finish dates, and precedence
relationship type and lag. In response to the message, this
function modifies the PES vector.

start_forward_ is invoked by a message from its predecessor relationship
calculations() object. In response, the function sends a message to the
Project object inquiring about user-specified optimization
option. If the user specifies regular scheduling with no
optimization, the function sends a message to Crew-
Formation object invoking it to apply an algorithm for
resource-driven scheduling (described later in Chapter 4).
start_forward_ is invoked to apply an algorithm for schedule optimization
optimization() algorithm (described later in Chapter 5).

3.4.10 Crew-Formation

Often, there are more than one crew utilization option that can be used to
construct a Repetitive activity. For example, a masonry activity in a housing project
can be constructed using: 1) a single crew without overtime hours; 2) a single crew
with overtime hours or; 3) two crews working simultaneously in different houses
without overtime hours. Each of these crew utilization options can be identified as
a unique crew formation to construct the activity. In this thesis, the word “crew
formation” is used to describe a crew utilization option that may involve utilizing
one or more construction crews with or without overtime policy. This class is
designed to represent the characteristics of a “crew formation” to enable schedule

optimization which is discussed later in Chapter 5. The data members and main
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member functions of Crew-Formation class are listed in Tables 3.16 and 3.17,

respectively.
Table 3.16 Data Members of Crew-Formation Class
Data Data Description
Type

no_crews integer number of crews that can work simultaneously on
an activity in different repetitive units

productivity _ a pointer | a pointer to a float vector of size [no_crews] that

normal includes daily output of each crew in units/day

material_cost _ a pointer | a pointer to an integer vector of size [no_crews] that

unit includes material cost rate of each crew in $/unit

labor_cost_day | a pointer | a pointer to an integer vector of size [no_crews] that
includes labor cost rate of each crew in $/day

equipment_cost | a pointer | a pointer to an integer vector of size [no_crews] that

_day includes equipment cost rate of each crew in $/day

interuption_cost | a pointer | a pointer to an integer vector of size [no_crews] that

_day includes interruption cost rate of each crew in $/day

early_available_ | a pointer | a pointer to an integer vector of size [no_crews] that

date includes early available date of each crew on site

late_available_d | a pointer | a pointer to an integer vector of size [no_crews] that

ate includes late available date of each crew on site

interruption_OK | a pointer | a pointer to an integer vector of size [no_crews] that
indicates user-specification whether the work
continuity of each crew can be interrupted or not

productivity _ a pointer | a pointer to a float vector of size [no_units] that

factor includes productivity factor due to weather and/or
leamning curve effect for each repetitive unit

assigned_crew | a pointer | a pointer to an integer vector of size [no_units] that
includes identification number of the selected crew
for each repetitive unit

duration a pointer | a pointer to an integer vector of size [no_units] that
includes calculated duration for each repetitive unit

ES_array a pointer | a pointer to an integer vector of size [no_units] that
includes calculated early start date of each repetitive
unit

LF_array a pointer | a pointer to an integer vector of size [no_units] that

includes calculated late finish date of each repetitive
unit
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Table 3.17 Main Member Functions of Crew-Formation Class

Function Description

forward_schedule() is invoked during forward pass scheduling by a message
from the associated repetitive activity object. The
function applies a developed algorithm for resource-
driven scheduling (described later in Chapter 4).

Calculate_interruption() |is invoked during scheduling optimization to
automatically generate a feasible set of interruption
options. These options are used to identify the optimum
interruption option for the crew formation based on a
developed algorithm for scheduling optimization
(described later in Chapter 5).

3.4.11 Scheduling Calculation

In the proposed model, scheduling calculation is performed by exchanging
messages among various objects in the model. An overview of the scheduling
calculation is illustrated graphically in a number of state diagrams (Figures 3.8 to
3.13). The state diagram of a specific class illustrates the messages received from
and/or sent to external classes and how they invoke various member functions of

the local class as shown in Figures 3.8 to 3.13.

Scheduling calculation is invoked by the user after completing the data input for all
project activities and relationships. Upon user request, the project object starts
scheduling calculation by searching for an activity that has no predecessors as
shown in Figure 3.8. Such an activity represents the start activity of the project and
it can be repetitive or non-repetitive. The project object then sends a message to

the start activity object, invoking it to modify its early start. In response, that activity
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initiates its possible early start variable with the start date of the project. The
project object then sends a second message to the same activity object invoking it
to start forward pass calculations as shown in Figure 3.8. The activity, accordingly,
examines if it has received messages from all its predecessors. If this condition is
not true, the activity waits until receiving other messages from the rest of its
predecessors. Otherwise, the activity object starts self-scheduling based on its
type as shown in the two state diagrams of Repetitive or Non-Repetitive activity

classes (Figures 3.9 and 3.10).

St = ’( start schedulmg@
do.
search for start
activity of project

modify_ES_array() E

start_forward
calculations()

modify_ES()

start_forward
calculations()

Figure 3.8 State Diagram of Project

For a Non-Repetitive activity object, the process of self-scheduling starts by
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calculating the initial duration (D) without considering weather impact in working

days as follows:

D=Q/P (3.1)
where,
Q: quantity of work in units of measurement;

and P : crew daily output in units/day.

The initial early finish date (IEF) of the activity is then calculated by adding the
initial duration obtained from equation (3.1) to the early start date (ES) of the

activity as follows:

IEF = ES+D (3.2)
If the user has specified the activity to be weather-sensitive, the activity object then

starts to modify its duration and costs due to the impact of weather. This is
achieved by sending a message to a Date object, seeking an average productivity
factor due to weather as shown in Figure 3.9. The message includes the type of
activity (e.g. masonry, electrical, etc.) and the initial start and finish dates of the
activity (e.g. ES = October 12 and IEF = November 20). In response to this
message, the Date object calculates an average productivity factor due to weather
for the specified construction period and retumns it to the inquiring Non-Repetitive
activity object. The calculation of this average productivity factor by a member
function of the Date class is explained later in section 3.4.12. Upon receiving the

average productivity factor from the Date object, the Non-Repetitive activity object
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proceeds to modify its duration and cost. It calculates its modified duration (MD),

its modified early finish date (EF) and its direct cost in $ (DC) as follows:

MD = D/ PFW (3.3)
EF = ES+ MD (3.4)
DC=0x MC+ MDx (LC + EC) 3.5)

where,

PFW: average productivity factor received from Date class message;

MC: material cost rate in $/unit of measurement;

LC: labor cost rate in $/day;

and EC: equipment cost rate in $/day.

For a Repetitive activity object, the process of self-scheduling starts by examining
the user-specified option for schedule optimization as shown in Figure 3.10. The
activity object sends a message to the Project object inquiring about the schedule
optimization option. If the user specifies schedule optimization, the activity object
applies an optimization algorithm which is described later in chapter 5. Otherwise,
the activity object proceeds with forward pass scheduling to identify the early start
and finish dates of the activity in each repetitive unit as shown in Figure 3.10. The
forward pass scheduling is initiated by sending a message to the Crew-Formation
object specified by the user to construct the activity as shown in Figure 3.10. In
response to this message, the Crew-Formation object identifies early start and

finish dates of the activity in each repetitive unit by applying the resource-driven
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scheduling algorithm presented in Chapter 4.

. . do: S
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initial_duration()
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factor due to weather
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r

duration, EF and cost
check: if last
activity in proje
do: update project
duration and cost
do:
start backward pass
LF=EF & LS =ES
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Figure 3.9 State Diagram of Non-Repetitive Activity
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Figure 3.10 State Diagram of Repetitive Activity
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Upon the completion of self-scheduling, each activity object (which can be
Repetitive or Non-Repetitive) examines if it is the last activity in the project as
shown in Figures 3.9 and 3.10. If this condition is true, the activity object sends a
message to the Project object to update the project completion date, and then the
activity starts the backward pass calculation as shown in Figures 3.9 and 3.10.
Otherwise, the activity object sends messages to all the successor relationship
objects informing them with its early start and finish dates. In response to these
messages, each relationship object passes this information along with the
relationship type and lag in working days to the successor activity object in the
form of a message as shown in Figures 3.11, 3.12 and 3.13. Based on this
information, the successor activity object repeats the above described process of

self-scheduling.

CRYeUECesS0TT ST
e ’ do: ; > S
on:-Repetitive:s —p Non:Re "e,tlt%
RS TIC , Gend_mess_suc() %ﬂm l“ eﬁvg’%v

redecesso o
‘ :ﬁ, eﬂe as > send_mess_suc()

Figure 3.12 State Diagram of Repetitive-Relation
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do:
send_mess_suc()

Figure 3.13 State Diagram of Hetero-Relation

This process of sending and receiving messages among activites and their
relationship objects propagates throughout the whole project starting with the first
and ending with the last activity. As such, the forward pass calculation is carried
out, and upon its completion an opposite direction process will automatically start
from the last activity and propagates through to the first activity in the project. This
backward pass calculation is performed to identify late start and finish dates for
each activity in the project. In the scheduling model, scheduling of the non-
repetitive group of activities is carried out in a process similar to network-based
techniques but through an exchange of messages. Scheduling of the repetitive
group of activities, however, is based on a developed resource-driven scheduling
algorithm which is explained in the following chapter. As such, the model is
capable of integrating scheduling techniques for non-repetitive and repetitive

activities.
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3.4.12 Impact of Weather on Construction Productivity

The impact of weather on construction productivity in the proposed mode! is
identified in Dafe class. As shown in Figure 3.14, a Date object may receive a
message from a Non-Repetitive activity object or from a Crew-Formation object
inquiring about the impact of weather on construction duration. The message
includes the type of construction (e.g. masonry) and the scheduled construction
period (e.g. November 15 to December 6). In response to this message, the Date
object estimates the average productivity factor due to weather (PFW) for the
specified construction period and retums this information in the form of a message
to the inquiring object. As mentioned earlier in Chapter 2, the impact of weather on
construction activities can either be partial or complete; partial loss is generally
attributed to reduced labor productivity and complete to work stoppage which
interrupts those activities (Moselhi et al 1997). In the Date object, daily productivity
factors combining the impact of reduced labor productivity and work stoppage are
estimated. These daily productivity factors are then averaged over the specified

construction period to estimate the average productivity facter as follows:

PFW =

I MO

1
o PFT x PE#S (3.6)
i=1

where,

PFW: average productivity factor considering the combined impact of reduced

labor productivity and work stoppage during specified construction period;
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PF productivity factor considering the reduced labor productivity due to
temperature, humidity and wind speed on day i;

PF"®: productivity factor considering the effect of work stoppage due to
precipitation on day i; and

C: number of days within the specified activity duration before considering

weather impact.

i

e do: calculate and return
on:e ;t't“’ productivity factor
, c VALY >1aSS e due to weather impact

3

return productivity factor return productivity factor

Figure 3.14 State Diagram of Date Class

In order to identify the weather impact due to reduced labor productivity, the Date
object estimates the factor PF" based on: 1) daily temperature, humidity and wind
speed extracted from its database; and 2) formulas and tables relating these
weather conditions to productivity for a number of construction trades, in a similar
manner to that proposed by Moselhi et al. (1997). Date class includes a number of
these formulas and tables obtained from the literature for the construction trades
of: 1) electrical work (National Electrical Contractors Association 1974); 2) masonry
(Grimm and Wagner 1974); 3) manual tasks; 4) equipment tasks (Engineering

News Record March 20 1986); 5) underground pipelines (Department of the Navy
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June 1969), and 6) general construction (Keehn and Brown 1985).

In order to identify the weather impact due to work stoppage caused by

precipitation, the Date object estimates the factor PF*® as follows:

W - R,
PR = L (3.7)
w

where,

W: total daily working hours; and

R;i: lost working hours due to rain on day i which are stored in the database of

Date class.

In order to estimate productivity factor due to weather, Date class includes a
database representing the weather characteristics for the city of Montreal. The
database consists of three arrays of daily effective temperature, humidity, and
precipitation for an average year. It should be noted that the first two arrays of
effective temperature and humidity are obtained from a previous thesis in the
Centre for Building Studies by Nicholas (1989). These weather parameters were
estimated based on historical weather for a period of ten years (1971 to 1980). For
each day of the year, the hourly weather data recorded during the daily working
hours (i.e. 9 a.m. to 5 p.m.) were averaged. It should be pointed out that the
weather data in that thesis did not include precipitation data. In this thesis,
however, the database of Date class expands on that latter work to include lost

hours due to precipitation (R;) (Moselhi et al 1997). R; values are estimated based
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on the hourly precipitation data for the city of Montreal for the same ten year period
treated by Nicholas (1989) for consistency. The original precipitation data file
obtained from Environment Canada was in the form of hourly accumulation of
precipitation in mm for a ten year period. The number of precipitation hours on day
i (R)) is estimated by averaging the number of precipitation hours occurring during
the daily working hours of the same day (e.g. August 2™) over the ten years period

considered in this thesis (1971 to 1980).

3.5 Summary

A model for optimized scheduling of repetitive construction projects is presented.
The model is based on object-oriented modelling and its development consists of
three stages: analysis, design and implementation. This chapter covered the
analysis stage which involved a field study and the development of an object
model and a dynamic model. The field study was conducted to identify practical
factors affecting scheduling of repetitive construction. This chapter also introduced
the design stage for various classes, and the design of scheduling calculation and
the consideration of weather impact in the proposed model. The scheduling
calculation in the model is designed to enable the integration of scheduling
techniques for non-repetitive and repetitive activities which are commonly
encountered in repetitive construction projects. Scheduling of the non-repetitive
group of activities is performed in a process similar to that of network-based

techniques but through an exchange of messages. Scheduling of the repetitive
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group of activities, however, is based on a newly developed resource-driven
scheduling algorithm (explained in Chapter 4). The consideration of weather
impact in the proposed model provides practical advancements over available
ones. It utilizes different formulas to estimate reduced labor productivity of various
construction trades and it considers the combined impact of reduced labor
productivity and work stoppage. The design stage of the model is continued in the
following two chapters, namely the design of two main algorithms for resource-
driven scheduling and scheduling optimization. The implementation stage of the

proposed model will be explained in Chapter 6.
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CHAPTER 4
AN ALGORITHM FOR RESOURCE-DRIVEN SCHEDULING
OF REPETITIVE ACTIVITIES

4.1 Introduction

This chapter focuses on the detailed design of the proposed object-oriented
model, utilizing the concepts described in the inﬁal design stage (section 4 of
Chapter 3). It presents a proposed algorithm for resource-driven scheduling of
repetitive activities. The algorithm is included in Crew-Fomation class. As stated
earlier in Chapter 3, scheduling calculation in the proposed model is performed by
exchanging messages among various objects. VWhen a repetitive activity object
receives a message invoking it to proceed with scheduling calculations, it sends
another message to its associated crew formation object. The latter message
includes information about: 1) number of repetitive units; 2) quantity of each
repetitive unit; 3) possible early start of each unit that satisfies precedence
relationships; and 4) user-specified execution order of the repetitive units. Based
on this information and crew formation data, the Crew-Formation object identifies
early start and finish dates of the activity in each repetitive unit by applying an

algorithm for resource-driven scheduling as shown in Figure 4.1.
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4.2 Resource-Driven Scheduling

In a repetitive activity, a construction crew often repeats the same work of that
activity, moving from one repetitive unit, in the project, to another. In a highway
project, for example, an earthmoving crew repeats the earthmoving operations
from one unit to the next in the project. In order to maintain work continuity in this
environment, repetitive units must be scheduled in such a way to enable timely
movement of crews from one unit to the next, avoiding crew idle time. This is
known as the "crew work continuity constraint’, and its application during
scheduling provides for an effective resource utilization strategy, that leads to: 1)
maximization of the benefits from the leaming curve effect for each crew; 2)
minimization of idle time of each crew; and 3) minimization of the off-on movement

of crews on a project once work has begun (Birrell 1981, Ashley 1980).

do:
forward_schedule()

do: apply proposed algorithm
for resoure-driven scheduling

Figure 4.1 State Diagram of Crew Formation

Despite the apparent advantages of maintaining crew work continuity, its strict
application may lead to a longer overall project duration in some cases such as
that shown in the first solution generated in the numerical example analyzed at the

end of this chapter. Selinger (1980) suggested that the violation of crew work

89



continuity constraint, by allowing work interruptions, may reduce the overall project
duration and, accordingly, the project indirect cost. However it should be noted that
work interruptions resuit in idle crew time and accordingly may lead to increased
direct cost. Russell and Wong (1993) criticized the application of work continuity
for all activities, and suggested that work continuity condition should be satisfied
but not strictly enforced in scheduling repetitive activities. As stated earlier in
Chapter 2, the application of traditional scheduling techniques (i.e. barcharts and
networks) to the scheduling of repetitive units in projects has been widely criticized
in the literature for their inability to maintain crew work continuity, even if resource
levelling is utilized (Selinger 1980, Reda 1990, and Russell and Wong 1993). In
addition, such techniques initially assume unlimited availability of resources in the
development of a project schedule, and through resource allocation revise the

project schedule in order to comply with resource availability.

Unlike traditional scheduling techniques, resource-driven scheduling directly
accounts for crew work continuity as well as resource availability to facilitate
effective resource utilization. As such, resource-driven scheduling of repetitive
activities requires the satisfaction of three constraints: 1) precedence relationships,
2) crew availability, and 3) crew work continuity. The precedence relationship
constraint defines the job logic between successive construction activities, in
compliance with the construction methods used. For example, pouring concrete

should be preceded by formwork erection. The crew availability constraint depends
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on the available number of crews that can be assigned to construct an activity in all
repetitive units of the project. For example, a single crew assigned to construct 9
successive units (case 1 of Figures 4.2 and 4.3) can start work on the second unit
only after finishing the first, while three crews assigned to construct the same units
(cases 2 through 5 of Figures 4.2 and 4.3) can work simultaneously on the first
three units. The third constraint is the crew work continuity which requires that the
schedule of repetitive units be organized in such a way to maintain work continuity
of the assigned crews. For example, a crew assigned to construct an activity in a
number of repetitive units should be able to move promptly from one unit to the

next without delay in order to minimize its idle time (see Figures 4.2 and 4.3).

As stated earlier in Chapter 3, the field study indicated the need to consider a
number of practical factors commonly encountered during the scheduling of
repetitive activities. An examination of resource-driven scheduling of repetitive
activities, including the findings of the field study and pertinent literature, indicates
the need to account for: 1) type of activity (i.e. typical or non-typical); 2) number
of crews assigned to work simultaneously on an activity; 3) interruption of
crew work continuity; 4) crew availability period on site; 5) the order of executing
repetitive units; 6) weather impact; and 7) learning curve effect. Accounting for
these factors provides added flexibility and practicality in scheduling this class of
projects. It should be noted that different combinations of these factors creates a

number of possible cases as shown in Figures 4.2 and 4.3. The two figures
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illustrate the impact of the first five factors, consideﬁng typical (Figure 4.2) and
non-typical repetitive activities (Figure 4.3), respectively. Unlike case 1 of Figure
4.2, case 1 of Figure 4.3 shows how activity durations vary from one repetitive unit
to another. The remaining four cases (i.e. multiple crews, interruptions, crew
availability period on site and construction sequence) are also depicted in Figures
4.2 and 4.3. For example, case 4 of Figures 4.2 and 4.3 shows the impact of a
crew availability period starting from time zero to days 20 and 19, respectively. The
two figures clearly demonstrate that the above factors have a direct impact on
determining the scheduled start and finish times of each repetitive unit as well as

its assigned crew.

A number of methods has been proposed in the literature for scheduling of
repetitive activities. (Al Sarraj 1990, Carr and Meyer, 1974, Chrzanowski and
Johnston 1986, Eldin and Senouci 1994, Johnston 1981, Moselhi and El-Rayes
1993, Reda 1990, Russell and Caselton 1988; Russell and Wong 1993; and
Selinger 1980). These scheduling methods, however, do not reveal an explicit
methodology or an algorithm that considers the above seven factors. This chapter
presents a simple, flexible and comprehensive algorithm for resource-driven
scheduling that is applicable to typical and non-typical repetitive activities and
accounts for the seven factors stated earlier. The algorithm establishes the
scheduled start and finish times for each activity, and identifies the crew assigned

to each activity, in such a way that ensures practicality and flexibility.
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4.3 Proposed Scheduling Algorithm

In the development of this algorithm, three constraints have been considered: 1)
logical precedence relationships; 2) crew availability; and 3) crew work continuity.
The algorithm is designed embracing practicality and flexibility. It considers: typical
and non-typical repetitive activities, single and multiple crews, activity interruption,
crew availability period on site, sequence of construction operations, weather
impact and learning curve effect. The scheduling algorithm is applied to each
repetitive activity in the project to identify the scheduled start and finish times of all
of its repetitive units as well as their assigned crews. As shown in Figures 4.4 and
4.5, the algorithm is performed in two stages: the first achieves compliance with
logical precedence relationships and crew availability constraints, and the second

achieves further compliance with crew work continuity constraint.

For each repetitive unit (j) of the activity being considered, stage 1 scans available
crews and identifies the earliest one that can be assigned to unit j. The early
possible start time of the selected crew is identified as the early start time of the
unit. This early start time of the unit due to crew availability constraint is then
compared to its possible early start time due to precedence relationship constraint
(PES)), and the latest value of the two is identified as the scheduled start time of
the unit (S)). For example in Figure 4.4, the seventh unit has early start = 10 and
PES7= 16, and therefore its S7 = 16. The duration of the unit (D)) is then calculated

and accordingly its scheduled finish time (F) is identified. As such, stage 1
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identifies the scheduled start and finish times as well as the assigned crew of each
repetitive unit in compliance with both logical precedence relationships and crew

availability constraints, and considering the seven factors described earlier.

ARepetitive Unit
)
15
14 '
58] PES,
13
o———> Idle;
12
P>~ shift,
11 Crew 1
0 S, [_X_]F, Stagel
S, mwmmF, Stage 2
9
8
7
6
5
4=
3 ——m 3
21— = T @)
) — ime (days)
1 a5 >

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Figure 4.4 Stages Used in the Algorithm

The developed schedule of stage 1, however, does not necessarily maintain work
continuity constraint for all crews. For example in stage 1 of Figure 4.4, crew

number 1 that is assigned to the fourth unit has to remain idle for 6 days before
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being able to start working on the seventh unit (i.e. idle; = 6), thus violating crew
work continuity. Stage 2 is designed to achieve further compliance with crew work
continuity constraint, by shifting the developed activity schedule of stage 1, if need
be. For example in Figure 4.4, the scheduled start and finish times of the fourth
unit in stage 1 are shifted by 6 days in stage 2 (i.e. shift; = 6) in order to eliminate

crew idle time and maintain work continuity of crew 1 between units 4 and 7.

4.3.1 Stage 1
For each repetitive activity being considered, stage 1 starts with initializing the next
start array (NSy,) with the user-specified earliest available date (MinAvy,) of each

crew m in loop number 1, starting with the first crew (m=1) through the last (m=M)

as follows:
NS, = Mindv,, 4.1)
where,
NSp: next possible start for crew m; and
MinAvn: earliest available date of crew m on site.

The present algorithm allows the consideration of a user-specified crew availability
period on site (i.e. earliest available date (MinAvy) and latest available date
(MaxAvp,)). The algorithm, however, provides a default value of zero for all
elements of MinAvy, indicating that crew m can be available on site as early as
needed, unless otherwise specified.

Having generated NSp, the algorithm proceeds with scheduling following loop
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number 2 of Figure 4.5. For each repetitive unit (j), the algorithm:
1)  Identifies the repetitive unit (k) in conformity with the user-specified construction

sequence (Order;) as follows:

k = Order; 4.2)

Order;:  user-specified order of execution throughout all repetitive units;
and k:  unit number that satisfies the specified Order;
The algorithm provides the user with three options to specify the order of
executing repetitive units: a) ascending order (i.e. Order; = {1,2,3,...,J-1,d},
where J is the total number of repetitive units in the project); b) descending
order (ie. Order; = {J,J-1,..,3,2,1}); or c) specified order (e.g. Order; =
{4,3,J....,J-1,2}). The algorithm provides a default option of ascending order
unless otherwise specified. For example, the order of executing the
earthmoving activity, treated later in the numerical example, can be identified
as user-specified order (i.e. Order;={4,3,2,1,5,6,7,8,9,10,11,12,13,14,15}).

2) Initializes the availability status array (ASy,) of each crew with a binary value of
1 in nested loop number 3, starting with the first crew (m=1) through the last

(m=M) as follows:

AS,, =1 (4.3)
where,
ASp;: binary array indicating the availability status of crew m on site, where

ASn = 1 indicates that crew m is available and AS,, = 0 indicates

otherwise;
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3) Initializes the early start variable of unit k with a large number (e.g. 10,000). A

4)

large number is used to be replaced initially by NS, of crew 1 in the first
iteration of loop 4, and later by the smallest NS, of the remaining crews in

subsequent iterations of the same loop.

Scans all crews starting with first crew (m=1) through the last (m=M) to identify
the first available crew that can be assigned fo unit k and its earliest possible
start time. As shown in nested loop 4 of Figure 4.5, this scanning process
examines for each crew m if: a) it is available on site (i.e. ASp, = 1); b) its next
assignment date is greater than or equal to its user-specified earliest available
date on site (i.e. NSy, + shifty >= MinAvy,); and ¢) its next possible start (NSy) is
less than the early start variable of unit k (i.e. NSy, < early start). If any of these
three conditions is not true, examine the next crew (m+1) and repeat step 4).
Otherwise continue with crew m and move forward to the next step (i.e. step 5)
after initially identifying crew m as the assigned crew to unit k and its next

possible start as the early start of unit k as follows:

assigned crew = m (4.4)
early start = NS, (4.5)

where,
assigned crew: identification number of the assigned crew; and
early start: the earliest possible start time of unit k due to crew

availability.
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5) Identifies the unit interruption (Intery), if any. The algorithm permits user-
specified interruption to crew work continuity. For example, interrupting the grub
and remove stumps activity, treated later in the second solution of the
numerical example, can be achieved by specifying an interruption of 4 days
before the start of the sixth and the seventh units (i.e. Inters=inter;=4). The
algorithm provides a defauit value of zero to all elements of Intery, indicating the
strict application of crew work continuity unless otherwise specified. Based on
the data generated in step 4) and the user-specified activity interruption, the
algorithm corﬁpares the possible early start time due to logical precedence
relationship of unit k (PESy) to its earliest start time due to crew availability
(early start + Intery). If PESk is less than or equal to (early start + Intery), the
crew can start work immediately on unit k after completing work on its
previously assigned unit, and the scheduled start time of unit k (Sx) can be

identified as follows:

Sy = early start + Inter, (4.6)
where,

Sk: scheduled start time of repetitive unit k;

If PESy is greater than (early start + Intery), the crew has to remain idle until the
possible early start time due to activity precedence (PESy) allows it to start. The
scheduled start time of unit k (Sk) and the idle time imposed on its assigned

crew (ldley) can be calculated as follows:
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S, = PES, 4.7)

Idley = PESy - (early start + Inter, ) (4.8)
where,
Idlex: idle time imposed on the assigned crew to unit k due to compliance

6)

7)

with activity precedence relationship constraint.

Calculates the unimpacted duration of unit k before considering the impact of

weather and/or learning curve as follows:

D= —Z 4.9)
F, assigned crew

‘where,

Dx: duration of repetitive unit k;

Qx: quantity of work in unit k;

Passigned crew: daily output rate of the assigned crew.

Estimates the productivity factor for the assigned crew to unit k due to weather
impact (PFWy), if specified by the user. In order to achieve this, the Crew-
Formation object sends a message to a Date object seeking PFWi. The
message includes the applicable type of construction trade (e.g. masonry) and
the scheduled start and finish dates of the activity obtained from steps 5) and
6). In response to this message, the Date object calculates an average

productivity factor due to weather for the specified construction period of the
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activity in unit k, and returns the calculated factor in another message to the
inquiring Crew-Formation object. The estimation of PFWj inside the Date

object is based on the procedure described earlier in section 3.4.12.

8) Estimates the productivity factor for the assigned crew to unit k due to learning
curve effect (PFLy), if specified by the user. PFLy is estimated based on
equations 2.2 and 2.3, assuming a linear leaming model and an R value of 0.9

which represents the majority of construction work (see Table 2.1).

9) Calculates overall productivity factor for the assigned crew to unit k due

weather and leaming curve effect (OPFy) as follows:

OPF, = PFW, x PFL, (4.10)

10) Calculates the modified duration and finish times of unit k as follows:

Dy
- 4.1
MD; OPE, (.11)
Fk = mk + Sk (4.12)
where,
MDy: modified duration of activity in unit k due to weather and/or learning

curve effect; and

F«: scheduled finish time of repetitive unit k.
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11)Examines if the finish time of crew m, assigned to unit k, (Fy) is earlier than the
user-specified latest available date on site (MaxAvp), if any. This feature in the
algorithm provides the user with a practical option to specify that a certain crew
can be available to work on site for a limited period of time, after which it cannot
be assigned additional work. The algorithm provides a default value of a large
number to all elements in the MaxAvy, array, indicating that crews can stay on
site for as long as needed unless otherwise specified by the user. If the
condition examined in this step is violated, repeat the scanning process of all
possible crews once again (i.e. perform steps 3 through 7) after identifying crew
m as unavailable (i.e. AS,=0), and accordingly disregard crew m in step 4).

Otherwise, confirm the assignment of crew m to unit k as follows:

Crews, = assigned crew (4.13)
NSossignedcrew = Fr + Vigsigneacrew (4.14)
where,

Crewix: identifies crew number assigned to unit k; and
Vm: movement time of crew m to the next unit, if any. The default value is

assumed to be zero.
12)Repeat steps 1) to 11) for the next repetitive unit (j=j+1) until (j=J). As such, the
start and finish times (S; and Fj) as well as the assigned crew (Crew;) are

identified for each unit (j), in compliance with crew availability and activity
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precedence relationship constraints.

4.3.2 Stage 2

As stated earlier, the developed schedule of stage 1 may cause crew idle time in
some units. For example in Figure 4.4, crew 1 is assigned to construct units 1, 4,
7, 10, 12 and 15, respectively. The developed schedule of stage 1 does not
maintain work continuity for crew 1 and results in its idle time in a number of units
(i.e. Idle4=0, Idle;=2, Idle;=6, Idle=0, Idle12=0, Idle1s=0). In order to eliminate crew
idle time and maintain crew work continuity constraint, stage 2 shifts the developed
schedule of some units, if any, in stage 1 to a later time. The shift is calculated for
all units assigned to each crew m in loop 5 and nested loop 6 of stage 2 as shown
in Figure 4.5. The required shift of a unit (shift) is identified as the summation of all
idle times of later scheduled units assigned to the same crew. For example in
Figure 4.4,

shiftis = 0;

shifti2 = Idles = 0;

shiftyo = Idless + Idles2 = 0;

shift; = Idles + Idle + Idleyo = 0;

shifty = ldless + Idles; + Idleso + Idle; = 6;

shifty = Idleqs + Idles2 + Idlesg + Idle; + Idles = 8.

The identified shift of each unit is used to shift the scheduled start and finish times
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of stage 1. This shift, however, may cause the working period of some crews to be
shifted outside their availability periods that was considered in the developed
schedule of stage 1. Therefore, stage 1 is repeated for a second iteration to
consider the impact of such shifts on crew availability. it should be noted that all
values of shift; array are assumed to be zero in the first iteration of stage 1, and are
obtained as mentioned above in the second iteration of stage 1. After the second
iteration of stages 1 and 2, the developed schedule of stage 1 is shifted in loop 6

of stage 2 as follows:

S; = 8;+shift; (4.15)
F, = F;+shift, (4.16)
where,

shift: required shift of the start and finish times of unit j to comply with crew work

continuity constraint.

It should be noted that the algorithm does not guarantee a feasible soiution when
one theoretically exists, employing all crews with their limited availability periods.
The algorithm, however, guarantees such a feasible solution once that condition

on crew availability is relaxed.
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4.4 Numerical Example

A numerical example of a highway project is analyzed in order to illustrate the use
of the proposed algorithm and demonstrate its capabilities. The project involves
the construction of a three lane highway for a stretch of 15 kilometres, and consists
of five consecutive activities: cut and chip trees, grub and remove stumps,
earthmoving, base and paving. The project is divided, for simplicity, into 15
repetitive units, each has a length of one kilometer. While in this example each unit
is assumed to have a length of one kilometer, the developed scheduling algorithm
can be applied to different lengths as it is designed to accept varying scope of
works in repetitive units. Each of the five activities is repeated at each of the 15
segments or units of the project. The precedence relationships among these
sequential activities are finish to start with no lag time. In this example, the
activities of cut and chip trees, grub and remove stumps as well as earthmoving do
not have identical durations in all units and thus can be classified as non-typical
repetitive activities. The activities of base and paving, however, have identical
durations in all units and thus can be classified as typical repetitive activities. The
two categories of repetitive activities are represented in this example to illustrate

the flexibility of the algorithm.

The activity and crew data, used in this example, are summarized in Tables 4.1
and 4.2, respectively. Activity data in each unit include: 1) quantity of work in units

specified by the user (Q); 2) interruption to crew work continuity, if any (Inter;); and
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3) order of execution (Order;). The data used in Table 4.1 are reasonably assumed
based on the size of the project being considered. For example, the seventh
kilometer (j = 7) of the earthmoving activity has a quantity of 6500 m® (Q7 = 6500),
will be the second unit to be executed (Order, = 7), and since there is no specified

interruption to its assigned crew, its Inter; = 0.

Crew data is summarized in Table 4.2. For each repetitive activity, the data
includes: 1) daily output in unit/day (Pn); 2) earliest available date on site (MinAvr);
and 3) latest available date site (MaxAvm). In an effort to use realistic data, the
daily output of crews are obtained from Means Construction Cost Data (1 993), and
modified to SI units. Data pertaining to crew availability period on site are assumed
to demonstrate some practical features in the developed algorithm. For example,
crew 1 that can be assigned to the base activity has a daily output rate of 3200
mzlday (P1=3200), can move to site on day 26 (MinAv;=26) and can stay on site
for as long as needed (MaxAv,=large number). In this example, the availability
period of some crews is assumed to be limited (e.g. crews 1 and 2 of the
earthmoving activity), while that of others is not (e.g. crews 1, 2 and 3 of the paving

activity) as shown in Table 4.2.

Another possible and practical scenario of resource utilization occurs when a crew
has to move out of site after a first working period and remain absent for an

intermittent period, after which it can return and resume a second working period.
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Such a scenario can occur, for example, due to out of site concurrent commitment,
especially, in cases where multiple projects serviced by the same resource pool.
The present algorithm can account for such a scenario by replacing the two

availability periods of the same crew with two periods of two distinct crews.

For example, crew 3 of the activity cut and chip trees can be available on site for
two separate periods of time. The first availability period starts on the move-in day
and extends for 18 days, after which the crew has to move and remain out of site
for another 6 days. The second availability period can start immediately after the
out of site period and can extend for as long as needed. In this case, the two
availability periods of crew 3 are replaced with two periods of two distinct crews: 3
and 4. The first working period of crew 3 can be represented by that of crew 3
which extends from project start day (MinAvs=0) to day 18 (MaxAvs;=18). The
second availability period of crew 3, however, can be represented by that of an
artificial or alias fourth crew which can be available on site from day 24
(MinAv,=24) and can stay on site for as long as needed (MaxAvs=large number)

as shown in Figure 4.6 and columns 5 and 6 of Table 4.2.
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Table 4.1(B) Activity Input Data (Continued)

Repetitive Activity
Base Paving
Repetitive | Quant- Interruption | Quant- Interruption
Unit {Km.) itiezs in | Order in days itiezs in | Order in days

j m” Q; Order; Inter; m“ Q; Order; Inter;
(1) (2) 3) 4) (5) (6) (7)

1 32000 1 0 32000 1 0

2 32000 2 o 32000 2 0

3 32000 3 0 32000 3 0

4 32000 4 0 32000 4 0

5 32000 5 0 32000 5 0

6 32000 6 0 32000 6 0

7 32000 7 0 32000 7 0

8 32000 8 0 32000 8 0

9 32000 9 0 32000 9 0
10 32000 10 0 32000 10 0
11 32000 1 0 32000 11 0
12 32000 12 0 32000 12 0
13 32000 13 0 32000 13 0
14 32000 14 0 32000 14 0
15 32000 15 0] 32000 15 0

As for the impact of the order of execution, it is demonstrated in the numerical
example by assigning a user-specified execution order to the earthmoving activity
as shown in column 9 of Table 4.1(A). In realife, the order of executing
earthmoving operations is often affected by site topography in order to minimize
the cost of cut and fill. For simplicity in this example, the order of executing the
earthmoving activity is assumed to start at the 4th km. and move in a descending
order towards the first km., and then complete the remainder of the activity by

starting at the 5th km. and moving in an ascending order towards the 15th km.
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In order to demonstrate the flexibility of the algorithm with respect to activity
interruption, the numerical example was analyzed twice, with and without activity
interruption. First, scheduling calculations were performed without activity
interruption. The calculations are initiated by sending a message to the first activity
in the project (i.e. cut and chip trees) in order to start self scheduling. Upon
receiving this message, the cut and chip activity initiates its PES; array with the
start time of the project (i.e. PES;=0 for all j), and then starts self scheduling by
calling the algorithm described earlier. Upon the completion of the calculations, the
cut and chip trees activity sends a message to the grub and remove stumps
activity via the relationship object linking the two. Based on this message, the grub
and remove stumps activity modifies its early start array (PES;) based on the finish
times of its predecessor and the type of relationship. The remaining activities
perform scheduling calculations and sending and receiving messages in a similar
and sequential manner. The scheduling results are summarized in Table 4.3 and

Figure 4.6, indicating an overall project duration of 87 days.

The process described above was repeated, but with interrupting the grub and
remove stumps activity. An interruption of 4 days is assumed to occur before the
start of the sixth and seventh units (Inters=Inter;=4). Considering that activity
interruption, the proposed algorithm was applied. The scheduling results are
shown in Table 4.4 and Figure 4.7, indicating an overall project duration of 83

days. Although this illustrates an apparent advantage of activity interruption in
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reducing overall project time, it should be assessed on a project by project basis.
Activity interruption violates the concept of crew work continuity and often leads to
crew idle time, inefficient resource utilization and additional costs in mobilization
and demobilization. These factors should be considered and carefully evaluated
before implementing any activity interruption. As shown in Tables 4.3 and 4.4 and
Figures 4.6 and 4.7, the present algorithm is capable of maintaining all precedence
relationships, crew availability and crew work continuity constraints, and of
accounting for a number of factors affecting the scheduling of repetitive activities.
As such, the scheduling algorithm offers a number of practical capabilities.

Table 4.2 Crews' Input Data

Daily Earliest Latest
Repetitive Crew Crew ID Output | Available | Available
Activity #m from Means | in uniday Day Day
(1 ) (2) (3) Pm MinAvn MaxAvm
(4) (5) (6)

Cut and chip 1 B-7 3000 0 *
trees 2 B-7 3000 0 *

3 B-7 3000 0 18

4 B-7 3000 24 40
Grub and 1 B-30 4000 0
remove stumps 2 B-30 4000 0
Earthmoving 1 2 crews B33-E 1200 10 70

2 2 crews B33-F 800 10 70
Base 1 B-36 3200 26 *

2 B-36 3200 26 *

3 B-36 3200 26 *

4 B-36 3200 26 *
Paving 1 B-25 4000 0 *

2 B-25 4000 0] *

3 B-25 4000 (0]

* is a default large number, indicating crew availability for as long as needed
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4.5 Summary

This chapter presented the development of a flexible algorithm for resource-
driven scheduling of repetitive activities, included as a function in the Crew-
Formation class. For each activity in a repetitive unit, the algorithm identifies the
scheduled start and finish times as well as the assigned crew. The algorithm
provides a schedule that complies with precedence relationships, crew
availability and crew work continuity constraints. In addition, it considers the
impact of a number of practical factors: 1) type of repetitive activity (i.e. typical or
non-typical); 2) multiple crews assigned to work simultaneously on an activity; 3)
crew availability period on site; 4) activity interruption; 5) user-specified order of
execution among repetitive units; 6) weather impact; and 7) learning curve effect.
The scheduling algorithm is carried out in two main stages: the first achieves
compliance with precedence relationships and crew availability constraints, and
the second further achieves compliance .with crew work conﬁnuity constraint. A
numerical example of a highway project is analyzed to illustrate the use of the
algorithm and demonstrate its capabilities. The project example is analyzed with
and without activity interruption to illustrate the useful features of the algorithm.
The resuits demonstrate that the consideration of activity interruption can help
reduce project duration. The impact of activity interruption on project duration
and cost is considered in more details in an optimization algorithm, presented in

the next chapter.

120



CHAPTER 5

SCHEDULING OPTIMIZATION

5.1 Introduction

This chapter focuses on the detailed design of the scheduling optimization
functions incorporated in the object-oriented model. It presents the development of
two algorithms designed to optimize the scheduling of repetitive construction
projects. The first algorithm generates a feasible set of interruption options for
each crew formation in the project. The second algorithm identifies the optimum
crew formation and interruption option, from a set of possible alternatives, for each
repetitive activity in the project. The optimization algorithm utilizes dynamic
programming and is capable of generating least cost or minimum duration
schedules. It is invoked when the user specifies schedule optimization as shown in
Figure 3.10. During scheduling calculation, a repetitive activity sends a message to
the project object, inquiring about user-specified option as shown in Figure 3.10. If
the user specifies schedule optimization (i.e. minimize project overall cost or

project duration), the repetitive activity applies the proposed optimization functions.

5.2 Optimized Scheduling

Minimizing the duration of repetitive construction projects is a more complex

process than that of non-repetitive ones due to the compliance with crew work
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continuity constraint (Moselhi and El-Rayes 1993 (b)). This led to the use of
optimization techniques such as linear programming and dynamic programming to
optimize scheduling of repetitive construction projects. Linear programming in the
form of an objective function and a sei of constraints has been proposed by Perera
(1982 and 1983) to maximize the construction rate of the activities in a repetitive
project, thus enabling a minimum project duration. The set of constraints are
specified to satisfy the resource availability and financial limits. The provided
optimum solution of this linear programming formulation is in the form of non-
integer values. This formulation can be considered inadequate for providing a least
cost schedule for a repetitive project for the following reasons: 1) cost is not
considered in the optimization process, and therefore the formulation cannot be
used to minimize the project overall cost; 2) the formulation cannot be applied to
non-typical repetitive projects because it assumes identical durations for the
activity in all repetitive units; 3) interruption of crew work continuity is not
considered; 4) the produced optimum resource utilization is in the form of non-
integer values (e.g. 0.556 crew) which is unrealistic in construction; and 5) the
formulation of the constraints for such a problem can be a complex task for non-

academic users in the construction industry.

In 1990, Reda proposed a repetitive project model (RPM) which utilizes a linear
programming formulation to minimize the project direct cost for a given project

duration. In the formulation, the size of the model in terms of the number of
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constraints depends on the number of repetitive activities in the project. In the
numerical example used to illustrate the use of RPM, an objective function and 24
constraints were formulated to minimize the direct cost for an example of 6
activities. The formulation extended the one provided by Perera (1983) to include
cost in the optimization process. It was, however, assumed that each activity will
have a constant duration in all repefitive units. This assumption limits the
application of the model to typical repetitive projects, and thus cannot provide
solution to non-typical repetitive projects. In addition, the formulation is limited by
the complexity of establishing the constraints, the non-integer outcome and the
inability to consider interruptions similar to the formulation provided by Perera

(1983).

Dynamic programming was advanced in the 1950’s by Bellman (1957). There is no
standard mathematical technique for dynamic programming problems. Dynamic
programming is an approach to problem solving, and particular mathematical
equations have to be developed to fit each problem. Dynamic programming has
been applied to provide solutions to shortest route, resource allocation, equipment
replacement and inventory theory (Bellman and Dreyfus 1962, Denardo 1982, and

Dreyfus and Law 1977).

Dynamic programming was introduced by Selinger (1980) to minimize the duration

of repetitive construction projects. The formulation was developed to satisfy two
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main requirements: 1) maintaining crew work continuity, and 2) determining the
optimum resources to minimize the project duration. In 1988, Russell and Caselton
(1988) presented an expanded dynamic programming formulation that enables the
consideration of interruption to work continuity. These dynamic programming
formulations can be applied to minimize the duration of both typical and non-typical
repetitive projects, thus providing a flexible methodology to overcome the
limitations of linear programming models. However, the application of the two
formulations are limited because: 1) the consideration of interruption to work
continuity was not considered in the first formulation and was only limited to a
user-specified set of interruption options prior to scheduling in the second
formulation, and therefore cannot guarantee the optimum solution; 2) the two
formulations focus on minimizing project duration and do not account for its impact
on the overall cost. In order to overcome the first limitation, the following two
sections present an algorithm for generating interruption options during the
scheduling process. The second limitation is circumvented by presenting an
expanded dynamic programming formulation (section 5.5) that considers cost as

an important decision variable in the optimization process.

5.3 Interruption of Crew Work Continuity

The application of crew work continuity constraint during scheduling of repetitive

construction activities maximizes the efficiency of resource utilization. Despite the
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advantages of maintaining crew work continuity, its strict application often leads to
a longer project duration (Selinger 1980, Russell and Caselton 1988). Selected
interruption of crew work continuity can be used to minimize the duration of
repetitive construction projects as shown in Figure 5.1. Russell and Caselton
(1988) and Eldin and Senouci (1993) utilized interruption as a second state
variable in their dynamic programming formulations in order to minimize project
duration. The two formulations, however, required that the user (e.g. a construction
planner) provide a prespecified set of possible interruption vectors for each activity
in the project prior to scheduling. For example, Russell and Caselton (1988)
provided a prespecified set of interruption vectors that included 13 alternatives in
their numerical example as shown in Table 5.1. For each crew formation
associated with each repetitive activity in the project, the prespecified set of
interruption vectors was evaluated during the optimization process in order to

identify the optimum vector.

Table 5.1 Interruption Vectors (Russell and Caselton, 1988)

Unit Interruption Vectors (days)

(1) 2 @ @ 6 6 0 © (© (1) (1) (12) (13) (14)
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o H» O
- O O
N O O
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1
1
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Figure 5.1 Minimizing Project Duration Using Activity Interruption

Available dynamic programming formulations that utilizes interruption vectors as a

second state variable in the optimization process (Russell and Caselton 1988) can
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produce reduction in project duration as shown in Figure 5.1. The application of

these formulations, however, is limited because they require the user to provide a

prespecified set of interruption vectors before scheduling. This poses a number of

limitations:

1) It is impractical to require a construction planner to identify a set of possible

2)

interruption vectors for each crew formation of each activity in the project prior

to scheduling.

The number of feasible interruption vectors that can be considered for a
repetitive activity can be unlimited if there is no upper limit on the number of
days that a crew is allowed to be interrupted before the start of the activity in a
given repetitive unit. Even if such a limit (Imax) is arbitrarily established, the
number of interruption vectors that can be considered for a crew formation n
associated with repetitive activity i (NIV')) increases exponentially with the
increase of the number of repetitive units (J). The application of an Imax value
means that a crew can be interrupted by a value that ranges from 0 to Imax
days before the start of the activity in a repetitive unit j. For each repetitive unit
j, this leads to a total number of possible interruptions of Imax + 1, assuming
that interruption can vary from 0 to Imax by an increment of 1 day as shown in
Figure 5.2. Accordingly, the total number of interruption vectors that can be

considered for crew formation n of activity i (NIV',) that is repeated in J
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repetitive units can be calculated as follows:

NIV! = (Imax+1)"" (5.1)

For example, an upper limit of 6 interruption days (Imax = 6) imposed on an
activity that is repeated in 15 units (J = 15) can resuit in approximately 680
billion interruption vectors that need to be considered for each crew formation
of each activity in the project (i.e. NIV}, = (Imax + 1)*' = 7% = 680 billion). This
clearly illustrates that even imposing a reasonable value for Imax (e.g. 6 days)

still renders the optimization problem practically infeasible.

The arbitrary selection of a maximum interruption days (Imax) before
scheduling does not guarantee the optimum solution. As shown in the
numerical example presented Iater in this chapter, the optimum solution may
require a number of interruption days greater than that specified by the Imax
value. A solution that is based on an arbitrary imax value, therefore, does not

guarantee the optimum solution.
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5.4 An Algorithm for Generating Feasible Interruption Vectors

In order to circumvent the above three limitations of available dynamic
programming formulations that considers interruption as a second state variable in
the optimization process (Russell and Caselton 1988, and Eldin and Senouci
1993), a flexible and practical algorithm for generating feasible interruption vectors
is developed. First, the algorithm is automated and therefore the construction
planner need not provide a user-specified set of interruption vectors prior to
scheduling. Second, it generates a limited number of feasible interruption vectors
and therefore enables a practical and feasible approach for the consideration of
interruption during schedule optimization. Third, the algorithm generates all
needed interruption vectors during schedule calculation rather than being limited
by a prespecified Imax value before scheduling, ensuring the generation and

selection of the optimum solution.

5.4.1 Limiting the Number of Interruption Vectors

The present algorithm is designed to identify only relevant interruption vectors that
need to be considered during the optimization process. The algorithm utilizes four
rules to limit the total number of feasible interruption vectors for a given crew
formation n of activity i (NIV',). A closer examination of the impact of interruption on
minimizing project duration leads to the identification of the following four rules:

1) The first rule that can be used to limit the number of feasible interruption
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vectors (NIV') is to identify an upper limit on the number of interruption days
that need to be considered for the activity in each repetitive unit j (Imax;). For
each repetitive unit j, this rule considers that Imax; is equal to Idle; generated
using the resource-driven scheduling algorithm described in Chapter 4. The
resource-driven scheduling algorithm was designed to schedule repetitive
construction activities in two stages. The first provides an initial schedule that
satisfies logical precedence relationship and crew availability constraints, and
the second achieves further compliance with crew work continuity constraint.
For example, the activity schedule developed in stage 1 does not ensure
compliance with crew work continuity constraint for crew 1 as shown in Figure
5.3. Crew 1 can finish work in unit 3 on day 6 (F, = 6), however it cannot start
work in its next assigned unit (j = 4) until day 8 because of the logical
precedence relationship imposed by the completion of the predecessor activity
in the same unit (PES, = 8). This means that crew 1 has to wait idle for 2 days
before it can start work in unit 4 (Idle, = 2) as shown in Figure 5.3. In order to
eliminate crew idle time and maintain crew work continuity constraint, the
second stage of the resource-driven scheduling algorithm shifts the start and
finish times of the activity in selected units by a duration of shift; as shown in

Figure 5.3.

The schedule developed in stage 2 achieves strict compliance with crew work

continuity constraint by delaying the start and finish times of the activity in a
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number of units. This may cause a delay to successor activities and
accordingly an extension to project duration as shown in Figure 5.3. In order to
minimize such effect, the strict compliance with crew work continuity applied in
stage 2 can be relaxed by considering work interruption. This allows the activity
in a number of units to start and finish at an earlier time than that established in
stage 2, and therefore can lead to reduction in project duration. As such,
interruption can be used to shift the schedule of the activity in selected units to
start and finish at an earlier time than that developed in stage 2. It should be
noted, however, that the activity in each repetitive unit cannot start at an earlier
time than that developed in stage 1 because of the logical precedence
relationship and crew availability constraints as shown in Figure 5.3. The Figure
also illustrates that the application of an interruption of Idle, before the start of
the activity in each unit j actually transforms the schedule of stage 2 to that of
stage 1. This shows that the earliest start and finish times of the activity in each
unit (i.e. schedule of stage 1) can be achieved by applying an interruption of
Idle; to the schedule of stage 2 as shown in Figure 5.3. As such, this rule
recognizes the fact that the upper limit of interruption days before the start of
unit j (Imax) can be considered equal to Idle; which is generated using the
resource-driven scheduling algorithm described in Chapter 4. Based on this
rule and assuming that the interruption before unit j (Int) can change by an
increment of 1 day (i.e. Int = 0, 1, 2 for Imax; = 2), the total number of

interruption vectors that can be considered for crew formation n of activity i
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(NIV',) can be calculated as follows:

i M X J
NIv; =T Nivy, =[T (1 +1dte)) (5.2)
m=I =2
ARepetitive Unit
®

14 ——

" g—2—p Imax, = Idle, =2 S
>———3p shift;

12 e PESj :

11 Crew 1 “’”-—“_—g—
S,[_1_F, Stage 1 A

1 —
0 S, mmnmm F, Stage 2 =

S, F, Successor N

9
8
7
6
5
4
3
2
1

Time (days)
>

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Figure 5.3 Identification of Upper Limit for Interruption (Imax)

The application of this rule transforms the process of generating feasible
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interruption vectors from an impractical and unlimited problem to a feasible and
limited one. For example, an activity such as the one shown in Figure 5.3 can
have an unlimited number of possible interruption vectors, however the
application of this rule provides an upper limit on the number of interruption
days that can be applied before the start of the activity in eah of the 15
repetitive units (i.e. Imax; = idle; = {0, 0,0, 2,2,2,7,3,0,0,0,0,0, 0, 0}. This
means that the interruption that can be applied before the start of the activity in
each unit j (Int) in order to minimize the project duration ranges between 0 and
Imax;. For this example, the total number of feasible interruption vectors (NIV.)
that can be considered is 864 (i.e. NIV, = (142) (1+2) (1+2) (1+7) (1+3) = 864).
Comparing this number to that generated earlier considering Imax = 6 (NIV', =

680 billion) clearly illustrates the advantage of this rule in limiting NIV/,.

A closer examination of the possible interruption vectors generated based on
rule 1 indicates that a second rule can be identified to further reduce the total
number of interuption vectors. The second rule is based on the fact that if:

1) two interruption vectors (A and B) lead to the same total number of
interruption days to a given crew m (Zint, of A = Yint; of B) and 2) vector A
results in an earlier than or equal schedule for the activity in all repetitive units
than that of vector B, then vector A can be considered a dominant option and

accordingly vector B can be discarded from further consideration.
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For example, crew 2 in Figure 5.3 can be interrupted before the start of the
activity in units 7 and 5 by a duration that ranges from 0 to 7 days and 0 to 2
days, respectively. For crew 2 in this case, 24 possible interruption vectors can
be generated based on the first rule as shown in Table 5.2. A closer
examination of these vectors indicates that a number of them can be precluded
in order to reduce the size of the problem. For example, each of vectors 3 and
17 cause a total of two interruption days to crew 2 as shown in Table 5.2 and
Figure 5.4. Vector 3, however, results in an earlier than or equal schedule for
the activity in all repetitive units than that of vector 17 as shown in Figure 5.4,
and accordingly vector 17 can be discarded from further consideration.
Similarly, each of vectors 9 to 15 can be precluded after comparing it to vectors
3 to 8, respectively as shown in Table 5.2. The same can be applied to vectors
17 to 22 after comparing each to vectors 3 to 8, respectively. Also vector 23

can be eliminated after comparing it to vector 16.
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Figure 5.4 Comparing Interruption Vectors 3 and 17 for Crew 2

In general, this rule is based on the fact that if: 1) crew m is scheduled to

construct a number of repetitive units that includes units A and B, where the

order of executing unit B precedes that of unit A; and 2) crew m can be

interrupted by x days before the start of either unit A (option A) or unit B (option

137



B), then option A provides an earlier than or equal schedule for the activity in all
units than that of B. This is true because option A (i.e. interrupting crew m
before the start of unit A by x days where x < Idle,) leads the activity to start x
days earlier in all preceding repetitive units assigned to crew m including unit B,
however the opposite is not true as shown in Figure 5.5. Since options A and B
cause the same number of interruption days to crew m, and option A provides
an earlier than or equal schedule for the activity in all repetitive units than that
of option B as shown in Figure 5.5, then option B should be discarded from
further consideration.

Repetitive Unit

/ No Interruption| Ly i

Time (days)

10 20 30 40 50

Figure 5.5 Comparing General Interruption Vectors A and B
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As such, it is always more effective to interrupt an activity before the start of
later assigned units rather than earlier ones. Accordingly, based on this rule
and the values of Idle; recognized in the previous rule, a general form can be
identified to generate the needed interruption vectors for crew m that is

assigned to construct the activity in a number of repetitive units as shown in

Table 5.3.
Table 5.3 Interruption Vectors Based on Rule 2
Unit Interruption Vectors (days)
J 0 1 2 Idle, | Idle; Idle, Idle, | Idle, Idle, Idle,
J'1 0 0 0 0 0 1 . IdleJ_1 Id IeJ_1 IdIeJ_«‘ Id'eJ_1
2 0 0 0 0 0 0 0 0 1 Idie,
1 0 0 0 0 0 0 0 0 0 0 0

For crew m of crew formation n, the application of this rule transforms the

process of identifying the total number of interruption vectors (NIV',,) from

multiplicative  (ie.  Nrvi, =[[(1+1ate,) to  addiive  (ie.
=2

NIV =1+ ZJ‘. (1dle;),, )- This can lead to a significant reduction in the number of
=2

interruption vectors that need to be considered for real-life problems. For

example, the application of this rule to a crew m that has Idle; = 9, Idieg = 10,
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Idle, = 8 and Idle, = 6 reduces its total number of interruption vectors that need
to be considered from 6930 (i.e. NIV\,,, = (1+9) (1+10) (1+8) (1+6) = 6930) to 34
(ie. NIV, =1+ 9 + 10 + 8 + 6 = 34). Based on this rule, the total number of
interruption vectors that need to be considered for crew formation n of activity i

(NIVY) can be calculated as follows:

.M i M J
NIV, =[] NIV}, =[] (1+ X Idle)),, (5.3)

m=1 m=1 =2

For crew 2 in Figure 5.3, the application of this rule reduces its total number of
interruption vectors from 24 (i.e. NIV, = (1+ldle,)(1+ldles) = (8)(3) = 24) to 10
(i.e. NIV, = 1 + Idle, + Idle; = 1 + 7 + 2 = 10) as shown in Table 5.2. Similarly
for crew 1 in Figure 5.3, the total number of interruption vectors can be reduced
from 36 (i.e. NIV',, = (1+Idle;)(1+idleg)(1+ldle,) = (4)(3)(3) = 36) to 8 (i.e. NIV',, =
1 + Idleg + Idleg + Idle, = 1 + 3 + 2 + 2 = 8) as shown in Table 5.4. Accordingly,
the application of this rule reduces the total number of interruption vectors that
need to be considered for the activity shown in Figure 5.3 from 864 (i.e. NIV', of

previous rule) to 80 (i.e. NIV, = (NIV',,) (NIV',) = (8)(10) = 80).

The third rule that can be used to reduce the number of feasible interruption
vectors is using a step greater than 1 day to increment interruption days. For
example, the feasible interruption vectors generated based on the previous rule

for crew 2 of Figure 5.3 assumes a step of 1 day as shown in Table 5.2.
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Increasing this step from 1 to 2 days reduces the total number of interruption
vectors for crew 2 (NIV',,) from 10 to 6 as shown in Table 5.5. Similarly for crew
1 of Figure 5.3, the increase of the step to 2 days decreases NIV, from 8 to 5
as shown in Table 5.6. Accordingly, this reduces the total number of
interruption vectors that can be considered for the activity shown in Figure 5.3
from 80 (i.e. NIV}, = (8)(10) = 80) to 30 (i.e. NIVi, = (5)(6) = 30). Further

increase in the step leads to further reduction in NIV', as follows:

; M . M J Idlej
NIV, = [T NIV, = [T a+ X —),, (5.4)
m=1 m=1 2 Step

Table 5.4 Interruption Vectors for Crew 1 Based on Rule 2

Assigned | Idle; Interruption Vector (days)

Unit

)] (1) 2) (3) (4) (%) (6) @) (8)
14 0 - - - - - - - -
12 0 - - - - - - - -
10 0 - - - - - - - -
8 3 0 1 2 3 3 3 3 3
6 2 0 0 0 0 1 2 2 2
4 2 0 0 0 0 0 0 1 2
3 0 - - - - - - - -
1 0 - - - - - - - -

- indicates no interruption because Idle, = 0
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Table 5.5 Interruption Vectors for Crew 2 Using a Step of 2 days

Assigned | Idle, Interruption Vector (days)
Unit
® Mm @ @ @ © ©®
15
13
11
9
7
5
2 0 - - - - - -

- indicates no interruption because Idle; = 0

N NO O O o
o O v
O N 1
o H 1
O O v
O ~N ¢
NN

Table 5.6 Interruption Vectors for Crew 1 Using a Step of 2 days

Assigned | Idle Interruption Vector (days)
Unit
i) Mm @ @ @ O
14 0 - - - - -
12 0 - - - - -
10 0 - - - - -
8 3 0 2 3 3 3
6 2 0 0 0 2 2
4 2 0 0 0 0 2
3 0 - - - - -
1 0 - - - - -

- indicates no interruption because Idie, = 0
It should be noted, however, that during the optimization process the model will
select an optimum interruption vector from the set of generated feasible

alternatives. If the optimum interruption vector cannot be found in this set, the
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closest vector with larger interruption in the set will be selected. As such, the
application of this rule ensures the optimum project schedule, however it may
provide a schedule that specifies a slightly higher number of interruption days
than what is really needed. For example, if a step of 2 days was used for crew
2 (see Table 5.5) and the optimum interruption vector (A) required Int, = 5 and
Int; = 0, the optimization model will select the closest higher vector (B) from the
generated set in Table 5.5 (.. Int, = 6 and Int; = 0). The selected B vector

provides the same project duration as that of A, however it will cause an

additional day of interruption than what is really needed (i.e. zj:mtj =5 for

=2

vector A vector as compared to ¥ Int, = ¢ for vector B).

j=2

The fourth rule is based on the fact that interruption vectors need not be
generated and considered for the last and some intermediate activities in the
project. The main objective of considering interruption for a repetitive activity is
to allow its successor to start at an earlier time in order to reduce project
duration as shown in Figure 5.1. Since the last repetitive activity (e.g. activity D
in Figure 5.6) has no successors, its interruption does not reduce project
duration and therefore it need not be interrupted. Also the interruption of some
intermediate activities (e.g. activity C in Figure 5.6) causes their successors to
start at a later rather than at an earlier time and therefore they need not be

interrupted. In addition, the present model is designed to allow the user to
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specify not to interrupt particular repetitive activities in the project for practical
considerations. This further reduces the total number of interruption vectors

that need to be generated and considered during the optimization process.

2 Time

8 16 24 32 40 48 56 64

No Interruption

ARepetitive——— e

7 YUnit—" / e e 7 S
6 e /L —— Lo
5 a : H i / : :
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Figure 5.6 Impact of Activity Interruptions on Project Duration
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5.4.2 Proposed Interruption Algorithm

The above four rules are used as the basis to develop an algorithm for generating

a limited set of interruption vectors for each crew formation C'. For a crew

formation C, that consists of m crews working simultaneously, the algorithm is

applied in six steps:

1) Based on Idle, values obtained from the earlier described algorithm for

2)

resource-driven scheduiing (Chapter 4), calculate the number of interruption
vectors that need to be considered for crew m of crew formation C'| (NIV,,)
and the total number of interruption vectors that need to be considered for the

entire crew formation C', (NIV',) as follows:

N J
NIV, =1+ X Idle,, (5.6)
Jjm=2
- M .
NIV =[] NIV (5.7)
m=1
jm: repetitive unit j that is assigned to crew m; and
Idle;,: Idle; values for repetitive unit j that is assigned to crew m.

According to the earlier described third rule for limiting NIV',, calculate the
required step to reduce NIV, to a prespecified smaller number (MaxNIV'). In
this algorithm, MaxNIV!, can be prespecified (e.g. 200 vectors) to keep an

upper limit on the size of the problem. Through an iterative process, the
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3)

4)

5)

6)

algorithm identifies the required step as the least integer number that satisfies

the following inequality relationship:

- M -
MaxNIV; > [] NIV._ (5.8)
m=l
. J Idle
where, NIV! =1 = )
o +ij=2 step (5.9)
Based on the above identified sfep value, calculate the reduced number of

interruption vectors NIV’ and NIV}, as follows:

NIVE, =1+ 3 “em 5.10)
=]4 .
- jm=2 Step (
- M .
NIV, =[] NIVE, (5.11)

m=1

Create a two dimensional interruption array of size J rows x NIV, columns for
crew formation C', where each column in the array represents a possible

interruption vector r for crew formation C', as shown in Table 5.7.

Initialize the interruption array.

Fill in the non-zero elements of the interruption array in order to identify all
possible combinations of interruption vectors for crew formation C',. This is

achieved in two stages, starting with the second column of the array as shown
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in Table 5.7. In the first stage, interruption vectors are generated for each crew
m following the same procedure described in rules 2 and 3 and in similar
manner to that summarized in Table 5.5. It should be noted that the generated
interruption vectors in the first stage covers the possibility of interrupting only a
single crew m of crew formation C!, without considering concurrent
interruptions for multiple crews as shown in Table 5.7(A). For example,
columns 2 to 5§ of stage 1 in Table 5.7(A) provide the possibility of interrupting
only crew 1 of Figure 5.3 without interrupting crew 2 of the same figure.
Columns 6 to 10 in Table 5.7(A), on the other hand, present the possibility of

interrupting only crew 2 of Figure 5.3.

In the second stage, however, the possibility of concurrent interruptions of
multiple crews is considered by grenerating all possible combinations of the
interruption vectors identified in stage 1. This is achieved by combining each
interruption vector of crew m with each interruption vector of other crews
working simultaneously in crew formation C', as shown in Table 5.7. For
example, the first non-zero interruption vector of crew 1 in stage 1 (column 2 in
Table 5.7(A)) is combined with each interruption vector of crew 2 (columns 6
to 10 in Table 5.7) to provide a first set of possible concurrent interruption
vectors of crews 1 and 2 as shown in columns 11 to 15 in Table 5.7. As such,
stages 1 and 2 of this step provide a limited set of possible interruption vectors

for crew formation C'..
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5.5 Optimization Procedure

Existing dynamic programming formulations are capable of identifying, from a set
of possible alternatives, the optimum crew size for each activity in a repetitive
project (Selinger, 1980; and Russell and Caselton, 1988). As stated earlier, the
optimization criterion of these formulations is, however, limited to the minimization
of the overall duration of the project. While this may lead to the minimization of the
indirect cost of the project, it does not guarantee its overall minimum cost. In
practice, the overall cost of a project is frequently regarded to be highly important.
This is particularly true for contractors performing in a highly competitive
environment. The objective of the present optimization procedure is to incorporate

cost in the optimization process.

Minimizing the overall project cost is a major priority for the project participants.
Therefore, it must be directly considered as an optimization objective rather than
indirectly as a byproduct of the minimization of the project duration (Selinger, 1980;
and Russell and Caselton, 1988). This is important because while reducing a
project duration reduces its indirect cost, this reduction may increase its direct cost,
which in many cases results in higher overall project cost. In fact, accelerating a
project can be achieved by expediting a number of selected activities and/or
introducing interruption options to crew work continuity. Expediting selected

activities can be achieved by increasing the crew size or introducing an overtime
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policy, that could be coupled with impact costs resulting from higher premium rates
for overtime hours and reduced productivity due to site congestion or crowding and
overtime effect. The interruption option is also associated with additional costs

resuiting from idle crew time and disruption of leaming curve effect.

The problem of minimizing the overall cost of repetitive projects is one of
establishing the delicate balance between the reduction in indirect costs as a resuilt
of time reduction, and the additional direct costs that may result from such
acceleration. To enable a comparison among alternative crew formations, a
procedure similar to that used in time-cost trade-off analysis (Ahuja, 1984) is
followed. The time is considered to have a money value that is represented by the
project indirect cost per day. Hence, any time reduction in project duration can be
translated to savings in project indirect costs, and can easily be compared to the
additional direct costs arising from the time reduction or schedule acceleration.
This analysis is used in the local optimization problem to identify the local optimum
predecessor crew formation and associated interruption vector during the dynamic
programming procedure, if the user-specified optimization criterion is to minimize

the project overall cost.

The problem of selecting the optimum crew formation and interruption vector for
each repetitive activity in the project is formulated as a dynamic programming

problem that consists of | stages and two state variables as shown in Figure 5.7.
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The repetitive activities of the project are represented by | stages. For each stage
(i.e. repetitive activity) there are two possible state variables (i.e. crew formations
and interruption vector) as shown in Figure 5.7. For each repetitive activity in this
model, the user is required to specify the possible altematives for crew formations,
but interuption vectors are automatically generated by the model (see section
5.4.2). The objective of the optimization procedure is to identify for each repetitive
activity (i.e. stage) the optimum crew formation (1% state variable) and the optimum
interruption vector (2nd state variable) from a set of possible altematives. The
dynamic programming procedure is executed in two paths: first in a forward then in

a backward path.

Stage/Activity (i)

1" State Variable/Crew Formation (n)
2™ State Variable/Interruption Vector(r)

Recursive Relationship: COC'.* = min [DC', + IC', + COC*" ]
Figure 5.7 Dynamic Programming Formulation
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5.5.1 Forward Path

The forward path consists of a local optimization problem that is repeated for each
pair of crew formation n and interruption vector r associated with each repetitive
activity i (C',). The local optimization problem is applied for each C' starting with
the second and ending with the last repetitive activity i as shown in Figure 5.7. In
the local optimization problem, for a given crew formation n and an associated
interruption vector r for an activity i (C\), the impacts of all possible crew
formations and associated interruption vectors of the predecessor activity on C',
are compared, and the local optimum crew formation and associated interruption
vector of the predecessor C",.., that provides the minimum overall cost of C', is

selected (Moselhi and El-Rayes, 1993(a) and (b)).

In the present object-oriented model, the local optimization problem is designed as
a number of functions inside the Crew-Formation class. These functions are
executed each time a repetitie activity receives a message from its predecessor
invoking it to proceed with forward path optimization. This message contains
information concerning: a) possible start time of the receiving activity in each
repetitive unit j (PES)) based on the completion time of the predecessor activity and
the precedence relationship type and lag; b) cumulative direct cost of the
predecessor activities (PDC',); and c) predecessor crew formation and associated
interruption vector (C,). Each time a repetitive activity receives this message, it

invokes the forward optimization functions inside Crew-Formation class. As shown
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in Figure 5.8, the forward path of the optimization procedure is performed in the

following steps:

1) For each crew formation n of activity i (C')), perform loop 1 in Figure 5.8

which consists of the following substeps:

1.1) Based on the composition of crew formation C', and the PES; vector
received from the predecessor, calculate finish time of the activity in each repetitive
unit (F}) as well as Idlel, vector, using the resource driven scheduling algorithm

described earlier in Chapter 4.

1.2) Examine if user-specification allows interruption for C', and if the
current activity i is not the last repetitive activity in the project (i = I). If the two
conditions are true proceed with the next step. If it is not, create an artificial
interruption ‘vector r where all its elements are equal to zero, indicating that no
interruption is allowed, and then skip the next step and move on to step 2.1). It
should be noted that as stated in the earlier described fourth rule, the last repetitive
activity in the project need not be interrupted since its interruption does not
minimize overall project duration (see Figure 5.6). Accordingly and in compliance
with the fourth rule, the optimization procedure does not generate interruption
vectors for all crew formations of the last repetitive activity in the project in order to

limit the size of the optimization problem.
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1.3) Based on Idle; vector, generate all feasible interruption vectors for
crew formation C', using the earlier described interruption algorithm (section

5.4.2).

2) For each interruption vector r generated in step 1.3) (C',), perform the

nested loop 2 of Figure 5.8 which consists of the following substeps:

2.1) Based on the pair of crew formation n and interruption vector r, and
PES; vector, calculate the finish time for activity i in each repetitive unit j (F',),
using the earlier described algorithm for resource-driven scheduling (Chapter 4).

Then calculate the direct cost DC, of crew formation n and interruption vector r C',,

as follows:
J
DCh = X (MChQ, + LC..Dy + EC..Diy) + RCi (5.12)
J=I
where,
Q: quantity of work of activity i in repetitive unit j;
D'y duration of repetitive unit j in days for crew formation C';
MC': material cost rate in $/unit of measurement for crew formation C',;
LC': labor cost rate in $/day for crew formation C';
EC': equipment cost rate in $/day for crew formation C'; and
RC': interruption cost in $ for C.,..
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Calculate the cumulative direct cost of the predecessor activities PDC'.. This value
is obtained by adding the direct cost of the predecessor crew formation and
associated interruption vector DC™', and the cumulative direct cost of all its local

optimal predecessors as follows:
PDC,, = DCH+ PDCEL (5.13)

Calculate the indirect cost IC', of the project up to crew formation C', as follows:

IC,, = ICRFi -y (5.14)
where,
ICR: indirect cost rate in $/day of the project;

and Fi,;-,,: finish date of the last section (i.e. j = J) for crew formation and
associated interruption vector C',..
Then, calculate the cumulative overall cost COC', of the project up to crew

formation n and associated interruption vector r C', as follows :

COC.,, = DC. + PDC.,. +IC, (5.15)

2.2) Examine if interruption vector r has already been generated and stored
in a data file for crew formation C.. If it has not been generated in previous loops,
store it at the end of the data file as a new possible pair of crew formation n and

interruption vector r for activity i (C',), along with finish time vector (Fly) and
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cumulative overall cost (COC',) obtained from the previous step. Since this pair
(C'») has not been stored before in the data file, identify its predecessor pair of
crew formation and interruption vector (C*,,) as the local optimum predecessor
pair and store them in the data file. This initial assumption of local optimum
predecessors can be modified in later iterations of loops 1 and 2, if new pairs of
predecessors are found to provide better resuits for the optimization criterion than

that of the stored ones.

If interruption vector r has already been stored in the data file in a previous
iteration, compare either the value of COC/, or F',, obtained in step 2.1) of the
current iteration to that stored in the data file. If COC', or F\, of the current
iteration is less than that stored, identify and replace in the data file the current
value as the local optimum solution and its predecessor pair of crew formation and
interruption vector as the new local optimum predecessor pair C™,.. It should be
noted that if the user-specified optimization criterion is to minimize project overall
cost compare the two COC!,, values, however if the criterion is to minimize project

duration F', values are used instead.

The above loop 1 and nested loop 2 in Figure 5.8 are repeated each time activity i
receives a message from its predecessor invoking it to proceed with forward path
optimization. This message is sent to activity i from each pair of crew formation n

and interruption vector r of the predecessor activity C™,,. After receiving messages
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from all possible pairs of C*,, of the predecessor and applying the above
described forward path procedure, a limited set of possible interruption vectors is
created and stored in a data file for each crew formation n of activity i C'. In
addition, for each pair of crew formation and interruption vector C',, the local
optimum predecessor pair C"'. that yields either the minimum overall cost or
duration for the pair C', is identified and stored in the data file, to be recalled later

for determining the giobal optimum solution for the project.

5.5.2 Backward Path

The procedure in this path involves no computations and its main objective is to
scan the local optimum conditions, identified and stored in the forward path, and
select the optimum crew formation and interruption vector for each repetitive
activity in a backward path from the last activity to the first. First, this is done by
selecting the global optimum crew formation and associated interruption vector for
the last repetitive activity, which yields the minimum overall cost or duration of the
project. This cost or duration, being cumulative, represents the overall cost or
duration of the project. Then starting from the last activity and tracing backwards,
the predecessor local optimum crew formation and associated interruption vector
C",- that lead to this global optimum condition is identified to be the global
optimum crew formation for the predecessor. This process of recalling, and

scanning the predecessor local optimum crew formation and interruption vector
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propagates backwards towards the first repetitive activity in the project.

[a=0 ]

»

Loop 1

n=n+1

-

Based on PES; vector, calculate vectors of F; & Idle,
using the resource-driven scheduling algorithm (Chapter 4)

—

y L 2
all elements of Based on Idle,, identify all feasible interruption vectors
r vector =0 using the earlier described algorithm (section 5.4.2)

Nested

Loop 2

S ored Y
—N es
° data file for C, 1
N "« <Fof stored vector OR
o COC', <COC, of stored vecto
v i
Store r at the end of the data file Replace the stored F,, COC',,
along with its F,, COC,, predecessor crew formation
predecessor crew formation and predecessor interruption vector
and predecessor interruption vector with those of the new solution
5
r>R
OR Allow no
No interruption for C,
ORi=1
es
¥

Figure 5.8 Forward Path of the Optimization Procedure
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5.6 Numerical Example

The 3-span concrete bridge example, originally introduced by Selinger (1980), is
considered. A few modifications are introduced in order to illustrate the capabilities
of the present model and validate its results. The project consists of four similar
sections or units, each includes the following repetitive activities: excavation,
foundations, columns, beams, and slabs. Each repetitive activity is performed by a
single crew progressing from the first to the fourth section sequentially as shown in
Figure 5.9. The logical precedence relationships among succeeding activities are
finish to start with no lag time. No cost data were included in the original example
and the objective of the optimization process, then, was to minimize the overall

duration of the project.

Activity :

5. Slabs

4. Beams

3. Columns

2. Foundations
1. Excavation

Figure 5.9 Bridge Example (Selinger 1980)
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In order to incorporate cost in the optimization process, and in an effort to use
realistic data, crew daily output and direct cost rates for each activity are obtained
from Means Construction Cost Data (1991) as indicated by the activity code
numbers listed in the second column of Table 5.8, and the indirect costs of the
project are assumed to be $1000/day (i.e. approximately 10% of the direct cost).
The base crew data presented in Table 5.8 are produced by transforming Means
labor and equipment cost rates from $/unit of measurement to $/day in compliance
with the required input data for the present model (Equation 5.12). To enable a
comparison with Selinger's formulation (1980), output rates are used to calculate
quantities of work in such a way to reproduce identical durations to those originally
used by Selinger (1980). As shown in Table 5.8, work quantities are expressed in
units of measurement (i.e. cubic yard), and hence could be used as a direct input

to the present model (Equation 5.12).

For each activity, a set of possible crew formations is introduced as shown in Table
5.9. For each set, the base crew data presented in Table 5.8 is considered to
represent the normal productivity achieved by a normal crew formation,
accelerated daily outputs of other crew formations are obtained by increasing the
normal output using the same ratios reported in the original example (Selinger
1980), as shown in the third and fourth columns of Table 5.9. For estimating the
cost rates of these crew formations, it is assumed that the increased output is

achieved by assigning overtime hours to the base crew. The overtime hours OT,

161



shown in the fifth column, are in addition to the regular daily 8 working hours, and

are calculated based on the following equation:

P
OT, =8.==)-8
3 (5.16)

where,
P',: daily output (in c.y./day) for crew formation n of activity i including overtime;

BP': daily output of base crew (c.y./day) without overtime for activity i.

In this numerical example, the appication of equation 5.16 assumes that crew
productivity is similar in both regular and overtime working hours. While overtime
policies can exhibit different premiums for the different crews and equipment and
can readily be accounted for in the present model, for simplicity, an 'overtime
premiumn of 50% is assumed in the present example for direct labor and equipment
rates. The labor and equipment cost rates (LC\, and EC') in $/day including
overtime premiums (eighth and tenth columns of Table 5.9) are calculated based

on the following equations :

LC, = BIC +(¥. (1.5).0T%) 5.17)

BEC'
(

3 .(1.5).0T},) (5.18)

EC, = BEC'+
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where,
BLC': labor cost rate of base crew (in $/day) without overtime premiums;
and BEC': equipment cost rate of base crew (in $/day) without overtime

premiums for each activity i as presented in Table 5.8.

In order to illustrate the use of the present model, demonstrate its capabilities and
validate its results, the numerical example is analyzed twice. The first analysis
provides a least cost solution and the second presents a minimum duration

solution for the project.

5.6.1 Least Cost Solution

This solution is obtained by specifying that the optimization criterion is to minimize
the project overall cost. The objective of this solution is to illustrate the use of the
model and show the significance of incorporating cost in the optimization
procedure. The optimum solution is determined based on the dynamic
programming procedure described earlier. As stated, the solution is performed in
two paths: a forward path to identify the local optimum predecessor pair of crew
formation and interruption vector, and a bakward path to determine the overall
optimum pair of crew formation and interruption vector for each activity at the

project level.
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In this solution, no activity interruptions are considered in order to allow for a
comparison with the results available in the literature (Selinger 1980). As such, the
second state variable (i.e. interruption vectors) need not be considered in this
solution. This means that the forward and backward paths of this analysis focus
only on crew formations and does not consider interruption vectors. The forward
stage starts by calculating the cost associated with the planned start and finish
dates for the first crew formation of the first activity (excavation) as shown in Table
5.10. The local optimization problem is, then, repeated for each possible crew
formation associated with each activity, starting from foundation and ending with
slabs. In each iteration, the impact of each possible predecessor crew formation on
the overall cost is calculated. These costs are then compared and the predecessor
crew formation yielding the minimum overall cost is identified as the local optimum

predecessor.

For each crew formation of the foundation activity, there is only one possible
predecessor crew formation, and thus it is considered to be the local optimum
predecessor as shown in Table 5.10. For crew formation 1 of the columns activity,
however, there are three possible predecessors (crew formations 1, 2, and 3 of
foundation). As shown in Table 5.10, the impact of each predecessor on the
planned dates and costs is calculated as described earlier in the forward path of
the optimization procedure. The overall cost of the three alternatives are compared

and the predecessor yielding the minimum overall cost is identified as the local
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optimum predecessor. In this case, crew formation 3 of foundation activity is
identified to be the local optimum predecessor for crew formation 1 of columns.
Similarly, the local optimization problem is performed for crew formations 2 and 3
of the columns activity as shown in Table 5.10. For the two remaining activities
(beams and slabs), the local optimization problem is repeated for each crew
formation in a similar manner. The local optimum predecessor and its impact on
the dates and costs of each crew formation are stored as shown in Table 5.11, to

be recalled later during the backward stage.

In the backward stage, crew formations are scanned starting off with the last
activity (i.e slabs), and progressing backwards to beams, columns, foundations,
and excavation. The least project overall cost, represented by the cumulative
overall cost assigned to the last activity, identifies crew number 2 as the overall
optimum crew formation for slabs. The local optimum predecessor crew formation
number 4 associated with this option is traced backwards to identify the overall
optimum option for activity beams. The scanning progresses backwards, in a
similar manner to identify the overall optimum crew formations for all remaining

activities as shown in Table 5.11.
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In order to study the sensitivity of the minimum overall cost solution to the project
indirect cost, the same numerical example is analyzed after setting the project
indirect cost at different values ranging from $500/day to $4000/day. For each
project indirect cost, a set of overall optimum crew formations is identified for the
five repetitive activities of the project. As shown in Table 5.12, three different sets
of optimum crew formations are obtained in this analysis. The first set (1,3,1,4,2) is
obtained when the project indirect cost is within the range of $500/day to
$2000/day. The second (1,2,2,4,1) and the third (1,2,3,3,1) sets are obtained when
the project indirect costs are within the ranges of $2500/day to $3500/day, and
$4000/day or more, respectively. As expected, the third set of overall optimum
crew formations is identical to that obtained by Selinger (1980). For this numerical
example, the minimum overall cost solution coincides with the minimum duration
solution when the project indirect cost is $4000/day or more (i.e. approximately
34% or more of the direct cost). This illustrates that the minimum duration solution
provided by existing dynamic programming models does not guarantee the

minimum overall cost solution.

To enable a cost comparison between the present model and existing ones, the
cost data assumed in the present example were used to estimate the overall
project cost based on the optimum crew formations identified by Selinger (1980)
and Russell and Caselton (1988) as shown in Tables 5.13 and 5.14. For simplicity,

the costs of the interruption vectors reported in the numerical example of Russell
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and Caselton (1988) are neglected and considered not available.

Table 5.12 Impact of Project Indirect Cost

Project Project Project
Project Optimum Project | indirect direct overall
indirect cost crew duration cost cost cost
in $/day formations | in days in$ in$ in$
1) 2 3) ) (5) (6)
500 1,3,1,4,2 142.93 71468 | 1315865 1387332
1000 1,3,1.4,2 142.93 | 142935 |1315865| 1458799
1500 1,3,1.4,2 142.93 | 214402 |1315865| 1530266
2000 1,3,1,4,2 142.93 | 285869 |1315865| 1601733
2500 1.2,2,4,1 123.56 | 308899 | 1356348 | 1665247
3000 1.2,2,4,1 123.56 | 370679 | 1356348 | 1727026
3500 1.2,2,4,1 123.56 | 432459 | 1356348 | 1788806
4000 1,2,3,3,1 117.88 | 471527 |1378345| 1849872
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As expected, the optimum project duration and cost obtained by the three models
were different, each identifying a unique combination of optimum crew formations.
A comparison of these results is shown in Figure 5.10. It is clear that the use of
any of the three models may lead the contractor to formulate a different crew
formation strategy to execute the project. While the two previous dynamic
programming formulations can result in minimum project duration, they do not
ensure minimum overall cost as demonstrated in the example. Unlike these
previous formulations, the present model incorporates cost as a decision variable
in the optimization process and allows for the minimization of the project overall
cost. This should prove useful to owners and contractors alike, and contribute to

cost-effective delivery of constructed projects.

1.55 200

$1.516 Overall Cost

1.5
150

1.45
100

N
sAep uj uojeing

Cost in millions of $

1.35

13 L= ——
Russell and Caselton (1988)  Selinger (1980) Proposed Model

Note: Project indirect cost considered in this solution = $1000/day

Figure 5.10 Least Cost Solution
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5.6.2 Minimum Duration Solution

This solution is obtained by specifying that the optimization criterion in the model is
to minimize project duration. In order to validate the results of the present model,
the current example was analyzed after specifying that activity interruptions are not
allowed similar to the assumptions of the Selinger model (1980). The results were
identical to those obtained by Selinger (1980). The validation process utilized here
is to verify whether or not the developed algorithms can duplicate results

generated by others, considering the same assumptions and conditions.

A second minimum duration solution was performed, considering interruption
vectors, for the same numerical example in order to illustrate the capabilities of the
present model. In the literature, a minimum duration solution has been provided for
the same numerical example by two dynamic programming formulations: Selinger
(1980) and Russell and Caselton (1988) as shown in Figure 5.11. The first
formulation did not consider interruption and provided a minimum project duration
of 117.9 days. Russell and Caselton (1988) provided an expanded formulation in
order to allow the consideration of a prespecified set of interruption vectors in the
optimization process. The latter formulation provided an improvement in
minimizing project duation to 110.4 days at the expense of interrupting crew work
continuity for 16 days as shown in Figure 5.11. Unlike available dynamic
programming formulations that considers a prespecified set of interruption vectors

as a second state variable (Russell and Caselton 1988, and Eldin and Senouci
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1993), the present model does not require the user to arbitrarly specify
interruption. Instead, the interruption vectors are generated automatically in the
model, using the interruption algorithm described in section 5.4.2. As shown in
Figure 5.11, this provided a better solution for the same numerical example,
leading to: 1) further reduction in project duration beyond the minimum solutions
provided by others (Selinger 1980, and Russell and Caselton 1988); and 2) less
interruption days than those obtained using the formulation of Russell and

Caselton (1988).

In addition to providing a superior solution than that of existing dynamic
programming formulations, the model provides an added practicality and
advantage in three main aspects. First, the incorporated algorithm in the model is
automated and therefore the construction planner need not provide a prespecified
set of interruption vectors prior to scheduling. Second, it generates a limited
number of feasible interruption vectors and therefore enables a practical and
feasible approach for the consideration of interruptions during schedule
optimization. Third, the algorithm generates all needed interruption vectors during
schedule calculation rather than being limited by a prespecified Imax value prior to
scheduling, ensuring the generation and selection of the optimum solution as

shown in Figure 5.11.
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Figure 5.11 Least Duration Solution
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5.7 Summary

This chapter presented the development of the scheduling optimization functions
incorporated in the present object-oriented model. In order to optimize the
scheduling of repetitive construction projects in this model, an interruption
algorithm and an optimization procedure were developed. The interruption
algorithm generates feasible interruption vectors for each crew formation in the
project and provides added advantage over available formulations that consider
arbitrary user-specified interruption vectors prior to scheduling (Russell and
Caselton 1988, and Eldin and Senouci 1993): 1) the algorithm is automated and
therefore the construction planner need not provide a user-specified set of
interruption vectors prior to scheduling; 2) it generates a limited number of feasible
interruption vectors and therefore enables a practical and feasible approach for the
consideration of interruption during schedule optimization; and 3) the algorithm
generates all needed interruption vectors during schedule calculation rather than
being limited by a prespecified Imax value before scheduling, ensuring the

generation and selection of the optimum solution.

The optimization procedure is based on a dynamic programming formulation.
Unlike available formulations, the present formulation is capable of incorporating
cost in the optimization process, thus offering valuable support to project team
members in minimizing the overall cost of the project. For each repetitive activity in

the project, the present model assists the planner in selecting the optimum crew
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formation and interruption vector from a set of possible alternatives. As such, the
model can be used to evaluate the impact of different project acceleration
strategies (i.e multiple crews, increased crew size, overtime policies, or additional
shifts) on the overall cost. In order to demonstrate the use of the mode! and
illustrate its capabilities, a project example from the literature was analyzed twice.
The first analysis provides a least cost solution ad the second presents a minimum
duration solution for the project. In both analyses, the present model provided a
better solution for the same project example (i.e. further savings in project overall
cost or reduction in project duration) than that generated by available models

(Selinger 1980, and Russell and Caselton 1988).
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CHAPTER 6

IMPLEMENTATION OF THE SCHEDULING MODEL: LSCHEDULER

6.1 Introduction

This chapter presents the implementation stage of the present object-oriented
mode! for scheduling of repetitive construction projects. This stage represents the
third and last stage in model development (Rumbaugh et al 1991). The model is
implemented using Borland C++ integrated development environment (IDE)
(Borland C++ 1996) as a 32-bit windows application that is named
LSCHEDULER. LSCHEDULER runs on Microsoft Windows 95 and NT and
supports user-friendly interface. The first letter (L) of the name LSCHEDULER is
used to represent “L’inear construction projects SCHEDULER and also to
represent “L"east project cost/duration SCHEDULER. LSCHEDULER consists of
two main modules: scheduling module and user interface module as shown in
Figure 6.1. The two modules are combined in LSCHEDULER using the Borland
C++ IDE Project Manager which can be used to manage and combine program
source files (.H, .C, and/or .CPP files) to produce target files (.EXE, and/or .DLL
files). Each of the two modules consists of a number of header files (.H) and

code files (.CPP) as shown in Figure 6.1.
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Code Files

calendar.cpp
projectl.cpp
project2.cpp
project3.cpp
datal.cpp
data2.cpp

Header Files

Lschdapp.h
Lschdmdic.h
Lschdmdil.h
Lschdedtvh
Lschdabtd.h
apxprinth
apxprev.h

Aahm St

Code Files

Lschdapp.cpp
=] Lschdmdic.cpp
Lschdmdil.cpp

Lschdedtv.cpp

Lschdabtd.cpp

apxprint.cpp
apxprev.cpp

Figure 6.1 LSCHEDULER Modules

6.2 Scheduling Module

The scheduling module includes all header and code files, representing the
implementation stage of the present object-oriented model. For each class in the
model, the implementation stage provides: 1) a class declaration, and 2) a class
definition (Rumbaugh et al 1991). The class declaration is a simple C++ computer
code representing a list of all data members and member functions of the class.
The class definition is a detailed C++ computer code for each member function of
the class. In C++, class declarations are included in header files (.H) and class
definitions in code files (.CPP). In this scheduling module, class declarations are
included in three header files (project.h, data.h, and calendar.h) as shown in

Appendix |, and class definitions in eight code files (project1.cpp, project2.cpp,
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project3.cpp, datal.cpp, data2.cpp, data3.cpp, crew.cpp, and calendar.cpp) as

shown in Figure 6.1.

As described earlier in Chapter 3, the present object-oriented model consists of
10 main classes (Datfe, Project, Project-Data, Activity, Repetitive activity, Non-
Repetitive activity, Regular-Relation, Repetitive-Relation, Hetero-Relation, and
Crew-Formation) as shown in Figure 3.6. The declaration of Date class is included
in “calendar.h" header file, and the definitions of its member functions are included
in "calendar.cpp” file. The declaration of Prgject class is included in “project.h"
header file, and the definitions of its member functions are included in three
separate files (project1l.cpp, project2.cpp, and project3.cpp). "Projecti.cpp” file
includes the function definition of saving the project data to a binary file, while
"project2.cpp” file includes the function definition of opening and reading a project
data file. "Project3.cpp” file includes the definitions of all the remaining functions for

Project class.

The declaration of the remaining eight classes in the present model are included in
“data.h" header file. The definitions of the member functions for these classes are
included in four separate files (data1.cpp, data2.cpp, data3.cpp and crew.cpp).
“Datat.cpp” file includes the definitions of the member functions for five classes:
Activity, Non-Repetitive activity, Regular-Relation, Repetitive-Relation, and Hetero-

Relation. "Data2.cpp" and “data3.cpp” files include the definitions of regular
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scheduling functions, and scheduling optimization functions, respectively, for
Repetitive activity class. “Crew.cpp” file includes the definitions of member

functions for Crew-Formation class.

6.3 User Interface Module

The Borland C++ integrated development environment (IDE) incorporates a tool
for building user interface called AppExpert (Borland C++ 1996). The user
interface module of LSCHEDULER is developed using AppExpert, and it
includes seven header files (Ischdapp.h, Ischdmdic.h, Ischdmdi1.h, Ischdedtv.h,
Ischdabtd.h, apxprint.h, and apxprev.h) and seven code files (Ischdapp.cpp,
Ischdmdic.cpp, Ischdmdi1.cpp, Ischdedtv.cpp, Ischdabtd.cpp, apxprint.cpp, and
apxprev.cpp) as shown in Figure 6.1. The user interface of LSCHEDULER
incorporates menus, a tool bar, a status bar, dialog boxes, and multiple

document interface (MDI) windows as shown in Figure 6.2.

6.3.1 Menus, Tool Bar, and Status Bar

Menus are lists of commands that the user can chcose from to perform a specific
function. The main menus of a windows application are often listed in a menu bar
at the top of the screen. LSCHEDULER contains a menu bar at the top of the

screen that consists of nine main menus: File, Project, Activity, Relationship,
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Edit, Search, Display, Window, and Help as shown in Figure 6.2. Each of these
main menus includes a list of menu items, each of which can perform a specific
command. For example, File main menu includes a list of ten menu items: New,
Open, Close, Save, Save As, Print, Print Setup, Send, and Exit as shown in
Figure 6.3. It should be noted that the name of some menu items are followed by
three periods “...", which indicates that if the user executes one of these menu
items the program will display a dialog box on the screen to allow the user fo

specify needed input data. For example, if the user executes “Open...” menu
item (see Figure 6.3), the program will display the Open dialog box shown later
in Figure 6.14. The menu items included in each of the nine main menus of
LSCHEDULER are shown in Figure 6.3 to Figure 6.12. For each menu item, the

function and the associated dialog box, if any, are summarized in Table 6.1 to

Table 6.11.

’EE:;LSCHEDUL[ﬁ for Scheduling of Hepelitive Constiuction v A

0 A » AR A A S .
O -;"1.-' l‘l’l‘o:t.l'lbl‘iki.!gl IR L P

Figure 6.2 Developed Windows Application: LSCHEDULER
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Figure 6.3 File Menu

Table 6.1 File Menu Functions

Menu Item Prompted Function
Dialog Box

New - Creates a new document and displays it in a new
window.

Open... Figure 6.14 | Opens an existing document and displays it as
shown in Figure 6.3.

Close - Closes the window of the active document.

Save - Saves changes made to the active document.

Save As... Figure 6.15 | Saves a copy of the document in another file.

Print Preview... - Displays full pages as they will be printed.

Print... Figure 6.16 | Prints the active document.

Print Setup... Figure 6.17 | Changes the printer set-up.

Send... - Sends the active document through electronic mail.

Exit - Quits LSCHEDULER.
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Figure 6.4 Project Menu

Table 6.2 Project Menu Functions

Menu Item Prompted Function
Dialog Box

New - Creates a new project.
Open... Figure 6.18 | Opens an existing project.
Save... - Saves changes made to the current project.
Start Date... Figure 6.19 | Specifies the start date of the project.
Weather and Figure 6.20 | Specifies whether to consider weather impact
Learning Curve and/or learning curve effect in scheduling
Options... calculation or not.
Optimization Figure 6.21 | Specifies the scheduling optimization criterion
Options... which can be: a) perform regular scheduling

without optimization; b) minimize project overall
cost; or ¢) minimize project duration.

Calculate Schedule
and Cost

Performs scheduling calculation.
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Figure 6.5 Activity Menu

Table 6.3 Activity Menu Functions

Menu Prompted Function
ltem Dialog Box
Add... Figure 6.22 | Adds a new activity (i.e. non-repetitive, repetitive, or
Figure 6.23 subcontractor) to the project and inputs its data.
Madify... - Modifies the input data of an existing activity.
Update... - Updates the actual start and finish dates of an activity.
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Figure 6.6 Relationship Menu

Table 6.4 Relationship Menu Functions

Menu Prompted Function
ltem Dialog Box
Add... Figure 6.28 | Adds a new precedence relationship to the project and

specifies its type, lag in days, and predecessor and

successor activities.
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Figure 6.7 Edit Menu

Table 6.5 Edit Menu Functions

Menu Prompted Function
item Dialog
Box
Undo - Reverses the last edit operation.
Cut - Cuts the selected items and puts them on the clipboard.
Copy - Copies the selected items and puts them on the clipboard.
Paste - Inserts the clipboard contents at the insertion point.
Clear All - Clears the entire active document.
Delete - Deletes the selected items.
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Figure 6.8 Search Menu

Table 6.6 Search Menu Functions

Menu Prompted Function
ltem Dialog Box
Find... - Finds the specified text.
Replace... - Finds the specified text and changes it.
Next - Finds the next match.
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Figure 6.9 Display Input Data Menu

Table 6.7 Display Input Data Menu Functions

Menu ltem Prompted Function
Dialog Box
Subcontractors - Displays input data of subcontracted
activities.
Non-Repetitive - Displays input data of non-repetitive activities.
Activities

Repetitive Activities

Displays input data of repetitive activities.

Regular Relation

Displays input data of precedence
relationships between non-repetitive activities.

Repetitive Relation

Displays input data of precedence
relationships between repetitive activities.

Hetero Relation

Displays input data of relationships between
repetitive and non-repetitive activities.
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Figure 6.10 Display Schedule Menu

Table 6.8 Display Schedule Menu Functions

Menu item Prompted Function
Dialog Box
Non-Repetitive - Displays schedule of non-repetitive activities
Activities in working days or calendar dates.
Repetitive Activities - Displays schedule of repetitive activities in

working days or calendar dates.

Subcontractors - Displays schedule of subcontracted activities
in working days or calendar dates.
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Figure 6.11 Display Cost Estimates Menu

Table 6.9 Display Cost Estimates Menu Functions

Menu ltem Prompted Function
Dialog
Box

Non-Repetitive - Displays cost estimates of non-repetitive activities.
Activities

Repetitive - Displays cost estimates of repetitive activities.
Activities

Subcontractors - Displays cost estimates of subcontracted activities.
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Table 6.10 Display Optimization Output Menu Functions

Menu Prompted Function

ltem Dialog Box
Results - Displays summarized results of scheduling optimization.
Analysis - Displays detailed analysis of scheduling optimization.
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Figure 6.13 Window Menu

Table 6.11 Window Menu Functions

Menu Prompted Function
Item Dialog Box
Cascade - Cascades open windows.
Tile Tiles open windows.
Arrange - Arranges iconic windows along the bottom.
lcons
Close All - Closes all open windows.

LSCHEDULER incorporates a tool bar at the top of the screen below the menu

bar as shown in Figure 6.13. The tool bar includes a number of icons, each
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representing a shortcut for executing a specific command. For example, when
the user clicks on the first left icon on the tool bar (see Figure 6.13),
LSCHEDULER opens a new document. In addition to the menus and tool bar,
LSCHEDULER incorporates a status bar at the bottom of the application’s main
window. The purpose of a status bar is to display information about the function
of currently highlighted menu item. For example, when the user highlights the
menu item of Project then New, the status bar displays a message “Create a

new project” as shown in Figure 6.4.

6.3.2 Dialog Boxes
In order to facilitate user data input, LSCHEDULER incorporates a number of
dialog boxes. The main dialog boxes of LSCHEDULER are shown in Figure 6.14

to Figure 6.28.

Calendar.cpp

Ej Calendar.h @ cost.rep

E] calendar.obj @ crew.cpp ff
@ calsched.nrp @ crew.obj B

@ calsched.rep cutbmp

Figure 6.14 Open Dialog Box
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Figure 6.15 Save As Dialog Box

Figure 6.16 Print Dialog Box

197



Page Setup

Figure 6.17 Print Setup Dialog Box

input Data

Figure 6.18 Open Project Dialog Box
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Figure 6.19 Project Start Date Dialog Box
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Figure 6.21 Scheduling Optimization Dialog Box
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Input Non-Repetitive Activity D ata

Figure 6.22 Non-Repetitive Activity Dialog Box

Input Repetitive Activity Data

Figure 6.23 Repetitive Activity Dialog Box
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Input Repetitive Activity Data

Figure 6.24 Non-Typical Repetitive Activity Dialog Box

input Data for a Typical Repetitivé Activity

Figure 6.25 Typical Repetitive Activity Dialog Box
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Input Crew Formation Data

Input Ciew Dala

Figure 6.27 Crew Dialog Box

202



Input Relationship Data

| Input Relationship Data

Figure 6.28 Relationship Dialog Box

6.3.3 MDI Windows

LSCHEDULER supports multiple document interface (MDI) as shown in Figure
6.13. MDI enables multiple child windows to be created and constrained within
the boundaries of the main application window (Borland C++ 1996). The MDI

windows are used to facilitate the display of scheduling results in LSCHEDULER.
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For example, when the user executes the menu item of Display then Input Data
then Repetitive Activities, LSCHEDULER creates a child window within its
boundaries to display repetitive activities input data as shown in Figure 6.9. The
displayed results in the child window can be viewed on screen using the vertical
and horizontal scroll bars. The vertical scroll bar is placed on the right side of the
window and enables up and down movement within the window, and the
horizontal scroll bar is located on the bottom of the window and enables left and
right movement. In addition, the displayed results in the child window can be

printed out to obtain a hard copy of the scheduling results.

6.4 Input and Output

LSCHEDULER is capable of performing regular scheduling as well as optimized
scheduling for repetitive construction projects. In order to perform scheduling
calculations in LSCHEDULER, the user need to provide necessary input data at
the project level and at the activity level including activity relationships as shown
in Figure 6.29. At the project level, the user is required to specify: 1) start date of
the project (see Figure 6.19); 2) whether or not to consider impact of weather
and/or learning curve on scheduling (see Figure 6.20); and 3) whether to perform
regular scheduling, minimize project overall cost, or minimize project duration

(see Figure 6.21).
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Figure 6.29 LSCHEDULER Input and Output

At the non-repetitive activity level, if any, the user is required to input (see Figure
6.22): 1) activity name; 2) work quantity in units of measurement (e.g. m3); 3)
crew daily output in units/day (e.g. m®day); 4) crew cost rates (i.e. material,
labor, and equipment); and 5) activity sensitivity to weather. At the repetitive
activity level, the needed input data are: 1) activity name; 2) number of repetitive
units; 3) work quantity of each repetitive unit; 4) activity sensitivity to weather;

and 5) number of available crew formations (see Figure 6.23, Figure 6.24 and

205



Figure 6.25). For each crew formation, the user need to specify: 1) whether or
not to allow interruption of crew work continuity; and 2) number of crews that can
work simultaneously (see Figure 6.26). For each of these crews, the user is
required to input: 1) crew daily output; 2) crew cost rates (i.e. material, labor,
equipment; and interruption); 3) crew availability period on site; and 4) whether
or not to allow interruption of crew work continuity (see Figure 6.27). With
respect to activity relationship, the needed input data are: 1) predecessor activity
name; 2) successor activity name; 3) relationship type; and 4) relationship lag in

days (see Figure 6.28).

Given the above input data, LSCHEDULER can be used to perform regular
scheduling or optimized scheduling for repetitive construction projects. For
regular scheduling, LSCHEDULER output data is in the form of project schedule
or cost estimates. Project schedule can be in working days or in calendar dates
~and can be displayed for repetitive and non repetitive activities (see Figure 6.10).
For a repetitive activity that can be constructed by multiple crews simuitaneously,
the schedule identifies and displays which crew can be assigned to construct
which repetitive unit following the resource-driven scheduling algorithm earlier
described in Chapter 4. Project cost estimates provide an estimate of material,
labor, equipment and total cost for each repetitive and non-repetitive activity in

the project (see Figure 6.11).
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For optimized scheduling, LSCHEDULER output data can be in the form of a
summarized optimization results or a detailed optimization analysis. The
summarized optimization results displays the optimum crew formation and
interruption vector for each repetitive activity. It also displays the optimum project
schedule and cost as shown in Table 6.14. The detailed optimization results
displays, for each crew formation of each activity, the generated interruption
vectors and the local optimum pair of predecessor crew formation and
interruption vector. It should be noted that LSCHEDULER can consider the
impact of weather and/or learning curve effect for regular as well as optimized

scheduling.

6.5 Assumptions and Limitations

LSCHEDULER is developed as a scheduling tool for repetitive construction
projects, and therefore its application is limited to this category of projects. In

addition, the main limitations and assumptions of LSCHEDULER are:

1) Similar to available scheduiing software systems, the application of
LSCHEDULER is limited to the project scheduling stage, and therefore
cannot be used during the planning stage to determine project work break-
down structure, scope and size of construction activities and repetitive units,

etc. Such planning decisions should be made by the project planner before
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LSCHEDULER can be used.

2) The application of LSCHEDULER is limited to a single repetitive construction
project at a time, and therefore it cannot be used to schedule muitiple
projects sharing the same resource pool.

3) Factors affecting construction productivity considered in LSCHEDULER are
limited to weather impact and learning curve effect.

4) Estimates of activity durations and costs are assumed to be deterministic.

6.6 Application Example

An example of a highway construction project is analyzed in order to illustrate the
use of LSCHEDULER and demonstrate its capabilities. The project involves the
construction of a three lane highway for a stretch of 5 kilometers, and consists of
five consecutive activities: cut trees, remove stumps, earthmoving, base and
paving. The precedence relationships among these sequential activities are finish
to start with no lag time. The project can be divided into 5 repetitive sections, each
has a length of one kilometer. The five construction activities of the project are
repeated at each of the 5 sections or kilometers of the project. The quantities of
work for the five activities in each repetitive section are estimated as shown in

Table 6.12.
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Table 6.12 Quantities of Work

Activity Unit km. 1 km. 2 km.3 | km.4 | km.5
(1 (2) 3) (4) () (6) (7)
Cut trees 2 12000 | 18000 | 30000 | 27000 | 24000

m
Remove stumps m? 12000 | 18000 | 30000 | 27000 | 24000

Earthmoving m? 6000 7000 8600 | 6500 | 6000
Base m? 30000 | 30000 | 30000 | 30000 | 30000
Paving m? 30000 | 30000 | 30000 | 30000 | 30000

The contracting method adopted for this project is bidding on cost and time
(Herbsman et al 1995). Bidding on cost and time is one of the most popular
contracting methods currently being used by many of the state highway agencies
across North America in an attempt to reducé the construction duration of highway
projects. The use of this method has steadily increased after it was recommended
by the Federal Highway Agency in the United States in 1991 (Herbsman 1993,
and Herbsman et al 1995). In this method, contractors are asked to bid on both the
project cost and duration, and the major criterion for winning is the lowest total
combined bid. The total combined bid combines the project cost and the money

value of its duration as follows:

ITCB =4 + B = A + (D.DRUC) 6.1)

where, TCB = total combined bid in $, A = project cost in $, B = money value of

project duration in $, D = project duration in days and DRUC = daily road-user cost
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in $/day. DRUC is estimated by transportation agenciés to represent the economic
benefits of the road to the public and local economy. In this highway project
example, the daily road-user cost (DRUC) is estimated at $14,000/day. The
contractor estimates the project indirect cost rate (ICR) to be $1000/day, and thus
DRUCHICR = $15,000/day. This value of DRUC+ICR is used to replace ICR as a
direct input in the optimization procedure (Equation 5.14) to represent the daily

money value for project duration.

In order to minimize the total combined bid for this project, the contractor has to
select the optimum crew formation from a set of available alternatives as shown in
Table 6.13. For example, a contractor may have to select a crew formation, for the
paving activity, from the available alternatives of: a) crew B-25 that consists of: 8
laborers, 3 equipment operators, 1 asphalt paver, 1 tandem roller and 1 pneumatic
wheel roller (Means 1993) with no overtime policy; or b) crew B-25 with 3 hours
overtime as shown in Table 6.13. Each crew formation is associated with a
specific daily output and direct cost. The selection of a particular crew formation for
each activity in a highway project, therefore, affects the value of the project total
combined bid. In view of the available crew formations for each activity in this
project, there are 72 possible combinations of crew formations to construct the
project. For example, one combination is to select crew formations 1, 2, 2, 2 and 1
for the five sequential activities, respectively. Each combination is associated with

a unique total combined bid for the project, and the contractor has to select the
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one that yields the minimum total combined bid.

Table 6.13 Crew Formations

Crew Output Material Labor Equipment
Activity form- in cost in cost in cost in
(1) ation m?/day $/m? $/day $/day
() (4) ) 7) (8)

Cut trees 1 3000 0 950 1000
Remove 1 4000 0 500 1500
stumps 2 5000 0 1000 3000
3 6000 0] 1500 4000

Earthmoving 1 800 0 630 1700
2 1100 0 1000 3400

3 1200 0 1500 4000

Base 1 3000 6 850 1100
2 3200 6 1000 1300

3 3400 6 1100 1450

4 3600 6 1250 1600

Paving 1 4000 7 850 1200
2 4500 7 1200 1700

LSCHEDULER is used to minimize the total combined bid for this project. In
LSCHEDULER, the necessary data are input at the project and activity levels. At
the project level, the start date of the project is set on January 1, 1997 as shown in
Figure 6.19, and the optimization criterion is specified to be minimize project
overall cost as shown in Figure 6.21. At the activity level, activity name, number of

units, quantities of work, and number of available crew formations are input as
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shown in Figure 6.23 and Figure 6.24 for each of the five activities of the project.
For each crew formation of each activity, interruption option and number of crews
that can work simultaneously are specified as shown in Figure 6.26. For each of
these crews, crew data are input as shown in Figure 6.27. With respect to activity
relationships, the predecessor and successor names, and relationship type and

lag are input as shown in Figure 6.28 for each of the project relationships.

After completing all necessary data input, scheduling calculations are initiated by
executing “calculate schedule and cost” menu item from the Project menu shown
in Figure 6.4. This prompts LSCHEDULER to apply the optimization procedure
earlier described in Chapter § to identify the optimum crew formation and
associated interruptions for each activity in the project. The scheduling
optimization results can be viewed on screen by exeduting “display optimization
output results” menu item as shown in Figure 6.12. The same resuilts can also be
sent out to the printer by executing “print” menu item from the File menu shown in
Figure 6.3. For each activity in this project, the identified optimum crew formation
and interruptions as well the optimum schedule and cost are summarized in the

LSCHEDULER optimization results report as shown in Table 6.14.
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Table 6.14 LSCHEDULER Optimization Resuits

OPTIMIZATION RESULTS

Activity Unit Crew# Duration Interruption Start Finish Cumulative Cost

Optimum Crew Formation #: 1

Cut trees 1 1 40 0.0 0.0 40 627150.0
Cut trees 2 1 6.0 0.0 4.0 10.0 627150.0
Cut trees 3 1 10.0 0.0 10.0 20.0 627150.0
Cut trees 4 1 9.0 0.0 200 290 627150.0
Cut trees 5 1 8.0 0.0 29.0 37.0 627150.0
Optimum Crew Formation #: 1

Remove stumps 1 1 3.0 0.0 9.5 12.5 772720.0
Remove stumps 2 1 45 0.0 12.5 17.0 772720.0
Remove stumps 3 1 7.5 3.0 20.0 275 772720.0
Remove stumps 4 1 6.8 20 29.0 35.8 772720.0
Remove stumps 5 1 6.0 2.0 37.0 43.0 772720.0

Optimum Crew Formation #: 2

Earthmoving 1 1 5.5 0.0 12.5 18.0 991008.2
Earthmoving 2 1 6.4 0.0 171 23.5 991008.2
Earthmoving 3 1 7.8 40 27.5 353 991008.2
Earthmoving 4 1 59 1.0 35.8 41.7 991008.2
Earthmoving 5 1 55 20 43.0 48.5 991008.2

Optimum Crew Formation #: 4

Base 1 1 8.3 0.0 18.7 270 2187712.8
Base 2 1 8.3 0.0 27.0 353 2187712.8
Base 3 1 8.3 0.0 35.3 43.7 2187712.8
Base 4 1 8.3 0.0 43.7 52.0 2187712.8
Base 5 1 8.3 0.0 52.0 60.3 2187712.8

Optimum Crew Formation #: 1

Paving 1 1 7.5 0.0 303 378 3427087.8
Paving 2 1 7.5 0.0 378 453 3427087.8
Paving 3 1 7.5 0.0 453 52.8 3427087.8
Paving 4 1 75 0.0 52.8 60.3 3427087.8
Paving 5 1 7.5 0.0 60.3 67.8 34270878
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6.7 Summary

This chapter presented the implementation stage of the present object-oriented
model for scheduling of repetitive construction projects. The model was
implemented using C++ programming language as a 32-bit windows application
that is named LSCHEDULER. LSCHEDULER runs on Microsoft Windows 95 and
NT and consists of two main modules: scheduling module and user interface
module. The scheduling module includes all header and code files, representing
the implementation stage for each of the 10 classes identified in the present
object-oriented model. For each class, a C++ computer code was developed to
represent data members and member functions identified in the analysis and
design stages. The user interface module includes header and code files that
were developed to provide a user-friendly interface. The user interface of
LSCHEDULER incorporgtes menus, a tool bar, a status bar, dialog boxes, and
multiple document interface (MDI) windows. An application example of a
highway construction project was analyzed to illustrate the use of LSCHEDULER

and demonstrate its capabilities.
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CHAPTER 7
CONCLUSIONS

7.1 Conclusions

An object-oriented model has been developed for scheduling of repetitive
construction projects. The model development consists of three stages: analysis,
design, and implementation. The first stage is the analysis stage and its purpose is
to outline the model classes and their relationships and the sequence of
operations that occur in the the model. The analysis stage started by conducting a
field-study of a real-life housing project in order to investigate the nature of the
scheduling process for repetitive construction and various factors affecting it. The
information obtained from this study and from a comprehensive literature review
were used to identify the necessary classes in the present object-oriented model.
In this stage, 10 classes were identified in order to model the scheduling process

of repetitive construction projects.

The second stage in the the development of the present object-oriented model
was the the design stage. For each of the 10 classes identified in the present
model, this stage provided a detailed design of the data members and member
functions of the class. During the design stage, a number of algorithms and
procedures were developed in order to perform the necessary scheduling

215



claculations including: 1) a resource-driven scheduling algorithm for repetitive

activities; 2) an interruption algorithm; and 3) an optimization procedure.

The algorithm for resource-driven scheduling of repetitive activites was
developed as one of the member functions of the Crew-Formation class. For
each activity in a repetitive unit, the algorithm identifies the scheduled start and
finish times as well as the assigned crew. The algorithm provides a schedule that
complies with precedence relationships, crew availability and crew work
continuity constraints. In addition, it considers the impact of a number of practical
factors: 1) type of repetitive activity (i.e. typical or non-typical); 2) multiple crews
assigned to work simultaneously on an activity; 3) crew availability period on site;
4) activity interruption; 5) user-specified order of execution among repetitive
units; 6) weather impact; and 7) learning curve effect. The scheduling algorithm
is carried out in two main stages: the first achieves compliance with precedence
relationships and crew availability constraints, and the second further achieves

compliance with crew work continuity constraint.

The interruption algorithm was developed as one of the member functions of the
Crew-Formation class. The algorithm generates feasible interruption vectors for
each crew formation in the project and provides added advantage over available
formulations that consider arbitrary user-specified interruption vectors prior to

scheduling (Russell and Caselton 1988, and Eldin and Senouci 1993): 1) the
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algorithm is automated and therefore the construction planner need not provide a
user-specified set of interruption vectors prior to scheduling; 2) it generates a
limited number of feasible interruption vectors and therefore enables a practical
and feasible approach for the consideration of interruption during schedule
optimization; and 3) the algorithm generates all needed interruption vectors during
schedule calculation rather than being limited by a prespecified value prior to
scheduling that can be way off optimum conditions, and thus the developed

algorithm ensures the generation and selection of the optimum solution.

The optimization procedure is based on a dynamic programming formulation. It
was developed as a number of member functions of the Repetitive ativity class.
Unlike available formulations, the present formulation is capable of incorporating
cost in the optimization process, thus offering valuable support to project team
members in minimizing the overall cost of the project. For each repetitive activity in
the project, the present model assists the planner in selecting the optimum crew
formation and interruption vector from a set of possible altematives. As such, the
model can be used to evaluate the impact of different project acceleration
strategies (i.e multiple crews, increased crew size, overtime policies, or additional

shifts) on the overall cost.

The third and last stage in the the development of the present object-oriented

model was the the implementation stage. The model was implemented using C++
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programming language as a 32-bit windows application that is named
LSCHEDULER. LSCHEDULER runs on Microsoft Windows 95 and NT and
provides a user-friendly interface. The user interfface of LSCHEDULER
incorporates menus, a tool bar, a status bar, dialog boxes, and multiple

document interface (MDI) windows.

7.2 Research Contributions

The contributions of this study can be summarized as:

1) The development of an object-oriented model for scheduling of repetitive
construction projects. The model enables the integration of repetitive and non-

repetitive scheduling techniques in an efficient operating environment.

2) The development of a practical and flexible algorithm for resource-driven
scheduling of repetitive activities. The algorithm complies with precedence
relationships, crew availability, and crew work continuity constraints and
considers a number of practical factors commonly encountered in scheduling

construction projects.

3) The development of an interruption algorithm that enables an automated
generation of feasible interruption vectors for each crew formation in the

project during scheduling. The algorithm circumvents the limitations of
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4)

3)

6)

available formulations that consider arbitrary user-specified interruption

vectors prior to scheduling.

The development of an optimization procedure for generating least cost or least

duration schdules for all types of repetitive construction projects.

The development of a scheduling calculation procedure that enables the
consideration of weather impact and leamning curve effect on scheduling of

repetitive construction projects.

The development of a prototype software system: LSCHEDULER.
LSCHEDULER is a 32-bit windows application that runs on Microsoft Windows
95 and NT and provides user-friendly interface. LSCHEDULER enables regular
scheduling as well as optimized scheduling of repetitive construction projects,
and it incorporates the newly developed algorithms and procedures described

in this study.

7.3 Recommendation for Future Research

This study has presented an object-oriented model for regular as well as

optimized scheduling of repetitive construction projects. The model is flexible and

can be applied to all types of repetitive projects. However in order to expand the

potential applications of the model, the following recommendations for future
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research can be made:

1) The optimization procedure adopted in this model can be expanded to
consider risk and uncertainty in estimating activity duration and costs. This
can be achieved by transforming the currently applied deterministic dynamic

programming formulation to a stochastic one.

2) The resource-driven scheduling algorithm in this model can be extended to
account for resource sharing among muitiple projects. This can be useful to a

contractor managing multiple projects that share the same resource pool.

3) The estimation of crew productivity factors in this model can be expanded to
account for other factors in addition to the currently considered weather and
learning curve effects. Additional factors that can be considered include but

not limited to: overtime policy, space congestion, and change orders.
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APPENDIX I: HEADER FILES
PROJECT HEADER FILE “PROJECT.H”

/[ 7.
/i Project header file "projecth”

#include "datal.h"

/f~—=—e—— Global defines
#define TRUE 1

//~————— Prototypes definitions
int my_compare(const void *valuel, const void *value2);

I Node class

class node

{
friend class Project;

private:
node *left, *right;
Project_data* data;

I
V/E Project class
class Project
{
friend class Activity;

friend class Non_Rep_Activity;

friend class Sub_Activity;

friend class Repetitive;

friend class Crew_Formation;

friend class TKhaledApp;

private:

int no_activities, no_non_rep, no_repetitives, no_subs;
int no_relations, no_rep_relations, no_hetro_relations;
int no_rep_quantities, no_proj_formations, no_proj_crews;
float project_duration, project_cost;
Activity **project_activities;
Relation **project_relations;
Rep_Relation **project_rep_relations;
Hetro_Relation **proj_hetro_relations;
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Non_Rep_Activity **project_non_rep;
Repetitive **project_repetitives;
Sub_Activity **project_subs;
Date project_start;

int weather_sensitivity;

int learning_curve;

int optimization;

int cost_day;

node* root;

node* left;

node* right;

public:
Project() { root =left =right=0;
project_duration = project_cost = 0.0;
no_activities = no_non_rep =0;
no_subs =no_repetitives = no_rep_quantities = 0;
no_relations =no_rep_relations = no_hetro_relations = 0;
no_proj_formations =no_proj_crews = 0;
project_relations = new Relation* [20];
project_rep_relations = new Rep_Relation* [20];
proj_hetro_relations = new Hetro_Relation* [20];
project_activities = new Activity* [40];
project_non_rep = new Non_Rep_Activity* [20];
project_repetitives = new Repetitive* [20];
project_subs = new Sub_Activity *[20];
weather_sensitivity = learning_curve = 0;
optimization = 0;
cost_day =0;
Date project_start;
}
void insert( Project_data* a);
void modify_project duration(float duration) { project_duration = duration; }
void modify_project_cost(float cost) { project_cost = project_cost + cost; }
void sensitivity();
void SetWthrLeamnOption (int WthrCheckBox, int LearningCheckBox);
int GetWeatherOption() {return weather_sensitivity;}
int GetLearnOption() {return learning_curve;}
int GetOptimizationOption() {return optimization;}
int GetDailyCost() {return cost_day;}
void SetOptimizationOption(int i, int ¢} {optimization = i; cost_day = c;}
int GetStDay();
int GetStMonth();
int GetStYear();
void add_activity(Activity* );
void add_non_rep(Non_Rep_Activity* );
void add_rep(Repetitive* );
void add_sub(Sub_Activity* );
void add_relation(Relation* );
void add_rep_relation(Rep_Relation* );
void add_hetro_relation(Hetro_Relation* );’
int modify_activity(Q;
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int update_activity();

void Set_project_start(Date & d1) { project_start ==d1; }
int is_present ( char* a );

int repetitive_is_present ( char* a );

Activity* address_activity ( char* a); // return address of activity from its name
Non_Rep_Activity* address_nonrep_activity ( char* a );
Repetitive* address_rep_activity ( char* a); // return address of rep. activity from its name
int start_scheduling();
void schedule();
void sort();
void clear( node* n =0, int first = 1); // Call clear without any parameters
int save_file(char * s);
int open_file(char * s);
~Project() { clear();
deletef] project_activities;
delete[] project_non_rep;
delete[] project_repetitives;
delete[] project_subs;
delete[] project_relations;
delete[] project_rep_relations;
delete[] proj_hetro_relations;

}
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DATA HEADER FILE “DATA.H”

V/6 Data Hierarchy Header File "data.h"
/’l
/7 Class Project_data
class Project_data
{
friend class Project;
protected:
char name[40];
Project *project_address;
public:
Project_data( char * n) { strcpy(name,n); }
virtual void set_addresses() {}
char * get_name() {return name;}
Project_data() { name[0] ="0'; project_address = NULL;}
virtual ~Project_data() {}
b
/F Class Relation

class Relation : public Project_data
{
friend class Activity;
friend class Project;
protected:
char pred_name[40], succ_name[40];
Activity *Apred;
Activity *Asucc;
int type, lag;
public:
Relation() { Apred = Asucc =NULL; type = 1; lag = 0; pred_name[0] =\0'; succ_name[0] ="0'; }
Relation(char* n, Activity *p, Activity *s, intt, int I);
virtual void send_mess_succ(float*, float* );
virtual void send_mess_pred(float*, float* );
virtual void send_mess_rep_succ(float* , float*, float, int) {}
virtual void send_mess_rep_pred(float* , float*) {}
void display_data();
virtual void set_addresses();
virtual ~Relation() {}
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Ik Class Rep_Relation

class Rep_Relation : public Relation

{
int no_relations;
public:
Rep_Relation() : Relation () { no_relations = 0;}
Rep_Relation(char* n, Activity *p, Activity *s, int t, int 1);
void build_rep_succ_PES(int );
void send_mess_succ(float*, float* ) {}
void send_mess_pred(float*, float* ) {}
void send_mess_rep_succ(fioat* , float*, float, int, int, int);
void send_mess_rep_pred(float* , float*);
void identify options(int, int);
void display_data();
void set_rep_addresses();
virtual ~Rep_Relation() {}

If Class Hetro_Relation

class Hetro_Relation : public Relation

{
int pred_unit_no, succ_unit no;
public:
Hetro_Relation() : Relation () { pred_unit_no =succ_unit_no = 0;}
Hetro_Relation(char* n, Activity *p, Activity *s, int t, int L, int pred_no, int succ_no);
void send_mess_succ(float*, float* );
void send_mess_pred(float*, float* );
void display_data();
void set_hetro_addresses();
virtual ~Hetro_Relation() {}
|5
If Class Activity
class Activity : public Project_data
{
friend class Project;
friend class Relation;

friend class Rep_Relation;

friend int my compare(const void *valuel, const void *value2);
protected:

Relation *Rsucc[5], *Rpred[5];

int no_pred, no_succ,mess_pred,mess_succ;

float possible_ES, possible_LF;

int actual_start, actual_finish;

int weather_type;
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public:
Activity() : Project_data()
{
no_pred =no_succ =mess_pred = mess_succ = weather_type =0;
possible_ES = possible_LF =0.0;
actual_start = actual_finish = 0;
for (int i =0; i <5; i++) Rsucc|i] = Rpred[i] = NULL;
}
Activity(char* n) : Project_data(n)
{

no_pred =no_succ =mess_pred = mess_succ = weather_type =0;
possible_ES = possible_LF =0.0;
actual_start = actual_finish = 0;
for (int i = 0; i < 5; i++) Rsucc[i] = Rpred[i] = NULL;
}
virtual void add_succ_relation(Relation *R);
virtual void add_pred _relation(Relation *R);
virtual void modify ES(int&, int&, float&, float& ){}
virtual void modify LS(int&, int&, float&, float& ){}
virtual void set _to_zero( {}
virtual void enter_cost_data( {}
virtual int get_no_units() { return 0; }
virtual void add_rep_succ_relation(Rep_Relation *) {}
virtual void add_rep_pred_relation(Rep_Relation *) {}
virtual void increment_mess_rep_pred() {}
virtual void increment_mess_rep_succ() {}
virtual void increment_mess_pred( {}
virtual void increment_mess_succ( {}
virtual void modify_ES_array(int, float, float, float, int) {}
virtual void modify_LF _array(int, float, float, float, int) {}
virtual void start_forward_calculations(float, int, int, int) {}
virtual void start_backward_calculationsQ {}
virtual void identify_optimum_options (int, int) {}
virtual int modify_my data(char *, int, int, int, int, int) {return 0;}
int update_my_data();
virtual void display_calendar_datesQ{}
virtual void display_working_daysQ{}
virtual void display_costQ {}
virtual void display_update(){}
virtual void build_crew_PES_arrays(int){}
void set_addresses();
virtual void set_rep_addresses() {}
virtual ~Activity(} {}
b
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/I Class Non_Rep_Activity

class Non_Rep_Activity : public Activity

{
friend struct NonRepTransferStruct;

int mat cost unit, lab_cost_day, equip_cost_day;
float prod_factor;

int quantity;

int productivity;

public:
Non_Rep_Activity() : Activity()
{ mat_cost_unit = lab_cost_day =equip_cost_day =0;
quantity = 0; productivity = 1; prod_factor = 1.0; }
Non_Rep_Activity(char* n,int q, int p);
void modify_ES(int&, int&, float&, float& );
void modify_LS(int&, int&, float&, float& );
void enter_cost_data(int, int, int);
void set_to_zero() { mess_pred =mess_succ = 0; possible_ES = possible_LF= 0.0;
prod_factor = 1.0;}
void display_calendar_dates();
void display_working_days(};
void display_cost();
void display_data();
void display_update();
void set_rep_addresses() {}
Non_Rep_Activity* return_my_address2() { return this; }
int modify _my data(char *, int, int, int, int, int);
virtual ~Non_Rep_Activity(Q {}
b

1/ Class Crew_Formation

class Crew_Formation
{
friend class Repetitive;
friend class Project;
friend class CrewFormationDialog;
friend class CrewDialog;
friend struct CrewFormationTransferStruct;
friend struct CrewTransferStruct;

int no_crews, current_no_inter, file_no_inter, inter_type;

int *mat_cost_unit, *lab_cost_day, *equip_cost_day;

int *early_avail date, *late_avail_date, *assigned_crew;

int *inter_OK, *inter_cost_day, *Imax, **interruption_array;
float *ES_array, *LF_array, *duration;

float *productivity, *prod_factor;
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public:

|

Crew_Formation()
{
no_crews = 1;
current_no_inter = file_no_inter = 0;
inter_type =2;
mat_cost_unit = lab_cost_day = equip_cost_day =NULL;
early_avail_date = late_avail date = assigned_crew = NULL;
inter OK = inter_cost_day = Imax =NULL;
interruption_array = NULL;
duration =ES_array =LF_array =NULL;
productivity = prod_factor =NULL;
}
void build data_arrays(int no_units);
void schedule_stagel (Project * proj, int no_units, int *quantity, float *PES, int *execution_order,
float *F, float *shift, int *Inter);
void forward schedule(Project * proj, int no_units, int *quantity, float *PES, int
*execution_order, int *Inter);
void calculate_multiple_interruptions(int no_units, int *execution_order);
void calculate_single_interruptions(int no_units, int *execution_order);
void clear_inter_array(int no_units);
void operato=—=(Crew_Formation&); // overloaded assignment operator
~Crew_Formation();

1!

Class Repetitive

class Repetitive : public Activity

{

friend struct RepDataTransferStruct;

friend struct TypRepTransferStruct;

friend struct NonTypRepTransferStruct;
friend struct CrewFormationTransferStruct;
friend struct CrewTransferStruct;

friend class TypRepDialog;

friend class NonTypRepDialog;

friend class CrewFormationDialog;

friend class CrewDialog;

friend class Project;

protected:

int no_units, chosen_formation, chosen_inter_vector, no_crew_formations;
int mess_rep_pred, mess_rep_succ, no_rep_pred, no_rep_succ;

int *quantity, *interruption_vector, *execution_order;

float *PES;

Rep_Relation *Rep_succ[5], *Rep_pred[5];

Crew_Formation *crew_formations;
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public:
Repetitive() : Activity()
{
no_units = 1;
chosen_formation = chosen_inter_vector = 0;
no_crew_formations = 1;
mess_rep_pred =mess_rep_succ =no_rep_pred =no_rep_succ = 0;
quantity = interruption_vector = execution_order = NULL;
PES =NULL;
for (inti=0; i <5; i++) Rep_succ(i] = Rep_pred[i] = NULL;
crew_formations = NULL;
}
Repetitive(char *n, int no);
void build_quantity_array();
void accept_quantities(int i, int quant, int order, int inter);
void accept_quantities(int i, int quant);
void build_available_crews(int no_options);
void accept_crew_formation_info(int, int, int);
void accept_crew_info(int, int, int, int, int, int, int, int, int, int);
int get_no_unitsQ { return no_units; }
int modify_my_data();
void add_rep_succ_relation(Rep_Relation *R) { Rep_succ[no_rep_succ] =R; no_rep_succ++;}
void add_rep_pred_relation(Rep_Relation *R) { Rep_pred[no_rep_pred] =R; no_rep_pred++;}
void increment_mess_rep_pred() { mess_rep_pred++; }
void increment_mess_rep_succ() { mess_rep_succt++; }
void increment_mess_pred() { mess_pred++; }
void increment_mess_succ() { mess_succt+; }
void modify_ES_array(int, float, float, float, int);
void optimize_stagel(float pred cost, int pred_crew, int pred_inter);
void modify_LF_array(int, float, float, float, int);
void start_forward_calculations(float, int, int, int);
void start_backward_calculations();
void start_forward_optimization();
void identify_optimum_options(int, int);
void last_rep(Q;
void set_to_zero();
void display_calendar_dates();
void display_working_days();
void display_cost();
void display_data();
void display_inter_analysis();
void display_inter_results();
void set_rep_addresses();
void operator=—=(Repetitive&); // overloaded assignment operator
~Repetitive() {
if ( quantity !=NULL ) delete[] quantity;
if (interruption_vector = NULL) delete[] interruption_vector;
if (execution_order != NULL) delete[] execution_order;
if (PES !=NULL) delete[] PES;
if ( crew_formations !=NULL) delete[] crew_formations;
}
b
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I Class Sub_Activity
class Sub_Activity : public Activity

{
int duration, material_cost, labor_cost, equip_cost;

public:
Sub_Activity() : Activity(
{ duration = material_cost = labor_cost = equip_cost = 0; }
Sub_Activity(char* n,int d);
void modify ES(int&, int&, float&, float& );
void modify_LS(int&, int&, float&, float& );
void enter_cost_data();
void set_to_zeroQ)
{ mess_pred =mess_succ = 0;
possible_ES = possible_ LF=0.0;}
void display_data(};
void display_calendar_dates();
void display_working_days();
void display_cost();
void display_updateQ;
int modify _my_data() {return 0;}
void set_rep_addresses() {}
b
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CALENDAR HEADER FILE “CALENDAR.H”

Vi Calendar Header File "Calendar.h"
/, 1.
1/ Julian date class
class Julian
{
public:

int da, yr;

JulianQ {}

Julian(int d, inty) {da=d; yr=y; }

long operator-(Julian&);

b

friend int operator<(Julian& jd1, Juliané jd2)
{return jdl.yr <jd2.yr ? 1:
jd2.da<jd2.da?1:0;}

/F

Date class

class Date

{

int rem, mo, da, yr;
char weekday[5];

public:

|

Date() { mo = 1; da = 1; yr = 97; rem = 0; weekday[0] ="\0"; }
Date(int m, intd, int y);

Date(Julian); // constructor coversion function

operator Julian(); // member conversion function

void display( char * a);

Date operator+=(int); // overloaded += operator to add integer to a date

Date operator+(int); // overloaded + operator to add integer to a date & count for weekends

Date operator-=(int); // overloaded —= operator to subtract integer from a date

Date operator-(int); /I overloaded - operator to subtract integer from a date & count for weekends
int operator-=(Date); /! overloaded -= operator to get duration between two dates in calendar days
int operator-(Date); // overloaded - operator to get duration between two dates

void operator==(Date&); // overloaded assignment operator
friend int operator>(Date& d1,Date& d2)
{reum dl.yr>d2.yr?1:

(dlL.yr=d2.yr) && (dl.mo >d2.mo) ? 1 :

(dl.yr=d2.yr) && (d1.mo == d2.mo) && (d1.da>d2.da)?1:0;}
int GetDay() {return da;}
int GetMonth() {return mo;}
int GetYear() {return yr;}
float prod_day(); // productivity loss function for one day
float prod_period(Date); // productivity loss function over a period
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