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ABSTRACT

This thesis presents an analytical investigation
of linear mechanical systems subjected to nonstationary
type of random excitations. Expressions for the mean square
values of the responses are derived using impulse response
and, in some cases, frequency response characteristics of
the system.

The input excitation is considered as a product
of a modulating component and a stationary white noise
stachastic component of zero mean. Under such representa-
tion, the autocorrelation of the input excitation is a
delta function with a specified strength function. Purely
harmonic, harmonic with exponential decay, and simple
linear variations are considered for the strength function
to simulate a wide variety of nonstationary forces.

Both single~-degree and two-degree-of-freedom
systems are investigated. The variation of the maximum mean
square amplitudes and their phase angles against frequency
ratios are presented in the form of plots for different
values of the system parameters. From these results, the
resonance regions are identified and conclusions are
drawn on the behaviour of mechanical systems under non-

‘stationary random excitations.
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CHAPTER 1

INTRODUCTION



Mechanical systems are generally classified as
linear or nonlinear depending on the nature of the mathema-
tical model used to describe them. A large number of mecha-
nical systems can be represented by linear models over their
normal operating ranges.

The external excitation on mechanical systems may
be deterministic or random depending on the source of the
input and the operational environment of the system. When
the input forces are random, the response of the system can
only be described in terms of probabilistic quantities. A
random excitation can further be classified into stationary
or nonstationary process depending on its probabilistic
characteristics. For a stationary process, the statistical
properties do not change with time, but depend only on the
time difference, whereas a nonstationary process has all
its statistical properties, such as mean value, autocorre-
lation, etc... described as function of time. The input
excitations considered in this thesis are of the latter
nature.

Most of the random processes occuring in reality
are essentially nonstationary in character. Examples of
such physical random processes are forces due to explosion,
shock, and earthquake, gust response, vibration environment
of vehicles, forces arising from rapid acceleration or
deceleration, and similar transient phenomena. It is then

important to have a knowledge of the response of mechanical



systems under such random excitation environments.

For a linear system subjected to random excitations,
the response is also a random process. If the excitation is
nonstationary, the response may also be expected to be non-
stationary. The behaviour of a linear mechanical system
under stationary random excitations has been extensively
investigated by many [2,5,7,10]. Of these, the contribution
of Crandall and Mark [2] is extremely useful because they
present a systematic approach to the solution of one and
two-degree-of-freedom linear mechanical system under
stationary random forces. Similar investigations, when the
excitation is nonstationary, are very few. The concept of
representing nonstationary forces through a modulating part
and a stationary white noise process was first introduced
by Roberts [3]. Using a corresponding autocorrelation
*described by a strength function, he presented analytical
techniques giving the necessary response statistics of a
simple linear system. Further investigations by Caughey [1],
Lin [6], and Roberts [4] show mathematical difficulties in
modelling nonstationary random processes for application to
mechanical problems. All the above mentioned researchers
considered only single-degree-of-freedom systems which are
subjected to forces having a simple harmonic strength func-
tion for the autocorrelation of the input process.

The present investigation considers both one-degree

and two-degree-of-freedom mechanical linear systems under



a variety of strength functions describing different types
of nonstationary excitations. The basic model for the non-
stationary force is taken as a product of a modulating
component representing the nonstationarity and a Gaussian
delta-correlated stationary component as suggested by
Roberts [3]. This model yields a delta correlation for the
excitation process with a specified strength function.
Different strength functions, namely linear, harmonic, and
harmonic with exponential decay are considered in this
thesis.

General expressions relating the input force and
the probabilistic descriptions of the response for a single-
degree-of-freedom linear system are derived in chapter 2
using the concept of impulse response. The maximum mean
square amplitudes of the responses of the system and their
corresponding phase angles are obtained in chapter 3 when
external excitation has autocorrelations described by
different strength functions as mentioned previously. The
results are presented in terms of non-dimensional plots. The
method is extended in chapter 4 to two-degree-of-freedom
linear mechanical systems under similar nonstationary forces.
Here, unlike the previous case, the expressions for the
response probabilities are derived using the frequency
response function of the system. Special cases arising
from the complex receptance functions and their influence

on the mean square response of the system are also discussed



in detail. In all the cases considered in this investi-
gation, the results are checked and compared with those
of the previous investigations dealing with the stationary
type of input force such as the one given by Crandall and
Mark [2].

The symbols used in this thesis are defined in
the nomenclature and are also described in the text when
they appear for the first time. Figures and Tables mentioned
in the text of the thesis are presented at the end of each

chapter.



CHAPTER 2

ONE-DEGREE-OF-FREEDOM LINEAR MECHANICAL SYSTEMS

UNDER RANDOM EXCITATIONS



2.1 Transient and Steady State Responses

Consider a damped mass spring system, as shown in

Fig. 2.1l. The equation of motion for the system is

mX (t) + cX(t) + kX(t) = F(t) , >t (2.1)

with initial conditions

X(to) = a ‘
. (2.2)
X(to) = b
Here, m : mass of oscillator
c : constant of viscous damper
k : linear spring constant
F(t) : random excitation
X(t) : displacement of mass m.
Let, c/m = Zﬁwn
2
k/m = Wy (2.3)
F(t)/m=2(t)
where W, . the natural frequency of the system,
z : damping ratio.
Eg. (2.1) now takes the form
X(t) + 2z0 X(t) + 02X(t) = Z(t) (2.4)

If Z(t) is stochastic in nature, then X(t) is also a

stochastic process. Further, if Z(t) is Gaussian, then X(t)
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is also Gaussian distributed because the system is linear[?l.

The solution for the response X(t) is made up of a
transient part governed by the initial conditions and a
steady state part governed by the excitation Z(t). The

standard form of the solution for Eq. (2.4) is [9]

-zw_(t~-t ) _ cw ; -
X(t) = ae n o [coswd(t to)+ n 51nmd(t to)]
w
d
-zw_(t=-t ) t
p ety (E=ty [sinwd(t-t )] + / h(t-1)2(1)dt
+'d)'°‘- (o] t
d o
(2.5)
where
Wyq : damped frequency of the system
= w_(1-z2)3 (2.6)
n L]
h(t) : impulse response of the system
= ;;ﬁ—cwntsinwdt (2.7)
“a
Setting
- — ~zw_(t-t ) _ Tw . _
xl(t to) = e n o [coswd(t to)-+ n 31nwd(t to)]
w
d
_ _ -zw_(t-t ) [ . _ ]
X2(t to) = le n o) 51nwd(t to)
W
d
(2.8)

which depend only on the deterministic properties of the

system and not on the input excitation, the input-output
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relation (2.5) then takes the form

t
X(t) = aXl(t—tO) + bxz(t“to) + [ h(t-t)Z(t)dT (2.9)

t
(¢]

where X(t) and Z (1) are stochastic processes, Xl(t-to) and

Xz(t—to) are deterministic functions.

2.2 Mean Value of the Response X(t)

Taking expected value of both sides of Eq. (2.9)

t
E{X(t)} = aXl(t-to) + bX2(t-tO)<+ S h(t-t)E{Z2(t)}dt (2.10)

i

where E{X(t)} and E{Z(t)} are the mean values of X(t) and
Z(t) respectively.
Using a new variable &= t-t1, Eq.(2.10) becomes
t-tg
E{X(t)} = aX, (t=t_ ) + bX,(t-t)) + J h(g)E{z (t-&) }dg
0
(2.11)

For infinite operating time systems, for which
tg:-m, the transient response dies out and the mean value
of the output X(t) takes the form

E{X(t)} = [ h(§)E{zZ(t-£)} A& (2.12)
0

Case of Stationary Z(t)

If the excitation Z(t) is stationary in character
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then its mean value is independent of time., That is,
E{Z(t)}=E{z(t-£)} = E{2} = constant.
Then,

t-t
E{X(t)} = aXl(t—to) + bxz(t-to) + E{Z}(j)' h(g)dg (2.13)

And for infinite operating time systems, where to= -, the
mean value of the output E{X(t)} is also found to be
independent of time

E{xXx} = E{Z2}/ h(§)dE (2.14)
0

2.3 Autocovariance of the Response X(t)

By definition, the autocovariance of a process X(t)

valid for time range tl’ t, is given by

2
Cxx(tl’tz) = Ei[X(tl)—E{X(tl)}J [X(tz)"E{X(tz)}]E (2.15)

Substituting for X (t) and E{X(t)} from Egs. (2.9) and (2.10)

t1 £ty
({: h(tl‘Tl)Z(Tl)dTl- i h(tl—Tl)E{Z(Tl)}dTl)
(o) [o]

Cxx(tl’tz) = E

t2 t2
(é h(tz-Tz)Z(Tz)de— é h(tz-Tz)E{Z(Tz)}de)z
o o

1]

t1 £
E g i h(tl—Tl)h(tz—Tz)[Z(Tl)—E{Z(Tl)i]
o

ot =

(o]

2ty -rlz () 1] aryar, {



-11-

£ %
= i ﬁ h(tl-Tl)h(tz—Tz)sz(Tl,Tz)dTlde
°© ° (2.16)
where CZZ(Tl,Tz) is the autocovariance of the input
excitation Z(t) given by
Contyriy) = B[z (ep-nta o] [2(ey-ntz i}
If Elz tl-Tl and £2==t2—T2 '
tl_to t2—to
Cxx(tlltz) = é é h(gl)h(EZ)sz(tl-gl'tZ_EZ)dgldg2
(2.17)

For infinite operating time systems,the autocovariance
of the output in Eq. (2.17) reduces to
o o
Cxx(tlltz) = é é h(gl)h(€2)czz<tl_£l't2—52)d£ldg2
(2.18)

Case of Stationary Z(t)

If the input excitation Z(t) is stationary, its

autocovariance C, (tl—El,tz—Ez) depends only on the time

Z
difference t'= (t2-£2)~(tl—£l). Then Eg. (2.17) becomes

tl—tO t2—to
— 1
Cxx(tl'tz)" é é h(sl)h(az)czz(r )dgldg2
(2.19)

And for infinite operating time systems,
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0 ©o

Coyx (1) = ééh(El)h(Ez)sz(T')dEldzz (2.20)
where T::tz—tl .

2.4 Variance of the Response X (t)

The variance c;(t) of the output X(t) is obtained

by setting tl= t2='t in the expression for the autocova-

riance Cxx(tl,tz) of X(t) given in Eq. (2.16)

t t
2 - — - -
o (t)= C_ (t,t) = i i h(t-1,)h(t T,)C, (11 ,7,y)dT dT,
o o
(2.21)
or from Eq.(2.17),
) t—to t—tO
TR(E) = Cltye) = L L On(ER(E,)C,, (k) £oE,) dE, A,
(2.22)
when to= -,
2 — - -
Case of Stationary 72 (t)
In this case, the variance of the output X(t) is
) t--tO t—tO

And for infinite operating time systems, this becomes
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oo [o2]
2 — -
2.5 Autocorrelation of the Response X(t)
By definition, the autocorrelation of the process
X(t) is
R (tyrty) = E{X(tl)X(tz)} (2.26)

Substituting for X(t) from Eq.(2.9),

t
1
Rxx(tl,t2)= E {[axl(tl—to)-+ sz(tl—to) + £ h(tl-Tl)Z(Tl)dTl]

o
' [aXl(tz—to) + bXZ(tz—to)
t2 ,
+-£ h(tz-rz)Z(rz)dTZ]} (2.27)
O

Setting £l= tl-rl, 62= tz-Tz , and carrying out the

multiplication,

Rxx(tl’t2)= [aXl(tl—to)+bX2(tl-toﬂ [aXl(tz—to)+bX2(t2—toﬂ

t2~t

O
+[axl(tl—to)+bx2(tl-toﬂ é h(£,)E{Z (t,-E,) }dE,

t17%
#[axy (epmegdebxy eyt )] 1 One B ce -ty Yag)

£17% 5275

(2.28)
where Rzz(tl—gl,tz—az) is the autocorrelation of Z(t).
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For infinite operating time systems with to= -, the tran-
sient response represented by the first three terms on the
left hand side of Eq.(2.28) vanish . The expression for
the autocorrelation of the output X(t) will then be
o0 [e -}
(2.29)

Case of Stationary Z(t)

If the input excitation Z(t) is stationary, its mean
value is constant and its autocorrelation is a function of
the time difference only. That is,

E{z(tz—gz)} = E{Z(tl—gl)} = E{2} = constant,
and

Rzz(tl-gl,tz-g2)== RZZ(T') where T'= (t2—£2)-(tl-£l) .

The autocorrelation of the output X(t) given in Eq. (2.28)

takes the form

Rxx(tl,tz)::[aXl(tl—to)+bX2(tl—toq [aXl(tz—to)+bX2(t2-toﬂ

-t

2 on(gac,

t
+{aXl (£,-t,)+bX, (tl—to)] E{Z}é'

1

t
O
+[aXl(t2—to)+bX2(t2-to)] E{Z}é h(El)dEl

tl_to tz—to
+/ ! h(£,)h(E,)R_(1')dE dE,

(2.30)
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Further, when t6= —-c,

o0 00

Rex(T) = [ L B(EDR(E)R,, (17)4E,dE, (2.31)

where T = t2—tl .

2.6 Mean Square Value of the Response X(t)

The mean square value of the output X(t) is obtained

by setting t =t in the expression for the autocorrela-

1= %
tion Rxx(tl’tz) in Eq.(2.28). Therefore,

E{x%2(t)} = Rxx(t,t) (2.32)

2

1l

[aXl(t—to)ﬁ‘bXZ(t—tOJ

t
+l:axl(t-to) + bxz(t-to)][i h(t-1,)E{z (1,) }dt,

t
+t,f:' h(t—Tl)E{Z(Tl)}dTl]

o

t t
+[I S h(t-Tl)h(t-rz)Rzz(Tl,rz)dtlde]
t t
o o

(2.33)
2
= [axl (t—to) + bX2(t—to)]

t-t
+lax; (et )+ by (et [ Phieplz ety Az,

t-t
+/  °h(g.)ElZ(t-£,)}Yac. |.%.
AT
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+ t-to t—to
(2.34)
For infinite operating time systems, this expression
reduces to
2 —_ -— -
BOX(8)) = S REDRE)R,, (=8 mgp)daEdey  (2.35)

Case of Stationary Z(t)

For stationary input 2 (t), the mean square value of

the output X(t) is obtained by setting t=t,=t in Eq. (2.30)

2
E{X%2(t)} = [axl(t—-to) + sz(t-to)]

t—t
+2 {ax1 (t-t_) + bX, (t-to)] E{Z}é n(£)dc

t—to t--tO
t7 %/ °n(Eh(E,)R__(E,-E,)AE dE, (2.36)
0 0
For to= - ,
E{X*(t)} = J J h(§))h(E, )R, (§,-E,)dE, dE, (2.37)
00
2.7 Power Spectral Density of the Response X(t)

The power spectral density of a random process X(t)
is defined by the double Fourier transform of the autocorre-

lation of X(t) [8],



-17-

© @ =3 (w1 8y-w,t,)
sxx(wl,wz):: _i —i Rxx(tl’tz)e dtldt2 (2.38)
The inverse of Eq.(2.38) is given by
o J (w8 =uyty)
R (tprty)= 1 _i _i Sy (W ruwyle dwdw,
am (2.39)

Substituting the autocorrelation Rxx(tl’tz) from Eqg. (2.29)

of an infinite operating time system, into Eq. (2.38)

=2

Spelvprwg) = 1 L[ B(EIN(E,)R, , (£-E; ,£)mE)) A8, A8, |

-j(w,t,-w,t,) .
e n 117272 at,at, (2.40)

Further, setting T T,= t2—52, Eq. (2.40) becomes

1= 817810 Ty

© * 0 o©

Sexlepiwy) = 11 [0 h(E))h(E)R,, (1),7,)dE,dE, |

-j[Ql(Tl+€l)-m2(12+€2ﬂ
e

d'rldr2
(2.41)
© o) o) —jw g o jwzg
=7 [ fnepe Lag, | [é he,)e 2 2a,)
~3 (W) Ty =0, Ty)
Rzz(Tl,Tz)e drldrz
(2.42)

Defining the receptance of the system [7],
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. o —jwg
H(jw) = J h(g)e dg (2.43)
0
Eq. (2.42) takes the form
_ . * ® ® =J (W, T;=w,T,)
Syx(W1rwy) = H(ju)H (Ju,) [ S R,,(T1,T,)e 1'172%2 ar,dr
“oo=o0
—_— : * -
= H(jwl)H (jwz)Szz(wl,wz) (2.44)
where
. “3 (0T m0,Ty)
Szz(wl,wz) :_i _i Rzz(Tl,Tz)e dTldT2 (2.45)
is the power spectral density of the input excitation Z(t).
Case of Stationary Z(t) '
If the input excitation Z(t) is stationary [8],
Rzz(Tl’TZ):= Rzz(TZ-Tl) = Rzz(T)
(2.46)
Szz(wl’(“‘Z)z= Szz(wl)s(wl-wz)
where §(.) is the Dirac delta function.
Thus, Eqg.(2.44) becomes
*
SexWqry) = H(jw,)H (sz)Szz(wl)G(wl—wz) (2.47)

or,

2
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2

S, () = 8, () |H(w (2.48)

XX

2.8 Probability Density of the Response X (t)

For linear systems with Gaussian input, the probabi-
lity density of the output is also Gaussian. In such cases,

the probability density of the output X(t) is given by [8]

2
1 exp “[x‘t"E{x(t)}] (2.49)
o, (t) (2m) 3 267 (t)

plxX(t)] =

2
where ox(t) and E{X(t)} are the variance and the mean value

of the output X(t) respectively.
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X(t)

F(t)

Fig. 2.1l. One-Degree-Of-Freedom System
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CHAPTER 3

RESPONSE STATISTICS OF ONE-DEGREE-OF-FREEDOM
MECHANICAL SYSTEMS TO NONSTATIONARY FORCES

WITH DIFFERENT STRENGTH FUNCTIONS
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3.1 Preliminaries

The theoretical derivations of chapter 2 for
generalized random inputs are used here to obtain response
of one-degree-of-freedom linear system under different
types of nonstationary forces. The type of excitation on
the system is specified in terms of the correlation func-
tion. Certain typical correlation functions are considered
and the responses of the system are evaluated using the
input-output relation of chapter 2.

Generally, a nonstationary excitation Z(t) is
expressed in terms of a modulating function Zl(t) and a

stationary excitation F(t) of zero mean in the form

z(t) = Zl(t)F(t) (3.1)

Such a definition will yield an autocorrelation function

of the form

Rzz(tl,tz) = E{Zl(tl)zl(tz)F(tl)F(tz)}

I(tl)G(tl-tz) (3.2)

where the excitation component F(t) is assumed to be a
stationary white noise process, §(.)is a Dirac delta func-
tion. I(tl) is then known as the strength function [3] of

the autocorrelation of the excitation force. When I(tl) is
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a constant, Z(t) is the well-known stationary white noise
excitation; on the other hand,if I(tl) is a function of
time, Z(t) yields a nonstationary white noise process [3].
In this chapter,different strength functions of the auto-
correlation of the input excitation are considered and the
corresponding response statistics for the system are worked
out.

Three important types of strength function are
considered. They are : (i) harmonic function with exponen-
tial decay, (ii) pure exponential decay, and (iii) simple
linear decay with a constant wvalue. In types (i) and (ii),
the decay rate is specified by a parameter a. Mathematically
the three types of strength function may be expressed in

the following form

1. I(t,) = Ae—ap‘tllcos t (3.3a)
. 1 = b 1 ¢
-alt
2. I(t)) = Ae ] 1| (3.3b)
lt1]
3. I(t)) = a(1-'z2h (3.3c)

T

These strength functions are illustrated in Figs. 3.1, 3.2

and 3.3 respectively.

3.2 Physical Significance of the Strength Functions

Since the autocorrelation of the input process is
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defined by a delta function with a given strength I(tl),

it is difficult to directly understand the physical nature
of the excitation. It is then desirable to present the
characteristics of the input in terms of the spectral
density. The power spectral densities of the nonstationary
excitations represented by strength functions in Egs. (3.3a),
(3.3b) and (3.3c) are calculated using Fourier transform

relation (2.38)

'“P]tll
For I(tl) = Ae cosptl
o o _upltll —j (wyt-w,ty)
Szz(wl,wz) = _i _i Ae cosptl5(tl—t2)e dtldt2
o —uplt l -j(w,-w,)t
=A [ e 2 cospt,e 172 23t (3.4)

2 2

-00

Considering only the real part of Eq. (3.4) for physical

interpretation,
o —aplt2|
Szz(wl,wz) = A_i e cosptz.cos(wl—wz)tzdt2
L ft —up]tz‘ ( vt.a
= 1lim A e . cospt,.cos (w,~-w,) t,dt
oo —t 2 1 72772772

(3.5)
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op op
= 1limA _ +
€ | (ap) P+ ip-(w-0 )17 (ap) 2+ [p+ (wg w012
-apt
e [P-(w;-w,) Isin[p-(w -w,) It - apcos [p-(wy-w,) 1t
+
(ap) + [p= (0 -w,) 17
-apt
. e [p+(wl-w2)]sin[p+(wl—w2)]t - apcos[p+(wl—w2)]t

(ap)2+[p+(wl-w2)]2

(3.6)

The expression within brackets is plotted as a function of
(wl—wz)t in Figs. 3.4 and 3.5 for different values of the
parameters o and pt. Data for these curves are taken from
computer Program 0.A in the Appendix. The curves presented
in these figures show that the generalized power spectral
density of the input process has a maximum value at t=0 and
decays to small values in an oscillatory fashion as t
increases.

-a[tll |

~

For I(tl)= Ae

Employing the same procedure for this case, the real
part of power spectral density of the input process Z(t) is
o —alt ‘

e 2

Szz(wl,wz) = [ A

-0

cos(wl-wz)tzdt2

or,
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t —altzl
szz(wl,wz) = iig A—i e cos(wl—wz)tzdt2 (3.7)
-at
o - e [ocos(w,-wL )t = (w,-w,)sin(w,-w,)t]
= 1lim 2A 1 2 1 2 1 2
t>o 2

o +(wl—w2)2
(3.8)

and this is illustrated in Fig. 3.6 using Program 0.B in
Appendix. Here, the value of the generalized power spectral
density Szz(wl,wz) is plotted against (wl—wz)t for values of
a varying from 0 to 3.

When a=0, Eq.(3.8) takes the form

sin(wl—wz)t
S (wy,w,) = lim 2A
zz 1'72 o0 —
1 72
= 2A.6(wl—w2)n (3.9)

where §(.) 1is Dirac delta function. This result is same as

the one obtained by Roberts [3].

|t4]
For I(ty) = A(l - ~ZE)

In the same maner, the real part of the power spectral

density of the input.process for this case is

<) | t
Szz(wl,wz) = i A(l-

|

)cos(wl—wz)tzdt2

-
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or,
t £,
s (wy,w,) = 1lim A S (1- )cos (w,-w.)t. . dt (3.10)
zz 1772 oo _t T 1 72772772
sin(w,-w,)t l-[cos(w,-w )t + (w,-w.)sin(w,-w,.)t]
- 1im 2A 1 72 " 1 72 2l 2 1 72
t>o Wy —Ww, (wl—wz) T

(3.11)

Taking % = a, the generalized power spectral density in
Eq.(3.11) is plotted against (wl—gz)t for different values
of the parametér a in Eig. 3.7. Data fof these curves is
obtained from Program 0.C in Appendix. As T-»», the second

term on right hand side of Eq. (3.11l) vanishes and the input

bower spectral density takes the form of Eq. (3.9).

3.3 System Response Under Harmonically Varving Strength

Function With an Exponential Decay

In this case, the autocorrelation of the input Z(t)
has the form
e[ty
Rzz(tl’tZ) = Ae cosptlé(tl—tz) (3.12)
where A, o, p are positive constants. For infinite operating
time systems, the autocorrelation of the response X(t) is

given by Eq. (2.29) as
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o oo

Rex(E17€p) = £ L REDR(E)R,, (678, £5=E5)dE A (3.13)

Substituting in Eqg.(3.13) for h(§) from Eq. (2.7), Rzz(tl'tz)
from Eq. (3.12), and integrating, the autocorrelation of the

output X(t) of the system may be obtained as

Ae—cwnltz—tl]—apltll

Rex (E17E5) .
s

2a. (2t0_-ap) (20,)p + 2b.(2wd)[(2Cwn—ap)2+(2wd)2+p2]

[(2cwn—ap)2 +(2wd-p)2][(2cwn—ap)2 +(2wd+p)2]

c.p[(2Cmn—ap)2+p2-(2wd)2]

[(2z0 -ap) % +(204-p) 21 [(2z0_-ap)? +(204+p) °]

d. (22w -ap) [ (2zw -ap) *+p%+ (204) %]

[(2z0, -op)? +(20,-P) °11(2zu_-ap)? +(204+p) °]

c.p + d.(2;wn—ap)

[(chn—ap)2+p2]

(3.14)

where,

a = Sinwd(tz-tl)Slnptl
b = sinw,(t,-t,)cospt

qa°"2 1 1 (3.15)
c = coswd(tz—tl)51nptl

d = coswd(tz—tl)cosptl
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The Mean Square Value of the Response X(t)

The mean square value of X(t) may be obtained by
setting tl =t, = t in Eqg.(3.14),

~

E{x?(t) }= R, (t/t)

-ap| t|
Ae p'
__2w; V1-z? (2c-ap') 2+p* 2
p'[(2z-ap') *+p' ?~4(1-2%)] sinpt
[(2g-ap') %+ (2/1-c2-p") 2] [ (2z-ap') 2+ (2/1-C2+p") 2]
(2z-ap')
.|..
(2C-ocp')2+p'2
] ' 2 |2 2
(2g-ap') [(2g-ap') “+p' "+4(1-2%) ] cospt
[(2g-ap') 2+ (2/1-c%-p") 21 [(2c-ap") 2+ (2/1-2+p") ]
(3.16)
where p' = g .
n
Recognizing Eq. (3.16) in the form
Ae_aplt]
E{xX%2(t)}= — (P sinpt + Q cospt) (3.17)
w
n

where
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1 p'
P:
2/1-¢? (2c-ocp')2+p'2

p' [(2z-0ap') 24p' %=1 (1-22%) ]
[(2z-ap') 2+ (2/1-2%-p") %1 [ (2z-ap') %+ (2/1-22+p") 2]

(3.18a)
1 (2z-ap"')
Q =
2V/1-¢2 (2c-ap')2+p'2
[] ] 2 |2 2
(2z-op') [(2¢-ap') "+p' "+4 (1-z%) ]
[(2z-0p") 2+ (2/1-22-p") 21 [ (2z-ap') 2+ (2/1-C 2+p") °]
(3.18b)
Alternately,
~op| £
Ae _
E{X%2(t)} = — R cos(p't + @) (3.19)
wn
where
R = [ p2+021% (3.20a)
s = tan—l(—%—) (3.20b)

R and ¢ may be considered as the maximum amplitude and phase

angle components of the mean square response of the system.
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For a given value of o, the quantities R and ¢ of the
mean square value of the response X(t) are computed as func-
tion of frequency ratio p/wnand damping ratio ¢ using Program
1 in Appendix. Computed results for R and ¢ are plotted against
p/wn for different values of ¢z . Figs. 3.8 and 3.9 give the
response for a=0.2, and Figs. 3.10 and 3.1l1 show the response
when a=1.0.

From Fig. 3.8, it may be noted that large values for
the maximum mean square amplitude of the system occur in the

regions—%— = 0 and —%— = 2,0 . The peaks are more pronounced

for smallndamping rat?os,especially when ¢ is less than 0.4.
For certain damping ratios, large peak amplitudes are noted
for very low values of p/wn with comparatively smaller peak
amplitudesin the region of p = an. The opposite occurs for
certain other damping ratios as can be seen from the figure.
From this, it may be concluded that there are two distinct
"resonance regions" of which one is more critical. For high
damping ratios ( £ >20.4-), the maximum amplitudes of the
mean square response are subdued for all values of p/wn. It
is also important to note that for p/wn> 3.0, all the ampli~
tudes approach to zero value for all z.

Fig. 3.9 shows the variation of phase angle ¢ in
function of frequency ratio p/wn for different values of z.
It may be noted from this figure that the mean square ampli-
tude is in phase with the strength function for p = 0, and

all the curves pass through ¢ = in the region p = w_.

T
2 n
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For low damping ratios, the phase angles asymptotically
approach - w/2, whereas for slighly higher ¢, they reach
asymptotically 3m/2 when P> .

Similar plots for a=1.0 are given in Figs. 3.10 and
3.11. The behaviour of the system is essentially the same as
for a=0.2 except that the peak amplitudes are relatively
closely spaced. Also, unlike the plots for a=0.2, there is
only one dominant peak or "resonance region" in this case
for every r value.

The "resonance frequencies" corresponding to the
peak amplitudes of E{X2?(t)} shown in Figs. 3.8 and 3.10 may
be exactly determined by differentiating Eqg. (3.20a) with
respect to p' and setting the resulting expression to zero.
The values of these "resonance frequencies" are evaluated
using Newton-Raphson numerical method (Program l1.A in Appen-
"dix) for the value of the decay parameter o equal to 0.2 and
1.0. The results are presented in Tables 3.1 and 3.2. Using
these results, the locus of the "resonance amplitudes" of
E{X?(t)} are indicated in Figs. 3.8 and 3.10 by dotted lines.

if may also be interesting to know how the maximum
amplitude of the mean square response of X(t) varies with the
decay parameter a of the strength function for a given system
with a fixed damping g. Figs. 3.12, 3.13 and 3.14 show this
variation with respect té the frequency ratio p/wn for a range
of values of o when ¢=.05, z=.25 and r=.45 respectively. Data-

for these curves are taken from Program 1 in Appendix.
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From these figures, it may be seen that all the curves
start at the same point when p/wn= 0. This means that the
maximum mean square response of the system is a constant
regardless of the values of the decay rate o when the corre-
lation frequency of the excitation is zero. The "resonance
regions" corresponding to peak values of E{X2?(t)} are influenced
by both values of the decay rate o and the damping ratio g.

The peaks are also shifted to the each other as the value of

each parameter increases.

3.3.1 Special Case 1 : o = 0

When o = 0, the input autocorrelation Rzz(tl'tz) has

harmonically varying strength function I(tl),
Rzz(tl’tz? = A cos ptlé(tl—tz) (3.21)

as shown in Fig. 3.15.
Setting o = 0 in Eq.(3.14), the autocorrelation of
the response X(t) becomes

—Cwn t2-t4

Ae

Rxx(tl’tZ) = 20 2
d

2a(2zw)) (2ug)p + 2b(20y) [(2zu_) 2+ (20,) 2+p?]

[(2g0,) 2+ (204-p) 21 [ (220) 2+ (20 g+p) 2]

® o 0 00 0 0 00
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cp[(2zu)) *+p°= (2ug) %]

ooooo

[(22u) 2+ (204-P) °1 [ (2z0) 2+ (2u+p) %]

a(2zw ) [(2zu ) *+p%+ (20) %]

[(2gu) “+ (20g-) *1 [ (250) *+ (20g+p) °]

cp + d(2cwn)

+
[(2zu,) 2+p°]

(3.22)

where the expressions for a, b, ¢, and d are given in
Eq.(3.15).

The mean square value of the response X(t) is now
obtained either by setting o = 0 in Eq. (3.16) or by setting
tl = t2 = t in Eq.(3.22),

E{x%(t)} =

A
Zw; V1-g2

p' p'l(20) 24pr2-a =221 |
- sin pt
(20)%+p'?  (4+p' %)%= (4p'/1-22) 2 |
[ 2¢ 27 (44p' %) ]
- cos pt
(20)2+p'2  (4+p' %) 2-(4p'/1-¢2)?

where p' = p/wn .

(3.23)
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This can also be written in the form

A
E{xX2(t)} = - [ P, sin pt + Q_ cos pt ] (3.34)
mn
where
1 p' p'[(2c)2+p'2—4(l—c2)]]
P =P = -
° a=0  2/1-z% | (20)%+p'?  (4+p' )%= (4p'/1-2?%) 2

(3.35a)

2

1 2g 2z (4+p'")
0=0  2/1-¢? [(z;)2+p'2 (4+p' %)%~ (4p'/1-7?) ]

(3.35b)
And alternately,
_ A
E{X2 (t)} = R, cos(p't + @) (3.36)
“n
where
R = (p2+2)t (3.37a)
o o o )
-1 PO
@o = tan ( ) (3.37b)
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The quantities RO and ®o are computed using Program 1 in
Appendix and plotted in Figsa 3.17 and 3.18 against p/wn for
a range of values of damping ratio Z. The results for this
particular case are identical to to those obtained by
Roberts [3,4].

The basic characteristics of the plots in Figs. 3.17
and 3.18 are quite similar to those in Figs. 3.8 to 3.11l.
Since & = 0 in this case, the peak amplitudes are more pro- -
nounced and reach almost infinite values at —%—2 0 and £ = 2
for small values of 7. The interval between twg peaks hasn
maximum value when ¢ is small. For p/wn:>3.0 the amplitudes
asymptotically approach zero. The phase angles start at zero
value for all damping ratio f, pass through m/2 when p = W
and asymptotically reach 3m/2 for large values of p/wn .

The values of the frequency ratio p/wn for which
E{X?2(t)} is a maximum are determined by differentiating
Eg. (3.37a) with respéct to p/wn and setting the resulting
expression to zero. The results are presented in Table 3.3
using Program 1l.A in Appendix. From this data, the locus of

the maximum mean square response of the system may be indicated

as shown by dotted lines in Fig. 3.17.

3.3.2 Special Case 2 : p =0

When p = 0, the autocorrelation of the input Z(t) in

Eg. (3.12) becomes

Rzz(tl,tz) = A 6(tl—t2) (3.38)



-37-

or,

RZZ(T) = A §(71) (3.39)

where T = tl—tzl, and the input process 2 (t) in this case

becomes a stationary white noise process. The strength func-
tion I(tl) is a constant as shown in Fig. 3.16.
From Eq.(3.14), when p = 0, the autocorrelation of

the response X(t) takes the form

-TWw lt —t]
Ae nl 2 "1
Rxx(Fl'tZ) = Arw’
n
: i 3.4
/Z:E? 51nwd(t2—tl) + coswd(tz—tl) (3.40)
Letting 1 = ltl-tZI ; Eq.(3.40) becomes
-TWw_T
Ae D z
R._(t) = sinw.T + cosw,T (3.41)
XX 4Cw; E:_Z? d d

Usually for white noise excitation, the amplitude of strength
function A is written in the form A = 2'rrso , where So is
the constant value of the spectral density of the excitation.

Therefore Eq. (3.41) may be written as

“CW,T

TS _e n C
RXX(T) = o [ : sinwdT + coswdT] (3.42)

2;wg ~-z?2
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which is the same expression as that obtained by Crandall a
and Mark [2].

The mean square response of the system may be obtained
by setting p = 0 in Eq.(3.16) or by setting T = 0 in the

expression for the autocorrelation RXX(T) in Eq. (3.42) and is

E{X2} = .——f— | (3.43)

This value is independant of time and is the mean square
response of one-degree-of-freedom linear system subjected to

a stationary white noise excitation [2].

3.4 Response Under an Exponentially Decaying

Strength Function

In this case, the autocorrelation of the excitation
is of exponentially aecaying form,
-aty]
Rzz(tl’tz) = A e G(tl-tz) (3.44)
and shown in Fig. 3.2 . The spectral characteristics of this
type of excitation is given in Fig. 3.6. For infinite opera-
ting time systems, the autocorrelation. of the output X(t)
is given in Eq.(3.13). Substituting for h(£) and Rzz(tl’tz)
from Eq. (2.7) and Eq. (3.44) into Eq.(3.13), and integrating,

the autocorrelation of the response X(t) is obtained as
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Ae—cwn‘tz-tll—altl[

R__(t,,t,)
X2 aze_—a)? 4+ (2ug)?

1 2

—_— 51nwd(t2-tl) + —_— coswd(tz—tl)

CF) ZCwn—a

The Mean Square Value of the Response X(t)

(3.45)

The mean square value of the output X(t) is obtained

by setting tl = t, = t in the expression for the autocorrela-

2
tion Rxx(tl’tz) in Eq. (3.45)

-a|t]
2Ae
E{x?(t)} = 3
w;(ZC—a')(a' -4za'+4)
where a'=aﬂ%.

Eq. (3.46) may also be written in the form

—a|t]
E{X2(t)} = E{x%2(0)l}e
where
2A
E{x?(0)} =

w;(ZC—a')(a'—4Ca'+4)

which is the mean square response of the system at t

(3.46)

(3.47)

(3.48)

0.

The quantity E{X2(0)} in Eg. (3.48) is computed in
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terms of ¢ and a/wn using Program 2 in Appendix, and plotted
in Fig. 3.19 against a/wn for different values of 7 £1.0

The quantity E{X?(0)} has unbounded values when the
denominator in Eq. (3.48) has zero value. This happens when
ai = 2z, aé = 2;+/E?:I , and aé = 2;—/PE:I . The values of
aé and aé are complex if the damping ratio is less than 1.0.
Therefore, for ¢4£1.0 i.e. for real valuesof o', the quantity
E{X2(0)} will have infinite value when o' = 2¢ as may be
seen from Fig. 3.19. From the expression (3.48), it may also
be seen that E{X?(0)} is positive only when a'< 2z . Since
the mean square response of the system cannot be negative,
the values of the expression (3.48) for a' >2¢ are discarded.
Unlike the previous cases where for finite values of ¢z,
E{X?(t)} is always bounded and has finite magnitude, the peak
values of the mean square response in the present case can
-be infinity, hence gnbounded, even for finite wvalues of
damping ratio ¢ if a'= 2z i.e. if a = 2cwn = ¢/m, where c
is actual vicous damping of the system and m is the mass.

As a particular case, suppose o = 0. The autocorrela-
tion of the input process in Eq. (3.44) is exactly the same
as in Eq. (3.38) giving a stationary white noise process. The
mean square value of the response X(t) of the system in this
case will be the same as in Eq.(3.43), namely

m™ S

E{X2} = — —2 (3.49)
2 Tw

This expression can be directly obtained by setting a = 0
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and A = 21TSO in Eq.(3.46).

3.5 Response Under Linearly Decaying Strength Function

In this case, the autocorrelation of the input process

7{t) 1s taken in the form

|t |

Rzz(tl’tz) = A(1 - )S(tl—tz) (3.50)
where T is a constant value of time at which I(tl) = 0. This
is illustrated in Fig. 3.3 and the power spectral density of
the excitation is shown in Fig. 3.7.

Substituting Rzz(tl’tZ) from Eqg. (3.50) and h(€) from
Eq.(2.7) into Eq. (3.13) and integrating, the autocorrelation
of the output X(t) for an one-degree-of-freedom system with
infinite operating time is given by the following expression
—Cwn[tz—t

e 1]

R (t,,t,)) =
xx 1" "2 3
4cwn

N &1l ¢ ( )
- ——— 4+ —|sinw,(t.-t
" wnT d*"2 "1

ltll 1+2¢?2
+ |1~ + coswd(tz—tl) (3.51)
T 2CwnT

Mean Square Value of the Response X(t)

The mean square value of the output X(t) is obtained
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by setting tl = t2 = t in the expression for the autocorrela-

tion in Ed. (3.51)

A 1+2z2 |t
E{xX%(t)} = 1+ - (3.52)
4Cw3 2zw T T

which is essentially a linear function of time.
By assuming T = % , where 1 is the natural period of
the system and n is a proportional constant, Eq. (3.52) may

be written as

A n(14272) ]
E{xX%(t)} = 14+ ——— - n(—) (3.53)
4cw; arg T

For any given value of n, the mean square response of X(t)
may be evaluated in terms of t/T1 for different values of
damping ratio ¢ using Program 2.A in Appendix. Some of these
results for E{X?(t)} are plotted against t/t for different
values of . Figs. 3.20 and 3.21 give the responses when

n =0.5and n = 1.0 respectively.

From these figures, it is seen that the mean square
amplitudes of the response of the system are linearly
decreased from a maximum value to zero for all values of Z.
Here also, only positive values of E{X2 (t)} are considered.
As expected, these amplitudes are restricted by an amount of

the damping coefficient presented in the system with
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maximum values occuring at the origin.

It is noted that when T + «, n+0 , the strength func-
tion of the input autocorrelation in Eq. (3.50) becomes a cons-
tant, and the mean square value of the response X(t) in

Eqg. (3.53) takes the form

A ™ S
E{x?} = = -2 (3.54)
4;w; 2 zw

This is the standard mean square response of the system under

a stationary white noise excitation.
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rable 3.1. Values of p/w_ where E{X?(t)} has Peak Amplitudes
Table 2.2 n

One-Degree-Of-Freedom System -0.2 # l
Strength Function of Excitation = Ae ~° P11 cospt ]

Governing Equation : (3.20a)
Damping Ratio Values of p/uw

c

Region 1 Region 2
.05 .019409 1.869610
.15 .062600 1.952478
.25 .119752 1.949162
.35 .202839 1.856331
.45 .326057 1.618507
.55 .484605 -
.65 .572547 -
.75 .551039 -
.85 .488217 -
.95 .417425 -

Table 3.2. Values of p/wn where E{X?(t)} has Peak Amplitudes

One-Degree-Of-Freedom System _ &
Strength Function of Excitation = Ae P llcosptl

Governing Equation : (3.20a)
Damping Ratio Values of p/wn
C
Region 1 Region 2
.05 .050125 -
.15 .153456 -
.25 .266836 -
.35 .401218 -
.45 .588842 -
.55 - 1.267490
.65 - 1.396239
.75 - 1.403421
.85 - 1.284383
.95 - -
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Table 3.3. Values of p/w  where E{X%2(t)} has Peak Amplitudes

One-Degree-0Of-Freedom System
Strength Function of Excitation = A cosptj;
Governing Equation : (3.37a)

Damping Ratio Values of p/wn

¢ Region 1 Region 2

.05
.15
.25
.35
.45
.55
.65
.75
.85
.95

1.989936
1.904705
1.676012

[oloNeNoNoNoNoNo No o)
i
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Fig. 3.4. Generalized Power Spectral Density of Excitation Z(t)

Strength Function of Excitation = Ae—altllcos pty
Governing Equation : (3.6)
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Szz(wl’wz)
A.t

0=.5, pt=.5

N

_120‘

Fig. 3.5. Generalized Power Spectral Density of Excitation Z(t)

Strength Function of Excitation = Ae—ultlicos pty
Governing Equation : (3.6)
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(wl—wz)t

Fig. 3.6. Generalized Power Spectral Density of Excitation 2z (t)

Strength Function of Excitation = Ae_altll

Governing Equation : (3.8)
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Fig. 3.7. Generalized Power Spectral Density of Excitation 2z(t)

t
Strength Function of Excitation = A (l—lT—ll)

Governing Equation : (3.1l1l)
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8.

1.0 2.0 3.
B/

Maximum Amplitude of E{X2(t)} against p/wn

One-Degree-Of-Freedom System . -0.2 It l
Strength Function of Excitation = Ae ~° Plt1 cospt,
Governing Equation : (3.19)
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371 I - -
= z=.25
£=.35
m = -
// r=.45
~
E 4 £=.65
]
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—
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s
<
a0}
£=.05
- 1 i 1
20 1.0 2.0 3.0
' p/w
Fig. 3.9. Phase Angle of E{X®(t)} against p/w,
One-Degree-Of-Freedom System -0.2 It l
Strength Function of Excitation = Ae ~° Plt1 cospty

Governing Equation : (3.19)
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locus of peak
amplitudes

Fig. 3.10.

Maximum Amplitude of E{X?(t)} against p/wn

One-Degree-0Of-Freedom System ot
Strength Function of Excitation = Ae p] llcosptl
Governing Equation : (3.19) . -
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2l I I r<
z=.75
ol @
> -
z=.85
E'—"o 95
T |- -
z=.05
z=.35 i
1 1 1
0 1.0 2.0 3.
p/w_
Fig .11

. Phase Angle of E{X?(t)} against p/w

One—Degree—Of;Freedom System o+
Strength Function of Excitation = Ae p| llcosptl
Governing Equation : (3.19)
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Fig. 3.12. Maximum Amplitude of E{X2(t)} against p/w  for £=.05

One-Degree-Of-Freedom System .
Strength Function of Excitation = 2e ap | llcosptl
Governing Equation : (3.19)



(w3/A)Max.Amplitude of E{X2(t)}

n

1.0

-56—

] 1 ]
a=.2 \a=,2
1.5¢ i
a=1.0
a=.5 a=.1
_ _
a=0
1 i 1
0 1.0 2.0 3.0
P/wn

Fig. 3.13. Maximum Amplitude of E{X?(t)} against p/w  for r=.25

One-Degree-0Of-freedom System —oplt
Strength Function of Excitation = Ae P] 1]cosptl
Governing Equation : (3.19)
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] ] 1
0 -1.0 2.0 3.0

n
Fig. 3.14. Maximum Amplitude of E{xX2(t)} against’p/wn for r=.45

One-Degree-Of-Freedom System -a It l
Strength Function of Excitation = Ae Pl*1 cospt]
Governing Equation : (3.19)
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“ I(tl)

N/ :

£
Fig. 3.15. Strength Function I(tl)= Acosptl
‘I(t
1)
A
. o
t1

Fig. 3.16. Strength Function I(tl)= A
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locus of peak
amplitudes .

t=.30

p/wn

Fig. 3.17. Amplitude of E{X2? (t)} against p/wn

One-Degree-Of~Freedom System

Strength Function of Excitation = A cos pt;

Governing Equation

(3.36)
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2T ) ~

0 . 1.0 2.0 : 3.0

n

Fig. 3.18. Phase Angle of E{X%?(t)} against p/mn
One-Degree-Of-Freedom Sysﬁem -

Strength Function of Excitxtion = A cos ptl
Governing Equation : (3.36)
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6.0

0

i 1l 1
0 0.5 1.0 1.5
o/w

n ©
Fig. 3.19. Maximum Amplitude of E{X?(t)} against o/uw,
One-Degree-0f-Freedom System

Strength Function of Excitation = Ae—awtﬂ
Governing Equation : (3.48).



-62-

t/T

Fig. 3.20. E{X?(t)} against t/t

One-Degree-Of-Freedom System I ﬂ
Strength Function of Excitation = A (1-0.5 ——
Governing Equation : (3.53) :
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t/T

Fig. 3.21. E{X2(t)} against t/t

One-Degree-Of-Freedom System
Strength Function of Excitation
Governing Equation : (3.53)

A (1-
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CHAPTER 4

TWO-DEGREE-OF-FREEDOM LINEAR MECHANICAL SYSTEMS

UNDER NONSTATIONARY RANDOM EXCITATIONS
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4.1 Introduction

In the two previous chapters, a single-degree-of-
freedom System under nonstationary random excitations was
investigated. The input-output relations obtained from these
chapters are extended and applied here to study the behaviour
of a mechanical system with two degrees of freedom subjected
to similar types of excitation. Crandall and Mark [2] have
studied sgch systems but only under a white noise type of
stationary forces. The autocorrelation of the nonstationary
excitation force is taken in this chapter as a Dirac delta
function with a harmonically varying strength function of the

form
I(tl) = A cospty (4.1)
It may be noted that when p = 0, the excitation
becomes a stationary white noise process and the results

should conform to those in [2].

4.2 Frequency Response of a Two-Degree-Of-Freedom System

An idealized two-degree-of-freedom system as shown
in Fig. 4.1 is considered. The equation of motion may be

written using d'Alembert principle as

my Xy (£)+(c)+e,) Xy (£) =0, X, (£) + (K, +k, ) Xy (£) kX, (£) = F, (£)

m2§2(t)+c2i2(t)-c2kl(t)+k2x2(t)—kle(t) Fy ()

(4.2)
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where ml, m2 : masses of oscillators
cl, c2 constants of viscous dampers
Fl(t), Fz(t) : random excitations on ml and m,
Xl(t), X2(t) : displacements of my and m,
k k b
Let O 2 - ,2
ml nl 2 n2
C c
/o kymy vV kom, > (4.3)
F;(t) Z)(t) ; Fi(t) Z, (t)
1 2
m., ~
roulie u
1
where Woypr Yno are the uncoupled natural frequencies of the

system; Cl' ;2 are the uncoupled damping ratios; and u is

the mass ratio. Egs.(4.2a) and (4.2b) now take the form

Xl(t) + (Zglwnl + 2u;2wn2)xl(t)

= 2ugyw X, ()

2

+ (w2, +_um;2)xl(t) - uwﬁzxz(t) = 2, (t) (4.4a)
Xz(t) + 2;2mn2x2(t) - 2c2wn2X1(t) + wgzxz(t)
wﬁle(t) = 2, (t) (4.4Db)

In chapter 2, the analysis for the response of an one-
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degree-of-freedom linear mechanical system was considered in
the time domain through the impulse response function. For
two-degree-of-freedom systems, a similar approach becomes
tedious due to the difficulty of obtaining the necessary
impulse response functions of the system and hence the
problem is considered here in the frequency domain. Supposing
that the system is infinite operating and using the Laplace

tranform with initial conditions

Xl(O) = Xl(O) = xl(o)

|
o

(4.5)

|
o

X,(0) = %,(0) = ¥,(0)

Egs. (4.4a) and (4.4b) may be written as
N2, . _ . . .
(Jw) Xl(Jw) + (zclwnl + 2u;2wn2)ijl(3w) + (ZUCzwnZ)JwXZ(Jw)
2 2 L) — 2 : - )
+ (wpq + Hwp5) X (Jw) Hwo X, (Fw) = 2 (Jw) (4.6a)
(jw) XZ(Jw) + (2;2wn2)ijz(jw) - (2C2wn2)3wxl(3w)

2 . _ .2 : - .
+ wn2X2(jw) wnle(jw) Z2(jw) (4.6Db)

Here, X(jw), Z(jw) are the Laplace transforms of X(t), Z(t).

Rearranging and solving Egs. (4.6a) and (4.6b), one
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can obtain

[wgz-w2+j(2C2wn2)w]Zl(jw)+[uw;2+j(Zﬁczwnz)wlzz(jw)

X, (jw) =
1 A (Gw)

(4.7a)
Xz(jw)-=

[w;2+j(2C2wn2)w]zl(jw)+[w;1+uw§2—w2+j(Z;lwnl+2u§2wn2)mlzz(jw)

A(Gw)
(4.7b)
where the determinant
: = B [y2 2 24,2 .2
. _ 3 2 2
*3 [[2@2 ()@ 57280 107+ [2’;1‘*’n1“’n2+2§2“’n1“’n2]‘”]
(4.8)

If the input Zz(t) is absent and let Zl(t) = Z(t), Egs. (4.7a)

and (4.7b) become

(w2, —w2+3 (27, 0_,) wlZ (jw)
X, (Gu) = —22 2 n2 (4.9a)
A(jw)

[w2,+3(2z,0_,)wlZ(jw)
- n2 2 n2 (4.9b)

X, (Gw)
2 A (jw)
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Further, Egs.(4.9a) and (4.9b) may be represented in the form

Xl(jw) = Hl(jw)Z(jw) (4.10a)
X, (jw) = H,(jw)z(jw) (4.10b)
where , ,
WA= +j (20,0 _,) W
Hy (ju) = -22 e )2 n2 (4.11a)
jw
. w2 +3(2z.w_4)w
H,(ju) = -22 2 n2 (4.11b)

A(jw)

are the receptance functions of the system when input Zz(t)=0.
On substituting these receptance functions into
Eg. (2.44), the power spectral densities of the responses Xl(t)
and Xz(t) may be obtained in terms of the power spectral
density of the excitation force Z(t). From these spectral
densities, the autocorrelations, mean square values and other
required statistical properties of Xl(t) and X2(t) can be
determined by using Egs.(2.39), (2.32) and other suitable

equations given in Chapter 2.

4.3 Response Under Nonstationary Force Z(t) With

Harmonic Strength Function

As a specific application of the result in the

previous section, a two-degree-of-freedom linear system with
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only the input Z(t)=Zl(t) to the system is considered. Further
as mentioned earlier, the autocorrelation of the excitation
Z(t) is taken to be delta-correlated with harmonically varying

strength function in the form
Rzz(tl’tz) = Acosptlé(tl-tz) (4.12)

The strength function I(ti) of this input autocorrelation is
shown in Fig. 3.15 and the corresponding generalized spectral
density of the excitation for this case may be determined by

putting o = 0 in Eq. (3.6)

[p—(wl—wz)]sin[p—(wl—mz)]t

S (w,,w,) = 1lim A
zz' ' 1’72 oo [

2
[p—(wl—wz)]

[p+(wl—w2)]sin[p—(wl—w2)]t]

+ (4.13)

[+ (0 ~w,) 12

This is illustrated in Fig. 4.3 using data taken from Program
0.A in Appendix. y
In the case p = 0, the strength function of the input
Z(t) in Eg. (4.1l) becomes a constant, the process Z(t) is
therefore stationary, and the generalized spectral density
of Z(t) in Eqg.(4.13) takes the form of Egq. (3.9), it is
sin(wl—m2)£

S (w,,w,) = 1lim 2A = 2A8(w,—-w
2z " 1'"2 tro (wl—mz) 1

2) (4.14)
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4.3.1 Spectral Densities of the Response

The autocorrelations of the responses Xl(t) and X2(t)
may be evaluated if their spectral densities are known. These
spectral densities are determined from the spectral density
of the input process Z(t) which is given by Eq. (2.38) as the
following

.o ERS AR
Szz(wl,wz) = _f J Rzz(tl'tz)e dtldt2 (4.15)

Substituting the input autocorrelation from Eq. (4.12) into

Eg. (4.15)
® ~J (gt -w,t,)
Szz(wl,wz) = A i i cospth(tl—tz)e dtldt2
® “3(wy-wy)t,
= A_i cosptze dt2
w0
= A_i cosptzcos(wl—wz)tzdt2 (4.16)
since _i cosptzsln(wl—wz)tzdt2 = 0 . and in addition only
the real part of Szz(wl,wz) is considered here .
Utilizing the fact that [3]
t sin(a-b)t sin(a+b)t
lim S cos.(ax)cos(bx)dx = linl[ + ]
tro -t troo a-b a+b

= mw[§(a=b) + §(a+b)] (4.17)
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Eq. (4.16) now becomes

Szz(wl,wz) = AT 6[p—(wl—w2)] + 6[p+(wl—w2)] (4.18)

From this equation, it may be seen [3] that the spectral de

density of input process Z(t) is zero except along the planes

where [ see Fig. 4.2 ]

(4.19)

From Eq. (2.44), the spectral densities of the responses

Xl(t) and Xz(t) are given by

0 * 3
lexl(wl,wz) = Hl(jwl)Hl(jwz)Szz(wl,wz) (4.20a)

. * .
szxz(wl,wz) = Hz(jwl)Hz(sz)Szz(wl,wz) (4.20Db)

where Hl(jw) and Hz(jw) are the receptances of the system
with Z2(t) = 0, and are given in Egs. (4.1lla) and (4.11lb).

Substituting Eq.(4.18) into Egs.(4.20a) and (4.20b).,

. * .
lexl(wl,wz) = AﬂHl‘le)Hl(JMZ)[6[p—(wl—wZ)]+6[p+(wl_w2)]

(4.21a)

* 7
szxz(wl,wz) = AﬂHz(jwl)Hz(jwz)[5[p—(wl—wz)]+6[p+(wl,w2)]

(4.21b)
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Case of Stationary Input

When p=0, the input Z(t) becomes a stationary white

noise process and from Eq. (4.19), wl= w,

densities of the responses Xl(t) and Xz(t) in this case,

= w.. The spectral
Egs. (4.21a) and (4.21b), become [8]
(w) = ATw Hl(jw) (4.22a)

X1X)

(4.22Db)

szxz(w) = AT Hz(jw)
These spectral densities are plotted in Figs. 4.4,
4.5, and 4.6 against the frequency ratio w/wnl for a system
with mass ratio py = m2/ml = 0.1, ratio of natural frequencies
wn2/wnl = 2.0 and different values of damping ratio L1=C,= 0
(Fig.4.4), L1=C,= 0.01 (Fig. 4.5), and £1=%, =0.2 (Fig.4.6).
The values indicated in the plots were obtained using Program

3 in Appendix.

En Fig. 4.4 ( cl=c2= 0 ), it is noted that the quan-
“n1 g
AT “X»

of the response Xz(t) starts at a value of 1.0 when w/wnl =0,

tity Xéw) representing the power spectral density

attains very large values in the neighbourhood of w/wnl = 1.0
and w/wnl = 2.0, and then decreases asymptotically to zero
value when w/wnl>>3.0. Same characteristics hold good for

the spectral density of the response Xl(t), except in the

y
. . Wnl
region w/wnl—Z.O, the guantity - lexl(w) has both a
maximum and a minimum value. It must be noted that szxz(m)
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is always numerically larger than lexl(m).

From Figs. 4.5 (cl=c2=0.01) and 4.5 (cl=c2=0.2), it
may be seen that the essential features of the spectral
densities remain the same. Because of the presence of damping,
the numerical values for S (w) and S (w) are bounded

X1X1 X2X2
as compared to the previous case. The value of spectral
density in the region w/wnlzl.o is always larger than that

corresponding to the region w/wn ~2.0 for positive values of

1
damping ratio z.
These characteristics are similar to those obtained

by Crandall and Mark [2].

4.3.2 Autocorrelations of the Response

The autocorrelations of the responses Xl(t) and Xz(t)
are determined from their power spectral densities using

Eg. (2.39)

1 © o j(wltl—wztz)
Rxlxl(tl’tz) = Z;; _i _i lexl(wl,wz)e dwldwz

F

(4.23a)
1 » = J (wqtq—w,t,)
_ 151792%;
szxz(tl'tz) = o —i _i szxz(wl,wz)e dwldw2
(4.23Db)

i i . (4.
Substituting for lexl(wl’wZ) and SX 2(wl,wz) from Egs. (4.21a)

2 X
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and (4.21b),

A = = . *
Rxlxl (tlltz) - E—_i _o{; Hl(]ml)Hl(sz)x
J(wyty-w,t))
[6 [p—(ml—wz) ]+6[p+(wl—w2)]]e dwldw2 (4.24a)
R (t,,t,) = A f°° me (jw )H*(jw ) x
Xa2Xo 1"72 4T —oo —oo 2 1 2 2
J(w k) -w,t))
I}[p-(wl-wz)]+6[p+(wl—m2)i]e dw, dw,, (4.24Db)

and on integration, the autocorrelation of the responses Xl(t)

and X2 (t) become

jpt, = jw(t,-t,)
A { o2 17727 5,

(t),t,) = 2 /B (30)H) 15 (0-p) e

R
X1X1 4t

1 1 274 } (4.25a)

+e S Hl[j(w—p)]H;(jw)e

=00

jpt, Jw(t,-t,)
A 2 ok 17t
Ryp (E17E2) = 1o { e 2 £ 8, (GwH, 15 (w-p) le dw

—jpt, u (£, ~t.)
2 1 727 40 } (4.25b)

+e _i Hz[j(w-p)]H;(jw)e

where Hl(jw) and Hz(jm) are given in Egs.(4.1la) and (4.1l1b).



4.4 Mean Square Values of the Responses Xl(t) and xz(t)

The mean square values of the outputs Xl(t) and Xz(t)

are obtained by setting t

and (4.25b) giving their autocorrelations

E{Xi(t’} =

E{xg(t)}

Egs.(4.26a)

E{Xi(t)}

I

E{xg(t)}

£y (Gu)H] (3 (0-p) 1du
*
£ B, 13 (0-p) 18] () do }
*
S H2(jw)H2[j(w-P)]dw

s Hz[j(w-p)]H;(jw)dw}

and (4.26b) may also be written as
. * »

i H) (Jw)H{ [J (w-p) ldw
0 * .

i) Hl(jw)Hl[J(w+P)]dw}
0 * [}

J H2(Jw)H2[J§w-p)]dw

0 * .
s H2(Jw)H2[J(w+P)]dw}

=t in the expressions (4.25a)

(4.26a)

(4.26Db)

(4.27a)

(4.27Db)
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In the first equation, let

(o]

I, = / Hy (Gu)H][3 (0+p) 1du (4.28a)

o

I, = le(jw)HI[j(w—p)]dw (4.28b)

- 00

Writing (w- %) in place of w in Eqg. (4.28a) and (w+ %) instead

of w in Eq. (4.28b),

(o]

S OH. [ (0= BYTET S (ut B)ldw (4.29a)
1 - 2"l 2/ 18T :

H
]

oo}

IX = 1 OH.[5(0+ B)IE 5 (- B)ldw (4.29b)
S ttem i teT g :

*
Now, I1 and Il may be recognized as complex conjugates. Then

one can write

H
Il

1 P, + 30 (4.30a)

H
Il

1 P, - 30 (4.30b)

Eqg. (4.27a) for the mean square value of the response Xl(t)

now becomes

\ A jpt . -Jjpt _
— A .
= —Z; [ Plcospt + Q131npt ] (4.31)



or,

2
E{Xl(t)}
where

Ry
%
Similarly,
I,
*
I,
or
I,
*
1,
Eq. (4.27b)

Il
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A

Y R,cos (pt + @) (4.32)
_ 2 2 (3

(4.33)
= tan—'1 ( 9; )
P1

by defining
=/ H,(ju)H, [3 (u+p)]du (4.34a)
=/ H,(3w)H,[3 (0-p)1du (4.34b)
= P2 + jQ2 (4.35a)
- P2 - jQ2 (4.35b)

for the mean square value of the response Xz(t)

takes the form

E{xg(t)}

where

—%; chos(pt + @2) (4.36)
_ 2 2 3
(4.37)
= tan_l( 92 )

Py
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4.4.1 Study of the Receptance Product H(jw)H*[j(w+p)]

It may be seen from Egs. (4.27a) and (4.27b) that the
mean square values of the responses Xl(t) and x2(t) are
determined by the integrals Il and 12 of  the products of the
receptances and their corresponding complex conjugates given
in Egs. (4.28a) and (4.34a). For the case p = 0, when the
excitation is a stationary white noise process, these two
integrals can be evaluated analytically [2]. But for non-
stationary, i.e. p # 0, they are not integrable readily and
may be evaluated only by numerical procedures.

Since Hy (Jw)H, [3(w+p)] and H, (ju)H, [3 (w+p)] in

Egs. (4.28a) and (4.34a) are symmetrical with respect to the

axis w = -p/2, these two equations may be written as
it * :
I, = 2 f Hl(jw)Hl[j(w+P)]dUJ (4.38)
B
2
I,= 27 H2(jw)H;[j(w+p)]dw (4.39)
—%

Thus, Il and 12 are equal to twice the area under the curve
obtained by plotting Hy (jw)H) [j (u+p)] and H, (ju)H, [3 (0+p) ]
respectively against w . Since Hl(jw)H;[j(w+p)] and
H2(jw)H;[j(w+P)] are complex functions, I, and I, will have
real and imaginary parts. Real part of I is given by the

area under the curve Re{H(jw)H*[j(w+p)]} against w. Similarly,

imaginary part of I is given by the area under the curve

Im{H(jw)H*[j(w+p)]}against W.
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The real and imaginary parts of the products

N . L N . L _ -
wanl(jw)Hl[j(w+p)] and wanz(jw)Hz[j(w+p)] for a two-degree
of-freedom linear system with a damping ratio cl=c2=0.2, mass
ratio m2/ml = 0.1, natural frequency ratio wnz/wnl=2.0, are
plotted against w/wnl in Fig. 4.7 (for p/wnl=0.l), Fig. 4.8
(for p/wnl=0.5), Fig. 4.9A(for.p/wnl=l.0), Fig. 4.10 (for
p/wnl=2.0), and Fig. 4.11 (for p/wnl=3.0). Data for these

curves are taken from Program 3 in Appendix.

From these five figures, it may be seen that for any

fixed value of p/wn , all the real and imaginary curves of

1
. * 3 . * . .
w;lHl(jw)Hl[j(w+p)] and w;le(jw)Hz[j(w+p)] tend asymptoti-

cally to zero when w/mn >>2.0, hence the integrals of Egs.

1
(4.38) and (4.39) converge rapidly. It is also noted that for

any given value p/w the shapes of the curves representing

nl’
the imaginary and real parts of w;lHl(jw)HI[j(w+p)] are
similar to those representing the imaginary and real parts
of w;le(jw)H;[j(w+P)], but the absolute values for
w;lHl(jw)Hz[j(@+P)] are numerically smaller compared to those
for w;le(jw)H;[j(w+p)]. Therefore, for a two-degree-of- .
freedom system with §l=c2=0.2, m2/ml=0.l, wnz/wnl=2.0 and for
any value of p/wnl, the amplitude of the mean square response
Xz(t) is greater than that for Xl(t) and the phase angles of
these two mean square values being approximately the same .

It may be also seen from these figures that the shapes

of the plots for real and imaginary parts of the two products

w;lﬂ(jw)HTj(w+p)] change with different values of frequency
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ratio p/wnl. The influence of this ratio p/wnl on the shapes
of the curves may be more easily seen if the quantities
w;lH(jw)H*[j(w+p)] are plotted vectorially. Figs. 4.12 and
4.13 present the family of vector plots of w;lHl(jw)H;[j(w+p)]
and w;lHZ(jw)H;[j(w+p)] respectively for the same system

with a damping ratio §l=§2=.2, mass ratio m2/ml=.l and
natural frequency ratio wnz/mnl=2.0. Similar vectorigl plots
were obtained by Roberts [3] when he considered one-degree-

of-freedom linear systems subjected to nonstationary forces.

From Fig.4.12, it may be seen for different values
*
. i . .
of p/wnl, the vectorla; plots of manl(jw)Hl[j(m+P)] have
different shapes. When p/wnl < 1.5, the curves lie above the

real axis, whereas for p/wn > 1.5, most of them lie below

1

the real axis. As expected, for large values of p/mn >>2.0,

1
the real and imaginary parts of the product w;lH(jw)HI[j(w+p)]
approach the origin passing through the first quadrant of the
complex plane. Further, the curve starts in the first quadrant
for p/wnl <1.5, in the third quadrant when p/wnl = 2.0, and
in the fourth quadrant when p/w _; > 2.5.

Same remarks are valid for Fig.4.13, except that
here the magnetudes of the vector plots are greater than
those in Fig.4.1l. This means that the mean square values of

the response X2(t) are larger than those of Xl(t) for the

given system.
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4.4.2 Study of the Mean Square Values of the Responses

X, (t) and X, (t)

The mean square responses of Xl(t) and Xz(t) are

given in Egs. (4.32) and (4.36) as

E{Xi(t)} = 2 g cos (pt+¢

a1 l) (4.40)
2 _ A
E{Xz(t)} = —Z; chos(pt+®2) (4.41)
with R, = (P2 + 02)%
1 1 1
(4.42)
@l = tan—l(gi)
Py
_ 2 2,3
R2 = (P2 + Qz)
o (4.43)
_ -1 ,Q2
@2 = tan (EE)

where Pl,Ql and P2, Q2 are determined using Egs. (4.38) and

(4.39) as
Py + 30 = 2/ Hy(juw)H] [ (u+p)] (4.44)
B
2
P, + O, = 2 éHz(jw)H;[j(uﬁp)] (4.45)
2

* . .
Substituting for H(jw)H [j(pw+p)] the values computed in Section

4.4.1, the integrals of Egs. (4.44) and (4.45) may be evaluated
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numerically using Simpson's rule method. Once P and Q are
obtaingd, the mean square values of the responses Xl(t) and
X2(t) may be derived.

Figs. 4.14, 4.15, 4.16, and 4.17 show the variation
of amplitudes and phase angles of the mean square responses
of Xl(t) and Xz(t) with respect to p/wnl for different
values of damping ratio z. In all these cases, mass ratio
m2/m1=0.l, natural frequency ratio wnz/wnl=2.0, the excitation

Z(t) on mass m, is a nonstationary white noise with an auto-

1
correlation Rzz(tl,t2)= A cosptlé(tl—tz). Program 4 in Appen-
dix is used to obtain the numerical results.

From Fig. 4.14, it is noted that large amplitudes of

the mean square response of Xl(t) occur when p/wn =0 and

1
p/wnlzZ.O. The peaks are more pronounced when cl=c2§0.2; For
p/wnl>>3.0, all these amplitudes decrease asymptotically to
zero.

Similar characteristics are observed in Fig. 4.16
for the mean square amplitudes of X2(t).He;e,When damping
ratio C1=C2§0-l, the amplitudes slightly deviate to higher
values around the regions p/wnlzl.o and p/wnlc3.0; this dis-
crepancy may be due to the fact that the peaks are too narrow
in the plot w;le(jw)H;[j(w+p)] in Eq. (4.39) for very small
values of Cl and c2 and therefore the area under the curve
cannot be found exactly. For example, when cl=c2=0, the
quantities w;lHl(jw)H;[j(w+p)] and w;le(jw)H;[j(w+p) vs w/wnl

will have discontinuity at their poles and so accurate
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values for P Q1 and P in Egs. (4.44) and (4.45) are

1’ 2" D
difficult to obtain through Simpson's numerical procedure.

In Fig. 4.15, all the phase angles of the mean square
responses of Xl(t) start at 0, pass approximatly through n/2
when p/wnl=l.0 and increase with p/wnl values. For small
values of Cl and ;2, the curves are not stable as can be seen
from the figure. The reason may be due to non accurate eva-

luation of the integrals in Eq. (4.44) as explained earlier.

Fig. 4.17 shows the variation of phase angle of
E{Xé(t)} against p/wnl. This has same characteristics as Fig.
4.15 but there is no common phase angle for p/wnl=l.0. As

expected, from these four figures, it can be seen that for

the same fregquency ratio p/w amplitudes of E{Xg(t)} are

nl’
larger than those of E{Xi(t)} , but both of them exhibit

approximately the same phase angle.

It may be interesting to know how the mean square
responses of the system vary with respect to the natural
frequency ratio wn2/wnl for a given frequency p in the auto-
correlation function of Z(t). For this, the ratio p/wnl is
fixed at 0.5 and Figs. 4.18, 4.19, 4.20, 4.21 showing the
variation of amplitudes and phases of E{Xi(t)} and E{Xg(t)}
against the natural frequency ratio wnz/wnl are plotted.
Damping ratio of the system is Cl=c2=0.2. Similar plots
for amplitudes and phase angles of the mean square responses
are shown in Figs. 4.22, 4.23, 4.24, and 4.25 for the same

system with frequency ratio p/wnl=l.0. Data for these curves
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is obtained using Program 5 in Appendix.

1
2

In Fig. 4.18, the curves of (Pi+Qi) in Eq. (4.42)
giving the amplitude of E{Xi(tn as function of natural

frequency ratio wnz/wn are shown for different values of

1
mass ratio m2/ml. All these curves start approximately at the

same point when wnz/w = 0, decrease to a minimum when

nl
1.0 <wn2/wnl < 2.0, and then increase asymptotically to a
certain value depending on the mass ratio mz/ml. The ampli-
tude of E{Xi(t)} decreases with an increase in mass ratio
for a given value of wnz/wnl‘

Similar characteristics are exhibited in Fig. 4.20
where the amplitude of E{Xs(t)} is plotted against wnz/wnl
for different mass ratio m2/ml. Here the amplitude increases
to a maximum in the region 1.0 < wnZ/wnl < 2.0 and then
decreases asymptotically to a constant value. Therefore it
is interesting to note here that in the interval 1.0 < wn2/wnl
< 2.0,the amplitude of E{Xé(t)} is a maximum, whereas the
amplitude of E{Xi(t)} is a minimum. Hence, in this interval
the mass m, may be used as an absorber for the system to coun-
teract large amplitudes of m, .

The phase angles of E{Xi(t)} are shown in Fig. 4.19
for excitation frequency p/wnl=0.5. All the curves start
approximately at the same value when wnz/wnl = (0, decrease
to a minimum when wnz/wnl approaches 1.0, and then increase

asymptotically to a maximum value at wnz/wnl ~ 3.0 depending

on the mass ratio mz/ml. It is also noted that the phase
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angles decrease with increasing of mass ratio around the region
wn2/wnl < 1.0, and increase with an increase in mz/ml for

wnZ/wnl > 1.0.

Similarly, Fig. 4.21 showns the phase angle of
2 . .
E{Xz(t)} as function of wn2/mnl for different values of m2/ml.
These curves also start at the same value when wnz/wnl = 0,
reach maximum values at wnz/wnl

and then asymptotically decrease to constant values for

= 0.2 and at wnz/mnl : l.O,'

large values of wn2/wnl' In the region wnz/wnl ~ 1.0, the
phase angles increase with a decrease in the mass ratio,
whereas the opposite effect is resulted in the region
wnz/wnl > 2.0. It is also noted from these two figures that
for any given frequency ratio p/wnl, the phase angles of
E{X;(t)} for the considered system are always larger than

those of E{xi(t)}.

For the sake of completeness, Figs. 4.22, 4.23, 4.24,
and 4.25 are given when p/wnl = 1.0. The behaviour of the

system essentially remains the same as before.
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Fig. 4.1. Two-Degree-Of-Freedom System

Fig. 4.2. Planes p = W -, and p = -(wl—wz) where

w, ,w i
Szz( 17 2) is nonzero

Strength Function of Excitation = Acosptl
Governing Equation : (4.19)
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N
3
—|
3 .
~ | <
N
N
107]

Fig. 4.3. Generalized Power Spectral Density of Excitation Z(t)

Strength Function of Excitation = Acospty
Governing Equation : (4.13)
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.001
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Fig. 4.4.

1.0 2.0 3.0
~ w/mnl

Power Spectral Densities of Responses Xl(t) & X2(t)
Two-Degree-Of-Freedom System

Strength Function of Excitation = A
Governing Equation : (4.22)
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1 1.

1,0_ 2.0 3.0
w/wnl

Power Spectral Densities of Responses Xl(t) & X2(t)
Two-Degree-0Of-Freedom Systém

Strength Function of Excitation = A
Governing Equation : (4.22)
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m2/ml=.l
=2.0

— AN
10.} 7\ . n2" "nl

.01} ‘ | ' ‘ .

! ]
0 1.0 2.0
w/wnl A

Fig. 4.6. Power Spectral Densities of Responses Xl(t) & Xz(t)

“Two-Degree-~-0Of-Freedom System
Strength Function of Excitation = A
- Governing Equation : (4.22)




=92~

! 1 l { I l I
9.r C1=C2=-2 —
m2/ml=.l
wnz/wnl=2.0
s.L : p/wnl=.l |
. * .
o B Re{Hz(Jw)Hz[j(UH'P)]} -
6 e N . * -t
. Re{Hl(Jw)Hl[J(w+P)]}
-~ -
£ !
3 }
- * . -
ol Im{H, (ju) H, [3 (w+p) 1} !
* .
o
3 ! fo
Sk U ntE, GO ET 1 () 1) ! \
=3 . i m{H; (jw) Hy [ (wtp | \ -
+ o M \
3 | \
>
1 l
R ‘
3.F (Dl \ -
A !
wil
o)
2.F 0 -
.,_q'
4
l. ! -
!
! N
-~
| = ~ \\-..
0 . I _______*___-..r-’ﬂ' \\\
-005 02 .4 06 08 loO 1-2 l.4
w/w

Fig. 4.7. Real and Imaginary Parts of Products w H(Jw)HﬁJ(w+p)]

Two-Degree-Of-Freedom System
Strength Function of Excitation = Acosptl, pP=. 1w

Governing Equations : (4.38) & (4.39) nl
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T 1 T r
5. B C1=C2—02 p
m2/ml 1
) : wnz/wn1=2.0
4. F ! /7 \ /,'\‘ p/u)nl=.5. N
B / \\ / \ '
S_ [ o/ \
: ! A
3-F &' ]'I’,\\ \ —Im{Hz(Jw)H;[J(Mp)]} .
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2. % S~ /Im{Hl<3w)Hl[J<w+p)1}
\
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-2.f Re{H, (w)Hy [3 (w+p) 1} -
-3k ge{Hl(jw)H;[j(mp)]}_
{ I | |
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&

. . v %
Fig. 4.8. Real and Imaginary Parts of Products w;lH(jw)H[j(w+p)]

Two-Degree-0Of-Freedom System
Strength Function of Excitation = Acosptl; p=.5wn1
Governing Egquations : (4.38) & (4.39)
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Im{f{30) B [3 (wtp) 1} £1=C,=.2
. . ‘ m2/ml=.l i
* w 2/wnl=2.0
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- 1 1 p/w_1=1.0
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o
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~
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Axis of Symmetry

Re{HZ(jw)H; [J(w+p) 1}

-3.F . -
*
Re{ﬁﬁjw)Hl[j(w+p)]}
1 ] 1 1
-1.0 -.5 0 1.0 2.0

| w/wnl
Fig. 4.9. Real and Imaginary Parts of Products wng(jw)H*[j(m+p)}

Two-Degree—-Of-Freedom System
Strength Function of Excitation = Acosptl PP,
Governing Equations : (4.38) & (4.39)
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Im{Hl (jw) H; [ (w+p) 1}

wh HGO) ' 13 (wrp) ]

y

Im{Hz(jw)H;[j(w+p)]}
———Re{Hl(jw)H;[j(w+P)]}

. * .
Re{Hz(Jw)Hz[j(w+P)]}

1 ! ]
-1.0 0o . , ‘ 1.0
w/wnl

. * ‘
Fig. 4.10.Real and Imaginary Parts of Products w;lH(jw)H [j(wt+p)]
Two-Degree-Of-Freedom System | (
Strength Function of Excitation = Acosptl; p=2mn

Governing Equations : (4.38) & (4.39) 1
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T l |
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p/wnl=3.0
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] Re{H, (jw)H, [ (w+p)]1} 7
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.
Fig.4.11.Real and Imaginary Parts of Products w;lH(jw)H [§ (wt+p) ]
Two-Degree-Of-Freedom System

Strength Function of Excitation = Acosptl; p=3wﬁl
Governing Equations : (4.38) & (4.39)
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. *
Fig. 4.12. Vectorial Plots of w;lHl(jw)Hl[j(u&p)]

Two-Degree-0Of-Freedom System
Strength Function of Excitation = Acosptl
Governing Equation : (4.38)
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*
Fig. 4.13. Vectorial Plots of w;le(jm)Hz[j(w+P)]

Two-Degree-Of-Freedom System
Strength Function of Excitation = Acosptl
Governing Equation : (4.39)
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wnz/wnl=2.0

Fig.

4.14.

1.0 2.0 . . 3.0
p/w_ ¢

Amplitude of E{Xi(t)} against p/w_;
Two-Degree-Of-Freedom System

Strength Function of Excitation = Acosptl
Governing Equation : (4.40)
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T T T
§%__ m2/ml=.l |
wnz/wnl=2.0
C1=C2=-1
Cl=;2=.2—\
T /,! o
cl=c2=l.0
iy = .
2
0k 1 ' ] 1
0 1.0 2.0 3.0
o p/w,
Fig. 4.15. Phase Angle of E{Xi(t)} against p/0_

Two-Degree-0Of-Freedom System
Strength Function of Excitation = Acosptl
Governing Equation : (4.40)




18.

16.

= =
N =

(4m/A)Amplitude of E{X%(t)}
'_l
(=]

-101-

I

C1=C2=l.0
1

m2/m1=.1

n

W 2/wnl=2.

0

1.0

p/wnl

Amplitude of E{X%(t)} against p/u _;

2.0

Two-Degree-Of-Freedom System
Strength Function of Excitation = Acosptl

Governing Equation

(4.41)
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o L m2/m1=.l R
/w_.=2.0
“n2/%n1
3m C.=0.=.3
=S| 1772 __\\\\\ -

Phase Angle ¢, of E{Xg(t)}

cl=;2=1.0

0 1.0 2.0 3.0
p/w_q

Fig. 4.17. Phase Angle of E{X%(t)} against p/w_; -

Two-Degree-0f-Freedom Sysﬁem
Strength Function of Excitation = Acospt

-- Governing Equation : (4.41) 1
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1 1 L

0 1.0 2.0 3.0
i wnz/wnl
. . 2 .
Fig. 4.18. Amplitude of E{Xl(t)} against wnZ/wnl
Two-Degree-Of-Freedom System

Strength Function of Excitation = Acosptl; pP=.5w 1
Governing Equation : (4.40) : n
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Fig. 4.19. Phase Aggl? of E{Xl(t)} against w_,/w_4
Two—Degree—Of—Freedom System

Strength Function of Excitation = Acosptl; p=.5wnl
Governing Equation : (4.40)
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Fig.4.20. Amplitude of E{Xz(t)} against wnz/wnl

Two-Degree-Of-Freedom System

Strength Function Of Excitation = Acosptl;-p=.5wnl
Governing Equation : (4.41)
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p/wnl=.5

mz/m1=u

1 | ] |

E Flv E N E
™

Phase angle ¢, of E{X%(t)}

Fig. 4.21. Phase Angle of E{Xg(t)} against wnz/wnl

Two-Degree-Of-Freedom System
Strength Function of Excitation = Acospt

17 p=.5wn
Governing Equation : (4.41)
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Fig. 4.22. Amplitude of E{Xi(t)} against wnz/w

Two-Degree-Of-Freedom System

Strength Function of Excitztion = Acosptl; pP=w 4

Governing Equation : (4.40)
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Fig. 4.23. Phase Angle of E{Xi(t)} against wnz/wnl
Two-Degree-Of-Freedom System
Strength Function of Excitation = Acosptl; p=w_

- Governing Equation : (4.40)
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Fig. 4.24. Amplitude of_E{Xz(t)} against wnZ/?nl

Two-Degree-Of-Freedom System °
Strength Function of Excitation = Acosptl7 p=w. 4
Governing Equation : (4.41) _ i
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Governing Equation : (4.41) ; ’
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CHAPTER 5

CONCLUSIONS



-112-

A detailed investigation on the response of linear

mechanical systems subjected to nonstationary type of random

excitations is presented, The external forces are modeled in

terms of a modulating part
with a zero mean. From the
excitation and the impulse

the system, the statistics

and a white noise stationary part
autocorrelation of the input
or frequency response function of

of the response are evaluated. Analy-

tical results are described in the form of graphs showing

the mean square responses and their variations with respect

to the basic parameters of
From the knowledge

stationary excitation with

the system.
of the system response under non-

different strength functions I(tl)'

it is found that the time variation of the mean square .

response depends directly on the functional nature of the

strength I(tl). When I(tl)

is harmonic, the maximum mean

square amplitude E{X? (t)} varies rapidly with the

frequency ratio depending on the amount of damping. If I(tl)

is an exponentially decaying function of time, maximum E{X?(t)}

changes monotonically to large values depending on the value

of the decay factor.

For one-degree-of-freedom systems, the mean square

response is very sensitive

to the damping of the system as

well as to the frequency ratio p' and the decay parameter o. As

expected, for low damping values, peak responses occur at one

or two "resonance regions"

, defined by p=~0 and p=2wn, where

p is the frequency of the strength function I(tl). For expo-
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nentially decaying strength function, the maximum mean square
response increases with the value of the decay parameter o and
is asymptotic at o= 2cwn. Under linearly wvarying strength
function, the value of E{X?(t)} has a maximum value at t=0

and decreases rapidly as time increases. The variationsof the
responses with regard to parameters z,a, p/wn etc... are
clearly indicated and the "regions of resonance" in each case
are identified in Chapter 3.

Similar characteristics for maximum mean square values
of the response were obtained for the case of two-degree-of-
freedom systems. Here, the system is sensitive not only to
the type of parameters mentioned above, but also to the ratio
of the massesand the two natural frequencies of the system.
Information on the variation of the phase angle is also pro-
vided at the end of Chapter 4. It is found that the second.
mass of the two-degree-of-freedom system acts as an absorber
to the main system. In all these above cases, the results
were checked by setting the strength function to a constant
and comparing the results with the previous investigations
[2] on the response of linear systems to stationary excita-
tions.

The importance of the result presented in this thesis
can be related to the fact that, to a large extent, random
excitations on mechanical systems are of nonstationary type.
The reason for this is, in most of the systems, the exter-

nal forces include random disturbances in addition to dyna-
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mically fluctuating deterministic forces. For example, mecha-
nical systems such as connecting rods,suspensions, gear trains,
etc... do experience random excitations, over and above
dynamic forces, that change rapidly in magnitude during
specific operating time intervals. Another justification for
nonstationary excitation arises from the consideration that
any measured excitation process may not be long enough to
provide statistical properties independent of time. On such
occasions, a type of analysis presented in this thesis must

be used in evaluating responses.

The following suggestions are made as future exten-
sion to the investigation presented here.

(i) Experimental verifications of the results must
be made on the real mechanical system even though simulation
of nonstationary forces and measurements of responses in such
cases are very difficult.

(ii) The present analysis may be extended to many-
degree-of-freedom systems. Here, the mathematical calcula-
tions become cumbersome and physical visualization of results
is difficult.

(iii) The random component of the excitation is
assumed as a white noise, stationary process in this investi-
gation. For some cases, it may be necessary to consider this
part as a correlated process [11,12], in which case, the
nonstationary forces will not have a delta-correlation.

(iv) Investigations to include nonlinear systems are




-115-

necessary. In this case, the technique of Fokker-Planck is

to be employed which, in turn, may be difficult to solve.



1o0.

11.

12.
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APPENDIX

FORTRAN COMPUTER PROGRAMS

FOR NUMERICAL RESULTS




ﬂt:oUcDOAN -118- CPU 6600 FTN V3,0-P296 0OPT=] 73703/22ﬂ

PROGRAM OUCDOANCINPUT,OUTPUT)

PROGRAM ©,A

PROGRAM TO EVALUATE THE POWER SPECTRAL DENSITY OF THE INPUT Z(T) h

WHEN ITS AUTCCORRELATION 1S L

AxEXP(=ALPHA*P 2T I )xCUS(P*TI)J*DELTA(TI=T2)

AL=ALPHA

BsP*T

AsALPHA*P*T1

SZZ=POWER SPECTRAL DENSITY OF THE INPUT Z(T)

X=(OMEGA{~-OMEGA2) *T

AL=0,0

B=¢,0

PRINT 4,AL,B

FORMAT(18X,9H ALPHA = ,F5,3,7H P*T 3 ,F5,3)

AsAL#B |

CT3=EXP(=A) . o

X==2",5 \
|
|
|
|

ﬁﬁnﬂﬁ'\nﬁﬁ

SN

{ CTi=s(A**x2)+(B=X)*x2 - |
CT23(A#*2)+ (B+X) %22 i ‘ |
CT4=s(H=X)*SIN(B=X)=-A%xCOS(B=X) |
CTS=(B+X)*SIN(B+X)=a*COS(B+X) . |
CTe=(A+CT3«CT4)/CT! o
CT7=(A+CT3*CTS)/CT2 1
CZZ=CT6+4CT7 : ) |

_ PRINT 3,X,C2Z 1

3 FORMAT(19X,2F10@,5)

XsX+1,2
IF(X=202,3)1,1,2 i

7 BEB¥U,D
IF(B-2,3)5,5,6

6 AL=AL+0,1
IF(A-1,2)7,7,8 -

8 sToP o |
END .

GCrFORCE WITTTAMS ITNTVER QITV r()rI



ll’ﬁUfDUAN T _119- CDC 6680 FIN V3,0~P296 UPT={ 73703717

PROGRAM DUCDOAN(CINPUT,QUTPUT)
PROGRAM 3.8
PROGRAM 10 EVALUATE THE POWER SPECTRAL DENSITY OF THE INPUT Z(T)
KHEN ITS AUTOCORRELATION IS
A*EXP(=ALPHA=TI)*DELTA(TI=-T2)
AzALPHA®T .
CZZ=POWER SPECTRAL DENSITY OF Z(T)
X=s(OMEGA{~OMEGA2)«T
AzQ,0
PRINT 6,A
FORMAT (12X, 11{H ALPHA*T = ,F5,2)
CT4=EXP (=A)
Xs=20,0
{ CT1=1,0/(A*x2+4X*#%2)
CT2=A*COS(X)=X*SIN(X) -
CT3=A=CT4+CT2 )
SZZ=sCT1*CT3 .
PRINT 3,Xx,S22 =
3 FORMAT(17X,2F18,5) »
X=x+1,0
IF(X-21,8)t,1,2
2 AtA+2,5
IF(A=3,0874,4,5
5 STQP
END

s A

YO CY Ty €

[« 29 -3

N—

CON



lr’BUCDOAN _120- CDC 6600 FTN V3,0-P296 OPT=1 7370371,

TOO

SO

PROGRAM DUCDOAN (INPUT»OQUTP!IT)
PROGRAM 0.C
PROGRAM TO EVALUATE THE POWER GPECTRAL DENSITY OF THE INPUT Z(T)
AUTOCORRELATION IS
A (1=-T1/7T)*DELTA(T1-T2)
SZ7=POWER SPECTRAL DENSITY OF THE INPUT Z(T)
X=(OMEGA1-0OMEGA2) #T
A=0,1
PRINT 6.4
FOPMAT (10Xe14H CONSTANT A = +FS5,2)

x='20 .5
CTl=1.0/7tAs(X%22))
CT2=A#X#SIN(X)
CT3=1.0-CO0S(X)=X&#SIN(X)
CT4=CT2+CT3
SZ27=CT1#CT4

PRINT 3+XeS72Z )

FORMAT (10X52F10.5) .
X=X+1.0 -
IF(X=20.0)10192

A=A+0.1 ’

IF(A=-1,0)4%9495

STOP
END

'GLEORGE WILLIAMS UNIVERSITY %) | CONjPi

{ v‘%
.
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| PUCDOAN

CDC 66Q@ FTN V3,0=P296 OPT=1

72/87/:

PROGRAM DUCDOANCINPUT,QUTPUT)
PROGRAM 1
ONE~DEGREE=~OF-FREEDOM SYSTEM

YOO

Z = DAMPING RATIO ZETA
AL ALPHA

YOO OO

CAEXP (=ALPHA*P#T1)+COS(P*T1)*DELTA(T1=T2)

P = P/NATURAL FREQUENCY OF SYSTEM
XS = AMPLITUDE OF MEAN SQUARE VALUE OF THE OUTPUT X(T)
PH = PHASE ANGLE OF MEAN SQUARE YALUE OF THE QUTPUT X(T)

PROGRAM TO COMPUTFE MEAN SQUARE VALUE OF OUTPUT X(T) WHEN
AUTGCORRELATION OF INPUT Z(T) IS IN THE FORM =

 AL=0,0
1¢ 220,05
7 PRINT 1,AL,Z

Pz@a,d
5 XS132,0%((1.0=Z%+2)x+03,5)

1 FORMAT (5X,9H ALPHA ® ,F5,2,8H ZETA = ,F5,2)

 XS88=2,3+«7=AL*P
XS52=XS8#*%2

- XS3=(XS2+P*#2) +XS1

- XS4=P#(XS2+P*%2=XSi%+2)
XS55X524(XS1=P)**2
XS56=XS2+(XS1+P) w2

XS7=XS1#X55+XS6
! X39=XS8*#(XS2+XS1%#22+Pa»2)
X85z (P/XS3)=(XS4/%XS7).
XSC=(XS8/XS3)=(XS9/XS7)
KS=((ASS*#2)+(XSCx22))»*2,5
TPH=XSS/XSC

T PHI=ATAN{TPH)
PH=(183,0/3,1416)+PH1
IF(PHY2,3,3

2 PH=18¢,0+PH

3 PH=aPH
PRINT 4,P,XS,PH

4 FORMAT (10X,3F15,5)
PP+ a1
IF(P=5,2)5,5,6

6 2=Z+93,1
IF(Z~-1,28)7,7,8

8 AL=AL+3d,5

- IF(AL=-1,9)10,10,9
9 STOP
EMD

ORGE WILLIAMS UNIVERSITY

mi?&

COM
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~DICDOAN _129-

¢DC 6609 FTN V3,0=~P296 0OPT=1 73/03/26,

PROGRAM DUCDOAN(CINPUT,QUTPUT)
PROGRAM 1,A
ONE~DEGREE-QOF=FREEDO™ SYSTEMS
PROGRAM T0O EVALUATE THE VALUE OF P WHERE AMPLITUDE OF THE MHEAN
SGUARE VALUE OF X(T) I5 MAXIMUN,
NEWTON NUMERICAL METHOD IS USED TO SOLVE FOR THE DERIVATIVE
OF THE MAX, AMPLITUDE OF THE MEAN SQUARE VALUE OF X(T)
AUTOCORRELATION OF IsxPUT Z(T) IS =
AYEXP (~ALPHA®P*T{)*COS(P*T1)*DELTA(TI=-T2)
Z=sDAMPING RATIO ZETA
AL=ALPHA
P=P/NATURAL FREQUENCY QOF THE SYSTEM
XS=AMPLITUDE OF THE XEAN SQUARE VALUE OF X(T)
DXS=DERIVATIVE OF XS
DDOXC=SECOND DERIVATIVE OF XS . ‘ .
AL=2,2
20,35
PRINT 1,AL,Z
FORMAT(5X,9H ALPHA = ,F5,2,8H ZETA = ,F5,2)
P=1,6
XS122,0%((1.0=Z*%2)%%3,5)
XS852,0%7Z~AL*P
— BsXSB#*2+P#22

CT7=2,0%#XS8~AL

DB=(2,0+P)=CT7

CT1=(XSB8*#%2)+(P**2)=(XS1%*#2)

C=P»CT1

DC=sCT1+(P*DB)

CT2=(XSB*x2)+ (XS1=P)*»2

CT3=(XS8#42)+ (XS1+P) %2
g D=CT2+CT3 .
‘ CT42=~(CT7+42,0%(XS1=P))+CT3
CT5=(=CT7+42,0%(XxS1+P))aCT2
DD=CT44+CTS
E=XS8
DEs=AL
CTE63(XSB**2)+ (P**2)+{XS1**2)
F=xXS8*CT6
DF=(=AL*CT6)+XS8*(2,8%P=CT7)
AP=(P/B)=(C/D)
AU=(E/B)=(F /D)
CT8s3(B=P*DB)/(B*¥%2)
CT9=s(D*»DC=C#CD)/(Dxx2)
DAP=CT8=CT9
CT12=(B+DE-ExDB)/ (B2+2)
CT11=(D*DF~F+DD)/ (D2a%2)

CTIZ=CTI1
DXS=(AP*DAP)+ (AQ+*DAQ)
XP3(1.,A/XS1)*AP
XQ=(1,2/XS1)*AQ
XS2(XPax2+XQax2)*+R .5
ADXS=ABS(DXS)
IFTADXS=a, 000 Jm1) 4,4, 11
11 DDBs2, 3% (AL x%2+1,0)
DDC=4 , 0% (P=(XSE*AL))+2,0+P¥(AL+22+1 @)

\ hﬁhhﬁ?ﬁhﬁhﬁ(\h(‘(\
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PUCDOAN ) -123- [DC 60608@ FIN V3,A=P296 OPT=1 73/03/26

DDD1=8,0* (=XS8*AL=(XS{~P))
DDD2=XSBx AL+ (XS51+P)
COD3=2,0% (ALx+42+1,@)
PODAZXSB*+2+ (XS1+P)*%D
DOD=(DLRDLI+DDN2)+(DDD3#DDD4E)
DDF la=d4 ,8%wAL* (P=XS8xAL)
DDF2=2,0* (AL +*2+1,9)%XS8B
DDF=DDF1+DDF2
D2PI=((~P*R+DDB)Y=2,0«DE* (B=P+DB))/(B**3)
D2P2=(D* (D*DDC~CADDD) =2 e G*DD* (D*DC=CxDD))/(D%x3)
D2P=D2P1=D2P2
D2Q1=((~B*EaANOB)=2,R+DR* (B*DE~E*DB) )/ (Bx*3)
D202 (Dx (D*DEF=F*DDD) =2, 0*DD*x (D*DF=F*DD) )/ (Dxx3)
L2Q=D201-D2Q2
D2XS=(DAP**2)+ (AP+D2P)+ (DAUx*2) + (ALGxD2Q)
PRINT 2,P,DXS5,XS,D2XS

2 FORMAT(18X,154 P/NAT, FRG, = ,F19,9,15H D(MSA,X(T)) = ,F19,9,12H M
180, Xx(T) = ,F143,5,8H D2XS = ,F18,5)
P=P=(DXS/D2XS)
GO 10 3

4 PRINT 2,P,DXS,%x3,D2XS
I=7+0,.1
IF(Z2-1,0)5,5,8

8 STOP
END

—

‘OR CF WITITAMS ITNTITVERSITY CO}
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ODUCDOAN CDC 6608 FTN V3,0-P296 OPT={ 72/¢7/

PROGRAM DUCDOANCINPUT,OUTPUT)

PFRUGKAT

ONE=-DEGREE~-QOF-FREELOM SYSTEM

PROGKAIl TQO COMPUTE THE MEAN SRUARE VALUE OF THE OUTPUT X(T) AT
T3@ WHEN THE AUTOCORRELATION OF THE INPUT Z(T) HAS THE FORM =
A«EXP(~ALPHA*TY)DELTA(T1=T2)

2=DAMPING RATIO .

nnnnnA:

—CAL=ALPHA/NATURAL FREQUENCY
c XSG = MEAMN SQUARE VALUE OF X(T)
2=0,.45
4 PRINT 6,2
6 FORMAT(192X,5H Z = ,F5.2)
AL=08.,8
T 2 AS2,.0x7-AL
B=(AL*+22)~(4,2+2+AL)+4,0
XMSQ=2,8/(A%B) _
PRINT 1,AL,XMSQ
1 FORMAT(19X,2F11,5)
AL=AL+2,12
T IF(AL=5.2)2,2,3
: 3 2=Z+9,95
, 1IF(Z2-1,.9)4,4,5
5 STOP
END

-

N——

LIORGE WILLIAMS UNIVERSITY COM



DUCDOAN ~125=  ¢pC 6600 FTN V3.0-P296 OPT=1 73,0228

PROGRA! DUCDOAN (INPUT,LQUTPUT)

c PROGRAM 24A
¢ ONE-DEGREE-OF=FREEDOM SYSTEM
C PROGRAM TO COMPUTE THE MEAN SQUARE VALUE OF THE OUTPUT X(T)
c IN FUNCTION OF T1/T WHEN THE AUTOCOKRELATION OF THE INPUT Z(T)
c HAS THE FORM =
c A%(1.0-T1/T)#DELTA(TI=-T2)
c Z=DAMPING rATIO
c CA=CONSTANT K
c XMSQ=MEAN SQUARE VALUE OF X(T)
CA=0.5
2=0,05

PRIMNT 69CAsZ
FORMAT (SXe5H K = 9F542+5H Z = #sFS5.2)
CT1=CA+#(],0+2.0% (Z%%2))
CT2=4.0%2%3,1416
CT=1.0+{(CT1/CT2)
CT3=1.0/(4,0%2Z)
x=0,0
2 XMSH=CT3%(CT=(CA+X))
PRINT 1sXsxXMSQ
1 FORMAT (10X+8H T1/T = 4F10.5+38H XMSQ = #F10.5)
X=X+ e5
IF{(x=5,0)2+2+3
3 Z=Z‘*0.05
IF(Z-1.0)494+¢5
5 CA=CA+n.5

o b~

IF(CA=2.0)7+79+8
8 STOP
END

‘ORGE WILLIAMS UNIVERSITY COMI



DUCDOAN . -126- <CDU 66090 FIN V3,0=P296 OPT=] 727077
PROGRAM <UCDOANCINPUT,QUTPUT)
PROGRAM 3

T#0=DEGREE ~OF-FRFEDOM SYSTEM

PROGRAM COMPUTES THE PRODUCTS OF RECEPTANCE FUNCTIONS OF THE

SYSTEFN = AI{0) *AL(UsP) ARD AZTET#M2(UFPT WHEN ONCY ONE—OF —TWO

INPUTS Zi(T) AND 72(T) EXITS, AND HAS THE FORM =

AxCOS(P+T1)*DELTA(T1~T72)

Pz=p/NATURAL FREQUENCY (OMEGA 1

PH12DAMPING RATIO ZETA 1

PH2=DAMPING RATIO ZETA 2

UM=MASS RATIO M2/M1

OHM2=NATURAL FREQUENCY 2/NATURAL FREQUENCY |

OM=IMPUT FREQUENCY/NATURAL FREQUENCY 1

HiRE=RFAL PART OF RFCEPTANCE Hi(U), ONLY EXCITATION Z2(T)

H1IM=IMAGINARY PART OF RECEPTANCE Hi1(U), OHLY EXCITATION Z2(T)

HPiRE=REAL PART OF RECEPTANCE Hi(U+P), ONLY EXCITATION Z2(T)

HP{IM=I4YAGINARY FART OF RECEPTANCE Hi(U+P), ONLY EXCITATION Z2(T)Y

HHIRE=REAL PART OF Hi(U)*Hi(U+P), ONLY EXCITATION Z2(T) _ )

Hifl IM=IMAGINARY PART OF H1I(U)*HL(U+P), ONLY EXCITATION Z2(T)
HH2RE=REAL PART OF K2(U)*H2(U+P), ONLY EXCITATION Z2(T)
HH2IM=IMAGINARY PART OF H2(U)=*H2(U+P), ONLY EXCITATION Z2(T) )
MiRE2=REAL PART OF RECEPTANCE H1(U), ONLY EXCITATION Z1(T)

T HIIM2=IMAGINARY PART 0F RECEPTANCE Hi(U), ONLY EXCITATION ZI(T)
HP{RE2=RLAL PART OF RECEPTANCE Hi(U+P), ONLY EXCITATION ZIi(T)
HP1IM2=IMAGINARY PART OF RECEPTANCE Hi(U+P), ONLY EXCITATION Z1(T)
HH{RE2=REAL PART OF Fh{(U)*H1(U+P), ONLY EXCITATION Z1(T)
HH1IM2=TI4%AGINARY PART OF Hi(U)*H{(U+P), ONLY EXCITATION Z1(T)
HH2RE2=REAL PART OF H2(U)*H2(U+P), ONLY EXCITATION 71(T)

T HH2IM2=T1MAGINARY PART oF“H2(U)¢H2(U+P), TONLY EXCITATIONTZIU(T)
P2p.3
PH1=3,2
PH2=03,2
uM=2,.1
OM2=2.0
6 PRINT 5,P 3
5 FORMAT(5X,4H P= ,F5,2)
¢ 2122, COHAPUTE Hi(U)+Hi(U+P)
0\'13"2.5 i
2 A1 A+(0N2x42) % (1,0+UM)+4 ,Z+PHI*PH2*0M2
B=0OM2* %2

TTTTTTTTCE2 A (PH{EPH2W (1, 2+:UMY *OM2)

D22, *PHI* (OMo*#2)+2, 04 PH2+(OM2

DEL1=(0Max4)=A»(UH242)+B

PEL2==Cx(IMax3)+ (D2OM)y

ADEL=(DEL 1 ##2)+ (CEL2+22)

Q1=UM* (0M2%#2)

Q2=2,0%UM*xPH2«0OM2+0N

HIRE=((R1#DEL1)Y+(R2+CEL2))/7ADEL

HiIM=C((Q2*DEL ) =(Q{+*DEL2))/ADEL

DELP1=(0U+P)*#wd=A+ ((OM+P)#%2)+8B

DELP2=«Cx ((ON+P)##3)+Da {OM+P)

ADELP=(DELP1##2)+(DELP2##2)

DP1zi1Ma (OM2w%2)

AP2=22, 8% M*PH2«NM2% (OM4+P)

HPIRE=((GPLI*DELP1)+(QP2+#DELP2))/ADELP

ﬁﬁ(ﬁﬁhﬁ]h(‘)hﬁﬁ"ﬂ\(w{-\(-
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HP11M=((QP2«RELP1)=(GP1*DELP2))/ADELP

HHi{RE= (H{RE*HPIRE)+ (H1TH*HP{IM)
HH1IM= (H1IV*HPIRE) ~(HIRE*AP{IM)

c 2130, COOPUTE H2(U)+HI(U4P)

PTET E3U e (T 3w a2) = (0723 7)
P222,Ma (Pi{] +UM«PHDP40MD) #0H

H2RE=((P1+«DEL{)+(F2+CELR2))/ADEL
H2IM=((P2+«DEL1)=(P1+DEL2))/ADEL
PP121a04UM* (OM2®¥*2) = ((OH+P) #%2)
PP2=2,0%(PHL1+UM*PH2x0M2) * (OM+P)
HP2RE= ((PP1#DELPL1)+(PP2+DELP2))/ADELP

HP21IM=((PP2+DELP1)~(PP1*DELP2))/ADELP

HH2RE = (H2RE#HP2RE)+ (H2IM*HP2IM)
hH2IM=z (H2TM*#HP2RE) = (H2RExHP2IM)

c 22=0, COMPUTE HI(U)+H1(U+P)
R1=(0M2+#%2) = (IM#*x D)

R2=2 ,AxPH2+0OM2«0OM

HIRE2=((R1«DEL1)+(R2*DEL2))/ADEL
H1IM2=((R2%DEL1)=(R1+DEL2))/ADEL

RPI=(0M2%x22)=((OM+P) %% 2)
RP2E2,P+PH2*nM2 4 (OM+P)

HP{RE2=((RP1*DELP1)+(RP2+DELP2))/ADELP

’ THPLIM2=((RP2«DELP{)~(RP1*DELP2))/ADELP

HHIRE2=(HIRE2+HPIRE2) + (H1IM2*HP1IM2)
HH1IM2=(H1IM2+#HPIRE2) = (HIRE2*HP1IM2)

c 72=2, COMPUTE H2(U)*H2(U+P)
S{=0M2%22
§$2=2,2%xPH2+«0M220M

~ H2REZ=((S!1+«JEL1)+(S2*pEL2))/ADEL
H2IM2=((S2+0EL1)=(S1*DEL2))/ADEL

SP1=0M22#?2
SP2z2,0«PH2*QM2* (0M+P)

HP2RE2=((SP1+DELP1)+(SP2+DELP2))/ADELP
HP2IM2=((SP2+DELP1)-(SP1xDELP2))/ADELP

HH2RE2S (H2RE2*HP2RE2) + (H2IM2+xHP2IM2Y

HH2IM22(H2IM2«HP2RE2) = (H2RE24HP2IM2)
PRINT {,0M,HHIRF,HH1IM,HH2RE,HH2IM,HHI1RE2,HH1IM2,HH2RE2, HH2IM2

1 FORMAT(12X,9F12,5)
OM=OM+2,01
IF(01=2.,2)2,2,3

3 P=P+t .93
IF(P=5,8)6,6,4
4 STOP
END

‘;;WORGE WILLIAMS UNIVERSITY
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PROGRAM DUCDOANCINPUT,OUTPUT)

72/08/9
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19
10

~ U=INPUT FREQUENCY/NATURAL FREQUENCY 1

PRINT 19,PH{

PROGRAM 4

TWO-DEGREE ~0OF=FREEDOM SYSTEM

PROGRAM COMPUTES THE MEAN SQUARE VALUE OF THE OUTPUT X1(T) AND
X2(T) IN FUNCTION OF P/NATURAL FREQUENCY {

WHEN THE AUTOCORRELATION OF THE INPUT Z1(T) HAS THE FORM =
_A%COS(P«T1)«DELTA(T{=T2)

AND THE INPUT Z2(T)=0

PsP/NATURAL FREQUENCY OMEGA 1

PH1=DAMPING FACTOR ZETA

PH2=DAMPING FACTOR ZETA 2

UM=MASS RATIO M2/M%

OM2=NATURAL FREQUENCY 2/NATURAL FREQUENCY 1§

H1RE2=REAL PART OF RECEPTANCE H1i(U)
H1IM2=1MAGINARY PART OF THE RECEPTANCE Hi(U)
HP{RE2=zREAL PART OF RECEPTANCE Hi(U+P)
HP{IM2=IMAGINARY PART OF RECEPTANCE H{(U+P)
H2RE2=REAL PART OF RECEPTANCE H2(U)

‘H2IM2=IMAGINARY PART OF RECEPTANCE H2(U+P)
HHYRE2=REAL PART OF H{(U)*H{(U+P)

MHH1IM2=2IMAGINARY PART OF Hi(U)*Hi(U+P)

HH2RE2=REAL PART OF H2(U)*H2(U+P)

HH2IM2=IMAGINARY PART OF H2(U.)*H2(U+P)

FOLLOWING SECTION IS SAME AS PROGRAM 3 TO COMPUTE THE

TTQUANTITIES Hi(U)#*HL(USP) AND H2(U)#H2(U+P) WHEN THE INPUT ZI(T) IS

NONSTATIONARY WHITE NOISE PROCESS WITH AUTOCORRELATION
RZ1Z1(T1,T72)=A*COS(P*T1)«DELTA(T1~T2) AND INPUT 22(T)=0
DIMENSION HHIRE2(751),HH1IM2(751),HH2RE2(751),HH2IM2(751)
PH1=3,1

PH2=0,1

FORMAT(18X,14H ZETA1=2ETA2=2 ,F5,2)
pP=0,.,8

UM=@,1

OM2=2,0

I=1

6
]

2

~———

c

PRINT 5,P

FORMAT(5X,4H P= ,F5, 2)

OHB-PIZ 14} ]
Anx.ﬂ+(0H2t-2)t(l.ﬂ+UM)*4.BtPH1*PH2~OM2
BaOM2wx2

C=22,0%(PH{+PH2+(1,8+UM)*0M2)

D=22,2+PHL#(OM2442)42,0+PH240M2
DELl (OMe+d4)=A&(OMaw2)48
DEL25«Ca(OMa%3)+(Dx0M)
ADEL=(DELL1#*2)+(DEL2*#2)
DELP13(OM+P)##4-Aa ((OM+P)*+2)+B
DELPZ--C*((0NOP)ti3)+Dﬁ(OW+P)

~ ADELP=(DELP14#2)+(DELP2##2)
2233, COMPUTE Hi(U)*Hi(U+P)
R1Z(0OM2%#%2)=(0lwx2)
R2=2,24#PH2+0M2«0M
HIRE2=((R1+DEL1)+(R2+DEL2))/ADEL
HiIM23((R2+DEL1)=(RI*DEL2))/ADEL
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RP1E(0M2#%2) = ( (OM+P) w#2)

RP2%2,0«PH2+0M2+ (09+P)

HPYRE2=((RP1+DELP{)+(RP2+DELP2))/ADELP

HP{IM2a ((RP2*DELP{)=(RP1#DELP2))/ADELP

HHYIM2(1)s(H{IM2«HP{RE2) - (HIREP«HP{IM2)

HHIRE2(1) s (HIRE2#HP1RER) + (H1IM2¥HP 1 IN2)
c 2223, COMPUTE H2(U)+H2(U+P)

- - S1=0M2%x2
$2=22,0«PH240M2+0M
H2RE2=((SleELl)*(SZ*DEL2))/ADEL
H2IM2=((S2+DEL1)~(St*DEL2))/ADEL
SP1=0M2+«#2
SP2=2,0%PH2+«0M2+ (OM+P)

—_—

HP2RE2=((SP1«DELP{}+ (SP2+DELP2))/ADELP
HP2IM2=((SP2+DELP1)=(SP1+DELP2))/ADELP
HH2IM2(I)=(H2IM2+KP2RE2)=(H2RE2*HP2IM2)
HH2RE2(1)=(H2RE2+HP2RE2)+ (H2IM2+HP2IM2)
OM=0M+02,81

Isl+t

IF(OM=5,2)2,2,3 -
THE FOLLOWING SECTION IS THE SIMPSON®S NUMERICAL METHOD 7O

c
c EVALUATE THE INTEGRALS OF Hi(U)*Hi(U+P) AND H2(U)*H2(U+P) WITH
o RESPECT TO U WHEN-U VARIES FROM «P/2 TO INFINI
c AX1 = AMPLITUDE OF OUPUT X1(T)
€ AX2 = AMPLITUDE OF OUTPUT X2(T)
c PX1 = PHASE OF OUTPUT X1(T)
U o PX2 = PHASE OF OQUTPUT X2(T)
3 SULRE223,0 .
SU1IM2=0,0
SU2RE229,8
L SU21M2:8,8
I=t

4 SUIRE2=SULRE2+(2,31/3,0)*(HHIRE2(I)+4 ,P*HHIRE2(I+1)+HHIRE2(I+2))
SULIM2=SULIM2+(A,081/3.2) % (HHLIMN2(I) 44, 0+xHRA1IM2(I+1)+HHIIM2(I+2))
SU2RE22SU2RE2+(A,21/3.C)*(HH2RE2(TI)+4,08«HH2RE2(I+1)+HH2RE2(1+2))
SU2IM2=SU2IM2+(0,081/3,0)* (HH2IM2(1)+4, ZtHH21M2(I+1)*HH21M2(I+2))
Ial+2
IF(I~745)4,4,7

7 PRINT 8,SU1RE2,SULIM2,SU2RE2,SU2IM2

8 FORMAT(10X,4F10,5)

AXi1=2, ﬂt((SU1RE?*t2+SU1IM2*i2)**Z 5)
TPX1=SU{IM2/SULRE2

_ PXIIsATAN(TPX1)
PX1=2(182,3/3,1416)*PX11
IF(PX1)13,14,14

{3 PX1=183,3+PX1

14 PX1=PX1
AX2%2,0+ ((SU2RE2++#2+4SU2IM2#22) #+0,5)
Tszssulez/squﬁz
PX22=ATAN(TPX2)
PX2=(180,3/3,1416)*pX22
IF(PX2)15,16,16

{5 PX2=183,84PX2

16 PX2=pPX2
PRINT 12,AX1,PX1,AX2,PX2
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12 FORMAT(50X,4F1@,5)
PeP+0,1
- IF(P=-4,83)10,10,11
11 PHi=PH1s+2,1
PH2=PH2+2,1
IF(PH{~1,8)17,17,18
18 _STOP
END
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" PROGRAM DUCDOAN ( INPUT » OUTPUT)

C PROGRAM S

C TWO-DEGREE ~OF-FREEDOM SYSTEM

C PROGRAM COMPUTES THE MEAN SQUARE VALUES OF THE OUTPUTS X1(T) AND

€ X2t INFUNCT IO OF NATHRALFREQUENCY 27NATURAL FREQUENCY 1
WHEN THE AUTOCORRELATION.OF THE INPUT Z1(T) IS OF THE FORM =
A#COS(P#T1)#*DELTA(T1-T2)

AND THE INPUT Z2(T)=0
P=P/NATURAL FREQUENCY OMEGA 1
PH1=DAMPING FACTOR ZETA 1

——= PH?2=DAMPING FACTOR ZETA 2-
UM=MASS RATIO M2/M1
OM2=NATURAL FREQUENCY 2/NATURAL FREQUENCY 1
U=INPUT FREQUENCY
OM=INPUT FREQUENCY/NATURAL FREQUENCY 1

~ HIRE2=REAL PART OF RECEPTANCE H1 (U)

~~~~~~ H1IM2=IMAGINARY PART OF "THE RECEPTANCE H1 (U) ‘ )
HP1RE2=REAL PART OF RECEPTANCE H1(U+P) , '
HP1IM2=IMAGINARY PART OF RECEPTANCE H1(U+P)

H2RE2=REAL PART OF RECEPTANCE H2(U)
H2IM2=IMAGINARY PART OF RECEPTANCE H2(U+P)

HH1RE2=REAL PART OF H] (U)#H] (U+P)
—"HH] IM2=IMAGINARY PART OF H1(U)*#*H1 (U+P)
HH2RE2=REAL PART OF H2(U)#H2(U+P)

HH2IM2=TMAGINARY PART OF H2(U)#H2(U+P)

THE FOLLOWING SECTION IS EXACTLY AS PROGRAM 3 TO COMPUTE THE _
QUANTITIES H1 (U #H1(U+P) AND H2(U)#*H2(U+P) WHEN THE INPUT Z1(T) IS
NONSTATIONARY WHITE NOISE PROCESS WITH AUTOCORRELATION

T RZ1IZ1(T1,T2)=A®COS(P*T1) #DELTA(T1I=-T2) AND INPUT Z22(T)=0
DIMENSTON HHIRE2(751) yHH1IM2(751) ¢HH2RE2(751) sHH2IM2(751)
UM=0.0

17 PRINT 19,UM =
19 FORMAT(10Xs9H M2/M1 = +FS5,2) , .
oM2=0.1 -
—10 PH1=0.2 ;
PH2=0.2
P=1.0
o I=1
6 PRINT S.0M2
S5 FORMAT(S5Xs11H OM2/0M1 = +F5,2)
—————OM==P/2,.0
2 A=1,0+ (OM2##2)# (]1,0+UM) +4 ,0#PHI#PH2#0M2

B=QM2##2

C=2.,0% (PH1+PH2# (1.0+UM) #0M2)

D=2.0%PHI® (OM2#3#2) +2 . 0#PH2#0M2

DEL1=(OM#84) —AR (OM#%2) +8

DEL2==C*® (OM#23) + (DZ0M)

ADEL=(DEL1#%#2) + (DEL2##2)

DELP1=(0M+P) ##4~A% ((OM+P)222) +8

DELP2==C# ( (OM+P) ##3) +D# (OM+P)

ADELP=(DELP1#%2)+ (DELP2#22)

¢ Z2=0s COMPUTE H1 (U)#H1 (U+P)

"R1=(0M2##2) = (OM=#22)

R2=2.0#PH2#0M2#0M

HIRE2=((R1#DEL1)+(R2*DEL2))/ADEL

OO0 O0ONO0NOOOOOO
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H1IM2=( (R2#DEL1) - (R1#DEL2) ) /ADEL
RP1= (OM2##2) = ( (OM+P) #52)

RP2=2.0#PH22#0M2% (OM+P) A
HP1RE2=((RP1#NDELP1)+ (RP2%DELP2) ) /ADELP

- COCEE00FTN¥IT0=P296 0P T=T—T7270870

e HP T IMP T (RP2*PELO T RP T DELP 2 I/ ADFLP—mm

T H2REZ2=( (S1#DELY) + (S2#DEL2) ) /ADEL

“CEVALUATE THE INTFGRALS OF "H1(U)#H1(U+P)

C

C

HH1IM2 (1) =(H]1 IM2=*HPIRE2) = (H1RE2#HP] [M2)
HHIREZ(I)=(HIRE2#*HPIREZ2) + (H1 IM2*HP]1IM2)
Z2=09s COMPUTE H2(U)*®*H2(U+P)

S1=0M2#%2

S2=2.,0%PH2#0M2#0M

H2IM2=((S2#DEL1)~-(S1#DEL2))/ADEL
SP1=0M2x#2

SP2=2.0%PH2%#0M2# (OM+P)
HP2REZ2=((SP1#DELP]1)+(SP2#DELP2) ) /ADELP
HP2IM2=((SP2#DELP1)~-(SP1#DELP2))/ADELP

TTHH2IMZ2 (1) = (HZ2 IM2#HP2REZ2 ) = (H2RE2#HP2IM2)
HH2REZ2 (1) =(H2RE2#HP2REZ2) + (H2IM2*HP21IM2)
'0M=0M"'0¢01
I=1+1
IF(OM=5,0)2+243

THE FOLLOWING SECTION IS THE SIMPSON#S NUMERICAL METHOD 710

AND H2(U)#H2 (U+P) WITH

C RESPECT TO U WHENM U VARIES FROM =P/2 TO INFINI
c AX1 = AMPLITUDE OF OUPUT X1(T)
c AX?2 = AMPLITUDE OF QUTPUT X2(T)
C PX1 = PHASE OF OQUTPUT X1(T)
c PX2 = PHASE OF OUTPUT X2(T)
3 SUIREZ2=0.0 —

} SU1IM2=0.0

SU2REZ2=0.0 : : .

SU2IM2=0.0 o -

I=1

4 SUIRE2=SUIRE2+(0,01/3.0)% (HHIRE2 (1) +4 . 0#*HHIRE2(I+1) +HHIRE2(I+2))

T SULTM2=SULIM2+ (0,01/3.0)# (HHIIM2 (1) +4,0#HHTIM2 (I+1) +HH1IM2(1+2) ) "
SU2RE2=SU2RE2+(0,01/3,0)# (HH2RE2 (1) +4,0#HH2RE2 (1+1) +HH2RE2 (1+2))
SURTM2=SU2IM2+(0,01/3,0)# (HH2IM2 (1) +440*HH2IM2 (I+1) +HH2IM2 (1+2))

8 FOPMAT (10X+4F10,.5)

TTTI3PX1=180.,0+PX1T

~—

I=I+2
IF(I=T4S)b6447
7 PRINT 8eSUIRFEZ2¢S1I1IM24SU2RE2sSU2IM2

AX1=2.0% ((SUIRE2##2+SU] IM2##2) #i#(,5)
TPX1=SU1IM2/SUIRF2

PX11=ATAN(TPX1)
PX1=(120.0/3.141A)#PX11
IF(PX1)13s14914

14 PX1=PX]
AX2=2.0% { (SUZRE2=#2+5U2M2#%2) ##( ,5)
TPX2=SU2IM2/SU2RF2
PX22=ATAN(TPX2)
PX2=(180.0/3.1416)%PX22

IF(®PX2)15416416
1S5 Px2=180.0+PX2
16 PXx2=PX2
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. PRIMT 129AX14PX1.AX2sPX2

12 FORMAT (60X94F10.5)
OM2=0M2+0,1
IF(OM2-5.0)10+10,11

T uM=u™M+0,1
IF(UM-2.0)17+17,18

18 STOP
END
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