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ABSTRACT

RESPONSE OF STRUCTURES TO IMPACT LOADS USING ELASTIC
AND PLASTIC ANALYSIS

GAUTAM MUNDKUR

The objective of this work is to study the response of structures to impact loads. Depending,
on the magnitude of impact the structural response may need elastic or plastic analysis
When the deformations are within the elastic region, normal mode analysis is used to find
the response. Structures considered in this study are Beams and Rectangular Plates. "The
Rayleigh-Ritz method is used to obtain the natural frequency and mode shape coeflicients.
Different types of displacement shape functions are employed in the analysis in the past
such as beam characteristic functions and beam characteristic orthogonal polynomials. An
approximate plate function is arrived at by reduction of the plate partial differential equaticn
and solving the resulting ordinary differential equation as iz Kantarovich method, and then
used in the Rayleigh-Ritz method. The same reduction procedure is also used along with
successive iteration until convergence to obtain the natural frequencies and mode shape
functions directly. This method takes much less time for response evaluation than that is
required by using the Rayleigh-Ritz method. Structural response to impact loads is also
carried out using rigid plastic analysis. A cantilever beam with impulsive load applied at the
free end is considered with finite blade radius and varying centrifugal forces are considered

in the investigation.

Experimental simulation of impact loading is carried out in the laboratory using a mass
falling from a known height onto the structure under investigation. The elastic response
of a plate with two adjacent edges clamped and the other two free are observed, and a

equivalent mathematical model formulated by using flexible edge supports.
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Chapter 1

INTRODUCTION

1.l General

A good understanding of the dynamic behavior of structures under impulsive
loads is very important in engineering design. Impulsive loads are characterized by
their suddenness of application and brevity of duration. Loads of this nature are
generally experienced in cases of sudden impact on structures due to collision with
a metallic or non-metallic mass. Ships and submarines experience such loads due to
blast of mines, sudden variation in velocity of water flow or collision with external
particles such as rocks or floating ice. Aircraft compressor fan blades are prone to
bird impacts during take-off. Blades in aircraft turbine engines may fail during op-
cration causing serious damage to the casing when the broken piece impacts at very
high speeds, and may sometimes even penetrate through the fuselage. All these struc-
tures must be desigued to withstand such impact loads. Various approaches involving
elastic and plastic analysis are being used to design such structures to withstand im-
pact loads. Acrospace structures are subjected to such loading due to meteoroid
impact,and from a variety of sources including dropped tools, runway debris, and
munitions. In advanced composite materials, impact loading can cause significant
internal structural damage, and therefore, development of an accurate means of cal-
culating structural response due to impact loading is of critical importance in the

analysis and design of advanced space structures(9].

There are dynamic effects on stationary structures such as bridges, the railway
tracks, and cranes due to moving loads which may cause impact conditions. Japanese
Railway Technical Research Institute (RTRI) uses Impact Testing results on bridges
to monitor the integrity of bridge foundations. Permanent damage inelastic collisions

can occur in moving vehicles. Ground accelerations during earthquakes[10] are in the




form of sudden pulses and buildings must be designed to withstand such loads, (ivil
Engineering structures such as buildings and bridges are subjected to blast loadings
during bombing. Design of Nuclear reactors must take care of withstanding such
loads due to impact from missiles or aircrafts. Fugincering structures arve analysed
for impulse loading by observing response to pulse toading of various shapes Response
of structures reduced to a simple spring mass system are studied in terms of dynamic
load factor with different ratics of pulse period to natural period of the system.
These provide a good insight into the dynamic behaviour of structures for such loads.
These can be used for any ratio of peak force to stifiness combinations which are

called dynamic magnification factors of the system under study.

It is also interesting to find the structural response due to high rates of loading,
experienced by structures when an unintentional explosion takes place in a picce of
equipment. Not much is known about the phenomenon of localized bending which
accompanies the impact of a projectile travelling at a high velocity. There is consider
able evidence based on observation of points which have heen hit by bullets, shells, or
bombs to indicate that dominant effects are localized, and that structures as a whole
do not have time to react to the sudden blow because of their inertia. However, the

containment tests indicate that there is failure of secondary attachment structure,

1.2 Review of Literature

Impact problems on beams and plates have been studied quite extensively,
Extension of Hertz Theory of colliding solids to include vibration of one of the colliding
body involves study of transverse impact of a solid sphere upon a beam or a plate. The
coefficient of restitution is an important element, in any analysis of motion ensuing

after the collision of two bodies|l].

Experimental results verify the theory when the limitations of the theory are
not violated. The velocity of impact must be sufficiently small to avoid plastic defor
mation. When the collision involves steel on steel, the velocity mmst be usually less

than 0.3 meters per second. However, useful Engineering results can be obtained with



this approach even though plastic deformation does occur locally [2]. Experiments
also show that the low velocity impact can also leave permanent craters at the impact

point[3].

1.2.1 FElastic Response of Mechanical systems

Response Analysis of mechanical systems involving elastic components such
as bars, beams, plates, and shells subjected to harmonic loading is generally carried
out by analytical methods. However, in case of complicated structures it is necessary
to formulate a discretized model. These elements have continuously distributed mass
and stiffness properties which need to be discretized when there i« no exact solution
available in some cases. There are various methods of formulating such problems. one
of them being Finite Element Analysis. Modal Analysis Techniques are widely used
in the case of complicated structures due to its versatility and ease of operation along

with experimental methods.

Timoshenko initiated the basic approach by combining Hertz’s contact force
law with the Bernoulli-Fuler Beam Theory to predict the transient dynamic response
of a beam to the impact of an elastic sphere. The impact of a mass on a plate was
first investigated by Karas {4] using the classical plate theory and assuming Hertzian
force deflection relatienship at the contact point. Zener pointed out that the central

displacement is proportional to the impulse of the contact force[5].

Classical methods of solution of response by using the mode summation pro-
cedure is carried out by Hoppmann[6, 7, 8]. He studied the response of a damped
clastically supported beam subjected to a central impact. Similar study was carried
out by the same author for transverse impact of a mass on a column with elastic sup-
port throughout its length, and response of a multispan beam with simply-supported
ends subjected to an impulsive load at the center of the mid-span due to a collision
of a solid sphere. The simply-supported plate response is analysed along with per-
manent indentation effects by Chattopadhyay [3) using Zener's approach. By using

experimental data obtained for permanent indentation due to impact of an elastic

3




sphere on an elastic beam he evaluated displacement time histories for a plate with
elastic and inelastic impacts. The energy absorbed in the plate due to these responses
have also heen obtained to predict additional energy contribution due to permanent

indentation.

A non-linear force-displacement relationship is used to caleulate the transient
force and local deformation at the point of contact by Trowbridge ot al. [9] by using
NASTRAN to define a finite element model that behavessglobally lincarly elastic,
and locally non-linear elastic. A computational technique is developed to predict the
dynamic response of a structure to a low velocity elastic impact by using, a triangula

pulse to simulate the impact force.

Low velocity impact of an elastic plate resting on sand was carried out by Chen
et al. [10] by using an experimental set-up that micasures contact, duration of the steel
ball impacting the plate. The analysis and the experiments resulted in comparable
values of arrival time. the duration, and magnitude. The radial strain at the bottom
of the target plate and the acceleration of sand bencath the center of the targel plate

were evaluated.

Sansalone et al.[11] have carried out extensive tests on thick circular plates for

transient response due to iinpact.

With the advent of composites as the material in Engineering designs, the
impact tests and analysis on such anisotropic laminated plates are carried out exten-
sively. Ramkumar et al.[12] have presented response of such plates due to low velocity
impact loads considering Mindlin’s theory and the governing equations are solved by

Fourier Integral Transforms.

Structural response evaluation by normal rmode analysis uses the normal modes
and natural frequencies of structures. In the case of bars and beams there are exact
solutions for natural frequencies and natural modes depending on the boundary con

ditions. The natural frequency parameters and mode shape coefficients for beams in




case of hending vibrations are well documented by Young and Felgar Jr. [13).

There is no exact solution for the natural frequencies and normal modes of
reclangular plates unless at Jeast two opposite edges of the plate are simply-supported.
The Ravleigh-Ritz method of analysis is widely used in cases where there are no exact
solutions available. In this method, the mass and stiflness matrices are formulated
hy assuming deflection shape functions that satisfy the boundary conditions of the
plate. ‘Fhe cigenvalue problem is then solved to obtain natural frequency and mode

shape coefficients. A detailed review is presented in Leissa’s monograph {14].

Shape functions that satisfy at least the geometrical boundary conditions are
essential in solving an eigenvalue problem by the Rayleigh-Ritz method. Beam char-
acteristic functions were used by Leissa [15] to study plates with several combinations
of houndary conditions. Vijayakumar and Ramaiah [16] used modified Bolotin’s so-
Intions as admissible shape functions. Bhat[17) proposed beam characteristic orthog-
onal polynomials to study the vibration of rectangular plates. He used the simplest
polynomial that satisfied the boundary conditions at the two opposite edges of the
plate and constructed the other members of the orthogonal polynomial set using
Gram - Schmidt process [18]. Products of beam characteristic orthogonal polyno-
mials on cither ditection were used as assumed shape functions. Dickinson and Di
Blasio [21). Kim and Dickinson {22] used boundary characteristic orthogonal polyno-
mials in Rayleigh-Ritz method to study vibration of plates of various configurations.
Lawra and Cortinez (23] and Cortinez and Laura [24] used optimized Kantorovich
method, essentially reducing the partial differential equation into an ordinary differ-
ential equation to obtain the fundamental frequency coefficients of plates. Simply-
supported plate functions were employed by Dickinson([25] to study vibration of plates
by Rayleigh-Ritz method. Inthis technique, he arbitrarily assumed simply-supported
conditions on two opposite edges to get exact solution for the perpendicular direction.
Repeating this procedure on the remaining two opposite edges he obtained another
set of exact solutions in the first direction. Using these functions in the Rayleigh-
Ritz method he obtained very good results when all the plate edges were supported i

some manner. However, when one or more edges were free, the results were sometimes



worse than those obtained using beam characteristic functions.

Results obtained by the Rayleigh-Ritz method were used by Warburton|28]
to analyse the plate response. For harmonic excitation. amplitndes of displacements
and bending moment were combined with values from a modal solution of the plate
equation. He pointed out that determination of resonant response s less accmate
than a comparable evaluation of the corresponding natural frequeney by Rayleigh
Ritz method. He concluded that the results from Rayleigh-Ritz method can be used
for response calculations of beams, plates, and shells, but for acceptable accuracy

appropriate number of deflection shape functions may have to be included.

1.2.2 Plastic Analysis

Rigid plastic avalysis is used by various researchers in analysing permanent
deformations of a cantilever beam. When subjected to transverse impact at the tip, a
rigid plastic cantilever will bend at a discrete plastic hinge that moves away from the
impact site toward the root[43]. All permanent deformations of the beam develops
at these plastic hinges[42, 43]. Numerical solutions of the analysis presented i [1]
gives deflection after elapse of time after the impact. and after the foree is removed

from the beam tip.

Parkes [42] considered a cantilever of rigid plastic material transversely struck
at the tip by a falling mass, but he considers a rigid body impact. The analysis
with a finite magnitude of a time dependent force is considered by Stronge[4:3]. The
formulations of rigid plastic cantilever and definitions are used by "Ting{dT] except

that the body force due to rotation is not considered.

Bodner and Symonds[46] have considered strain rate dependence of the yield
stress and geometry changes unlike Parkes, who neglected them. Ting[d7] has also
pointed out this affect and shown comparisons and discrepancies.

All authors[42, 46, 47] have discussed their experimental set-ups of varying

]



complexity and the results obtained with them.

Kennedy et al.[41] investigated the deformation response of floating ice sheets
under high intensity short duration loads by using rigid plastic theory together with

Tresca yield eriterion.,

Normal impact and perforation of thin plates by hemispherically - tipped pro-
jeetiles are analysed and experimentally investigated for determination of the force

and central plate deflection histories by Levy and Goldsmith [44, 45].

lixtensive work on Impact dynamics is also presented in the monographs by

Goldsmith [21, Jones [48], and Brach [49].
The deformations at or near the impact point is not accurately evaluated
with these formulations, However, Stronge concludes that his formulation represents

deformations near the impact point when the force is large.

L3 Scope of Present Study

Structural response to impact loads using both elastic and plastic analysis is
investigated in this thesis. An experimental investigation is also carried out to verify

some of the analytical findings.

The elastic analysis part consists of consideration of response of beams and
rectangular plates to pulse type loads using normal mode analysis technique. In the
case of beams, the natural frequencies and the mode shapes are readily available.
However in the case of plates exact natural frequencies and normal mode information
is available only for plates which are simply-supported at least on one pair of opposite
edges. When this is not true, approximate techniques such as the Rayleigh-Ritz
method or Finite Element Method must be used to obtain the natural frequencies
and normal modes. Since the normal modes affect the resulting response significantly,

considerable effort has been devoted in this thesis in developing techniques that obtain

-~1




better approximations for the natural frequencies and normal modes for the plate type

structures considered in the study.

Structural response to pulse loads using plastic analysis is limited to beans
only. Closed form solutions are given when a rigid plastic model is nused for the beam,
Numerical investigations are carried out for large deformations, tinite blade radius,

and varying centrifugal force is incorporated and are reported in this thesis.

Experimental investigations are done on beams and plates using impact loads
due to a falling mass. An experimental set-up was designed and fabricated for this

purpose. Some analytical findings are verificd using the experimental results.

Chapter 2 discusses the various approaches used to obtain hetter approxima
tions for the natural frequencies and natural modes of plates (i) using Rayleigh-Ritz
methods with boundary characteristic orthogonal polynomials, (i) using plate char
acteristic functions obtained by reducing the plate partial differential equation vusing

Kantorovich method.

Chapter 3 deals with the response of beam and plate structures using the nat

ural frequencies and normal modes developed in chapter 2, in normal maode analysis.
Chapter 4 gives the details of plastic analysis on beams subjected to impact
loads at the tip. The cantilever type of beams are subjected to centrifugal loads thus

simulating a rotating turbine blade.

Chapter 5 deals with the experimental investigations on plates subject to n

pact loads due to falling mass.

Chapter 6 gives the conclusions and suggestions for future work.



Chapter 2

NATURAL FREQUENCIES AND NORMAL MODES OF
BEAMS AND RECTANGULAR PLATES

In this chapter, the natural frequencies and normal modes of beams and plates
are developed for use in the response evaluation using normal mode analysis. In
order to analyse any system for its response behavior due to a particular loading it is
essential to obtain the characteristic properties of the system in terms of the natural
frequencies, maode shapes and damping. This is done by solving a free vibration
problem. For heams such information is readily available, whereas when rectangular
plates do not have at least two opposite edges simply-supported, exact solutions for
natural frequencies and normal modes are not known. The Rayleigh-Ritz method
is one of the most popular methods to solve free vibration problems of rectangular
plates. The accuracy of natural frequencies and mode shapes play an important
role in oblaining the response of any system. The Rayleigh-Ritz method predicts
displacements of acceptable accuracy, but for a given number of terms accuracy is less
for response calculations than for determination of eigenvalues{28]. Shape functions

that exactly satisfy the boundary conditions are essential in Rayleigh-Ritz method.

The general equation of motion of an elastic system is given as,
Dy (w) + Dy (W) + p() = f(,y,1) (2.1)

where Dy, Iy, and p are operators and f(x,y,t) is the external load.

Solution of homogeneous part of the equation of motion without the damp-
ing term will result in undamped natural frequencies and mode shapes (complimen-
tary solution). These are required to obtain the response of the system due to any
load (the particular integral) acting on it. Once the natural frequencies and normal

modes arc known, the response is evaluated for a given forcing function f(z,y,t). The
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Rayleigh-Ritz method using boundary characteristic orthogonal polynomials, beam
characteristic functions, and the method of approximate plate functions by reduction
of plate partial differential equation are used to obtain the natural frequencies and

natural modes.

The solution of the homogencous part of cquation (2.1) gives the egenval
ues and eigenvectors which are characteristic of the system. The eigenvectors thus
obtained are orthogonal to each other and are generally nbrmalized by a condition
{u(’) }T (M] {u(’)} = 1 for convenience, but this is without any physical significance.
The normal mode vector is in terms of ratios of the amplitudes of cach modes. The
normal modes only show the system characteristic property which is the shape of
the system in vibration at corresponding natural frequency. In a continnous system,
when the system is excited by a force as in the case of a sudden tpact, all modes

are excited and they contribute to the total response of the system.

The modal vectors can be arranged in a square matrix of order n known as
the modal matrix [¢], and used in modal analysis to uncouple the mass and stiflness
matrices to reduce them into n single degree of frecdom system equations. "I'his shows
that the normal modes provide a good description of the dynamical properties of «
system and its response. However this is valid only when response does not exceed

the linear elastic limit of the material.

2.1 BEAM PROBLEM:

The equation of motion for the bending vibrations of an undamped beamn as

shown in Fig.2.1 is given by [33],

Ny Py, .
EI%+'rr—0t—2—= fla, 1) (2.2)

where m is the mass per unit length and El is the flexural rigidity of the hearn

material.

The natural frequencies and natural modes of the beam are obtained by solving
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the homogeneous part of equation (2.2} given by

oy Py ‘
E]EF + My = (2.3)

Assuming harmonic motion the equation can be written as.

dy
'(i')—l—‘z——,fl,ljzo (2.1)
where
v oMM
Fo= v
, |EI
. _ 2 =4 1« 9 e
o wp = (M) i n=123... (2.5)
The solution of equation (2.4) is.
y(r) = Cysin By + Cycos 30 + Cysinh 1 + Cy cosh B,x (2.6)

where constants C, Cy, Cy, Cy are evaluated based on the boundary conditions of the
beam and /3, are the roots of the frequency equation. The beam has infinite number
of degrees of freedom (1 — o00). and is reduced to n degrees by choosing finite value

of n depending on requirements in design and analysis.

Beam frequency equations with their roots and corresponding shape functions
are available for different boundary conditions in standard literature [13]. The natural

frequencies can be calculated using 3, values in equation (2.5).

However, in case of plates when at least two opposite edges are not simply-
supported Rayleigh-Ritz is the most frequently used method to estimate natural fre-

quencies and mode shapes.
2.2 PLATE PROBLIEM:

The kinetic and potential energy expressions of the plate as shown in Fig. 2.2

are given by

_ 1 2 [ Myn ,
Tour = 5phabe A £ W2(2. y)dr dy.
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Umar = 5 Dab f [ (V2,4 Q"2 4 200200, Wy + 201 = 100?10 ] iy
where p is the density of the plate material, his the thickness of the plate. 1) s the
flexural rigidity of the plate, a is the side ratio a/b. 17 is the Poisson’s ratio, and the
subscripts & and y refer te the differentiation with respect to the subsaipt and the

number of times the subscript appears denotes the order of ditferentiation.

The deflection of rectangular plate undergoing free exural vibration can be

expressed in separable form as,

t<
~]
~—

w(.r,y) = ZZ-‘lmn‘\,m(f)};1(,’/) (2.

m n

where o = €/a and y = /b, and & and 1 are the coordinates along two sides of the

plate where a and b are plate dimensions.

Substituting the deflection function in the kinetic and potential energy es

. T . . . . ! - . ,
ressions the Ravleigh’s quotient is obtained as w* = Lwas whepe T w? ]
] / ma

maz

k!

Has

Minimizing w? with respect to the coefficients A,; vields the eigenvalue equation
‘ (0,0) 7~(0,0)
EZ [C"‘"U - ’\Enn [;(») ]Amn =0
m n
where

. 2.2) 0,0 4 0,0) 2,2 . 0.2) ;~(2,0 2.0) (0.2
mnty = Efm ) )+a‘E:m V22 4 02 [Ef,,, VR E20 pl0a)

n) n) ny it ny

‘ IRIRINERN
+-2“ - V)“zl"uu )I‘I!j )

1 |
E) = A (d Xpnfda") (d*X, Jdz®) dz,  FY = L (Y, fdy" ) (d*Y, dy*) dy(2.%)

where A = phw?a*[D and m,n,1,5 =1,2,3... r,s=0,1,2.

The solution of the eigenvalue equation will yicld the natural frequency coef

ficients (A) and mode shapes (Ap,) of the plate.
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2.2.1 BOUNDARY CHARACTER(STIC ORTHOGONAL POLYNOMIALS:

Natural frequencies of rectangular plates can be obtained by employing a set of
beam characteristic orthogonal polynomials in Rayleigh-Ritz method. The orthogonal
polynomials are generated by Gram-Sehmidt process [18]. after the first member is
constructed so as 1o satisfy all the boundary conditions. 1 his method yields good

results for lower modes, but the results are not accurate for higher modes[17].

The o thogonal polynomials are generated from a first member ¢(z) in the

interval @ < . < b by using Gram-Schmidt process as follows[17]:

di(r) = (r=Bi)go(a). @) = (= Br)dp-1(x) = CiPr—2(),

_ Pag)diy(@)dr
C fre()R_(x)dr

?

¢y = L r9@) i rdia O
P g(r)et_y(x)dx

g(.r) being, the weighting function. The polynomials ¢i(2) satisfy the orthogonality

condition

/ g)d()bi(2)dr =0 if k£

4

The weight function is taken as unity when the plate is uniform and the integral is
from 0 to 1 and the cocfficients of the polynomials are chosen in such a way so as to

make the polynomials orthonormal by,

[ #i@rdz =1
0

The first member of the polynomial ¢g(T) is constructed so as to satisfy all the
boundary conditions of the beam problems accompanying the plate problem. Even
though ¢o(2r) satisfies all the boundary conditions, both geometrical and natural,
the other members cf the orthogonal set satisfy only geometric boundary conditions,
which can casily be checked from the way the set is constructed by using equations

above.
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The first member polynomial is constructed so as to satisfy all the boundary
conditions. For example. in case of a plate with allits edges simply-supported (SS58).

beam problems both in r and y directions have same boundary conditions. namely,
XO0)=X"0)=X(H=X"(1)=0.

Assuming the beam deflection function as

X(2) = ap + a1r + apr? + azr? + asgart

and applying the boundary conditions, the deflection shape can be written as.
N(r)=ag (r =203 + 01,

where a; is an arbitrary constant. The normalized mode function is obtained

as 5 .
S 2% e

dofe) = L 2EAL)
(ﬁ,‘ X'z(.’z')(l.r)

2.2.2 APPROXIMATE PLATE FUNCTIONS IN RAYLEIGH-RITZ METHOD

In order to improve the estimation of higher frequencies and corresponding
mode shape coefficients, reduction of partial differential equation of plate to ordinary
differential equation is carried out. Solving the resulting ordinary differential equation
for the roots, the shape functions are formed which are more realistic plate deflection

shapes, and are used in Rayleigh-Ritz method.

Vibration of a plate is associated with the minimum of the integral

O*w P*w P\ o fdw\?
a— 2 — — ——— — ———
=/, {‘Vw) A=) {052 o (0£0r1> ] 'D ((u) }"5”'"
(')“)

—2/V(.s)cml.s+2/M(s),—d.s (2.9)
1 I Jn




where V = 25

et ;ITIg is the Laplacian operator, and

D— ER?
12(1 — v?)

is the plate flexural rigidity, E is the modulus of elasticity, m is the mass per unit
arca of the plate, vis the Poisson’s ratio. w is the plate deflection. and € and 5 are the
Cartesian coordinates. The double integral is over the area of the plate whereas the
line integral is along the boundaries of the plate, where s is along the boundary and
n is a direction normal to the boundary. The necessary condition for the minimum
of the integral I is obtained by considering a small variation in the deflection w as

w+ ge and then the derivative with respect to ¢ is equated to zero. This results in

[27],

md*w Oe
—— cm—— [ . —rn —_— / [~ —
//1 (VV "+ Doz ) edédn + AM(S)Onds A‘ (s)eds =0 (2.10)

o'w 0 Mtw +5“w
oer oo t o

When the plate is rectangular and the boundaries are parallel to the coordinate axes,

where

VVw =

the moment and shear force distribution along boundaries are given by

v  Fuw
M(€) = {‘gg + Vg};}me ..

V(e - {250“”§%%Mﬂa @.11)

Similar expressions describe the moments and shear forces along 7 = 0 and b also.

I'or free harmonic vibration, the solution is assumed in the separable form
w(,9) = X(2)Y (y)e (2.12)
where v = €fa and y = n/b.
In order to reduce the partial differential equation to an ordinary differential
equation. the deflection shape along one direction, say y, is assumed a priori. Such a

deflection expression can be any function of y satisfying all the boundary conditions

along y. In the present analysis beam characteristic functions [13] are employed.
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Substituting Y (y) into equation (2.10). and since £ = dw = YN + X&Y', where
8Y = 0, since Y is assumed a priori. the resulting differential equation in the r

direction is given by

ab

@ / | / oo 4w xy - 2t
at fo fo T )

D
b . R
+(-l-£ / @' XY + v X"Y Yo N dr
at fo

] YeNdrdy

1 . .
_Z_i) /g [@'XY 4 (2= )’ XYY 0 Ndr = 0 (24)

We have € = 6w = Y6X and &£ = 6w = YEN. Further, () = L and () = &
dy

ar dy*
a = afb is the plate aspect ratio where @ and b are the side lengths of the plate

along & and 7 directions respectively. After performing the integration. the ordinary

differential equation in the & direction is obtained as

2
X////+2a2[B__ (1 —V)(G0+G1)]4YI/+O’4 C - %+H(]+Hl —Jy - L X =(@.11)

with
A= f(,l Y?dy, B = —‘-A fol YYdy, C = }IT j,' YYdy, Gy = ﬁ()'f')yz.,,

Gl = %(Y}.’)yzla HU = %()‘,}..I’)y=09 Hl = 7li()"}.:')y:l. ']U - :li(”y")_l/::lh 'II =
%I(YY)!.F]

2 _ wlmat
and )° = <%

Equation (2.14) can be put in the form
X" +2X"+4X =0 (2.15)

where

B=a?B-(1-v)(Gy+ G)

92
v =a C’—E;+H0+HJ”'~]0‘J!
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Similarly by assuming a priori X(z) and substituting this in the partial dif-
ferential ecuation with dw = XY, dw’ = X'6Y, it is possible to obtain an ordinary

differential Fquation along y direction in the form
Y +27Y +4Y =0 (2.16)

where
F = 1B - (1 - 1)(Gs + Gy

1
7"=57[C'+H5+H,‘~J5—J1‘—QQ]

The quantities B, C*, G G}. H;. Hj, J; and J; must be evaluated appropri-
ately along y, using equations similar to (2.14). Assuming .V = Xjpe?? as the solution
of equation (2.15) results in

A 4280 +4=0 (2.17)

The roots of this equation are given by
2 2 _ . \1/? o
Xo=-0% (8 -7) (2.18)
FFurther, the solution of equation (2.15) can be written as
X(r) = C)sin o + Cy cos pyx + Gy sinh pyr + Cy cosh pox (2.19)
where pyp and p, are defined as

1/2
ma== [:i:ﬁ + (/32 - 7)1/2] (2.20)

Similarly in y direction. solution of equation (2.16) can be expressed as
Y(y) = G sinquy + C; cos uy + C; sinh qoy + C; cosh gy (2.21)
where g and ¢ are given as
, 2]
qua=12 [:tﬂ' + (8" -v) ] (2.22)
The boundary conditions at a plate edge for different cases are:
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Clamped:

X(0) = X'(2) =0 (2.23)
Simply-supported:
X()=0
X'"(x) + va’BX(x) = 0 (2.:2)

Free:

X"(x) + va*BX(r) =0
N"(@) 4+ (2 =v)a*BX'(r) =0 (2.25)

The different boundary conditions at the plate edges in y direction are:

Clamped:
Y()=Y(y) =0 (2.206)
Simply-supported:
Y(y)=0
Y (y) +vBY(y) =0 (2.27)

Free:

¥ (y) +vBY(y) =0
Y () + (2-v)BY(y) =0 (2.28)

The line integrals in equation (2.13) arc zero if the edges are not simply

supported or free involving natural boundary conditions, i.c. in case of clamped edge,
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It is not possible to satisfy the boundary conditions at the free edge. therefore,

the work done by the moment and shear force at the edge, say x = 0, in equa-
tions (2.21) and (2.25), integrated along y direction is equated to zero. Similarly in
equations (2.27) and (2.28) work done by moment and shear forces at the edge, say
y = 0. imtegrated along o direction s equated to zero. Substituting corresponding
conditions in the equation (2.19) and (2.21), two frequency equations are obtained
consisting of infinite number of roots for €. These roots by themselves are very good
approximations for somne of the natural frequencies. Roots corresponding to solution
in equation (2.19) in the r direction are good approximations to natural frequencies
My, Qg ... Qy, and those corresponding to equation (2.21) are good approximations
to natural frequencies Qyy , Qg1 , ... Q1. respectively. The subscripts in ;5 corre-

spond to the number of half waves in x and y directions respectively.

For each of the roots, solutions (2.19) and (2.21) will yield a set of plate
characteristic functions ¢,(x) and ¥,(y) respectively. Using these approximate plate
characteristic functions ¢,(2) and ¥,(y) as shape functions in Rayleigh-Ritz method,
better approximations for all the natural frequencies and the corresponding mode

shapes can be obtained.

Natural frequencies of rectangular plates with different combinations of bound-
ary counditions arc obtained using this method. Beam characteristic functions are
assumed a priori along onc direction to obtain approximate plate functions in the
other direction. Six roots of the frequency equations in each of z and y directions
are obtained for a values of 0.5, 1.0 and 2.0. These roots are obtained by applying
plate boundary conditions given in equations (2.23,2.24,2.25) into the exact solutions
(2.19,2.21). Roots obtained by using beam boundary conditions instead of the plate
conditions are observed to differ only when the edge is free. Application of beam
boundary conditions result in lower roots than the natural frequencies calculated by

Rayleigh-Ritz method using beam characteristic orthogonal polynomials.

The form of beam characteristic function is same as that of plate function
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given in equations (2.19) and (2.21) with p=py = pp and q = 41 = ¢,. In the course
of computations it was noted that p; and py values are distinet for a given case, and
comparison between the plate functions and the corresponding beam characteristic
functions showed that even though the functions themselves do not differ significant Iy,

the moments and shear forces caleulated using them do differ considerably.

Using six plate characteristic functions corresponding to six roots ol the fre
quency equations on either side, 36 natural frequencies are obtained using, Rayleigh
Ritz analysis and are presented in Tables 2.1 - 2.10. The cases studied are represented
by referring to the edge condition of the plate in a counter - clockwise sequence start.-
ing at x = 0. using the notation of C for a clamped edge, S for simply-supported
and F for a free edge. For example, CCSF is a plate with clamped edges at x = 0
and y = 0, simply-supported at x = 1 and free at y = . Even though several cases
such as CCCC, CSCS, CCSF, CCFF, SSSS, CCSC, €SS and C'CCEF are studied,
results for only first four cases are presented. The 36 natural frequencies oblained
with this method are compared with those obtained using (i) beam characteristic
fur.ciions [13], (ii) boundary characteristic orthogonal polynomials [17, 19, 20], and
(1ii) plate functions obtained using corresponding beam boundary conditions in cqua
tions (2.24) and (2.25), as assumed deflection shapes in Rayleigh-Ritz method. A
comparison shows that the results from the present method using the plate bound
ary conditions in equations (2.24) and (2.25) arc the best except for the first two or
three naturai frequencies which are lower when orthogonal polynomials are used. In
addition to these, in the case of square CCCC plate, comparison with Rayleigh Ritz
results using Bolotin functions as displacement shapes [16] and simply- supported
plate functions [26] are also tabulated in Table 2.2. For the CCFI piate in Table
2.10, comparisons with Rayleigh-Ritz results using simply-supported plate functions
[26] are also shown. The results compare favorably. For higher frequencies the or-
thogonal polynomial shape functions provide poor results. This may be due to the
difficulty in representing the higher modes using the orthogonal polynomials. Plate
functions provide very good approximations even for the higher frequencies, better

than those obtained by the use of beam characteristic functions; the orthogonal poly-
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nomial results go on deteriorating for the higher frequencies. The present results

show that the 36" cigenvalue using (6 x 6) plate functions are much better than

those obtained using same order of orthogonal polynomials and slightly superior to

those obtained by beamn characteristic functions.

1 he 36™ natural frequency was also computed using only the sixth deflection
funciion on either side by Rayleigh’s method, and the results are tabulated in Table
2.10. These results are always lower than corresponding values obtained by Rayleigh-
Ritz method. In addition when one of the plate edges is free, the sixth plate function
with beam boundary conditions was also used in evaluating Rayleigh quotient, and
the comparison showed that beam conditions applied to plate characteristic function
results in lower values than with plate conditions. The one term solution giving
sometimes a lower frequency is reported by Leissa[15). In his results, this is observed

to happen only when at least one of the edges is free.

The cigenvalues calculated by using plate characteristic functions do not differ
significantly from those calculated by using beam functions. Nevertheless they are
lower, and therefore more accurate. A comparison of the functions showed that even
though the functions themselves do not differ significantly, the moments and shear
forces computed by using them do differ. Hence, the response analysis using the plate
functions will be more accurate than those obtained by usiug beam characteristic

functions or orthogonal polynomials.

The approximate plate functions (APF) obtained by reduction of plate partial
differential equation and the beam characteristic function[13] are compared for their

shapes and higher derivatives in the case of CCSF as given by Figures 2.3 - 2.26.

In the case of CCSF plate, the accompanying beam function along z is CS
and along y it is CF. The Figs. 2.3-2.5 show the shape function along z direction
(CS). The agreement between the two is very good, and both these curves overlap

each other. The higher derivatives of the function is shown in Figs. 2.9- 2.11, 2.15-




2.17, 2.21-2.23. It can be seen that the function as well as their derivatives in all six
modes are the same. This indicates that the beam characteristic function and the
approximate plate functions are same in the case of clamped and simply-supported
edges. This is also proved by the fact that the natural frequeney coeflicients in the
case of plates involving no free edge are same when both beam and plate conditions are
applied at the edges as mentioned before. But y direction functions vary sigmificantly
at the interior of the plate but are same at the edges as shown in Figs. 2.6 2.8
However the higher derivative shapes vary along the edges also. The difference at
the free edges reduces for higher modes as can be seen in Figs. 2.12 2.14 in the
case of first derivative. However second and third derivatives vary at both edges,
though the trend in reduction of the difference in higher modes is same. This can
be seen from Figs. 2.18-2.20, 2.24-2.26. For example if the shape function satisfies
beam conditions along the y direction, at the free edge the moment and shear foree
should be zero (second and third derivative). But in the case of API the work done
by the moment and shear force is equated to zcro, and therefore the function does
not satisfy the beam boundary conditions exclusively. However, further study in
computing the exact displacement mode shapes, the moments and the shear forees
by taking eigenvectors obtained through Rayleigh-Ritz method should be carried

out, which is listed as one of the recommendations for future rescarch in this arca.

2.2.3 PLATE

In the previous section, the approximate function obtained by reduction of the
partial differential equation of the plate into ordinary differential equation along the
r and y directions are used in Rayleigh-Ritz method to solve an eigenvalue problem.
This is a minimization process and the resulting eigenvalues are the estimates of upper

bounds for the actual values.
In this section, reduction of the partial differential equation is carried out.

sequentially along the z and y directions in an iterative fashion until the resulting

natural frequency cocfficients converge, and the corresponding plate characteristic
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functions are exact. Initially, the beam characteristic function of the 7'* beam mode
along, say, the y direction, is used to reduce the partial differential equation to an
ordinary differential equation in the r direction. Substituting the exact solution of
this ordinary differential equation into the boundary conditions along the r direction
results in a frequency equation. The i root of the frequency equation corresponds
to the natural frequency cocflicient €, 5y, and the corresponding solution in the »
direction is a first approximation to the plate characteristic function in the z direc-
tion. Subsequently, this function along the x direction is used to reduce the partial
differential equation into an ordinary differential equation along y direction. The ex-
act solution of this equation is substituted into the boundary conditions of the plate
along the y direction and the j%* root of the resulting frequency equation will be a
better approximation for the natural frequency coefficient €, ;). The corresponding
solution along y direction is the second approximation to the characteristic function
along y direction. This process is continued iteratively until Q,, ;) value converges to
a sct criterion. The procedure is repeated to obtain all the required natural frequency

cocflicients, €, ).

Successive iterations along both rand y directions is carried out until the first
root converges to the required accuracy to obtain the first natural frequency, Q).
Using a similar procedure for the first root in the y direction and the second root in x
direction will give natural frequency Q(2,1). Continuing in this manner for all the roots
will yield frequencies Q.1), Q1) - -, Q1) When the same process is used with the
second root in y direction and 1, 2, 3, ... in z direction the resulting roots are Q)
(1 =1,2,...). Likewise, taking subsequent roots in the y direction and 1,2,3,... in

the r direction will give all the roots Q,, (1 = 1,2,... and j = 1,2,...).

Rectangular plates (a = 0.5, 1.0, 2.0) with different boundary conditions are
analyzed using this method to obtain the natural frequencies. Beam characteristic
functions are assumed for the first step of iteration along the y direction and are
used to find the first natural frequency. say (1) by alternately reducing the partial

differential equation into an ordinary differential equation in the x and y directions,




and solving them.

The relative error criteria for these convergence are taken to be 3N 10 " T'he
results thus obtained up to the sixteenth frequency are tabulated in Fables 2 11 2013,

The three cases studied are CCCC, CSCS and CCS).

The frequency coeflicients obtained by the present method are compared with
those obtained by the Rayleigh-Ritz method using (6 x 6) number of first approxi
mations to the plate characteristic functions. Except for the first two frequencies all
others by the present method are lower than those by the Rayleigh Ritz method. It
can be seen from Table 2.13 that when oo = 1. the present method yields identical
values for Q, ;) and Q). However. the Ravleigh-Ritz vesults show one of them to he
lower than the present results and the other one to he higher [on (SZ(_;'”.SZ(,.;)) and
(Q(‘Lz),ﬂ(g"i)). Tables 2.15  2.23 give the converged values of pro oo o and ¢y, ¢y and
7 in the & and y directions, respectively. The Rayleigh-Ritz results using six beam
characteristic functions on cither side were computed and included in the tables for
comparison. The first six of these are presented by Leissa [15]. 1t can he seen that
the difference in the natural frequency coeflicients by the two methods are very small.
The main advantages of this method are that any natural frequencey can be evaluated

separately for each mode along with the corresponding plate characteristic function.

Natural frequencies and normal modes of beams and plates discussed in ths
chapter are employed in normal mode analysis to obtain the elastic response of these

structures subjected to impact loads. This is presented in the next chapter
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Table 21 Natural Frequeaey coeflicients of CCCC Plate
(Q = wa? H.a=05,1r=103)

(BF): Beam Charactenstic Functions [13], (OP): Orthogonal Polynomial Functions [17 21],
(PF): Approximate Plate Characteristic Function

(0 T Qo | Qo | Qo |
1T 245820 | 245782 ] 21.5789
2 3T R0 | 316267 | 318208
3| 417070 | 44 8082 | 44.7796
T 633631 | 635605 | 633473
51 GIO0Ud | 63.9818 | 63.9916
51 71120 | 710780 | 710982
T R d00 . »3 3150 | o3 3386
B RT3 | 980504 | 87 2805
0 1000390 | 1009639 | 1008726

0 {316 3011 | 123 4740 | 116 3603

1 [ 123 2500 | 130 5650 | 123.2793

0 T 123 0820 | 131 7782 | 123 8108

3T T30 0530 | 1125697 | 130 4184

1| 1426701 | 1426202 | 1425713

15 1152 0870 | 150 8170 | 151,089

16 ] 1505518 | 172 7463 | 150 7423

7 | 182 550 | 187 3115 | 182 3265

T8 [ 202 2873 | 20% 4865 | 202 2706

[0 [ 200 5312 | 210 5778 | 2004809

20 | 200 9763 | 222.6002 | 200 7974

31 | 2218408 | 225 2597 | 221 7169

92 | 238 U179 | 2395601 | 238 7650

73 [ 2615373 | 265 0670 | 261 2743

23 [ 2n8 5050 | 300 4870 | 258 3450

25 1 301 018 | 355 3872 | 300.9909

26 | 30% 3411 | 361 2686 | 308.2031

77 [ 320 7702 | 371 3549 | 320 6377

28 | 337 9130 | 3556825 | 337 154

20 1 366 6675 | 406 8103 | 360 3625

30| 3R7 G140 | 436 6223 | 357 3504

31| 419 1720 | 533 7074 | 419 4528

30T A26 w511 [ 530 33006 | 426 7841

33 [ 430 3340 | 548.9855 | 430 1867

B3| 456 4652 | 502 H0%6 | 450 3027

55 1470 2457 | 581 9951 | 478.9290

36 1 506 0451 [ 600 1000 [ 505 7700

20




Table 2 2: Natural Frequency coefficients of CCCC Plate
Q= uJ(l"z\/sz,(l = 10,v =03)

(BF): Beam Characteristie Functions [13], (OP): Orthogonal Polynomial Functions [17-21],
(PF): Plate Characteristic Functions. (MB): Modified Bolotin Functions in Rayleigh-Ritz {16},
(SS): Simply Supported Plate Characteristic Functions {25).

[V T Qunr | Qor | Query | Quarsy | Quss) |

1 3599151 350835 | 359882 1 35.9854 { 35988
2 734133 ] V33917 | 73.4046 | 73.3942 | 73.406
31 734133 733947 73.4046 | 73.3942 | 73.406
4 108 2710 [ 1052179 | 108 2482 | 108.2174 | 108.25
51 131.6365 | 1317789 | 131.6177 | 131 807 | 131.62
G D132 210 [ 1324007 1 132 2323 | 132.2063 | 132.23

165 1531 | 165 1507 | 165 1005 | 165.0025
8| 165 1534 | 165 1507 | 165 1005 | 165.0025
Y 2106022 | 2117061 | 210.5849 | 210.5228
10 1 210 6022 | 211.7061 | 210.5819 | 210 5228
11} 2205018 | 220 31494 | 220.3782 | 220.0375
12 242 4066 | 213 1353 | 242.3477 [ 242.1539
13 | 243.3388 | 244.1539 | 243.2899 | 243.1499

14 ] 297.0360 | 297.3216 | 296.8964 | 296.3420

15 | 297.0360 | 297 3216 | 296.8964 | 296.3420

16 | 300.0443 | 361 7082 | 300 0181 | 308.9024

17 | 300.274x | 3622325 | 309.2538 | 309.1664

18 | 340.9671 | 3727805 | 340 8800 | 340.5843
19 1 33 9671 | 3a8 4808 | 340 8800 | 340.5843

20 | 372.2834 | 3384800 | 372.1272 | 371.3530

21 ] 394.1260 | 133 6726 | 393.8991 | 392.7656

22 1 305.0132 | 435 6811 § 394.8085 | 393 9172

23 | 427 4879 | 502 1155 | 427.4632 | 427.3539

24 | 4274879 | 5021155 | 427.4632 | 427.3539

25 | 458.6324 | 539 9153 | 458.5514 | 458.2250

206 | 459 1294 | 5399153 | 450 0577 | 458.8230

27 | 469 0531 | 564 U803 | 468 7914 | 467.2671

28 | 469 0531 | 565 2631 | 468 7914 | 467.2671

201 511 8806 | 607 7885 | 511.6820 | 510 6412

J0 | 511 8806 | 607 7885 | 511.6820 | 510.6412

311 565 5552 | GI7 0781 | 565.1413 | 562.1327

321 584 9407 | 669 5149 | H84.6971 | 583.1233

33 1 585.8300 | 671 9394 | 583.6040 | 584.3448

J ] 6812188 | 7744402 | 680.8230 | 677.7228

35 | 681 2188 | 7744492 | 680.8230 | 677.7228

36 | 795 TTH8 | 9204330 | 795 4070 | 792.4481

-1
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Table 2.3: Natural Frequency coefficients of CCCC Plate
(Q =wa’ S B.a=20,1=03)

(BF): Beam Characteristic Functions [13]. (OP): Orthogonal Polynomial Functions 17 21],
{PF): Approximate Plate Characteristic Functions

i [ Qmr I o [ Qiery "

1 u8.327Y 98 3127 98.3158
2| 1273451 127 3067 127.3190
3 179.1018 179.2330 179.1186
41 2534523 2542781 253.3893
5| 256.0057 2509391 255 9664
6 | 2844828 2843143 | 284.3920
71 3336303 3332625 [ 333 35614
8| 3492175 39 8376 | 349.125H8

9] 4037561 A3 8006 | 403.4902
10 | 465.5656 493 896 1 465.4773
11 | 493.1461 5222200 | 493 0843
12 | 4959279 DT 1128 ] 495.3834
13 ] 5218123 HT0 2780 | 521.6735
1] o701 2100167 a70 2973
15 | 6083181 (G349 2682 607.9358
16 { 6394073 GY0 9853 648 9694
171 7301837 74902401 729 3058
18 | 809.1400 8130158 809.082]3
19 ] 8331249 842 3093 837.9508
20 | 8399053 800 4367 839 18906
2] BR7.3632 901.0146 886.8G76
221 95506714 958 2774 955. 1434
23 | 10446 1492 | 1060 2678 | 1045 0972
24 | 11542000 § 12009516 | 1153 3837
25 | 12040740 | 1421 5489 | 1203 9997
26 1 12333613 | 144507438 | 123831726
27 | 1283 1169 | 1485 4197 | 1282 5507
28 | 1351.6551 | 15427299 | 1351.0297
20 [ 144206698 | 1627 2410 | 1441.4501
30 1 15504562 | 1746 4591 | 1549.4016
J1 | 1677 8915 | 21348204 | 1677 8113
32 | 1707 3375 | 2157 4583 | 1707.1364
33 | 1757.3358 1 21959419 | 1756.7469
34 1 1825 8610 | 2250.2745 | 18252108
35 ) 10016 x| 28279805 | 1915 7159
36 ) 2024 1737 | 2436 4002 | 2023 0799




Table 2.4: Natural Frequency coefficients of CSCS Plate

(BF): Beam Characteristic Functions [13]. (OP): Orthogonal Polynomial Functions [17-21],

(PF): Approximate Plate Characteristic Functions.

(2= wa | [B,a =05y =0.3)

|
; L] Qnn |

Q.0n) |

Q. rr) |

23.8157

23 8156

23.8156

28 9521

28.9509

28.9516

39.0944

39.1993

39.0933

54 7H58

55.5439

54.764]

63.5346

63.5345

63 5345

69 3286

69 3270

69.3279

75 8656

7Y 6013

75 8635

79 532

95.1999

79.5307

91 6032

123 1504

94 6026

102 2188

12:3 8027

102 2462

114.8213

1292093

114.8177

122 9249

139.8654

122.9296

129.0997

155.2668

129.0978

139.6416

155 4471

139.6374

140.2604

202.7842

140.2558

16

154.8300

2032287

1541 8229

17

174 9019

209 1338

174.8917

18

199.99006

200 5843

199.9773

19

201 9818

220.3726

201.9816

20

208 3948

230.7279

208.3934

21

219.2218

23G.0564

219.2186

22

234 G283

279.8531

234.6228

23

254.7829

283.4602

254.7748

24

279 7946

351 4902

279.7837

25

300 7401

355.2032

300.7397

26

307.3233

360.5674

307.3205

27

J18.3866

369 7158

318.3800

28

334.0-144

383.1013

J54.0331

29

354 4220

423 8974

354.4054

30

379 5969

480.1141

379.5747

31

4102110

533 3515

419.2102

32

425 8007

538.7605

425.8884

33

437.083Y

547.5974

437.0791

34

452 8GI97

560 4294

452.8618

35

473.3-406

597 5292

473.3201

36

498 H477

618 0444

498.5322

29




Table 2.5: Natural Frequeney coeflicients of CSCS Plate

(BF): Beam Characteristic Functions [13)], (OP): Orthogonal Polynomial Functions [17-21],

(Q = wa? \/'_—[')"); a=10,r=0.3

(PF): Approximate Plate Charactenstic Functions

L T e [ Quor | Quper |
T | 289521 28 9500 28.9508
2| 54.7558 | 54 7432 | 54.7498
3| 69.3286 | 69.3270 | 69 3270
4] 94.6052| 94 5853 | 94 5960
5 | 102.2546 | 102.8070 | 102 2451
6 | 129.0007 | 129.2993 | 120 0955
T 1402771 | 140 G907 | 140.2597 |
8 | 154.8300 | 151.U387 | 164 8050
9 | 1704221 | 171.0812 | 170 4098
10 | 200.0165 | 200 3558 | 199.9668
11 | 2068575 | 200 5843 | 206 8331
12 | 208 3918 | 210 0GH4 | 208.3917
13 [ 2316283 | 235 GOS8 | 234 6088
14 | 258.7330 | 26% 3394 | 258.7188
15 | 2656614 | 280 8461 | 265.5892
16 | 279.8270 | 347.0370 | 270 7860
17 | 2000299 | 360 5674 | 293.9998
18 | 307 3233 | 882 1547 | 307.3170
19 | 334 0444 | 422 1557 | 334 0042
20 | 3414.9663 | 163.0189 | 314 9036
21 | 351.012:3 | 482 2228 | 351.8223
22 | 366.9757 | 488.9491 | 366.9599
23 | 3796310 | H33 8095 | 379 5502
24 | 4014581 | 538.7605 | 401.4237
25 | 425.8007 | 560.1252 | 425 8849
26 | 4304670 | 597 GOOT | 430.3851
27 1 4149178 | 599 0246 | 444.7903
28 | 452.8607 | 06594 3225 | 452.8416
20 | 458 5607 | 707 3249 | 458.4571
30 | 4985877 | 783 1579 | 498 5291
31 | 5303591 | 806 7633 | 530 1934
32 | 5363143 | 847 5589 | 536 2164
33 1 563 7312 | 558.0748 | 563 6431
34 | 6360146 | 906 G273 | 635 8178
35 | 646 7979 | 1000 2390 | 648.676G4
3G | 7039155 | 1133 7486 | 753 7677




Table 2.6: Natural Frequency coefficients of CSCS Plate
(Q = wa? fF,a = 20,v=0.3)

(BF): Beam Characteristic Functions [13], (OP): Orthogonal Polynomial Functions [17-21],
(PF): Approximate Plate Characteristic Functions.

(7 T Quom [ Qor | Quer |

1 54.7558 54.7431 54.7431
2 94 6052 94.5853 94.5853
3| 1548300 | 154.9387 | 154.7757
4 1704221 1 170 3499 | 170.3819
51 2068375 ] 206.6996 [ 206.7756
G| 2340283 [ 235 6088 | 234 5854
7| 2656614 | 2065 3603 | 2065.4212
& 3340144 | 345.2892 | 333.9558
9 340664 | 369.3756 | 344.753]
10 1 36698190 382.7547 | 366.9272
11 401 1808 | 403 5016 [ 401.3584
12 | 4440178 | 459 9605 | 444 4839
13 1 45208007 | 480 0255 | 452.808i
14 | 458.6056 | 537.9276 | 458.2396
15 | 5363816 ] 560 1292 | 536.0280

16 | 5637342 | 652 4280 | 563.4211
17 | 6361035 | 658 2058 | 635.3948
18 | 6429802 | 660 0856 | 642.9176
19 | 676 5006 | 690 9310 | 676.3539
20 1 7325905 | 745 6709 | 732.1520
2zl 7540218 | 821.5497 | 753.4817
22 | §09.0624 | 823 4848 | 808.6187
23 | 9083694 | 934.1839 [ 907.4863
24 | 008 1080 | 1087 5720 | 998.0407
25 | 10251602 | 1826 1608 | 1024.4605
26 | 1031 0897 | 1849 6368 | 1030.928)
27 {1086 5710 | 1889.7794 | 1086.0900
28 | 1162.1364 | 1946.3122 | 1161.6352
29 [ 12610011 | 2027.6714 | 1260.1009
30 | 1376.9120 | 2141.3066 | 1376.1081
31 | 1432.2621 | 3108 9249 | 1432.1920
32 1 1464 9030 { 3130.8542 | 1464.7322
33 | 15199301 | 3168 3489 | 1519.4734
34 | 1501 8960 | 3220 6894 | 1594 3580
35 ] 1693 5438 | 3293.7499 | 1692.4884
36 1 1808579 | 391178 | 1807.70060




Table 2.7: Natural Frequency coefficients of CCSF Plate

(2 =wa’, /-’1’-)’.0 =0.5,r=03)

(BF): Beam Characteristic Functions (13}, (OP): Orthogonal Polynomial Functions {17-21],
(PF): Approximate Plate Characteristic Functions, (BC): Beam boundary conditions,
(P C): Plate boundary conditions.

Ui ] Qer | Qor [ Qpese | Quqrrre) ]
15.8731 15.8125 158713 15.8224
20.1761 20,1485 20.1727 20.15206
290 I8RTR | 20.2004 29 1861 201707
43.2685 44 9489 43 2528 43.2208 |
50.4269 50 2539 50.4234 50 3326
51,9620 | 51 8534 54.0507 94.903H
62.4310 64 1723 62 4017 62 3891
64.19541 68 3711 04.1730 64.1442
78.405/06 70 7341 8 361 78.2553
10 86.7570 | 102 3x57 86 7045 86.6492
11 07.3844 | 104 7192 97.37TM4 97.2207
12 11047129 | 109 4608 10-1 7084 104 6075
13 §109.3531 | 118 9708 1093366 109 2813
14 | 118.7476 | 131.2971 118 7109 118.6769
15 | 121.9934 | 157 302] 122 0101 121.4149
16 | 133.2276 | 181 7645 133.1380 133 0358
17 1 152.36G28 | 186.5229 152 3236 152.1441
18 1 1780811 | 196 1275 178 1208 177.0861
19 | 178 7378 1 211.20 14 178.7320 178.6274
20 | 183.4420 | 222.4051] 183 4222 | 183.3634
21 1192.9524 | 234 40Kl 1029072 ] 1928707
22 | 207.6347 | 251 0919 207.5270 | 207.4227
23 | 226 9386 | 307 O7Hd | 22G.8730 | 226 6956
24 | 263.8176G | 335 OR1T 253.8062 1 25H2.5287
25 12725013 | 339 8GG4 | 272 40962 | 272 3885
26 | 277.2501 | 347 7941 27T 2285 | 277.1677
27 | 286 8447 | 360.2403 2RG.7942 | 286.7558
28 | 301.6802 | 379 Y486 | 301 5614 | 301.4564
20 1 31211271 [ 3R2 6990 ) 321 0437 | 320.8712
30 1 3489478 | 514 3071 310 (488 | 347.4594
31 [ 3860030 { 783 12131 385 9977 | 385.88%4
32 1 390.7797 | 786 6580 | 390 7567 | 390.6948
33 | 400.4296 | T93 84ATT | 400 3755 | 400 3358
34 | 415.3690 | b01.8298 | 415 2435 | 415 1382
35 | 434.9221 | v22 30021 434.8203 | 434 6580
3C | 463.4420 | 938 K720 1 463 505821 461 8178

Ol i ~H | U] ] G2 0O st

32




Table 2.6: Natural Frequency coefficients of CCSF Plate
= w(ﬁ\/%',a =10,v = 0.3)

(BF): Beam Characteristic Functions [13], (OP): Orthogonal Polynomial Functions [17-21],
(PF): Approximate Plate Characteristic Functions, (BC): Beam boundary conditions,
(PC): Plate boundary conditions.

[T Quury [ Quory 1 erBey | Qiprpc |
1 17.6153 17.5434 17.6141 17.5632
2 36.0465 36.0275 36.0442 36.0337
Kl 52.0664 51 8278 52.0637 51.9602
4 71 1950 710893 71 1871 71.1486
) 74.3492 74,4451 74 3490 74.3406
61 106G.2828 106 1416 106 2790 | 106.1642
71 109.4732 109 4995 109.4625 ) 109.4377
81 125 6530 1236576 125.6396G | 125.5876
91 132 8443 139.4961 132 8384 | 132.8259
10 | 164 3474 1640106 164 3231 | 164.2920
11| 167.5423 1743358 1675133 | 167.4445
12 180.2662 182.9510 1802616 | 180.1432
13 1 199.7017 202.4433 199.6838 | 199.6253
141 211.3736 229 InA2 201.3792 | 211.3588
15| 222.8536 238.0739 222.7959 | 222.6898
16 | 238.7260 2414117 238.6898 | 238.6562
17 | 245 38065 2004049 215.3856 | 245.2984
181 274.0043 305 7042 273.9993 | 273.8792
19 | 2903 4752 3224749 203 4536 | 293.3916
20| 297 8318 336.7827 297 7484 | 297.6267
21 | 300.6461 352.76589 3006316 | 300.4818
22 1 309 8255 383.09755 300 8248 | 309.7929
23 1 332 6683 3082468 33206217 | 332.5861
21 1 343 H480 44234960 343.5356 | 444.3252
25 | 375.9493 528.2703 3759160 | 375.7287
20 | 387 4877 T83.5378 J87.4822 | 387.3612
27 | 392 3943 797.8641 3922890 | 392.1621
28 | 399.3043 327 3634 399.2870 | 398.8192
201 406 9720 857 5691 4069470 | 4006.8830
30 | 44G.2578 875 5600 4462018 [ 446.1645
311 470 9253 BT 0851 470 8702 | 470.6656
321476 2044 938 2690 476.2827 | 475.5310
33 | 506 4068 951 9990 506.2823 | 506.1543
341 573 6491 1 1009 97006 573.6483 | 572.6216
351583 3921 | 11199981 580.3142 | 585.1070
36 | 69O THI8 | LASR.0086 690.7640 | 689.4954

33




Table 2.9: Natural Frequency cofficients of CCSF Plate
(Q=wa® JE.a=20r=0.3)

(BF): Beam Characteristic Functions [13], (OP): Orthogonal Polynonual Functions [17-21],
(PF): Approximate Plate Characteristic Functions, (BC): Beam boundary conditions,
(PC): Plate boundary conditions.

L]

Ui ] QBem | Quorn | Quersey [ Querrcy )
26.3372 20.2832 206 3361 26.3000
59.9984 59.7508 59 9958 59.8951

101.44068 101.4185 101.4408 101 4374

113.7198 113.4697 113 7162 113.5956

137 8695 137 7547 137 8500 137 8308

187 3407 189 7236 1873360 187.2092

193.5957 103.5239 193 5639 193 5293

258 6261 259 0093 258 618D 258 6159
9 268.0928 270 24706 268 0493 268 0043

10 280.8257 203 7041 280 8205 280 6914

11 203.4499 341 0240 203 4216 203.4093

12 349 5011 349 7210 349 4463 349.4247

13 361.8380 410.6997 361 7837 361.7315

14 394 1049 427 1807 J94 0981 393 YORT

15 425 1105 520 9633 425 3304 425.3027

16 475.0210 a0 T3 474 9500 474 BU28
17 494.9644 356 5180 494 9510 4494 9505

18 520 5297 611 5183 520 4235 520 3925

19 528.7990 6R9. 1082 H28.7590 H28.7333

20 584.3519 T87.4000 H84.2719 984.2179

21 634 7830 809 0795 634 6429 634.6098

22 660.7720 817.7389 660 6503 660.5690

23 757.2682 920 9194 757.1033 757 0005

24 810.5234 950.4208 810 5191 810.5100

25 843.6557 976 0358 843 6211 843 5938

26 873.2860 | 1000 3394 873.0693 872.9515

27 898 4955 | 1071 H372 RIN 4257 808 3667

28 9745184 | 1180 8204 974 4104 974.3156

20 [ 1071.2262 | 1203 7632 | 1071.0780 | 1070.9487

30 | 1188.0239 | 1547.7096 | 1187.8248 | 1187 6663

31 | 1205.1486 | 3400 055 1205 1384 | 1205.1302

32 1 1237.9140 | 3429.5479 | 12378725 | 1237.8156

33 | 1292.4721 | 3478 0306 | 12923888 | 1292 2530

34 | 1368.T27R | 3348 1373 | 136K 6005 1368 3596

35 | 1466.5601 | 3646 G334 1466 3893 1466.0224

36 | 1R85 6117 | 3UBL 7347 | 15853905 | 1584 8835

[+ 41 V] Hexd R4, NN U1 1
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Table 2 10: Natural Frequency coefficients of CCFF Plate

(BF): Beam Characteristic Functions [13), (OP): Orthogonal Polynomial Functions [17-21],
(SS): Simply Supported Plate Characteristic Functions {28}, (BC): Beam boundary Condi-

(Q=wa JF,0=10,y=10.3)

tions. (PF); Approximate Plate Characteristic Functions.

Li] 9asm |

Qor) | QpEBe) | Qss) |

1 6 9421 6.9243 6.9421 | 7.1631

21 240344 23.9228 24.0343 | 23.974

31 26.6808 26 5906 26 6796 | 26.687

4| 477848 47 6696 47 7810 | 47.753

5| 63.0388 62.8501 63 0362 | 62.967

6| 06h.8320 67 684 65 8335 | 65.772

71 85.514% 85 8559 §5.9092 —

81 88G5H1H B8 4713 88.6511 —

9 [ 121 9830 127 4420 1219818 —
10 | 124.5729 128 3541 124,5710 —
11 128 8410 131.5511 128.8334 —
121 1447989} 151.2246 144,7903 —
13 1 147 1953 154.0019 147.1858 —
I | 187.1207 193 7504 187.1019 —
15 | 190 0376 197 2119 160 0201 ——
16 | 200.7420 | 227 3046 200 7365 —
17 ] 203.7880 | 230 9771 203.7922 —
18§ 222.9307 | 247 8474 222 8317 —
19 ] 2256819 | 251 0373 225.6815 —
20 | 250 5352 | 262 866 250.4984 —
21 ] 266.1452 | 289 1050 260 1333 —
22| 2685798 | 291.8032 2068.5735 —
23 1 294.3761 3511255 2949 3726 —
24 1 302 2451 360 0075 302 2455 —_—
25 | 321 2552 | 453 4228 321.2453 —_—
26 | 3237377 | 7921026 | 3237317 ——
27 | 3288381 | 856.2597 328.8090 —
28 | 333 1346 | 860 7704 333.1133 —
201 3613014 | REZ2U7TT 364.3741 —
30 | 368.0601 BO8 2405 | 368.0512 —
31 | 4118141 | 9265823 | 411.8002 —
32 [ 4299462 | 958 3966 [ 429.9162 —
33 ] 434.3153 | 9929606 | 434.2914 —
34 1 513.4252 | 10446685 | 513.4120 —
35 [ 5199384 | 1123 96] 4 519.9468 —_—
36 ] 628.8309 | 1918 7910 | 6288720 ——

35




Table 2.11: 36t" Natural frequencies (Qg )

. - Rayleigh-Ritz analysis with plate characteristic functions.

® () - Rayleigh's method with sixth plate characteristic function

o [ ] - Rayleigh's method with sixth beam characteristic function

¢ { }- Rayleigh’s method with sixth plate charactenstic function using beam condi-
tions.

Support a=0.5 a=1.0 a=20
Conditions
505.7700 | 795.4070 | 2023.0799
cccce (504.9659) [ (793.0073) [ (2019.8637)
[505.0128] | [793.0440] { [2020.0512]
444.0475 710.399% 1776.1901
§S§SS (444.0475) | (710.3998) | (1776.1901)
[444.0475) | [710.3098) | [1776.1901]
498.5322 7H3.7677 | 1807.7060
CSCS (498.3362) | (752.5809) | (1805.0900)
[498.3376] | [7525919] | [1805 2309]
478.2781 TT45302 | 2009.2900
CCSC | (477.4783) | (772 3802) | (2006.6511)
[477.5215) | [772.4083) | [2006.7713)
174.6798 753 2283 1898 7193
CCSsS (474.0284) | (751 3037) | (1896.1136)
[474.0559] [ [751.3244] | [1896.2236)
489.8811 T12.0547 1601.0649
CCCF (487.6788) | (705.0033) | (1592.7272)
[487.8574) | [705.1433) | [1592.7616]
{486.8025} | {704.4846} [ {1592.4632})
461.8178 | 689.4954 1584.8835
CCSF (459.5047) | (682.6997) | (1577.4030)
[459.6713) | [6827438) | [1577.4276)

{458.6520)

{682.1268}

{1577.1600}

36
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Table 2.15. CCCC Plate Charactenstic Function Parameters,
2= wa"’\/w,a =0.5,r =0.3)
X(z) = coshprz — cospiz — @ {m/p2 sinhprz ~ sin pyz}

Y(y)=coshqpy—cosqiy — 7 {@1/q2sinh oy —sinqr y }

[(mlo]l m [ p | o [ o @ |t ]
1] 1| 46041 | 5.1895 ] 1.1146 || 3.8359 | 10.6032 | 2.1641
7.8109 | 8.1504 | 1.0441 || 3.4967 | 19.4850 | 5.5724
10.9742 | 11.2120 | 1.0216 || 3.3791 | 28.3240 | 8.3822
14.1243 | 14.3076 | 1.0130 || 3.3196 | 37.1953 | 11.2047
43333 | 64116 | 1.4748 | 7.3651 | 12.2602 | 1.6647
7.6995 | 8.9890 | 1.1678 || 6.9413 | 20.3275 | 2.9285
10.0143 | 11.8393 | 1.0847 || 6.7416 | 28.8968 | 4.2864
14.0870 | 14.8121 | 1.0515 || 6.6321 | 37.6260 | 5.6733
40743 | 8.0984 | 1.9865 || 10.7000 | 14.4433 | 1.3498
75534 | 10.2483 | 1.3560 || 10.3144 | 21.6376 | 2.0978
10.8273 | 12.8219 | 1.1842 || 10.0766 | 20.8156 | 2.9589
14.0290 | 15.6354 | 1.1145 || 9.9319 | 38.3278 | 3.8501
3.8801 | 10.0263 | 2.5838 || 13.9443 | 16.9312 | 1.2142
7.4036 | 11.8020 | 1.5042 || 13.6239 | 23.3194 | 1.7117
10.7261 | 14,0901 | 1.3136 || 13.3804 | 31.0397 | 2.3198
"13.9571 | 16.7273 | 1.1985 || 13.2155 | 39.2759 | 2.9720
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Table 2.16: CCCC Plate Characteristic Function Parameters.

(Q=wa? /F,a=10,y=03)
X(z) = coshpmz - cospyz — 0 {p1/m sinh 2z — sinpyz}
Y(y) =coshqpy—cosqy—~7 {g1/q@sinh @y —sinq y}

(mlo] m [ p [ o [ @ [ @ 1 t ]
111 43121 6.5261  1.5090 4.3122 6.5252 1.508‘8_
211 7.6902 9.0630 | 1.1788 3.8585 | 10.3001 | 2.6693
3111109100 11.8859 | 1.0894 3.6321 | 14.5105 | 3.9950Q
4 11 14.0852 | 14.8367 | 1.0534 3.5098 | 18.8469 | 5.3697
112 3.8583 | 10.3026 | 2.6701 7.6903 9.0625 | 1.1787
212 7.3866 | 12.0012 | 1.6247 7.3868 | 11.9989 | 1.6244
31 2] 10.7156 | 14.2308 | 1.3280 7.1358 | 15.7130 | 2.2020
4| 2 13.9549 | 16.7628 | 1.2012 8.9607 | 19.7570 | 2.8384
113 3.6321 | 145121 | 3.9955 10.9100 | 11.8858 | 1.0894
213 7.1356 | 15.7158 | 2.2024 10.7157 | 14.2300 | 1.3280
31 3] 105088 | 17.4516 | 1.6607 || 10.5089 | 17.4500 | 1.6605
4| 3| 13.7951 | 19.5560 | 1.4176 || 10.3340Q | 21.1425 | 2.0459
114 3.5098 | 18.8478 1 5.3700 14.0852 | 14.8367 | 1.0534
21 4 6.9606 | 19.7593 | 2.8387 13.9549 § 16.7625 | 1.2012
314 10.3340 | 21.1445 | 2.0461 13.7951 | 19.5552 | 1.4175
4] 4 ) 13.6409 | 22.8978 | 1.6786 13.6410 | 22.83964 | 1.6785
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Table 2.17: CCCC Plate Characteristic Function Parameters.

(R =wa® f", =20,v=0.3)

X(z) = coshprz —cospyz — o {m/p2 sinh prz — sinpyz)

Y(y) =coshqy-cosqry~7 {qi/psinhqay—~sinq y}

n n m o a_ | @ | 1t ]
TT1 11 38357 | 106053 | 2.7647 || 4.6041 | 5.1893 | 1.1146
211 | 7.3649 | 12.2626 | 1.6650 || 4.3335 | 6.4108 | 1.4745
31| 10,6000 | 14.4443 | 1.3400 || 4.0745 | 8.0972 | 1.9861
2] 1] 13.0443 | 16.9316 | 1.2142 || 3.3802 | 10.0251 | 2.5834
T2 | 34967 | 194819 | 5.5138 || 7.3109 | 8.1504 | 1.0441
2172 | 60411 | 20.3325 | 2.9293 || 7.6995 | 8.9887 | 1.1677
3121 10.3143 | 21.6414 | 2.0982 || 7.5535 | 10.2475 | 1.3567
41 2| 13.6238 | 23.3219 | 1.7119 || 7.4037 | 11.8017 | 1.5940
T1 3| 3.3700 | 28.9312 | 8.3845 || 100742 | 11.2120 | 1.0216
513 | 6.7415 | 28.8095 | 4.2868 || 10.9143 | 11.8393 | 1.0847
313 | 10.0765 | 29.8187 | 2.9502 || 10.3273 | 12.8217 | 1.1842
3| 3| 13.3803 | 31.0427 | 2.3200 || 10.7261 | 14.0897 | 1.3136
1| 4] 3.3196 | 37.1958 | 11.2047 || 14.1243 | 14.3074 | 1.0130
9141 66321 | 37.6260 | 5.6733 || 14.0871 | 14.8106 | 1.0514
31 4] 99319 | 38.3275 | 3.8500 || 14.0313 | 15.6012 | L1119
| 4] 4 [ 132155 | 39.2765 | 2.9120 || 13.95(1 | 16.1273 | 1.1985
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Table 2.18. CSCS Plate Characteristic Function Parameters.
Q= waz‘/%,a =0.35,r=0.3)

X(z) = cosh p2z — cosprz — o {p1/p: sinh p2z —sin pyz}

Y(y) =sinhqy+ Tsinquy

[(mIo] m ] p o T o [ & [ _r ]
1] 1] 4.6204 | 5.1267 ] 1.0965 || 3.1416 | 10.3787 | -0.1313E+21
2 | 1| 7.8145 | B.1242 | 1.0402 | 3.1416 | 19.4292 | -0.2023E+24
3 | 1] 109755 | 11.1981 | 1.0202 || 3.1416 | 28.2981 | -0.1438E+28
4| 1| 14.1249 | 14.2986 | 1.0123 || 3.1416 | 37.1800 | 0.1437E+32
1| 2| 4.3682 | 6.2306 | 1.4207 || 6.2832 | 11.6549 | 0.2518E+22
2 [ 2| 7.7109 | 8.8992 | 1.1544 || 6.2832 | 20.1234 | 0.5877E+24
3| 2] 109101 | 11.7883 | 1.0796 || 6.2832 | 98.7977 | 0.6536E+28
4| 2| 14.0898 | 14.7737 | 1.0485 || 6.2832 | 37.5669 | 0.4217E+32
1| 3| 4.1088 | 7.8292 | 1.9039 || 9.4248 | 13.5378 | 0.4933E+22
2 | 3| 75709 | 10.0862 | 1.3323 || 9.4248 | 21.2414 | 0.1612E+25
3| 3 | 10.8359 | 12.7212 | 1.1740 || 9.4248 | 29.6087 | -0.2486E+20
4| 3| 140357 | 15,5375 | 1.1070 || 9.4248 | 38.2006 | -0.1339E+33
1] 4] 39070 | 9.7068 | 2.4842 || 12.5664 | 15.8254 | 0.8152E+23
2| 4| 74234 | 115786 | 15598 || 12.5664 | 22.7315 | 0.8138E+26
3| 4 10.7377 | 13.9375 | 1.2080 || 12.5664 | 30.7067 | -0.6145E+29
4] 4| 130681 | 16.5549 | 1.1852 || 12.5664 | 30.0678 | -0.2628E+33
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Table 2.19: CSCS Plate Characteristic Function Parameters
(@ =wd® /B,a=1.0,v=03)
X(z) = coshprz —cospyz ~ 0 {p1/p> sinh paz —sin py x)
Y (y) =sinh g2y + T sinqqy

M pp | o | & | e [ 1t 1]

43682 | 6.2306 | 1.4207 || 3.1416 { 5.8275 | -0.1483E+20 |}

7.7109 | 8.8992 | 1.1544 || 3.1416 | 10.0617 ] -0.5017E+20

109191 | 11.7883 | 1.0796 || 3.1416 | 14.3989 | -0.7317E+22

140898 | 14.7737 | 1.0485 || 3.1416 | 18.7834 | 0.1472E+24

39070 | 9.7068 | 2.4842 || 6.2832 | 7.9127 | 0.5968E+20 |

7.4234 | 11.5786 | 1.5598 || 6.2832 | 11.3657 | 0.1886E+22

10.7377 | 13.9375 | 1.2980 || 6.2832 | 15.3533 | -0.2640E+23

13.9681 | 16.5549 | 1.1852 || 6.2832 | 19.5339 | -0.1727E+25

3.6592 | 13.8218 | 3.7773 || 9.4248 | 10.5439 | 0.2474E+21

7.1678 | 15.1338 | 2.1113 || 9.4248 | 13.2952 | 0.3875E+22

10.5349 | 16.9893 | 1.6127 || 9.4248 | 16.8292 | 0.1327E+-24

13.8139 | 19.1958 | 1.3896 || 9.4248 | 20.7208 | 0.6503E+25

3.5260 | 18.1180 | 5.1384 || 12.5664 | 13.4060 | 0.7254E+22

6.9845 | 19.0948 | 2.7339 || 12.5664 | 15.6324 | 0.6721E+23

163577 | 20.5696 | 1.9859 || 12.5664 | 18.7172 | -0.3816E+24

»aww.&mmwawww»wwq

.b.b.n.hwwuuwwwwwwww!

13.6610 | 22.4154 | 1.6408 j| 12.5664 | 22.2809 | -0.5960E+25

|

—
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Table 2.20: CSCS Plate Characteristic Function Parameters.

Q= wa'-’\/'-g,a =20,v =0.3)
X(z) = coshppz — cosp1z — o {p1/p2 sinh ppz — sinp1z}
Y(y) = sinh @y + T sinq1y

[mlol m T m [ _jl___lu_I____J_____J
1] 1] 3.9070 ] 9.7068 | 2.4842 || 3.1416 | 3.9563 | -0.2283E+19
211 74234} 11.5786 ] 1.5598 3.1416 | 5.6829 | -0.1284E+20
3] 1] 10.7377 | 13.9375 | 1.2980 3.1416 | 7.6767 | 0.2448E-+20
4| 1] 139681 | 16.5549 | 1.1852 || 3.1416 | 9.7669 [ 0.1980E+21
12| 3.5260 | 18.1180 | 5.1384 6.2832 | 6.7030 | 0.1780E+20
2|2 6.9845 | 19.0948 | 2.7339 6.2832 | 7.8162 | 0.5420E-+20
32| 10.3577 | 20.5696 ] 1.9859 8.2832 | 9.3586 | 0.2534E+21
4] 2) 13.6610 | 22.4154 | 1.6408 6.2832 | 11.1405 | -0.1730E+21
1] 3| 3.3928 | 26.8723 | 7.9205 9.4248 | 9.7016 | 0.1065E+21
213 6.7656 | 27.5025 | 4.0650 94248 | 10.4850 | 0.2332E+21
3131 10.1061 | 28.5087 | 2.8209 9.4248 | 11.6664 | 0.7601E+-21
4] 3] 13.4111 | 29.8407 | 2.2251 9.4248 | 13.1319 | 0.3291E+22
14§ 3.3275 | 35.6985 | 10.7284 || 12.5664 | 12.7719 | 0.3847L+22
2 (4] 66468 | 36.1692 | 5.4401 || 12.5664 | 13.3664 | 0.6972E+22
3141 9.9515{ 36.9099 } 3.7090 || 12.5664 | 14.3080 | 0.1788E+23
4] 4| 13.2380 ) 37.9283 | 2.8601 || 12.5664 | 15.4723 | 0.5727E+23




Table 2.21: CCSF Plate Characteristic Function Parameters.

(Q=wa*,/F,a=05,v=03)

X(z) = cosh prz — cospyz - ¢ {p1/p2 sinhp.z —sinpiz}

Y(y) =coshqpy—cosqry~1 {qi/qpsinhgry—sinq y }

mlin|l m | m o I & | @ [ -~

1] 1] 3.0505] 3.7652 ] 0.9541 |] 1.4650 ] 9.7201 | 6.6339
91 1| 7.0886 | 6.8097 | 0.9607 || 1.1499 | 18.5642 | 16.1447
3 [ 1 [ 102274 | 9.8811 | 0.9661 || 0.7292 | 27.4370 | 3 .6252
4 | 1| 13.3480 | 13.4486 | 1.0075 || 4.5494 | 36.6061 | 8.0464
1] 2| 3.8343 | 4.6194 | 1.2050 || 4.8466 | 10.7065 | 2.2091
212 | 7.0410 | 7.4409 | 1.0568 || 4.7354 | 19.1124 | 4.0361
3] 2 | 10.2000 | 1C 4098 | 1.0206 || 4.6345 | 27.8142 | 6.0016
4| 2 | 13.3240 | 14.0845 | 1.0571 || 7.8378 | 37.1542 | 4.7404
1] 3| 36870 | 6.0762 | 1.6480 || 7.9865 | 12.3767 | 1.5499
213 | 6.0707 | 8.4883 | 1.2177 || 7.9714 | 20.1354 | 2.5260
33 | 10.1607 | 11.2194 | 1.1042 || 7.9026 | 28.5322 | 3.6105
4 [ 3 [ 13.0583 | 15.0027 | 1.1358 || 11.0553 | 37.9538 | 34331
11 4| 3.5656 | 7.8985 | 2.2152 || 11.0917 | 14.5153 | 1.3087
24| 68919 | 9.8873 | 1.4946 || 11.1384 | 21.5471 | 1.9345
3] 4 | 10.1111 | 12.3436 | 1.2208 || 11.1047 | 29.5615 | 2.6621
4| 4 | 13.2668 | 15.7387 | 1.1863 | 14.2415 | 38.9928 | 2.7380
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Table 2.22: CCSF Plate Characteristic Fun:tion Parameters.
(@ =w?, /B, a=10,r=0.3)
X(z) = coshprz = cosprz — 7 {p1/p2 sinhprz —sinp 2}
Y(y) = coshqzy —cosquy— 7 {q1/qasinh g2y ~sinq1 y }

(mlol m [ m [ o [ & | @ [ 7 |
3.0642 | 3.6750 | 0.0282 || 1.6606 | 5.0846 | 3.0294
7.0069 | 6.7054 | 0.9448 || 14774 | 9.3819 | 6.3491
10.2349 | 9.7410 | 0.0517 || 1.3227 | 13.7780 | 10.4162
13.3737 | 12.7987 | 0.9570 || 1.1638 | 18.1088 | 15.6378
3.6689 | 6.3007 | 1.7174 | 4.8233 | 6.7486 | 1.4023
8.0601 | 8.6611 | 1.2444 || 4.8490 | 10.4369 | 2.1525
10.1550 | 11.3428 | 1.1170 || 4.7981 | 14.5223 | 3.0207
13.3209 | 14.1709 | 1.0638 || 4.7399 | 18.7666 | 3.9593
3.4692 | 10,2001 | 2.9428 || 7.9113 | 9.1709 | 1.1590
5.8059 | 11.8132 | 1.7357 || 7.9832 | 12.1737 | 1.5249
10.0484 | 13.9672 | 1.3900 | 7.9960 | 15.8464 | 1.9818
13.2454 | 16.4117 | 1.2391 || 7.9738 | 10.8197 | 2.4856
3.3705 | 14.4683 | 4.2927 || 11.0272 | 11.9434 | 1.0831
6.6882 | 15.6007 | 2.3325 || 11.0889 | 14.3678 | 1.2957
9.9469 | 17.2879 | 1.7380 || 11.1297 | 17.6063 | 1.5819
13.1638 | 19.3463 | 1.4697 || 11.1387 | 21.2699 | 1.9096 |

8

L3 B - EC) R KT E0Y Y FXY R FICY RUey Uy Uy s | -1
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Table 2.23: CCSF Plate Characteristic Function Parameters.

@ =ua2\/%,a =2.0.v =0.3)

X(z) = coshprz — cospr & — o {p1/p2 sinh prz ~sin g1z}

Y(y) =coshqy—cosqry— 7 {q1/q2sinhq2 y —sinqy y }

48

(m[ol m | m» | o | & | @& | 7
11 1] 4.0504 | 3.1446 | 0.7792 || 1.7884 | 3.0053 | 1.5450 |
91 1| 7.1147 | 6.4874 | 0.9118 || 1.6691| 4.9241 | 2.9137
31 1102463 | 9.5506 | 0.9322 || 1.5693 | 7.0348 | 4.4749
3] 1]16.5218 | 15.6076 | 0.9447 || 1.4056 | 11.3907 | 8.1035
11 2| 3.4503 | 10.8210 | 3.1363 | 4.7442 | 5.2786 | 1.1240
21 2| 6.7879 | 12.2876 | 1.8102 || 4.8201 | 6.6563 | 1.3844
3] 2100342 | 14.3755 | 1.4327 || 4.8537 | 8.3852 | 1.7283
4| 2132343 | 16.7769 | 1.2677 || 4.8502 | 10.2861 | 2.1200
1131 3.3101 | 19.4580 | 5.8784 || 7.8706 | 6.1932 | 1.0404
31 31 6.5974 | 20.3035 | 3.0775 || 7.9094 | 9.1218 | 1.1530
31 3| 9.8523 | 21.6220 | 2.1946 || 7.9517 | 10.4620 | 1.3156
2] 3| 13.0775 | 23.3194 | 1.7832 || 7.9818 [ 12.0614 | 1.5111
11 4] 3.2561 | 28.3208 | 8.6979 || 11.0038 | i..2335 | 1.0209
21 4| 65047 | 28.8822 | 4.4402 || 11.0263 | 11.9155 | 1.0807
3| 4| 9.7408 | 29.7935 | 3.0586 || 11.0567 | 12.9637 | 1.1725
|4 | 4 [ 12.9622 | 31.0223 | 2.3933 || 11.0873 | 14.2887 | 12887
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Chapter 3

ELASTIC RESPONSE OF BEAMS AND PLATES TO
IMPULSIVE LOADS

In the last chapter the natural frequencies and mode shapes of beams and
plates were diseussed. When the response is in the linear elastic range, it can be
expressed as the sum of responses from individual normal modes of the structure.
The natural {requency and normal mode results of the previous chapter are used
in normal mode analysis 1o evaluate the response of these structures to impulsive
loads, in this chapter. Normal mode analysis is meaningful only if the structure is
clastic. In reality. structures may have geometric or material nonlinearities, and the
structural deflections may cross into plastic range depending on the intensity of the
impulse loading. However, linear response analysis in the elastic range using normal
mode analysis provides information that can be useful in comparing the behaviours

of dilferent structures under impulsive loading.
Impulsive loads are of short duration and are generally studied in terms of
standard pulse shapes as shown in Fig. 3.1. Actual impulsive loads may have arbitrarv

shapes and hence response to such loads may be quite difficult to evaluate.

3.1 BEAM RESPONSE

In order to study the response of a bearn to impulse loading, the equation of

motion of the beam with external load f(ax,t) is written as,

aly 9%y
E]"éfﬁJr"lW:f(‘l"t) (3.1)

By assuming a separable solution of the form,

y(r.t) = i),(l) () (3.2)

1=0

T3



where 1, and g, are functions of space and time respectively,

Substituting (3.2) in (3.1).

= 01);(7) =y - i 01‘11(” B i
E[Zq,(f) ] + mL),(.z) T o t)

1=0 1=

Multiplying by Y)(x) and integrating over the length of the heam.

0‘) ‘ g (t)
/:E[Zq, Y (0)da +-[m;),(.l) B (l: = ff (e Y ()l

1=0

If Y;(r) is a normalized function. then by orthogonal property of modes [31].

§
/JE[O} 1)) Wde = lay, and
)

f;n)}(.t‘))}(.r')tl.r = u, ty =004 (:3.3)
0

Therefore. the equation ~f motion can be written as,

, Q(
q,(f)+wq(2‘) 2(: r=1.2.3....n
11

where Qu(t) = [ Y;(x) f(@, t)da is the generalized foree associated with the genervalized
coordinate ¢,(t). The cquation of motion is now expressed as n munber of uncoupled

equations, each corresponding to one degree of freedom.

The general response of a undamped SDOY systemn is given in terms ol the

convolution integral as [31],

G, (t) = o / Qi) sinw, (f = T)dT + ¢ coswyl 4 f)ﬂ sin wyf (3.1)

1
where ¢, = q.(0) and ¢, = ¢(0) are the initial conditions. Using this in equation

(3.2),

' ’.
ZY [ Q) T)sinw (t = T)dT + ¢y coswit | Do iy ! (3.5)
(L“.Aq “ '.A)



Generalized load Q,(t) in the case of a half sine pulse of magnitude F, and ;- °If
period 7, acting at a distance ¢ from the left supported end of a simply supported

beam, can be obtained as

Q1) = /F,,sm b — Y ()dr

i

Fl,sm - X((') fort<r (3.6)

Using such an expression in (3.5) along with other expressions like w, and
Y (), which depend on the beam boundary conditions, leads to the general form of

beam response Lo various pulse forcing functions. In non-dimensional form,

B Ay L N
¥r= F{;(/ﬂ)‘ [Yi(e)] (M) [n:(T)]} (3.7)
where o -
}'*Z,lj-—Fl—)ﬁ'; T = mt

QF = 41, and (1. Y;(x), and Yi(c) depend on the boundary conditions of the beam ,
and ris the point at which the response is to be evaluated due to a force at c. 7(t) is
the solution of convolution integral, (sm pt — ( )smw (t)) for a half sine pulse load,

where p= 7/7.

The response of a simply-snpported beam and cantilever beam are studied for
the pulse forcing functions shown in Fig. 3.1, and the responses at the center of the
beam span with the load acting at the center are plotted as shown in Figs. 3.2-3.7.
The expressions for /4 and Yy(r) are available in literature [13], and the response to

various pulse loads in case of SDOY system is listed in [1].

It is observed that the convergence of the response for different pulse loads
occurs alter l,aking contributions from varying number of modes for a given time step
as in Fig. 3.2, In case of step input the response converges to 10~5 accuracy after 58
modes when the time step is close to the fundamental period, T} = 0.63. Likewise
there are larger number of modes contributing at time steps close to multiples of

fundamental period. The percentage error plotted also shows a peak at these points.
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This shows that since a large number of modes contribute to achieve the required
accuracy in response, the Ravleigh-Ritz results using only six modes cannot give
required accuracy at these points. However, it is observed that at maxinun response
the number of modes required for the same level of convergence is leas. .\ sinunlar
study for the steady state response sinusoidal excitation also shows a similar trend,
but at hall period 7/2 of force. The convergence of response s much faster afte
removal of the pulse loads. These comparisons are available m exact solution only
and are not available for Rayleigh-Ritz results with beam orthogonal polynomials, as

chey are obtained upto the sixth frequency only.

It is hard to find reports on response evaluation using the Ravleigh Rits
method in literature . In order to establish this method, the Rayleigh-Ritz resulis
with orthogonal polynomials for the simply-supported beam are used to evaluate the
responsc. It can be seen that the average dilference in response without consider
ing sudden peaks at natural periods and its multiples is between 2 5% among, exidt
solution and Rayleigh-Ritz results using orthogonal polynomials. Figs. 3.4 and 3.5
show the comparison between exact solution with convergence upto a relative error
of 10~® and those obtained using orthogonal polynomials. Since only six modes can
be used for comparison of Rayleigh-Ritz method using orthogonal polynomials, the
Figs. 3.4b and 3.5b show the comparison between the response by these and exact

solution when only contributions from six modes are considered in the response.

Similar trend in results is found in response at the free end of a cantilever
beam with the pulse load acting at the tip. The plots of percentage difference m
exact solution and the Rayleigh-Ritz solution using orthogonal polynomials is shows
in Fig. 3.7. Here also it can be seen that the error at the natural period of the heam

is larger than those at other points as shown in Figs. 3.7a and 3.7¢.

The reason for more modes contributing at the minimum response could be
attributed to the fact that the response heing minimum. even higher modes contribute

considerably to the response as compared to the lower modes. But in the case of




maximum response the Jower modes contribute a larger share to the total response
and the higher modes very little, and hence the faster convergence. At maximrm
1esponse the accuracy is good with contributions from minimum number of modes,
therelore, it is suflicient if only those modes are used for response evaluation since

the objective of design is to limit the maximum displacements,

For an undamped system the response does not die out even aiter long duration
of time. However, if some amount of damping is present in the system, the response
after large T will be smaller, indicating decay in response. This 1s due to the fact that
the system falls into fundamental mode of vibration after the initial energy provided

by the force is lost due to absorbtion of energy by the damping.

3.2 PLATE RESPONSIE

In the case of beams, the solutions for the natural frequencies and natural
modes are readily available. However, in the case of plates. the Rayleigh-Ritz method
is used for obtaining the natural frequency and mode shapes as described in chapter 2
The eigenvalues and cigenvectors obtained by the Rayleigh-Ritz method are used in
response calculations by normal mode summation. Since these values are estimated.
the comparisons with exact solutions is carried out in the case of simply-supported

plates only.

321 RESPONSE TQ PULSE LOADS

The equation of motion of a rectangular plate is given by [29],

/)lza + D[u"" + 20" + W] = f(z,y,t) (3.8)

Ot
The solution of this equation can be assumed in separable form as,
wr,y.t) = ZZ(],,,,, (v) Y (y) (3.9}

m n

As in case of beams. when the equations are reduced by orthogonal properties

-1
-1




of modes.

. : ( mnlt
f]mn(f) + <-"‘yznuqmn(f) - ‘J—J(—)' (-‘IU)

Mgy
where

an(f) = /:I /:’ ‘\’I(J'))')(!/)f(-l'.,l/.f)(].l'll‘l/

The general response is similar to equation (3.1), and is given by,
1 { .
(Imn(f) = — A (Jmn(T) SIN Winn (f - T)(IT + (‘]mm\)u Cos8 u.‘,,,,,f

amn 1) w"l n

+-(lm—"gl(lsinw,,,,,z‘ (3.11)
wmn

This equation is reduced to a non - dimensional form as,

~O (28] l . . . . e
We=F {Z S —— [N Yl d)] [Nl 0)You( )] lumu(f)l} (3.12)

2
m=0 n=0 (Qnm )

Db D
1 — e ——- = ——
W= Fa® T v pha’ f

Qmn = w,,l,,a?‘/ph/D, and X, (c)Y,(d) and X,,,(.)Y,(y) depend on the boundary

conditions of the plate, the point of loading, and the point of response evaluation

where

respectively. The factor Fis 4 for a simply-supported beam. (7)) is a function rep
resenting response to various pulse loads as given in Shock & Vibration Handbook|[1]
for a single degree of freedom system , but with the contributions from all modes as

a sum.

For a simply-supported plate where there is an exact solution available for
0mn and mode shapes, the convergence of response is checked for a relative accenracy
of 1073, It is seen that the response converges with varying number of modes con
tributing to the total response at different steps of time as shown in Fig. 3.5 ‘The
fundamental period of a simply-supported plate is 0.318 in non - dimensional nnit of
time. In the case of a step input the plate responds with this period and it is seen that
the contribution of the modes for convergence is varying from 11 to all of 625 (25,25)
modes tried. As in the case of heams, at the time steps of fundamental period and ity

multiples the response takes contributions from larger number of modes to converge.
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At the even numbered multiples of fundamental period, the modes summed are even

larger than in odd nimbered periods.

In the case of pulse loads involving period 7 =1 it is seen that the convergence
is much Faster in the transent portion of response. but in forced phase it requires

maximnin number ol modes to aclieve required convergence at certain points.

The comparisons between exact solution and the results obtained with orthog-
onal polynormials is compared in case of sitaply-supported plate. The response by
otthogonal polyvnomials is generally higher than that obtained by exact solution. The
response by nsing the Rayleigh-Ritz results is obtained by summing all 36 modes
(6 x 6). This is compared with exact solution in Figs. 3.9-3.10. Figs. 3.9b and 3.10b

show the percentage difference in orthogonal polynomial results and exact solutions.

Results compared between BCFEF and APF do not show any variations as they
are almost the same, only the natural frequencies being little better than the former.
This is due to the sine term dominating in the shape function, the hyperbolic sine
term being negligible. However, orthogonal polynomial results show larger difference

about 15%. Comparisons in other cases are not carried out except in case of CCFF

plate, where the results from BCF and APF match closely.

3.2.2 RESPONSE DUE TO A FALLING MASS

In this section, a simply-supported plate is analysed for its response due to a

impact force excited by a falling mass.

The potential energy of a vibrating plate due to deformations is given by,

P L) (B e
B j:‘u‘-hﬂ 2 [)‘ o |\ Oa? Oy? “ Ox? Oy?
0w \*
21 — 3.1:
+2(1 — v) (a.ray) dxdy (3.13)

where D = ER*/[12(1 = 1)] is the flexural rigidity of the plate.

)




The kinetic energy of a trans\'m'svl_\' vibrating plate will be

= /)- // dtdrdy (3.1

where ph is the mass per unit area. From the above energy expressions. it is possible

to obtain the partial differential equation for the plate in the form

Jwe
D [zd”’+2ﬁ"’ + i } + /”"1’,‘ =0 (3.15)

The deflection of a simply-supported plate can be espressed as,

ma.
wir. y,t) = Z L‘;m AUEk sm”;“ e 1) {4.16)

m=1 n=I

which satisfies the houndary conditions exactly.
Substituting this solution in the differential equation (3.15) we obtain,

mw\? nm\?*
(-—-—-) + ( 7 ) w=10 (3.17)

The solution of this equation can be written as,

D
w4+ —
ph

Gun () = CL) sinwpnt + C42)

mn €O Wyt (3.1%)
4
Fid ) v .
where Wy, = ‘/;)17);;; (m* + o?n?)

The deflection of the plate can he written as,

mmro Nwy

] 2 . '
w(z,y,t) mz: 1; (C,‘,,,’,smw,,,,,f + C',‘,,,’,(usu,,,,,f)sm sy (4.1
At t =0,
Y mwr o, nmwy .
w(a,y,0) = E ZC'("')‘S]“ sin = (:3.20)

m=1 n=|]

The response of a plate due to itmpact of an object of known mass falling from
a height is obtained by using the principles of 1elative velocity and conservation ol

momentum, before and after impact.
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. . . 1y . . e e, .
Fhe coefficient C) s evaluated for a case with initial conditions for the plate

at a distance C'=c/¢ and D = d[b using delta function as.

l AAVAREER
= S TS i 0
(mn - (‘\/ \ /l/)!l/l) T Csmn ) (3

‘.
s

The respouse equation (3.19) reduces to,

S AVAR mmro Ny
w(r.y.t) = sin s nr Dsin — S11 = 3.0
( ‘U ) ];:: 'I:l u‘/.”)” (l\[‘*‘ /)]I(Ib) l 4 1) ( )

where M = Mass of the falling object. V) = velocity of the object (cateulated from
the known height from which it fall<). Cand D are the coordinates of focation of the

fall of & mass on the plate.

In non - dimeunsional form.

. wwt D& ! . . mIr . oumy
T = 55/ = P ————sin maC'sin nw D s —— sin == sinwy,, !
8Via2\[ ph A et ptn (1 4 9) a b
(3.24)
where 3 = phab/Al.
2
«a o ) )
Honn :—Umn;"_-—l ’5 = {4 a'n )
It can be written in the form,
L, w & 8H* _ . _Hme  onmy
W= — = e sl maCsinnm Dsin in == St Wyl
a m=1 n=1 [linni (I + #) a /

(321
N . — H . * 1§
where jlyn) = L'M”“ and H* = oo
This is the non-dimensionalized plate response due to a falling mass which is
plotted against ' for different values of 1) and mass ratio as m g 3.1, 'The tota)l
response of the plate is calculated upto rn = n = 25 Fig. 3.12 gives the plot of
plate response for different values of location and velocity factors. It can be seen

that the response at the center (C'= 0.5. D = 0.5) is maximura. The response varies
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Hearly with velocitn, 1) and mass 1atio. 4. There is sudden inerease in response at
the vicinity of unpact point The response is also found to be directly proportional

to the veloaty (height of faily and mass ratio.

I thae chapter response exalnation of beams and plates is carried ont In
not el mode analysis using, the natural frequencies and modes estimated by Rayleigh-
Ritz method. The response of a simplyv-supported plate due to a mass falling on the
plateis also studied. “The next chapter deals with rigid plastic analysis of a cantilever

beam due to impact joud.
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Chapter

PLASTIC ANALYSIS OF STRUCTURES TO IMPACT
LOADING

In the previous chapter the elastic response of beams and plates using notmal
mode analysis was presented. When the impact is of a larger magnitude the response
of these structures will exceed the elastic limit. Plastic analysis is needed to analyse
structures due to high velocity impacts, and for steel on steel this limit s 0.3 meters
per second. Under impact loads plastic deformations within certain limits is allowed
to dissipate the energy imparted. In this chapter a rigid plastic analysis of a beamis
carried out to find the response due to a rectangular pulse foreing function. Designoof
structures for impact loads generally involve allowance for plastic deformations within
certain limits. The total impulse response involves three stages, first the carly time
response by theory of wave propagation, secondly the long term response cansing, the

permanent deformations. and third. the failure of the structure.

Theory of plasticity has to be applied to study the hehavior of any structwre
subjected to impact loads when the stresses and strains generated by such loads
cause deformations which either partly or fully yicld the structure. This is done
by establishing equations of equilibrium and upper and lower bound theorems, ‘The
idealized stress strain diagram shown in Fig. 1.1 gives different cases of material
behavior.

a) Perfectly Flastic.

b) Rigid, perfectly plastic.

¢) Rigid. linear work-hardening,.

d) Elastic, perfectly plastic.



¢) Elastic, linear work-hardening.

The analysis of a rigid-plastic fan blade modeled as a cantilever shown in
Fig. 42 subjected to transverse foree at the tip along with centrifugal forces due to
rotation is carried out, When a transverse impact acts at the tip of the cantilever. a
ngid plastic cantifever will bend at a diserete plastic hinge once the energy imparted
by the foreeis dissipated by the work done at the plastic hinge , that moves towards
the 1oot. ‘e permanent deformation of the beam developsaat the plastic hinge. Due
to rotation of the cantilever it is subjected to continuous acceleration in the radial

direction.

Small and Large deformation formulations are outlined in this chapter. and

the results for tip deflection against time are plotted for various parameters.

L1 LARGE DEFLECTION FORMULATION

The mniform beam of mass per unit length m is subjected to a transverse force
f(1) at the tip. The body force due to rotation of the blade is gm per unit length that
acts in the initial axial direction, being positive toward the tip. Rigid-plastic beam
deforms due to the hending moment exceeding the yield moment A{; at the hinge

where th deformation is concentrated.

(‘oordinate s is intrinsic and measured along the neutral axis from the tip. As
shown in ¥Fig. 1.2, due to impact at the tip the hinge is formed at a distance A from
the tip. The deflection is made of two coordinates w(s,t) and u(s,t) measured from
the hinge in r and = directions respectively. 6(s.t) is the angle of inclination of the

beam at s when the hinge is at A,

The kinematics of the beam are:

% = —cosf(s,t)
U o= uy-— / cos 0(E.1)dE g ts uat the tip.
b
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When s = \, u = 0. therefore

A
uy = /(‘osﬁ(f.f)([f
Jo

A
u = /(‘t).\H(f.ﬂ(]f (N
Stmilarly.
A
w= / sin@(&,H)d & (1.2)
A
0 = / K(€)dE (1.3)

where K is the curvature of the neutral axis.

The velocity of any point on the neutral axis in terms of the coordinates is.
0 = ,‘\(/\) ‘ /\

where 6 is small and independent of s: defining ¢ = 0

. A .
n o= ('Ob()()\,t)/\—-/ sinf(E,t) 6 dE
= A-dw
. A .
W = sillf)(/\,t)/\+/ cosB(E ) 0 dE

= (1.5)
The acceleration of the point on the neutral axis is,

i = A—w— ainp
= A= 1w — )
w = 1,7n'1 +ur)
¥ — 7 I f

= —'(])2?1r+ A + uih (1.6)

Initially when u = 0 and w = 0, @ = ¥, which indicates an initial jump in

acceleration and the velocity, = 0).
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I he equiations of motion are written by equating impulse due to force f{t) and
the momentum at any time. and the change of Kinetic Energy to the work done by
the impact foree - energy dissipated by the hinge. The following notations are defined

for use in further analysis,

T he second moment of the deformed part of the heam about the plastic hinge
: A 2 2
= / [u (s.t) +w(s,1)|ds (4.7)
0

T'he first moment of the deformed part of the beam about the z axis is,

n= AA u(s.t)ds (1.8)

The first moment of the deformed part of the beamm about the raxis is,

) A
= A w(s,t)ds (4.9)

and subscquently after simplification.

diy
(1/\\ - 211(/\)
IR (A) (A 4.10
d\ A = (AN (4.10)
t A
[t = m [ s s
fihyu(0,0) = ngix(N) = My = m [ioth + ir )] (4.11)

Assuming the impact force to be constant I during duration 7 and zero thereafter,

the non-dimensionalized parameters are,

sF AF . KA L2 Mym!/? ml
S:-‘:——; 1\:———; :—-—-—Q' = —_—— :———0-— :g 0
o A A TE s e Ve T 0= TR
the equations of motion can be reduced to
1 = WI, +¥A [A~ LA
U(0.T)=GhL—1 = ¥I,+ Vil T<r (4.12)
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After removal of the impact force.

0
-GL -1

W1+ WA [\ = LA
\.I.’In'}‘ ‘p\]| I'>r (LI

i

4.2 SMALL DEFLECTION APPRONIMA TTON:

When 0 is assumed to be small, and by defining the tip deflection 11y -
W(0,T), from equations (4.5) and (4.6) the tip velocity and acceleration is given by

substituting U = A,

II;) = YA
Wy = AW 4waA

Initially the beam being at rest 1y = 0 and therefore,
Iy= 1Py = A3 =T = A2
and since U(S,A) = (A — S) for small 8, W(S,T) = Wi (I — S/A\)
Therefore by integrating.

T,
W(S,A) = A Woll = S/A)IT

Using this in (4.9) we get.

The equations of motion for small deflection is obtained by substituting Iy, I, 1,
in (4.12) and (4.13) as,

AWy = (64 6CGL—2A, /A
Wi = (A = 6Gl, — 6) [A? T<rt (4.14)
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AWy = (6+6GL) /A
Wy = —(6+6GL)/[A? T>r
I Wy = Vo from (1.14) and (1.15).

AV = (G4 6GL - 20) /A
Vo= (4A - 6GI, —6) [A? T<rt

AV = (6+6GL) /A
— (6 + 6GL) [A* T>r

-
\‘
il

Since T

d ,
- = 9
7 (AV) 2 T<r
= () T >T
Integrating,
AV = 2T T<T
= 7 T >T
Therefore,
j2 = 1\"/2
= T T <T
= T T>t
IQ = Tz/..’. T <T
= 71T —7%)2 T>r

4 (AV) = AV 4+ AV substituting from (4.16) and (4.17).

(4.15)

(4.16)

(4.17)

(4.19)

Substituting (1.18) and (4.19) in equations (4.16) and (4.17) and simplifying.

the hinge position in terms of time is.
A = (64+6GL—2A4)/AV
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= (646GT* /2= 27)/AV
= (: +3GTH2 - \) T
TN+ N = 343GT )2
—(T\) = 3+3GT?/)2
TN = 3T+ GT/2
N = 3+GT?2 I'<r (1.20)

A = (6406GL) AV

= (6+6GL,) /2T
(343G (7T — 7% /2)]

"
e N = 3T[r+ 3GT/AT — 7)+ Gr2/2
= G2+ 3T/7(1 — GT*[2) 4+ 3GT* /2 T>r (1.21)

Substituting for .\ in equation (1.13),
‘)T
" — - ry
3+ GT2/2 F<r
2r
= | « 10 . ¥ 7‘> T
GT2[24 3T [1(1 = GT4[2) + 3GT?2 /2
The tip deflection.

W, = / Vv

T 9T
= harerp™
i

= Z[n (3+6T2/2) - i3],
- é [‘n (ﬁ%@.)} T<rt (4.

For T > 7 the tip deflection is,

t~
o~
~—

; .
W= ﬁ GrE i AT (1= Grifa) T 3Gt

Dividing both the numerator and denominator by G72/2.

/ 1/G
W= n,+/ AT/ (55 1 ()

5 dT

G
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2-(/r?

By defining Z = L and o = &2,

Z dZ
Wy = W+ 56/ eI

- —" ot and when g2 i< negative (a > /1/3).

4 |1 Z+a—0p 2
17 7 —_ bl Bl st !
W W BG{ pln <Z+a+p)+(;}]

B 2 (Z+a—-p)(l+a+p) ‘
= Wi {l" <(Z+a+p)(l+a—p)>} (1.23)

When p2 is positive (@ < (/1/3).
zZ
Wy = Wi+ —1-7— arctan Zta +
.iGp P .

Wi+ [arctan (Z t a> — arctan (l + Q)} (1.24)
JG ) P 2

In this analysis an exact solution is obtained for hinge position and tip deflec-

fi

tion unlike in [43], where the numerical solution process was used.

It is seen from equation (4.20) that the hinge is initially (T =0) at A =3
irrespective of G, When the fan blade is not rotating (body force,G= 0) the hinge
position is constantly at A = 3 till the impulse is acting, and moves away from the
tip lincarly once the force is removed (3 tumes T/7). When G > 0 the hinge moves
away from the tip, as T increases, when the impulse is acting on the blade and even
after the force is removed. This is due to the momentum acquired by the segment
near the hinge during the action of the force. The curvature decreases as the speed

of the moving hinge increases as we see from equation (4.4).
T'he hinge position and tip deflection for different values of G and 7 are shown

in Figs. 1.3 1.5, For a larger impulsive force (longer duration, 7 = 10) the hinge

position is affected to a greater extent by the centrifugal force due to rotation (G).
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From the plots it is seen that when the impulse is larger the hinge velocity
is small. which is true even when G= 0. The general trend of the tip detlections
and hinge positions are same except that increased value of G causes tip deflections
to flatten as time elapses after the foree is removed. When G= 0 the tip deflection

follows the same trend except that they are lincarly alfected by square of the 7 valne

The exact solution is not possible in the case of large deflection assumptions

as in the previous section, and therefore numerical methods are to be used.

From equations (4.10) and (-1.5).

1
%/%). = 2 i
LC. I() = ‘.ZII./'\
j] = 1\ (/\ - I’g[\—)
j’g = A (I].[\’)

Uy = Al =WHK)
Wy = AUK) (1.25)

If W =2, W = Z, and by using these in equation (4.12) and cquating for Z

from both to obtain Kk, we get

. VA
A = -I—\.
5 I[ —i{\i(A—Izm]
= [1
2 T2
I\' _ Z (1()/\ Il) T<T

I+ L2%) -1 (U, -GI, - 1)
Z* (LA -1}

= T 4.26
LL7 1 LLGT T, F> (1:26)

Equations (4.25) and (4.26) are solved as seven simultancous ordinary differen
tial equations by using Runge-Kutta sixth order method along with respective value

of Kfor T >1orT <.
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The differenee between large deflection and small deflection assumptions is neg-
ligible and therefore the small deflection assumptions are sufficient for this analysis.
Fig. 4.3 gives the tip deflection for different values of G and for 7 = 1.0 andr = 10.0.

Similar plot for the hinge position is given in Fig. 4.1,
When the Blade is considered to be not rotating,. the bean deflection and the
hinge positions vary with time in a lincar fashion as shown in Fig. 4.5. The numerical

solution gives very accurate results when compared to exact solution.

4.4 FINITE BLADE RADIUS:

In previous sections the blade was considered to be of iufinite length but in
practice the length of the blade is finite therefore an analysis to take this into account
has been incorporated in the formulations. The centrifugal forces (body forces) are
considered o be constant in the previous formulation. which is not a realistic ap-
proximation. The centrifugal stiffening effects are not considered here but effect of

varying speed on the blade displacements are taken.

The centrifugal {orce due to rotation has a moment.
A ,
m / [(r = ) + u(s. t]wPw(s.t)d s
Jo
where ris the radius of the fan blade.

A A
L.t [(r— /\)[ w(s.t) ds+/ u(s,t)w(s,t) ds}
( 0

The equation of motion (4.11) reduces to,

FHu(0.t) = {(r— N iy + i3] = My =m [iglz‘+ il;\il’]

\ L - ) + /\l()] ds

0

where
‘ A
iy = / u(s, thw(s,t) ds
0
diy A
o —ﬁ z qu+u( u ,\)}d
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Defining

/\ 24 )
y = (u= — ) da.
Jo

(11,; . s
h— = { l.“ 1\1“
dt it A

f(]—;fl == ‘_"[\ [u (—-r"tl'+ \) u'(z"u)‘ ol

= =l 4+ 2,\11

In non-dimensional terms,

j_'; = ‘l’[g-{—/\[g
I, = —1WI; + 271 (127)

. . .. A 9 mt M . . . . .
By non-dimensionalizing R = "—;“ and §0° = =554 the equation ol motion is wiitten

as.

Lvu -0 [Ig (R— /\) + I;] -1 = ]()Z - 1|/\Z

. Z
f-r
; [1- Z (A - LK)
- ;
2 2
K = £ Ih - I}) T<r

I()(l -+ IzZz) - I] [Uv() - Q((R— /\)]2 ~4- l;;) - 1]
Z2 (1A - 1Y
I()IzZ2+ I]Q [(R— ’\)Iz-{- IJ] + ]

Equations (4.27), (4.25) and (4.28) are used to solve the simultancons system

of equations as in previous section.

When A reaches R, a permanent kink is formed at the root of the cantilever and
it rotates as a rigid body about this point. This final rotation is obtained by equating
the residual kinetic energy to the energy absorbed due to My and the centrifugal
force. As G is proportional to the radius of the blade and rotational speed, it is seen

that increase in G considerably changes the hinge formation along the length of the
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blade from the tip. Thus for large body force (G). considering finite blade radius is

ol no use whereas it can he very useful if the radius of the blade has a constraint.
Energy absorbed by the centrifugal force dne 1o 1otation is M x 6

j,;\/llw'“'(/.s[(l - Ayt (ncosl = wsinf)] (usinf + wcosf) A0

A A
mw?(r — \) [/ wudssin @ + /} w ds cos 0} Af
(}

A , ‘ A
4wt sin f cos ()AH/ (”z — “,z) ds + 1mu? ((‘()52()- si1120> . _X(i/ e ds
1) \ . ({]
2{ . L . ol 2 2
S (e = N sin @4 e confl] + 1y sinfleos 8 + 1y << o8 6 — sin ())} A/

Energy absorbed during final rotation is obtained by integrating this expression

| ' L 220\ . [sin20\*
et {(" — A} [=¢; cosB + 1y5in 9]8’ + :2'11 (— m; ) + 3 ‘;l"l)
2 0 2/,

. oo ) I,
L {(r = N1 (1 —cos8f) + 1y sinbf] + i (I — cos26y) + Slasin 29f}(~1.29)

By equating energy absorbed by Afy and centrifugal force to residual kinetic

cnergy,
: : 3 i3 .
Mg+ mw® {(r— N) [t (1= cosbp) + ipsinfy] + %(l — cos20y) + L—:sm ‘.ZHf}

|
= 57712011'(-1.30)

Dividing throughout by 1y and non-dimensionalizing.
) .
207 + = {1 (R =\ [I, (1 = cosbf) + Lysinbf] + I (1 — cos 20;) + 23 sin 26}
= I(J\il’z

In the case of large deflection approximations it is not possible to evaluate the

kink angle as deseribed here due to computational difficulties.
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This is a transcendental equation and its solution is obtained eratiele by

using the mitial value of 5. but neglecting the centiifugal foree

;= Kinetic Enerey Fnerey absorthed due to centnfugal foe
J . ) !

It is possible to calaulate the angle of the Kk that s lotmed alter the hinge

hits the base of the cantilever when the radius of the fan blade is tinite and small.
Rigid plastic analysis of structural response to pulse loading, has been presented

in this chapter. The next chapter deals with the validation of results by experimental

investigation.

107



€ (aj

o
T .
TV
_L 7
€ (b)
o
TAN"' H
T ’ S 777 L —p
Y e
i e
€ (c)

Q
m

S S

Fig. 1.1 Stress- Strain Diagram showing Material Behavior [37]



_ 3=
fit) Mo
gm

(@) Transverse and centrifugal forces on
deformea segment

1 A !
|

-~—
X

//
=

Fig. 4.2 Schematic Dia
[43]

gram showing Cantilever Beam with load at the tip

109



TIP DEFLECTION

TIP DEFLECTION

TIME Vs DEFLECTION TOU=1.0

™ T

16 =100

TIME Vs DEFLECTION TOU=10.0

8 T T T T T T T T T
’ G=10

,L ; S |

BF o s s e A it s st enes eesees bt sivians stursssenseent espsssstoeneert + 3 sesessrsrinesiis | oon -

5 e -

4+ e -

3 - . _]

2 - t 1 S Y t t -

L S 36 =100
0 ; I i 1 ,L 1 A 1 2

0 5 10 15 20 25 30 35 40 45 50
TIME(T)

Fig 4.3 Tip Deflection for various G and r values

110



HINGE POSITION
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Chapter 5

EXPERIMENTAL INVESTIGATIONS

The last three chapters have dealt with the methods of obtaining the clastie
and plastic response of beam and plate structures. In this chapter, the experimental

investigations carried out to evaluate the response of a plate is presented.

The experimental response of a plate to an impact load due to a falling mass
and for the permanent deformation of a cantilever beam is studied. The experimental
set-up is as shown in Fig. 5.1. A mass is held by an electro magnet and the plate or
beam is clamped onto the steel structure grouted to the floor. The mass is released

by breaking the power supply to the magnet.

5.1 MATHEMATICAL MODEL FOR THE TEST STRUCTURI:

A CCFF plate was used to measure the response to an impact load. The 2mim
aluminum plate was clamped to a support structure with cight bolts on two adjacent
sides. The schematic sketch in Fig. 5.2 shows the overall instrumentation and data

acquisition system.

An initial check showed that the natural frequencies of the test structure fell
in between that of a SSFF and a CCFF plate. In view of this the test structure
was modeled as a plate with two adjacent edges simply-supported with rotational
constraints and the other two free. The rotational stiffnesses at, the edges was deter
mined by matching the fundamental frequency of the test structure with that of the

mathematical model.

The Rayleigh-Ritz analysis with the adjacent edges rotationally constrained

and the other two edges free is as follows:
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The boundary conditions are,

X(0) =0, 4,X'(0) = D{X"(0) + vY"(0)]

D(X"(1)y +vY"(1)) = 0. DIX"(1)+ (v = DHY™(1)] =0

Y(0) =0, £,Y'(0) = D[Y"(0) + v.X"(0)]

D(Y"(1) + »X"(1)) = 0, DY"(1) + (v — 1)X"(1)] = 0

It is not possible to construct the shape functions satisfying all these condi-
tions.  Hence polynomial shape functions for simply-supported end conditions are
constructed. The first member of this set of polynomials is 2 — 223 4+ 2%, The higher

polynomials are obtained by Gram-Schmidt process as explained in section 2.2.1.

The energy expressions for the plate with edge restraints is written as,

] l
Tour = —Ephnlwz / / w(x, y)drdy

I 0*w ow\? F*w 0w w \?
U.nur = ")'D(II).A / l:( ) (‘6?) +2v a 5 0 > +2(1 —l/) ('ax_a'y) ]d.’lfdy

4= Z[ﬂ / (311)) dl] (5.1)

where the term with rotational edge supports with stiffnesses 3, per unit rotation is

given as a sum along each edge.
The terms in strain energy expression remain same as that in previous case

discussed in section 2.2 but with an additional term due to the rotational constraint.

This term can be expanded as,
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=t
[ 4%
—

Ouw\? v Ow\?
/- % - . -
dlﬂ (DJ') dy+ % /)‘ (03/) di (-

3 1 /!

at fo

"oy, H') N
(‘\m} ")2 dy + ﬁ (‘\m} n) dr (7.3

If both the cocflicients of edge restraint are same then the above expression

can be written as,

1 ‘ . .
& [L (‘\'lln‘\:’}rn};) (ly -+ (12 A (‘\””‘\’I}I;t};> (1.!'} (r) I)

a®

'8‘1 1,1,0,0 2 170,0,1,1
;LTZ [Hmm_] + o Hnunj ] {(H.5)
where

)|
HWOO A X (@)X (2)Ya(y) Y (y)dy (5.6)

and similar expression along y is Hfﬁ;?;,‘l"

The eigenvalue problem similar to expression in equation (2.8) can be written

as,
mi ny

ZAmn [CmmJ + ﬂq (Hgl,’ll}o,o) + 0'2H:r?z'g}l'l)) _ QE»(U,II)Fv((),U) (5.7)
mn

2. . . . 2 g
where 3, = Q’g— is the rotational stiffness coelfficient, and €1 = 1"’—“;)"——

The natural frequencies by varying the rotational stiffness parameter is oh

tained by solving the eigenvalue problem as explained in Chapter 2.

The stiffness parameter, /3, chosen for obtaining the fundamental frequency

same as that of the experimentally observed value is 2.72. The frequencies and maode
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shapes thus obtained are used in the acceleration response evaluation of a plate which

has boundary conditions in between SSFIF and CCFF.

In order to obtain the acceleration response plot of a CCFF plate for impact.

the equation (3.12) is rewritten in terms of the acceleration as.

Ww=F { i i[z\'m(f:)%(d)l [Xn(z)Ya(y)] ['Ymn(T)]} (5.8)

m=0n=0

. . phab [ D T, . L
W":u)-L—F—,p—;T: W-t;’)’m,,:é—;smw,t—f; sin pt

where

The acceleration response by using this expression in analysis is presented in
Iig. 5.3 along with corresponding experimental results after converting into dimen-
sional values. The trend in the case of both test structure and mathematical model

are reasonably matching.

A study is also conducted to find a reasonable damping parameter and the load
pulse duration that gives comparable acceleration magnitude and the trend. It is seen
that the rectangular pulse period, 7 is 0.25 seconds and the damping parameter,
to be between 0.5-1.5%. Plots for different damping ratios are presented in case of

mathematical models in Figs. 5.3 and 5.4.
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Fig. 5.3 Acceleration Response of (a) test structure, and (b) mathemat-
ical model with different damping (— ¢ = 0.005, - - - ¢ = 0.010,

..-¢ =0.015).
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ical model with different damping (— ¢ = 0.003, - - - ¢ = 0.010,
0= 0.015),
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Chapter 6

CONCLUSIONS AND SCOPE FOR FURTHER
RESEARCH

The response of mechanical system clements such as beams and plates sub
jected to impact loads are analyserd in this thesis. When the response is within the
elastic range. normal mode analysis is employed and rigid plastic analvsis is used in

the plastic range.

A normal mode analysis for a simply-supportcd beam and cantilever beam s
carried out for standard pulse loads. Similar study on plates is also carried out after

solving the eigenvalue problem by Rayleigh Ritz method.

The Rayleigh-Ritz method is used in solving the plate eigenvalie problen,
Improved shape functions are formulated to minimize the estimates by rednetion
of plate differential equation to an ordinary differential equation. The Raylewh Rtz
results obtained by using these approximate funetions ave compared with those valnes
obtained by using beam orthogonal polvnomials and beam chatacteristic fundctions.
Plate Characteristic Functions and natural fiequencies by iterative reduction of plate
partial differential equation to an ordinary differential equation provides very good
estimates for the natural frequencies and mode shapes. Mode shapes are much simples
when compared with those obtained using Rayleigh Rtz method and takes less time

for response evaluation.

In the case of large magnitude of impact force the structure wonld cross the
linear range of response. The rigid plastic analysis of a cantilever beam i used 1o

study the hehavior of the beam response due to an impact load at the tp.

Elastic acceleration response of a plate is observed due to a ass falling on it
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by an experiment and a suitable mathematical model is formulated.

6.1 CONCLUSIONS

Based on the study of beam and plate response due 1o impact loads. the

following condlusions could he drawn from the work presented in preceeding chapters:

61,1 Elastic Response

e [requency coeflicients and shape funetions are more ccurate. almost exact. in
the case of Plate Characteristic Funcetions compared to those obtained using

the Ravleigh-Ritz analyvsis,

o Approzimate plate functions and Beam characteristic functions do not vary

mnch in displacement shape but their higher derivatives do differ.

e Response evaluation time using plate characteristic function is much less since
the mode shapes are simple functions as against the series form of mode shapes
in the Ravleigh-Ritz - method. When n terms are used. plate characteristic
functions need computational time proportional to n as against n? with the

Rarvleigh-Ritz method.

e Both beam and plate response evaluations to pulse loads indicate that the con-

tribution from the fundamental mode is dominant in the total response.

6.1.2  Plastic Response

e In the caseof small approximations. the numerical and close form solutions yicld
very close results. indicating accuracy of the numerical method. Therefore it
may be concluded that the large deformation results obtained by numerical

method are also reasonably accurate,



6.1.3 Experiments

6.2

e llomogeneous edge conditions are hard to simulate in practice. and hence it is

more realistic to assume flexible edge conditions.,

Mathematical model gives mote realistic response to that of the test structure,

and it compares well.

RECOMMENDATIONS FOR FUTURIEF WORK

Following recommendations are made for future rescarch in this area:

Mode shapes. slopes. moments, and shear forces at the plate edges shonld be
computed to verify if the plate characteristic functions satisly the bhoundary

conditions exactly.
Plates involving free edges and a free corner should be studied,

Application of Plate Characteristic Functions in other plate shapes should be

carried out.

Plastic Analysis can be extended to plates to find the local behavior of the

structure to impact loads.

More exhaustive experimental investigations need to he carried ont to analyse

the plate response.
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