National Library
¥ l of Canada

Acquistions and
Bibhographic Services Branch

395 Wellington Sireel
Ottawa, Ontano

K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

if pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Cnpyright Act,
R.S.C. 1970, c¢. ¢C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontano)

Bibhothéque nationale
du Canada

Direction des acquisitions el
des services bibliographiques

Yo B A ote rd ey p

O Bie Notre retdrem ¢

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une gualite
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec [université
qui a confeéré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si I'université nous
a fait parvenir une phctocopie de
qualité inférieure.

La reproduction, méme partieile,
de cette microforme est soumnise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

REUSABLE MODULES FOR BUILDING GRAPHICAL
USER INTERFACES UNDER MOTIF AND C++

JupiT A. BARKI

A MAJOR REPORT
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

May 1995
© JupIiT A. BARKI, 1995

R |

National Library
of Canada

Acquisitions and
Bibliographic Services Branch

Bibliothéque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395 Wellington Street
K1A ON4 K1A CN4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED "¥ITHOUT HIS/HER
PERMISSION.

ISBN 0-612-05140-4

Canadi

395, rue Wellington
Ottawa, Ontario Ottawa (Ontano)

Your hie Volra reftécence

Owur e Notre rétdrence

L'AUTEUR A ACCORDEFE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE OUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the major technical report prepared

By: Judit A. Barki
Entitled: Reusable Modules for Building Graphical User Interfaces
under Motif and C++

and submitted in partial fulfiliment of the requirements for the degree of
Master of Computer Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.
Signed by the final examining commitee:

| DEYE Tivest
LXamninet

Supervisor

Approved

Chair of Department or Graduate Program Director

19

Dean of Facuity

Abstract

Reusable Modules for Building Graphical User Interfaces under
Motif and C++

Judit A. Barki

The design of Graphical User Interfaces using the Motif Widget set is very com-
mon. We identify two tracks in the design and development of GUI. In one track the
developer uses the UIM/X soltware package, which is a GUI builder tool based on
Motif. In using UIM/X the learning time is high but once learnt, new user interfaces
can be developed rather quickly. In the second track, a developer who has learnt C++
and is knowledgeable about Motif does not have to learn anything new, but uses a
library of modules to build a graphical user interface. This report contributes to the

second track by developing a Reusable Module Library (RML) using C++ and Motif.

As suggested by Douglas A. Young in “Object-Oriented Programming with C++
and OS5I /Motif” our RML modules are defined as C++ object classes. These classes
are divided into two categories, componen! and abstract classes. The component
classes give rise to visible objects on the screen, whereas abstract classes are used
for management purposes. The RML developed in this work contains 25 component

classes and 11 abstract classes.

As a way of demonstrating the usefulness of RMI,, an implementation project was
undertaken. The project titled CAS (Course Advising System) is intended to provide
advice to Computer Science undergraduate students in their selection of courses for
registration purposes. CAS is designed following the Object Oriented methodology,
in particular the Object Modeling Technique presented by J. Rumbaugh et al.. The
CAS project is divided into two parts for the purposes of implementation! and this

report is concerned with user interface part. The graphical aser interface objects

!“Design and Implementation of an intelligent Course Advisor System” by Kim Duong is con-
cerned with the functional implementation part.

ii

for CAS are composed from arrav of push buttons, toggle buttons, text fields, scroll-

able lists and customized dialog boxes. These high level ohjeets (modules) form RML.

The ultimate goal of this report is to make RML classes to be easily understood
and used (reused) by C++ programmers. Towards achieving this goal, in this report,
each RML class is described in a systematic fashion containing, a short description
in English, attributes, methods, inheritance and component graphs. The implemen
tation of CAS user interface explains how the RML classes can be used by a (4 +

programmer.

Acknowledgments

I would like to thank my supervisor Dr. T. Radhakrishnan for his advice, guidance,
helpful comments he has given me throughont my studies, especially during the prepa-
ration and writing of this work. 1 greatly value his infinite patience he has shown
when [was discouraged. Dr. Radhakrishnan is not only a supervisor, he deeply cares
about his students and gives special attention to them even after their graduation.

Thank you Dr.Radhakrishnan.

Special thanks goes to Kim Duong whom I worked together on the analysis of the

advising process and the Course Advising System.

I would like to thank all my friends here at Concordia University, Maria Janto,

Joanna Sienkiewicz, Rani Vallurupalli, Alicja Celer for their supportive friendship.

Last and the most, I give my special thanks to my husband who gave me all
imaginable help and support during this time. His infinite love is always my greatest
source of energy.

Finally I think of my children, Tamas and George, who are fun, and who are giving

so much happiness to me.

Contents

List of Tables viii
List of Figures xi
1 Introduction 1
1.1 The Bachelor of Comp. Science Program |

1.2 Registration and Student Advising 2

1.3 The Structure of B.Comp. Science Program }
1.3.1 Information System Option (ISO) |

1.3.2 System Architecture Option (SAO) 1

1.3.3 Theoretical Computer Science Option (TCS) |

1.3.4 General Science Option (GSO) 1

1.3.5 Software Systems Optien (SSO) 4

14 iheProcessof Advising 5
1.4.1 The preferred course list is verified with respect to the followings 5

1.4.2 Suggesting a course to add to or discard from the selected list 6

1.4.3 Accountability for Suggested Courses 7

144 Exceptions. e 7

1.5 TheProject e 8
1.5.1 Problem Statement 8

1.5.2 ScopeoftheSystem 12

2 The Object Modeling Technique 13
21 Overviewof OMT 13
211 Analysis e 13

212 SystemDesign o o oo 14

213 Object Design 15

vi

22 Analysisofl CAS . . . o o 15

2.2.1 Problem Statement of CAS oo oL 15

222 Object Model of CASo . oo 13

223 Dynamic Model of CASo oo o000 27

3 Software Support for User Interface Development 39
3.1 X Window System and OSF/Motif 39
3.2 Motif based GUl development, 40
3.2.1 UIM/X Graphical User Interface Builder 40

322 CH+4+andOSF/Motif oo v 41

3.3 Development of Reusable Module Library 42
3.4 Description of object classesof RML 45

4 Designing the GUI for Course Advisor System 97
4.1 Usersand Taskof CAS 97
4.2 Implementation of the User Interfaceof CAS 99
4.2.1 Description of the GUl component 99

4.2.2 Communication layer between CAS and its GUI 119

5 Summary 121
A Scenarios 123
References 132

vii

List of Tables

! Degree Requirements
2 Sub-list structure of Degree Requirements
3 Course Lists
4 Class Description Dictionary of CAS

viii

..................

...............

..................

List of Figures

[E=e s B =T S L -

L e
[SR =}

13

14

156

16

17

18

19

20
21

Overview of Course Advising System 9
Object Model Diagramof CAS 26
Fvent trace diagram based on scenario 8 [Appendix A] 30
Event flow diagramof CAS 31
State refinement of “Write Constraint” state of CAS object class . . . 32
State diagram of CASobject class 33
State diagrams of (a.) User Constraint, (b.)-Explanation object classes 34
Input and Output values for the Course Advisor 35
Top level Data Flow Diagram of Course Advisor 37
Data Flow Diagram for Perform course suggestion process 38
Library Architectureof UIM/Xand RML 43
ActiveEditTable object class: (a.)Inheritance Graph (b.)Component

Graph e 47
ActiveList object class: (a.) Inheritance Graph and (b.) Component

Graph e e 49
BoardListDialog object class: (a.) Inheritance Graph and (b.) Com-

ponent Graph 94
BoardOfLists object class: (a.) Inheritance Graph and (b.) Compo-

nent Graph e 54
ConstraintMenu object class: Component Graph. 55
ConstraintMenu object class: Inheritance Graph 55

DialogContainer object class: (a.) Inheritance Graph and (b.) Com-
ponent Graph 57
DialogContMdf object class: (a.)Inheritance graph and (b.)Component
graph L 60
EditTable object class: (a.)Inheritance Graph and (b.)Component Graph 60
FromList object class: (a.)Inheritance Graph and (b.)Component Graph 63

ix

[S™]
[SV]

27

28

29

30

31

32
33

34
35

36

37

38
39
40
41
42
43

FromListDialog object class: (a.)Inheritance Graph and (b.)Component

Graph e 63
List object class: (a.)Inheritance Graph and (b.)Component Graph . 65
ListDialog object class: (a.)Inheritance Graph and (b.)Component Graph 63

MainMenu object class: (a.)Inheritance Grapl and (b.)Component

Graph e 63
MessageArea object class: (a.)Inheritance Graph and (b.)Component
Graph e e 72
MessageDialog object class: (a.)Inheritance Graph and (b.)Component
Graph 72
PromptDialog object class: (a.)luheritance Graph and (b.)Component
Graph e 72
RowOfLabels object class: (a.)Inheritance Graph and (b.)Component
Graph e 74
RowOfLists object class: (a.)Inheritance Graph and (b.)Component
Graph e e e 76
SimpleMessage object class: (a.)Inheritance Graph and (b.)Component
Graph e e e 7

Table object class: (a.)Inheritance Graph and (b.)Component Ciraph 80
TableDialog object class: (a.)Inheritance Graph and (h.)Component
Graph o e 80
TableFill object class: (a.)Inheritance Graph and (b.)Component Graph 83
TableFillDialog object class: (a.)Inheritance Graph and (b.)Component

Graph i e 83
RadioToggle object class: (a.)Inheritance Graph and (b.)Component

Graph e 85
ToggleDialog object class: (a.)Inheritance Graph and (b.)Component

Graph e 85
Main Application Windowof CAS, 101
User constraints -part 1 105
User constraints -part 2 oo 106
Hard-Constraints Menu. 108
View Hard Constraints, 109
Suggesting Courses oo e e 110

44

46

Confirmation of Suggested Course List 112

Suggested Course List (Qutput of CAS) 113
Changing the section of a suggested course 115
Explanation facility oo 116
Component Graph of CasFace object class 117

State Diagram of the Graphical User Interface 118

Communication between CAS and its interface 119

Xi

Chapter 1
Introduction

Registration for students in any program offered by Concordia takes places prior to
the beginning of every academic term and involves lots of preparation, effort and
time of not only students but also staff. The right advice received by the student
may increase his/her academic performance and have direct effect on duration of
his/her studies.

1.1 The Bachelor of Comp. Science Program

Concordia University has four Faculties :
o Art and Science
e Commerce and Administration
¢ Engineering and Computer Science
¢ Fine Arts
Faculty of Engineering and Computer Science has five departments:
¢ Civil Engineering

¢ Electrical and Computer Engineering

Mechanical Engineering

Computer Science

Centre for Building Studies

At the bachelor’s fevel, Faculty of Engineering and Computer Science offers the

following programs[Uni9i]:

e Bachelor of Engincering degrees in Building, Civil, Computer, Electrical, In-

dustrial and Mechanical Engincering

e Bachelor of Computer Science degree

To be cligible for the degree of Bachelor of Computer Science, B.Comp. Sc.
students must complete a program of at least 90 credits. This program consists of
the courses of the Computer Science Core (those are mandatory for all students) and
the courses specified for the student’s Option. The Computer Science department

offers the following five options within B.Comp. Sc.:

¢ Information Systems

¢ Software Systems

e Systems Architecture

e Theoretical Computer Science
e General Science

A student can be a full-time or part-time student. Full-time undergraduates in
Computer Science have to take 24 credits or more for Fall and Winter terms (Regular
Session) and 12 credits or more for the Summer Session. Part-time undergraduates
in Computer Science have to take less than 24 credits for both Fall and Winter terms
(Regular Session) and less than 12 credits for the Summer Session. Regular Session
is divided into a Fall Term (September - December) and a Winter Term (January -
April), each of 15 weeks’ duration, including an examination period. Summer Session
covers all courses offered bewween the beginning of May and the end of August.

For the average student, one credit represents, a minimum of 45 hours per term
spread across the activities of lectures, assignments, laboratories, studio or practice

periods, examinations, and personal work.

1.2 Registration and Student Advising

Selection of courses for a session or a term is done during a specified period prior

to the start of classes. Regular registration for the Fall and Winter terms normally

2

takes place in mid-August and mid-December respectively.

Each student must program a schedule for a Fall or Winter term and obtain
his/her transcript (except those students registering for the first time) prior to the
registration. The student’s schedule is then approved by an advisor. The advisor

manually checks the selected courses and the transcript to see:
e If the prerequisites are satisfied.
o If the schedules do not conflict.
o If the credit load is that can be handled by the student.

The performance of each student in each course is evaluated by the instructor(s)
responsible for that course at the end of a term. The transcript records the student’s
performance of each course taken and the grade point average (GPA). Based on the
transcript, the advisor measures the level of achievement of cach student and advises
the student which courses to take.

In 1994 fall, Concordia introduced telephone registration called CARL, Concordia
Automated Response Line. Tt performs the registration of qualified students and
provides information regarding student accounts and academic performance (grades)
over the telephone. However this dial- up system does not give advising. A Course
Advising System, CAS, is needed to assist students in selecting conrses and to reduce

the advising work for the staff as well.

1.3 The Structure of B.Comp. Science Program

As stated under Section 1.1, the degree of Bachelor of Compuler Science requires
students to complete satisfactorily a number of courses of the Computer Science Core
and Option. Each student must complete 35 credits of Computer Science Core and
at least 55 credits of his/her particular Option courses. All courses in Computer
Science Core and certain courses in each Option are mandatory, the others are op-
tional. The Computer Science Core (CSC) provides fundamental study of each major
area of computer science (system architecture, programming methodology, databases,
computer architecture, software engineering, operating systems). The Option specific
courses are composed using six sets of courses (sublists as we are going to refer to
them). These sublists are shown in Table 2. The number of credits, the student isg

required to obtain from each sublist is indicated for each Option.

3

1.3.1 Information System Option (ISO)

In this option, students learn more on “the application of computers in business, with
a special emphasis on databases, software engincering. and management information
systems”[Uni94). The degree requirement for this option is summarized in the ISO

row of Table 1.

1.3.2 System Architecture Option (SAO)

In this option, students understand more “on aspects of the design of digital circuits,
and their integration into computer architectures”[Uni94]. The degree requirement

for this option is summarized in the SAO row of Table 1.

1.3.3 Theoretical Computer Science Option (TCS)

In this option, students focus “on numerical analysis and symbolic computation” [Uni94].

The degree requirement for this option is summarized in the TCS row of Table 1.

1.3.4 General Science Option {(GSO)

In thisoption, students are allowed “to define an area of specialty within the sciences”[Uni94].

The degree requirement for this option is summarized in the GSO row of Table 1.

1.3.5 Software Systems Option (SSO)

In this option, students concentrate on “the design and analysis of large- scale software
systems”[Uni94). The degree requirement for this option is summarized in the SSO

row of Table 1.

CSC [CSE | LRE | OCS OBR|OSE |LLAB
SO [(35) | 3) 16 109 (30) | L1(6) | COMP292
SA0 | (35) |(3) |(6) |COMP36i | (27) |L2(6) | M)

L3 (9)
TCS [(35) | (3) |(6) |COMP36L | (i8) |L4(6) | (1)

L5 (9)

L6 (9)
GSO | (35) | (9) |(6) |COMP361 | (18) | L7 (18) [(1)
SSO [(35) | (5) [(6) [(19) 18) [L7(6) | (1)

Table 1: Degree Requirements

Note:

1. Each row of Table 1. represents the Degree Requirement of one option.
2. The column titles indicate the sub-lists of Degree Requirement.

3. The number in parenthescs, cg. (35), denotes number of credits required for

each sub-list (see the column title).

4. See Table 2. and 3. for details of courses in cach sub-list.

1.4 The Process of Advising

The present registration procedure at Concordia University can be abstracted to
contain three major steps. First the Course schedule and Registration form are sent
to the students who can plan on their own schedule (select the desirable courses).
Second, the collection of selected courses is verified, modified and finally validated
as the result of the Advisor-Student communication. The third step is the actual
registration in the selected courses. Our project deals with the second stage of the
registration procedure namely the development of a Course Advising System (CAS).

Advising is to help students to get the “appropriate courses”. Appropriate courses
are those he/she might need to accomplish toward achieving the specified degree. The
Advisor is an expert, a professor in the department that offers the degree the student
is working for. The student prepares the list of preferred courses prior to advising.
However this is not mandatory. The Advising procedure is two folded. It consists
of verifying the selected course list and suggesting additional courses. Usually an
Advising session is the mixture of the two. However, il the student does not prepare
the selected course list in advance, the Advising session will consist of the latter only;
if the student lists proper number of acceptable (qualifying) courses it will consist of

the former.

1.4.1 The preferred course list is verified with respect to

the followings

¢ Each course in the list has to be in accordance with (can be included into) the

Degree Requirement specified by the student’s option.

e Pre and co-requisite of each course in the list has to be satisfied

o The day and time of any course in the list has to fit in the schedule formed
by the rest of the preferred courses. That is. conflict of times of the selected

courses can not occur,

For a given student, courses not satisfying the first two conditions are taken out
immediately without any further consideration. Attention has to be paid to co-
requisite. If course A’ is co-requisite of course 'B’, removing course 'A’ has to result
in removing course 'B’. (see section 1.1.4. for exceptional cases) The verification of
the selected course with respect to the schedule is more complex. If there is a conflict

hbetween course 'A’ and course 'B’ the Advisor and the Student have threc choices:

1. Take course A’ (or course 'B') in another time if it is offered. This means the

student takes the same course but a different section.

2. Replace course *A’ (or course 'B’) with a different course (course 'C’). Course

'C’ has to qualify also, and the above three conditions have to be met.

3. Drop one of the conflicting courses (’A’ or 'B’) and do not suggest any replace-

ment.

The curriculum requirements of a course can include Lecture, Tutorial, Labora-

tory. It follows that the Course Schedule includes:
e Day and Time of Lecture, if there is Lecture
e Day and Time of Tutorial, if there is Tutorial
e Day and Time of Laboratory, il there is Laboratory

Consequently a course fits into the Schedule of selected courses if all of its com-

ponents fit in the Schedule. (see section 1.1.4. for exceptional cases)

1.4.2 Swuggesting a course to add to or discard from the

selected list

The Advisor can suggest additional courses if the student wants or has to extend the
list of selected courses. Advisor may use various rules of thumb and dialog with the

student. The workload, strength and weakness of the student, GPA, area of interest,

6

prepaiation for graduate studies, present or future job market can all be considered
during an advising session. Courses to be chosen to fulfill the elective part of the
Degree Requirement always draw the Advisor’s attention. The Advisor can suggest
to discard a selected course due to heavy workload to help students performance or

suggesting another course fitting better into the student’s profile or interest.

1.4.3 Accountability for Suggested Courses

The Advisor has to approve by putting his/her signature on the vesulting list of

suggested courses. Yet the student has the final responsibility.

1.4.4 Exceptions

Some exceptional cases are presented in this section, when the advising procedures
differ from the standard procedures. This section vill Le referenced throughout our

work.

Categories of Students

Visiting Student: Students of other universities wishing to take one or more courses
in Concordia. These students have an official letter signed by the responsible

person specifying the courses hefshe can attend.

Independent Student: Student is not accepted and registered in any degree pro-
gram. The list of courses that can be taken is restricted to contain those specified

by the department.

Schedule

Generally, if the curriculum of a course includes more than one kind of class (LAB,
TUT, LEC) the student is required to take the classes belonging to the same section.
For example in the case of COMP291 the curriculum of the course contains Tutorial
(TUT) and Laboratory (LAB). Students taking this course should attend Tutorial
and Laboratory belonging to the same section. Therefore the Course schedule to fit

in the schedule of selected courses:

COMP291/XX TUT M 18:50 - 19:40
COMP291/XX LAB T 20:00 - 22:00

This is the clean schedule matching. However, it is possible, when cssential, to mix
the sections among the diflerent kinds of classes of a course (one section's lectuie ancl
a different section’s tutorial), but this has to be clarified during the advising session.

This description and analysis of the Advising process is based on the observation
of the Undergraduate Student Advising as done in Computer Science Department in

Concordia University as of August 16, 1994,

1.5 The Project

An intelligent system is developed to assist in the present Student Course Advising
procedure. It performs the verification of suggested courses and handles the regular
rases of advising. The project (Course Advising System) provides a framework for fu-
ture research (rule base, knowledge base system development). The Course Advising

System will be referred to as CAS throughout this report.

1.5.1 Problem Statement

The system is to prepare the list of courses the Student would take in the next
year. This “list of courses” is the output of the system and will be called “Suggested
Corurses” or “Suggested Course List” interchangeably. The Suggested Course List
can only contain courses which are offered by Concordia University. The Suggested

Course List would be created based on the following input {Figure 1):

e Student’s Degree Requirement: CAS is to suggest courses that can be used

toward the fulfillment of B.Comp. Science.
e Student’s Record (Transcript)
e Pre and co-requisite of courses

Requirements based on Student’s Status: Full time Student has to take at least
12 and not more than 16 credits per term. Part time Student has to take at

feast 3 and not more than 6 credits per term.

e Student's Preferences: Student can influence the output by entering various

preferences. (Preferred courses, time and location, maximum and minimum

8

number of courses or credits etc.). Elective courses can be chosen according
to the preference of the Student; determined interactively; or CAS can derive

them using some heuristic rules.

"‘---" f-‘—-"---_——""'"""——--—--——--"’—----“‘—'
) L E !
J ' ' context !
L ' ' | Course | Heuristic |
—_] E______;' Advisor Advising :
! ' H System Rules !
? 1 : ' (CAS) Suggested 1
\ X ' ' Courses !
Lo i :
User Interface l ' l
Course Schedule Transcript Pre/Co-requisite Degree
Requirement

Figure 1: Overview of Course Advising System

Abbreviation

Course List

Credits

CSC - (omputer | { COMP215 COMP220, COMP231, | 35
Science Core courses | COMP215, COMP326, COMP335,
for all options COMP316, COMP352, COMP353,

COMP354, ENCS281 }

CSE - Clomputer Sci-
ence Elective courses
for all options

{ COMPxxx or ENCSxxx , where xxx >
220 but including no more than 2 LLAB

courses }

(1S0,5A0,TCS): 3;

(GS0): 9;
(850): 5;
LLAB - Language | { COMP29I, COMP292, COMP293, | 1
Lab course COMP294, COMP295, COMP296,
COMP297, COMP298 }
LRE - Least Restric- { Chosen from any department 6
tive Elcctive courses
for all options
OBR - Option Based | ISO = { ACCO 213, 218, ECON 201, 203, | 30
Required courses FINA 214, MANA 266, MARK 213, DESC
243, 244, 250)
SAO = { EMAT 212,232, 252,312, ENGR. | 27
273,274, 371, ELEC 311 }
TCS = { MATH 242, 243, 262, 263, 282, | 18
283 }
GSO = { MATH 242, 243, 262, 263, 282, | 18
283 }
SSO = { MATH 242, 243, 262, 263, 282, | 18
283 }
OCS - Option Spe- | ISO = { COMP 445, 451, 457, 458, 472, | 9
cific Computer Sci- | 474 }
ence courses
SAQ, TCS, GSO = {COMP 361 } 3
SSO = { COMP361, 442, 445, 446, 451, | 19
465, 485 }
OSE - Option Spe- | ISO= { L1} 6/L1
cific Elective courses | SAO = { L2,L3 } 6/L2, 9/L3
TCS = { L4,L5, L6 } 6/L4, 9/L5, 9/1L.6
GSO = { L7} 18/L7
SSO = { L7} 6/L7

Table 2: Sub-list structure of Degree Requirements

10

Name Definition

L1 Courses having prefixes ACCO, ECON, FINA, MANA or
MARK except ACCO 220, 221, MANA 211

L2 [COMP 327, 421, 415, ENCS 455)

3 {ENCS 215, 456, ENGR 372, 471, ELEC 312, 341, 442, 461,
162 }

L4 { COMP 441, 465, 467}

L5 Chosen from one of the following lists :
listl: { MATH 322, 381, 392, 393, 394, 432, 491, 492 }
list2: { MATH 231, 312, 336, 337, 381, 432, 435, 436, 437 }
list3: { MATH 342, 343, 348, 351, 353, 448, 451, 454 }

L6 {MATH 271, MATH [312..397] , MATH [425..499]}

L7 Courses chosen from :

Faculty of Arts

Faculty of Commerce and Administration

Faculty of Engineering and CS other than COMP20!

Other courses authorized by the office of Associate Dean

Table 3: Course Lists

11

1.5.2 Scope of the System

This system will performm the Undergraduate Advising at the Department of Computer
Science of Concordia University.

There are five options in undergraduate Computer Science:
¢ Information System

o System Architecture

Theoretical Computer Science

General Science

Software System

The Student’s option, status and the courses already taken c«. be read from the
current transcript of that student along with many other useful information. The

databases supporting CAS should be updated before every registration period.

12

Chapter 2

The Object Modeling Technique

In our work, the object -oriented paradigm is used, especially the methodology that

is promoted in [RBPL93] and referred to as Object Modeling Technique (OMT).

2.1 Overview of OMT

The dominant characteristic of OMT methodology is the application of “an object-
oriented notation to describe classes and relationships throughout the life-cycle”
[RBPLY3]. As the very first stage of the software development process, an Object
Model is created. Every subsequent stage contributes to this Object Model until
implementation can be carried out with the desired amount of effort. T'hat is, a
more detailed Object Model means a faster, easier implementation. OM'T takes into
consideration the two other orthogonal views of a system with the creation of the
Functional Model and Dynamic Model. However Object Model is viewed as the most
important one and the implementation is based on its refinement., extension and opti-
mization. There are three stages of the OMT methodology. Analysis, System Design

and Object Design.

2.1.1 Analysis

According to the well known software engineering principle for designing a picce of
quality software the first step should be the preparation of a Software Requirement
Document (SRD). In OMT methodology the A nalysis Document (produced during

analysis and served as SRD) contains the followings:

Problem Statement: States the requirements.

13

Object Model: Defines the static data structure of the system by means of object
classes, their attributes, operations and relationships to each other. The Object

Model consists of:

¢ Data Dictionary: Lists the defined object classes with their short definition.

¢ Object Model Diagram: Shows the relationships between object classes.

Attributes and inheritance are also shown.

Dynamic Model: Describes the time-dependent behavior of the system by showing
how ohject classes respond to the stimulus from other objects. The Dynamic

Mode! consists of:

¢ State Diagrams': For each object class a state diagram is constructed to

show dynamic hehavior.

¢ Global Event Flow Diagram: Shows all events between the object classes.
Events between class 'A’ and class "B’ are listed on the arc connecting ‘A*

and 'B’ regardless of any sequence of the occurrences.

Functional Model: Describes what happens to the objects established in the Object

Model. The Functional Model consists of:

o Data Flow Diagrams: Determines the input, output and the functions that

relate them.

o Constraints: List of constraints or invariant that the analyst should take

into account in the design phase.

2.1.2 System Design

High level design decisions (accessing resources, identifying subsystems, management
of data stores, tradeoffs, single or multiple threaded control etc.) are made during
this phase. Namely the system architecture is designed and recorded in the System

Design Document.

Istate diagram: “Relates events and states.” event: “An individual stimulus from one object to
another.” state: “Specifies the response of the object to input events.” [RBPL93]

14

2.1.3 Object Design

The Object Model derived during Analysis serves as “skeleton™ for the Object Design
phase. During this phase all three models are refined. The output is the Design Docu-
ment containing detailed versions of the three models. However the primarily purpose
of Dynamic and Functional model refinement is to define additional operations or at-
tributes for the object classes (introduce new ones) to facilitate implementation and
carry out the necessary computation and control. Hence a sufficient Design Document

consists of:
o Detailed Object Model:

— All attributes and methods (operations) are identified.
— Data structures are decided.

— Operations (practically functions) are described by pscudo code or other

means along with their arguments.

— Applicable constraints and explanations are recorded in a reserved section

in each object class.
o Transfer function (main function) description by pscudo-code or other means.

o Uses Diagram: Shows the interaction of the objects or subsystems.

2.2 Analysis of CAS

2.2.1 Problem Statement of CAS

See sections 1.5.1 and 1.5.2

2.2.2 Object Model of CAS

Based on the Problem Statement (Section 2.2.1), a set of object classes is defined

through the following stages:
1. Identifying object classes by extracting nouns from Problem Statement of CAS.
2. Identifying attributes of object classes and associations between ohject classes.
3. Simplifying object classes using aggregation and inheritance.

15

4. Identifying main operations of each class.

The outcome of the above steps fina ly produces three pieces of documents, namely

Class Description Dictionary, Definition of Object Classes and the Object Model.

Class Description Dictionary of CAS

This document contains the names of all object classes, presented in alphabetical

order, each of which is followed by a short description.

16

CAS Course Advisor System suggests a list of courses to be taken during a predefined period. CAS
communicates viith the student and consults with the student’s transcript. It prepares the
course list with respect to Option, Status of the student, courses already taken (Transcript),
degree Requirement, Schedule.

Course can be taken by the student. All relevant information regarding a course is recorded (course,
Credit, Pre/CO-requisite).

Course list 15 a set of courses. A Course list contains zero, one or many courses. Course list class
is an aggregate of object class “Course”.

Course schedule The schedule of the courses that have identical “Course ID”. The class Course
schedule is an aggregate of object class “Schedule kntry”

DegreeRequirement List of all courses must be completed in order to satisfy the requirement of
a specific degree. Depending on the student’s option the requirement consists of one list from
each of the following course lists: CSC, CSE, LAD, OSE, OCS, OBR, LRE

¥xwplanation Messages to explain to the student the reason for not suggesting his/her preferred
courses. The class Explanation is an aggregate of object class “Explanation FEntry”.

Explanation entry It is explanation provided regarding one particular course. It consists of sev-
eral flags to indicate the type of rejection.

Schedule entry Schedule of one particular course, which can be identified by (Course 1D, Section).

Student Student is registered to obtain a degree in a scientific field belonging to the scope of the
present project. Student is the user of the Course Adviser System.

Suggested Courses class is the output of course adviser system. It is a suggestion for the student
what courses he or she should take next. This consists of the list of courses to be taken by
the student together with their schedule entries.

Tevm transcript records the courses that were taken during a term. Term transcript consists of
the identification of the term (Term/Year) and an ordered collection of “I'ranscript Entry”.
The “Transcript entries” are arranged in ascending order on the “Course I1)” (prefix, course
No.). Term transcript class is an aggregate of object class “Transcript entry”.

Transcript is an officially maintained report of the academic activities of the student. The tran-
script contains an ordered set of paragraphs (“Term Transcripts”), and information about
the program by the means of class attributes. Transcript class is the aggregate of object clasa
“Term transcript”.

Transcript entry is created for every course that the student registered for and did not withdraw
before the academic withdrawal deadline. A “Transcript entry” holds the following informa-
tion: Course 1D, Term, Section, Credit, Grade, Credit granted. Transcript entry class is an
aggregate of object class “Course” with the constraint that pre/co-requisite is suppressed.

UserConstraint is specified by the student prior to the course suggesting process.

Table 4: Class Description Dictionary of CAS

17

Definition of Object Classes of CAS

This document contains for each object class the name together with its attributes

and operations.

Class Name: CAS
Attributes:

e Current ID#

e Current Transcript

e Current Degree Requirement
e List of constraints

o List of suggested courses together with course schedule
Operations:

e Initialize CAS before advising

o Clean up CAS on exit

o Get all courses allowed to take

¢ Filter allowed courses toward the constraints specified by the student
¢ Perform suggesting courses

Match course schedule

Print suggested courses, explanation on the preferred courses

Class Name: Course

Attributes:
o Course
o Prefix COMP
¢ Course No. 224
o Credit granted 3
¢ Requisite COMP244; COMP285
o Title Introduction to Systems Programming

18

¢ ('ourse Description Basic machine organization ...
Operations:

GetCredit

GetRequisite

GetTitle

GetDescription
Class Name: Course list
Attributes:

e Number of courses in the list
Operations:

e All basic functions to provide list operations
e Load course list from course database

e Unload course list. when done
Class Name: Course schedule
Attributes:

e Number of schedules in the list

e Course ID (prefix + Course No.)
Operations:

e All basic functions to provide list operations
e Load schedule list from course schedule database

e Unload schedule list when done
Class Name: Degree Requirement
Attributes:

o Effective period for the degree requirement (from starting year to ending

year)

19

e Option

e List of CSC courses and the number of credits required from the list
e List of C'SE courses and the number of credits required from the list
o List of LRE courses and the number of credits required from the list
o List of OSC courses and the number of credits required from the list
o List of OBR courses and the number of credits required from the list
o List of OSE courses and the number of credits required from the list

o List of LAB courses and the number of credits required from the list
Operations:
¢ Functions that retrieve the attributes
Class Name: Explanation
Attributes: None
Operations:

e Show the explanation to the student

e Update the data

Class Name: Explanation entry
Attributes:

e Course No.

e Prefix
e Section
o Suggested course is suggested (yes or no)
® Regquisite requisite is Ok or Not or N/A
o Available yes or no
¢ Conflict no or course ID of conflicting course
e ForDegree yes or no
Operations:

20

e (it attributes

o Write attributes

Class Name: Schedule entry

Attributes:
o Term 2
¢ Class Name Lec
e Section AA
e Day M-W-—
e Starting time 18:30
e Ending time 21:45
o Location 11535-2
o Capacity 20
¢ Instructor N/A

Operations: Functions that retrieve the schedule line info

Class Name: Student
Attributes:

e Name
o ID#

e Phone#
o Option

o Date of First Registration

Operations: Functions that retrieve the attributes

Class Name: Suggested Courses
Attributes:

o Course ID (prefix + course no.)

21

(‘ourse instructor

e C'ampus
¢ Location
o (lass

o Day

e Time

e Suggested flag to indicate whether the course is advised to take.

¢ Explanation text if the course is advised not to take.

Operations: Functions that retrieve the suggested courses info.

Class Name: Term transcript
Attributes:

¢ Term, Year

¢ List of transcript entry of taken courses in the specified term.
Operations:

o Calculate GPA for the specified term
¢ Count number of credits of taken courses in the specified term

o Get list of all failure courses

Class Name: Transcript
Attributes:

o First registration date

¢ Minimum credit to take

e Status (full-time or part-time)
e Option

¢ Time limit, to finish the degree

¢ Program status

o Last GPA

22

e ('ommulative GPA

Operations:

o Functions that retrieve the transcript line information.

o Read transcript

Class Name: Transcript entry
Attributes:

o Course ID (prefix, course no.)
¢ Section

o Credit granted
Operations: Functions that retrieve the transcript entry information.
Class Name: User Constraint
Attributes:

o List of courses the student prefers to take in this term.

e List of courses the student does not want to take in this term.

List of schedule day and time the student cannot attend.
o List of campuses the student does not prefer.
e Maximum and minimum number of courses the student wants to take.

e Maximum and minimum number of credit the student wants to take.

Operations: Read and update the user constraint specified by the student

Object Model Diagram of CAS

As mentioned in 2.1.1, the attributes are usually shown along with the object classes in
the Object Model Diagram. To increase readability of the diagram, only the qualifiers?
are indicated. All attributes and operations can be looked up in the Definition of
Object Classes document. Hence the Object Model Diagram of CAS (Figure 2.)

2A qualifier is an attribute to distinguish among a set of objects at the many end of a many-to-
many, many-to-one or one-to-many association.

23

shows relationships, aggregation and inheritance (see [RBPL93] for notation). The
following information can be read from the diagram:

C'AS object accesses:
® a selection of “Course” objects via their “Course #” and “Prefix” attributes

e a selection of “Course Schedule” objects via their “Course##” and “Prefix” at-

tributes
e a selection of “Transcript” objects via their “Student ID#” attribute

e a selection of “Degree Requirement” objects via their “Option” and “DateOf-
FirstRegist” attributes

CAS object produces:
e a “Suggested Courses” object
Student communicates with:
e (UAS object
Student enters:
e User Constraints
Student has:
o “Transcript” object
Student receives:
e “Suggested Courses” object
¢ “Explanation” object

“Suggested Courses” object class inherits all attributes and operations from “Course
List” object class.
“Degree Requirement” object class is aggregated from 7 object classes. These 7 classes
inherit all attributes and operations from “Course List” object class. Explanation of
these course lists can be found in Chapter 1., Table 1. and Table 3.
“Course Schedule” object class is an aggregate of many “Schedule Entry” object

classes.

24

“(‘ourse List" object class is an aggregate of many “C'ourse™ objects.

“Explanation” object class is an aggregate of many “Explanation Entry™ objects,
One “Course” object is aggregated into a “Transcript Entry” object.

“Term Transcript” object class is an aggregate of many “Transcript Entry” objects.

“Transcript” object class is an aggregate of many “Term Transcript” objects.

25

Course List

AN

. Suggested
[D] 1] w -4
ﬁ 4 g 8 8 8 Courses
[| [| | 1 Receives
o Explanation L
egree Course
Requirement
Opuon [oA
First-Reg. R {=--- r -~
Vo
Accesses '
1
!} Receives
‘ A Produces : H
1
.g CAS 2'“"““’_ tes : :
0 A
E Z } "3 L — Student
< & o Accesses { i
'
Accesses | Uiger ' 1 Enters
T
Constraint [
-
Student ID
User Interface
Transcript
Transcript Consists of Explanation
|~ Consists of Schedule
Entry Course Entry Entry
Conaists of Consists of Consists of Consists of
Term Course
Transcript Course List Schedule Explanation
Consists of
Transcript
Figure 2: Object Model Diagram of CAS

26

2.2.3 Dynamic Model of CAS

The goal of this stage of analysis is to determine the State Diagrams of the objects

and the Global Event Flow Diagram.

Scenarios

The process to produce the two pieces of document is set out preparing scenarios” to
cover all typical sequences of user-system interaction.The importance of scenarios lies
behind its understandability by users (clients) and developers as well. For this reason
we suggest to include the collection of scenarios used to develop a software into the
Dynamic Model.There has to be a scenario for each of the normal and exceptional
cases of operation. Exceptional cases are when not expected, out of range or erroncous
user input occurs, all remaining cases are considered as “normal operation”. It is
assumed that the User Interface of CAS Figure 1. screens the user input for acceptable
format and range (except for valid student ID#) The scenarios describing CAS can

differ in the following actions:
i. Student enters preferred course(s):

® yes

e no
11. Student enters some constraints:

® yes

® no
ili. Student’s confirmation of suggested courses:

e accepts entire list
e rejects entire list

e modifies list
iv. CAS accepts the modification:

® yes

3A scenario is a sequence of events occuring during a meaningful information exchange between
system and outside agent.[RBPL93]

27

® no
v. Student wants additional courses after point iv.:

e yes

® No

Entering preferred courses and constraints can be drawn together since preferred
courses are special constraints. In the scenarios it is written “The Student enters
the courses he/she prefers to take. The Student enters his/her preferences and zon-
straints regarding: campus, workload , time, courses that he/she does not want to
Ltake.”. Naturally students can enler constraints without entering preferred courses
and vice versa. However the iaformation is evaluated by CAS before proceeding so it
is unnecessary to establish separate scenarios for i. and ii. From the permutation of
1. and iii. 6 scenarios are created. Out of this 6 scenarios, 2 scenarios are involved
with iv. expanding the total number of scenarios to 8. Each of the 8 scenarios is
involved with v. expanding the total number of scenarios to 16. There are two addi-
tional things to consider. First an abort operation that would let the user abort the
advising session will let CAS return to its initial state: “The CAS asks the Student
to type in his/her student ID#.” Second a cancel operation that would let the user
stop the present jteration of advising. Actually it would clear the alrcady suggested
courses, but retain the information previously input by the student such as ID# and
data extracted from transcript, preferred courses and user’s constraints. These two
operations can occur at anytime during execution of any scenario, with the same
effect. 10 scenarios that form a subset of the 18 scenarios that have been set up to

describe CAS can be seen in Appendix A.

Event trace diagrams

Each scenario can be shown in an event trace* diagram. The event trace diagram is a
collection of vertical lines corresponding to objects, and horizontal arrows indicating
the events occuring between objects.Event trace diagrams can be generated by iden-
tifying events between objects in the scenario and representing them in the sequence
of the occurrences [RBPL93]. Figure 3. shows the event trace diagram of Scenario

8. [Appendix A] as an example. It can be seen that the events occuring between two

‘event trace is “an augmented scenario”, that includes “an ordered lisi of events between
different objects”.[RBPL93]

28

objects, for example Student and ('AS, while the system follows Scenario 8. are all

assigned to the column bounded by the vertical lines representing the two objects,

Student and CAS:

Request ID#(from CAS), Enter ID#(from Student),

Start advising(from Student), Display suggested courses(from CAS),
Reject suggested courses(from Student), Start advising(from Student).
Display suggested courses(from CAS),

Confirm suggested courses(from Student),

Print suggested courses(from CAS), Request 1D#(from CAS).

29

Degree

Course

Suggested

User

H
5
- P e demcm———n e amcamccam—————— e e m e e mccme e ammmmm————————————————— ————
F]
)
]
-
£
f
foorrean S F S eeemmemmmoomeaeomaneeeemnnnae S eeemmammmcmeeeammneas
~
$
S OSSOSO
8 [
L]
:]
B e e F TSRS SO NI
- 3] & =
g3l 5 f g3 . . HIE:
g £ 387 ‘BB E K
[F g PR AR 5 SR 3 U PO 1 Y. |M||..m g cetmecererceeeoe—e—e———— ol 21 _—
3 ’h M. - 9 |w-|| r=Fl~--3 ~------===co-ee- sesacecsesctecnvancee
3 B a5 E S wﬁ o £l
4] < o m [M H & W m F
3 P ;. § gl B
: {1 I i X3 g
.lm gl @ S ¢ g g 8] 9 % @ m
e S U S - DU S D O DR | DU e h-)]
: i] ﬁ 2 N | Sy S e
g Ly [iy d
- &
- 'R s| & § & H a1 2
£ - > sl g I ¥ 3 al gl &
: £ g sl F O £ 2 o« il 2 3 £
gooseeeee B R R B S e “-J:.--_ SIS 1A N T At Rt R R | A | R someeees
i x H] 4 £ B K] 2
o 3 g § g 53 o8 3 . § 8 OB % ogg
H - HE: 3 E 2 H fs oz § o 5% .
! I g8 4834 Y3 HOH3:l
» - m 3 v 5 I 2 cf 3 & ! 3
Brrvrieerpe S R 0 I s ORI Iz LT VoLNR. WS N NN SN MR T A 6 O OB
I H i g HIE
umﬂ I BERE
H - H > s - R
b i - 3 I z R
E 2§ 3 = & = 3 &
s 4 il 8 | .48l ¢ 8 S| _1_. £ &
G T B S S O SRRSO I S .1 SR ROV MR O A0 B B4 UL .. W
<A

Event trace diagram based on scenario 8 [Appendix A)
30

.

Figure 3

Global Event Flow Diagram of CAS

Event Trace Diagrams are created for each Scenario. Then the events occuring be-
tween specific objects are taken from the appropriate column of each event trace and

listed on the links of the event flow diagram of CAS (Figure 4.).

Send message
Send explanation on preferred courses

Explanation

Request explanation on
preferred courses

Request Degree requirement
Degree
Request additional courses - Requirement
. . Send Degree rquirement
Send modification ready signal
Modify suggested course list
. Request data
Reject all suggested courses -
I'ranscript
Confirm suggested courses .
- C Send data
Request advising A
Enter ID# i
S Request Pre/Coreq
Student Course
Request ID# Send Pre/Corequisite
Display suggested courses
pr."“ suggeﬁed ourses Request Schedule
Display facility for modification Course
Modificstion accepted Schedule
Modification denicd Send Schedule

Send constraints & preferred courses Request constraints & preferred courses

Update constraints & preferred courses

User Constraint

Enter prefemred course
Enter constraints

Figure 4: Event flow diagram of CAS

31

State Diagrams of CAS

State diagrams have been created for “each object class with nontrivial dynamic
behavior”[RBPLY3] from the scenarios and event traces. All the event traces are
merged into the state diagram belonging to each class. “CAS” object class has the
most complex state diagram (Figure 6). Figure 5. shows the refinement of Sug-
gesting and Write Constraint states of CAS object class. “Dc;gree Requirement”,
“Transcript”, “Course Schedule”, “Course” object classes have mainly static char-
acteristics. They serve as data storage, their operations involve mostly data ac-
cess(request data, send data) and have one state. Upon receiving “request data”
message, the appropriate data is selected and sent to the requester. “Explanation”
and “User Constraints” object classes have two states depending on the input which

can be “request data” or “write data”. See Figure 7.

s) 1)
Wt Consrans Sngpsing
alry: Reped agpaed s ey Roy ety
 Uplae i b Sppteonrus (gt
- ‘ mlliuisiiﬁallynpty)
ik g rady
ok, ¥
taty. Modificiionsacepd b Spedon o azecuso
b Updae Oty conpleneal an dbeady el it
ik Updae ol ek, systoprealy
i ;L J

Figure 5: State refinement of “Write Constraint” state of CAS object class

32

advising session is fini

MainScreen
do: request ID#

do: access schedule

ID# entered \ transcript is received
disaccess transcript J

do: access Jegree

requirement

degiee requirement
has been reveived

Y\ request requisite
do: access course dot prepare hist ot

send requisite allowed cowses
—e

ready

send requisite
request requisite

L

do: wait for start "*—“

request ndvising

schedule

request
schedule

Veriflcation

do: verify
modification

send Suggesting] l dos read consiraints
explanation dot suggest courses preferred courses

ready

J‘conslrmnls have
been received

request

suggesting ready more courses

modification is accepted

modification is denied /

one course

do: modify suggested
list:deletc or change

ready for restart

l / costrains

. A are updaled | Write constraints
do: display
suggested courses dot uodate

request

dos print suggested
cov.5es

modification '} reject suggested consiraints
courses
confirm suggested
courses

dos display question] Yes

Do you request
more courses?

Figure 6: State diagram of CAS object class

33

Request consgams Update constramts or
& preferred courses

Enter constraints
do: Get constraints & 4ot wryte constraints &
preferred courses preferred courses
Send constiants &
preferred courses
(a)
Request explanation Send explanation
L do: Get explanation] (do: Write explanation]
Send message Send explanation
(b)

Figure 7: State diagrams of (a.) User Constraint, (b.) Explanation object classes

34

Functional Model of CAS

The student has to enter three things: Student 1D#, Constraints and Preferved
courses, C'onfirmation of suggested courses. These are the input to the system. The
student will reccive two things: Suggested courses with their schedule and Explana-
tion on Preferred courses. These are the output from the system. Both agents veceive

messages from each other. The input and output of the system is shown in Figure 8.

Output of the System

Suggested courses
Explanation on preferred courses
Messages

Student CAS

Student 1D
Prefemved courses
user Constraints
Confirmaton of preferred
courses. accept
reect
modify
Input of the System

[]
]
]
]
)
'
'
[l
[]
¢
'
)
1
]
]
]
]
]
¥
'
]
[l
]
'
'
'
[]
i

Figure 8: Input and Output values for the Course Advisor

The top-level data flow diagram (Figure 9.) shows the permanent data bases
(Transcript, Degree Requirement, Course, Course Schedule) the system has to ac-
cess, and the objects the output is stored with the data flow. Grades, Status, Option,
the list of Taken courses and the date of Ist registration are read in from Transcript
object and passed to “Perform course suggestion” process. This process retrieves the
Degree Requirement object corresponding to the Student’s Option and date of Ist
registration. It obtains information regarding Pre/Co-requisites of certain courses
from the Course objects and retrieves the Course Schedule objects corresponding to
specific Courses. “Perform course suggestion” process obtains additional information
that has been entered by the Student (Preferred courses, Unpreferred courses, In-
convenient time, Maximum and minimum number of credits and courses) and stored
in User Constraint object. The output of the process is a list of courses and their
schedules that are written into Suggested Courses object. Additional to this, expla-
nation is prepared (and recorded in the Explanation object) to show the Student that
his/her Preferred courses have/have not been selected. The Suggested courses and

Explanation are displayed to the student.

35

The refinement of “Perform Course Suggestion™ process is shown in Figure 10. The

process is broken down into four processes to carry out the necessary computations:

Select Courses not yet taken: Takes the Student’s Degree Requirement and the
courses he/she has already taken and produces a list of courses that the Student

still has to take (Required courses list).

Select Courses allowed to take: For each course in Required courses list, this pro-
cess checks if the Pre/Co-requisites are satisfied and produces Allowed courses

list.

Apply user constraint to allowed courses: Filters Allowed courses list with “Un-
preferred courses” that is an attribute of User Constraint object. The resulting

list is the Filtered allowed courses.

Selection, Match schedule: Selects courses from Filtered allowed courses list with
respect to the remaining attributes of User Constraint. The schedules of selected
courses has to be matched. The number of selectrd courses depends on the

Student’s Status or the relevant attributes of User Constraint object.

The further refinement of the three models will be carried out during Design phase
[Duo).

36

Transcript Degree Requirement Course Course Schedule

Status
Option Option
Grad 1st registration
es
CdwrscLast .
Taken courses Course Schedule
1st registration

m
Read transcript Perform course - Sugpested Courses
suggestion Couse list
Schedule
Explanation enty list
& hst
User Constraint Explanation ‘ourse s
Schedule
Read Constraint | Student Display
Preferred courses
Unjreferred courses
Inconvenient tme
Workload
Campus

Figure 9: Top level Data Flow Diagram of Course Advisor

37

Transcript Degree Requirement

Option

st registration

Taken courses Course list

Course

Select courses
not yet taken

Pre/Corequisates

Select courses
allowed to take

Userr Constraint
Allowed courses

Unpreferred courses
Apply user

constraints to
allowed courses

Filtered allowed courses

Course Schedule

User Constraint

Preferred courses
Inconvenient time
Number of credits
Number of courses
Campus Selected courses
Schedule

Explanation on preferred
courscs

Explanation Suggested Courses

Course Schedule

Status
Grades

Transcript

Figure 10: Data Flow Diagram for Perform course suggestion process

38

Chapter 3

Software Support for User

Interface Development

The Course Advisor System is to be accessible via a Graphical User Interface. We
implement this interface using Reusable Module Librai s that was developed as the
part of this major technical report to support application developments based on
C++ and Motif toolkit.

3.1 X Window System and OSF/Motif

X Window System (known as “X”) is “an industry-standard window system that pro-
vides a portable base for applications with graphical user interfaces” [You92]. Motif
(more formally OSF/Motif) is a toolkit developed by the Open Software Foundation
and specifies the common user interface features needed by applications based on X.

The Motif applications are built on three distinct layers [HF94}:

e Xlib provides a low-level interface to the basic services of the underlying window
system.[SG92]

e Xt Intrinsics is a higher level library to facilitate the use of Xlib by the
programmers. Xt provides hooks for specific toolkits such as Motif, Athena,
OpenLook to take advantage of Xt facilities. It defines some user interface
compenent classes, (such as the different “Shell” classes), abstract base classes
(Core classes) and a protocol to carry out the interaction between application
and Xt components. Xlib and Xt are implemented in “C”. “The user interface

components supported by Xt are called widgets” [You92] .

39

e Motif Widget Set consists of a set of components for creating user interfaces.
Manager widgets that handle screen layout (BulletinBoard, Frame, PanedWin-
dow, RowColumn, ScrolledWindow etc.) and widgets to support user interac-
tion (different kinds of buttons, ScrollBar, Text etc.). See [Bra92) for complete
set of Motif widgets.

3.2 Motif based GUI development

Motif is a widely-accepted toolkit and it is easy to use. It is better and easier to de-
velop a GUI using Motif rather than with Xt and Xlib. In this context UIM/X type of
interface generation plays a still better role than Motif. UIM/X is an industrial soft-
ware that requires a good amount of learning time. One of the objectives of UIM/X
is to make the Ul development using Motif widgets an easier job. In this report we
use another approach and develop a set of C++ classes, 25 component classes and
11 abstract classes to be precise, named Reusable Module Library (RML). The
Figure 11. shows how RML is placed. Each RML class makes use of several Motif
widgets. RML is specialized for the development of GUI using customized dialogs,
lists, menus and multiple buttons. A C++ programmer can include the RML as a

part of his/her library and quickly build a User Interface as explained in this report.

3.2.1 UIM/X Graphical User Interface Builder

UIM/X is an excellent software package, a “second-generation GUI Builder” [Ltd93]
that facilitates the development process mentioned above. The steps of GUI devel-

opment using UIM/X are:

o Specify all components of the graphical interface: interactively create the com-

ponents of the interface, set resources etc.

¢ Write callback functions (callback function is that function invoked in response

to an event)

o Generate code: C or C++ (UIM/X allows one to access and modify the gener-
ated code)

UIM/X dramatically reduces the effort of programming, and the interactive creation

of the interface directly supports rapid prototyping. However, the developer should

40

spend considerable time for learning both Motif and UIM/X since good knowledge of

Motif is essential when using UIM/X for a complex application.

3.2.2 C++4 and OSF/Motif

With Object Oriented Design (OOD) becoming more and more popular in the indus-
try, developers are going to use a language like C++! toimplement their applications.
We should observe in what way the OO features of C++ might assist the Ul devel-
opment process. Douglas A. Young in [You92] recommends the use of OO facilities
of C++4 to create “high-level user interface components”. Our aim is to implement
the key components that will support an application development using C4-+ classes
and Motif widgets.

Analyzing the application domain, a set of classes can be developed and used as
a specialized class library. This set of core classes should efficiently support rapid
prototyping and fitting the GUI into the specific application domain. The main
criteria in this selection of components is re-usability. An object class is defined by its
attributes and methods so re-usability depends on how well these two are chosen, For
instance, object class “A” with three pushbuttons Pbl, Pb2, Ph3 as attributes is not
as much reusable as object class “B” with arbitrarily many number of pushbuttons.
Furthermore, let us suppose that the use of “A” requires the user to specify for cach
button if it is to be displayed or not; whereas in class “B” pushbuttons are created
by the “constructor” as needed. The use of “B” will reduce the amount of coding

during certain types of application development.

Implementation issues:

In [You92] some implementation issues are mentioned when using C++ with Motif.
The first is that, C++ functions should have a prototype to declare the types of their
arguments. X and Motif functions do not have prototype since they were written in
pre-ANSI C. Second, X and Motif functions should be declared as external C functions
with “extern C” declaration. These issues have been taken care of in the Motif header
files as of Version 1.1.

There is another kind of issue to mention. From the OOD point of view, it is

1 Programming language derived from “C” providing direct support for object oriented program-
ming.

41

important to incorporate caliback functions into the object class as methods (mem-
ber functions). In C++ there is a pointer named “this™ that is accessible for self-
referencing an object. Programmers seldom need to use it explicitly. however “this” is
passed as a hidden parameter to member functions (except static member functions?
) every time they are called. Motif callback functions must have three parameters of
predefined type as explained in [Bra92], so the hidden “this” makes the use of inember
functions as callback function problematic. A static member function does not have
the hidden “this” parameter so [You92] suggests to use them as callbacks and call
the appropriate member functions from it. “this” should be passed as an argument

to the static function to make referencing the object possibie.

3.3 Development of Reusable Module Library

Based on what is described in Section 3.2.2, we have developed a Reusable Module
Library (RML). Sce Figure 11. RML consists of Abstract classes and Component
classes. Component classes are built with a collection of Motif widgets. We studied
the user-system interactions in CAS and designed component classes that could be
used to build interfaces for similar applications. More precisely, the events of user-
system interaction were examined and extracted from the Dynamic Model of CAS

(See Section 2.2.3). These events can be classified as:
e application needs to display lists of data, structured in a table
¢ application needs to display messages to users
o user needs to enter lists of data
o user needs to select from predefined sets of data
o user needs to enter predefined commands to the system

The most important feature is a list of data, which can be displayed in a ScrolledList2.
Augmenting the ScrolledList with a table header yields the object class of type Tab...
Adding a TextField widget and a set of buttons supports data manipulation on the

ScrolledList (user can enter, delete, select items). The user can en.er commands

24only one copy of the function is stored for all instantiations of a given class” [Str94]

3ScrolledList is a compound object that we obtain “by creating a List widget as the child of a
ScrolledWindow™ [HF94]

42

to the system through menu, pushbuttons and toggle buttons. The system displavs
messages to the user with Message Dialogs or in a Text widget. Customized Dialog
boxes facilitate the information display.

Abstract classes are “to define a common interface for its subdlasses™ and can not
be instantiated according to [EILIV95]. We relaxed this definition in the case of RMI,
so some abstract classes can be instantiated (this will be indicated at the description
of the object classes in Section 3.4). Additionally we can say that Abstract classes
of RML are not visible on the screen, whereas its Component classes can always He
visible.

Abstract classes of RML serve the following purposes:

e Support the various functionalities of Component classes such as external call-

back functions.
¢ Collect the reusable aspects of Component classes through inheritance.

¢ Perform object management functions.

UIM/X RML

Motif Widget Set

Xt Intrinsics

Xlkb

A layer can access the services of any layers below it.
Figure 11: Library Architecture of UIM/X and RML
Several Component and Abstract object classes have been developed based on the

above discussion. They are listed below for a quick overview and described in detail

in Section 3.4.

Component object classes

S s N

<N

ActiveEdit Table
ActiveList
BoardListDialog
BoardOfLists

. ConstraintMenn
. DialogContMdf

7. DialogContainer
8. Edit'Table

A

a.
b.
c.
d.
e.
f.
)

1.

. FromList
10.
11
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

Fromlist Dialog
List

ListDialog
MainMenu
MessageArea
MessageDialog
PromptDialog
RadioToggle
RowOfLabels
RowOfLists
SimpleMessage
Table
TableDialog
TableFill
TableFillDialog
. ToggleDialog

bstract object classes

ActiveListCallData
BasicComponent [You92]
CustomDialogCaliData
DialogCallbackData
ListCallbackData
MainMCallback Data
MessageManager
PromptCallbackData

i. RadioTCallbackData
j- TableFCallbackData

k.

UlComponent [You92)

Table and a collection of lists and pushbuttons
List, one text-field and a set of toggle buttons
Pop-up window

Set of lists, label, text-field

Menu-bar with pull-down menus

Empty dialog box

Empty dialog box

Table and a collection of lists

One main list and a collection of sublists
Pop-up window

List

Pop-up window

Set of pushbuttons

Area to display messages

Dialog box

Dialog box

Radio box

Collection of labels

Collection of lists

Label

Table

Pop-up window

Set of label and text-field

Pop-up window

Pop-up window

Supports callback functions
Parent superclass

Supports callback functions
Supports callback functions
Supports callback functions
Supports callback functions
Manager of dialog boxes
Supports callback functions
Supports callback functions
Supports callback functions
Parent superclass

44

3.4 Description of object classes of RML

Each object class is described using its Component and Inheritance Graphs and a
table. The vertices of Component and Inheritance Graphs are Motif widgets or RML
classes. When the vertex is an RML class, it is represented by the name of the class
surrounded by a rectangular frame. Interpretation of Inheritance Graph is straight-
forward. A vertex of a Component Graph is composed from the widgets and object
classes represented by the vertices of its subgraph. For example Figure 12. shows
that ActiveEditTable object class consists of a RowColumn widget (belonging to the
Motif Widget Set) that holds an EditTable object and a MainMenu object. The table

associated with the object class contains information itemized below:

e Name of the object class.

Parent of the object class (Superclass).

List of other object classes aggregated into the class (Aggregated classes).

Short Description of the chject class in English.
o List of Attributes with short explanation.
o List of Methods with short explanation.

In the following, the term “widget” will always refer to a widget defined in the
Motif Widget Set. The frequently used phrase “manage the widget” means making it
visible on the screen. Technically it involves calling “XtManageChild(widget)” func-
tion provided by Xt Intrinsics layer. Manage a component object means to manage

its “base widget”. “Unmanage” is used analogically.

45

Name: ActiveEditTable
Superclass: UlComponent
Aggregated classes: EditTable, MainMenu

Description: From the viewpoint of its functionality, this object class is an EditTable object,
augmented with pushbuttons. The row of arbitrary number of pushbuttons is placed under the

components of EditTable. This has contributed to naming the object ActiveEditTable.

Attributes:
o RowColumn Motil manager widget that lays oul the components vertically.
e edTable: An instance of EditTable object class.

e buttons: An instance of MainMenu object class.

Methods:

¢ Constructor: Header labels of the table are given by a pointer to a constant array. The string
format of the header may be specified (NULL if N/A). The content of a message and a label
may be specified if needed. There are three constructors available, one for initially empty
table, one of cach of initial items of table given by constant array and linked list.

o Destructor

e loadMainButtons(): creates "buttons” attribute, (constructor only initializes it). The push-
buttons are specified by a pointer to their labels, type and title of ”buttons” are specified as

well. See the constructor of MainMenu object class.

(conlinued on nexl puge)

46

(continued from previous page)

getButtons(): accesses “buttons”

installButtonCallbacks(): installs an external function as callback function for "buttons”. See

“installMainCallbacks()" method of MainMenu object class.
getTable(): accesses “edTable”
access functions: Functions to invoke the methods of "ed'Table™ object.

manage(): virtual function to manage the object. [t manages the components (buttons,
edTable) prior to making visible the object on the screen.

set ActSensitive(): sets sensitivity of specificd pushbutton of "buttons™. See "setSensitive()”

method of MainMenu object class.

Component and Inheritance Graphs: Figure 12

| BasicComponent| | ActiveEditTable |

| UIComponent RowColumn

| ActiveEditTabld

| EditTable | |MalnMe_ng

(a.) (b))

Figure 12: ActiveEditTable object class: (a.)Inheritance Graph (b.)Component

Graph

47

Name: ActiveList
Superclass: List
Aggregated classes: ActiveListCallData, RadioToggle, SimpleMessage

Description: There are two manager widgets previded in List object class. ActiveList makes use
of the one located under "list” by placing a TextField widget and arbitrary number of togglebuttons
(RadioToggle object) into it. These two features provide access to "list”. For instance "list” displays
some items. Additional items can be added one by one from the TextField. The new item can
be appended to or inserted before the selected position(s) of "list”, depending on the settings of
togglebuttons. Selected positions can be deleted by clicking on the appropriate togglebutton, etc.
Two default callback functions are defined as methods in the class, ”textDefault” and ”toggleD”
(see below). ‘The former is invoked upon pressing Enter in the TextField widget, the latter upon

clicking on a togglebutton. The default callback functions can be replaced by external functions.

Attributes:
¢ description: An instance of SimpleMessage object class.
o controls: An instance of RadioToggle object class.

e acd: An instance of ActiveListCallDataobject class.

textEntry: A TextField motif widget.
Methods:

o Constructor: Selection of the list is given. The content of two messages may be specified (one
appears above the "list” of List, superclass, the other above "textEntry”). Tcggle buttons are
specified giving a pointer to a constant character array of labels of the toggle buttons. There
are three constructors available, one for initially empty list, one of each of initial items of list

given by constant array and linked list.
e Destructor

o textDefault(): Reads the string entered, and depending on the setting of ”controls”, adds
or inserts it into "list”. This virtual function is called upon pressing enter in the TextField

widget if no external function has heen installed.

o toggleD(): Default callback function of the togglebuttons of "controls”. Reads the label
of activated ToggleButton. If label is “delete”, selected items are deleted from the list.
Additional strings can be defined as labels of the togglebuttons of "controls”.

(continued on nez! page)

48

(contizucd from previous page)

¢ installText("b(): Installs an external function as caliback function for "textkntry”

"Enter” in the TextField widget will result invoking the specified function.

Pressing

¢ installToggleCh(): Installs the specified external function as callback function for "controls™.

¢ access functions: Functions to invoke the methods of "control” object

Component and Inheritance Graphs: Figure 13.

BasicComponent|

UlComponen

List

ActiveList

(a)

ActiveList

RowColumn

N

SimpleMessa 7

RowColumn ScrolfedList RowColumn

SimpleMessage] TextField

(b)

RadioToggles

Figure 13: ActiveList object class: (a.) Inheritance Graph and (b.) Component

Graph

49

Name: BoardListDialog
Superclass: DialogContMdf
Aggregated classes: BoardOfLists

Description: Customized dialog box. The action area contains an arbitrary number of push-
buttons. The control area of dialog box contains a BoardOfLists object. An example of its use is
displaying information (by the means of the components of BoardOfLists object) and pop-down the

dialog box upnn pressing an "ok” button as acknowledgment.

Attributes:

o boardUnit: an instance of BoardOfLists object class

Methods:

o Constructor: Labels of the action area buttons (See DialogContMdf object class in this sec-
tion) are given by a pointer to a constant array. Type of action area and a label "titleLabel”

(BoardOfLists object class) are also specified.
e Destructor

o clearBoardList(): clears "boardUnit” (See "clearBoard()” method of BoardOfLists object
class)

e manage(): virtual function to manage the object.

o getBoardUnit(): returns "boarUnit”

Component and Inheritance Graphs: Figure 14

50

Name: BoardOfLists
Superclass: UlComponent
Aggregated classes: RowOfLists

Description: This component class cousists of a Label widget that belongs to a TextField widget
and arbitrary number of List objects (captured by a RowOfLists object). The components are laid
out horizontally by a Form manager widget in the sequence Label, TextField, Lists. The components
can be surrounded by a Frame widget. The constructor has to be informed if the object is to be
created with Frame. New object classes can be derived from BoardOfLists class using the manager
widgets of List object class. Any set of components can be aggregated into those areas. BoardOfLists

class can be used for browsing and viewing lists.

Attributes:
o type: specifies if there is a frame surrounding the component
o innerForm: holds all the components listed below

o titleText: a TextField motif widget

titleLabel: a Label motif widget

o choices: an instance of RowOfLists object class

Methods:
¢ Constructor: “type” and “titleLabel” are given.
¢ Destructor

e loadBoardList(): Three functions are provided to load lists of "choices”. See "loadList1()”,
"loadList2()” and ”loadList3()” methods of RowOfLists object class in this section.

o clearBoard(): clears lists of ”choices” and " titleText”

o manage...(): A virtual function to manage the object and functions to manage and unmanage

" choices” are provided.
e get....(): a function is provided for each attributes to return them

¢ set...(): a function is provided for each attributes (”innerForm”, "titleText”, "titleLabel”

and lists of ” choices”) to set their resources.

Component and Inheritance Graphs: Figure 15

51

Name: ConstraintMenu
Superclass: UIComponent
Aggregated classes: N/A

Description: This component class consists of a menu-bar with three menu-titles (Implemented
using CascadeButton widgets). Each has a pull-down menu of arbitrary number of menu-items.
The pull-down menus are created by invoking the member function BuildPullDownMenu()[4]. The
menu-items of the pull-down menu can be implemented using PushButton, ToggleButton or Label
widgets. All that information (including callback functions) is passed to BuildPullDownMenu().

Attributes:
o commandTitle: CascadeButton widget, its label is a menu title
e optionTitle: CascadeButton widget, its label is a menu title
e helpTitle: CascadeButton widget, its label is a menu title

o commandPulldwn: Stores all relevant information of the pull-down menu associated with

”commandTitle” .

e optionPulldwn: Stores all relevant information of the pull-down menu associated with ”op-
tionTitle".

e helpPulldwn: Stores all relevant information of the pull-down menu associated with ”helpTi-
tle”.

Methods:

¢ Constructor: Three pointers to the data structure containing all information necessary, one
for each menu title is passed to the constructor. The three menu titles are specified by an

array of pointers to character constants.
¢ Destructor

¢ BuildPulldownMenu(): Builds pull-down menus (used by the constructor also). Creates the
pull-downs, installs callback functions and stores the created menu item widget in ” command-
Pulldwn”, " optionPulldwn” and "helpPulldwn”.

(continued on next page)

52

{contanued from previous page)
o get...(): a function is provided for each attributes to return them

o setHelp(): Calls the approprate Motif function to place "helpTitle” to the far right end of
the menu-bar.

Component Graph: Figure 16
Inheritance Graph: Figure 17

53

| BasicComponent] I BoardListDia@I

E’@“ nen DialogShell

I DialogContMdf] RowColumn

| BoardListDialgl

Form Separator Form

(a)

| BoardOiListsl | MainMeng

(b))

Figure 14: BoardListDialog object class: (a.) Inheritance Graph and (b.) Component
Graph

BasicComponen BoardOfLists
UIComponen Frame
BoardOfLists Form
(a) Label TextField RowOfLists
®)

Figure 15: BoardOfLists object class: (a.) Inheritance Graph and (b.) Component
Graph

94

| Conslrainmeng

MenuBar
i
CascadeBuiton CascadeButton CascadeButton
PulidownMenu PulldownMenu PulldswaMenu
PushButton © ¢ o PushBuiton
PushButtone® o o PushButton PushButton e ¢ e PyshButton

Figure 16: ConstraintMenu object class: Component Graph

| BasicComponent]

| UIComponen§

{ ConstraintMenu}

Figure 17: ConstraintMenu object class: Inheritance Graph

H5

Name: DialogContamer
Superclass: UIComponent
Aggregated classes: N/A

Description: This compouent class 1s a shell of customized dialog boxes. See descriptions of
DialogContMdf object class The control area of DialogContainer is "empty™ (contains only the
manager widget) Classes can be derived by aggregating other objects or components into the
control area. DialcgTontainer differs from DialogContMdf object class in that action area contains
three pushbuttons with "Ok”, "Cancel”, "Help” labels by default. Labels can be set to arbitrary

values and each of the pushbuttons car be unmanaged

Attributes:
o dialogRowcol- RowColumn Motif widget to hold all the components
¢ ActionForm: Form Motif widget to hold the components of action area.
e ControlForm: Form Motif widget to hold the components of control area.
o sepaiator. Separator Motif widget to divide action and control areas.
e okButton. Pusubuiton Motif widget
o cancelButton: Pushbutton Motif widget
e helpButton: Pushbutton Motif widget

e ccd: An instance of CustomDialogCallData object class, used to register the different extern=l

caltback functions

Methods:

e Constructor: Creates a dialog box with three buttons. An integer value is given to the

constructor, to specify button spacing.
e Destructor
¢ RowColManage(): manage " dialogRowcol”
e ControlFormManage(): manage " ControlForm”

e return functions: Functions a:~ provided to return ”ControlForm”, "okButton”, " cancelBuu-

ton”, "helpButton”.

(confinued on nezt page)

56

{continued from previows page)

¢ installDialogCallbach()* nstalls an external function as callback function of the pushbuttons

of "actionButtons”.

o setFocus(). sets focus on the specified widget

Component and Inheritance Graphs: Figure 13

{ Basic'omponendy | DialogContainer|
| uiComponent DialogShell
| DialogContainer] RowColumn
(a.)
Form Separator Form

I
|

PushButton PushButton PushButton

(b.)

Figure 18: DialogContainer object class: (a.) Inheritance Graph and (b.) Component
Graph

57

Name: DialogContMfd
Superclass: UlComponent
Aggregated classes: MainMenu

Description: This component class is the shell of customized dialog boxes. The dialog box is
divided into two parts, control and action areas, by a separator widget[Fou93]. The components com-
posing the control area provide the functionality of the dialog. The action area contains pushbuttons
whose callback functions initiate ” the action of the dialog box”. The control area of DialogContMdf
is "empty” (contains only the manager widget). Classes can be derived by aggregating other objects
or components into the control area. The action area contains arbitrary number of pushbuttons.

Attributes:
¢ dialogRowcol: RowColumn Motif widget to hold all the components
¢ ActionForm: Form Motif widget to hold the components of action area.

e actionButtons: An instance of MainMenu object class. (Pushbuttons of the dialog)

ControlForm: Form Motif widget to hold the components of control area.

separator: Separator Motif widget to divide action and control areas.

Methods:
¢ Constructor:Type and labels of ”actionButtons” are given to the constructor.
¢ Destructor
¢ RowColManage(): manage "dialogRowcol”
o ControlFormManage(): manage ” ControlForm”
o getActButtons(): returns "actionButtons”
o ControlWidget(): returns ”ControlForm”

o installDialogCallback(): installs an external function as callback function of the pushbuttons

of ”actionButtons”.

Component and Inheritance Graphs: Figure 19

58

Name: EditTable
Superclass: Table
Aggregated classes: BoardOfLists

Description: This component class aggregates a BoardOfLists object into the manager widget
(located under "list”) of Table object class. This results in a Table augmented vertically with
an area containing a Label, TextField and arbitrary number of List objects. The components of
BoardOfLists are held together by a Frame.

Attributes:

board: An instance of BoardOfLists object class.

Methods:

Constructor: There are three constructors available, as in the case of Table object class. One
additional parameter is given for "ti.leLabel” of "bhoard”.

Destructor

loadEdTableList(): Three functions are provided to load list of "board”. See "loadList1()",
"loadList2()" and "loadList3()” methods of RowOfLists object class

manage(): methods are provided for managing and unmanaging ”board”.
clearEdTable(): clears the list” (Table class), and "board”.

access functions: functions to invoke the methods of "board”.

Component and Inheritance Graphs: Figure 20

59

| BasicComponent | DialogContMaf}

[UIComponent DialogShell
| DialogContMdr} RowColumn
(a.)
Form Separator Form
(b.)

Figure 19: DialogContMdf object class: (a.)Inheritance graph and (b.)Component
graph

| BasicComponent} l EditTablg

I UIComponen RowColumn
[L

|

lSimEleMessach RowColumn ScrolledList RowColumn

I RowOfLabeg l BoardOI'Listl

[Table]

(b.)

(a)

Figure 20: EditTable object class: (a.)Inheritance Graph and (b.)Component Graph

60

Name: FromlList
Superclass: List
Aggregated classes: RowOfLists

Description: This component class makes use of the manager widget located under "list” of a
List object by aggregating a RowOfLists object into it. This gives the following arrangement. There
is a main list and underneath a row of arbitrary number of lists (" frontList"). The idea behind this
class is that the main list can be constructed using "fromList”. An example is BuildListDefault()
member function described below.

Attributes:

o fromList: an instance of RowOfLists object class

Methods:
o Constructor: There are three constructors identical to those given for List object class.
¢ Destructor

¢ loadFromList(): Three functions are provided to load the lists of "fromlist”. Sce "loadList1()”,
*loadList2()” and "loadList3()” methods of RowOfLists object class

¢ manage(): functions to manage and unmanage "fromList”
¢ getFromLists(): returns "fromlist”

¢ bhuildListDefault(): Builds list from the lists of "fromList” if it consists of three lists (listl,
list2, list3) by concatenating one selected item from each list. listl can be multiple or single
select, list2 and list3 single select. The format of the resulting string is the only parameter of
the function.

Component and Inheritance Graphs: Figure 21

61

10.
Name: FromListDialog
Superclass: DialogCont Mdf
Aggregated classes: FromList

Description: Customized dialog box. The action area {of superclass DialogContMdf) may con-
tain arhitrary number of pushbuttons. The control area of the dialog box contains a FromList

object.

Attributes:

¢ worklists: An instance of FromList object class.

Methods:

o Constructor: There are three constructors available, as in the case of FormList object class.
There is one additional parameter to specify the type of pushbuttons (MainMenu object) in
DialogCont Mdf class.

o Destructor

¢ loadFromListD(): Three functions are provided to load the lists of’ worklists”. See ”load-
List1()”, "loadList2()” and "loadList3()” methods of RowOfLists object class

¢ manage(): Functions provided to manage and unmanage ”workLists” and its components.
¢ buildFromListDefault(): invoke buildListDefault(} function of ” workLists”.
o getWorkLists(): returns ” worklists”

¢ access functions: functions to invoke the methods of ” woklists”

Component and Inheritance Graphs: Figure 22

62

(a)

(b)

BasicComponent} FromList
UIComponen{ RowColumn
List ’ l
SimEleMessaggl RowColuvmn ScrolledList RowColumn
FromList

RowOfLists

Figure 21: FromList object class: (a.)Inheritance Graph and (b.)Component Graph

| BasicComponent] |_FromListDialog]
| UIComponen{ DialogShell
| DialogContMdf] RowColumn
[FromListDialog] [
Form Separator Form
(a)
| FromList | | MalnMeng

(b.)

Figure 22: FromListDialog object class: (a.)Inheritance Graph and (b.)Component

Graph

63

11.

Name: List
Superclass: UIC'omponent
Aggregated classes: ListCallbackData, SimpleMessage

Description: List component object class consists of the following components laid out vertically:
o An "empty” manager widget (RowColumin) where derived classes can hook up.
e A character string that can be a short instruction, explanation or title of the "list”.
e A scroll-able list widget.
e An "empty” RowColumn manager widget (under ”list”) where derived classes can hook up.

The methods of List involve operations on selected items, addition, deletion etc.

Attributes:

¢ topExtendCol: RowColumn motif widget located above "list” to which derived classes can

hook up
o instruction: An instance of SimpleMessage object class.
o list: scroll-able list, Motif widget
e lcd: An instance of ListCallbackData object class.

¢ extendCol: RowColumn widget located under "list™ to which derived classes can hook up

Methods:

¢ Constructor: There are three constructors available, one for initially empty table, one of each

of initial items of table given by constant array and linked list.
o Destructor

o installListCb(): installs a given external function as callback. The external function will be

invoked upon selection of items in "list”.

e manage(): Functions are provided to manage and unmanage ”topExtendCol” and ”extend-
Col”.

o get...(): Functions that return the attributes "topExtendCol”, "extendCol”, "list”.

(continued on next page)

64

(contanued from previous page)
getItems(): Returns the list of items of "list™.
getSelectPos(): Prepares a list of positions of selected items.
getSelectedIitems(): Returns list of selected items of " list”.
addlItem(): Appends the given item (character string) to the "list",
addltems(): Appends the given items to the "list”. (items are given by a linked list)
insertltem(): Insert the given item before the sclected position.
selectedDelete(): Delete items of “list” at the selected position(s).
clearList(): empty "list”

set Resources(): Functions to provide accesses to various resources of "list” .

Component and Inheritance Graphs: Figure 23

BasicComponent] List
UIComponen RowColumn

[List | | '

SimEMessageli RowColumn ScrolledList RowColumn

(a.) ®)

Figure 23: List object class: (a.)Inheritance Graph and (b.)Component Graph

65

12.
IName: ListDialog
Superclass: DialogContMdf
Aggregated classes: ActiveList

Description: Customized dialog box. The action area (of superclass DialogContMdf) may con-
tain arbitrary nunber of pushbuttons. The control area of the dialog box contains an ActiveList

object.

Attributes:

¢ listUnit: An instance of ActiveList object class

Methods:

¢ Constructor: Three constructors are available as in the case of ActiveList class. There is one
additional parameter here, the action area type specifier (pushbuttons of DialogCont Mdf).

¢ Destructor
¢ manage(): Manage and unmanage components of "list Unit’
¢ install...(): Functions to install callback functions of ” listunit”.

¢ access functions: functions to invoke the methods of » listUnit” involving accessing items of
"list” (List object class).

Component and Inheritance Graphs: Figure 24

66

13.
Name: MainMenu

Superclass: UlC'omponent
Aggregated classes: N/A

Description: This component class contains an arbitrary number of pushbuttons laid out hor-
izontally or vertically. The pushbuttons may be surrounded by a frame and have a conunon title.
The pushbuttons are defined by their labels that are supplied to the constructor. Activating any of

the pushbuttons results invoking the default or previously installed external function.

Attributes:

rowcol: RowColumn Motif widget to hold all the components.

pushButton: Array of pushbutton widgets.

e mmec: An instance of MainMCallbackData object class, to register the external function and

other data to facilitate communication between callback functions and calling objects.

e type: Integer variable, type = 0 means there is no frame surrounding "push3-tittons”.
¢ buttonPushed: Stores "pushButton(i]” that has been activated more recently.
Methods:

o Constructor: Pushbuttons are specified by their labels that are passed to the construcior using
an array of pointers to character. The title and type of the pushbuttons are also specified.

e Destructor

o installMainCallbacks(): Installs external function as callback function.

e getLabelPushed(): Returns the label of most recently activated pushbutton, " butionPushed”.
¢ get....(): Returns attributes "buttonPushed”, "mmc”, " pushButton”.

e set...(): Functions to set resources of components such as sensitivity and arrangement of

” pushButtons”, various resources of * w”.

« manageRowCol(): manage "rowcol”

Component and Inheritance Graphs: Figure 25

67

| BasicComponent | ListDialog |

| UIComponeny DialogShell

| DialogContMdf] RowColumn

| ListDialog |

Form Separator Form

(a.)

I ActiveList | I MainMeng

(b))

Figure 24: ListDialog object class: (a.)Inheritance Graph and (b.)Component Graph

BasicComponent] MainMenu
UIComponent Frame
MainMenu l

RowColumn Label
(a)) l

PushButtone ¢ e e PushButton

(b.)

Figure 25: MainMenu object class: (a.)Inheritance Graph and (b.)Component Graph

68

Name: MessageArea
Superclass: UlComponent
Aggregated classes: N/A

Description: The functionality of this component class is given by a Secroll-able Text widget.
The visible number of rows and columns are specified. By default the Text widget is not edit-ahle,
character strings can be displayed one after tiie other. The most recently displayed character string
is highlighted. Applications can use it to display messages to the user.

Attributes:
o textOutput: Scroll-able Text widget. Not edit-able.

o lastLenght: Length of most recently displayed message.

Methods:
¢ Constructor: The visible number of rows and columns are provided.
¢ Destructor
o messagePrint(): Prints the given character string into the Text widget.

o composeMessage(): Composes a string from numerous character strings according to the given
format and displaysit in the Text widget.

e clearArea(): Clears message area.

o sotResources(): Visible number of rows and columns, horizontal scrollbar displayed or not,

wrap the text in the visible area or not, edit mode (single or multiple lines) can be specified.

o setHighLight(): Most recently displayed character string (message) is highlighted or not can
be specified. (default:highlighted)

Component and Inheritance Grapis: Figure 26

69

15.

Name: Messageialog
Superclass: Basic('omiponent
Aggregated classes: Dialog('alibackData

Description: The only component of this class is the built in Motif dialog box, MessageDialog.
The type of MessageDialog can be any of the eight Motif MessageDialogs. Methods are provided to

set the action arca buttons, the message and type of the dialog.

Attributes:
e dcb: Aninstanc of DialogCallbackDeat: object class

o dialog: A built in message dialog box

Methods:

o Constructor: The type of Message dialog-box and *he message to display have to be provided

for the constructor.
e Destructor

o installCallback(): Installs external functicns as callback functions. There may b~ three func-

tions given one for each "ok”, "cancel”, "help” buttons.
e cleanCallback(): Remove callback functions from object. This is to prepare its reuse.
e get....(): Functions to return pushbuttons of message dialog-box ("ok , ”cancel”, "help”).
e setok(): Manages or unmanages "ok” button of dialog-box. Sets label of button.
e setcancel(): Manages or unmanages "cancel” button of dialog-box Sets label of button.
e sethelp(}. Manages or unmanages "help” button of dialog box. Sets label of button.
o setType(): Sets type of dialog box.
e setMessage(): Sets message of dialog box.

e post(): Displays (pops-up) dialog box.

Component and Inheritance Graphs: Figure 27

70

16.
Name: PromptDialog
Superrlass: UlComponent
Aggregated classes: PromptCalibackData

Description: The only component of this class is the built in Motif dialog box, PromptDialog

Methods are provided to set the action area buttons, the message and type of the dialog.

Atiributes:
e textString: content of textfield
¢ fileContent: A character string used here as storage of the content of a file.
e pcb: An instance of PromptCallbackData object class.
Methods:
o Constructor: The the textfield label of the prompt dialog-box is given to the constructor.
e Destructor

o installCallback(): Installs external functions as callback functions. There may be four fune-

tions given one for each "ok”, "cancel”, "help” buttons and the text-field.
o loadText(). Gets text entered into the textfield of prompt dialog hox.

s loadFilecontent(): This member function is a utility function. It assumes ”textString” to be
a filename. Attempts to open the file and reads in its content into "fileContentd”. Initintes

error message if the file does not exist or can riot be opened.
o setok(): Manages or unmanages " ok” button of dialog box. Sets label of button.
o setcancel(): Manages or unmanages "cancel” button of dialog-box. Sets label of button.
¢ sethelp(): Manages or unmanages "help” button of dialog - box.Sets label of button.

» ”

o get....(): Functions are provided to return "textString”, ”fileContents”, ”pch”and the push-

buttons of dialog box.

¢ post(): Displays (pops-up) dialog box.

Component and Inheritance Graph: Figure 28

71

| BasicComponend | MessageArea |

[UIComponent Form

|_MessageArea | Text

(2.) (b.)

Figure 26: MessageArea object class: (a.)Inheritance Graph and (b.)Component
Graph

| BasicComponent] | MessageDialog |

| uIComponent MessageDialog

|_MessageDialog |

(a.) (b.)

Figure 27: MessageDialog object class: (a.)Inheritance Graph and (b.)Componeri
Gra ph

| BasicComponent] | PromptDiaiog |

| UIComponeng PromptDialog

|
| PromptDialog |

(a.) (b.)

Figure 28: PromptDialog object class: (a.)Inheritance Graph and (b.)Component
Graph

72

17.
Name: RadioToggle
Superclass: UIComponent
Aggregated classes: RadioTCallbackData

Description: This component class contains an arbitrary number of togglebuttons defined by
their labels. The (row * column) arrangement of the toggles can be defined. Activating any of the

togglebuttons results invoking the default or a previously instalied external function.

Attributes:
e Labels: Lahels of ToggleButtons

e rtc: An instance of RadioTCalibackData object class. Stores relevant information of external
callback functions of ToggleButtons.

e buttonSet: ToggleButton that has been set most recently.

Methods:
e Constructor: Pointer to ToggleButton labels are supplied.
e Destructor
o installCallbacks(): Installs external functions as callbacks.
e getButtonSet(): Returns "buttonSet”
e getLabelSet(): Returns the label of most recently activated ToggleButton.
o getCallData(): Returns "rte”.
e clearToggles(): Sets the state of all toggles to ”0”.

o setPackColOr(): Specifies arrangement of toggles through resources. (sets number of columns

or rows, orientation, packing)

Component and Inheritance Graphs: Figure 36

13

18.
Name: RowOfLabels
Superclass: UIComponent
Aggregatcd classes: N/A

Description: This component class consists of arbitrary number of Labels. An example of its

use is the table header.

Attributes: None

Methods:

o Constructor: Two constructors are developed for th, class. The array of Labels is passed
to both constructor. One constructor creates the labels and prints them one after the other
without formatting. The other constructor takes a character string parameter interprets it as

the format of the labels and print them accordingly.

e Destructor

Component and Inheritance Graphs: Figure 29

| BasicComponent | RowOfLabels |

| UlComEonen! RowColumn

| RowOfLabels | ’

Label s o000 Label

(a) ()

Figure 29: RowOfLabels object class: (a.)Inheritance Graph and (b.)Component
Graph

74

19.

NName: RowOfLists
Superclass: UlComponent
Aggregated classes: List

Description: This component class consists of arbitrary number of List objects laid out

horizontally.

Attributes:

lists: Array of List objects.

Methods:

Constructor: The usual parent and name the only parameters the constructor needs, 'T'he
constructor creates a RowColumn widget to hold the List objects, that are created and loaded
later on using "loadList1()”, "loadList2()", "loadList3()” methods below.

Destructor

loadList1(): Loads a List object into the RowColumn widgei "w” created by constructor.
The List object is created inside ”loadList1()” function taking the constructor of List that is
for ”initial items of "list” given by constant array”.

loadlist2(): Loads a List object into the RowColumn widget "w"” created by constructor. ‘The
List object is created inside ”loadList2()” function taking the constructor of List that is for
“initial items of "list” given by a linked list”.

loadlist3(): Loads a List object into the RowColumn widget ” w” created by constructor.
The List object is created inside "loadList2()” function taking the constructor of List that is
for empty "list”.

getList(): Returns the specified list, "lists[i]”.

getSelectltem(): Returns the list of selected items of the specified list, ”lists{i])”.
getItems(): Returns the list of items of the specified list, " lists{i]”.

addItem(): Appends item to specified list, " lists[i]".

addItems(): Appends items to specified list, "listsi]”.

(continued on nezt page)

75

(conlinued from previous page)
o insertltem(): Inserts item into specified list, "list[i]” before selected position.
o selectedDelete(): Deletes selected item(s) from specified list, "list[i]”.
e clearList(): Deletes all items (empties list) from specified list "list[i]”.
o clearLists(): Deletes all items from each lists. (Empties "lists[0] .. listsf]MAX]")

o setResources(): Sets resources of specified list. (Type of selection, Number of visible items)

Component and Inheritance Graphs: Figure 30

{ BasicComponend | RowOfLists |

| UIComEnenl LowColumn

| RowOfLists |

List | oo [Lt |

(@) (b)

Figure 30: RowOfLists object class: (a.)Inheritance Graph and (b.)Component Graph

7€

20.
Name: SimpleMessage

Superclass: UlComponent
Aggregated classes: N/A

Description: Component class that creates and displays a short message (text) as a Label widget.

Attributes:

e message: Label widget

Methods:

e Constructor: The content of the message is provided to the constructed.

e Destructor

o setmessage(): Sets the text (content) of the message.

Component and Inheritance Graphs: Figure 31

| BasicComponent] | SimpleMessage |
| UIComponen{ Label
| SimpleMessage |

(@) (b))

Figure 31: SimpleMessage object class: (a.)Inheritance Graph and (b.)Component
Graph

77

21.

Name: Table
Superclass: List
Aggregated classes: RowOfLabel -

Description: Table object class aggregates a RowOfLabels objects into the manager RowColumn
widget (located above "list”) provided by List object class. RowOfLabel object acts as table header.

Attributes:

e tableHeader: An instance of RowOfLabel object class.

Methods:

e Constructor: Three constructors are available identical to the Constructors of List, augmented
with the parameters to set up RowOfLabels. Namely array of labels, number of labels and

format.

o Destructor

Component and Inheritance Graphs: Figure 32

78

22.
Name: TableDialog

Superclass: DialogContMdf
Aggregated classes: Table

Description: Customized dialog box. The action area (of superclass DialogContMdf) may cou-
tain arbitrary number of pushbuttons. The control area of the dialog box contains a Table object.

Attributes:

o table: An instance of Table object class.

Methods:

o Constructor: Three constructors are available identical to constructors of ‘Table, augmented
with the parameters to set up DialogContMdf. Namely type of action area (type of Main-
Menu), array of labels of the prshbuttons and number of pushbuttons.

¢ Destructor
¢ getTable(): Returns "table”.

o clearTable(): Deletes all items of ”table”.

Component and Inheritance Graphs: Figure 33

79

BasicComponent

UIComponen{

List

Table

(a)

Table

RowColumn

SimpleMessage

N

RowColumn ScrolledList RowColumn

RowOfLabels

(b.)

Figure 32: Table object class: (a.)Inheritance Graph and (b.)Component Graph

| BasicComponent]

| UiComponent

| DialogContMdf]

|__TableDialog |

(a,)

] TableDialog I
DialogShell
RowColumn
Form Separator Form
| Table | m
®b.)

Figure 33: TableDialog object class: (a.)Inheritance Graph and (b.)Component

Graph

80

23.
Name: TableFill
Superclass: UIComponent
Aggregated classes: TableFCallbackData

Description: Component class that consists of arbitrary number of pairs of Label and TextField
widgets laid out vertically. Pressing Enter in any of the TextField widget will result in invoking the
textDefault() member function or external function if there has been installed one.

Attributes:
¢ fillForm: Form motif widget to hold together the corresponding text and label.
o fili'Text: Array of text-fields.
o fillLabel: Array of labels associated with elements of " fill Text”.

¢ tfc: An instance of TableFCallbackData object class.

Methods:
o Constructor: Array of iabels and number of labels are specified.
e Destructor

o installCallbacks(): Installs external functions as callbacks of ” fill Text”.

getTextValues(): Returns list of text values (contents of TextField widgets).

set TextValues(): Sets text field value.

clear'Textl'ields(): Clears all elements of " fill'Text”.

Component and Inheritance Graphs: Figure 34

81

24,
Name: TableFillDialog
Superclass: Dialog(‘ontMdf
Aggregated classes: TabieFill

Description: Customized dialog box. The action area {of superclass DialogContMdf) may con-
tain arbitrary number of pushbuttons. The control area of the dialog box contains a TahleFill

object.

Attributes:

e table: An instance of TableFill object class .

Methods:

o Construrtor: Action area type, labels of action area buttons { MainMenu), array of labels and

number of labels (TableFill) are specified.
e Destructor
o install'TableTextCb(): Installs external functions as callbacks of ” fillText” of TableFill.
o getTable(): Returns "table”.
e getTableTextValues(): Returns list of text values of "fillText” of ” table” (TableFill).
o setTableTextValues(): Sets text values of "fillText” of ”table” (TableFill).

clearTableTextFields(): Clears all elersents of * fillText” "table” (TableFill).

Component and Inheritance Graphs: Figure 35

82

| BasicComponent]

| UIComponeny

{ TableFill |

(a.)

Label

TableFill

RowColumn

Form e o 0 0 o o Form

]

TextField

(b.)

]

Label TextField

Figure 34: TableFill object class: (a.)Inheritance Graph and (b.)Component Graph

| BasicComponent]

| UIComponent

|_DialogContMdf]

|__TableFillDialog |

(a)

| TableFiltDialog |

Form

| TableFitl |

DialogShell
RowColumn
J
I Separator Form
M ainm
(b))

Figure 35: TableFillDialog object class: (a.)Inheritance Graph and (b.)Component

Graph

83

25.
Name: ToggleDialog
Superclass: DialogContMdf
Aggregated classes: RadioToggle, SimpleMessage

Description: Customized dialog box. The aciion area contains an arbitrary number of pushbut-
tons up to a maximum value which is set in MainMenu object class. The control area of the dialog
box may contain a short message and a set of toggle buttons, Hence the control area is an aggregate
of SimpleMessage and RadioToggle object classes. The callback functions of the toggle buttons and

action area push buttons can be specified by any external function.

Attributes:
e w: RowColumn Motif manager widget that lays out the components vertically.
o imessage: An instance of SimpleMerssage object class.

o toggleBox: An instance of RadioToggle object class.

Methods:

o Constructor: Labels of the action area buttons are given by a pointer to a constant array.
The content of the message is specified if there exist one. Toggle buttons are specified giving

a pointer to a constant character array of labels of the toggle buttons.
¢ Destractor
o installToggleCb(): installs an external functions as callback function
o getToggleSet(): returns the togglebutton which is set
o getlabelSet(): returns label of toggle button which is set
o setMessage(): set message

o clearDialogToggles(): set all toggles to '0’, hence clear them

Component and Inheritance Graphs: Figure 37

84

BasicComponent RadioToggle

UIComponen RadioBox

RadioToggle

ToggleButton ¢ ¢ o o ToggleButton

(a) ()

Figure 36: RadioToggle object class: (a.)Inheritance Graph and (b.)Component
Graph

| BasicComponent] | ToggleDialog |
| UIComponeny DialogShell
| DialogContMdf] RowColumn

|_ToggleDialog |

Form Seperator Form
(a))
| RadioTogg!eI | MainMeng

(b.)

Figure 37: ToggleDialog object class: (a.jInheritance Graph and (b.)Component
Graph

85

Name: ActiveListCallData
Superclass: N/A
Aggregated classes: N/A

Description: Abstract object class. This is an auxiliary class to ActiveList object closs. It stores
all relevant data to invoke an external function "{” instead of the detault " textDefault” function that

is a member function of Activelist.

Attributes:

o activeList: pointer to an instance of ActiveList object class

¢ text: pointer to a function which takes one parameter, (void *). This external function is
the callback function of ”textEntry” (See the description of ActiveList object class in this

section.)

¢ clientDatal, cliemData2: pointers to any data structure or object to facilitate the information
exchange between the object and external callback function.

Methods:
e Constructor: Takes all four attributes to create an instance of the object class.
¢ Destructor
e return functions: A function is provided for each attribute to return them
o setClientDatal(): set "clientDatal” to the specified value
¢ setClientData2(): set "clientData2” to the specified value

o setText(): set "text” to the specified value

Component and Inheritance Graphs: N/A

86

Name: BasicComponent [You92]
Superclass: N/A
Aggregated classes: N/A

Description: Abstract class, superclass of all component classes. In their constructor, component
classes take a widget as an argument that serves as the parent of the compouent’s base widget ”w”
(root widget) and a character string as "name” of the object. BasicComponent provides methods

tn retrieve the base widget. This class is adopted from [You92].

Attributes:
¢ name: name of the instance of the object class
o w: the base widget of the instance
Methods:
¢ Counstructor: protected constructor to prevent instantiation, takes the *name” as parameter.
o Destructor
o manage(): virtual function to manage the object.

e unmanage(): virtual function to unmanage the object.

baseWidget(): returns the basewidget "w”.

Component and Inheritance Graphs: N/A

87

Name: CustomDialogCallData
Superclass: N/A
Aggregated classes: N/A

Description: Abstract object class. This is an auxiliary class to DialogContainer object class. It
stores all relevant data to invoke external function(s) ” f,”,” f.",” fa" instead of the defanlt member

functions, upon activating "ok”, "Cancel”, ” Help” pushbuttons of DialogContainer.

Attributes:

¢ dialogContainer: pointer to an instance of DialogContainer object class.

¢ ok: pointer to a function which takes one parameter, (void *). This external function is the
callback function of "ok” button of DialogContainer object class.

o cancel: pointer to a fuiiction which takes one parameter, (void *). This external function is

the callback function of ”cancel” button of DialogContainer object class.

o help: pointer to a function which takes one parameter, (void *). This external function is the

callback function of "help” button of DialogContainer object class.

e clientDatal, clientData2, clientData3: pointers to any data structure or object to facilitate
the information exchange between object and external callback function.

Methods:
o Constructor: Takes all seven attributes to create an instance of the object class.
¢ Destructor

e return functions: A function is provided for each attributes to return them.

o set....(): functions are provided to set "clientDatal”, ” clientDala2”, clientData3”, "ok”, ”can-

cel”, "help” to the specified value

Component and Inheritance Graphs: N/A

88

Name: DialogCallbackData
Superclass: N/A
Aggregated classes: N/A

Description: Abstract object class. This is an auxiliary class to MessageDialog object class. It
stores all relevant data to invoke external function(s) ” £,”,” f.”,” f»"” instead of the default member

functions, upon activating ”ok”, ”Cancel”, " Help" pushbuttons of MessageDialog.

Attributes:
e messageDialog: pointer to an instance of MessageDialog object class

e ok: pointer to a function which takes one parameter, (void *). This external function is the

callback function of "ok” button of MessageDialog class.

e cancel: pointer to a function which takes one parameter, (void *). This external function is

the callback function of ”cancel” button of MessageDialog class.

e help: pointer to a function which takes one paranieter, (void *). This external function is the

callback function of "help” button of MessageDialog object class.

e clientData: pointer to any data structure or object to facilitate the information exchange

between object and external callback fanction.

Methods:
e Constructor: Takes all five attributes to create an instance of the object class.
o Destructor
o return functions: A function is provided for each attributes to return them.

Y

e set....(): functions are provided to sct "clientData”, "ok” ”cancel”, "help” to the specified

value

Component and Inheritance Graphs: N/A

89

Name: ListCallbackData
Superclass: N/A
Aggregated classes: N/A

—

Description: Abstract object class. This is an auxiliary class to List object class. It stores
all relevant data to invoke external function £’ instead of the default member function upoun the
selection of item(s) in the list widget.

Attributes:
e list: pointer to an instance of List object class

e select: pointer to a function which takes one parameter, (void *) This external callback

function is invoked upon the selection of item(s) in the list widgst.

e clientDatal, clientData2; pointers to any data structure or object to facilitate the inforiation

exchange between the object and external callback function.

Methods:
o Constructor: Takes all four attributes to create an instance of the object class.
e Destructor
o list(): returns ”list”
o select(): returns "select”
o clientDatal(): returns "clientDatal”
e clientData2(): returns "clientData2”

e set....(): functions are provided to set "clientDatal”, ” clientData2”, "select” to the specified
value

Component and Inheritance Graphs: N/A

90

Name: MainMCallbackData
Superclass: M/A
Aggregated classes: N/A

Description: Abstract object class. This is an auxiltary class to MainMenu object class. It
stores all relevant data to invoke external function ”f” instead of the default member function upon

activating any of MainMenu's pushbuttons.

Attributes:
e mainMenu: pointer to an instance of MainMenu object class

e push: pointer to a function which takes one parameter, (void *). This external callback
function is invoked upon pressing a pushbutton that belongs to the relevant instance of

MainMenu object class.

e clientData0, clientDatal, clientData2: pointers to any data structure or object to facilitate

the information exchange between object and external callback function.

Methods:

o Constructor: Takes attributes "mainMenu”, ”clientDatal”, ”clientData2”, ”push” to create

an instance of the object class.
o Destructor
e mainMenu(): returns " mainMenu”
o push(): returns ” push”
o clientData0(): returns ”clientData0”
o clientDatal(): returns " clientDatal”
¢ clientData2(): returns ”clientData2”

o set....(): functions are provided to set " clientdata0”, " clientDatal”, "clientData2”, ” push” to

the specified value

Component and Inheritance Graphs: N/A

91

Name: MessageManager
Superclass: N/A
Aggregated classes: N/A

Description: Abstract object class. The basic task of MessageManager is to return a Message-
Dialog of the appropriate type, displaying a predefined message on demand. All existing Message!)i-
alogs are created by a MessageManager object. The parent of the MessageManager is the parent of
all MessageDialogs it is responsible for. It keeps track of MessageDialogs it has created and destroys
them if requested. MessageManager reuses the free dialogs.

Attributes:
¢ parent: Parent of the instance of MessageManager object class.
¢ name: Name of the instance of MessageManager object class.

¢ messageList: Initially empty list of MessageDialog’s.

Methods:
e Constructor: "parent” and "name” have to be given to construct an object.
o Destructor
o getDialog(): Gets an unused dialog from "messageList” or create a new one and returns it.

o createMessage(): Virtual function to create a MessageDialog object. It is placed at the front

of ”messageList” upon creation.

e post(): Locate a MessageDialog object using " getDialog()” and " createMessage()” functions.
8 3

Type, message, buttons and callback functions are given as parameters to that function.
o cleanUp(): Marks all MessageDialogs "unused” in "messageList”.
e emptyMessageList(): Free all nodes in " messageList”.
e getname(): Returns name of MessageManager object.
o getparent(): Returns "parent” widget

e getList(): Returns " messageList”

Component and Inheritance Graphs: N/A

92

Name: PromptCallbackData
Superclass: N/A
Aggregated classes: N/A

Description: Abstract object class. This is an auxiliary class to PromptDialog object class. It
stores all r:levant data to invoke uxternal function(s) " fo"," f",” fn”,” fi" instead of the default
member functions, upon activating “ok”, ”Cancel”, " Help” pushbuttons and pressing enter in text-
field.

Attributes:
e promptDialog: pointer to an instance of PromptDialog object class

o text: pointer to a function which takes one parameter, (void *) This external function is the

caliback function if return has been pressed in the prompt text.

e ok. pointer to a function which takes one parameter, (void *). This external function is the
callback function of ”ok” button of PromptDialog class.

e cancel: pointer to a function which takes one parameter, (void *). This external function is

the callback function of "cancel” button of PromptDialog class.

e help: pointer to a function which takes one parameter, (void *). This external function is the

callback function of "help” button of Pron-ptDialog object class.

e clientDatal, clientData2: pointer to any data structure or object to facilitate the information

exchange between the object and external callback function.

Methods:
¢ Constructor: Takes all seven attributes to create an instance of the object class.
e Destructor
¢ return functions: A function is provided for each attributes to return them.

e set....(): functions are provided to set ”clientDatal”, "clientData2”, "text” to the specified

value

Component and Inheritance Graphs: N/A

93

i
Name: RadioT(CallbackData
Superclass: N/A
Aggregated classes: N/A

Description: Abstract object class. This is an auxiliary class to Radio'Toggle object class. It
stores all relevant data to invoke external function "{" instead of the default member function, upon

activating any of RadioToggle’s toggle-buttons.

Attributes:

¢ radioToggle: pointer to an instance of RadioToggle object class

e toggle: pointer to a function which takes one parameter, (void *) . This external callback
function is invoked upon pressing a toggle-button that belongs to the relevant instance of

RadioToggle object class.

o clientDatal, clientData2: pointers to any data structure or object to facilitate the information
exchange between the object and external callback function.

Methods:

o Constructor: Takes the four attributes to create an instance of the object class.
o Destructor

o radioToggle(): returns "radioToggle”

o toggle(): returns "toggle”

s clientDatal(): returns "clientDatal”

o clientData?2(): returns "clientData2”

o set....(): functions are provided to set , "clientDatal”, "clientData2”, ”toggle” to the specified
value

Component and Inheritance Graphs: N/A

94

Name: TableFCallback Data
Superclass: N/A
Aggregated classes: N/A

Description: Abstract object class. This is an auxiliary class to TableFill object class. It stores
all relevant data to invoke external function "{” instead of the defauit member function upon pressing

Enter in any of ‘TableFill’s text-fields.

Attributes:
e tableFill: pointer to an instance of TableFill object class

o text: pointer to a function which takes one parameter, {void *}. This external callback
function is invoked upon pressing enter in one of the text fields of the relevant instance of

TableFill object class.

e clientDatal, clientData2: pointers to any data structure or object to facilitate the information

exchange between object and external callback function.

Methods:
o Constructor: Takes the four attributes to create an instance of the object class.
o Destructor
o tablefill(): returns ”tableFill”
e text(): returns "text”
e clieniDatal(): returns "clientDatal”
o clientData2(): returns "clientData2”

e set...(): functions are provided to set , "clientDatal”, "clientData2”, ”text” to the specified

value

Component and Inheritance Graphs: N/A

95

Name: UlComponent [You92]
Superclass: BasicComponent
Aggregated classes: N/A

Description: Abstract class, derived from BasicComponent. Supports the creation of new de-
rived classes through built in error handling (e.g.: assert{) function). This class is adopted from
[You92].

Attributes: None

Methods:
¢ Constructor: Protected constructor to prevent instantiation, takes "name” ag parameter.
o Destructor

o installDestroyHandler(): Installs widgetDestroy() function. This function is needed because
the base widget of the object, ”w” is specified only after object creation.

o widgetDestroyed(): Assigns NULL "w” to avoid referencing destroyed objects.

¢ manage(): Manages the base widget of the object.

Component and Inheritance Graphs: N/A

96

Chapter 4

Designing the GUI for Course
Advisor System

All the research on interface design principles focuses around two major standpoints
that can be said with the phrase “know the user, know the task” [Han71]. If the
developer knows the user and the task, he/she can choose between the two ways
the design can be conceptually carried out: The user is adapted to the system or the
system is adapted to the user[Ian92]. Developers aim for the latter approach since the
former would result in intensive user training and the users would lovse their natural
behavior while interacting with the system. First we describe the potential users of
CAS and the interaction styles the user interface should have, to cope successfully
with the needs of the users. Following that we describe the realized User Interface

for CAS.

4.1 Users and Task of CAS

Among the several groupings of users the one presented in [Shn87) is applied in this

case. Users are classified into three groups:
e Novice users have no syntactic knowledge! and little semantic knowledge?.

e Knowledgeable intermittent users may have problems with syntactic knowl-
edge but they possess good semantic knowledge of the task and general computer

concepts as well.

'knowledge of device dependent low-level details (CTRL-C, ESCAPE keys etc.)
2consists of knowleds,e of computer concepts and task concepts

97

e Frequent users have good syntactic and semantic knowledge, they aspire to

complece their work quickly.

The intended users of CAS are (as described in Section 1.5.2) undergraduate Com-
puter Science students seeking advice prior to registratior. Accordingly it can be
assumed that the potential users of CAS have knowledge and practice with interfaces
of various software packages and are aware of the task (advising and registration
process). Consequently users of CAS are classified to be Knowledgeable intermit-
tent users who “maintain semantic knowledge of the task and computer concepts”
[Shn87] but due to their casual use of CAS they may not bave good syntactic knowl-
edge. Students registering the first time obviously have less semantic knowledge of
the task (advising procedure) as students registering in the third year. To encour-
age students to use CAS, the developed interface can be used on different levels of

complexity:

e The student identifies himself/herself by entering his/her ID and instructs (!AS

to suggest courses.

e The student identiies himsel{/herself by entering his/her ID, enters the courses
he/she prefers to take and some other constraints. Moreover the student can dif-
ferentiate between constraints (Soft-Constraints) that can be changed through
the iterations of advising and constraints (Hard-Constraints) that can not bhe

relaxed during an advising session®

Student can take a mcre active role in communication with the system asking
cxplanation, moditying Soft-(' /nstraints, initiating new iterations, rejecting or

replacing some of the suggested courses etc.

This way the users can accomplish their task and can get feasible output from the
systern even with little or no syntactic knowledge, and can advance to a more complex
level without training,.

The task of CAS has been described in detail and analyzed in Chapter 2. The
interaction style of the user interface of CAS is menu driven. The user navigates hy
means of various buttons and menus. We used RML to implement the user interface.
In the relevant literature it is pointed out that the most important principle of Ul

design is consistency. COD promotes consistency, since it aims te create reusable

3from entering student ID till the acceptance of the suggested courses or cancelation

98

components. In Ul design creating a set of object classes. and using them system-
atically as building blocks of the interface will contribute to the consistency of UL
One can say that Motif toolkit defines a “look and feel” of the interface and RML

enhances consistency through its larger granularity of objects it supports.

4.2 Implementation of the User Interface of CAS

The user interface of CAS consists of the following modules:

¢ Control function: Initializes CAS (the application), constructs and displays the

GUI component.
e GUI component: Detailed description is given in the following section.
o Message pool: Stores all possible messages the system can display to the user.
e Lixternal functions: A set of external functions that serve as callback functions.

The user interface communicates with CAS thrcugh a “ommunication layer that is

outlined in Section 4.2.2.

4.2.1 Description of the GUI component

The graphical components of GUI are gathered into an object class named CasFace.
Only one instance of CasFace is created while running the application, by the Control
function (main function). From the viewpoint of the user, CasFace is the main appli-
cation window. 'I'he suggested structure of the Main Window follows the suggestion
given in Motif Style Guide {[Fou93]. In a typical Main Window there are a menu-bar,
a work-arca, a command arca and a mcssage arca arranged one below the cther ver-
tically. The work area is holding the main interface object, like Text widget in the
case of an editor, or a drawing area etc. The command area is to enter commands
(user to the system), the message area displays messages to the user (system to the
user). We have structured the main application window keeping in mind these recom-
mendations. In the following subsections we describe CasFace object class through
its visualization and functionality. Its Component Graph (Figure 48) shows clearly
how CasFace has been aggregated from the object classes of RML, and Figure 49.
demonstrates how the GUI passes through the different states during an advising

session. There is one issue to be discussed before going on.

99

Object creation and destruction policy

Objects can be created and destroyed any time during program execution. However it
is wise to set out a policy. For instance all objects can be created at the beginning of
the program, and destroyed at the end. With this method, keeping track of the objects
is easy, and fast. However, initialization of the application is longer and the necessity
of all objects must be known at that time. If the objects are dynamically created
during the running of the application, care has to be taken to record the objects
(retain a pointer to it) to later reference. CasFace is built by using a mixture of the
two policy. The objects that are essential, are created by the constructor of CaslFace.
They are active components of CasFace and they are destroyed only together with
CasFace object. The objects with unpredictable existence are created when needed.
To keep track of these objects created during the lifetime of the application, special
manager classes should be created. These managers control the creation destruction,

and reuse of the objects.

Main Window of the application

A PanedWindow widgei was chosen as manager of the main application window.
“The Paned widget lays out its children in a vertically-tiled format” [HIF94]. The
panes are separated by control sashes that can be used for resizing the pancs. We
used the sashes through the development and set them invisible when the desired look
of the Ul had been achieved. Three areas are set up in the applicaticn win-d . w, main
menu, work and message areas laid out from top to bottom. See Figure 38. In the
main menu area there are three pushbuttons (“CANCEL", “QUI'T”, “HKLP") =nd
two toggle buttons (“Hard User-Constraints”, “Ixplanation on Preferred Courses”).
These buttons are permanently visible on the screen, but their sensitivity is changed
from time to time to make the uscr’s navigation casier. We did not use menu-bar
here because there are only few items, and conditions for a possible grouping of these
items are diverse. The work area is where the user’s attention is focused through
an advising session. Windows are opened, and dialogs popped up in the work area.
If CAS is idle, the interface prompts for the ID of a student in the work area. The

message area is a scroll-able text.

100

¥

B A GUCULE VULV EREV RSN VIR i

B T PREAS RS, N R T

REen n R AT e

indow of CAS

W

ion

t

i

=
&
<

Main

Figure 38

B TR

The three pushbuttons are implemented using a MainMenu object. Activating
“CANCEL” will cancel the advising session meaning to clear all information entered
or implied (ID number, various constraints, preferred courses, suggested courses, mes-
sage area), destroy dispensable objects (imessage dinlogs) and display the initial Main
application window (prompt for student ID and set the sensitivity of main menu area).
CAS is informed of cancelling the advising session through “Reset Advise()” function
of the Communication layer (See 4.2.2). In that state of the user interface “CAN-
CEL” is insensitive since this is the initial state of the system. Activating “QUI'T”
will exit the application “HELP” can provide on line help. 'The two toggle buttons are
implemented using a RadioToggle object, they are insensitive in this state. Their
function will be explained in the relevant section below. The message arca contains
a MessageArea object. This is a non edit-able scroll-able Text widget. All the
messages occuring during an advising process are shown there. The most recently
displayed message is highlighted by default. Naturally it is possible to display only
the most r=cent message, but we thought it is advantageous to be able to review a
particular scenario of messages. Significant messages and questions are displayed by
MessageDialog objects. A MessageManager object is responsible for all Mes-
sageDialog objects (as it has been discussed above). A PromptDialog object is
displayed in the work area of the main window. The student can enter his/her 1D
number. Upon pressing “Return” or “OK” button of the dialog, 1D will be sent to
CAS through the Communication layer for verification. See “Validatel)()” function
in section 4.2.2. If invalid ID number has been entered, a message will be displayed
in the message area and the PromptDialog will be cleared. Otherwise the next state

of the interface (Preferred courses and Constraints Entry) will be displayed.

Preferred courses and Constraints Entry

In this state all buttons of the main menu area are sensitive. A menu-bar with three
menu-title appears on the top of the working area. Each menu-title has a pull-down
menu. The titles from left to right are “Advise”, “Options” and “Help”. The menu-
bar is implemented with a ContraintMenu object. The user enters commands for
CAS through “Advise” menu-title, and provides information to facilitate the task of
CAS through “Options”. “Help” provides the hook for on-line help facilities.

Three menu-items belong to the pull-down menu of “Advise” title, cach of them

invokes a callback function to access the Communication layer:

102

Save Options: Saves the information entered in *Options”. The information en-
tered is saved in a global User Constraint object. “User Constraint” object
class is implemiented by the application, CAS. CAS maintains an instance of
User Constraints class in the Communication layer (See 4.2.2) and permits write

access for Ul This object is named “Soft User-Constraints”.

Proceed...: Instructs CAS through the Communication layer to give advice with
respect to the available information. See “StartAdvise()” function in section
4.2.2. The user interface will enter to “Suggesting Courses” state (described

below).

Stop Process: Instructs CAS through the Communication layer to stop suggesting
and discard the already selected courses. See “StopAdvise()” function in section
4.2.2. However all the information entered by the user or obtained by CAS will

Y

be retained and reused when “Procecd...” is reactivated.

The pull-down menu of “Options” consists of five menu-items There is an object
associated with each menu-item. These objects are customized dialog boxes. Clicking
on the menu-item, pops up the dialog box and the user can enter, modify or clear the

data:

Preferred Courses...: Student can enter the courses he/she prefers to take. The
course can be fully specified with the string “Course ID/Section” (COPM291/XX)
or if the student does not know which section would be suitable, “Course 1D”
{(COMP291). Associated object is ListDialog object. See Figure 39.

Unpreferred Courses...: Student can enter the courses he/she does not want to
take. If the course is specified with the string “Course ID/Section” (COPM291/XX)
it means the student does not want to take that particular Section, but rnight
not reject other sections of the same course. This task is implemented with a

ListDialog object. See Figure 39.

Inconvenient time...: Student can specify the time periods from Monday to Friday
when he/she can not or does not want to attend classes. This functionality is

implemented with a FromList object. See Figure 40.

Campus...: Student can specify if he/she car not or does not want to attend classes
held on a particular campus. Implemented with a ToggleDialog object. See
Figure 40.

103

Workload...: Student can specily the minimum and maximum number of credits,
minimum and maximum number of courses he/she wants to take. mplemented
with a TableFillDialog object. See Figure 10.

This menu makes it possible for the user to enter constraints for CAS to take into
consideration. These constraints can be modified, during the advising process. For
example the user can decide to change the “Inconvenient time” constraint by allowing
taking courses on Friday, even though at first he/she marked it as inconvenient. The
new constraints have to be saved by “Save Options” and in the next iteration (pressing
“Proceed...”) CAS is going to consider them. These constraints are called “Soft User-
Constraints” and the menu will be referred to as “Soft Constraints Menu” through
this work. It is important to note that entering any constraints is not mandatory.
The user can simply give the command to “Proceed...” and CAS will suggest what

courses to take for the given student’s transcript, and the course schedule.

104

. . . 4
At 2 Ak B R AR A NP DR 8 R PN A 1055 O A AR A EANRNR RS AN 1 AR A AN AR RS AY SN A - e W mi sy i
eV

RNV ISV

[N RN

NI Py e AP e N 1 d e 2 F g AL

JUNON

YT P

part 1

raints -

E
3
g
=

39

igure

-

F

- part 2

alnt,

2
®
g
8
o
B
o]

.
.

Figure 40

Hard User-Constraints Entry

Pressing “Hard User-Constraints” toggle-button in main menu area will pop up a
window in the work area. The user can enter “Hard User-Constraints™ here. Contrary
to “Soft User-Constraints”, “Hard User-Constraints” can be saved only once during
an advising session. A MessageDialog reminds the user, upon popping the window
up, about this aspect. The message dialog is controlled by the MessageManager
object. In the top of the window there is a menu-bar realized by a ConstraintMenu
object. There are three menu-titles on the menu-bar, each has a pull-down menu.
The titles from left to right are “Procecd”, “Options” and “Help”. See Figure 41. The
user enters commands through “Proceed” menu-title, and not relax-able constraints
through “Options”. “Help” provides the hook for on-line help facilities.

Threc menu-items belong to the pull-down menu of “Proceed” title, each of them

invokes a callback function:

Save Options: Saves the information entered in “Options”. The information en-
tered is saved in a global User Constraint object (See 4.2.2). As in the case of
“Soft User-Constraints” object, CAS maintains an instance of User Constraints
class in the Communication layer for the storage of data entered in this window.

This object is named “Hard User-Constraints”.

View Options: Initially this menu-item is insensitive. Upon saving the options
(selecting “Save Options” in this pull-down menu) its sensitivity will be set
True. There is a BoardListDialog object associated with this menu-item.
Clicking on “View Options” will pop up a dialog box where the user can view

the alrcady saved constraints (Figure 42).
Quit: Pops down the window.

The pull-down menu of “Options” menu-title consists of three menu-items, “Un-

”» }

preferred courses...”, “Inconvenient Time...” and “Campus...”. Each has an objeci
associated with it. Their role and implementation are similar to the corresponding
objects in “Soft Constraints Menu”. We introduced “Hard User-Constraints” to make
the process of selecting the courses faster. For example, if a student works on Mon-
day and Thursday from 1:00pm to 7:00pm, the courses offered within this interval

are definitely not suitable, so CAS should not waste time by looking at them.

107

AR N AN N PN N
.

3
]
N

[PPSR

3

-~

R S PR

A

Figure 41: Hard-Constraints Menu

108

Figure 42: View Hard Constraints

Suggesting Courses

Selecting “Proceed...” menu-item from “Soft Constraints Menu” invokes “Start Ad-
vise()” function of the Communication layer and move Ul to Suggesting Courses
state. A window appears in the work area containing an ActiveEditTable object:
a table, underneath in a border a text field and a list. There is a row of buttons at
the bottom of the window with labels “OK”, “MODIFY”, “DELETE”, “CHANGE",
“CANCEL", “REJECT”, “HELP”. The return value of “StartAdvise()” indicates
that CAS is ready with its suggested course list, and it is available in the global
SuggestedCourses object (accessible for UI through the Communication layer, see
4.2.2). The suggested courses are displayed in the table. “DELETE”, “CHANGE"
and “CANCEL” buttons are insensitive. See Figure 43. The student can accept the
entire list of suggested courses, by pressing “OK” button (this action will put the
interface into “Confirmation” state) or reject all the courses by pressing “REJECT”.
The interface appends the rejected courses to the “Unpreferred Courses” constraint
of “Soft Constraint Menu”. If the student wants to keep some courses, he/she can
modify the suggested list by pressing “MODIFY” pushbutton. The actions taken
upon clicking on “MODIFY” are described in Modification subsection.

109

2
!
i

ctrmreiersey

SN

+

S L e S

AR

i

A A R G

W, Pt

S LT TR L AR AT L G A R L

T — |

ctrt g v iseietisetn s

N N O e N

Figure 43: Suggesting Courses

Confirmation

The system enters into “Confirmation” state upon pressing “OI” button in “Sug-
gesting Courses” state. A question type MessageDialog object pops-up posting
the question “Du you want more courses to be selected for you?”. See Figure 44.
“YES” means the student wants to take more courses but keep the already suggested
(possible modified) list of courses. This is accomplished by calling the “Suggest-
MoreCourse()” function of the Communication layer. That function instructs CAS
to suggest more courses while keeping the already accepted suggested courses. “NO”
means the already suggested (and possibly modified) course list is sufficient enough.

Pressing “NO” button takes the interface to “Display cutput® state.

111

s\ e AR AR A s SRR A ~\;»\~r~\~ N
§

¥

PRSP

R

-
i
i

5
H
3

Figure 44: Confirmation of Suggested Course List

Display output

This state is the final state of the interface. The confirmed, suggested course list is
displayed in a table. The table is contained by a TableDialog object that pops-
up if the student has the desired number of confirmed courses. See Figure 45. The
suggested list can be printed (written in file “suggestion.out”) pressing “PRINT” ,
or acknowledge pressing “OK” button in the dialog box. After clicking on any of the
two buttons, the dialog box pops-down and the system returns to its idle, initial state
and prompts for the ID number of the next user. The interface indicates the end
of advising session to CAS through “ResetAdvise()” function of the Communication

layer (See 4.2.2).

Figure 45: Suggested Course List (Output of CAS)

113

Modification

Modifications can be performed to the “Suggested Courses” window following the
activation of “MODIFY” button. “MODIFY” and “REJECT” buttons become in-

sensitive in this state. There are four buttons to manipulate the items of the table:

OK: Activating “OK” button means all wanted changes are made and the interface

returns to the previous (Suggesting Courses) state.

DELETE: The student selects the course he/she wants to delete from the list.
“DELETE" invokes “DelSuggestCourse()” function of the Communicate layer
that asks permission from CAS for deletion. The selected course can be deleted
only if CAS allows it. For instance if CAS does not allow to delete course 'A’
(because course 'A’ is co-requisite of course ‘B’ which is also in the suggested
list) the student can delete course 'B’ and after course 'A’, or can decide to
reiurn to “Suggesting Courses” state, reject all the courses (possibly enter new
user constraints) and initiates new iteration by pressing “Proceed...” in “Soft

Constraints Menu”.

CHANGE: Replaces a course with the same course with different, schedule. (dif-
ferent section of the same course). The scenario of replacing a course is the
following. The student selects the course he/she wants to replace. Presses
“‘“CHANGE” button. The interface asks the schedule of available sections of
the selected course through “RequestCourseSched()” function of the Commu-
nication layer. CAS returns the schedule and it will be displayed in the table
located in the lower half of ActiveEditTable object in “Suggested Courses®
window. See Figure 46. The text field holds the course prefix and number and
the table. The student selects the desired schedule, and presses “CHANGE”.
The user interface asks CAS (through “ChangeSuggestCourse()” function of
Communication layer) to carry out the requested change. CAS agrees or denies
to change its suggested list. (CAS will deny the request if it conflicts with the
schedule of other suggested courses.) Positive response results, the schedule of

the course in the suggested course list to be replaced by the selected schedule.

CANCEL: Discards all changes and returns to “Suggesting Courses” state.

114

BIAGE PRSI

X R TARIRIY WIXA LRSS DAY,

R R o mtiosmcpasrorad

ion of a suggested course

the sect

1
7

ging

Chan,

46

igure

F

O VNN

Camees

Explanation on Preferred courses

CAS provides explanation on preferred courses that is displayed by pressing the
toggle-button (witn “Explanation on Preferred courses” label) in main menu area.
The preferred courses are entered in the “Soft Coonstraints Menu”. CAS decides if
they can or can not be chosen. If a course is not selected, CAS gives the reason for
rejection: pre/co-requisite, availability, collision with other preferred course, quaiifi-
cation for the degree and work overload (too many preferred courses). The facility is
implemented using TableDialog object. See Figure 47. Pressing the toggle-button
pops-up the dialog box and activating “DISMISS” (the only pushbutton of the dialog
box) pops-it down. Explanation on Preferred courses can be called any time and it

does not alter the state of the system.

Figure 47: Explanation facility

116

PanedWindow
Form Form Form
[MessageArea]
[MainMenu| [RadioToggle|
[ConstraintMenu | DialogShell DialogShell

TableDialog ListDialog Form Form

[_TableDialog }-— — ListDislog | | ConstraintMenu| [ActiveEditTablp

I PromptDialog J- —-I FromListDIangl

| MessageMangger |— —{__TableFiliDialog |

—-—i FromListDialogl
ToggleDialog
ToggleDialog

L—— BoardListDialog|

Figure 48: Component Graph of CasFace object class

117

Main Window
Figure 38

Click on Stop Process menuitem

Enter Valid ID

Flgure 39.40.

Suggesting
Courses

Figure 43.

Press “YES* betioa

Figure 44.

Frees “NO" buton

Figure 45.

Press '"PRINT oc "ABORT*"

Preferred Courses
& constraints entry

Press "REIICT " button

Confirmation

Display output

Press Hard User Constrants toggls button

Click on Quit menu item
-

Explanation

Press Lxplanaton toggle button
e on et

-

/"—//

——
Press Distiiiss burion

Figure 47.

PR

rross "OK” ot "CANCEL" buttons

Modification

Pross MODIFY button

Figure 46,

Prass "CHANGEB" or "DELETH" utwons

Figure 49: State Diagram of the Graphical User Interface

118

4.2.2 Communication layer between CAS and its GUI

This project was carried out by two students as two parts: the first part contains
the design and implementation of CAS [Duo], and the second part the design and
implementation of the Graphical User Interface is presented in this major report.
CAS and GUI communicate through the Communication layer as shown in Figure
.

50.

Graphical User Interface

Communication Layer

Computer System

Figure 50: Communication between CAS and its interface

Cominunication layer is positioned between CAS and its user interface. It con-
tains a set of function definition, and declaration of global object classes. Two User-
Constraint objects (Soft Constraints and Hard Constraints), a SuggestedCourses
object and an Explanation object (See 2.2.2) are made available for the interface as
global objects. The interface reads the information from SuggestedCourses (supplies
data for “Suggesting Courses”) and Explanation (suppiies data for “Explanation on
Preferred Courses”) objects and sends information to CAS by writing into the two
UserConstraints objects. Below we summarize the functions along with a brief de-

scription as they are seen by the user interface:

ChangeSuggestCourse: Requests the replacement of a course with an other sec-
tion of the same course (schedule is different). Returns “OK” if the course is
changed and “NOT OK” otherwise.

CleanUpCAS: User interface calls it when the user exits the application. (CAS

119

uses this function.)

DelSuggestCourse: Requests the deletion of the specified course from the list of
suggested courses (SugzestedC'ourses object). Returns “OK™ if the course is
deleted from the list and “NOT OK” otherwise.

InitializeCAS: It is called from the Control function at start up of the application.

CAS uses it to initialize global objects.

RequestCourseSched: Requests the schedules of all available sections of a certain

course. Returns “OK” if the course is valid and the schedule list is available,

“NOT OK” otherwise.
ResetAdvise: Informs CAS that the advising session has been terminated.

StartAdvise: This {uncticin instructs CAS to sclect courses for the student. If
CAS has produced feasible list of courses, value returned is "OK”. 'T'he list
of suggested courses and the explanation are stored in SuggestedCourses and

Explanation global objects respectively.

StopAdvise: This function instructs CAS to stop creating the list of suggested

courses and explanation, clear Soft Constraints object.

SuggestMoreCourse: Requests additional courses to be added (suggested) to the

list of suggested courses. Returns “OK” if the requested suggestion has heen
finished successfully, and “NOT OK” otherwise.

ValidateID: UI sends student ID to CAS. This function returns “OK” if ID is valid
and “NOT OK” otherwise.

The design of CAS user interface is based on the Dynamic Model of CAS described
in Section 2.2.3. The (Global Event Flow diagram was used to determine the user
interface component classes. The background computation is based on the State
Diagrams of CAS described in section 2.2.3. It can be secn that for each scenario
given in Dynamic Model there is a corresponding, path in the GUI that one can walk

through.

120

Chapter 5
Summary

This major report is a contribution to the development of GUI using a class library
based on C++4 and OSF/Motif. Reusable Module Library (RML) is a class library,
developed as a part of this work and its use is demonstrated through a case study.
The case study is a project called CAS (Course Advisor System). CAS is divided into
two parts: Functional part is considered by another student, GUI part is the focus of
this project. Throughout the design of CAS as well as the class library RML, Object
Oriented techniques are followed.

RML classes are objects of higher complexity, consisting of Motif widgets and
gluing C++ code. From the analysis of CAS, we have generalized a class of User
Interfaces that will have the following characteristics: “ Interactiveinput and Iterative
Specification of the user needs. (i.e. partial need is specified - observe the output -
modify the specification.)”

Such GUI s have the following needs:
o Enter a list of items
e Examine a list of items
e Select one or more items from a list

¢ Interactively relax or tighten constraints (after browsing through a partial so-

lution)
e Menu based selection (pull-down)

e Pop-up dialog boxes

121

The RML classes developed in this work satisfy the above nceds. The user interface
of CAS is implemented using C++ and RML. Figure 8. shows the Component Graph
of the user interface. We can conclude that the collection of RML classes provides
sufficient number of features to build practical graphical interfaces. Many of the RML
classes provide hooks for deriving new additional modules or extending a module. For
example, List object class contains two empty RowColumn widgets (sce Figure 23,
(b)). RowColumn is a manager widget that can hold an arbitrary arrangement of
widgets and other RML classes. Using this as a hook the RML class List can be
extended. The main purpose of RML is to prototype a GUI without having any

additional learning overhead for programmers.

122

Appendix A

Scenarios

The CAS asks the Student to type in his/her student ID#.

The Student enters his/her student ID#t.

The CAS reads Student’s transcript.

The CAS determines Student’s Status, Option, Date of First Registration, from the transcript.
‘The CAS obtains Degree Requirement (based on his/her Option and Date of First Registration)
‘The CAS extracts the courses already taken from the transcript.

The Student enters the courses he/she prefers to take.

The Student enters his/her preferences and constraints regarding: campus, workload ,
time, courses that he/she does not want to take.

The Student instructs CAS to peiform advising according to the provided information.

‘The CAS reads the courses the student prefers to take and other preferences or constraints (deter-
mines if there has been entered any).

The CAS examines the courses Student prefers to take if they are qualifying courses (Student can
take them).

The CAS selects the qualifying courses from Student’s preference hist w.r.t. his/her preferences and
constraints.

The CAS selects additional qualifying courses to satisfy required workload w.r.t. his/her preferences
and constraints. The CAS prepares explanation on Preferred courses.

The CAS displays suggested courses.

The Student requests explanation on Preferred courses.

The CAS displays explanation. The Student confirms the set of suggested courses.

The CAS asks if Student needs more courses.

The Student wants more courses.

‘The Student may enter additional preferences and constraints regarding: campus, workload , time,
courses that he/she does not want to take.

The Student instructs CAS to perform advising according to the provided information.

The CAS reads and evaluates the Student’s preferences and constraints. The CAS selects additional
courses.

The CAS displays suggested courses.

Student confirins the set of suggested courses.

The CAS asks if Student needs more courses. The Student does not want more courses. The CAS
prints Suggested Courses with their schedule and location.

The CAS asks the Student (next student) to type in his/her student ID#.

123

The CAS asks the Student to type in his/her student 1D#.

The Student enters his/her student ID#.

The CAS reads Student’s transcript.

The CAS determines Student’s Status, Option, Date of First Registration, from the transcript.
The CAS obtains Degree Requirement (based on his/her Option and Date of First Registration).
The CAS extracts the courses already taken from the transcript.

The Student instructs CAS to perform advising according to the provided information.

The CAS reads the courses the student prefers to take and other preferences or constraints (deter-
miies if there has been entered any).

The CAS selects qualifying courses to satisfy required workload w.r.t. Student’s preferences and
constraints (if there is any).

The CAS displays suggested courses.

The Student requests explanation on Preferred courses.

The CAS displays message to Student, ”No preferred course has been entered. Explanation is not
prepared.”

The Student confirms the set of suggested courses.

The CAS asks if Student needs more courses.

The Student does not want more courses.

The CAS priuts Suggested Courses with their schedule and location.

The CAS asks the Student to type in his/her student ID#.

124

The CAS asks the Student to type in his/her student 1D#.

The Student enters his/her student 1D#.

The CAS reads Student's transcript.

The CAS determines Student’s Status, Option, Date of First Registration, from the transcript.
The CAS obtains Degree Requirement (based on his/her Option and Date of First Registration).
The CAS extracts the courses already taken from the transcript.

The Student instructs CAS to perform advising according to the provided information.

The CAS reads the courses the student prefers to take and other preferences or constraints (deter-
mines if there has been entered any).

The CAS selects gnalifying courses to satisfy required workload w.r.t. Student’s preferences and
constraints (if there is any).

The CAS displays suggested courses.

‘The Student requests explanation on Preferred courses.

The CAS displays message to Student, ” No preferred course has been entered. Explanation is not
prepared.”

The Student rejects the set of suggested courses.

The CAS records the entire set of suggested courses as constraints (courses Student does not want
to take. (Prefix, Course #. Section)

The Student instructs CAS to perform advising according to the provided information.

The CAS reads the courses the student prefers to take and other preferences or constraints (dcter-
mines if there has been entered any).

The CAS selects qualifying courses to satisfy required workload w.r.t. Student’s preferences and
constraints (if there is any).

The CAS displays suggested courses.

The Student requests explanation on Preferred courses.

The CAS displays message to Student, ” No preferred course has been entered. Explanation is not
prepared.”

The Student confirms the set of suggested courses.

The CAS asks if Student needs more courses.

The Student does not want more courses.

The CAS prints Suggested Courses with their schedule and location.

The CAS asks the Student to type in his/her student ID#.

125

4,
The CAS asks the Student to type in his/her student ID#. The Student enters his/her student
ID#.
The CAS reads Student’s transcript.
The CAS determines Student's Status, Option, Date of First Registration, from the transeript
The CAS obtains Degree Requirement (based on his/her Option and Date of First Registration).
The CAS extracts the courses already taken from the transcript.
The Student instructs CAS to perform advising according to the provided information.
The CAS reads the courses the student prefers to take and other preferences or constraints (deter-
mines if there has been entered any).
The CAS selects qualifying courses to satisfy required workload w.r.t. Student’s preferences and
constrainis (if there is any).
The CAS displays suggested courses.
The Student, requests explanation on Preferred courses.
The CAS displays message to Student, "No preferred course has been entered. Explanation is not
prepared.”
The Student asks for modification.
The CAS displays facility for modification.
The Student may reject one course of the set of suggested courses or iay ”edit” the set of suggested
courses by replacing a course(s) (course ’A’) with the same course(s) offered in an other time (course
'B’).
The Student signals that modification is ready.
The CAS agrees to perform the modification.
The CAS records the modification as constraint:
Rejected course: indicates that the course 1s “Unpreferred course” (Prefix, Course #, Section)

Changed course: indicates that course 'A’ is “Unpreferred course” and course "B’ is “Preferred
course”

The CAS displays suggested courses.

The Student accepts the already suggested courses but instructs C4S to advise addi-
tional courses according to the provided information.

The CAS reads the courses the student prefers to take and other preferences or constraints (deter-
mines if there has been entered any).

The CAS selects additional qualifying courses (to cornplement already accepted suggested courses)
to satisfy required workload w.r.t. Student’s preferences and constraints (if there is any).

The CAS prepares explanation on Preferred courses.

The CAS displays suggested courses.

The Student requests explanation on Preferred courses.

The CAS displays explanation.

The Student confirms the set of suggested courses.

The CAS asks if Student needs more courses.

The Student does not want more courses.

The CAS prints Suggested Courses with their schedule and location.

The CAS asks the Student to type in his/her student ID#.

126

The CAS asks the Student to type in his/her student ID#.

'The Student enters his/her student ID#.

The CAS reads Student’s transcript.

The CAS det rmines Student’s Status, Option, Date of First Registration, from the transcript.
The CAS obtains Degree Requirement (based on his/her Option and Date of First Registration).
The CAS extracts the courses already taken from the transcript.

"The Student instructs CAS to perform advising according to the provided information.

The CAS reads the courses the student prefers to take and other preferences or constraints (deter-
mines if there has been entered any).

The CAS selects qualifying courses to satisfy required workload w.r.t. Student’s preferences and
constraints (if there is any).

The CAS displays suggested courses.

The Student requests explanation on Preferred courses.

The CAS displays message to Student, ”No preferred course has been entered. Explanation is not
prepared.”

The Student asks for modification.

The CAS displays facility for modification.

The Student may reject one couise of the set of suggested courses or may "edit” the set of suggested
courses by replacing a course(s) (course ’A’) with the same course(s) offered in an other time (course
'B').

The Student signals that modification is ready.

The CAS denies the modification.

The CAS prepares explanation on Preferred courses.

The CAS displays suggested courses.

The Student requests explanation on Preferred courses.

The CAS displays explanation.

The Student accepts the already suggested courses but instructs CAS to advise addi-
tional courses according to the provided information.

The CAS reads the courses the student prefers to take and the other preferences.

The CAS examines the courses Student prefers to take if they are qualifying ourses (Student can
take them).

'The CAS selects additional qualifying courses (to complement already accepted suggested courses)
to match required workload w.r.t. Student’s preferences and constraints (if there is any).

The CAS prepares explanation on Preferred courses.

The CAS displays suggested courses.

The Student requusts explanation on Preferred courses.

The CAS displays explanation.

The Student confirms the set of suggested courses.

The CAS asks if Student needs more courses.

The Student does not want more courses.

The CAS prints Suggested Courses with their schedule and location.

The CAS asks the Student to type in his/her student ID#.

127

The CAS asks the Student to type in his/her student ID#.

The Student enters his/her student ID.

The CAS reads Student’s transcript.

The CAS determines Student’s Status, Option, Date of First Registration, from the transcript.
The CAS obtains Degree Requirement (based on his/her Option and Date of First Registration).
The CAS extracts the courses already taken from the transcript.

The Student instructs CAS to perform advising according to the provided information The CAS
reads the courses the student prefers to take and other preferences or constraints (determines if there
has been entered any).

The CAS selects qualifying courses to satisfy required workload w.r.t. Student’s preferences and
constraints (if there is any).

The CAS displays suggested courses.

The Student requests explanation on Preferred courses.

The CAS displays message to Student, ”No preferred course has been entered. Explanation is not
prepared.”

The Student asks for modification.

The CAS displays facility for modification.

The Student may reject one course of the set of suggested courses or may "edit” the set of suggested
courses by replacing a course(s) (course *A’) with the same course(s) offered in an other time (course
’B’).

The Student signals that modification is ready.

The CAS agrees to perform the modification.

The CAS records the modification as constraint:

Rejected course: indicates that the course is “Unpreferred course” (Prefix, Course #, Section)

Changed course: indicates that course 'A’ is “Unpreferred course” and course "B’ is “Preferred
ki
course

The CAS prepares explanation on Preferred courses.

The CAS displays suggested courses.

The Student requests explanation on Preferred courses.

The CAS displays explanation.

The Student confirms the set of suggested courses.

The CAS asks if Student needs more courses.

The Student does not want more courses.

The CAS prints Suggested Courses with their schedule and location.
The CAS asks the Student Lo type in his/her student 1D#.

128

The CAS asks the Student to type in his/her student. ID#.

The Student enters hisfher student ID#.

The CAS reads Student’s transcript.

The CAS determines Student's Status, Option, Date of First Registration, from the transcript.
The CAS obtains Degree Requirement (based on his/her Option and Date of First Registration).
The CAS extracts the courses already taken from the transcript.

The Student instructs CAS to perforim advising according to the provided information.

The CAS reads the courses the student prefers to take and other preferences or constraints (deter-
mines if there has been entered any).

The CAS selects qualifying courses to satisfy required workload w.r.t. Student’s preferences and
constraints (if there is any).

The CAS displays suggested courses.

The Student requests explanation on Preferred courses.

The CAS displays message to Student, ” No preferred course has been entered. Explanation is not
prepared.”

The Student asks for modification.

The CAS displays facility for modification.

The Student may reject one course of the set of suggested courses or may "edit” the set of suggested
courses by replacing a course(s) (course *A’) with the same course(s) offered in an other time (course
'B’).

The Student signals that modification is ready.

The CAS denies to perform the modification.

The CAS prepares explanation on Preferred courses.

The CAS displays suggested courses

‘The Student requests explanation on Preferred courses.

The CAS displays explanation.

The Student confirms the set of suggested courses.

The CAS asks if Student needs more courses.

The Student dces act want more courses.

The CAS prints Suggested Courses with their schedule and location.

The CAS asks the Student to type in his/her stndent ID4.

129

The CAS asks the Student to type in his/her student ID#

The Student enters his/her student ID#.

The CAS reads Student’s transcript.

The CAS determines Student’s Status, Option, Date of First Registration, from the transecript.
The CAS obtains Degree Requirement (based on his/her Option and Date of First Registration).
The CAS extracts the courses already taken from the transcript.

The Student enters the courses he/she prefers to take.

The Student enters his/her preferences and constraints regarding: campus, workload ,
time, courses that he/she does not want to take.

The Student instructs CAS to perform advising according to the provided information.

The CAS reads the courses the student prefers to take and othei preferences or constraints (deter-
mines if there has been entered any).

The CAS examines the courses Student prefers to take if they are qualifying courses (Student can
take them).

The CAS selects the qualifying courses from Student’s preference list w.r.t. his/her preferences and
constraints.

The CAS selects additional qualifying courses to satisfy required workload w.r.t. lis/her preferences
and constraints.

The CAS prepares explanation on Preferred courses.

The CAS displays suggested courses.

The Student requests explanation on Preferred courses.

The CAS displays explanation.

The Student rejects the set of suggested courses.

The CAS records the entire set of suggested courses as constraints (courses Student does not want
to take. (Prefix, Course #, Section).

The Student instructs CAS to perform advising according to the provided information.

The CAS reads the courses the student prefers to take and other preferences or constraints (deter-
mines if there has been entered any).

The CAS examines the courses Student prefers to take if they are qualifying courses (Student can
take themn).

The CAS selects the qnalifying courses from Student’s preference list w.r.t. his/her preferences and
constraints.

The CAS selects additional qualifying courses to satisfy required workload w.r.t. his/her preferences
and constraints.

The CAS prepares explanation on Preferred courses.

The CAS displays suggested courses.

The Student requests explanation on Preferred courses.

The CAS displays explanation.

The Student confirms the set of suggested courses.

'The CAS asks if Student needs more courses.

The Student does not want inore courses.

The CAS prints Suggested Courses with their schedule and location.

The CAS asks the Student to type in his/her student ID#.

130

9.
The CAS asks the Student to type in his/her student ID#. The Student enters his/her student
ID#.
The Student aborts the advising session.
The CAS asks the Student to type in his/her student ID#.

10.

The CAS asks the Student to type in his/her student ID#.

The Student enters his/her student ID#.
The Student cancels the present iteration of advising (cancels all courses snggested).

The CAS asks the Student to type in his/her student 1D#.

131

References

[Bra92]

[Duo]

[EHJV95]

[Fou93]

[Han71]

[HF94]

[Ian92]

[Ltd93]

[RBPL93]

[SG92]

Marshall Brain. Motif Programming: The Essenlials...and More. Digital
Press, 1992.

Kim Duong. Design and implementation of an intelligent course advi-
sor system. Major technical report, Concordia University, Montreal, in

preparation.

E.Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Ile-
ments of Reusable Object-Oriented Software. Addison-Wesley publishing
co., first edition, 1995.

Open Software Foundation. OSF/Motif Style Guide. Prentice-1lall, 1993,

Wilfred J. Hansen. User engineering principles for interactive system.
In Proceedings of the Fall Joint Computer Conference, 39, AFIPS Press,
Montvale, NJ, 1971.

Dan Heller and Paula M. Ferguson. Motif Programming Manual. O'Reilly

& Associates Inc., second edition, 1994,

Renato Iannella. Designing ‘safe’ user interfaces. The Australian Computer
Journal, 24(3), August 1992.

Visual Edge Software Ltd. Geiting Started with UIM/X. Release 2.5,
Document Version 5.93., 1993.

J. Rumbaugh, M. Blaha, W. Premerlani, and E. Lorensen. Object-Oriented
Modeling and Design. Prentice-Hall, 1993.

Robert W. Scheifler and James Gettys. X Window System: The Complele
Reference to XLIB, X Protocol-X Version 11, Release 5. Third edition,
1992.

132

[Shn87]

{Stro4]

[Uni94]

[You92]

Ben Shneiderman. Designing the user Interface: Stralegies jor Effective

human-Computer Interfaces. Addison-Wesley publishing co., 1987.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley
publishing co., second edition, 1994.

Concordia University. Undergraduate Calendar. Concordia University,
1994.

Douglas A. Young. Object-Oriented Programming with C++ and
OSF/Motif. Prentice Hall, first edition, 1992.

133

