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This thesis presents a survey;bf the ridée regressipn
literature. Thé ridge estimators were originally put forward by

Hoerl (1962), (1964) to cope with the effects of -severe multi-
. NE . ho
collinearity -between the dependent variables of the general linear ,

model. A number of properties and criticisms of\the estimators = -
are dgtalled in this thesis. 1In addition to their classical
R ) .

formulatlon, the ridge- estimators are con51dered within a Bay51an

framework. The'ridge-estimators are compared with other biased

to counter the effects of an.

-

)
estiﬁaédng which have been propos

ill-conditioé%d XX matrix.

In addition to providing a review of the existing ridge
estimators, a combined estimator of the form:

— ~ % - _1 P
Bz(k,r) }’r(Ar + kI ) P_ XY

- is studied in this thesis. Bz(k r) is'a combination of the

ordinary ridge estimator proposed by Hoerl (1962), (1964) and

Marquardt's (1970) generalized least squares estimator. It is

- A
s *k’-'r
* . * [} L3 *

proposed that this combined estimator be employed in situations,

where some of the eigenvalues for the X°X matrix are assumed to

.

be equal to zero and others close to zero. A number“\of properties
\\}esults of

. -~y
of the combined estimator Bz(k.n) are developed. The
a series of simulation experiments are also preséﬁted to il~

. [ -

lustrate the potential usefulness ‘of the estimator.
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' ' s .. Chapter 1 o ’
| 3 T ' ‘
\ . Introduction o, .
' ’ » . i
LY k ° '\
» Consider the #neral linear modgl ‘ ot
= XB + ¢ (1.1)

“where: Y is a n x 1 vector of n bservatlonit:f the variable-

. to be explalned or predlcted X isanxpm ix of n observations

> on p explanatory or contro} variablés; B is a p x 1 vector of p
coefflclents, and € 1s a 2 x 1 vector of unobservable disturba ces.

. ‘ThHe unobservable dls‘curba7 ces are assumed to satisfy:

E(e) = 07, //‘”

: Var(e) = E(ee”) = o°I

In .some situations, it will be assumed that the unobservable

(1.2)

ais't‘urbances are normally distributed. Further, assume that the®
- unobserval.ble disturbances are independent of the 'vf;:tlues of X. Unless -
- specified .otherwise, it will be assumed that,the design mdtrix will
be of full rank.
The ofdin@ast squares or Gauss-Markov solution ‘is the

most widely applied procedure for estimating the unknown vector of
p:ar:ame’ter's B in model (1.1). This estimator is obtained by choosing
that est}mator b of B which minimizes the ﬁesulting residual sum of

- squares. Suppose* that X is a design matrix anéT Y the correspondlng

Nector of obserVations. The sum of squares of the residual function

is given by: ” , \3 -
’ *
‘ §) = (Y- xp)(Y - ko) S
‘ = YY - Y°Xb - b“X“Y + b“X’Xb .
‘ ‘ = Y’Y.- 2b°X’Y + b"X’Xb . (1.3) -
" .The critical value of ¢§(b) satisfies: : e
\_/3 d §(b) = -2X“Y + 2X"Xb = 0 _— (1.4) .
. : db /-
or: . ' / °
X“¥b = X°Y© " . (1.5)

If X is of full rank so that XX is 1nvertlble then

S— = xt 3 , (1%)
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is the critieal yalue of ¢(P). When X is of full rank, the Hessian
matrix for &(b): o - - °
a® eh-= 2xy S ‘ (1.7)
b2 . - :

is a’'positive finite 'éymnetric matrix so that f must minimize
. Ao v ) . .

the sum of squares of the residua/ls function. Throughout the
ordinaryu legst squares-estimator of § in fodel (1.1},

/ " . .
/ ' s Yo
Suppose that in addition to the assumptions ('l.,?ﬁéxe

unobservable disturbances are assumed to be normally distributed.

/-

'The joint probability density function for the unobservable distur- .

bances would be: i
f(eloz) = 1 exp{-_lT s"s} . (1.8)
en™2% L 2 ;
If the transformation:
Y= X8 +.e * (1.9)
. ’ ' . i - -
- is. made, the resulting joint probability density function hecomes: .
, f(le,B,Uz) = 1 exp{-/l ($a- XB) (Y - XB)} .
- n n 2 .
| (2m) o} . ﬁo ' )
’ TNl I (1.10)

Maximizix}.g thef})kel:fhood functior; L(8 ’02.‘ zfj)c) produces the maximum
likelihood estimators : :

\ B = (X’x)"IXjY 1 S . (1.11)
and: . C ’ v

o = (v - xB)(¥ - xXB) . (1.12)

. n
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- for B and o, Therefore, the least squares estimator 8 is also
the maximum likelihood estin{ator when theé unobservable disturbances

‘are assumed to follow a normal distributions - .
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' In many situations, it is convepiént to-standardize the

P - +

observations ﬁefere Yagtimating ,'i:he parameters. Assume that the

mddel defined by (1.1) includes a ‘constant term. _Suppose that -

*
-

the sample mean and si:and'ard de'via;:'ion’ are calculated for the
\dependent \:rariacble and each of th'e'".exélanatory variables. The -
observatic;ns cbrrespondinge to each variable can be standarciized
by su‘i)tracting the variable's s.amiale mean fro;l each observation
and ﬂiv;i.ding by the standard deviation. This trénsformation of
‘the observations results in a X7X matrix equal to the ;g\ple
correlvation matrix for the explanatory varliables and a X°Y vector

\ . .

q .
containing the correlations between the dependent variable and

each of the explanatory wariables. Let vy, 8y :_ci and s, represent -
the sa}{nple‘ means and standard deviations for the dependenf. variable
and i'th explanatory variabie respectively. Supposel that £~3 denotes
the estimated coefficient vector obtained using the standardize‘d
model. Estimates of the pargmeters for the.non-standardized model
may be calculated according bo: - |

D

- T X. for i
sy L ,

= . i=1 1 ’
B;= T (1.13)

1,2,3, ... p .

<1
ml H
[ N
]
(o]

1

for i

) mkm
-
w 2
hd

If the general model does not contain a constant term, the obser-
vations for each variable can be standardized by dividing each
observation by the corresponding sample standa¥d deviation.

LN 3 o

Standardizing: the data as described gbove leads to a form of
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the model whose estimated parameters le ‘themselves to more
- straight—forward Anterpretations in terme of the correlations .
betwgen the different variables in the model.' In addition, Marquardt
and Snee (1975i emphasized that the variable transformations remove ©
the effects oj»correlations between the constant term and the ‘
explanatory variables from the estimation procedure They pointed
out that the presence of significant oorrelations betgeen o g
' :bhese variables should be. pafticularly distressing. °The
/resultanf'nonessential ill-conditioning- would not be due to'any s, N
‘ real deficiency i “ data set  but rather the result of an arbitrary K J

assxgnment o o’_gins to the scales employed to express: the explana-

tory variables. McCabé (1978) pointed out that the transformations . |

defined by (1.13) impoieta coﬂ’traint upon- the predicted values

®

of Y. He noted that the estimated Jodel will predict y for the
vector (xlﬁ-Q! 37 t"'xp) irregardless of theﬁestimator employed
to estimate B. McCabe (1978) suggested that it might Le more
meaningful to constrain the prediction of Y at some other point

in some situations.




A number of properties for B follow diréctly from the assump- ..

-
<

1

“tions for the unobservable disturbances. B is an unbiased eatimatér . i
- . 7

i

" of .8 since: i
. E(B) = XX"X)TX"E(Y) : R o
¢ ‘ . ‘ -
= (XX IX"E(XB + € : . ’ .
“1y.c, LY e Ce .
' = B+ (X7X) "XE(e) . . \ - .
=8B . . ) ' M . (1'14) -,
* u - . . o =~ . % ‘ T * @
« The variance-covariance matrix for B is glven‘by: oo v
- Var(B) = E(B - B)(B -8y , - ' v
.. ‘ R
% E((X X)~ x “e)((X°X)™ x eg‘ - L
(x"%) "X “ECee )xcx “X)~ b

. o (X ). R . ‘(l.IS)
‘ o )

Suppose that there exists another unbiased.estimator of 8

o, . ~ . o
with a smaller variance than B. The estimator must be qf the

R

© form: ' : " . ' .
- B =8+8 » L (1.16)
qw1th a variance- covarlance matrlx ‘ .
o T " 4
Var(ﬁ ) = E(B - B)(B - B)” R S .
~ ~ . . \
=E(B +B - BB+ B ~-RB) ' -,
- » -1 » - ‘-1 P :- ’ .
, = EC(X"X)77X%e + BY((X’X)T X% + B’ . o
. = ECC“0) " Tx%ee x(x“0) ™ + B~ 1x"eB?)
Y ‘ + E(Be"X(X"X)™1) 4 E(BB”) e
A = Var(g) + (X“X)"1x E(eB7) + E(Be XXX .

. } + E(BB”) . . ’ (1. 17)‘
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- Since the unobservable disturbances are assumed to be- independent

1

.- ) ) -~ ~%, C
of the values of X, the estimators B and B are\&ndependent of €.

It therefore follows that: ce N
A* .~ !
. v E(Be”) = E((B - B)e7) . . '
* ~ -~ X i )
= E(B - BIE(e”) . I c
. : [ 4
= 0 . . (1.18)
o ~x a B L ~% ~ ’
The expression for the variance-covariance matrix of B reduces
to: . *
A* ‘e ~ ’;,\ '
Var(g ) = Var(B8) + E(BB”) y ) ‘ g
‘ 2 Var(g) - S ‘ (1.19)

with equality if and only if B is a con§tanf vector of zeros.

In ‘other words, any unbiased estimator of B different from*“the

ordinary least squares‘estimator has a larger variance. Therefore, -

vo

‘8 is the minimum variance unbiased ejﬁigator‘(MVU) of B in model
¥

(1.1).

»

_Tﬁé efficiency of any estimator b,df g may be quantified by

considering the squared ' distance between b and R defineq by:

L2(b) = (b - B)°(b - B) . ©(1.20)
The expected value Of L2(by: - ‘ oo
.  EL2(b) = E(b - B) (b - B) - ) '
| Z E(b - Eb)"(b — Eb) + (Eb - 8)°(Eb - 8) e

—
-

is usually denoted

. estimator. ELz(b)
individual parameters but also their squared biases.

L4
.

In the case of the least squares estimator:

P b ’ 2
) VaP(bi) +~ I (Ebi - Bi)

(1.21)
iel i=1

as the mean squared error (MSE) for the

measures not only the dispersions of the

Iy

" .
’ ’

-




E(@ BB - B) l ‘
ECXX) " Ix%e) *((x ) " 1x“e)
E(e”X(X"X)"X7e)

‘ tr(X(X’X)—ZXUQIn) -, .

ELZ(R)

" n n

1)

«
4

o tr(X X)' ' (1.22)
since the unbbservable disturbances are assumed to satlsfy condltlons
(1.2). If X is of full'rank, the X“X matrix will be a pos1t1ve

definite syfnetrlc matrix with p eigenvalues, S Ay € ve 8 %AP"
greater than zero. Further, there exists an orthogonal matrix P
such that: " ' /

P (X’X)P = A ‘ (1.23)

where A is a ‘diagonal matrix with the eigenvalues '\i as it's dia-

gonal elements. Since multiplication is comnutative,,wi{hin the =
trace operator ’ “

B

ELZ(8) = o2tr((X"X)7'P'P)
= o2tr(P(X"X)"1P) | .
- = cztr(l\:l)w .8
T g2y , (1.24) '
i1 %; .
- In the same manner, f , ' ‘ .
var(L2(8)) = Vah((8 - BY7(B - B)) {’ :
= Nar(e “X(X"X) ~2x%¢)

2

2t0(X(X 0™ 2x70%1 ) 21 .
2 ‘ ‘ z " . ‘
Searle§ S.R.: Linear Models, New York: John Wiley €& Sons,

Inc., 1971, p. 55.
Ibid., p. 57. .

ar s




o

o , = chtr((X’X%;z)

‘ ~ -—
= 20t (A™2) T
' SR w2 L : .
v . = 20 I N ? . . (1.25) -
' i=1 "1

v N\
¢

If the explanatory or control variables exhibit small inter-

' dependencies so ‘that theydesign matrix is nearly orthogonal, the

it is often ¥ound that fherd are lavge degrees of multicollinearity
between the explanatory \Qr control variables. For example,

Newhouse and Oman* (1971) described problems in estimating the
budgetary costs for various sizes of volunteer armies. They sug- \
gested that it is necessary to know the effects of relative military—

least squares estimates i;not be too bad. However, in reality,

3

civilian wages for a given constant unemployment rate. Data at
one point in time from different regions has been employed in the
estimation of these effects., However, Newhouse andﬁpman (1971)
‘pointed out that if high unemployment occurs 1in the same areas as
high ratios of militarzpto civilian p%y, it is hard to estimate

the effects of adjusting only the military to civilian pay ratios.

o

If thékgbn-orthogonality is at all severe, the X“X matrix will

¢

be ill-conditioned and have some eigenvalues close to zefo. Since
1

2

both ELZ(ﬁ) and Var(L2(B)) are dependent upon the values of Ai-
it can be seen that the estimates Bi of the individual parameters

may fluctuate wildly. It-is even possible that some parameters will

have the wrong signs. Using a Euclidean norm, the length 6fnthe
ordinary least squareé estimator is defined to be:
el = s->?%, ' ' (1,26)

so that the expected squared length of the least squares estimator
becomes:

- .

ECII 8 1% = E(8”8)

I
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\
* ' ) . ‘ea ¢ .
=68 « E(8 - (B - 8 .
2P ¥ 4
= BB + 0% 1 .o (1.27)

. ' izl T;
Therefore, it is apparent that .as the X“X matrii becomes more ill=-
qonditioned, the ordinary {east squares estimates will tend to become
too large in absolute value. Vinod (1976b) examined two economy of
scale functions which exhibited serious multicollinearity in their
exogenous variables to show”that ordinary least squares solutions‘may

be misleading. i ~ -y _

Swindel (1974) constructed a series of eiﬁmples to illustrate
the kind of ‘instability that can result when £ﬁe design matrix is
ill-conditioned. Based upon his examples, a series of simulations
of the model: ’ '

Y=X(i)+e . ' '
. . (1.28)
_E ~ N(O.O,o2

\

3) \ - . , *

" were constructed. The four design matrices:

1,0000 0.0000 0.9578 0.2873
( ) ( 0.2873 0.9578

X, =10.0000 1.0000 X, =
: 0.0000 0.0000 0.0000 , 0.0000
. -(1.29)
0.8944 0.4472 0.8000 0.6000 ’
Xy = (0.447?,00.8944) X, = (o.sooo 0.8000
0.0000 0.0000 0.0000 0.0000

were employed in the simulations. Sequences of one thousand obser-
vations were generated for eqch,desién matrix. Tables 1 and 2 sum-
marize the simulation results when oz\is taken to be 0.25 and 0.36
respectively. Th“theoreticél means for the sum of squares of the
ordlnary least squares estimates and variances fpr _the sum of squares
of the dev1at10ns are compared with the 81mu1at10n results. A break-
down of the distribution of errors in ﬁhe signs of the simulated

ordinary least squares estimates is provided.
[N . N l' /3
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Table 1 - A Summary Of N = 1,000 Simulations Of The

Least Squares ‘Estimates 'For The Model:

y=x(7) +e € ~ N(0.0,0.25I;) . .
. Design Matrix
L% xw X, X,
Theoretical Values
Eigenvalues For x Xy a). »H 1.00000 1.55027 1.79989 H.m\mooo
* . ~ b) yw 1.00000 0.44957. 0.19999 0.04000
Sum Of Squares Of The m 2.00000 2.00000 2.00000 2,Q0000
Theoretical Sum Of mncwﬂmm Of The m 2.50000 2.71735 3.38897 8.37756
Theoretical Variance For hwnmv - 0.25000 0.67048  3.16396 7815773
Simulation Wmmmwﬁm) ) ,
Average vdlue Of: a) mw 0.97868 0.96843 0.95284 0.89491
. b) B, 1.02061 1.03096 1.04659 1.10454
w<mnmam Sum Qf mncmﬂmm Om The m 2.48585 2.68854 mewmoq 8.06728
Variance Eor ﬁ (B) 0.23085 0.58169 N.qﬁwmm 66.68130
Percentages Of Correct mwnbm"

. a) Neither mp Nor B, 0.00% - 0.00% 0.00% 0.00%
b) Only mw - H.m@w - 3.80% 9.90% 26,20%
ov.OSHw mm R 2.70% 4.60% 12.30% 30.20%

* d) Both mH And ww 95.50% 91.60% 77.80% 43.60%
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- Table 2 >~ A Summary Of N = 1,000 mwacpmﬂyonm Of . me
- Least Squares Estimates For The Model:

S Y = xwﬁwwv.a+ €, € e.zﬁo.o«o.umev
Design Matrix 7 ’
REEEPRN , X %, %3 %4
" " '‘Theoretical Values . ) ©
mwamvcmemm For Nw\xwu a) AL P¢MMMMO 1.55027 1.79989 -1,96000
" _b) »m 1.00v00 0.44957 0.19999 0.04000 )
Sum Of Squares Of The B; 2.00000 2.00000 2.00000° 2.00000
*Theoretical Sum Of mncmﬂwm Of The m m.qwcoo 3.03298 4.00012 11.18369 |
emeHmanwH Variance For Hmﬁmv 0.51840 1.39030 6.56079 162.06784 .“
mﬂzcwwﬁpo: wmmcwnm . m
»cmﬂmom Value Of: a) mH 0.97443 - 0.96213 0.94342 0.87391 :
b) mm o 1.02475 1.03717 1.05593 1,12547 .
vcmhmmm Sum Of Squares Of The m 2.69992 2.99175 3.90977 10.73727
<wHHwnnm For bwnmv 0.47868 1.20620 5.61791 138,27827
Percentages Of Correct Signs ) . , . -
; 8 8 0.30% 0.00% 0.00% 0.00%
3.90% 7.00% 14,90% 29.00%
4.80% 18.208  17.40% 34.60%
) 91.00% 84.80% 67.70% 36.40%
s .
- . . .- 5
. :
- S L
///// . @
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An indication of the increasing instability of the least

[

squares estimator as the smallest eigenvalue tends ::/ﬁero or as
) ] .

02 increases is provided- by considering the breakdo Y of correct

signs for the estimated parameters. Using Xl, 95.5§/of the estimated -
. ! Y

veétors E haé both signs correct when 02 was set to 0.25 and 91.00%
when 02 equalled 0.36. On the other hand, in the case of the most \
non-orthogonal design matrix, only 43.60% of the estimated parameters\*
had both signs correct when 02 équalléd 0.25. The correépopding ‘
figure was 36.40% when o was set to 0.36. | : \
’ - o . A ' .
Smith and Goldstein (1975) noted that the occurrence of small
eigenvalues and thus *ill-conditioning probably is the result 6f one
of two situations. First, the data points may lie close to a hyper-
plane in the parameter space. The'design is not adequate to estimate
all the parameters of the regression model. One remedy would be to
collect more data and respecify the model.: Secondl&, the variables
in the model might be highly interdependent so that at least one
variable might be cousiéered redundant. A possible solution to this
proﬁlem would be to drop factors in order to destroy the correlation
bonds among the explanatory variables. In this case, the user may
be left with 'dangling' congrollables. Alternatively, if it is not
desirable to drop explanaﬁ%é; or control variables, the pérameters~
for fhe complete model may be estimated. However, the pred}ct}on
function must be treated as.a 'black box' and the function's deriva-
tives should not be used. -

.

P , . I

In order to reduce the problems of parameter inflation and
instability, Hogil (1962) introduced the method of ridge regression
and defined a class of estimators of the form:

1,. )
XY , s . (1.30)

Bk -

where:

X°X + kI )
( p)

-

0 i | (1.31)

-;" “ / o .

v



o

. » The ridge estimatér defined by (1. 30) ls a biased estimator

L]

- for whlch it is hoped that a major reductlon in the’ variances of

thé 1ndlv1dual parameter estlmates ¢an be achieved by 1ntroduc1Tg

L) —
a small amount of bias into the estimation process. The remainder
L \ ) °
of this thesis consists of a bomprghensive survey of the vaxious —

proper&ies of the ridge estimato*. The ridge estimator is.contrasted

& “ with other biased estimators which have been proposed to deal with
[ . \

: L
p the effects of severe multicollinearity/in the explanatory variables.,

Several generalizations of the estimator -defined by (1.30) are

[}

considered. In addition to the classical formulation of the
" estimator, the ridge estimator is considered within a Bayesian
framework’.0 Finally, several criticisms of the ridde regression

\ . ! @

.procedures are outlined.
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! . Chapter 2 . o .
. The Ridge Estimator

1
In a discuésion of ‘an application @¢f regression analysis
in the estimatfon of control equationg for some chemical processes,
A.E. Hoerl noted that: ) . !
" The exactness of mathematics can in some cases
defeat its own utility as -a tool for solving
industrial problems. Too often the mathematically
exact solution is taken as that whereas subsequent
data belies that solution and thus discredits this
approach. Lo .
He pointed out that the use of pre-designed experiments in the
development:of control equations for industrial processes is rarely
feasible. Rather the data that is gathered is usually 'poorly
conditioned' and as a result unstable coefficients are produced.
Simulation results were presented in the previous section to
demonstrate that misleading results can often be produced when
the interrelationships between the indepehdent variables are strong
enough. In order to derive more credible control equations, Hoerl
(1962), (1964) introduced the ridge estimator:

~% - » N —l -
Bk = (X°X + kIp) XY . (2.1)

where:
> A RN

k=0 Yy . (2.2)
and defined ridge analysis in terms of quadratic response functions.
A.E. Hoerl suggested that:

" Given the analytic solution, the ridge analysis -

determines the unique combinations of solutions

which minimize the lack of fit of the data while

decreasingfthe size of the coefficients. In addition,.
a solutio

is determined ... which not only 'fits'
the datafbut is’simultaneously a stable solution - the

(1.) Hoerl, A.E. : Appi&cations Of -Ridge Analysis To Regression
Problems . Chemical Engineering Progress 58, 1962, p.56 ,
: A

L«

A e . e
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real crux of the matter. 1 " .
R Hoerl and Kennard (1970a) '‘compiled a. comprehensive summary

of the properties of the ridge estimator. Adopting the criterion:
1/ Mean Squared Error Admissibility Criterion: A '

~
class of estimators E will be called admissible

if for every X and Y, there exists an .estimator
ecE such that:

MSE(e) < MSE(E) S
p

= 3 v A_ (2.3)
t=1 ar(Bl)

14

-

A* 5
they demonstrated the existence of a k such that By is mean squared

error admissible. Newhouse and Oman (1971) detailed the geometrical
im?lications of the ridge solution. A summary of these results is
presented in this section.

.

;A*

The ridge estimator~3k reduces to the least squares estimator
N oA~y T *

when k is set to zero. By may be rewritten as:

' o - - kI "'l »
'S Bk - (x X ¢ p‘) XY
. = (1_ + k(x"x) "H hx 0 kv
) P -
B f = (1, + kxx0"H7l
’ = st . , '(2.4)
where: ' . - ) T
= = ' » -1 “l ’ 4 )
K | Zk (Ip + k(X°X) ) . / \(2,5) N .
. . e . ~ nﬁ‘ N\ //
Therefore, the ridge estimator Bk is a linear transfo ration -

t

(1.) 1Ibid., p. 58.

»

. .
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. . ’ . .
- .
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v
of the least squares estimator B with the transformation dependent

only on k through Zk. If )\i, i=1,2,...,p, are the eigenvalues

x has p eigenvalues equal to:

R I GNEL PV S (2.6)
A o+ ke : oo

of the X“X matrix, then Z

which tend to zero as k increases. .It is a common result from !
matrix algebra that if the eigenvalues for a matrix have limiting
values equal to zero then the matrix will te;d .to a matrix of zeros, }
Therefore: |

~ %
lim B, = . 1lim 2 B
k—:‘:>+oo k k=>4 k
-~ }‘.
- = 0 I T -~ . /
) ) pB - . oo
- o™ O , -~ (2.7

~ %
. 80 that Bk tends to a vector of 2zeros as k->4o,

Invoking the results from Chapter 1, the expected value of

-

8, becomes:

‘-

E(B,) = E(z,8) z

7, E(B) -

fl

Ze8 o .

= (I, kxR THE . 7 (2.8)
Applying the binomial inverse theorem? :
' sy =k -1 _ ’ -1
I + k(X°X = I -k + kI 2.9
( p (xX°X) ™) - (x°x p) ( : »

and so the exp'ected value of the ridge regression estima@or hecomnes:

(1.) Press, S.J.: Applied Multivariate Analysis, New York: Holt,
lginehart And Winston, Inc., 1972, p. 23.

] —
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It follows from (2.10) at the ridge regression estimatdér has a
3
blaS equal to -k(x‘X +k1p

—lp . Furthermore, the variance-

14
covariance matrix for Bk

~ 4 ~k .~k ~%
Var(g)) = E(8, -JE(8;)) (B, - E(By))”
= E(2,8 - E(2,8)) (2,8 - E(2,8))"

@

= 2,E(8 - B)(B - B)Zy” . R

2 - 1-1 - . -
e zk(x X) Zk , .

= g2 (X°X & kIp)‘Z(x'x) ; (2.11)

By defipition,'the total residual sum of séuares for any
estimator b of 8 equals: . , ‘ LR
* §(b) = (Y - Xb)“(Y - Xb)

"

(Y - X8 + X8 - Xb)“(Y - XB + XB - Xb)

= (Y - XB) (Y - XB) + (XB ~ Xb)"(XB - Xb). ' o

- ~ -~ - sdar
= (Y - XB)“(Y - XB8) + (B - b) “X"X(B - b) i
= $pin.* (B = B)'X"X(B - b) (2.12)

where . is the global minimum of the residual sum of squares,
min . . ‘

function. It can be seen from (2.12) that the ‘residual sum of squares

function is a quadratic function in (B - b). There are a continuum
of values b which satisfy:

3(b) = 3. + 3, - . © o (2.13) .-

for any fixed >0.0. These values form contours of constant residual
o )

min

sum of squares which are hyperelL&p501ds centered eﬁ the least
squares solution.

<
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Hoerl -and Kennard (1970a) noted that, on the average, the

- distance between B and the true parameters 6 will be large if

X“X is 1ll—cond1t10ned The worse 111-cond1t10ned X°X; the more

-

B can be expected to differ from 8. However, the smaller-the

eigenvalues Ai;'the further one may move away from the least
e

squares estimator without incurring an appreciably large increase
in the residual sum of squares. In light of:

2 ~ 2P g :
EL“(B) = ¢°Z" 1 oo (2.14)
i=1 A, '
i

and: ' . . ) )

. 2.0 4P 1 - ‘ . Q "
i Mar(L"(g)) = 20°L -, 2 (2.15)

- i=1 i .

Hoerl'gnd Kennard suggested that "it seems reasonable that if one
moves away from the minimum sum of squares of the re51dua1s point,
the movement should be in d direction which will shorten the length

~

of the regression parameters.l". Applying this criterion, an
estimator b should be choosen which will minimize the®sum of squares
of the re51duals subject to the constraint that the sguared length

Db i ety

of b equals c2. The corresponding Lagranglan equatlon- . o

F(b) = (Y -.Xb) " (Y ~ Xb) §’k(b'b = ¢?) (2.16) )
is minimized when:
d. F(b) = =2X"Y + 2X“Xb + 2kb i
db .
2 2(X'X + kI )b - 2X°Y o -
= 0 > . ‘ T (2.17)
or: : . | ’
-lX’Y } ' . . ’

b = (X°X + kI
( p)

-

(l1.) Hoerl, A.E. and Kennara, R.W.: Ridge .Regression: Biased
Estimation For ﬁénorthogonal Problems, Technometrics 12,

1970, p.. 58.

AN
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N ) ’ = Bk . . N (2.18)

o

Therefore the ridge regression estimator minimizes the sum of .

s )
squares of the residuals for a fixed squégsd'parameter length.
A} . . . ‘

. ' .
Meeter (1966) relaxeq\the constraint on By by showing that
- . 3 o .

-~ * . ‘ ' e, 1} »

Bk minimizes the residual sum of squares. on and within a sphere

. - o N

L L) * . ' t
of radius r=||3k" . Later, Newhouse and Oman (1971) proved the
- ; ! ’ .

-

following theorem: -
< ~ % 2~k
Theorem 2.1: \Let ,IBkH =r where k>0. Then B, is

-

't a unique vector which minimizes 4 (b) subject to
, bl <r. T : : : :
If r is taken_ large enough, the global mlnlmum sum of squares will

3 1]

~%
‘ be achieved and B will in fact be B. The proof of Theorem'2.1

) requlres thé follow1ng sequence of lemmas~
> ‘ ‘:5”‘ Lermma 2,1: Suppose that 05s<t. Then .

A lIseh - < sl . . (2.19)

-Pr&ofi 'Cdnsider the grthogonal matrix P defihed'in (1.27) .which

<

\
1:

. .
dIagonallzes ‘the X°X matrix. Letting X‘=XP and a=P“8 , the general

llnear model may be rewrltten as: o
» . .
) R Y= XB* e -
(\3 i = XPP’B + € .
. .
=Xa+ € . ’ (2.20) . :
The ridge estimator for .o is by definition:
-~ _ *’ * _1 *‘ , ' , . .
cap T XX+ KL TTXY , ’ :
* ) ! l
‘(A + kI o) “Ly* oy . - (2.21)
I1f cg denotes the i'th element of the vector x Y, then the
. ~%
individual components of a, may be written gse : \\\

3 —
4

) -
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[ -

r

L3
. i -~
[EDTE. . SN NP,
H

( L Ek) (2.22)

Since orthogonal transformatlons preserve lengths,,lnequallty -

2

(2.19) is equivalent to “at” < "as \. From the definition of

..' ‘ ‘*. . °
s G',s- Lo B
~ % - f*,'"* !
”aS” T = oagTag
P -~ %
i = z as 2 .
i=1 Sj N,
t P 2 . . ‘
=z °i . (2.23)
' Lo iml o 2 -
? (A; * 8) .
! , 8 T v '.-* . o
A similar result holds. for ”at” 2. "Since s<t, it followg that f
1 1 - T RIE |
| (A; # &) "< + 8) ~ for all A;. ‘Therefore, flo | < HasH from .

. ' : 1

whlch the requlred follows. oy
Lemma 2.2: Denote theﬁset of ‘estimators {b : || bl 5%}

Fl

T

by Br. Let r< ”B I and suppose B minimizes &(b) subject -

to ||bll- <xr. Then: .
% - % .
el =« . , (2.24)

.. ' . * ‘e * : ‘/
Proof:  Suppose that |8 || <r so that B €B_. There exists a neigh-

bourhood about B such that B minimizes @(b) in this neighbourhood.

The gradient for ¢(b) 1s given by: - : .
. Ve(b) = 2X°Xb - 2X°Y , o (2.25). :
' ' * - ; . g .
| - so that 8 must satisfy: - -
A N .- * — & -
§x18" = x°y . (2.26)
. (2.26) defines_the ordinary.least squares estimator. It follows -

from (2.26) that B B¢B which is a contraﬂiction. Thps éhe as-

sumptzon that ﬂB H <r is imp0881ble and so the Euclidean length of

B R
RN, AU U
'

2
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* .
B must equal r. A

* . Y
Lemma 2.3: Suppose B8 minimizes ¢(b) subject to
the constraint that ||b|| =r. Then there exists a

real number ) such that: : ? (‘
o . ‘ ) ’
° (‘X’x + A)B = X‘Y . : ‘ (2.27)
Proof: Let h(b)= ”bl]z'so that ¢(b) is to be minimized subjéct'1aﬁw‘_ ]
2

to the constraint that h(b)=r

. Defining the Qprresponding'
x
Lagrangian equation in terms of gradients,: 8 satisfies:

vo (") + Avh(g") = 0 (2.28) -
or: ' .
2(x°x)8" - 2x°Y + 228" = 0 | (2.29)
from which (2.27) follows. , )
Lemma 2.4: Suppose that A<y, and suppose a and b °
‘ are two distinct vectors such that:
e i) |lall=|fb]j=x>0 . |
. Y . ii) (X°X + Aa = X°Y ' -
iii) (X“X + u)b = X°¥
‘  Then:- 0
d(a) > &(b) . (2.30)
_Proof: Applying (i) and (ii), the residual sum of squares for
¢ (a) may be expanded as follows: ~ |
®(a) = (Y - Xa) “(Y - Xa)
= Y'Y - 2a“X’Y + a“X"Xa
= Y°Y - 2a°X"Y + a’X’Y - a“)a -
=YY - a’X’Y - Ar’ . (2.31).
In the same manner: ’
. 3(b) = Y°Y..- b’X"Y - pr o (2.32)
CEnequality (2.30) will be proven if it is shown that: '
a“X“Y - b"X“Y < (y - Mr2 .. (2.33) B
However, o ‘ ‘
a’X’Y - b"X’Y = a“(X°X ¢ u)b - b7(X’X + A)a t

~
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+  the constrained minimum value of %(b) in RP is obtained. As a result

23

8= (W= Na’b (2.34)
Schwarz's inequality proﬁides that: .
2
la’b| £ |lalf - \ibji = = (2.35)

with 1nequa11ty holdlng if and only if a—tb for some real riumber t.
Two cases must be conkidered separatelj First, supposethat strict
inequality holds for (2.35). By assumption u>A so that:

(W -Nab < (- Mre . (2.36)
-Secondly, suppose. that |jal = Il . Since a and b are assumed to
be distinct, lt follows that/é equals -1 and:

(M = N)a’b = -(u - A)r

. / < w-Me2 * (2.37)
Inequality (2.33) follows by substituting (2.36) and "(2.37). into ‘\
(2.34). )

h]

Theorem 2.1 may be proven by invoking the four lemmas provided |
above. Since ¢(b) is a continuous function of b and Brt‘-Rp is compactl,

’ *
¢ (b) must have a minim?h value in B_. Let g be the point at which -

1]

of Lemma 2,2:

. | :
g |l =« . (2.38) v
* . Lemma 2.3 prov1des for the existence of a real A such that:
(X°X + A)B =Xy - . o (2. 39)

™~ * o
By assumption, B is the ridge estimator with an Euclidean length

equal to r. If k<X ,.a contradiction arises sirnce:

* ~% '
e <]l ==z 7 (2. 40)
"would be true by Lemma 2.1. As a result of (2.37) and (2.38),-,, .
A<k can not be true either., In this case: L e
* ~% . . ,
- e W =ligl - (2.41)

, (1.) Royden, H.L.; Real Anfjlysis, Toronto: Collier-MacMillan
Canada, Ltd., 1968, p. 158,
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lis observed that:

24

along with Lemma 2.4 would imply: ‘
* “~% -
P(B ) < @(Bk) (2.42)
* L3
which éontradicts the minimality assumption for 8 . Therefore X
~% N e .
equals k so that Bk satisfies equation (2.40). Since XX is
assumed non-singular, (X°X + kIp) is also non-singular and -
= gt 2.4
B - Bk . ( . 3)
so that Theorem '2.1 is proven. As a result of Theorem 2.1, it

14
v

A*IA* AIA
B "By < BB . | (2.44)
for all positive values of k. B o

k)

In Chapter 1, it was shqm} that if the unobservable distur-
bances are assumed normally djstributed and satisfy conditiens

(1.2), B and o2 will have.a likelihood function given by:

f(YIX.B,cz) = 1 exp {- _1 (Y - xXB) (Y - XB)}
(2m)? 202
2 L8, oY, X . . . (2.45)

Substituting (2.12) into (2.45), the likelihood functlon for any
estimator b of B becomes:

/ L(b,o2|Y,X) = 1 expl- 1 (Y, - XB)“(Y - XB)
(2m)™ 202
~— . R . . ) .
. -1 - b)“X“X(B - :
4 __T(B b) “X"X(B b)}
' . 20

o

= 1 exp{— 1 .
— 7T 7 ~= (0 .+ "®p) }. {2.46)
(2m) g 204 A

From (2.46), it can be s€en that an increase in the residual sum

of squares results in a decrease in the likelihood of the estimator

b given a fixed 02. It follows that the ridge estimator maximizes

[
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i . - . ) ~k
the likelihood function subject to the constraint that "Bk” 2 r,¥//

¢

Therefore, an increase in the value of k corresponds to a decreas

’

‘in the likelihood function. , /

It was mentioned in Chapter 1 that the ridge estimator

~is a biased estimator for which it is hoped that the introduction of

bias into the“estimator will reduce the variances of the Fesult-

ing parameter estimates. This compromise between bias and variance

" %
may be quantified by the mean squared error for Bk:

' ~k 2 %
MSE(B,) = E(L°(8,))

]

"E((B, - 8) (B, - 8))

S

E((2,8 -~ 2B + Z,8 - B)"(Z,8 - 2,8 + 2,8 - B))

+ B2y S I) (5 - 1) . (2.47)

Applying the same sequence of arguements used to simplify the

2

expression for EL“(B), the first term of (2.47) becomes:

E((B - B)‘zk'zk(s - B))

= tr(zk’zkoz(xfx)‘l) |
2 )'z(x‘x)"l

o tr((Ip + k(x°x)"1

]

)

2

o tr((X°X « kIp)"1

Ly . (2.48)

- -1-
I + k(X°X
( p ( ) )
Invoking the binomial inverse theorem: B
TN -1, -1 ' :
. ng - k(X"'X) 7) ’

2 1

= Ip + k(x‘X)'l(k(x’x)?%'+ kz(x‘X)'

\\>> . . /.

) ek x) T

e e g e e




26

i} -1 s
= I, - k(XX + kL) - C (2.49)

Substituting (2.49) into (2.48):

E((B - B)‘zk’zk(s - 8))

2

= oltr((x°x ¢ k1) 2

) - ko“tr((x°X + kIp)_z) .. (2

.50)

Letting P denote the orthogonai transformation which diagonalizes
the matrix X~°X, ‘

E((B - B) %, "%, (8 ~ B8))

=‘02tr((P’(x’x + kIp)P)'l) - koZtr ((P7(X°X + RIP{P)'

= o2tr ((A + kxp)‘l) - koZtr((n + kIp)—z)
| 1
2P 1 2P
=%y L _ -k’ Tz
i=1 Ay v K jz1 (33 + k) )
2P oAy ’ :
=01 —r . (2.51)

i=] (Ai + k)

2y

The constant term in (2.47) may be simplifiéed by applying (2.49):

[yt d

)

‘= k28-p( A + kIp)'

B7(Zy, - I) (2 - IB
1 1

Z B(I - k(X°X # kI ) — = I)"(I_ -~ k(X°X + kI )~
B~ ( p ( p) p) ( p (X°X p)

k287 (X"X + kIpi"ZB

k2B~ (PP~ (X"X + kip)pp‘)"zs

k2g-(P(A + kIp)P‘)-zB

i

2P’a _ -

2 . -2 -
k"a” (A + k1) 2q

2
- kzg e; - . > (2.52)
= — § )
i=1 (Ai + k)

- Ip)B

£
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4

- Substituting (2.51) and (2.52) into (2.47), the mean squared
error for the ridge'regression estimator becomes:

MSE(E*; 28 M ‘+ K25 ———fi———— (2.53)
—3 o‘ . - . .
k* i=1 (A, v k)2 isl (A + x) 2

From the above, it can be seen that the mean squared error
~k .
for Bk is the sum of the two functions:
2P A

y,(k) = o“Z
1 i=1 (A + ) 2

| X ©+ (2.54) g
(k) = kzg ey X ' :
Y =
2 i=1 (A; * K) 2 . o

Yl(k) represents the total sum of the variances?of the estimates

for each of the p parameters. Yl(k)-tends to the sum of the variances

M
for the least squares estimates as k tends to zero. As k gets

~%
large and Bk shrinks, Yl(k) decays to zero. Yz(k) equals the sum

of the squares of the biases in the ridge regression estimator
components. The-édyarea bias equals zero for the least sguares

‘ solutioh‘but tends to B“B as k grows large. Figure 1 displays

<" the relationship between yl(k) and Yz(k) for various values of k.,

Consider the limit of the first derivative of Yl(k) as k tends

-~

to zero:
g 22 T2y
lim , d_ vy,(k) = 1lim oI ————p .
k->0" @& 1. k->0" i1 (A; + k)
- N p l
| , =-20t TZ L. © (2.55)
‘ i=1 i

Yl(k) has a negative derivative near zero which depends upon the

conditioﬁinq‘of the design matrix. If the design matrix X is ill- |

o

S
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Admissibility
Interval For k .

Figure 1 - The Relationship Between The Mean"S‘quared Error

Functions For The Ordinary Least 'S,quafes Estimator (B) .

And The Ridge Regression Estimator (B@'
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conditioned so that the X“X matri% has some small eigenvalues, the
decrease in the sum of the parameter variances will be large as k

moves away from zero. On the other hand,
2 2

- p J’ ' 2kai 2k oy
lim _ d y,(k) = lim _ I 5 - s
x->0" K k->0" i=1l | (A; + k) (A; + k)
= * (!2.56)

so that Yz(k) is flat for k near zero. These propertieé:, for yl(k)

“and Y2(k) would - suggest the possibility of a reduction in the overall .

4

mean squared error if the ridge‘ estimator is used for k>0 instead of

the ordinary least squares estimator. .

Hoerl and Kennard (1970a) summarized a number of the properties

~ %
of the mean squared error function for By - They presented the fol-
lowing theorems and corollaries: '
Theorem 2.2: The total variance 'yl(k) is a continuous,

monotonically decreasing function of k.
Proof: Since the X“X matrix is assumed to be -non-singular and ¥
is non-negative, it follows that ()\i + k) > 0. for all i so that yl(k)

can not have any singularity points. Furthermore,

2P Ai ~
Jlim vy, (k) = lim 0% ————— ,
k->0 k->0 il (g + kS
P
= 022 %—- . A
i=1 i
= y,(0) . (2.57)

Therefore Y1 (ky is a continuous function for k20. For all kzo,

S

2P Ay :
a v ) =-20% — 31 <o (2.58)
ak izl (Ay + k) ,,

and:
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P A :

a? T, (k) = 60°1 ——7 > 0 - (2.59) ;

Thus v, (k) is a monotonically increasing function of k. - L 1

Corollary 2.2.1: The first derivative of yl(k) with

respect to k approachs +« as k->0" and )‘p->0+. ’:

Proof: By definition of Yl(k):

2P A

lim | lim d Yl(k) = lim _ lim  -207I -———1-—3
A_~->0 k- >0 dx A_=>0 k->0 i=1 (X, + k)
P P i
P " 1
= 1im . -2022 N 2
A0 - i=1- "1 >
— p J
Z 4o . (2.60)

Theorem 2.3: The squared bias is a continuous monotonically

increasing functlon of k.
Proof: By assumption, k20 and A >0 for all i so that yz(k) has no

singularity points. Furthermore,

p o’
lim | y,(k) = lim _ k%5 —t=
k->0 k->0"  i=1 (, + k)
1 o
=y, (0 L (2.61)

so that Y2=(k) is a continuous function for all k20. Suppose that

gi(k) represents the i'th term of the summation defined by Yz(k) .

1

That gi(k) is a monotonically increasing function of k follows

from:
B! R 2
! d g.(k) = 2kXjay o S (2.62)
| ax i —— ‘
(; *+ k)

Since Yz(k) is composed of a sum of monotonically increasing functions

of k, it follows, that yz(k) is a monotonically increasing function.

o
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Corollary 2.3.1: The squared bias ‘Yz(k) approaches B’B

A :

. as an upper limit. )
Proof: By definition of y,(k): }\2

2 .
- 2P % ‘ '
lim - Yz(k) = l1lim k°% — E o

k=5 400 k->+o izl (A; + k) ' —

P 2
Zai

"

i=1

a’‘a

= (P°B) " (P”B)

= B’PP”R )

) = B’B . (2.63)
Hoexl and Ken.nard (1970a) origihally demonstrated the existence

of an interval for k such that the ridge regression esimator is mean

e squared error admissible by means of the theorem:
. ' )
S Theorem 2.4: For all 0<k< —s— ,
T . S ' “max /
A* -~
MSE(8,) < MSE(B) .
) P
. : p i
4 - 2 1 ,
' =0l 3= - (2.64)
. i=1 i . . .

Proof: ©For any k>0,

o p : P :

/ D oyt < & " (2.65)
izl 74 i=l "i » .

so that it sufficds to show the existence of an interwval for k

such that:

IF—'

MSE(RX) < 0?3 L (2.66)
k o " A. + k * . .
1=1 "i .

From (2.53),

\ MSE(Br) = ¥ (k) + vy (k) | ¢
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: ‘\A 2‘ 1
= 425 i v k2% e I (2.67)
= ‘4 L __——'-7 . -
i=1 () + X) 2 A= (A + k) :
Inequality (2.66) holds for a positive value of k if for each i:
2 -
o2 M vy k2% <o 1 (2.68)
, 2 2 A, + k
(Ai + k) “i + k) i
or:
02
k < 5 . . . ) (2.69)

-~ %
Therefore B, 1is mean squared error admissible if inequality (2.69)

is satisfied for all i so that: | :
02
k < .._2_ - " 3 (2.70)

o
nax

*

The use of Euclidean distance to measure the deviation of the
ridge regression estimates from the true parameter vector B was
criticized by Needler (1972). He noted that the mean squared errors

-~ %
for the individual components of Bk are lumped together in an
. .
unweighted sum. Swindel and Chapman (1974) showed that Bk provides

a strictly smaller mean équared error estimator of any non-null linear

t

combination of the components of B in comparision to B8 i;’if k lies

in an open interval which depends upon X, B and 02.

Theobald (1974) generalized the condltlons for Theorem 2.4
by showing the existence of a k>0 such that Bk is ade.ss:Lble using
any weighted mean squared error function. Suppose that b.\1s any
estimator of B.- The second-order moment and weighted mean&;x\lared

" erxror matrices for bi are: N
M(by)= E(b, - B) (b, - 8) ~
m(b;) = E(b; - B) "B(b; - B)
‘where B igs any non-negative definite matrix. For any estimators/l?’i

' o

5 ©

[

(2.71)

¥
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and b2 of B, Theobald (1974) éroved that tha éwb conditions: | \?
‘ i) M(bl) - M(b2) is non-negatlve definlte.
-~ ii) ’p(bl) - m(bz) = 0 for all non—negatlve deflnlte
matrices B -

are efuivalent. o ' .
2 . . <

¢
. . ) %
_ The existence of a k>0 such that-Bk is mean squared error

# ° .
admissible follows immediately from Theobald's (1974) theorem:

£

5

. A . A*
Theorem 2.5: There exists’a K>0 such that-M(B) - M(B,)
is positive definite whenever 0<k<K.
Proof: The second-order moment matrix is by definition:
]

M(b,) = E(b, - B) (b, - B)° . ’

= E(b, - E(b;)) (b, - E(b,))” + (E(b;) = B) (B(b;) - 8)

= var(b,) + (E(by) - 8) (E(b;) - B)" . - (2.72)

]

Since the ordinary least squares estimator is uﬁbiased, the second-
order moment matrix for B is:
Var (B) ‘ ' \

2ixx)"t . : \ (2.73)

[ - \
\

M(B)

From .(2.10) and (2.11), L

Ak Ag v . "U\* ’ ~k_ - -
M(B,) = Var(B,) + (E(By) - B) (E(By) - B) -
. = o2(x"x + kIp)-z(X’X)
1

2 » - 1 » » ' -
k™ (X kI X + kI . 2.74),
+ (X°X + p), B8~ (X p) ( »

Therefore, the differencq be the second-order moment matrices of
B and Bk~equals.
M(B) - M(8)) i

il SRR

amir .

il Al . 3 Bk M nTBER s X L e




A

= o2 (x°%)" 4 o?(x°x 4.Ip)L2(X'X) '

- k2 (x°x + kIpz'l&B‘(x‘k +‘k1p)'1
. el - -
a2 (X°X & kL) l(Ip k(X707 - k7% 4 KI_) lx-x)
> ° —k2 (x,x - ](:Ii))-IBB"(X‘X + kIp)-l

4
kY




1 kx0T (I s ko ~hl,)

cz(x‘x + kIp)-ljk(x’X)
i .0 J',b

' ‘ Y - kz(x'x + kIp) BB (X°X + kI )

-1

K(X“X + kxp)'l(oz(zip 4 k(x°%) L) -kBB) (X°X & kxp)‘l. (2.75) }

(2.75) is'a positive definite matrix if:

- E 1 , o
201 + o®k(x"%) 7t - xep’ [ (2.76)
. | o
is positive definite. Since the XX matrix is assumed to be of full
|
rank, Ml - Mz is positive definite if: ;
4 B -

" 20%1_ - keR” ” _ 2.1
P 1 .
iis“non-ﬁegative defipite. Expression (2.77) has p-1 roots equal
to g&z ané one root equalAt; (202 -'kaB) Therefore,a sufficient
condition for M(g) - M‘E;) to be positive definite is for k to satisfy:
sy, , - g . §
L per <2 : ? ‘ (2.78)
B°B ' ‘ '
As a result of ThéObald'S (1974) equivaience statement, any comparisons
on the basis of a weighted mean ;quared error w1ll favour B* over 8
if condition (2.78) .is satisfied. It should be noted that Hoerl and

Kennard's (1970&3 admissibility 1nterv 1 for k is approx1m§te1y p/2

times longer than Theobald's (1974) interval when' B is a.p x P

ident}ty matrix.

-

In the assessment of the accuracy of the ridge regre5510n

“~%
estlmator, the mean squared erroxr for Bk has been compared w1th




= 36 ' Lo
e ,
o . _ P ~ . Ve - .— ;
oferd (x0Tl = o%r & . (2.79)
. - i=1 A

+

o

which is the mean sqgared error for B. Banerjee and Carr (1971)
' ) ‘ ~ % ’ - .
argued that the relative accuracy of‘Bk would be more mean}ngful

if the decrease in(.the mean squared error is compared with:

) . -1 Pt 1 5 -
oer ((xx + kI)7T) =o't T O . (2.80)
P i=1 ‘i C

~%

In order to compare the mean squared error of Sk with (2.80),

Banerjee and Carr (1971) iﬂkroducud the augmented model: B
' - ox | ' ) '
X =R e e AN ®  (2.81)-

¥ k1
p -4

which was originally proposed by Marqu dt‘71970). Theﬂoriginal
design matrix is augmented with a p x p/diagonal matrix whose diagonal
elements are all equal-to Jk. The vector(pf dependent variables

is augmented to become a (n + p) x 1 vector. The expected valués

of the components of the model defined by -(2.81) are:

. E{Yy) = XB~ 4 ‘ © (2.82) |
and: ] : i
E(Y,) = FEIPB
“ = (K8 (2.83) .

respectively. The ordinary least squares estimator corresponding
to. the augmented model is: :

-~

— » . '_l - ) o
Bp = (XK + KI)7T(X7¥y {EYA) .. | (2.84)

)

. -~ %
Banerjee and Carr (1971) argued that Bk should be compared with
- ' * -_— A* ) o : :
BA instead of B. Bk is obtained from BA by omitting from the estima-

tion proceedure some observations YA‘whicp if observable

1% ~
and available would have been included. Since BA is an oxdinary

— -~

least sqaares estimator: . a0 -

3 ¢ 4
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5 ‘ i

e 5
MSE(BA) E(L (BALQ

= o?tr (XX + kIp)’li o .
2P 1 o
=0l g . . (2.85)
: i=1 M 7Y . ' ‘

-~ f ~’
Thus Bk is mean squared error admissible if and only if there exists

[

a k>0 such that:
~ -
MSE(Bk) < MSE(BA)

P
= o’ : (2.86)
. i=1 i )
However, this last condition is provided by (2.68) in the proof of

Theorem 2.4. Thus the ridge estimator is mean squared error ad-

4

missible when compared with it's corresponding unbiased estimator.
| .
\ Upvto this point, no mention has been made of how a choice of
k>0 should be made given any set of data. Hoerl (1962) suggested
plotting the residual sum of squares as a furiction of the sum~of‘
.-gquares of the "‘coefficients. He stated that the ridge estimates
should be choosen from an interval‘of k where the individual estimates
‘are stable and the sum of squareé of the residuals is increasing
rapidly. Functionally, these points correspond to, the intérval on
the .curve where the derivative of the sum of squares of the residuals
— with respect to the sum of squares of the coefficients has a maximum.
In order to determine this point, Hoerl (1962) suggésted computing
various values of: °

~% %~k ’ .
d (k) =a (Y'Y - g, XY + kB, "B,) ' (2.87) -
ar axr x kR *
where: X
) = gregt o 2.88)
R Bk Bk . (2.

A* r
and choosing a value of By which maximizes the derivative.

Later, Hoerl aqd Kennard (1970a) clarified the problem of
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choosing a value of k through the introduction the the ridge trace.
The ridge trace is a‘graph of the ridge regression parameters and
the resulting residual sums of squares as functions of k. Hoerl
and Kennard (1970a) provided the fqliowing suggestions for chodsing
a value of k using the ridge trace: . °
i). The coefficients will have stabilized with respect
to their signs and absolute vadues. ;
ii) The system will resemble an orthogonal system.

iii) *The ;esidual sum of squares will not be greatly inflated
with respect to th; least squares solution. -
Hoerl and Kennard (1970a) suggested that systems wh%ch show unreason-
ably large‘coefficient values or incorrect signs for k=0 ‘will probably

. correct themselves as k increases.

A number of other algorithms for choosing a value of k have been
proposed'in the ridge:regression literature and tested by means of

Monte Carlo simulations. According to Hoerl and Kennard's (1970a)
mean squared error admissibility criterion, k should be choosen so.

Fl

that: . ! .
0 <k < g2 = p, ‘ o o (2.89)"
-—'2- 1 . N .
. . U.i

: >

! , )
is satisfied for all i. It is clear that an estimate of k should be

made by combining estimates of each r,. Hoerl, Kennard add Baldwin
(1975) argued that an ordinary average of the ri's would not be -
appropriate. Such an average would give too much weight to the small-

est ai's which have little predictive power. As a result, they argued

s

ok
N



§
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. Qﬁ“ \
that too much bias would be introduced into the estimate of k.
Instead, Hoerl, Kennard and Baldwin (1975) suggested that k be formed

-from the harmonic mean of the ri's. In this case,\a~cbmbined value.

of k would be:

P
L =1 1
kh p i1 ry - )
' = a’o h -
o2 _ i
= B°B . L ‘ S (2.90)
2 . ‘
po

They proposed estimating kh by substituting ordinary least squares .

estimates of B8 and 02 into (2.90) so that:

\

ky = po’ .o (2.91)
B°B

Hoerl, Kennard and Baldwin (1975) carried out a larQe number of simulated

A\

ridge regressions using kh. Provided that the multicollinearity was

severe enough, they found substantial improvements in the mean squared

-~

error® for the ridge regreséion estimates using kh compared with the

corresponding least squares estimates. . /
: |

' -

ok

tends to over-estimate B”B so that.the resulting estimates.of kﬁ /
using (2.91) will often be too-small. They suggested that an iterative
procedure be adopted to obtain better estimates of kh; Initial esti-
mates of kh could be obtained using (2.91) and the regultiﬂg ridge

“~%
regression estimates of B calculated. Since 6; is assumed to be closer

-

In a later paper, Hoerl and Kenfard (1976) noted that BB / -




to B than E, a new estimafe of kh could be formed by replacing 5
with E;*: in (2.91). Hoerl and Kennard (1976) suggested that the
procedure be continﬁed until the convergence of the ih's is obtained.
Hoerl and Kennard (1976)‘inco§;;rated this iterative procedure in
simulations similar to those described in their earlier paper. Based
upon the simulation results, they concluded that the iterative proce-
dure for estiméting kh leads to mean squared errors with smaller
means and variances than the ﬁgan squared errors which result from the
ordinary least squares estimator aﬁd the ridge estimator using a
single value of k, . b Y S

McDonald and Galarneau (1975) introduced a mechanical rule
for éhoosiaq k which employes an unbiased estimator of B“8. Equation
(1.26) gives the expected squared length of the ordinary least squares

estimator of B. It can be seen from this equation that:

?

d

)
)
N

>

Ay

R>
Q

)
N

I
Q
. b
T i O
[

-

(2.92)

[ ondd

is an unbiased estimator of the squared length of 8. ‘McDon 1d

"and Galarneau (1975) suggested that a value of k be chodsen to

satisfy:

A* ﬂ* ' N
SE L . . . (2.93)
a) "o d . (

In situations where (2.92) is negative, they recommended that the

' parameteré be estimated using the ordinary least squares estimator.




. a useful tool for choosing an appropriate equation. IFurniVal and

¢

‘rules were not always consistent with those produced using the

,ridge trace. The vaiues of k obtained from the ridge trace tended -

'aJl subset regressions using their technigue might be preferable to

- g et e ey e g L, aluge ooy
IR s <y okt

41

Besides the two studies mentioned above, Newhouse and Oman (1971),
McDonald and Galarneau (1975), Lawless and Wang (1976) and Wichern
and Churchill (1978) tested the potential usefulness of ridge estima-

tors using Monte Carlo simulations. In each case, they reported

that the improvement in mean squared error using}é; tends to be
éreater as the humbgr of explanatory variables, spread in the eigen-
values 'of the X°X matrix or magnitude of 02 increases. Wichern

and Churchill (1978) carried out an extensive simuiation study of the

ridge estimator using various rules for choosing k including the

ridge trace. They found that the values of k produced by mechanical ‘ L

to be larger. Wichern and Churchill (1978) recommended that the
ridge trace only be used in conjunction with the mechanical procedures.

8 o

Hocking (1972) reviewed some criteria for choosing subset .

3 -~ N

regréssions. He suggested that ridge regression might provide ‘
|

Wilson (1972) described an efficient technique for computing

large numbers of subset regressions. They conjectured that evaluating

ridge regressiqn when the cost of measuring‘the explanatory variables
is small. Hocking (1976) provided an extensive review of various
procedures for selecting subset regressioné. In addition, he ’
considered a number of biased estimators includinéithe ridge

estimator. Hockingl(1976) concluded that the ridge estimator

compares favourably with any of the procedures he considered for

kb
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1 ¢

aﬂg selecting subset regressions.
L . 7\ -
!

Hawkins (1975) presented an-efficient technique for evaluating
the ridge estimates 'corresponding to various .values of k. In an
earlier paper, Hawkins (1973) demonstrated that the ordinary least

squares estimator may be constructed using weighted sums of the /

eigenvalues for an augmented correlation matrix of the dependent

i

and independent variables. The technique for evaluating the ridge
* estimates proposed by Hawkins (1975) is a direct application of

this result. : )
. \
Consider the augmented matrix:

. W= (Y] x) b (2.94)

of independent and dependent variabqu. If it is assumed that each §, .
2 N

i

of the wariables in (2.94) has been scaled to have a mean equal teo

zero and a unit standard deviation, the matrix:

S = WW
- » LY
=|YY YX . T (2.95) -
‘ X'y Xx°x 3 ..

becomes a torrelation matrix. Let D denote the (p + 1) x (p + 1)

matrix which satisfies the condition:

The (i,])'th element of D is given by:
d.. = 1"t a (2.97)

ij i 7ij ¢
" where a15 is the j'th element of the i'th eigenvector and A, the

i'th eigenvalue for the matrix S. Hawkins (1973) noted that the

13

14 &

- : R i
) }; transformation:

)
|
]
i




Z2=DW

.produces (p + 1) mutually uncorrelated random variables.

.Suppose that wi and zi represent the observations of the variables

’

(2.98)

which make up the columns of the matrices W and Z. Hawkins (1973)

derived the ordinary least squares estimators by considering equations

of the form:

p+l
z
izl

which satisfy:

p+l
L
i=1

!

Yizi -0

Y;9i1

“

=1

Expressing (2.99) in terms of

¢

matrix gives:

p+l
T
i=1

Hawkins (1973) qoted that a

Yi

P+l
z
j=1

1}

d.. W.
1] 3

-

p+l

Z J
31

0

4

i

p+l

z
i=1

-Ya

|

by substituting (2.100) into (2.101) so that:

Sy o=

P

r

\

1

p+l
I
j=2

L 4

p+l
I y.d,.
i=1 t 1]

E

Since the columns of W have been standardized, the residual variance

(2.99)

¥

(2.100)

the columns of the inginal augmented

(2.101)

(2.102)

of (2.102) as an estimator of the independent variable. Y is given

by:

multiple regression egquation ﬁay be formed

-~
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L g
4 . |
, P+l p+l ~ prl ptl = 2
z 7.2 var( ¥ d.. W.)N= I Yiz r 3 Var‘wj)
182 1 J..l lj J 1:_2 j=1 A.
1
p+l 2
= Ly (2.103)
_ Lo

Hawkins (1973) observed that the ordinary least squares estimator
' o

of Y corresponds to that estimator which minimizes (2.103) subject

to ther constraints defined by (2.100). Therefore, the ordinary

least squares estimators of y; and B._, are given by: . .

Y a,,/( PE a2 ) | | \
Yy = - 4y : .
A il j=1 jl :
g (PHL L 2 -4 |
= -a;, Xi .§ jl | _ (2.104)
— J-l A- a
J
and:
- 4 p+l A
B = I v, d..
i-1 ) i 7ij
p+l {p+l 2} -1
= {1 A7la,, a : ATla (2.105)
{j=l i 7il 1]} j=1 j1 -
respectively.

I !

Equation (2.105) expresses the ordinary least squares estimator
of Bi in terms of weighted sums of the eigenvalues for the augmented
correlation matrix S. Hawkins (1975) provided a similar formulation
of the'fidge égtipator.[ To éhis end,"he utilized the augmented

STl Tx , .
o= --lB F e (2.106)
A B » . ’

model:

M R

o




A°A = k

BB = kIp : o " (2.107)

AB = BA=-0

»

which was originally proposed by Allen (1974). ‘As a result of as-
sumptions (2.107), the or@inary least squares estimator for the
augmented model may be expressed as:

By = (XX + B-B) 1(X“Y + B-A)
(XX + kIp)—lX‘Y. , (2.108)
It can be seen from (2.108) that the ordinary least squares estimator

for the augmented model corresponds to the ridge'regression estimator

for the standard model. ~—

cur

- Since the ridge estimator for the standard mpdel corresponds to

the ordinary least squares estimator for the augmented model defined
; . "]
by (2.106), Hawkins (1975) suggested utilizing (2.105) to evaluate .

the ridge estimates. A correlation matrix similar to S may be _°

constructed for the augmented model according to:
[Y°Y + A’A  Y°X + A“B|
S(k) = “\
| X°Y + B“A XX + B’BJ
. B rYUY o+ k Y'X T

| X°Y XX + kI
: P

-

= S + kI }2.109)

(p+1) .
The eigenvalues for S(k) can be obtained by diagonalizing the matrix

S and adding k. 1In this case, the ridge estimator of Bi-i becomes:

~% p+l ail ai. p+l a'12 -1

8 (k) = L R . 2.110)
(A; + k) + o (2

i-1 j=1 i j=1 (Aj + k) * ’
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strength of pitprops as a function pf thirteen factors which can

" Kennard (1970b) showed that while thé ridge regression solutions

' the reduction is not as large as would be incurred if some of the

46

Hawkins (1976) argued that equation (2.110) provides an efficient

technique for estimating the ridge regression estimates corresponding

' to different values of k. He pointed out that only simple averaging

operations are required to determine the estimates corresponding to

different values of k once the aij's are initially computed.

[}

A number of numerical examples have been provided in the ridge
regression literature to demonstrate the utility of ridge regression.
Hoerl and Kennard (1970b) employed ridge regression analysis in two

multiple factor problems. One was a model describing the comprehesive

be meqsured on the props. In the original solutions for this problem
proposed by Jeffers (1967), it was shown that there are éignificant
decreases in the amount of variation in the cbmprehensive\strength
explained by the independent variables when some of the independent

variables are dropped to break the correlation bonds. Hoerl and
reduce the amount of variation in the comprehesive strength explained;

factors are dropped or priqcipal components employed. McDonald and
chwing (1973) emplgyed the ridge‘estimatér in gnalysing'mortaiity
rates by ‘regressing on various éocio—ec§nomic, weaéhér qu pollution
variables. Ridge regressions were utilized by Goode (i975) to

analyse professional football data.

?
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the

° by the National Bureau Of Economic Research (1975).

.the consistent estimators are preferable to ridge regression. Dwivedi

47

e
1

Obenchain and Vinod (1974) studied the estimation of partial

© 2

derivatives using ridge regression. In a later paper, Vinod (1976c)

utilized these results to eftend the ridge regressioﬁ techﬁiqué to
the problem of c;honical c?;relatibn’analysis. vVinod (1974) considered .
estimation Bf a trans-log brodﬁctionzfunction when multicoliinearitﬁ
and autocorrelated disturbances are present. Brown and Beattie (1975)
discussed some of,the advanFages and limitations of the ridge estimator

in the context of economic models. They employed the ridge estimator

to estimate the marginaL»ﬁalue productivity of irregation water.

o

Bolding and Houston (1974) described a fortran program for

ridge regression estimation. More elaborate programs were developed

-
A

Farebrother (1275) examined the relationship between ridge
regression and minimum mean squared error estimators. He proposed
two consistent estimators of B which are variations of the minimum

mean squared error estimators. Farebrother (1975) suggested that

and Srivastava (1978) analysed the properties of Farebrother's (1975)

estimators. They provided iterative procedures for estimating B

based upon the consistent estimators.

t

]

R :
Brown (1977) noted that the multiple linear regression model

v
A

is often of the form:

- o

Y = Byl + XBy *+ € : (2.111)

RS SR
iy oo P

AN
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where Bg is a constant and 1 a unit vector. If Bo‘and'B1 are not

[ 4

separated, the general linear model becomes:
Y =28+ ¢ ! | (2.112)
where 2=(1,X) and B’=(Bo,61’). The usual assumption which is made

in the ridge®egression literature is that the -observations for each

»

independent variable are standardized by subtracting the sample

mean from the observatidng and rdividing by the standard deviation.

4

The resultant X“X matrix is a correlation matrix. Brown (1977)
observed that the constant Bo in (2.112) serves only to center the

function with respect to the average value of Y when all the independ-
A

ent variables are set to zero. As a result, Brown (1977) §Q§§§ﬂeféd-'
is

the simpler standardization of the explanatory variables whi

*

obtained by subtracting the sample mean from the observations for each

variable. He pointed out that the resultant ridge estimator is of.

i

the form:

(2“2 + k Diag(0,1,1, ... ,1)) "tz

1

n ° .
{;_ I ¥y s (X X+ kI )y "lxy } . (2.113)
n i=1 P .

Brown (1977) utilized this form of the ridge estimator to demonstrate

the location invariance of the estimator.

o

Farebrother (1978) considered the standardized ridge esiimator

defined by (2.113). He establised that this estimator is a special

case of the more general ridge estimator:
~* - - ° *
" = (x°x + ka) " lxy (2.114)

. where A is a poéitive semi-definite matrix, Farebrother (1978)
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v © ~ %

derlved the mean squared error admissibjlity conditions for Bx

in terms of the original explanatory'variables, y

- \- -
~ .
. >

4]

—In orqsg to iilustrate oﬁe of the°situatipns in which the'
use of ridge regress&on greatly enhances the credibility of the
estimated parameters, consider the following 'example extracted
from the French natlonal accounts for the years . 1949 to 19591 '
The total 1mports (Y), gross domestic production (x ), stock-
formation. (x ) and consumptlon"(x ) for these years are summarlzed
in Table 3. Suppose that)p model relating total imports to the
other three variables is required. It may be required that, the
total imports corresponding)ko different levels of each: of the three

explanatory variables be estimated. 'The model will be of the‘form:h

\ Y = Bo + Bl%l + 62x2 + §3x3,’ € . . . (2.115)
The sample correlation matrix calculated from the data in .
is: . . - N . ’ . r
. ’ Y ' . Xl X2 X3
- ’ Y .1.0000 ’
X1 0.9721-" .1. 0000 y
) ; (2.116)
X, 0.3311 0.1687 "1.0000 -

Xy | 0.9753  0.9973  0.1545 . 1.0000

2

.

(1..& Malinvaud, E.. statistical Methods Of Econometrics, Chicago:
Rand, McNally & Company, 1966, p. 17. -
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A ¢

It can be seen that both gross domestic production and con-
sumption are highly correlated with total impdrts. At the
same time, there is almost 'perfect' cbrrelation between
gross_domestic production,fnd consumption.
; !

The parameters in model (2.115) are estimated by
standardizing the data. Each observation is replaced by the ‘
difference between the observation and the sample mean for //m
the variable divided by the sample estimate of the variable's . _
standard deviation. As a result of this transformation, the ‘ 4

X“X matrix corré&sponds to the sample correlation matrix for
the independent variables while X°Y is a vector of correlations
between. the dependeht variable and each of the independent
variables. It should be noted that there is no constant term
in the standardized model. The ordinary least squares solu-

tion for the standardized model is:
~  /-0.6453 '
4 B = ( 0.1945 ) . (2.1x7)
) 1.5889 , )
This solution is clearly nonsensical. Even though gross
domestic production and consumption are highly correlated, the
estimates for the corresponding parameters are drastically differ-
ent. The sign for the paraméter corresponding to gross domestic
. production is wrong. |
The ridge regression estimates for various values of _
k between 0.0 and o.% are plotted in Figure 2. From this graph,
it can be seen that the sign of the parameter correspoqéing to
gross domestic production corrects itself in the interval (0.0,
0.2) of k. For ap value of k in the interval (0.09,0.16), the
thrée coefficiefits are reasonably stable yet the sum of sfuares
of the residuals has not increaséd significantly. Any value of
k in this interval would be a reasonable choice. Taking k to
be equal-to 0.10, the resulting'ridge regression estimates are:
~ 0.4239 .
Bo.10 " (g:iggﬁ) oo n ' (2.118)

’

10 -Ralh oo 7 & ptgindringbaiatinge il |
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. Figure 2 - The Ridge Regression Estimates And Residual Sum Of

Squares Function For The Model Of The Total

\ French Imports
’ Coefficient Estimates : Sum Of Squares Of .
5 ) . The Residuals
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At this point, the coefficients corresponding to gross domestic
production and consumption are obf similar magnitudes reflecting
their approximately ®qual correlations with tot#l imports.
Based upon these estimates for the standardized model, the esti-e’
mated non-standardized model becomes:

¥ = -6.40 4 0.0672 X; 4 0.5832 X, + 0.1102 X, .  (2.119)

{

»~

For comparison purposes, a summary of the ordinary least squares
estimites for each of the possible subset regressions is provided in
Table 4. The parameter estimates and resulting residual sum of
squares shown in the table are based upon the correlation form of the
model. From Table 4 it can be .seen that-it is netessary to drop
elther the variable representing gross domestlc productlon or consump-
tlon from the import model in order that the remaining least squares
estimates will have the correct signs. . The remaining coefficient
estimate for either gross domestic production or consumption is ap-

' proximately equal to the sum of. the coefficient estimates correspond-
ing to both variables when k is taken to be 0.10 in the ridge regres-
sion solution. The residual sum of squares for this ridgekr?gression
solution i§ 0.2146. This figure compares favourably with the residual
sum of squares for the subset regressions when one variable is dropped.
Therefore, it can be seen from the above that, ridge regressions can
be employed to calculate parameter estimates which are both 'sensible'’
and stable for the French imports model without having to drop any 4
explanatory variables.
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- ' Chapter 3 ) . \
j‘ ~.The Relationships Between The Ridge Estimator

)

®

And Other Biased Estimators

- \ /
The instability of the ordinary least squares estimator when

. : , ]
there is a large degree of multicollinearity Qgtween the explanatory

/ .
variables has led to t@e development of a number of biased estimatoxs.
Two different approachs to the construction of these biased estima-
tors are exemplified by the generalized least squares. estimators

and shrinkage estimators. In the case of the generalized least

¢
i .

squares estimator, it is no longer assumed that tﬁe x’x.matrix'is
of rank p. Rather, an estimator is obtainedqby replacing the in-
Qerse of the X“X matrix in (1.6) by a generalizeq'inverse of a rank
less than p. In contrast, the shrinkage estimators retain the as-
sumption that the X“X matrix of full rank but cope with the effects
of multicbllinearity between the explanatory variables by applying
a linear transformation to shrink the least squares estimatgs. The
form of the linear transformation is dependent upon the norm with

- .
respect’ to which the”accpracy of the estimator is to be measured and

possibly an additional constraint upon:the estimated léngth of the

parameters. In the remainder of this section, the properties of

‘these two types of estimators are surveyed and compared with the

ridge estimator.

Before considering in detajl the properties of the general-
ized least squares estimator, the concept of a generaiized inverse

. ‘ : . “A)
is introduced. A generalized inverse for an arbitrary p x g ‘matrix

A

A is defined as any matrix A" whicdh satisfies:

TR TR e
v “‘*«1’}\?‘&*," TR DN A5G RN,




56

Aataz=na .o o (3.1)

Matrices At satisfying (3.1) and variants of such matrices are

also called conditional inyerses, pseudo inverses, g-inverses

and Rao inverses in the mathematical literature. It should be.

1

noted that if the matrix A is square and of full rank, then the
usual inverse of the matrix A &hich 1s denoted by A_l exists and
is also a generalized inverse. — '

)

The following argument due to Searle (1970) shows that the
b .
generalized inverse for A is not unique. Suppose thiat the matrix

. . » s ‘
A is of rank r. There always exists square matrices P and Q such

-

that:
PAQ = .
D 0
-l rxr .r X (g = r) (3.2)
O - 1) x ¢ % -1 x (@g- 1 Y}
where Dr % r is a diagonal matrix and the remaining elements_o

A are equal to zero. The matrices P and Q are products of elementary
. row and column operations. Since the matrix A was assumed to be
\of raﬁk r, all the diagonal elements of\Dr'x p are nonzero and

ithe inverse of D exists. Therefore it is possible to define

rXr
a matrix G equal to: e
G=orp ‘ ) (3.3
where:
-1 .
. - : Dr Xr 0r x (p - r)
A7 = P . . (3.4)
M | p(q-r)xr 0(q-r)'x (p-/) ,

[ 4
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X

That G is a generalized inverse of the matrix A follows from:

AGA = A(QA P)A

(@"tao™h os7e) (e 7tag™h
= p'lAQ"l ‘ .

- =a - : (3.5)

Since by definition neither P nor Q are unique, it follows-that

D e o™

neither A~ ngr‘ G are unique. Therefore, the generalized inverse

of A defined by (3.3) is not u}lique.
' 4

- i

A nuitber of algorithms have been developed for computing !

generalized inverses for an arbitrary p x g matrix A. The following
} - . alJrithm which was described by Rao (1963) and Searle (1970) is

based upon the argument employed above to show that generalized in~-

'verses are not unique. Suppose that a generalized inverse of rank r

. is required’ for the matrix A. The rank of A should be gfeater than

t - Ny

or equal to r. Let B be a non-singular r x r minor of A. If

11
| . Bll is not the leading r x r minor, there exist co~1umh and row
' operators which transform the matrix A such that B11 becomes the
leading r X r minor. Letting R and S denote the correspondlné

' transformation matrices, it follows that:

; . - RAS - B
- | B B2 : |
‘ - ¥ ’ - (3.6)
: Ba By2 ‘ .
If B, is already the leading r x"r\minor of A, R #nd S will be
identity matrices. r - : 4
. A ‘ :

N . \ [ - .
| . It is possible to define a matrix F similar to the matrix -
L , ' \

z . > \ 5 .

) ‘_ .
| | ' |

\ J"‘r R e




A~ such that:

P g, "1

0
F = 11 § rx (g — x) . (3.7)
O(p-r)xr 0(p-r)x(q—r)
Consider the matrix expression: ‘ }»-
B B '
prB = | 11 12, . (3.8)
B By1B11 "By

As a result of the partition of the matrix B, it follows that

there exists g matrix K such that: o~

[321 322J = K tsll Bl?_] S )
Ve . /

It follows from (3.9) that:

. Ba2 T KBy - (
' = 13211311"11312 . : | (3.10)
Substituting (3.10) into (3.8), it may be seen that:
| ,l B BFB = B S | g\ , 311
i ‘ so that F'is a generalized inverse of the transformed matrix B.
Combining (3.6) and (3.11) , )
A = rlBs™! ’
= R"Y(BFB)s”t - -
= A(SFR)A .. o -‘ (3.12)
'Izrferefore, a generalized inv;_rse Sf 'the m'atrix A is ‘given by:

[ ‘ A" = sFR : ' C(3.13)

Sgarle {(1970) provided-a number of numerical examples to illustrate
£ . . : ,

this algorithm. B

. / ’ | . 2
/ v

- .Marquardt (1970) noted that the eigenvalues for the X'X

! W\ ' matrix may be classified into the three groups: ' eigenvalues

— v

substantially greater than zero; eigenvalues slightly.greater

-

/ E -

)

-
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~ -

than zero; and eigenvalues equal to zero. In practice, it is us’uallly
impossible to separate the last two groups of eigenvalues due to
round-off err"ors. Marquardt (1970) suggested that a criterion could be
adopted for establishing the number of essentially zero eigenvalues
for any practical.problem'. He arqued that a chiterion should beq
erﬁployed which will assign a rank to the X“X matrix such that the
aséigned rank includes 'substantially' all the variation in X.

To this end, Marquardt A(1970)ﬂ recommended that the X‘X matrix be

assigned the rank r where r is the largest integer such that:

r-1
L A< w (3.14)
j=1 3\

(tr (A))"l

where - w is an arbitrary constant. He argued that in most pfactical

‘ \ VoL - -
applications w would lie in the rang\e of 10 1 to 10 7.

Suppose that the X“X matrix is assigned a rank r which is

legs than or equal to p. 1In ‘this case, it is assumed that:

A, = A, = = A = 0 ‘ (3.15)

and: , ‘
0 < A < < $a - = (3.16)

p-r+1 ~ Ap-rs2 ~ °° P
(3.15) and (3.16) imply a partition of the diagonal matrix A

of the form;

)\ 0 -

A = (p - 1) (3.17)
0 A :
r * w -
where: A(p - ) is a.’(p - r) X (p - r) matrix of zeros and 1\r is

ar x r diagonal matrix containing the nonzero eigenvalues. In

addition, suppose that the orthogonal matrix P is partitioned such

that: L ) @

,
e crsmin Kl

LR SN SN ST Vo)

PREPPEN

e e et At emiia B
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P = [p(p_;)- P ] " - (3.18)

7

where P(p...—_x ) is a px (p -'r) matrix and Pr is a p X r matrix. A

generalized inverse of rank r for the X“X matrix may be formed in

an analogous manner to (3.13). In this case: I
* (X,x); - P 0 0 Pf
0 2L
r N
= | P e
[P(p - Fr ] 0 0 (p - 1)
& —l - L\
- 0 A P
r r
. -1_ . : i
Pr Ar Py :
P - "
— 1 .S.S._ 3.19
= 3 %355 ( )
J=p-r+l 7j

where Sj is the j'th column of the orthogonal matrix P.
\ Y
In order to illustrate: the generalized inverse (X’X); defined

by (3.19), consider the French imports model presented in Chapter 2.

3

Before calculating the ordinary least squares and ridge regression

.o ,
estimates of the parameters in the model, the X*X matrix was starmd-
ardized 50 tKat the X’X matrix was in it's correlation form.\ The

X4X matrix was calculated to be:

-

X'X = 0.1687 1.0000 0.1545 o (3.20)
0.9973 0.1545 1.0000

The three eigenvalues for thié X~ X matrix are: 2.0472, 0.9502 and

0.0026. The two largest eigenvalues account for 99.91% of the
» .

sum of the three eigenvalues for the X*X matrix. The orthoqonaJ
} _ : : :

matrix containing the-corresponding eigenvectors is:

»
a

/

-

-
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0.6916 -0.1434 =-0.7079
p= |0.2132 0.9770 0.0104 i (3.21)
: 0.6901 -0.1581 '0.7062

Based upon (3.19), the generalized inverses cérresponding to the

three different possible ranks for tHe X“X matrix are:

N 0,2336 0.0720 | 0.2331]
(X“X)] = | 070720 0.0222 | 0.0719 (3.22)
| 0.2331 0.0719 | 0.2327
. 0.2553 -0.0754  0.2570] '
(x"X), ='|-0.0754 1.0266 ~-0.0907 (3.23)
[ 0.2570 -0.0907  0.2589
and:
. | 194.5176 +2.9155  -193.5452
(X“X)3 = | -2.9155 1.0681 2.7429 . (3.24)
~193.5452 ' 2.7427  193.6022

It can be seen from the above that there are large reductions in
the magnltudes of the elements of_(an) when the assigned rank for
the X’X matrix is'redqc;d from three to two. When the assigned

.rank is reduced to one, the changeghin the elements of the geﬂéfali

This behavour is indicative

H]

ized inverses are not nearly as dramatic.

of the presence of one very small eigenvalue and two moderate to

large sized eigenvalues.

Marqﬁardt.(1970)'utiliied the generalized inverse (x‘xf; to

define a class of generalized least squares estimators:
BY = (XX IX°Y . ~
r i,
?Br shdg;s a number of propertles in common with the ordlnary least
-~ o 4

ﬁ defaults ‘to B _when the X“X matrix is assigned

(3.25)

squares estimator.

the rank p: ‘It was noted earlier that B minimizes the residual sum

X

of squares functién for all p—dimensional Vectors b. An analogous
. - e . .

LI

.
: . :
!
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R

”

result. for the generalized 'least squares estimator is provided by s’

Theorem 3.1: - The generalized least squares estimator

8; minimizes the residual sum of squares function o (b)
for all estimators b of B within the r-dimensional sub-
‘/ - space spanned by Pr.

Wes

Proof: Suppose that:
£ = XP | (3.26) .
denotes the projedtion of X onto the eigenvectors which form the

last r columns of P. The normal equation (1.5) may be transformed

so that: ] B
(P "X"XP )P "D = P XY (3.27)
or: - , )
S C .28
In addition, let: . y
*.. i
BoE RSP . , (3.29)

denote the projection of°b onto the eigenvector coordinates so

.

~

that: i

' ' 1

€88 =gy . ' (3.30)

‘Equation JS.BO) yields the ordinary least squares solution,

o
d
Tk

Thigi solution minimizes the residual sum of ‘squares within the sub-:

spéce spanned by Pr. It shquldee noted that: -

o

- * . * Ao '
(€°€)8" = n_8 | ) (3.31)
so that: / N
' * - -1 -~ et
B = AL TETY )
‘o S N _ ' .
B ‘ - Ar Pr qx Y . (3.32)

The solution for (3.30) may be expreséed in terms of the original

X
t, . oL




)'j“
coordinates as:
" p=opg
. r

=p A "lp xry
rr r

”~ + L4
(X°X) rX Y

s

/:,\/‘ a = B; ’ . ' h 2 « . (3-33)

rAs, a result of (3.33), it can be seen that B; minimizes the residual

v - l alis
- sum of squares function within the subspace spanned by Pr.

U')' . L
N

\ o
- v
’

The generalized least sguares estimator may be expressed as:

1* - P +, - ‘ )
‘ ; Br (X°X) rX Y N
= vyt (vovy R
= x0lEK8 -
. er . .1' . : . (3-34)
- '& -~ )
(x X)r(x X)
P ' ~ "1 ) »
= (PrAr P ) (PAP”)
-1

P. (P(p _ r)‘A(p _ r)p'(p - r) *P AR (3.35‘)

it follows: from (3.35) that: - . -

= Pi‘Ar

t o

E(BY) = W_E(B) o .
P - ntp - ¥ - 1

(3.36)

-

of .B if A(p - ) is a’non-null mat/r}x ‘
./ L \ -
» . 9 ' -
1 . Y . . ., .
Chipman (1964) noted that if the matrix X has a rank ldss than
p. then there cénr{%t, exist an unbiased’ linear estim'a}:ér 6£ ‘the.

form:

(3.37)

-
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A
for. B. By thé line%}\gﬁopext‘y of the expectation op;rator:
* E(b) = AXE(Y) ’
S = ax8 . L : ,(3.38)
Chipman (1964) pointed out that b 1s an unblased estimator of B
if and only if (3.38) equals B for all values of B, This implies

that:

L}
=4

- AX A‘;{3D39)ﬂ

or: 3 S /
rank (AX) = p « ) (3.40)

~ .
-~
?

However, the rank of the product of two matrices cannot\ exceed the
rank of either matrix. Since the rank of the matrix X is assumed
- to be less than'p, it follows that no unbiased estimator of the

- form (3.37) exis:ts for B. In the same spirit as Chipman (1964),
\ .

-~ -~

N . . ~

j 'B; is said to be conditionally:unbiased relative to the constraints
implied by the columns of P

(p - r) 1f A %) 1s' a nl matri::

The variance-covariance matrix for Br may be derived\by utilizing

(3.34) and (3.35): ‘ ' T

’

T vargh = £} - m@D) (8] - BN -

~-

. ' E(B-B)(B—’B)W'

r v
_o o=t he .
’ = cz(prArlpr x0T atE A
= oz'PrA;]"(P (X"X) lPr)Ar;. p_° "
b 3 2 “1l, . .
. : . | —.0' PrAr Pr . g ‘ o ) (3.4].)”
a — ) X

. ) , ) ~4
Invoking (1.25), the mean sqguared errl&r function: for Br may o

K

~ a
’

V.
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the mean squared error function becomes: - =¥ -

be expressed as:
- p - - -~ 5
+, . + (BY) - B)” Y -
MSE(B) = E_ Var(Bi) +.(E(B) - B)T(E(BL) - B)

The behavior ©of the mean squared error function for B; is sum-

&

marized by the following two theorems due to Marquardt (1970):

Theorem 3.2: The 'variance term of the mean squargé error
i

. 2t . . . .
function for Br is an increasing function of the assigned

1Y

rank r.

Proof: Appealling to (3.41), the variance term of the mean squared ~

~ -
errdr function for B; may be expressed as:
Ty, - 2 -1_ . o
tr(var (8 )) oc“tr(p A "P_7) N
' = oztr(A _l)
r
. _ 2p . 1 . -
. = Of.l o . (3.43)
, i=p-r4l "i ) ‘ «
Since the largest r ¢ nvalues of the XX matrix are assumed to be

|
nonzero, it follows that (3.43) increases monotonically with r.

Theorem '3.3: The bias term in MSE(B;) is a monotonically
R R decréasihg function of r.
. ) .

Proof: Substituting (3.36) into (3.42), the squared bias term in
— ' ~ e . P .

£ - & EGEH -

& BT(PP," = I‘p)‘u:’rpr j’ ‘Ip)B .

1]

\ P e e P o P - P e - B
. =B P(p —'r)Pip - 1) " ) 5 (3.44)

since:

-r

» =\ - + - - .
PP 'PrPr P(p _ r)P(p - 1)
In the same manner as (3.?2), let: . -

1 o .
' X\ r e . - -
, ¢ ‘ N -

tr(Var(B;)) + BT, - IO - I)E . (3.42)

. \ (3.45)




= ~ b= P - r) B ‘ ~(3.46)

denote the projec%ﬁon of B onto the subspac€ of RP spanned by

P . By definition, ¢ is a (p - r) element vector whose i'th

(p - 1)
| . .element is a,. Therefore, the squared bias for B; becomes: i

VY

(E(ED) - B (D) - B)

p—-x

o =I o’ . (3.47)
i=1 -

H

Since each component of y is independent of r, it follows that the

. . . , o . .
bias term in the mean squared error function for Br is a monotonical-

o ly decreasing function of r.
As a d;rect consequence of Theorems 3.2 ghd 3;3, it is‘pos-
sib}é to derive the required condition for“tﬁe mean squared error
. ~admissibility of E;: |
/ ' | Tpforem 3.4: The generalized leést squares estimator
v ; E; is mean squared error admissible if: | .
L L lgj—r = & g_r o’ . (3.48),
i=1l i - j=1 .
:25295: Combining,(3.43) and (3.47)( the m§§ﬁ squared error‘fﬁnction'
for E; becomes: . .
: MSE(B)) = tr(Var(B))) + B°(W_ - I,) (W, - I)8
i _ 2P 1 p=r 4 . -
, ngm—va\ =0 §=p—r+l X; + §=1 o, r: , ?(3.49)
/ The meah squared errpr function for.g is provided\gy'(l.za). _ There-
" fore, E; will be mean squared error admissible if aﬂg;éyly if: “
L I A '
" : : i=p-r+¢l i i<l -
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) ;
- < 02 I %—
i=1 Ai
= MSE(B) (3.50)
- ~
or:
p-r p-r
é’ I > > _at . (3.51)
i=1 AT 92 §x) x '

A more restrictive but 'more useful mean squared erro# admissibility

LN

condition for s: is provided by: ' . 1
. Corollary 3.4.1: A sufficient condition for B: to be v
mean squared error admissible is: ra
p-r -
J I 3> %5 878 | (3.52)
i=1 “i o . , “ oo

~

Proof: By definition y is the projection of B onto the subspace of

RP spanned by P( . Therefore,

p-r
B’B = BPP"B \
- 2 ?‘P(P “nfp-n I ’
=YY e '

o 'p—r 9~ ) B
‘ 2

¢ o=y oy . o (3.53)
izl

-

As a result of this last inequality, if:

p-r ' ‘ - . RN °
g -i-— > 55 878, - . (3.54) “
i=l ’ i (o] * ‘\ (4
. . . \ - i
it also follows that: . . : . \\
‘ p-r . p-r ~ . ’ . '
R e TS . . | (3.55)
i=1 "1 0" i=1 ) \
. i . | ‘
so that (3.52) gfovides a sufficient condition for the mean squared.
- \‘: \\
admissibility of B;. , . » c




+ It was‘mentiongd earlier that Marquarét k1970) proposed as-
signing the X“X matrix a rank by exa%in;ng the relative sizes of
each eigenvalue Ai‘ In a later paper, Marquardt and Snee (1975)
suggested that the rank may be choosen by constructing graphs .of
theiggperalized least squar%s estimates as functions of the as-
signed rank.r. These graphs would be inferpreted in much tﬁe
same manner as the ridge trace. It should bqshoteibthat this

approach is probably only practical for multi-factor problems.

3

Hocking, Speed and Lynn (1§76) suggested that the assigned rank

ber choosen by minimizing estimates of the mean.squared error for

B:. "To this end, they recommended evaluating (3.49) for various

values of r using the ordinary least Bquares estimates of o and

2 .
g . * \

%~

In the proof of Lemma 2,1, it was shown that:
~% - °
|85

for all: | | jk
' ‘ B (3.57)

An analogous result for the gengralized least squares estlmator is

provided by the theorem: -~ \ )
b

Theorem 3.5: Suppose that B is deflned as in (3. 25?

— JlB;Ilis a stepwise increasing function of r.

»

A
Proof: Consider any assigned rank r less than or equal to p:

2 _gv.ne
”B II Bf B

(P A lP ‘X Y)

N

«

|
:
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= Y“XP A '29 “X°Y

= A 2x* XP_P_"XY) . . (3.38)
Let g, denoté the i'th element of the vector X°Y and P, i3 denote
‘the (i,j)'th element of the orthogonal matrix P. Adopting this -

notatidn, (3.58) becomes:: ' . o

~ P -2 ) 2 . '

fiesl] == LT (9P ) (3.59)
r I jzp'.-r.'.l J :1 1 1] ’ \ °

I 2

may be expressed as the sum

It can be seen from (3.59) that “B:l
of r terms each of which is independent of the assumed rank r. The
j'th term of the Summatlon is dependent ype? A., X7 Y and the' j'th .
elgenvalue. [fherefore, it follows that Hﬁ | is a stepwise increasing

function of r. ’

ﬂ' Marquardt (1970)1argued that the assumption of an integral

rank for the X“X matrix often 1mposes an unrealistic constralnt
-upon the generallzed least squares estlmator B - He suggested that
the 0pt1mum~rank is usually non-lntegral. As a result, Marquardt
(1970) proposed extending the ééfihition'of B; to allow the assignee
. rank to be continuous varianle in the interval (0,p]. Supp@%e
that the X“X wmatrix is”ﬁssigned the rank: | A

r=k+t | | //, 0‘ (3.60)

' where k/is a non—negative‘integer less than or equal to p and t '
lies in the interval [0,1). Marquardt (1970) proposed that th%:

° ‘

generalized ‘inverse for (3.25) be defined as:

B,

p N ' »
. .S, £t .8 S
xx)T =1 —— "(p - K7(p - k)
T, o 3=p-k+el 73 (p - k) .

e (3-61)




generalized least squares solution is given By the point(sg{é

70

In order to illustrate the geometrical properties of the
generalized. least squares estimator, consider the hypothetical
two-dimensional sum of squares contour which is provided in

Figure 3. Suppose thatj the point A represents the minimum of
v

the residual sum of squares‘function for all estimates b. A

~

corresponds to the ordinary least squares solution B. Let ¢

0
denote a contour of constant residual sum of squares. Since C

is the point on ¢0

the fidge estiimate corresponding to this contour. Suppose that
N . o - N

Sl and S, represent the normalized eigenvectors for the X“X

matrix. If the assigned rank for the X“X matrix is one, the

which is closest to the ofigin,'y represents

2
which results in *the minimum residual sum of squares. This point

~

is denoted by B in Figure 3. On the other hand, if the X7X

matrix is assigned the rank two, the generalized least squares,

-

estimator corresponds to the minimum of the residual sum of &
L]
squares function in the plane defined by Sl and SZ' In this

-~

+
case, 82

is allowed, B; follows the path defined by BA. i

Hocking, Speed and L§hn (1976) investigated the propérties

equals B. If a continuous’ rank between one and two

¢ WV

of the generalized least squares estimator in the;f survey of

' . . ¢
biased estimators. They referred to the estimator ag_a 'principail

component' estimator and a 'fractiondl rank' estimator’éépending

“

-upon whether an integral or a continuous rank is assumed fpr the

X°X matrix. Adopting the canonical form of the general médel,

N

Rleke L Te v RS s TS Rt v —_—
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Figure 3 - A Geometricadl Representation Of The

Biased Estimators
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Hocking, Speed and Lynn (1976) expresséd the generalized least
squareg estimator of rank k as:

. a]+< B. P’B.;; ¢ t

.\

n

’ P’(PkAk"lpk‘)x‘Y

0 0 .
~ = X 7Y
—1 L3
0 A
9 k -
= ek . ' (3.62)

Where 6, is\a vector whose first (p - X) components are zero and
last k components agree with o. Combining (3.61) and (3.62), it

can be seen that the canonical form of the generalized least

:

squares estimator may be expressed as: .

o n -
ap = (1 -0, +t8 , . (3.63)

when a continuous rank of the form (5.60) is assumed for the

X“X matrix. Suppose that B is a diagonallmatrix whose i'th

<

element is given. by:

e /

¢ 0 . foq:i
b, =y t fo;\i‘ p -k - . (3.64)
1 " otherwise .
. . T L g:’
Hocking, Speed and Lynn (1976) observed that:

<
-

N ~
ol = Ba A (3.65)
\ R .

N ! .5‘ ) ) ‘) ..

Adop&iﬂg Hocking, Speed and Lynn's (1976) formulation of

1,2,3, .. ,(p -k - 1)

the gen‘ralized least squares estimator, the mean squared error

~

; + .
function for o, may be written as:

-,, - 'Y
' MSE(ar) = MSE(Ba)



[ RN,

T

P - P .,
P =I b varay +I - (5 - 1)%72
i=1 i=1 -
2.
P b, P -
Lo=e%3 s 45 b, - D% (3.66)
R N . 1 h §
=1 1 ix=l

L | i ; o .
siné;é N ' ' ' e

Var(;) = Var(gﬁg) ‘

= o%p° (x"x) 1P

=gt . ‘ © (3767)

Suppose that the X“X matrix is assigned an integral rank Kk, so

that: : -
0 for i =1,2,3, ...”,(p - k) ,
b, = ‘ : (3.68)
1 - otherwise
In this case, (3.66) reduces to: N
A d
’ - P p-k .
MSE (d)) = 62 % %— + 5 aiz ) (3.69)
i=p-k+l “i =1 L

It can be seen from (3.69) that the reggltanf increase in the
mean squared error function’ when Egg/égsigned rank for the X“X

matrix is decreased from p to k is given by:’
MSE(a+) - MSE(a) = I {a.2 - A, 102} . (3.70)
r j=1 1 i

c r
' *

Hocking, Speed and Lynn (1976) proposed a two-stage procedure

for determining fractional ranks of the form (3.60). They sug-
gested that the integral'portion of the rank be determined by

choosing the value of k which minimizes the estimated increase

-

. ) . . CTe
in the mean squared error function which results when a. is.

@

employed instead of a. For this purpose, Hocking, Speed and Lynn

a 3

i e St 4 ¥ R B R AR Gl RE p FT RAmLE W 3 e re g ) ”
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(1976)'recommended that the ordinary least sguares estimates of

2

o and ¢© be substituted into (3.70). Assuming that the integral

portipn of theés~rank is choosen to be k, the mean squaxred error

function for the generalized least squares estimator a; be-

-

comes:
: - 2 P 1
+ 2 t (s D X =
MSE(a’) = o + - X
. r . (p - r) i=p~-k+1 i
p-k+1 s
+ I 0.l (b= 1)2a( 0l (3.71)
i=1 v p - k) ‘

AY -

Mihimizing (3.71) with respect to t leads to the optimum t for a
N \ Q

o

M - 0% (p - k) ' “ A
‘ ez (P P L (3.72)

+ l a\ 2 v ®
(e - )% - k)

a -

W * ' . ! - -
Hocking, Speed and Lynn (1976) proposed an iterative procedure

for estimating t based upon (3.72). Let t(j) denote the estimate
of t corresponding to the j'th iteratior. Substituting (3.65). and
the ordinary least squares e%&imate of 02 into (3.72),nHocking,

Speed and Lynn (1976) constrﬁgted the iterative formula:

s

~ Ul T 2] 2 )
tl‘ 1 (p - k) (3) (p - k)
{3 + 1) 5 N E = . 2 > -
O *rp -G % - K) g
Ly 2 - X o~ .
~ . = __- (3 (3.73)
g .° 2/ /
N t(j) \* L
where: e - . . .
~2 -1 = -2 , (3.74)
L= Ap-x)  %p -k :
L ]
‘ . J ) y




. :‘:’ ; . / . . .
' f - Suppose that f(O) is assigned the value (1 + L)-l. ~The con-
; g .
vergence theorem from the Appendix may be invoked to obtain the

limiting values of t(i): . L .

~ . * E 0 . . éf L >% ' ,
: ¥t = 3 - ' . (3.75)
3 + (3.- L) otherwise 3

V] . . ,

Utilizing (3.75), Hocking, Speed and Lynn's (1976) limiting .
. o - ’ %
solution for the generaliked least squares estimator becomes:

~

+

* -~ *~
oy b £¥y = (1—,t)9kv+te (3.76)

(k' = 1) )

Marguardt and Snee (1975) provided a number of numerical

examples to compare the use of the continuous rank generalized

‘ least squares and ridge estimators. They described a modelgln .

o

} > which the percentage conversion of n-heptane to acetylene was
f considered a function of the reactor tempature, the mole ratio of
t ) .

H, to n-heptane and the contact time. A number of quadratic

2
”~ . and cross~product terms were included in the model. Marqguardt
3

and Snee (1975) also presented the results of a simulated 2

: ) - factorial exberiment. They found that bo<§~§he generalized least
squares and th ‘ridge- estimators produced smaller predictive' ’

standard errors than the ordinary least squares estimator as the

deéree:of multicollinearity in the experiments was incréqsed.
— i<
Marquardt and Snee  (1975) employed their examples to demonstrate

o that the continuous rank generalized least squares anampiﬂgg

estimators can often be utilized to produce similar parameter

’ [
' 0 . ——

estimates. .

~ ¢

e | y ]
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The generalized least squares ‘estimator attempts to.cope

with the effects of multicollinearity bei{ween the explanatory
variables by replacing the inverse of the XX matrix with a

generalized inverse of a rank less than p. I§ was mentioned .

-

earlier that a seconé approach to dealing with the effects of

‘the multicollinearity is to retain the assumption that the X°X

matrix is of full rank but to apply a linear transformation to A

»

shrink the ordinary least squares estimates.- Suppose that C
¢

- ) — . . Ao . . .
represents the matrix corresponding to a transformation which
I R} .

shrinks the orainary least squares estimates. * It is possible to

define a class of phrinkage estimators: ’ ’ . v
- *
b(C) = ¢ (XXX . ,
'h - .:"“_. / -~ o o - Ll
for 8. For example, b(zk) corresponds to the'class of riﬁqe .t

’ gstimatﬁrg‘when/zk is defined by (2.5).
[ \ -

. l g , . R
i’ .o ¢ - t ¥ ; .
In most of the remaimder of this sectton; the matrix C in’

'

(3.77)"will be assumed to be a diagonalomatrix of the form:
.

e, *

. c = cIP , 0" . Lo . 3 (3.78)
where the shrinkagégfactor c satisfies: ' o
0.<c<l ;o T ’ (3.79)

In orde;'to simplif} the notatien, “let the shrinkage estimator

which is obtained by substituting (3.78) into (3.77) be denoted

“ by: 2 . ! 4 LCY - ’

~ N

~ 4. . " : Fe

Bg = cB . , E ' - (3.80)

A geometrical comparison of the shfinkagg estimatorst‘with the
’ ) _) \. ’ : ’\

¢ ] N , - ‘-

LY



«
.péth between the orlgln and the ordlnary least squares estlmate . ‘i

‘whlch 1s denoted by A. it was -mentioned a ove that 00 denotes a’ .-

o . e SR L
‘ . N o % :
¥ SN - Co T g

.- e,
t P * [

other blased estlmators descrlbed ea. lier is prov1ded 1nF&gure 3.,

As c varles between zero ‘and one, B f llows the stralghb line ) . : R

[ i

contour of consﬁant residual sum of squares. The p01nt D corres-
ponds to the shrlnkage estimate whose reSLdual sum of squares is

equal to the re31dual sum of squareibof all the other estlmates

r

‘on -that contour. In particulérf-the shrinkage estimate correspond-
3

ing to D has the saﬁ\\xe31dua1 sum of squares as the generallzed 3
§ q

least“squanes and ridie estimates denbted by B ahd C respectively. “
A - |

' AN
)’
.

Mayer and Wiilke (1973) propased a classification of the , ;

i : “ . -x, . ® . .
shrinkRage estimators according to the form of their shrinkage

factors. They\called Bs a:'deterministically' shrunken estimatory|

if ¢ is a fixed scalar

. v

shrunken“egtimator.

two moments of B argl given by:. ° o
Co EGB, =«E(ce) | ‘ N
’ . ; ; '!
i = cB | (3.81) -
. o , L . ‘ .
andf , i

'Var(ﬁ;) ; Var(ca) '
’ 2% (x* 07, 3  %3.82)
espectlvely;' It _should be noted that if B is a 'stochastxcally,
hrunken Qstimator, the moments of B depend upon the form of ; ;

the rcE%tionship hetwoen c and Y so that they cannot be given in

1

i . il
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i 1 - .
general. R xr - ‘ o -
% ~ W '. 'g"p ) - .
o - . . Mayer and Willke (1973) provided the following theorem ‘to

A ¢ o ,
demonstrate the existence_.of a mean.squared error admissible

'deterministically' shrunken estimator for B:

;‘ ‘ ' J . Theorem 3.6: For‘gvgry value of 6, there exists a -
" ' ‘ ¢ satisfying ﬂ3.79) sgch tgat éﬁ is mean sqgaréd error
A admissible. S T
, 'EEQEE‘ By defiﬁition of thelmgan‘sqﬁared error’fun%}ion: ',
- .« MSE(B)) Z.E((cB - §)"(ch - 8) y o e
» A = E({gB - ¢B)(cB - cB)) + (cB - B)"(cB = B) -
C o . 0 = cPMSE(B) + (c - 1)28fB .  (3.83)
3 ‘Esli§ mean squared error aémissibie if and only “if: i ﬁ@; m? &
P égiiﬁs) = c’MSE(B) + (c - 128 S -
@ S . ~ . : : .
K '\q S s ¥ (5) R . '(3(efi"\
" Yors . i W . | (‘ . - ; . . \- .
/ i ) Lo > B8 - MSE(B) 'i. ‘.';, . .\F- P - ‘(3.;51
Since: . h\ﬂ' S CL - ."' R s :, :;‘P |
. B°B~ MSE(B) < 7B + MSE(B) , s - (3.86)
: it fol%pwsbthat theré?a;Yé§s g;istéfaﬁ.}nterval fpf\c in [0!11;
‘ such-that B_ is a‘géén"pquérig error admissible ?Stiﬁétpﬁﬁif,s“
: P . ,
. . S . SRR &
- : 7 e K " '
& > . ¢ . —
o S R 2 \s...{, , . |
- ’ 2 "‘f @ P o
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It was shown /in Chapter 2 that the ridge ftim,ator minimizes

the residual sum of squares. for a fixed Euclidean parameter‘
length. Mayer and Willke (1973) provided a similar character—
ization for the 'determinjistically' shrunken estimator. Instead

of the Euclidean norm, they utilized the design depgndent norm:
t . ¢ N . o
. mg(b) = b7 (X"X)b : ‘ © . (3.87)
. , {

to measure, the length™ of the estimated parameters. 1In this_%,case,
Lagrangian equation (2.16) becomes: ' \, .
. .
* ) .
F'(b) = (Y - Xb)“ (Y - Xb) + k(b™YX"X)b - c?) (3.88)

*
F (b) is minimized when: , /
. d F (b) -2X°Y + 2X°Xb #+. 2kX“Xb
"db . '
2(1l + k)X“Xb - 2X7Y+

¢

N
) Q

(1« oy

1+t B ‘
Rl . ‘ N . (3.90)

It..follows from:(3.90) that the 'detérministibally'\ghrx}nken esti-

mator mlnlmlzes the resuiual sum of squares for a flxed value of

v
1 L)
[

.the deslgn dependent norm. .
\0 h ‘

.= « : i e . o

. Up to ,ghls pomt 1n the dlSC\ZﬁSlon of shrlnkage est:\.ma.tors,

o mention has been made of how the, shrlnkage factors should be’

Vom

. detex.:m:.ned * James and Stéln (1961) «considered the problef of

~/\‘b
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estimating the locationr parameter 6 for a p—dimensional normal
- <o, . . »
variate Z whose unknown'. variancé matrix is of the ¥orm ‘crz
- v L ~, . , . e

.Further, they assumed that a single observation of Z and another

random varlable’wwhich is;.:aistributed as a czxz va’riate independ-~

-

‘ent -of 2 are available. Suppose ‘that lgz Z) denotes an estlmator

MY N \-...

of 6. Jamg§ dnd Stein (1961) uthllgrecf the unwelghted quadratlc

Ay

b 4

loss function: - .

t s

oL e, (@) = W (z% )7 (U (2) = 0) (3.91)

~,

t¥ measure the accuracy of.‘tp (@\) as an est1Wor Qf 01 Adoptlm%.
the de0151on-theoret‘ﬁ’:\qpproach for selectlng ah est.ugtor, w (2)

—1is sald to be adm:Lss:Lble if there"z is no ot{her estlmator w (Z2) of

A

~ »

\ev whose expsctea quadg:atlc loss or risk- satlsfies. ‘ O o
é - - » . s ¢ e,

R{6;y_. (2 = E(L (0 (Z2)) . .
\ (0105 42)) = =1y ARSI BN |
| - 'f’ﬁ'ﬁg‘l(?"pi(z)” . © ‘
‘ = R(8; ¥, (2) : T EY 92) -

{
for all values of 6 with strict- 1nequa11ty holdlng for_at least

e

-one value of 6. Stein (f'ssqy demonst¥ated that Ehe u?ual esti—

4

.mator of 6: Lt - - ) s )
= - “ - ' a /} ' A 3
¥,(2) =2 oo - ¢ > : N . (3293)

is admissible if and only if p is less than or egqual 'go.two. |
N . y

2 - - . - . » -
~

N ' - . /:/
, * James and Ste,;Ln (1961) }ﬁled a’ class of estimators for e
"of the form: ~ - - A e N ) .

3]

‘Bhére: . 'd_is a non-negative constant;.Z is normally.dis':pkbuted

~

N - R
' i , . . U . {%‘
e !#“' \ - . t - . ¢ .
A had ~ LA, [ .»G" b
e i N S & q \ \ * ;( r = >

. * & .
. .
T g W, IR N e s s
- A R N RN T

o

(3.9%),
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' ' ‘ .
as above; and S is an observation of the °.2Xn variable which is
independent of Z. They showed that wz(z,sj has an expected
unweighted quadratic loss equal to:

s .
R(8:W,(2,5)) = E(L,(8,1,(2,5)))

2 ) 1 .
o° fp —\‘Zdn(p_ Z)E(m)

~ N 2 , 1 :
. - *@f”9+z“”ETTTTT? y (3.95)

where K has a Poj‘;sson ’distfibut;ion with mean (6’6)/202. Mi‘ni-
mizing (3.95) with respect to d results in the estimator:

- [y v

b,2,8) = 1 SR 2.5 4 \  (3.96)
; . ) | .

' The corresponding risk for w'3(Z,S) is given by:
. ’

1

R(O:¥4(2,8)) = o?lp ~ =0 (p 2) E(‘—T'-m)}’-(B.??):

. \n+2

In comparlson, the r:.sk for wl(Z) is, glven by

“«

R(GIW?Z))'= E((y, (Z2) - “(Py(2< 0)) .
Ae! By (2 12

. _ { .

\\g((z - 0)7(z - 8) -

= tr(var(z)) .
. = pdt . . (3:98)

- b2 - .

5 By comparing (3.97) and (3.98), Jarmes and Stein (1961) showed

that w3(2 S) always has a smaller risk than \pl(z) assuming an -

¢« Vv g
qnwelgh’te/quadra'tlc loss vfunctugn. . ‘ !

/

A

- m . Y % o N
Bhattacharya (1966) ‘general:l.zed James"and StelnEs (1961) ,,résults

[
03

/
by cons:.derlng welqhted, loss functlons of the form: .

) -~
B .

- (e, @) = @) -6 D(w JB) -0 © (3.99)

* vty

whe:e D is-a known ﬂ X p p031-tive def;.m.t.e, symmetr:.c matr:.x.
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\ . ‘\' 1., , "
v In addit%on\he utilized James and Stein's (1961) shrbnkage

v )
R\\Q' estimator to prov1de an 1mprovement over- the ordinary least

squares estimator. Suppose tl’p,t the unobservable dlstfw)rbances
’

in (1.1) are assumed to be normally dlstrlhuted and satlsfy .

ke

conditions {1.2). 1In order to simplify the notatiq{, consider £
¢ the can(o ical f{:vrm of. the\?eneral model defined by (2.20). 1In:
&
this caseé, he p—dlmens:Lonal “random véctor Y is normally dlS-

r

trlbuted w1th mean x a-and variance 021 . \Furthebx;, aésume that ‘ l \

= \
o is to beue%tlmated by Ei(Y) subject to the design dependent" lpss 1 ‘
. . kT '

function: ' . ' P ‘ ' .
Ay ' ] ! ’

Lz(a,Ei(Y)') = (Ei(Y).'- ) A(E.i(Y) - o) | (3.100)
== -+ where A is the diagonal matrix defined by (1.27). , ’
‘ . . " v /
S - ' ;
\ LA - ' * . ! ’ ¥ 4 .
Since X ,is assumed to be a n x p matrix of rank p, it N
4 - S ) b
_follows that there exists an orthogonal matrix /Such that: »; » -
. ',Q\\ . *‘ ( - s . A
- X °a='0 . . ‘ oL ‘ ~ (3.101)
., . , | .
X ‘. . Consider the transf&rmationé defingd by: £- ¥
PO - W= A"Y ! : (3.102)
. and: . - 4 . : A ¥ s |
) . V.EWW - : . (3.103)
\ s ' ) , ¢ . . . , K 2 2 . - .' J .
\ Eespectlve y. V is distributed as a 0%y = p) variate independ :
‘ ] %4 ) - ’ R " 2 -~ %. - N
- - r’tant of o ,Sup;%se that an estimator a is defined by:
1 ' G' . . ) .
¢ ~ i ° . . ~% } -~ ’ o o. r v ’
Co a &~ A . . (3 104)
Lo ”' . where Ai is -a diagonal matrlx whoseglagonal elements are equal -
- \ ’ . 'ﬁ -~ %
s N ’ to the 89 are .roots of the eigenvalues for the X°X matrix. o \

s
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¢

*  is normglly distributed with mean:
ol g=atg ' i {3.105)" "
and variance O'ZIP. Since ;* is formed by applying a linear
transformation which does not depend upon V to ;, ; and Vv
are independent. ) 4 J

i)

-

Now consider the préblem of esti,matlng 9 subject to the

4 unweighted quadratlc loss function: \%
L6, ) = h - o -0 . (3.106)
) } For any estimator tpi (Y) of 0, it is possible to define an estimator

Ei (Y) of o-according/tq: -,

% , 7
g, (0 = A7y ) . L (3.107)
.Substituting (3.107) into (3.106), it follows that: . <
— : L
Ly (o k5 (X)) = (g, (1) - a)'A(EiFE) ma - o
=y (0= 0) D -6 .
.o ! oA
\ = 1 (6,; (V) oL (3.198)

It can be seen from (3.108).that the problem of estimating o from
~ a \ '

’(c‘x,V) is equivalent to estii‘ﬁatinc} 8 from (Aia,v). Since V is

A*/ ~ 4
dxstrlbuted as a szz(n - p) varlate 1ndependent of o', James and

Ste‘:m s (1961) results may be mvoked to conclude that'

S S R S v o (3.109

o\ by T L T gmp ez AR ¢« . (3.109)
. . o o e

~ ) . N ‘ ‘ ¢

~% . .
has a smaller risk than o assuming an unweighted quadratic .18ss
- . o
function. As ayresult of the equivalence between estimates of a
- \ ‘ ‘ . " »
m and 6,which is defined by (3.108), it follows that:
: ‘ ~




-~ - A_ i A\*
%35 %35

= (1 - —E > f 3 =,YA.) A"t . (3.110)
a Ad

is an imp}:ovement over the ordinary least squares estimator as-

&}uming a design dependent loss function.
- A4 _‘Q N

by

; X 7:1\
\hayer and Willke (1973). examined soi‘ne of- the problems

associated with edtimating appropriate shrinkage factors ‘for Bs.

N

. L8 ' .
They npted that since the absolute value of each component of

-~

BS i early increasing in ¢, B; will not stabilize as ¢ in-

creases. As a result; Mayer and Willke (1973) argued that a

L] . ~
scheme similar to the ridge trace would not be appropriate

for determining the éhrinkage factor c. 1Instead, they proposed

e that the s/\rihkage factor be determined by fixing an upper bound

on the increase in the residual sum of.squares which results when

~ o

B8 is employed instead of B and solving for ¢. Suppose that the
F] . .

inéreagsg in the residual sum of squares is assumed to be 100M%.
- b

N ¢
y In this case, ¢ would be -assigned ‘the value:

. . S R )
e =1 - {”(Y Xg) (¥ = XB) L (3.111)
. ; Brx&xs q T , N

., In a)ddition, Mayer and Willke (1973) attempted to develop an

estimator which minimizes the sum of the variances of the individual

" components of the estimator among all estimators of B8 having a

fixed residual sum of aquares. + They argued  that such an estimator
. v ' ~ ° ! i
would have the advantag:a of being ihdependent of the norm choosen
.to measure the length of the paramet'erh estimates. Latér, Mayer (*)
" o - .
-9

% )




and Dwivedi, Srivaetava‘ and Richardson pointed out fe‘veral

errors in Mayer and Willke's (1973) solution.

Hocking, Speed and Lynn (1976) derived an expliéit solution
for the shrinka{ge factor by estimating the value of ¢ which

§ ~
b . » ? » k]
minimizes the %ean squared error{function for Bs. Consider

’

the mean squared error functior for Bs:

MSE(B) = E‘((B§ - B)°( s -,B)')
v = E((cB - B) (cB - B)) -
- ¢ b= E((ca —'a) A-a))“— \ ‘
| = c E(\Lg - a) - a)) 4 (ca - cv.)‘(c‘a - o)
B ‘/ ‘ —
_ 2P - . 2 . . _
, = c"L Var(ai) + (c - 1)%a’a . (3.112)
R A S 91 B

N

Substltutlng (3.67) into (3.112), the mean squared error function

fdr B becomes

o * ey i
~ p *
MSE(B ) = CZOZZ %—- + (¢/- 1)2(1'(1’ . (3.113) -
s i"l i « N R N

<
-

Minimizing (3.113) with respect to the shrinkade factor c gives:
} s’ ; T.ot
. . N

" - )
N = c.2 . PR S (3114

» 4 * a «

Let B sl denote “the shrlnkage estimator of B whlch is obtalned

\ . .
using “the shrlnkage 'fgctor Cy- . o Q

¢

\

Hockmg, Speed and Lynn (1976) proposéd that a value for
- £y
¢y be determined us:mg an 1terat1ve procedure almﬂar to the one
ie . . . . » -
; !




o

becomes: , ' -

.

they gave for the continuous rank generalized least squares' esti=

mator. Let cl(j) denote the j'th itarate of the sequence of esti-

mates of c,. Asslime that 02 is estimated by it's ordinary least * -

1
squarés esf.imator. In the calculatlon of cl(] + 1)’ & a would be
" estimated by cl(j)za a. Hockmg,\Speed and Lynn's (1976) 1terat1ve e
fr
- - G2
formula for = is given by: , . ‘ \ g
Sl gy 1) = ——ati) ¢
1(3'+ 1) <~ <P ,
- i (3) Za/u * 022 -i‘—-
3) isl “i
2 ‘ ;
- . = —l) (3.18
°1¢3) ¥ ls1
where u .
p
) L, * ol 1 L \
'\’ \ ' a)a l‘l‘ l , 31’ _ 4 “ \
~ 1
~9 P ) -
= o2 3 %__ ) J (3.116)
il i .

J'E’BF:E

1(0)° is assigned .the value (1 + t —l. /

convergence theorem from the Appendix, the llmltJ.ng values of c

Suppose .that ¢ Invoking the

:L(J)
are’ found to be:

e 3

* }0 ¢ . N ~ if L 1 > % - o
‘o 3 S . - ,(3.117)
3+ (i - Lg;) otherwise

Subs ‘i:.uting (3. 117) 1nto (3.80), the limiting solution for le

- if le>i

0 : .
*
= T - . . (3.118)
Bbl : { (4 \ (3 - le)&)ﬁ, " otherwise .

. ~ * " ’ ‘ . ’
In addition \io -Bgy » Hocking, Speed and Lynn (}876) consider- .

~N
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‘ /
ed the shrinkage estimator which is obtained by, minixﬁ‘i(iﬂng the
\design dependent criterion: - " 0
EB(Ly2 (b)) = E((b - B)X'X(b - ) | T (3.119)
“instead of the mean gguare&~~ermr—functiqd.ﬁ Adopj:i‘ng pcheduzjes
similar to those utilized above: \

2 - - - ”~ -~ - -
Bllp(8 ) = E((B, - B)7X X(8, - B))

= E((c; - u)’A(c; - 0-))-

- 2
A;.LE(cmi ai)
|
A {cz\iz.ir(;) + (c -
i i

. ‘ = pc?e? + (c - 1% ha \ ' ﬂs (3.120)
Minimizing '(‘?.’1420) with respect to c leads to:
Lo,z Al ¥ C @aa-
+ a’lo ) \
Let; Esz denote the shrinkage estimator which is obtaiped by substi-
tul‘ing c, into (3.80). ﬁockﬁing, Speed and Lynn’'(1976) employed -
a sequence of{,est;\_imators of‘c':2 (5)
! an explicit s.o‘lution for a shrinkage estimator _of B based up\on é.sz'

analogous to the c; 's to obtain

o

They. defined the sequence of qestimators: . ' -

€2(5 + 1)

(3.122)

17

.~

L




- If css is ass'igned the value z'ero, Sclove's (1968) estimator reduces ) !

: tos the generalized least squares est;ifnator of rank’'r. ~(':‘ptimum valued

88

+ ¢

for Cye ) Appealling to the convergence ‘theorem from the Appendix,

Hocking, Speed and Lynn (1976) obtamed the shr:.nkage estlmator

~ *’ k = -
le2 =c, 8

I

: 0 \ o ifL. >y -
) = { 3 - 82 i ©(3.124)
: (3 + (3 -L)7)B otherwise , |

' : ~ * ~ *
It should be noted that both le and Bs2 are ‘'stochastically"’ E l
shrunken estimators because they depend upon le. and LS2 respec- . - 1

3

tively which are in turn functions of B. . \'.\ )

. e
P ' r . ’
, Sclove (1968) propo‘kedsa modification to the shrinkage esti-

~

mator s by suggestlng that the shrmkage factor only be applled

to the components of the canonical form of the ordmary least < . Y

sguares estimator corresponding tb the smallest eigenvalues of :

the X™X matrix. Consider the canonical form of the shrinkage .

estimator:
!

e = P'B , . -

(3.125) o)
Suppose that the shrmkage factor is only applled to the {p - ) 1

components of o which correspond to the smallest }\ . In ‘this

_ o

case, Sclove's (1968) shrinkage estimator becomes:

/‘) ]
. 0 -~

- I ' '
M’ “ssT(p - 1) ' | (3.126)
\\\. S 0 ‘ I 1; . . *
N ) . r ﬁ e . : .
where: ) ’ ) : ] .
0<c._ <1 ' S (3.127) \

t

1

- " T ; - : }
L3N \ Lo

1

|
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.
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X

o

.‘1§1ng cssL aéd Cggp are given by:

o ' 89

! N 7 r
for Cgg MAY be derived using tqchniques similar to:those employed

* * -
to. determine c and Cy - Suppose ‘that:

- /l -2 Pty o Pr o, - o
Ligy = O {t =1 i o7} - . (3.128)
i Cim M iE . S ‘
and: L. . i o l
- ~, P-r 5. 1 . . ‘
Lgg2 (p - r)oc {;_ Ai oy } e (3.129)
) i=1 .
In addition, let Cgaal and Cgg2 represent the reéspective shrinkage
. factors for Ogg which are obtained when the mean squared error R
function and design dependent norm criterion are minimized. Iter-

ative sequ@nces similar to (3.115) and (3.122) may be constzucted ' !

for ¢ ; and ¢ It is easily shown that the limiting vﬁiuea

ssl ss2°
of these sequences are of the form:
! 0, ‘ w PFL__, >}
" Cgei = . 3 . . . (3.130) ,
(3 + (3 - L ;)% otherwise - N

Thexefo7e, the limiting solutions for Sclove's (1968) estimator of B

~ s {per : [if Leg; > %

( ssi 4+ (3 - L

( ssl’ JP(8_ = a) + PO otherwise

eee (3.131)

© -
v - -0t

® A , . .
where'Pk.is a vector whose first (p - k) components are zero®*and
last k co nts agree with a. - ’

. -~ . ’ . ’ a
a 4 ‘ .
. . . ~ p . e !
It was noted earlier that any matrix A" which satisfies {(3.1)

.

is defined as a deneralized inverse for theﬁhgtrixad. Suppose that.

[

in addition to condition (3.1), the matrix A" satisfies:
N Pl - A

2

- Ataat=at o o - (3.132) ¥



(a*ay-=ata .. oA . (3.134)°
0 - 4{}"‘:} \

In this case, A* is said to be the Moore—Penrose inverse for the
matrlx A and‘ is denoted Hy A(p). In contrast to a'generalized

» .-
J.nverse, a Moore-Penrose 1nverse is um.que :Lf it exz.stsl. Lowefre,

(1974) utlllzed the concept of a Moore—Penrose inverse to present

a more ¢ general fam:.ly of e.stlmators def.med by: e F,'

-

. | .
\ b= (XX C)(P)x Y , - (3.135)
. where C is a symmetric matrix 'whi@ﬁ::m?n,utes with ‘the X°X matrix.
He showed that the class of estimators defined by (3.135). ing‘zlude‘su

=]
‘the rldge, shrinkage and generallzed 1east sQuares estlmagors by

ass:.gnlng C the values kIp," Qc—l - 1)x X and ~P A P resp,ectlvely"‘;v
B . ~&
, Lowerre (1974) em%loyed"b to derive “condltrons uppn C which en--

~ % N . a . . . . 1
sure that b is 'component-wise mean squired error admissible. ' In

<

v ) . . - . % .
additions he constructed an example to demonstrate that b might
, A E ’ \ .

*be quite different from B even when.all the eigenvalues of C are
. X : P - ) . -

positive_and close to zero. y R

4

° ¥ ¢ '

¥ ' ¢ ot C e
Golds.teln asud smith (197 f ,argued that James and Stein's (1961)

. shrlnkage estimator 35 wauld be 1nappropriate for use*¥n s1tuations

where.severe multlcolllnearlty between the explanatory vqllleS‘ |
! |

o
1

g exists. They noted that James and Stem 8 (1961) shrinkage esti— ,
. : ) > .

(l.) Se{fl/e, S.R., Linear Models, New York: John Wiley & Sons,

e

3

Inc., 1971, p. 14.




i
 mator was derived using the design dependent loss function.

T™his loss function weighs the deviations of the individual com-

ponents of the estimator from the omponents of the parameter

vector by the corresponding-eigenvalues from the X“X matrix.. As

Y

a result, the design ‘depentient loss %unction implicitly takes less

L

account of the loss correéébndiqg to those directions where esti-

»

. mation is mog?:inaccurate. In addition, qudstein and Smith (1974)

pointe§/out that nothing can be said about the accuracy of the

individual combonents-of ayg:

an alternative formulation of the shrinkage estimator which they™

Goldstein and Smith (1974) provided :
. : >

suggested addresses these problemsy ’ .
\ *
Goxgsteln and Smith’ (1974) noted the ex1stence of ad orthogonal

3

n X n matrix Q such that: .

'

A5 ] ;

- OXP -——- (3.136) 4
f [0 J : o 7 g

where A5 is a p x p diagonal matrix and 0 is a (n —’b) x p mateix 3

AN
- of zeros. It is assumedL}pr1gT136) that the i'th diagonal element\\\

of Ai equals the square root oﬁ.ki: Consideﬂ the following trans-

- formation of the.canonical form of the general model:

)
-

2 = QY y . @4/ ] e .
* ' ' .

. QX o +-Qc . . (3.137) .

/ ' ‘ ,. : .

In this case, Z has an expected value given by:

1}

RN -l
‘ Ali ag " for i = 1,2, %.1 P . ’
E(z) = - (3.138)
0 for i = p ﬁ l,p+*2, ...
and a variance-covariance matrix equal to:

Var(z) = Var (Qce. L. "

n -

¥/

S ot

ﬁ"%u L »«

—
ﬁfr&n ,..,, ay 1w¢ﬁ"\?’ ﬁ_: A

&



-

= Q Var(e) Q° | .
olip . % .. (3.139)

. Gy

Adopting ' Goldstein and Smith's (1974L‘fokmu1ation of the

. general model, tﬁg ordifhary least squares estiygator of‘u is given/ -
by: 4@ /

- *; » * _l *4 ’~
(X “Q7°QX ) "X “Q7%Z

1

- A'— P.;x’Qﬂz ‘o. .
SN /for 11,2, .oop .. (3.140)

x 1|

It was noted earlier that ill-cqnditiqpiné in the design matrix

has the effect of infla¥ing the Euclideapn length of the ordinary
: e

X " least squares estimates. 1In order to compensatg for this tendency,

\

Goldstein and Smit@ (1874) }ntroduced a class of linear shrinkage

-~

estimators of the form:. ] .

-

Ogsi ~ %i %i

1

- 3 : e
cr;*,k) z; - L (3.4

(3.!42)

"~ for k>0. Goldstein and Smith (1974)° introduced the adjustable

. .
factor k so that (3.141) de%}nes a class of estimators for a. In

order to ensure thatja is a shginkaée estimator, théy imposeéd the

GBi
following.cgnditiohs'upon‘c(Aig,k):

T oi) clxi&,O)zi corresponds to the ordinary least squares
\

estimator a;.

-

ii) For a fixed Aii, lc(Aii,k)] is' a continuous, monotonip,

]




¢

* . “‘ . . .
7, k . decreasing function of k as k increases from 0, .

. ' )

to 4w, '
“7 iid) c(A ¥ k) has the same sign as A 3 for all values of k.-

These three condltmns may be summarized by assum:mg that c(Aii,k)

satlsfles: _ — . ~
/ C(AiilO) = 1 ‘. to (3.143)
4 . A ; ‘
¥ 3 .
ar!d: 1 ' ) A ’ _ ' o )
=38 cOy?k <0’ . ‘ .144)- N
)‘i ﬁ . ' l o ’ |
for all non-negative ° %Iu% of X. " - ? : :
v b :’ 0 ’ \

(2

"Goldsteid and Smith (1974) provided the following theorem

e p regarding the mean squared error functions of the individual
N . -~ ’ v
components. of 0agt [ . |
R4 ¢ Theorem 3.7: For each component i, there ex1sts a k>0’

-~

-such that o i has a smallef mean squared error than a, .

GS
\) Proof: By definition, the mean' squared error function for ®egi

N ‘ l
is given by: ' o
- _ 2
. MSE(&Gsi) E(Cizi ai)
S~ ’ ;
. - _ % 2 . 3 _ 2
. . E(Qizi cjh %)t ¥ (c.x. a; - a;)
[N \ N - 2 i
] = ¢y V'ar(z)t-a(c)\ 1)
“ = c.202 + a.z(c >\ L 3 1) . (3.145j
. . 1 1 ;
The variance for ey is given as (3.67). Therefore, ‘aG'Si is mean
squared error admissible if: A
:‘2 Pl [
2 2 2 I 2 o” . - I
c; o toa; (ci)\i 1)” < T & (3.146) i ‘

1

AT




- et st o o

_‘_

% A | ’Hc(xim-c(x*i&y'»

Invoking (3.143) and (3.144), 1t can be seen that the ri hﬁn.pnd

~

F side of (3.147) is p051t1ve. Therefore, there exlsts a posiilve

k such that the i'th component of a has a smaller mean'squared

GS
’ error than aj. ’ o ) ' : S

-~

© o

It was noted above tﬁat James and Stein's (1961) est}mator was

o
K3

; . constructed using a weighted meaj squared error function. ®As a

result, there is no guarantee as to the performance of the ihdividual

-

components of ®gg° In contrast, Theorem 3,7 provides for the mean

)} : -~

squared error admissibility of eath component of dage Consider the

estimator of ¢ derived using Goldstein and S ith's (1974) estimator

’ O‘f‘ o . ' \ ' ;
BGS = , . ‘ (3.148)
) ( : - . «

:where: o

. 3 .
) Gggi T c()‘i k) z; . (3.149)

The  component-wise mean squared error admissibility of BGS is pro-

vided by the theorem: ;};

Theorem 3.8: For any 8, there exists a k>0 such that

aach component of Bgé‘has a smaller mean squar;i.error >

b4




L 4

‘ . . . ' |
than the corresponding compqnent of the ordinary leas®

séuares egtimator B8, . \ -

The proof of this theorem is an extension of the proof of Theorem
3.7. : L '
v ¥
Goldstein and Smith (1974) examined a number of possible
choices for c(xii,k). For example, they considered the function:’

3

»
——— e

"

c(xié,k) A Tk . S (3?159{ N
(3.150) satisfies conditions (3.143) and (3.144). However, this
function has an effect opposite to tpat désired. (3.150) has ‘the

" most effect when Ay is 1?rge and the least effect when A

il e t

J

Goldstein and Smith (1974) argued that the simplest shj Y
. -\ . N

\ s T S pgate SR AT
. s

is of the’ form: ‘

3
A

C(Ai},k) = T+ k- . . . (3.151) -
i .

’

In this case,
- Aii
@gg; = X;’?‘E z, . {(3.152)

LY

‘—lilf ‘ .
agg T (A + KI)TRPXQZS (3.153)

The corresponding estimator of g8 is given by: . ' .
lP’X‘Q’Z .

o

BGS>= P(A + kIp)

(PAP” + kIp)_lx’Y

H

= (X°X + kIp)'lx'Y

~% te - .
:ka . ’ i’ . (3.154)
'}i{‘}' '

1

\
o - :
It can be geen from (3.154) that the ridge estimator may be




refression. Suppose that Eij denotes the (i,j)'th element of the

. the esﬁimatiow is the most inaccurate. Goldstein and Smith (1974)

B . i f
been provided in the statierti‘cal literature to compare the us\of
a

{ -

1 N
[3 .»
€ . . h

’

, viewed as a_ subclass of the shrinkage estimators defined by (3.148)

DA :
and (3.149). Goldstein and Smith (1974) utilized the/ir formulation
!

of the shrinkage estimator to provide a greater inéight ’into ridge °

thogonal matrix P. Goldstein and Smith (1974) showed that the
largest potential decrease in the mean sq}zared error function occu;s. :
when 'Pijl i#’large and X; is small. This is the situation when'
B; has large components ,in the c8nonical space in directions where ' ‘ ~.\
\
argued that this is 'a justification for the claim that coefficient

estimates with incorrect signs when k equals zero tend to change
* ’

to the correct sign as k increases. j
i s . .

!

- Several numerical examples and .glmula"cion experiments have
least squares, shrinkage aréd other biased estimators. Mayer a .
Willke (1973) utilized a mélt’ifactor problem to compare their
'deterministically’ and 's%:dchas;tically' shrunken estimators with
the riége estimator. Hockfﬁ. g, Speed‘ and Lynn (1976) employed the
pitprop data- described by ;Jeffers (1967) and the air pollution
data provided by McDonald z';ndbSchwing (1973) to compare their itera-
tive shri‘mkage estimatorq with thé ridge regression estimator. They‘
found that the’ solutions produced. by their iterative‘ shrinkage ‘ . K

estimators had significantly smaller R2 values than the co:respolnd-'

ing ridge regression solutions. Gunst and Mason (1974) provided

1




' . > . -

a detailed series of simulations-to evaluate the performance of

© -

the ordinary least squares, generalized least squares, ridge and

i
N
James and Stein (1961) shrlnkage estimators. Based updn the re-g
. \

sults of the simulatlons, they concluded that the James and Steir’ s

¢

(;961) estimator 1s~substant1a11y better than the least squares

?

\ é - . ’
estimator only when -the X°X matrix is nearly orthogonal. In addition,

— 3

Guﬁséiand Mason (1974) found that the ridgelesti@ator almost alwrys
1)

yielded a smaller mean squaréd error .than James and Stein's (196

estimator., Another series 05 simulation experimentd comparing {

» : - »

the efficiencies of different ridge~and shrinkage estimatoys was
" s

- described by Dempster, Schatzoff and Wermuth® (1977). 1In addition

to the simulation results, the comments 0f a number of reviewers

’

of Dempster, Schalzoff and Wermuth's (1977) work wefe ¥uﬁlished.
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. ridge regression prepcedures proposed by Hoerl and Kennard (1970a%

18
Chaptex 4
\__ Criticisms Of The Ridge Estimai:_o'z;

»

) ’ .

~

_ 'Coniffe and Sjone (1973) prog&ed an ext;nsive critique of
the ridge regression procedures outlined by Hoerl and Kennard (1970a).:
A number of mat}{ematical and s{tatistical objecti'ons‘to the procedures
which Coniffe and Storie (1973) felt limited the usefulness of the
estimator were.presented. 'Their most serious jection concernéq
the mear; squared error admisgibiiity of the ridge estimatas cal-

_culated from sampiéd‘ data. Hoerl and Kennard (1970a) demonétrated
the existence of a;n intervaL for k depéndent upon o and 02 such

't};at{ the.ridge estimator.is mean squared error admissible. 1In
additipn,) Hoerl ;pd Kennard (1970a) .suggested several précedures’
for choosing appropriate values of k. Coniffe and Stone (1973)
pointed out that Hoerl and Kennard's (1970a) arguments assuine/d

« that both o and 02 are known quant;ties. In re'ality, these para{metérs‘

.must be estimated from the saxﬁ?led data. Therefore, Coniffe and
‘ ?

Stone (1973) argued thatjthere is no guarantee.'that any of ‘the

will produce values 'of k wbich‘lead to simproved paraﬁ>ter estimates

in any practical problem. %

. Inorder to illustrate their critidism of Hoerl and Kenndrd's . °
f(l970aMred error admissibility condition, Coniffe and ‘

Stone (1973) considered the estimation of the mean for a population
of normal variates. Suppose that .the pépulation mean and variance

are denoted by u and 02 respectively. A sample of size nyfrom the

population is assumed. First, cBhiffe™and Stone (1973) considered

-




.as an estimator of p. They noted that the mean squared error of

T |
1

- the sample mean: ‘ ‘ L L .
- n - . .
x=1 I x . “(4.1)
izl ) ' ‘

as an estimator of y. Singe the sample mean is an unbiased, estimator |

of u, the mean squared error of X is given by:

MSE (x)

E()-(' - 1) 2
; g

]

= 02.7n . (4.2)

"

Coniffe and Stone (1973) also considered kg_t Where:

1 . ‘

kK = (14 o2/(nu?))” (4.3)

kx is given by: ' ' .

-

E (kx - u)2

-MSE(kEi

k2var(%) & (k - 1)2p2

- 2
= qu 02/(nu2

[}

+ 52) (4.4)

i

provided that the tfue value of k is known. Utilizing (4.2) and

3

(4.4), kx 'is mean squared error admissible if and only if:

«
""nzoz/(nuz - 02) < oz/n . 4.5)

Condition (4.5) is satisfied for all values of y and n if -02>0..

Therefore, Coniffe 'and Stone (1973) concluded that kx is a mean

s

[

squared e:‘:'iror admissible estima—t:or of u whenever 02>0 and k is

known.
‘ !
. 4

' Intlpight c>\>\the above, Coniffe and Stone (1973) suggested that .

)

it might seem reasonable to consider an estimator for u of the

for[n g




> o . . 100
= x(1 «+ sz/(nxz))-l_, 7 : (4.6)
whenever the true value of k is unknowr.. 'However,l Hodges and
| Lehmann (1951) showed that x has the smallest mean squared' error
of all estimators of u wl'\xeneve'r both 02 and ~02/p2 are unknown.
As a resu}lt, no estimator of the form (4.6) can be mean squared
error a issible if k i5 unknown. In‘*the same manner, Coniffe

s .
and Stone 1973) argued that Hoerl and Kennard's (1970a) admis-

sibility condition is only valid if a and 02 are known quantities.

Most of the other criticisms raised by Céniffe and Stone (19732
concerned the stabiliéy of the ridge estimator and the criteria
proposed by Hoerl and Kennard (1970a) for ct}oosing appropriatg
values of k. Coniffe and Stone (1973) noted that ridge regre's\sion
cionsists of inflating the diagonal elements of the XX matrix s@
that é;'é; is less than é‘é Hoerl and Kennard (1970a) argued
that since(ghe coefficients of the least squar’jes solution are often N
inglated; the ridge estimator should produce better estimateés ;f
B than the ordinary least squares estimator. oniffe and Stone
(1973) rejected this .arguement pointing out that unless one knows
which componex_uts of 8 are overestimated and which are undér"éstimat‘_ed;
there is no reason to b‘elieve that any components of the ‘ridge \
estin{ates should be closer to the true parameters than the cor-
responding ’components of the ordinary least squares estimates. 1In
. addition, ;hey a,rg){ed that it is not self-evident that all ‘the

,criteria brOp sed b\y Hoerl and Kennard (1970a) for choosing

!

8
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N

some"po‘éitive values of k. Coniffe and Stone, (1973) ardgqued that

-

. \ \ e o

L

a value of k from a tidge trace can b_e_simul‘tan.eousiy, satisfied

in any problen. > AN
[ 2

- -
- 1
Z )'

Hoerl and Kenhard (19‘705() ‘empha‘sized'the property of the

T dge‘esti;mat/ot that the ridge estimates tend to stabilize for N
~ . i

<

this tendency is a direct result of the form of the ridge estimator

and ot a prop.érty -indicating that the ridge estimator is superior

t¢ the ordinary least gquares estimator.  To /maké thei_r point, they-

" considered the case where the X“X matrix is an identity matrix and
¢ . , .

so perfectly conditioned. Invoking (2.3, the ridge estimatoxr f_dr

this X’X matrix may be written as:

. < % _ N k( - -1 -1 -~ '. PR
Bk = (Ip + X°X) . ) B8 X
=a+0te . (4,79
"In this case: -
~% - : ‘ ~ ,

dk

]

It can be seen from (4.8) that the ridge estimator will change more

'slowly for increasing k even in the case when the XX matrix is

per fectly, conditioned. Therefore, Coniffe and Stone (1973)’1‘concluded

14 '
that the tendency of the ridge estimator to stabilize is_ the result

of the definition of the estimator and not the ill-conditioning in

the data.

[ ’
o -~ »

Finally, Coniffe and Stone "(1973) pointed out that an ill-

conditioned X°X matrix indicates that the data set is in#dequate

i .
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¢

or that some of the' dependent variabies are redundant. hxstead
o

of us1ng,a biased estimator such as the ridge estimator, they
suggested that it would_be more proper to collect more data or
drop &ny redundant variables. Coniffe and Stone (1973) pointed

to the extreme case where one of the eigenvalues for the XX

o=

matrix is actually zero to justify this assertion. It would

not be proper to utilize' the ridge eeti{nator in this situation
since the ridge estimatorlwould re-introduce the effect o‘f an .
eigenvalue known Q)é zero into the estimation process. Howevef, \
Coniffe and é\t’bne‘ (1973) pointed out that the ,smallest‘eigenva'lue |

b N
may not be exactly equal to zero due to errors in the measurement

of the independent variables. As a result, al}l..the eigenvalues ,

K

would be incorrectly assumed to be non-(eroa and ridge i‘egress'ion

b

& applied. ’ .
- ' N ‘ b o N o

? .

Smith‘ and Goldstein (1975) responded to Coniffe and Stone's

(1973) criticisms of the ridge estlmator. Thef agreed that mean

“

squared error functlon arguments f0£ B}: can often be mlsleadlng.
n Sm1th and Goldstein (19'@‘5) emphas:.zed that one should be aware of
when to apply the ridge estlmator to shrink the estimates of the
coefficients and when. not to. However, they pointed eut that a.va'lue
for k which improves each component of the estimates can always be
found. The mean squared error admissibility conddition presented by‘.

Hoerl and Kennard (1970a) gives a sufficient condition for such a

value of k. i(

o

e
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The condition under which the greatest impfoveﬁeht in the
mean squared errors of the ridge estimates can be expected was
;resented by Smith and Goldstein (1975). The flean squared error e

for the ridge estimator of Bi can be .expressed as: -

ﬁ* - A,“* - 2 .
MSE(LBik) E(Bik - Bi) '“ - N ] .\
P. ~% L2k * B -0
=E(I Piylog - o™ o . (4.9)

j:l -

Smith and Goldstein, (1975) employed the form of the cancnical ‘model

L
3

"deflned by (3. 137) to 51mp11fy (4:9)." Invoking'(3 138), (3.139)

and (3 '152), the mean squared error of the ridge estlmate of Bi may

be rewritten as: N )

\ LN >

~k _ P “n. )
MSE(B,)) = jﬁl Piy (d )

p-l p 2
+2 I, I kPljplm]m“

. jal m=j+1 (Xj + k)(xm * K "(4.10)

T ) | .
Therefore, it follows that:

) . ~n _ P ¢ 3 b
, d_ " MSE(B},) = -26° D% 2 L - g

- o0 dk k=0 j=1 J J . ‘ D~ |

As a result of (4.11), Smith and-Goldsteiﬂ (1975) concluded that TN '
& . .

the greatest potent1al for 1mprovement in the estlmated coeff1c1ents

?
using ‘fhe ridge estimator occurs when P, 19 is large and A small

Further, they argued that k w1ll have 11ttle effect upon the esti-

mated coefficients when Aj is at all large. They argued that the

ridge estimates of the coefficients should be close to the ordinary

~ o —

_least .squares estimates in this case. , ) : o
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Smith and Goldstein (1975) argued. that k should be cénsid@red

as a function of the XX matrix instead of Y. They suggested that

~ [ ]
the mean squared error function for the ridge estimator may be
. A

viewed as an expectation conditional upon the X°X matrix. In
) 4 °

this case, k would be a cons;ané with resﬁeét %0 the expectation
opgrator. » Smith and Goldstein (1975) rejected Coniffe and Stone's .
(1973) assertion that ﬁoerl and Kennard's (19703) proof of the
existence oflmean squared error admissible ridge egtimators:

requires o and 02 to be known. 1In fact, Goldstein and Smiph (1975)

o

recalled one of Hoerl and Kennard's (1970a) original critefia for .. 7~

choosing a value for k using the ridge trace to suggest an algorithm-

4

for selecting k.’ Based upon Hoerl and Kennard's (1970a) argument
[t ’ h

that the ridge trace should resemblé an orthogonal system near the

value of k cﬁoosen, Smith and Goldsfein (1975) proposed that k

be selected to satisfy:.
1 2

2, (X0 g = (1 r 0)TL . '(4.11)

.Smith and.daldstein (1975) suggested that the analysiswof a ridge

)

» 3 » K] ’ 'a y.r .
trace may be viewed as a numerical inspection procedure for" solving

- (4.11). In'practice, such a procedure may“or ﬁay not give reason-

able results. )
# Smith and Goldstein (1975) accused Coniffe and Stone (1973)
of being naive in recommending that mpre data be collécted or de-

pendent varigbles dropped when the data set is inadequate rather o

‘than utilizing a biased estimator such as the ridge esékma;or. Smith

4
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and Goldstein (1975) noted that collecting more data should almost
iy

Y

always be preferable. However, they suggeéted that data sets are

often encountered for which the collection of more data is not

9
5

practical. In the same manner, Smith and Goldstein (1975)

noted that problems arise for which it is necessary to estimate
the parameters for the full model. Smith and Goldstein (1975)
asserted that 'ridge regression is preferable to ordinary least

squares estimation in precisely these si}uations.
Later, Coniffe and Stone (1975) replied to Smith and Goldstein's
(1975). discussion of their critique. In addition to restating their

]

original criticisms of ridge regression, CSniffe and Stone (1975)

4 noted that Smith and Goldstein (1975) did' not reject their arguement

%pat Hoerl and Kennard (1970a) have not shown that any specific
algorithm for choosing k necessarily leads to a mean s&uared error
.admissible estimator. Furthermore, Coniffe and Stone (1975) argued
that k is a fﬁpctiqn Sf Y irreéardless of whether it is estimated
by ;2/;12 or selected using a ridge trace. They pointed out that
condition (4.11) cannot be satisfied by any’ finite value of k and
suggested that Smith and Goldstein (1975) had misunderstood the {r
stability crlterla propoged by Hoerl and Kennard (1970a) Coniffe
Kﬁﬁg Stone (1975) obse 6/5 that Mayer and Wlllke (1973) raised ob—'

jections to the ridge estimator similar to ‘theirs.

(

-
-
L

Bac9n'and Hausman (1974) outlined several"difficulties inherent

g 4
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in ridge regression in addition to those mentioned above. They
noted that the value of 02 required to estimate the variénpes of
-the ridge estimates must be estimated using the ordinary least

séuares estimator. Bacon and Hausman (1974) pointed out that no

v

direct'meanigg can be assigned to k and that the algorithms for

choosing k are imprecise. In addition, they noted that ridge

regression is only ,suitable for models whgse error structure

can efficiently be-handled bytthe ordinafry least squares estimator.

In order to circumvent some of the difficulties mentioned
P . .

above, Bacon and Hausman (1974) employed Chapman's (1964) minimum

3

mean squared error estimator to treat the biasing parameter k as

a variable. k was assigned a prior mean and variance. Bacon and ‘&

Hausman (1974) noted that more general error structures may be
handled using Chipman's (1964) estimafé; if a coyari:;ce,matrix
isuassumedgéfr the unobservableldistuqsances. gacon‘énd Hausman
(1974) also pointed out that the choice of the k for the ridge

estimator in their formulation does not depend upon the estimation '

results But rather upon prior assumptions which are known before the.

data is collected. ’ '

Vinod (1976b) described several problems associated with the

ridge regression procedures outlined by Hoerl and Kennard (1970a'. '
He noted that it was difficult to utilize the tonstant k to monitor
the degree of multicollinearity in any particular problem since it

has an infinite range: In additigh, Vinod (1976b) mentioned the
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property first pointéd out by Coniffe and Stone (19¢3) that the
stability of the ridge trace for incréasing.k reéul 8 directly
from the form of the estiﬁatof. In order fo alleviaée these two
problems, Vinod (1976b) dntroduced a new scale for the horizontal
axis of the ridge trace which he called the multicollinearity_%l-

lowance. He defined the multicollinearity allowance by:

P A,
% - (4.12)
1

m=p - L
i=1

The multicollinearity allowance takes on the extreme values 0
when k equals 0 and p when k is set to +®». Vinod (1976b) inter-
preted the multicollinearity allowance as the assigned deficiency

in the XX matrix. . . ' /j

Unlike the k scale, the multicollinearity allowance scale
.. does not have the property that the ridge trace appears more

stable for larger m even if the data is completely orthogonal.

1

This can be illustratéd by assuming that the X“X matrix is a P XPp

identity matrix. 1In this case:

P - v - "'l _l "
By = (I, +k(X"X)")7" 8
P B
. b g | YOS
=@+t a ' (4.13)
soufha : \
' o -2.3 - T
a B, =-(1+k°8 ‘ S (4.14)
dk .
and:
AL
d m= d P i
ax ak - . y—<%%) .

(4.15) .

f
)
NO&
S
+
r
N



la8

» -

Therefore, the rate of change in'the,rfdge estimator with respect

to m is given by: A

~*%

dm
= - B/p . %(4.16)
which is independent of m. It follows from ?1.16) that the ridge
|

N . : N . N . 4
trace will not necessarily stabilize as m increases.

oo V§nod (1976b) argued that the use of the m scale should

lead to ridge traces which are more easily‘intérpreted than those
produced using the k scale. He illustrated this conjecture using
two economy of scale functions which exhibited serious multicol-

linearity in their exogenous variables. *

Obenchain (1975b) reviewed a number of the properties of the
residuals wﬁiéh result froq'the‘use of the ordinary least sduares,
weighted least squares ‘and biased estimators. He examined various
regidual optimality properties. Obenchain (1975b) noted that, by
definitioﬂ, the ordinary least squares residual vector is the
shortest. Therefdreé%?e argued that it is intuitively obvious

that no improvement in the mean squared residual error can result

from the use of a ridge estimator. -




Chapter 5 ‘
_ Generalizations Of The Ridge Estimator

Hoerl and Kennard (1970a) derived a sufficient condition for

~%k
the mean squared error admissibility of the ridge estimator Bk'

‘

They showed that for any constant k which satisfies:

o2 .
0 <-k<—2- ‘ (5.1)
- ai ’

. —
for each component i; the mean squared error of Bk,is less ‘than
the sum-.of the variances of the components of B. Hoerl and Kennard
. ~%
P (1970a) proposed a generalization of the ridge estimator Bk based

upon inequality (5.1). 1Instead of choosing a single biasing parameter

'k, they suggested the use of a separate ki corresponding to each

component of B. As a result, the generalized ridge estimator

< : becomeg;w
L n ok . -1.. ~ :
. v BT (R) = (X°K + K)“ix“y (5.2)
where K is a'diagonal matrix with non-negative diagonal elements.

In some -situations, it will be more convenient to consider the

canonical form of the general model:
Y = XB + ¢ !
. .
=X o+ e , (5.3)
*
where X and o are defined in (2.20). Adopting the canonical form '
of the model, the generalized ridge estimator becomes:

*_ x -1 *
(X "X + K) X

A* .
o (K) Y

1

(A + K)Tlx*‘y . (5.4)

Goldstein and Smith (1974) noted the existence of an orthogonal

matrix Q such that: ' . ) ((




. QxXp =

where AY is a p

110 ' ' S

A} o

- - % adf

0 (5.5)

y

X p diaéonél matrix and 0 is a (n - p) x p matrix

of zeros. The i'th diagonal element of A; eguéls the square root

of Ai. Using the orthogonal matrix Q, they derived a more explicit

~% .
form of the estimator a (K). Consider the{following transformation

of the canonicalﬁform of the general model:
N

Z'-'.

Adopting this

generalized ridge

-~

*
o (K)

"where:

Combining ¢5.7)
~%
o (K) is of the

~x
ai(K)

Properties
derived for the

~%
~ B (K)

*
QX o + Q€ .

N . I3
LS

QY

(5.6)

.

form of the general model, Hoerl and Kennard's (1970a)

regression estimator becomes:

*J - * -1 *J -
= (X 070X + K) "X Q72

= (A + Kr'lx*‘o’z . 4 " (5.7)
¢ b
= P°X°Q~° s
31 '
= [fA_ . (5.8)
Lo

and (5.8), it can be‘éeéggkhat each component of
form:

(5.9)

3

analogous to those for the ridge estimator may be

generalized ridge estimator. Since:

lX'Y ’ .

|

(X°X + K)

(X°X + K)'l(x’X)E

(r, + xx0H7E

1t

(5.10)

v .

~% . *
it can be_seen that B (K) is. a linear transformation of the ordinary

'

»
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least squares estimator B. The expected value of B (K) is given
by: - . \

% - - "l -1 -
E(B (K)) = (Ip + K(X’X) 7) "E(B)

-1

n

(1, + K(x“x)T1)"1g . (5.11)

E &*
Therefore B (K) is & biased estimator of B if any diagonal element

' * (] * A*
of X 1s nonzero. The variance-covariance matrix for B (K) followg

/

directly from the variance-covariance’matrix for the least squares

estimator:

Var(g*(K)) =-Var((Ip 4 K(x’x)'l

)L
02(1p + K(x’x)‘l)‘l(x'x)“l(xp » KX L

n

.
R

02 (X°X + K) "2 (X°X) . (5.12)
A sufficient condition for the mean squared error. admissibility

\ ) :
\ of the generalized ridge estimator is provided by the theorem:

\~ Theorem 5.1: Suppose that for each component i:
2

\ o

. 0 < ki < a? ' . (5.13)

\ . . i Q
. T% -

\\ then B (K) is a mean. squared error admissible estimator

\ of B in (1.1). . )

Proof\: Since orthogonal trapsformations preserve lengths and:
0 \ -~ '

\\ -~

¢ 8" (x) = pa” (k) . (5.14)

"it is ;'fficient to show that ;*(K) is a mean squared error admis-
sible eixémator of o when (5.13) is satisfied for each component i.
Consider &pldstein and Smith's (1974) characterization of the general-

ized ridge\estimator. Since the unobservable disturbances are assumed

.
) \ /._.,/\
- 4 B
\ ' ‘ '
LY ' LS

o
s
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to satisfy conditions (1.2), the expected value and variance-

covariance matrix for Z are: ' e 1

<

E(2) = E(QX o + Q) S i

= QX"a + QE(e)

G

;{Aiai‘ for i = 1,2, ... P | G5
0 ,fori=p+1l,p*2, ...n ’
and: |
Var (Z) = Var (Qe)
= Q var(e) Q7 v , | }
= o'1, - (5.16) |

respectively. By definition, the i'th component of the mean sqﬁared

, /
- -~ s (] /
error function for a (K) is:

E(ar (K) - a.)%e 1 E Yz - das - kea,)2
i i i %1 ii ivi
(A, + k.)
i i
1 2 2
= (A,vVar(z,) + kia})
(A, + k.)2 i i ivi
1 1
AT . '
v 2 e? r x2e?) L (5017
(Ai - ki)z i A i~1 B

Lﬂ

/o, _

. ~
Therefore, the mean squared error function for o (K) becomes:

~% ~% bl 3
MSE (a (K)) E((a (K) - a) " (a (K) - o))

P ~% 2
'z E(ai(K) - ai)

i=1 . ' -
) ' 2 2 2 )
P A,07 + kia:
= 3§ & S ; . (5.18)
] i=l (Ai + ki)
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,Compéring (2.53) and'ks.is) it can be seep’that the ‘mean squared
erfor function for ; (K)‘or E*(K) is analongs to the corresponding
function for E;. Invékihgwsiqilar arguemeﬂté’;s were employed in
the proofjaof Theorem 2.4, it can be shown that ;*(K) is mean squaréd
error admissible when inequality (5.13) is satisfied for each
'component i. . |
' .

Banerjee‘éndJCarr (1971) proposed a characterizati®n of the
generalized ridge estimator similar to the one they gave for E;.

They suggested the augmentation of the existing data set (YX,X)

with the data set (YA,V). .V is an arbitrary‘p X p design matrix B
satisfying: +\
V'V = K . ‘ (5.19)

YA'is the corresponding p x 1 vector of dependent variables which
’ \

In this case, the

if observable woulq\have been included in Yx.

augmented model becomes:

Yx X ..
—-_—-] = |——|B *+ ¢ . {5.20)
Y_A v &

An unbiased estimator of B based upon the augmented model (5,20) is

/

°

given by_the ordinary least squares estimator: . ~
5 = , - _l - - ’ ”
Ba (xlxa-VV)‘ (X7Y, + V7Y,)
= » —1 - Xy *
(X’X + K) (XY)§+VYA)
A* : -
=8 (K) + (XX + K) vy, . (5.21)

_~ * '
The generalized ridge estimator B (K) corresponds to the estimator
of B obtained by dropping the term involving YA‘from (5.21)., - As was

the case('for the ridge estimator,%laanerjee and Carr (1971) argued

L3

i
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A )

that the relative accuracy of E*(x) ehould be compared with it's
corresponding unbiased estimator EA By repeatiﬂg the argiments
employed in the proofs of Theorems 2.2 and 4.1; it can be seen that
B (K) is mean squarjg/érror admxss;ble when .compared with BA
° . ¥

Vinod (1976b) observed that the form of the ridge trace proposed
by Hoerl and Kennard (1970a) cannot Se applied to the generalized
rid§e estimator. It &ould not be practical to plot the estimated
parameters against the different biasing parameters k Instead, _
Vinod (1976b) suggested that a rldge trace can be utlllzed by
modifying the multicollinearity allowance seale defined by (4.12).
Suppose that avggale is formed by replacing k in (4.12) with the
constants ki which correspond to the different componen : of ;.

The resultant scale is of the form:

Xi 4 w
R . . (5.22)
A A .

Il 0

m=p -

- i=1

Vinod (1976b) put forward several procedures for &lotting the
generalized ridge estimates against the modified multicoifinearity
allowance scale. The criteria are designea to monitor the relative
stability of the parameter estimates,as‘the ki!s change.

N

Hocking, Speed and Lynn (1976) considered various procedures

’

for calculating values for the ki's directly from the data. They
noted that the mean squared error function (5.18) is minimized

thn:

.
v b ey e om reea . e et v R B Lk

&

' chm——
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S (5.23)

‘Therefore, it would seem reasonable to estlmate approprlate k

by substltutlng suitable estlmates of oy and 02 1nto (5.23) . Hoerl

(-4

and Kénnar@ (1970a) proposed subst:.tutlng the ordlnary least squares

estimates gf o, and 02 into (5 23) . Let k denote the estlmatd‘rs'

i(0)

- ~ »

of ki obtained by subs:.tutlng ai, and o2 into (5.23). ki(O

" the estimator kh which Hogrl, Kennard and Bal"ﬁwin,,_‘(1975) considered

. . .
for the biasing parameter in the ridg .estimator Bk. - Due to the

) parallels

-~ o~

tendency of a’a to over-estimate.a”a, Hoerl and Kennard (1970a)
argued that an iterative procedure could bé‘ emp‘JI,oyed to obtain better
estimates 6f the k.'s. ‘ Therefore, they suc}gested that the i'th
ocomponent of the generalized ridge estlmato\; obtamlned using k, 1 (0)
should be utilized to produce an improved estimate of k Hoerl and

Kennard (1970a) recommendegi repeatlng this procedure until the esti-

mates of all the- ki's cbnverge. Let K

A ‘ \
(5) denote the p x p diagonal

\\
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matrix whose i'th diagonal element equais the estimate of ki

corresponding: to the j'th iteration. The general formula for

. Hoerl and Kennard's (1970a) iterative estimator of ki becomes:

b gi for 3 = 0
a2 - d g
ki(j) - ‘ 1 A \ °‘ (‘.5.24)
g2  for j = 1,2,3, ...
o~ - 2 P
@ K-y - o
' where: ‘ SR
‘ ) = e Ky -
. o« (Ki (4) (5)) % - (5.25)
. £ K i Q.

| R . YL kY 'g
Brown and Rock (1975)»indicated a method for choosing the ki‘s

\ ~ in such a manner as to minimize an estimate of the predictive mean

»

.# ~
. . . T, ., ‘e . . ) .,
- generalized ridge regression estimator and an estimator due to

3 P

P “ Bhattacharya (1966) stemming from Stein's (ié%O)Vpgpposals. He

: considered the generalized ridge regression estimator which is

2, ' . 3 ( ' 3 L)
3/,,/ obtained when the ki s are assigned the values: f
A IR | | |
ki TR . - (5.26)

—~

1 .

where the Ai's are Stein-like shrinkage factors similar to those
described in Chapter 3. A heuristic modification of,Bhattachaixgli
(1966) estimator which is analogous to the generalized ridge re-

gression estimator for decreasing Ai's was aldo analysed by Vinod

ments to rank the mean squared errors for the various estimators

were reported.

b squared érraﬂﬁ Vinod.(1976a)/éxamined the rela%ionship between the

(1976a). In addition, the results of a number of simulation experi- -

-
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_Hemmerle (1975) presented an explicit solution for the iimi;;ng

-

values of the generalized ridge estimator using-ﬂoegl and Kennard's

N

' ' e N
/(1970a% iterative procedure. In order to simplify the\notation, the

[ ]
canonical form of the'model will be considered. UQing the results
" “* ; - 2 \ m -
above, o (K(j)) may be expressed in terms of the ordinary least
. "" o
squares solution as follows: .
: -1 *. .
= (A + K,. ‘Y
SN = A+ kK, ) " xNa v

(3)
= (A + K

1,3 N\, (5.27) -

_ (5)) o~
Le£ o i(3) denote the i'th component of « (K(j)). Combining (5.24)

R ~%
and (5.2?), the i'th component of o (K .)) becomes:

(3 ..
~ R Ai - -
O, jay = ° o,
i(3) Ai + ki(j)
where: : . o, \ .
T2 o
bi(j) = ~% 1(3_;) 2 H .-‘ N ’ (5.29)‘ T
Q. ,. & + O '
1(3‘1) e - . ..
i . s "
Adoptlng the methodology of Hocklng, Speed and Lynn (1976), bl(J)
may be éx%ressed as:” & .
- 272
N i b. o
e . l()“l) 1 4
i) T g 223 . - S (5,30)
. g a., + O
i(i-1) i T
= ) ’ > 'i
Let L denote the ratio 02/(Aiai). In this case, bi(j) becomes:
' 2 . -, e
b.,. " '
N - i(j3-1) , -
b. . - . P . - (5.31)
i(3) b 2 + L . v

. o i(5-1) e
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The convergence theorem from the Appendix may be invoked to
P . .
find the 11m1t1ng values of b, i(5) and hence a limiting solution for

Hoerl and Kennard's (1970a).iterative generalized ridge reg'res»sipn‘L

-

estimator. Hoerl and Kennard (1970a) argued that initial estimates

of the ki's should be obtained by substitutinq ordinary least squares

2 . . —

estimates of ui‘hnd o 1nto (5.23). In this case,
“* _1‘

ai(o) = (‘1 + O /(iiai)) ai , ‘
= (1 + L)_lai : ’ ' ~ (5.32)

" 80 that b, i (0) Should be assigned the value (1 + 9 Applying the

convergence theo¥em from the Appendix, it follows that the limiting

a

N {o if L > 1}

values of bi(]) satisfy: - . o

b,

i . ‘(5.33)

2 + (3 - L)s otherwise

»

Comblnlng (5. 28) and (5. 33) ,‘1t can be seen that'thd‘llmltlng values’

of the i th component of a (K(J)) are given by:

“~%

-

0
[o TR : 7 -~ ’ -
. { (3 + (3 - L)i)ai _ otherwise ¥ .

0

if L > &

.

Hemmerle (1975) expressed his solution for- the limiting vilues
of Hoerl and Kennard's (1970a) iterative genefélized riége.estimator
in a simpler ‘form than (5.34). Instead of determining the limiting

- o ’ -
’ - &

values of bi(j)’ he examingd the behavour of the ratios:

T o ~
= lak 3 .
1) T Ay ) )2
o 5 -

=z - c
AiPs (5-1) %4 '



= 1 ) ' (5.35)

3
bi (5-1) N

for all j greater than or equal fonzero. In (5.35), it is assumed

that bi(;l) equals 1.so that ei(O) becomes L. Comparing (5,35) and
(5.33) °it can be seen that: | ’ ]
. ~ - . |
*i (3) i) %4 u ,
(1+ e, La, . . " | (5686)

1(3')) i

. ' ~% , .
Therefore, the limiting values of ai(j)’ bi(j) é?d ei(j) satisfy
the relationship: _

o = b &,
1 .l a

0

ok -1 -~ . o '
(1 + ei) oy . (5.37)

The long run values of ei(j) may be faund by directly applying

(5.33)., Consider first the case where ei(O) or L is greater than

0.25. Since.e.,.
i(3)

* .
zero, it follows that ei is infinite: In the case where ei(o)’is

. ‘ x
is related to bi(j-l) by (5.35) and bi equals

less than or equal to 0.25, substitd%ihg (5.33) dinto (5.37) gives:

Liente=p+a-n?
- - 3 . ‘
. or:
*.‘. ’ ) ; ‘39
e, 3 1 ( (1 - 2ei(0)) - (1 - 4ei(0)) )y . (5.39)
e. .
i(0) :

- Therefore, Hemmerié's (1975) form of the solution for the limiting

< M ° -~ * . . f
values of the individual components of a (K(j)) is given by:

~e - [0 ' if e, =L > 4 ' -
x o .
{ x -1~ o) - (5.40)
A (1 + ei) a; otherwise - C
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where e* satisfies (5. 39) Based upon this formulation of the

limiting values of the generallzed rldge regression estlmator,
° Hemmerle (1975) proposed a test - of éhe hypothesis that oy equals

zero by comparing l/e, variate.

i(0) with a F

l1,n-p-1
The explicit'solutiohéfor the limiting values of Hoerl and
Kennard's (1970a) iterative generalized ;idge estimator was developed
by Hemmerle (1975) without regard te the resulting increase in the
residual sum of squares. He noted that in most pfacti&al applications
of ridge regression eome const?aint should be placed upon the in-
crease in the residual sum of squares. To this end, Hemmerle (1975)
defined A( ) to be the increase in the residual sum of squares which

*
results when a (K( )) 1s employed a an estimator of a instead of «a.

As a result of (2.12), it follows that A ) satisfies:

(3

e *

Ay

~%
¢ (a (K(j))) - ¢fa)

~% * * - ~%x
(a - a (K(.)))’X X (oo = a (K

()
(0 - o (K,.\)) A(a-&*(k(j))) .o, (5.41)

(1)

Suppose that the i'th component of the increase in the
residual sum of squares corresponding to the 3 'th 1terat10n of
Hoerl and Kennard's (1970a) iterative generalized rldge estimator

»
is denoted by C. 1(9)° Applying (5.35), it follows that:

2

(a - a-)

i) = 1(3)

A2 l*

J ( €1 (0)

! 3)

% i(4-1) i ; (5.42)

€i (3)
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Assuming that e (0) is less than or equal to 0.25, the limiting

‘value for the i'th component of the increase in the residual sum of

squares is given by: . .

, lim C., ,.\ = 0" e, . . (5.43)
J=>+ i(3) 1 h ) .
In the case where e, ,, is greater than 0.25, .
P : 2
- lim  C; 4y = o° Lin ®i (§-1)
J=>+w . J=>+e e.( )(1 + el(J 1{)
= o2 : (5.44)
€i(0) : ?

In order to calculate the limiting value of the total increase in
the residual sum of squares, it is necessary to partition the ex-
planatory variables into the two sets:

a={1i| e (0)< 0.25J}

, : "(5.45)
b =a -+ . - ‘
Combining (5.43) and (5.44) it follows that:
"%, p ‘ ‘

lim A(.) = lim z Ci(') ‘ . .o
=>4 J j=>#o i=1 J e : .

= lim: LI C, - C,

. OO 1) “F G )
v~y .
= g°{ ei - I 1 } . ‘ (5.46)
N f .

N -

-

Hemmerle (1975) considered the situation where it is de51red

to constrain the generallzed rldge regression estimates so that

the~1ncre;7e in the residual sum of squares is no more than IOOM%.

In other rds, it is required that:
/A = lim A"
jom>eoo &)

S M - p -~ 1) o ' .
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- % . 'n -
= M . . ‘ e A(5.47)
This implies that the lihiting solution defined by (5.40) may only’

. * - %
be accepged if M is not less than A . Otherwise, the solution must
be modified so that (5.47) is satisfied.
Hemmerle (1975) put forward two different procedures/kor modi~
fying'(5.40)"so that the increase in the residual sum of squares is
. . . . ~x
less than or equal to 1l00M%. First, he suggested iterating a (K(j))

P s ' .
until the condition: B e~

2 os Mt ' - " (5.48)

is reaéhed. Alternatively, he proposed constralnlﬁ//each component
of the increase in the residual sum of sauareS»separately An upper
bound Mi on the increase in the residual sum of squares corresponding

to ealn component must be choosen such that:

p
I M =M ) (5.49)
j=1 '

The i'th component of (5.,40) would be accepted if:
« ,
C. = lim C.,.
1 j-)A-oo 1(3)
* ’ 5
s M , (5.50)

@

Clearly condition (5.50) can only be satisfied if e, i (0) is less

than or equal to 0.25. For all other cases, Hemmerle (1975) proposed

¢

. x * ‘ -
that Ci be set to M, and the resulting equation solved for an -

1
appropriate ki' Adopting-the notation emplS?éd*iﬁ (2.22L the i'th

-~ &
component of a (K) may be expressed as: '
~k C.

‘-Ac +ku
1 1
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Combining (5.41) and (5. 51) it can be seen that thﬁ increase in

the i th component of the residual sum of squares when a is replaced

by o] (K) is given by:

- - e 2

= A (El oG y 2 ’
i'A A. + k.
i i i

2 * )
- k.
i c_2
. AL(A, + k) 1
‘ i
‘ = k2 A o2
i i
(A, « k.)
. = ki2 o 2 . ‘ T
. 2 . T ~_ ) -.(5052)
e o) Ay * k3!
It follows from (5.52) that k, should be choosen such that:
2 2 ' . !
. *
Myo= k; 0 (5.53)

2

or:

*
k., = *ivVMie5(0) (5.54)

1

o VM e. '

ivi(0)

whenever condition (5.50) is not gatisfied.

It should be noted that Hemmerle's (1975) second approach

N

to constraining the generalized ridge estimates is rather arbitrary

: x _ .
in that choices for the M,'s must be made. Hemmerle (1975) suggested

that. the M 's be made proportional to the limiting values of Cl(])

. In a later paper, Hocking, Speed and Lynn (1976) reviewed Hemmerle s

AT ety g r p—— R € ? A L kL. n A SERIsatl S
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4

(1975; constrained soluiions:for the li@iting values of ;*(K(j)).
They agreed that the unconstrained iterative solution is often
inappropriate and that some constraint might be desirable. However,
they objected to the constrainéd solutions put forward by Hemmerle
(1975) since these solutions choose finite values for‘each ki and
thus forcé the estimates of all the components of o to be nonzero.
Hockiﬁg, Speed and Lynn (1976) argued that the influence of a very

‘small eigenvalue which is removed in the unconstrained solution is

reintroduced using (5.54). ‘ ;

Allen (1972) described several procedures for selecting values
of the k 's for the generalized ridge estimators when the linear
regression model is to be employed prlmarlly to predlct the depend-
ent variable. In these situations, he argued the ki's should
be choosen to minimize some measure Qf the prediction error. Allen
(1972) suggested,that the criterion utilized to measure the prediction
errors should be 'small when the predicted values are close to the
observed values and include a penalty for increasing the variance-
of the predictor. Further, the criterion should only be based upon
predictions of the actual observations of Y since the regression
model is not neceséarily valid outside the ranges of the dependent
variables actually utilized in the calculation of the estimates of

B.

Allen (1972) recommended two criteria as being approériate)

«
for determining values for the ki's when the regression equation’

3
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is to be used to predict the dependent variable. First, he consid-

eréd the total mean squared error of prediction: .
MSE(®) = BC(XB (K) - ¥ (X8 (®) - ¥))
= E((XB"(K) -~ X8 - )" (X8 (K) - XB - ¢))
= no? + cztr((x’x + K) "1x*x) 2
(¢, + BIX (I - X(X°X + X) "1x”*)xp . (5?%51

The mean squared error function defined by (5.55) cannot be evaluated
~directly since it depends upon the‘unknown valueg of B8 and 02.'

Instead, Allen (1972) suggested that a diagonal matrix K be obtained
by minimimizing an estimator of (5.55). To this end, he put fqrward

the estimator:
A 2 sl 2 o
(Y. = Y.)° + 2tr(I_ + (X°X) "K)S . (5.56)

l 1 l ! n : ' K

where 82 is an estimator of 02.

n
M(D) = I

)

In addition to the mean squared error criterion, Allen (1972)

considered the Predictive Sum Of Squares (PRESS):

. TG -2 : ~

i

[l lte)

1
.where §(i) is the estimate of Yi which is ob?ained py'deleting the
i'th observations of the debendent.and indepé&denf vafiablés from
the estimation procedure for B. The PRESS criterion predicts eagg'
observation using the other (n -~ 1) observations. Allen (1972)
noted that both criteria described abo$e iqvolve nonlinear functions
L .

of the matrix K. He recommended that local minimum points for these

functions be obtained using a standard nonlinear regression technique

S TP
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such as that described by Marquardt (1963).

Althoﬁg}i Hemmerle (1975) presented an éxplicit solution
for Hoenl and Kennard's (1970a) iterative generalized ridge -
regression estimator and the assbc'iateé convergence c;onditions, he
did not investigate the Aproperties of the resulting estimators.
Dwivedi, Srivastava and Hall (1976) derived exact expressions for
the first and second moments for the first iterate of Hoerl and

Kennard's (1970a) -estimator. Assuming that the unobservable dis-

turbances satisfy conditions (1.2), they showed that the first and

-

second moments for o, (K(O) ) are given by: ' _

- -§, o o _ v . U+3 -1 3j (5.58)
E(a: (K, 0\)) = ase + 3 g (XYl {mep)T(3+=7)T(3+3) 683
1700 . m=0 j=0

rr (v+j,+,%§) r(j+§) r(3+1)

2 -, ® o

- ‘ \)+3 3
' * ,,mgo 1=0 I‘(z)I‘(m+3+v+7)l‘(3+—)1‘(3+1)
:’\
‘ eoe (5.59)
where: ) . ’
§. = A,p2 ,
i i¥i |
2 !

o . . , (5.60)
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In addition, Dwivedi, Srivastava and Hall (1976) conjectured that
{ ‘

‘similar results may be derived for the higher order iterates of the

estimator by applying their methodology. -

o

Dwivedi, Srivastava and Hall (1976) numerically evaluated (5.58)
and (5.59) by calculating the relative f:>ias, relative mean squared
error and relative efficiency of « (K(O)) with frespect to the ordinary

least squares estimator. Based upon these calculations, they con-

cluded that: .

. * ,

~%

i) ai(K(o)) is biased in the direction which is opposite
, A

to the sign of a, -

ii) The relative bias is a decreasing fu‘nction of Gi
and an increasing function of v.

iii) The relative mean squared error decreases as Gi
increases. Provided that Gi is less than or equal to
one, the mean squared error decreases as v grows large.

-~ ’ -~

iv) ui(K(O)) is a more efficient estimator of o, than o,

provided that rSi is less than or equal to one. _ There
is a substantial gain in efficiency if 6 1 is small
and v is klarge. | ‘

As a result of these conclusions, Dwivedi, Srivastava and Hall (1976)
argued that the parameter estimates for the general model may be

H

~% X -
substantially improved if a (K(O)) is employed instead of a.

- Hemmerle and Brantle (1976) explored an alternative approach

to caiculating generalized ridge regression estimates. Instead of

estimating the optimum’ ki's defined by (5,23) they proposed mini-

fo

o
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a '
]

' . N A* N
mizing an estimator of the mean squared error function for a (K).

.

Again the canonical form of the general model will be utilized.

Consider the expected sum of sguares of the differences between

the individual components of o (K) and the corresponding components’

-~ a

of a: s

. ~x e - ~ ..
E((a (K) - a) “(a (K) = a))

R T ST I ks ke 3
' Per(x (A + 8L - a7 H2x¥

v o x0T oA h R kT
*  * - - -] - 2
= oztr(x ‘X ((A + K) 1. A l)2) + c:c’((IP + KA 1),‘1 - Ip) (v}
= er(A((A + BT - A7H?) . @ (T, + kA~ Lyl Ip)za
P 2 p 2 2 T
= g% 7 ki R T (5.61)
!= ‘: _ﬁ
i<l -4 k)2, i=l .+ k)
1 1 A 1 1

Combining (5.18) and (5.61) it follows that:

~ % ~*% ~% S ~% ~
- E((a (K) - a) “(a (K} = a)) - E({a (K) - a) (a (K) - a))

, P

‘-‘-og )3 )

o Tl + k) 4
1 1 1

(A = k)

i . (5.62)

As a result of (5,62) Hemmerle and Brantle (1976) proposed the
following unbiased estimator 'of the mean squared error function for
the generalized ridge estimatof: »

~2 A*Kg ~% ~, "% -~
L"(a (K)) = E((a (K) - a) " (a (K) - a))

- %.)

- P,
+02 T . i i (5.63)
1=l (A, +k.)
it7i i

Hemmerle and Brantle (1976) proposed that an estimator of a
i i

14
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. .~ o~
be obtained by 'minimizing each component of Lz(a -(K)). Let \

N U .
o i
Vi "y FE, 4 (5.64)
‘ i i :
so that:
A* ~
= .65
ai(x) v, oy . . (5.65)

. . . - ~%
Therefore the i'tl} component of L2 (o (K)) becomes:

-~ - -~ ()\- - k-)
. * 2 2 i i ;
¢ My E (e ;(K) - oy) ko X 0y + K / ¢
= ;.2(V. - 1)2 + ;2 (2v, - 1) . . (5.66)
1 1 r 1
1

Adopting Hemmerle's (1975) definition of e (o)’ M; may be rewritten
as:

,
i ey (Vi 1) reygyey (2vy = D)

K
1"

- . 2 _ (5.67)
ay {(vi 1 + e,

2 2, 2
10y * i) " ®ic0 !}
Minimizing Mi with respect to vy subject to the constraint that

vi lies in the intervél [O,l] leads to:

o

v = { oo | ey <1 © (5.68)

0 ) otherwise

By substituting (5.68) into (5.65) Hemmerle and Brantle (1976) =~ -

.obltarined their estimator: “
o« (K = {(1 _Se'i(a’)ai 1F e <1 (5.69)
t 0 otherwise N

for the i'th component of a. In a further application o\f\_generali"zed
ridge regression, Hemmerle and Brantle (1976) applied quadratic pro-
gramming methods to obtain an estimator which satisfies constraints
of the form:
. ‘* *
C B (K) > b .

v <«

. -
e Rl b SASEEIIUE ARATa b e - e e
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Goldstein and Smith (1974) provided an extension to theTr™
shrinkage estimator which admits the generalized ridge estimator as
one of it's forms. Instead of considering the shrinkage estimators

of the form (3.141)- which utilize a single parameter k, i:héy put
forward the s’hrinkagev estimator:
~ % | ,

3 R ..
C()‘i ,ki) z; (5.71)

where ki is any non-negative réal number dependent upon the component

of Z. Again the shrinkage functions must satisfy the two conditions:

' 1. \ : |
c(xi"‘, 0 =, ¥ : . ., (5.72)
i "
and: - ' .
-l; 5 c(xii,kif <0 | o (5.73)
Ai . 6ku

for all non-negative values of k,. Goldstein and ‘Smith (1974) noted

that the generalized ridge estimator may be obtaineg from (5.71) by
‘ :

- choosing c; ‘s of the form:

.

- 3
di c()\i ,ki)
“ g" - . . L
Ay " (5.74) /

in * ki;A , ‘ /
e - B /l

Further, they noted -that the mean squared error function for the

resultlng estlmator is a monotonically decreasing function of k
from 0 too /a 2 and a monotonlcally increasing function after that
point. A§ a result, Goldstein and Smlth (1974) argued that an ap-
propriaté estimator for each ki 'cou_ld be obtained by utilizing *t:r/ile

ordinary least squares &stimators for ay and 02 to estimate 02/*06.12.

»
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Adopting results fnmnchaptef 3, 1£ can be seen that the ordinary

9
- : *

least squares estimator of . is:

-~ -

@, = Af—é z; for i =i,2,3, ... p L '1%-75)
Goldstein“and Smith (1974) recommended that the (n - p) observations-:
of ii not utilized to estimate the ai's be ehployed té estimate 02.

The resultihg estimator of k, becomes:

i
kK. = A. 1 n 2
e i i ———— T z. ;
——— (n - . . * (5.76)
f‘ 2. 2 P) j=p+l J .
\\ l‘
- N

' | <
Hocking, Speed and Lynn (1976) noted that each of the biased

| >
estimators outlined ig Chapter 2 and 3 may be constructed by placing

constraints upon the ordinary lea;t‘squares estimators. For example, °
the ridge estimator E; and Mayer and Willke's (l9j73) detenninisﬁicaliy
';hrunken estimator minimize the residual sum of squares for a fixed
<p$£ameter length. The ridge estimator mﬁliées the Euclidean norm to
measure pérameter 1engths while the deterministiéally shrunken esti-

- mator employs a design dependent norm. Hocking, Speed and Lyﬁn (1976)
arguedAéhat,since the generalized ridgeﬁesf&mator is not formed by
placing constraints upon 'the ordina;y Ieast sqyares‘estimator, the
gene;alized ridge estimator should be potentially superior to the
other biased estimators. However, it should be noted that this h
increase in the flexibility of the estimator is'achieved at the'ex—
pense of a loss in the ability tg geometrically interprete the esti-
mator. Unlike the ridge estimator and Mayer and Willke's (1973)

estimator, there is no geometrical interpretation for the generalized

ridge estimator. |
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;h couple of!pumerical exaﬁples have‘been'prgyided in the
ridge regression literature éo de@oqitrate thé use of the generalized
ridg% estiﬁagor.- Hocking, Speed and Lyﬁh (1976) reanalysed the pit-
propé and ai£ pollution data whose fidée~solutions were'oriéinally

presented by Hoerl and Kennard (1970b) and McDonald and Schwing (1973)

Fespectively. They employed the limiting solutiop proposed by Hemmefie
(1975). 1In addition, Hemmerle and Brandle (1976) ut%lized their
alternative pfocedure for determining a limiting solﬁéion for the“
generalized r;@ge estimator to estimate parameters for McDonald
( and Schwing's (1973) Aif poilﬁfion data. They found that their/
solution_was more conservative than Hemmerle's (1975) iﬁ'terms of
ft;s‘departure from the ordinary least squares solution.—’Hemmérle
-.and Brantle (1976) argued that ¢his is due to a constraint upon the
residual sum of squares which is implicit in their solution. The
quantity~(;*(K) - ;)‘g&*(x) - ;) in the mean squagﬁd error function’
(5.63) diséouréges wide departures of the. components of";*(K) from

-

the components of a. . Besides the numerical examples mentioned above,

q

‘Hemmerle (1975) constructed an example éo show the convergence of his

(0)
* 0.25. . , T

solution may be very slow if one of the values of e is close to

/

As part of a simulation study to test the efficiency of the gener-
- alized ridge estimator, Guilkeéy and Murphy (1975) introduced the cbn-
cept of the directed ridge estimator. Guilkdy and Murphy (1975) -

-~

noted that the ordinary least sguares estimator o may produce a

3
3
3

-

relatively precise estimate of o if li is a large eigenvalue. As

a result, they argued that the iterative generalijized ridge estimator
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defined by (5,24) and (5,25; should gnly .be used to alter the diagonal

élements of A corresponding to relatively small eigenvalues. To be

more specific, they defined an Ligenvalué Ai to he relatively small

if: . : . ) ;:>

- -C [y
Ai <1 A (5.77)
o : [} 4
where c is an arlfitrary constant. A Suppose that Ii is an indicator.

-

variable which takes on the valge one if condition (5,77) is satisfied

and zero otherwise. fIncorporating this indicator variable, Guilkey

A - t - - .
and Murphy's (1975) directed ridge estimator may be expressed as:
o (K5, ) A+ Ko TIxt " ) :
. + .
a (3) ( (5) X 7Y ~ (5.78)
* , -~
where K(j) is a diagonal matrix whose’ i'th diagonal element is given
by: ‘ . S
. Vo
=, n2 : o .
1.° for § =0 ’
° lz—z“
- oy - . - ]
k. ., = : . . (5.79)
i(3) ~9 ) .
IiO fOr .j = 1'2’3’ e s » .
N =z (k* - ) .
- - . a, (k. .
i 7i(3-1)

In addition tp (5.78) Guilkey and Murphy (1975) proposed a simplified
version of their directed ridge estimator which utilizes a single
value k for all nonzero biasing parameters. They suggested that the

parameter k be choosen by allowing k to increase until the residual

sum of squares has increase from (n - p - l)c2 to g(n = p - 1)02.

-
-

. . .
» . -

Guilkey and Murphy {1975) developed a,humber of simulations to

.compare .the efficiencies of their directed ridge estimator with the

ﬁ////// ordinary least -squares estimator and the generalized ridge estimator
AN . .

obtained by substituting ordinary 1east squares“estimafes of as and
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02 into (5,23). Provided that fhe aegreé of multicollihearity in the
simulated explanatory variab;ggfwas large enough, :they found that the
directed ridge and generalized ridge estimétors were genera}ly better
than the ordinary least squares estimators in terms of their'associated
mean squared errors. The most dramatic reductions in the mean squared
errors were reported for the direcgsd ridge.éstimator defined by

(5.78) . Other simulation studies utilizing the generalized ridge ;sti-
mator were reported by Lawless and Wang (15%6) and Hemmerle and
BrantYe (1976). ’

v

Sommers (1964) introduced a generalization of the ridge estimator

B

bgsed upon powers of the X“X matrix. .He recommended an estimator of
thé’form:

- 8 0@ = (xrnd e k)T I xey (5.80)
where k20 and q is any non-negative integer. Dwivedi (1973) and

- Goldstein and Smith (1974f independently contemplated thé'same\gen—
eralization. 1In a later paper, Hoerl and Kennaéd (1955) demonstrated

i

~ %
that B (k,q) is one of the classes of generalized ridge estimators

° defined by (5.2) and (5.4). In particular, they showed that:
t\* - - '
P78 (,q) = B (X0 « k1) LT ix-y

= p” (PA9p" + kxp)'lPAq‘lp‘x‘Y
. : = (A9 . kIp)-"lAq'lp’x'Y *
, - (A + kaAt™9)"lp-x-y \

-1 % . . s
= (A +K), X Y . ; (5.81)

-~

where K is a diagonal matrix with it's i'th diagonal element equal

»

*
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to k/xiq-l. By comparing (5.4) and (5.81), it can be seen that the
power generalization of the ridge estimator is a particular case of
the generalized ridge estimator.

"; Goldstein and Smith (1974) noted that the power generalization

defined by (5.80) makes the data analysis more sensitive to' the eigen-

value spectrum of the X“X matrix. However, it can be seen from (5733)

that the optlmum k 's. for the generalized ridge estimator are inversely

proportional to the squares of'the\ordinary least squares estimates

’
-~

o not the eigenvalues A;,. As a result, Hoerl and Kenmard (1975) e
argued that an estimator of B based upon the powers of the X“X matrix

may not be too helpful in practice.

. Later, Dwivedi (1973) analysed the properties of a*(k,q) in
more detail. Since:
J 8 ) = (x0T« k1) e I xy 4
= C(k,q) ‘B (5.82)

where:

c(k,q) (xx)9 + kIp) -1 (x-x) 9

- (1, + k(xx) =t , (5.83)

*
it can be seen that B (k,q) is a-<linear transformation of the ordin-

. ~%
ary least squares estlmator. The expected value of B8 (k,q) is glven

by:
“le(p)

= ((Xx)qa»kI)lB‘. (5.84)

E(B (k,q)) = ((x°x)? + kI o)

¢

It can be seen from (5,84) that B (k,q) will be a blased estimator
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of B for all non-zero values of k. Assuming that the X°X matrix‘is

. N . . -~ * N [ » .
different from the identity matrix, B (k,q) will be a biased estimator

ii,_,_ww

~%
‘ © whenever q is non-zero. The variance-covariance matrix for B (k,q)
is given by: ¢
. ~ - . , .
var(g8 (k,q)) = Var(C(k,q)B) ;
= bz(xp + k(x’x)"q)'l(x’x)'l(lé + k(x°x) 9"t
= o2(xx + k(%) 1Y Hxx) . (5.85)

Using (5.82), Dwivedi (1973) developed the following
sufficient condition for the mean squared error admis-
-~ % - '
gibility of B (k,q): +

1 -
i . \

. ~A* ~
; : : Theorem 5.2: B (k,q) is a mean squared error admissible

, estfmator of B in (1.1) if:
o2 Aiq—l
—
¢
h i . ’
/ «

for each component i.

k < (5.86)

Proof: By definition of the mean squared error function:

&

MSE(8 (k,q)) = E((8 (k,@) - 8)"(8"(k,a) = 8))
E((CB -~ CB + C~ B)°(CB - CB + CB - B))

E((B - B)"C/C(B - B)) + B"(C - Ip)'(C - Ip)B

. ' = er(c?xx) Yy + gr(c - Ib)z g (5.87)
’ whefe:

c = c(k,q) . S (5.88)

Applying .the binomial inverse theorem,
¢ = (1, + x(x-x) 9L

-1 : gy =Gy -1 ’ ‘ © (5.89
Ip k(kIp + (x7x) %) . ‘ ( )
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into (5.87).- the mean sqguared error function

for B*(k,q) becomes: l
cre 2
) + g-(C Ip)

"

MSE(B (k,q)) 2erc® (x-x) 1

' - gztr((X’X)-l(Ip + k(x-X)"9)"2
+ kze’(kIp + (X’X)-q)_ze .
P q-1 P _ 2, g-1
i=1 q . i=1 q 2
(Ai +’k) . (Ai + k)
' ... (5.90)
Dwivedi (1973) observed that:
g-1
1 - M = K
Al q a
i (Ai + k) (Ai + k)
\ >0 (5.91)

for all positive values of k. Combining (5.90) and (5.91), it follows

that:' v
-~ ~ p 2 - 2 -l N
' MSE(" (k,q)) < MSE(R) + k2 5 . (k" = oI (5 0
, i=1 (Aiq . k)2
It can be seen from (5.92) that B*(k,q) ig a mean squared grror
admissible estimator if:
P 2 _ 2 g-1 '
k% p eyt m o) g . : (5.93)
=1 (A.q-+ x)*

Inequality (5 93) w1ll be satlsfled and 6 (k,q) will be a mean squared

error admlsSJble estlmator if:
4

a2 Aiq-l . '
o

i

k < (5.94)
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for each component i. Notice that this condition reduces to the
standard admiséibility condition for the ridge egtimator when q
equals 1. 1In addition, it can be seen that as g increases, the
admissibility interval for k shrinks. / ®

/

It can be seen from (1.24) and (5-90{_that the mean squared
error functions for E and a*(k,q) are influenced to the greatest
extent by the smallest eigenvalues of the X“X matrix. As
a result, Dwivedi (1973) suggested that it would be
reasonable to concentrate on that part of the mean squar7d error
function containing the smallest eigenvalues. To this énd, they
introduced the concept of the 'primary component' of an estimator.
By definition, the 'primary component' of an estimator is that portion
of the mean sqguared error function.which involves terms containing
eigenvalues less than or equal to-one. Dwivedi (1973) sug-
gested that attention could be restricted to *principal

components' when comparing two estimators. They

‘'realized that the choice of all eigeqyélues less than or equal to

one was arbitrary. However, pDwivedi (1973) argued that by
considering all eigenvalues less than or egqual to one,
all eigenvalues which contribute significantly to the overall mean

squared error would be included.

<
]

Suppose that the p eigenvalues for the X“X matrix have been

~ordered so that:

< <AL <1< < ee. <A - (5.95)

0<A '<'A2 es e = t- t—l— - p

1

P Tl sd Sk ¥ VRS
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As a result of (5.90) the ‘primary component' of B (k,q) is giwven’

by: |
- t /a1 t 2 _ 2 g-1
pc(B¥(x)) =02z M i b ke - AT
S (A7 + K) (A7 + X
... (5.96)

Dwivedi (1973) demonstrated that the 'primary

. A*‘ .
component' of B (k,g-1l) will be less than the 'primary component' of

“~ %
B (kx.q) provided that:

. ‘ | ' |
0 < k< g5 for 1 = 1,2,3 ... t ‘ R5.97)

where:

g-1 2 _ 2 '
g, = - {Ai (1 #3,) (Ajay a )}
4a.2
1

-

2§ 2.2 2g-2, .. .2 2_ 2.2}

4
160Li

As a consequence of this last condition,'they noted that the contri-

bution of the ‘'primary component' to the mean squaréa error fénction

decreases -as q increases. In fact,. it can be readily seen that 9;
tends to zero as g tends to infinity. Therefore, the mean squared
i ~ %

3 error admissible estimators of the form B (k,q) tend to the least
squdfes solution as g increases. Dwivedi (1973) illustrated !
his thesis with some lMonte Carlo simulations of the estimator

A %k

g (k,q).

’ \
( .

In some furthér remarks, Dw1ved1 (1973) ‘described ‘
some of]khe dlfflcultles lnerent in the ch01ce of values for 'k and ’

A




_significant round-off errors. It was suggested that k and q be

S

g. If g is at all large, the resultant estimator may be subjéct to

. | .
choosen to minimize the sum of squares of the differences between

E*(k,q) and E. , i . ‘
: /. / : .
® | /’ , ) ‘
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) Chapter 6 N
Tests Of Hypotheses And Coﬁfidence Intervalsy
N For Ridge Regression

In the previous chapters, ridge regression was presented

as a technique for improving the estimated coefficients for the

B U

general linear model when the X“X matrix is ill-conditioned. One

R Y

rational for ﬁsing a biased estimator such as the ridge estimator

in these situations is that the introduction of a small amount

Qf bias into the the estimator can often result in a large reduction

in the variance of the éstimator. As a result, the mean squared

error for the biased estiﬁator can be smaller than that of £h§

ordinary least squares estimator. Obenchain (1977) suggested that

one might be tempted to use thié logic: to afgue that the confidence

.intervals for the ridge estimator which are QFntered at the ridge

estimates can be shorter than the centered confidence intervals

for the .ordinary least squares estimator. He pointed to Marquardt

[ .- and Snee's (]1975) paper in which they seemed to infer this property.

Obenchain (1977) considered this particular question when he

developed the confidence intervals for the ridge estimator. This

section outlines the procedure for constructing confidence intervals

or tests of hypotheses developed by Obenchain (1977) as well as

an interesting test of hypothesis which he gave in an earlier paper.
The geﬁeral linear model defined by (1l.1) may be reformulated

to explicitly include a constant term. In this case, the model

¥

~ becomes:
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1

Y= pul+ XB +c¢ T (6.1) -

\A

where 1 represgnfs a unit vegtor. The parametef vector é will
again be assumed to be a p x 1 vector. In the remainder of this
chapter, it will be assumed that the mean obsemvation has been
subtracted from each observation of the dependent and, independent
variables so that the location paramete} u can be ignored without "

loss of generality. It will also be assumed ‘that Y is normally

distributed conditional upon X. ' -

- In order to,simplify the notation in this' chapter, it is

cohvenient to rewrite the generalized ridge estimator as:

, E*(K),f (X°X + K) " x°y 1 T
= p(A + X)) Lha }
=P Aa o * (6.2)
where: . | s ’
b= (A +R)IA : (6.3)

The i'tﬁ diagonal element of A is.denoted by Gi. Gi corresponds

to the shrinkage factor which is applied to the i'th component

of the ordinary least squares estimator of a by the generalized
ridge estimator. It is necessary to assume that the Gi's are known

quantities for the derivations contained in this section.

]

The general linear hypothesis can be denoted by:
. /
. H: AB =-p : (6.4)

where: A is a known r x p matrix; p is a known r x 1 vector and

r is. less than or equal to p. It is assumed that the rank of the

v

o B I N

[y
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matrix A is r.

An estimator of B which satisfies the general linear hypothésis

can be constructed by minimizing the residual sum of 'squares function

¢(b) subject to the constraints impliea by (6.4). The required

~Lagrangian equation is of the form:, .

n

~®(b), -~ 2n7(ab - p) -

~

L{(b,n)

i

(Y ~Xb) “(Y -~ Xb) - 2n”(Ab ~ p) . (6.5)

The partial derivatives of (6.5) with respect to b and n must

satisfy:
§ L(b,n) 7—2x’y + 2X°Xb - 2A°n . )
b '
=0 (6.6)
and: - .
8§ L(b,n) = -2Ab 4 2p
on '
=0 - - (6.7)

- Premultiplying by A(xx)" ! and substituting (6.7) into (6.6)

gives: . 5
1

¢

A(X’X) "A°n = p - AB ) . ~ (6.8)

ance‘k is a r x p' matrix of rank r, the inverse of the A(X’X)~

matrix exists and:

n = (a(x-x) "3

Al - ap 4 (6.9)
Substituting (6.9) into (6.6) gives:

(x°x) "1 (x"Y + a"n).
1

-

b

1x+y"Y (o - nB)

r~

5 + (X°X) "AC(A(X"X)

1

A/
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=g -a"@8 - o) . - (6.10)

where: !

1 1

A" = T tacaxen"iant . , (6.11)

Equations (6.10) and (6.11) define the restricted least squares

estimator of B. In the remainder of this section, the restricted:

least squares estimator will be denoted by BH. It can be shown
~ . @ ™
that BH is the linear, minimum variance, unbiased estimator of B8

if the hypothesis defined by (6.4) is true.

—

o

Before aeveloping a test of the éeneral linear hypothesis,’

a simpler test for the significance of a single ridge regression

. coefficient is considered. In this case, the hypothesis becomes:

Ll
el

Hi: B3,= 0 .- : (6.12)
The hypothesig d%fined by (6.12) is equivalent to (6.4) if A

is the 1 x p matrix:

t
«

A=(0 ... 010 ...0) : (6.13)

whose elements are all zero except the i'th and:

-

p =0 - ) (6.14)
.}t should be noted that since:
’ a = P’ , _ A D(G.lsf
H, implies that: ' -
Ti’a =0 - (6.i6)
where Tf‘represepts éhe i'th row of the orthogonal matrix

»

P which® diagonalizes the X“X matrix. v

Obenchain (1977) derived a significance test for the i'th

[y

Blx amat o




- e

- 145

-

component of the generalized ridge estimator in a similar fashion
as the significance test for the ordinary least squares estimator

is construgted. The t-statistic for the ordinary least squares

estimate of By is given by:

- 2, . =1~}
tl -aBi "ho)/(s.. (X X) li)

4

(6.17)

where s2 is an.unbiased estimator of qz‘énd (x‘X);i represents

N " 7 Al z: »
the, (i,1i) 'th component of the inverse of the XX matrix. 52

in (6.17) is defined by:
s =y (1_- x(x'0TXIY . 16.18).
n - 5 -1 ' » N

! é

1

) - ’:". 1~ # M
It should be noted that the numerator of (6.17) represents” Y

e
1

difference between the ordinary least squares estimator of B;
and it's expected ‘value under Hl whiI? the denominator is an un-

}
biased estimator of the spandard deviqtion of the numerator. The

1

\
test of the hypothesis H1 is carried opt by comparing the computed

Valﬁ? of (6.17) with a Student's-t variafe having (n - p - 1)
degrees of freedom. o T

\

2

- - A* _~
Suppose that e, represents the expected value of Bi(K) as-
summing that thé/hypothesis defined by (6.12) is true. Obenchain
(1977) proposed a statistic of- the form:

! i ~ (6.19)

* _ ok ) 2. %
t, = (B; (K) ,ei /(s8"W)
to test for the significance of the i'th ‘component of the ridge
estimator. W in (6.,19) is a scaling factot¥ which makes szw an .

unbiased estimator of the variance of the numerator. Obenchain

' . . Ak )
(1977) observed that the expected value of Bi(K) under the hypothesis

Y



‘146 e
o . h |

i — - E
defined by (2i12) is usually unknown. e, is a known quantity

only in special cases such as when'.all the GiBQ are equal. If

the value of e; is & known gquantity, W becomes the normalizing

constant which makes s%ﬂ an unbiased estimator of the variance of
Y

-~ N .
Bi(K)f ) . . | v . .

<
v

-I
In order to evaluate (6.i§) whenever the expected value of
~% . o -
B, ¢(K) under H, is unknown," Obenchain (1977) suggested that an esti- -

mator of e; be substituted into (6.19Y. It was noted above that

BH is the linear, minimum variance, unbiased estimator of B which

satisfies the general linear hypothesis defined by'(6.4). Obenchain

(l9773-suggested estimating e by means of:.
o PR
e; = T, APR

i (6.?0)

.

where g¥ is the restricted least squares estimator which satisfies.

(3

_conditions (6.13) and ~(6.14).

/( . o

- - ~ A*
Obenchain (1977) utilized the definitions of e; and t. provided

above to provef%he'following theorem: ) .

Theorem 6.1: Assume thaf 8., 68,, «o. r 6P are all *“

positfee. The exact t-statistic for the i'th component

of the generalized ridge estimator is identical to the
v .

. ‘ordina;y least squares t-statistic defined by (6.17)

i
~ e

whenever e; is estimated by e,.

. 1 ‘ R
Proof: Substituting e into the numerato¥ of ts gives:
,’b* - - T P A— - l-H

.i ei i Aa - Ti AP B

[
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4

, = 1 %ale- PYRY) . _ (6.21)

Utilizing the defintions of A, BH and p, equation (6.21) may be

expressed as: T . v
* - - ” ’ » * L [ i [ ]
) b, - e, = T;"AP"A (A8 - p) , A
. . * -
= Ti’AP'A A(B - B) . )
=, AP'(X’X)-lA'(A(X’X)—lA')—l(B - 8) |
. _ 2 t v
. - 1(8 B;) .
- 2 . y
. = lBl (6.22)
where: 4
2 . 0=l
| di —‘Ti AA Ti - /// (6.23)
i. » -1 i .
(X7X) 45 . e | '
| . The variance of (6.22) is given by: :
{ Var(diBi) = d4 Var (B, ) 4
. = 02d4(x X)] . ) (6.24)
~%
Therefore, the exact’'t-statistic for 3 (K) lS.
*
S )
2T 2 -1, -4
(s di(X X)ii) )
. ‘ = ti - - (6.25)

L 4

provided that 6i>0. Since it was8 assumed that all of the Gi's
- afe positive, it follows that (6.25) is defined and that the
generalized ridge estimator has the same t-statistic as the

ordinary leqé@ squares éstimator.
. s

)
' Several comments regarding the exact t-statlstlc for the ridge

]

~ estlmator were prov1ded by Obenchain (1977).  The t-statistic for

- TR Al .

o
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«

the ordinary least squares estimate of'Bi has the same sign as
the estimate. Obenchain (197?) observed tHat this is not necessar-
ily true for the t-statistic defined by (6.19). Obenchain (1977) also

noted that a t-statisti& corresponding to (6.17) could have been

anstructed according to: !

’ ~

Y= YR - 200027 1p 2 Lo
ty (84 (K) 0){(3 T;LA:'A‘\A T,) (6.26)

. N -~ *
where sz is the residual mean sum of squares using B (K) as an

~

estimator of B instead of B. Obenchain (1977) obsérved that the

y ~% ~
expected value of B8 (K) is generally unkrown and that s2 tends

]

to over-estimate 02. Therefore, Obenchain- (1977) argued that (6.26)

would not be a very useful formulation of the t-statistic for

~%
B; (K).

.
N

Obenchain (1977) developed a test of the general linear

| hypothesis defined by (6.4) in the same manner as he derived the

- significancé test for a single component of thé generalized least

‘ 1
squares estimator. It is a common statistical result that under

the general linear hypothesis, the quadratic form:

F= (8- 8) A (AKX 1a)"tag - )
s rsz '
- - - » -l - "l - t *l
= (AB -p) “(A(X“X) A7) “(AB -p) ) (6.27)
2 .
rs '
has a F distribution with r:z?g;*n - p -/l) degrees of freedom.
Equation (6.27) may be rewritten as:
F = u’0 tu (6.28)

r

where: . 7 : - e e — R,
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c
i

- Ll _ ! N . \ .
Ag = ' . (6.29) .

s2a(x“x) 1A~ . B
\

o]
n

The vector u represenﬁs the differenbe'between AB and the expected

value of AB under the general linear hypothesis. Q is an unbiased

~
»

estimator of the variance of u under the hypothesis.
—~ S
It was observed by Obenchain (1977) that an F-testsfor the
generalized ridge éstimator can be’formed‘ﬁy replacing u with:
a’ = 2t (k) - a8 (X)) ‘ : (6.30)
and Q with an unbiased estimafor.of the variance of u* in (6.28)..
An estimator of the expected value of é*(K) under the general linear

hypothesis can be constructed in the same manner as e, was formed.

N _‘ A*
The' resultant estimator of the expected value of AB (K) becomes:

APAP'%?

APAP“(B - A" (AB - p))

- * -~ * ’ 0
= APAP“(B - A AB + A p) . (6.31)
Substituting (6.31) *into (6.30) gives: -
* |~ - *x ~ * . .
u = APAP“B - APAP (B - A AB t+ A p)
x -~
= APAP’A (AR - p)
$ »
= Ru ’ (6.32)
where: - K
o * .
R = APAP’A .. ‘ . (6.33)

* .
v S8ince the variance of u satisfies:

- * ) - "
var(u ) = R Var(u) R’ r ) © (6.34)

- Obeénchain (1977) pointed out that an unbiased estimator of the

*
,variance of u may be formed according to:

-

*
Q = RQR’
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1 1

A%y~

{1}

R” . (6.35) ' ’
. \

sZR(A(x’;)'

Obenchain (1977) utilized (6.28f, (6.32) amd (6.35) to érove

-

the, following theorem:

Theorem 6.2: If the diagonal elements of A are all

positive, the F-statistic under the general linear hypothesis

defined by (6.4) for the generalized least squares estimator

a

~ -
B (K):

* * -] =
F =u Q "u (6.36)
r

’ is identical to the ordinary least squares statistic.

Proof: A sufficient condition for P to equal the F—;tatistic
defined by (6.28) ié”that; .

R = APAP-A" . | | (6.37)
be invertible. R will be invertible if each of the diagonal glemehts
of A are positive. 1In this case,

* x ' . *
F = u “Q 1u

\ - - r

S u"R”(RQR /) "‘Ru
* r
- - u‘Q—lu
r

L

I

=F . , (6.38)
‘It follows from (6.38) that the ﬁ—statistic for the(generalized
ridge estimator is'equivalent to the F-statistic for tﬁe least
squares estimator..
| - |
It was mentioned earlier that Marquardt and Snee (1975)gseemed

g : N |
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to suggést that it is possible to cqéstruct confidence interv;}s
centered at the ridge estimates that are shorter than the corres-
ponding confidence intervals which are centered at the ordinary
least squafes estimates. Obeéenchain (1977) utilized Theorem 6.2
to argue that «&his is not true. He noted that Theorem 6.2 implies
that the test of the hypothesis:

H B. = b, (6.39)

1t i i -
using the t-statistic for the ridge estimator is equivalent to the

corresponding test for the ordinary least squares estimator. Since
the 100(1l=-a)$% confidence interval centered at Bi'includes all the

values of Bi for which Hl can be accepted at levela, it follows

. Ll A* 4
that the t-statistics for Bi and Bi(K) define the same confidence

/

intervals centered at Ei' These confidence inter&als have the
property that the likelihood function for Bi is equal at both ends
of any interval, Obenchain (1977) argued that it would be
feasible to construct confidence intervals for g;(K) which are

centered at pointg other than B;. However, he pointed out that the

likelihood function would have different wvalues. at the ends of any

such interval. Obenchain (1977) noted that these intervals must be

&

longer than the symmetric confidence intervals. Therefore, Obenchain
(1977) agrued that no shifted confidence interval can be shorter than
the corresponding interval centered at the ordinary least squares

,estimate.

“McCabe (1978) and Obenchain (1977) introduced a criterion for

tomparing the ridge estimator with the ordinary least squares esti-

:

' >
- o M A RGN TP a T GTULT R PSR YRED, S o s s s
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mator. ‘The criterion is based upon the.central F-test which

was described above. Obenchain (1977) defined the associated

- A* '
probability AP(B (K)) of a ridge estimator to be thHe percentage

point of the central’F distribution having p and (n - p - 1) dedgkees

A

(E*(x) - 5)’x’x(§*(K)‘- E) ='pst(p,n-p-l,q) . (6.40)

of freedom which satisfies: /

AP(ng)) corresponds to the probability that é is further away from
8 than é*(K). It follows from ﬁpe definition of the associated _
probability that A?(g) equals oﬂe and AP(0) is the observed signifif
cance level of é. J

e

Obenchain (1977) observed that the associated probability of
4 N ~* - "
the ridge estimator is a random variable. AP(B (K)) depends upon
~ ~k
8,8 (K) and s2 which are all stochastic. Obenchain (1977) formulated

. ~%
the distribution of the associated probability of B (K) according

to:
~ ~% ~ TN -~ h
F=(8 (K) -B)"(XX)(B (K) ~ B)
952
~% . - T* -~ -
= (o (K) - a)“Afa (K} - a) ,
ps?
=o” (A - Ip) A(s - ;p)a
2 »n\
ps
=1 z7(A-"I )7 (A~ 1)z ‘
A S
;;7 i K}
=1 P . 2.2 v
r (6, -1)"z; ) ‘ (6.41)
;;7 i=1 . ' A
wheie: ) ' ‘5
Z - L ad

UL | (6.42)
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Obenchain (1977) observed that zi/s2 is a noncenmtral F-variate |

[

\

since Z and 52 are independent. The noncentrality parameter for ;
zi/s2 is equal to (aiki)/c . Therefore, Obenchain (1977) concluded
that F is a weighted sum of noncentral F-variates.

~

Obenchain (1977) recommended the use of the associated :

probabilify criterion in conjunction with the ;idge trace. He
- ——

suggested that estimates of the coefficients b? choosen by plotting

different ridge estlmates and their assocjiated probabllltles agalnst S

_\\(ipod's (1976b) m scale In this way, the assoc*ated probablllty
criterion can be used to control the amount of sﬂklnkage which |
results from the use of the ridge estimator. Obe*chaln (1977)
illustrated the associated probability criterion wﬁth a six
factor problem. McCabe (1978) provided an extensi&e review of
the properties of the associated proﬁability criterion. He
investigated it's use with other biase@‘estimators sides the
ridge estimator.
\\
Obenchain\(1975é) derived a test of ihe composifé\hypothesis: ’ -

oo 2 _ _ 2
,Hl' Alal = Azaz I Apap .

ge called the hypothesis defined by (6.43) the shrusriken hypothesis.

-~

(6.43)

benchain (1975) argued' that this hypothesis would be useful in

\\
%etgrmining when to apply ridge regression.

)
& (8 . . :
Ly . . .
( Consider the mean squared error function for the i'th compgfient
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of a*(K):
e - 2 2 .
= Var(Gid.i) + (Gi 1) ozi
- -1 2.2 \
= o227t - (6, - D% . (6.44)
(6.44) is minimized when: \
2 3
/ 5, = Ay - (6.45)
' - 7 -1 ) :
o )‘i + a; v

Under the shrunken hypothesis, each of the p quantities defined by

X * . : .
(6.45) are equal to a constant-8d . In this case, the estimator

. A ‘ ~ %
8 o minimizes the mean squared error function for o (K). Therefore,
the estimator: - l

~ % L 2 . .

ﬁs = 6B (6.46)

would be the most appropriate estimat of B provided that the,

hypothe%s defined by\ﬁl is true.

The likelihood ratio statistic was utililzed by Obenchain ~

~

(1975a) to develop a test of the hypothesis defined by (6.43).

This statistic is defined according to:
L(B,0|X,Y) .
A = A AN
L(B,0]|X,Y)

(6.47)

whére‘ the numerator of (6.47) represents the restricted maximum of
’ :

the likelihood function for B and o2 uu;'xder Hl:' In order to evaluate
‘ : ‘ \ A
(6.47), Obenchain (1975a) reformulated the ordinary\least squares
3 / -
estimator of o according to? r Py
. -~ = ‘A ¢ o N : .
o P B { : . 4 \‘

P"(X’X)-]‘X’Y‘ L

-
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= gy ' ' _ (6.48)

wvhere H is the n x p orthogonal matrix which satisfies:

\ x = mip . : (6.49)

i

As a result of the standardization assumed for the observations,

t

(6.48) may be rewritten as: )
4
\i

-~

a = A—iY’Yr

where r is the vector of correlations betwee::l-le}tmnd,ent variable

and each of the explanatory variables. The ordinary least squares

estimator of 02 may be expressed in terms of f,/’as: "
- ' i

0% Z¥'¥Y(1 - r’r) .. . ©(6.51)
n :

In addition, the restricted 'least squares estimates of a and.d2

wﬁ}.ch satisfy (6.43) are given by: \
i

~

” .-.j - : _l » - ‘
‘e a; = sign(r,) A;77Y Y|r] (6.52) ',
and: . ’ v ) . ) '\\
, oi2 zyy(1 - plz|?) . (6.53) \
i -«
, \
n u \

vhere |r| denotes the average of the absolute values of the p

correlations rl

" Substituting (6.50), (6.51), (6.52) and (6.53).into : (6.47)

3

dives:

s
3
}

1
()
|
=]

|

= - 2 In( (2rea) M2 /(2me0) /2 )

(‘;m =—nin(o/c;)

) o . "-nln{l‘- E'} : .
. l-x"r \
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) = -n 1ln {1 + r’r - pli‘l} . (6.54) .
l1-r'r . >

It is a well known result that the statistic defined by (6.54) has
an asymptotic xz distribution with one degree of freedom. Therefore,
the shrunken hypothesis is rejected if the value of (6.54) computdl

from the sampled data is larger than an appropriate. point from the

|x2 distribution. Obenchain (1975a) observed that the computed value

of (6.54) will be small if all the ri's are approximately equal or
r’r close to zero. The latter case occurs when the, multiple R2

4

statistic is small.

\

Obenchain (1975a) suggested that it is prob‘ably ‘not'necessa\ry
to estimate § if the shrunken hypothes-ig is not rejectéed. In this
case, he pointed out that one should have some confidence in the
relative magnitudes and signs of the ordinary least squares estimates.
As a result, Obenchain (1975§) argued that\g't may not be wise to
introduce any bias into the estimation process. Obenchain (1975a)
suggested that problems for which the explanatory variables exhibit

serious r'nulticollinearity and the shrunken hypothesis is_rejected

should be prime candidates for ridge regression.

Obenchain (1974a) d;eveloped a; small sample version of the
test of the shrunken hypothesis. BAs a result of a large number of
simulations, he coxxcluéed that the small sampxle' test was rather
consg"rvative. Obenc_hain'(l974a) utilized the test of. hypothesis

to develop several criteria for choosing generalized ridge estimates.

|4
He illustrated his procedures using one of the examples originally _

N N ' ) - '

PPN S
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o~

~studied by Hoerl and Kennard (1970a). McDonald (1975) commented

upon Obenchain's (1975a) results.

' e




-l SRR

Chagter' 7

The Bayesian Interpretation Of Ridge Regression

Ridge estimators were developed in the previous chapters to

estimate the parameter vector B for the general linear model in

. situations where the explanatory variables exhibit serious multi-

collinearity. It was assumed in the development of the estimators
that the components of 8 wére fixed unknown constants. Baysian
inference provides an alternative approach to constructing estimators
of 8. * Instead of assuming that B8 consists of gnknown cO{lstants,

é is regarded as being a random véctor. A prior distribu\ﬁion is
assumed for B. The prior distribution represents whatever knowledge
of B is ‘available before observing the dependént variable Y. \A
posterior distribution for B is obtained by combining the prior

density function for B and the likelihood funlétion of B given Y.

The Bayes estimator of 8 correspondé to the #xpected value of the

posterior distribution. Lindley and Smith (1972), Barnard (1974), '

4
ﬁ-'

and Hsiang (1975) observed that the ridge estimators can be developed

) 1

as Baysian estimators.

|

[

[l

Suppose that the conditional distribution of Y given B is

normél with:

E(Y|B).= XB : | b (7.1)

var(y|g) = o’1_ . (7.2).
b . .
In addition, assume that B has’'a natural conjugate prior distribution

X
!

with:




and:

Var(B) Xz L e . (7.9)

" According to Bayes' theorem, the posterior density function for

B is given by: \

£(8lY) = £(¥|B)£(B) - (7.5)
' £(Y . ' -

provided that f£(Y)>0. It can be seen from (7.5) that: L

f(B|Y) = exp(-3Q) - (7.6)
.where: ' y
2 -1 o -1 § B
Q= (Y - XB) (o In) (Y - XB) + (B - A) 'Z\ (B -4 . (7.7) - '
Letting: : » .\\\\\\ n
B = 7% x + 271 i (7.8) -
,and: N . ' - \\\
b=o"%xy + az"1 . (7.9)
. ’ . 4
Q may be rewritten as:
Q= 8°BB - 2b%B + (¥ (¢°1 )"ty —a~z7la) ©
n - .
-1 )
= (B - Bb)7B"1(8 - Bb) - b"B’b-
Cr )y s atrlay L (7.10)

Substituting (7.10) into’ﬁﬂ.ﬁ) and integrating out the nuisance
" parameters, it can be seen that B has a normal posterior distribution
with mean Bb and variance B. Therefore, the Baysian estimator

of B is:

E(B|Y) = Bb o o

o N _ i _ \\
(07%x°x + 271y %y + a-27h) . (7.11)

- P
,

oo

Hsiang (1975) asstmed that 8 has a natural conjugate prior




distribution with: , . - .

f\\\ E(B) = 0 S * a2y
. - g o,

and: ] . - i

( _ 2 |
Var(p) UBIp . (7.13)

.Substituting (7.12) and (7.13) into (7.11), the Baysian estimator

o

of B‘becomes:
g _2

h o

E(8]Y) (072%°X + GEZIP)_lfo
N b 5

(XX + K1) "'x°y ) ) (7.14)

X7Y) |

where{
k = o’/e2 . . (7.15)

The estimator defined by (7.14) is equivalent £$ the ordinary

}idge' estimat;r of B for the the value of k thch satisfies (7.i5).

Using this formulation of the‘estimator, Hsiang (1975)~argueé

that rldge regre551on should only be.applied if there is no prior

knowledge of B which contradicts the assumptlon that the B 's are

. identically, independently and normally d;strlbuted with mean zero

and a common variance, :-

A~

It should be noted that the;e areﬁ;wo extreme-cases for the
Bay31an est%mator defined by (7.14).

siang (1975) observed that:

4 - -~
1{ﬁ“‘h(3|y>.= o (7.16)
dB->+m S ]

e . L . ‘ oo . ‘
8o that the.orq;nary least.sqeﬁfes estimator of -8 is equivalent to

A - . e Ao . 3 4 . . . .
the Baysian/estimatdr whe? an lnflﬂlte, uniform prior distribution

d,is.assumeﬂ for g. The other extreme case occures wggn each 3
Cov

known to be equaf to Zero. ‘In this case, .

——trann.




2.

% . .
lim E(BIY) =0 - g ' N S Y)
’ CB->0 ¥ ' A . )

so that the Bays:Lan estimator is always'equal to the true value
of 8. In additon, HSLang (1975) noted that k will be small if
the varlance of the unknown disturbances is small compared to

the common variance of the parameters.

. ~
=

. & - Hsiang (1975) observed that the gener&lized ridge estimator
B (K) can also be derived as a Baysianf“estimator. Suppose that -

\ ha S
the prior distribution for B is the same as above except that the

Bl's are no longer assumed ‘to have a common variance cB. Instead, .
- )

- 2
.4 separate variance UB

1
this case, Z is _a diagonal matrix whose i'th diagonal element is

. y 2 ‘
] . fog .. Under these assumptions, the Bays:.an estimator of 8 becomes:
i

E(B[Y) = (X"X + K) 1xy ' (7.18) b

is assumed for each component of 8. 1In

where K is a diagonel matrix whose i'th diagonal element iIs equal
to: ™ v '

k. © 02/02 T | - . (7.19)

'Lindley and Smith (1975)\"ﬁ'0vided an extensive discussion of
o‘ “
o . the estlmatlon procedures for B w1th1n a Baysian framework. They

W

contrasted the ordinary least squares or ridge regression approaches

, .
to estimating B8 with the Baysian procedures. Landrum (1975) -developed
a Bay51an approach to ridge regresaion wh:.(ﬁ involved placing realistic

/ ‘bounds ‘'upon the ridge estimators and then analy51ng the matrlx of -
"""" X
elgenvalues for the ridge regreés:.on. Swamy ,- Mehta and Raxport A
\ er L
5 (1975) proposed an estimator of,B along the lines of ‘the Baysian
- 'l‘ - - o ) ' : ) - &

-~ ¢ 0~
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estimators.

‘Hglland (1973) investigated the empirical Bayes proéedures

for computing values of k for the ordinary ridge estimator. Lavyless

«

and Wang (1976) developed a mechanical ru'le.for choosiny k based

\
upon the Baysian formulation of the ridge estimator. They noted
that the unconditional expectation of )\iai is given by:

'

E(Aiai) = E(E();0] Ia N

-

E(\;ar(Ar lag)) + E(E(Ar l‘ai))2 .

||

2 3
o” + E(Aiai)

[id .
2 3 ¥ 2
) =0 + Var(Aiai) + (E()‘iai))
.2 2 .
. 0" # ‘)‘10(1 . (7;20)
If it is assumed that the X’X matrix is a correlation matrix; the
sum of the p expectations defined by ’275120) satisfies: , -
p. - .
£ E(), az) = pla’+ o2y . . (7,21)
i=1 , . )
It follows from /(7'21\) that the ratio defined by (7.15) equals:
. 2,2 | ' ‘
k =07/, . . -
.1 P . ’ l
- z E(A o ) -1 . (7.22)
pG i"‘ o Y

Lawless and Wang (1976) observed that a value for k could be -
choosen ﬂy substi&g the ordlnary least squares J:{imates of

of o @qnd 0-2 :Lnto (7.22). In fact, they. choose\—? use the estlmator.

- 1 P - - !
=== LI Ao, . . : 4\/%)
po~ i=l 11 - )

~ 3

»
.
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Wichern and Churchill (1978) cons%ﬁered th%,estimator defined by

(7.23) in their simulation stydy,of mechanical rules for qhoosing

-

the biasing parameters for ordinary ridge estimators. .

In their conversations, Dwivedi and Zellner adopted a more ’
general framework for the.Baysiaa\ggpmﬁi;;ion of the ridge estimator.
They assumed\that the variances of both B and Y are dependent upon
a réndom variable 0. In particular, Dwiveéi and Zellner defined

e

the variances of B8 and Y to6 be:

n
Q
L)

Var (B) (7.24)
and:: - . 4 . ) .

Var (Y)

I
Q
[

(7.25)
where 0 is a random variable. The density function for the prior
distribution of ¢ was taken to be an inverted gamma function of the

form: - »

-(v, + 1)

£lo) = o= Vo exp°(-vocg'/2oz) (7.26)

where'v0>6. : ‘ i

. o
f-
‘The joint posterior function for 8 and ¢_under Dwivedi” and
Zellner's assumptions can be obtained in the' same manner as (7.5).

4

In particular, ) . )

f(B,0]|Y) = £(¥|B,0) 8B |0)£(0) . (7.27)

e~ (Y,

' Substituting the density functions assumed above into (7.27), it

follows that:

. £(B,0]Y) = a"“"P*"O*“exp<--2-l§<voc§+<s-m'z“‘1<e-m
o4

. /+(if-xs> “(Y-XB)))

2

I A S IO -~ MU TN 1 2 0 5057 g, NS TN 1T AR LI 3= W el ol b et s




exp(f;—li-(n'c2+ (8-B) “ (z71-x"x) (8-F)))
g

«i. (7.28)

= d_ (an"'-k*l)

-1,-1 -1

B= (x°X + 2 (XY + A°2 )

)
n" =n «+ \)0 é‘, / (7.29)
Y ' 1)

n-c? = v c +Y°Y + a2z 1A - ia'(z'l + X°X)B .

Integrating the nuisance parameters out of (7.28), it can be seen

that the Baysian estimator of B under Dwivedi and Zellner's assumptionT
is B. Dwivedi and Zellner argued that the prior parameters
A, Z, Vo and cg should be assigned values which are-/representative

of the available pridr knowledge of the problem. They pointed out
that if: '

_1_. ‘ ’
27 A kI, L, . ' (7.31)

- the Béysian estimator B reduceés to the ordinary ridge estimator.

-

The Baysian formulation of ridge reéression described above:
incorporates prior information regarding B into the estimation pro-
} .

cedures by assqping a prior distribution for the random vector 8.

’

Swindel (1976) anleromby and Johnson (1977) considered an altgrnétive
‘ !

" approach to incoréorating prior information into the estimation pro-

cess. . Instead of assuming ‘that B is a random vector, they regarded

‘a

B.as a fixed vector and assumed that the prior information for B jis

random. In particular; Fromby and Johnson (1977) assumea that the

‘
L]

.
prior information for B}is‘&epresented by: TR

’




B=§8 4+ v o T (7.32)

4

where B is a random vector and v is an error term. Suppose that the -

error term in (7.32) satisfies: /

i

E(v) 7 0 ' (7.33)

¢ Var(v) = czk-llp .. (7.34)

»

The constant k in (7.34) represents the confidence with which§the %

prior information defined by (7.32) is held.

L4 Vs
/
( »

Fromby and Johnson (1977) utilizZed mixed estimatidn procedure

T

due to Theil (1963) to construct the estimator: \\\

— 1 / , /
| ﬂj/ B = (XX + KI)"" (XY + kB) o (7.35)
~ for B.

They arqued that the estimator defined by (7.35) is a compro-
& . . ~
mise between the ordinary least squares estimator and the prior

information defined by (7.32). In particular, Fromby and Johnson

(1977{ noted that:
~ %

lim , 8 =8’ ©(7.36)
k=>0 :

lim B = B ) o < (7.37)
k=>4 )} ] s

‘ b
_Fromby and Johnson (1977) described a number of me squared error

: . ~g ’ R
—-properties for B . They also provided a numerical example to il-

lustrate the estimator. ) A
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- Chapter 8 .
- “ A Combined Estimator

A number of biased estimators for the parameEer vector B

in the general linear podel were put forward in the prebious
chapters to “cope w1thAthe effects of severe ill-conditioning in
fhe X’X matrix. These biased estimators included th? generalized
least squares estimatérs, ridge estimators and stocﬁastically

shrunken estimators. Conditions were developed'under which' each

1

/estiﬁator is mean squared error admissiblg when compared with
the ordinary least-squares estimator. In practice, it can be

difficult to justify the use of many of the biased estimators

!

because of their arbitrariness. Two notable exceptionngQe the

@

ordinary riﬂﬁe estimator proposed by Hoerl and Kennard (1970a)

M -

and Marquardt's (1970) generalized least squares estimator.
There are probably two main reasons for preferring the ordinary

ridge and generalized least squares . estimators over the' other biased

—

ridge estimator minimizes the residual sum of squares for a fixed
parameter length. 1In comparison, the generalized least squares

. . It Ve e s .

estimator B "is choosen to minimize &;e residual sum of jquares

W1th1n a r-dlmen51onal subspace of RP which accounts fof most of
l

the variation in the XX matrix. Secondly, the ordinary ridge

N »

and geheralized least squares estimators are two of the simplest
biased estimators; Both depend upon a singlelbiasing parameter

whlch must be estimated by the analyst. In comparison, the general-

?
!

“~ %
ized ridge estimator B (K) requires a separate blaSLng p?fameter

g o e g 28 A ST — - POV

estimators. ' First, these &git:ififziiff have geometrical interpre- '
tations which may be invoke justify their use. The ordinary
- /

!J’
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| \

-'kh for each component of a.

r «

i
}

Marquardt (1970) no£ed that the generalized least squares

and ordinary ridge’estimatoré share many prqperties in common.
Heaobserved that bbth estimators can be sﬁperdor to the ordinary .
leéFt squares estimator when the X“X matrix is ill-conditioned.
Hbﬁ#ver,‘Maréuardt (1970) pointed(but that the two estimators are

mosﬁ efficient in different tyéfs of sitgations.lThe generalized 19&§Z
'squares estimatpr is most:appropriate when some of the eigenvalues

of the X“X matrix .are equgl to zero. On the other hand, the ridge
estimator is better suited to problems where all the eigenvalues

of the X°X matrix are nonzero but some are very small., As a result,
Marquardt (1970) suggesfed tﬁat it migh£ be usefﬁl to combine the
éfoperties of both estimators. He proposed the combined estimator:

1

~% -
Bl(k,r) = (PrArPr + kIp)

XY - (8.1)7 v
where A; and.?rfare defined by (3.17) and (3.18) respectively.-

' Marqﬁaggf (1970i suggested that the fank r be choosen forx é;(k,r)
to remove the zero eigenvalues of the X“X matrix and k to deflate

/

o .
the effects of the remaining small eigenvalues. ' e {Ei

i

) ~%
Some insight can be gained into the cé%bined estimator 8, (k,r)

& .
by considering -the canonical form of the estimator:
! 1
o) (k,r) = P78, (k,1) E . 1\\
i M p— - - "'1 '/
-.P (PrArPr + kIp)~ X’y
- ' . » c . -1 » -, .
S (PTRPAAPIP ¢ kI TPIXTY
\ 1l
4 o
s !
/ .
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-1
K O | (8.2
* 0 Ar+kIr

“~%
It follows from (8.2) that the individual components of ul(k,r)

’ . o

‘are given by: ‘ ¢ .

-~ ' Ai O.i fOI’ i = 1,2’ s e ] p"'r

ail(k,r) = = . (8.3)

Ai oy for i = p-r+l,p-r+2, ... , P
- 1 j'_i' +---k
~%
It can be seen from (8.3) that the last r components of al(k,r)
correspond to the compénents of the canonical form of the ridge N
¥

estimator. *

It can be seen from the canonical ‘form of the combined estimator-

~ %
that Bl(k,r) may be an inappropriate estimator for use .in situations

‘'where some of the eigenvalues for the X°X matrix are assumed to be

' zerd., Iq,contﬁfst to the generalized least squares estimator, the

e

combined estimator definednby (8.1) forces the estimates of all the
components of o to be nonzero even when the raﬁk of the X“X matrix

is assumed to beﬁles; than p. quther,ifor :gfixed value of k, the
ordinary ridge estimator shrinks the estimates of the first (p'- r)
componeﬂts 0of a more than éhe combined estimator ;I(k,r). In

fact, if k is less than any of fhe first (p - r) Ai’s, the

. &
combined estimator inflates the corresponding ordinary least squares

estimates. )
3

‘ In order to circumvent some of the problems mentioned above,
. -t - & _

¢
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an alternative formulation of a combined generalized least squares
and ridge estimator is considered. It is proposed that B be estimated
by: | ’

~x . -1 -

By (k) = P (A kI )T TP XY S (8.4)

As was the case for gz(k,r), the two biasing parameters k and r are.
choosen according to Marquardt's. specifications. The assigned rank
r of the X“X matrix is choosen to remove tbe effects of the eigen-
valyes assumed to be equal to zero from the estimation procedure and

v e o

k to deflate the effects of tﬁe remaining small eigenvalues.
. \.@

The combiﬁed estimafor defined by (8.45 was‘first considered by
Fareg}other (1975) in the context of a\comparison of the relative
efficiency of the ridge estimator for éstimating estimable fdhctions
of B when the rank of the X“X matrix'is assum?d to be less than pf
He compared linear transformations of the combined estimator g;(k,r), .
with the corresponding linear t¥ansformations 6f the generalized
least squares estimator of rank r. However, Farebrother (1%75) did
not consider %;(k,r) as a simple estimator of the coefficient vector
B. In the remaiﬁder of this chapter,/the P Qggrties of the combineg’
estimator defined by (8.4) are det;iled. C§§§i§ions are dgveloped
under which g;(k,r) is Qean gqqgred'error a?missible. \Finally, é.

series of simulation experiments are presented to illustrate some

of the benifits of the eﬁfimator.

A * . !
* The combined estimator Bz(k,r) may be expressed in it's canon-
J-

-} | ' 1 | - \ .
| +*
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ical form as: ° , . l ’ *
Ak R /
ay(k,x) = P7By(k,xr)
- - "'1 Ay s
=P Pr(Ar + kIr) Pr XY
! 3 \ -1 » "
='P*py (A_ + kI ) "P_“PAa ’ ”
N -J’P} T ‘ r . r | . .
- ,'0 0 (J Ao . (8.5)
0 Ar + kIr.

~R
The individual components of az(k,r) are given by:

- Ay 0 for i .1,2, ese g P—X .
- aiz(k,r) = A - . (8.6)
i a, ' for i = p-r+l,p-r+2, ... , P

A, r k *

1

o

It can be seen from (8.6) that the estimates of the individual com-
. ~ .
ponents of o produced by az(k,r) are consistent with Marquardt's

(1970) suggestions regarding the form;&\{:ion of a combined estimator.
*

Ak -
The first (p - r) components of az(k,r) which correspond to the

zero eigenvalues of the XX matrix are constrained to be ,,eéual to

L

zero. The remaining components are deflated to remove thef,».ef'fects

of eigenvaiues which are small but not assumed to be al to zero.

J / °

D

%
Tl%e combined estimator Bz(k,r) may be rewritten as :
1

8

ok - ‘oo
82({<,r) = Pr(Ar + kIr) P XY

_ oo . I

'Pr(Ar + kIr) Pr (X°X)
= V(k,r) . (8.7)
where: - ‘

- "1 -~ .J . ”

vVik,r) Pr(Ar + kIr) Pr (X°X) ‘ -

- -1 P » ¢
= Pr(A‘r + kIr) P, PAP \

AY

? ‘ - } 3
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' o
‘ ‘= p (A + k1) lp “(p A, P »
r''r r r {p—r) " (p-x)" (p-r)
+ PrArPr ) I (8.8) -

It follows from (8 8) that Bz(k r) is a linear transformation of
the ordinary least squares estlmator with the transformatlon depend—

ent upon k and r through V(k,r). The expected value of the comblned

o

-egstimator defihed by (8.4) is given by:

E(By(k,r)) = Vi) E(B)

"'l » 4, »
P (A, # kIr) Py (P(p—r)A(pPr)Pjp-r)

+ PrArPr )B . : (§.9)
. Ax h . \
Therefore, Bz(k,r) is biased estimator of B if k is nat equal., to
: ¢

1s a non-null matrix.

g
zero or A "In addition, Bz(k,r) is said to:

(p=x)
be conditlonally unbiased relative to the constraints implied by the

is a null matrix and k eqguals zero.

if A(p—r) . . . ]

columns of P(p_r)°

-
2

Ax
The variance-covariance matrix for Bz(k r) ié given by: *+ #

Var (8, (kqr)) = E((8, (k,2) n(ez(k 1)) (B30, r)

~

X

- E(Bz(k r)))* n

= V(k,r) E((B - B)(B - BK,) Vik;r)

= 02 Pr(A *\kI ) P ’(X’;YP L(A + kI J lPr'

2 ,\ 2 "l »
cf PL(I_ + kA 1 Ar P.° . (8.10)

I'd
n

2

. X A .

The canonical form of “the g¢ombined estimator defined by (8.4)
‘ . N ‘

“may be utilized to develop the mean squared exror function for

~.

A* . «
Bz(k,r). Suppose that the individual components of the canonical

. form of the estimdtor are represented by:



€

_The mean squared error

* MSE(B, (k,1))

n"

‘ Ax .
function for Bz(k,r) is given by:

for 3 =-1,2, «c. , P7T  (g.12)

Qfor jL = p-r+l,p-r+2, see ,p

R

'~k '_' N . A‘.
((Bz(k,b) - B) (By(k,r) - B))

Ak . nk R
(G 0,r) = @) (ayl,x) = @)

",
| .

//)//// I - o g o k 2
. 3 - L Var (o, , (k,r)) +Ji:l (E(aizi. 'r)) - ay)
\ , ’ .
= c; Var(ai) + I (c, - l)zai2 :
1 i-1 . v
" ‘ L
P A p-xr 2
, © = I . ___-l—-—z + I o,
‘ . © | iFper+l (A + k) i=1 *
) 2
: R —-————Iui (8.13)
” - i=p-r-1 (x, + k) ,
. l' ‘\‘
A sufficient mean squaried error admissJ;:I}ty condition for
~% ~ 9. . t '
Bz(k,r) may be derived by fiking a rank for the X°X matrix and
" L, \
determining an appropriaf% condition for k. Suppose that the X°X
matrix is assumed to be of ral r. . Consider an arbitrary sequenge
of r constants u; which satisfy: :
, g R ‘\’,
. ’ U= U,
P R 3 i=p-r+1 1 :
> 4
/ pPrx prr! 1 _
/ A= 3 aié¢- 02 p) X; . (8.14)
é i=1 i=1 | ' &




e o113,
\{ T ~\\.b

.For example, the r cogftants may be assumed to be equal‘sd: »
" : . .

-

that:

The r constants defined by (8.14) can be utilized to prove

the followingOtheorem:

. AL 3 .
Theorém 8.1: The combined estimator'Bz(h,r) is mean

\ squared error admissible for a positixé value k and fixed A

. - rank.r if the inequality:
’ o 2 < 2 ¢
) aé&k 425k + 0% <0\ - : (8.16)

where: . ‘ )

':" . . . 2
- . b. uiki -0

is-satisfied for i = p-r+l,p-r+2,%.. , P« .

~ K | ‘ .
,Proof: By definition Bz(k,r) is mean squared error admissiblIe

, if: °
: s . ) o ’ p 2
AN v p-r . p " L C.

v . wE(Byk,ed = oo+ I (g - D3Zeed 1 2
‘ . i= i=p=-r+l i=p-r+l i

L) pv( . -

- ) < 0‘2‘ z %"— » ’

'oi=l Ui
% A : , )
‘ e = MSE(B) . S (8.18)

v

- T - ? !
‘ Substituting'the constants ¥ into

Ak .
(8.18), Bsz,r) is meap squared

- error admissible if: : . r\xﬂ i ) i

k4 -

'
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“« % : \
¢ - . 2 7 e
p [} C. p I
4 I (c; - 1)2 12 ﬁ,cz —%— +iv L My
=p-r+l =p~-r¢+l i i=p-r+l ( L "
\ . \ \
- . * p “ \‘\ 1
o . < 0:2“ z .;-__ . ' '0-\ W ~ ° -' ) R (8.]:9) .
i ’itp-rfl i k *1 T
Inequallty (8. 19) is true if each comblnatlon of components in the =~
37' . ,
summatlons satlsfles. ; o '\
(9 - ‘(
2. ~1 2 2, -1 ° o ) .
R (c; - lf + 0 ,Xi c,” +u, <0o%Ag ' (8:20)
or: . : ’ T e \
" a2 20 =1, T s e ue ‘ T
(ci l)ai +9 Al (ci f il\: = i > 0 ’.&. (B?ZLX S
i /I .

. @ s ) ‘ 1
Subé%ituting‘(B.lZ) intp (8.21) gives: | ,
kzai*z - lo?a; 1(2>\..k T S B S k)2u. < . (8.22)

. Qsl\

It can.be seen from (8.22) that the comblned estlmator B (k,xr) is
’ 'b
mean squared error admissible if, the biasing parameter k satisfies:

\\
]

-1 ‘ 2 2 2
..+ p:i)k +2(1,‘i_)‘i > ¢ )k + )“i My
/ .\ “ - ¢ , . ‘ ’ ? ' ‘ . '
% < : : r § (8.23)
?ﬁ\\ . ’ e

l for i = p-r+1,p-r+2, sse g po . R . ’ \

o
‘v

. 4 o
Theorem 8.1 111ustrates that it is feaslble to construct mean
'tw '

squaredPrror adm1581ble comblned estimators of the form (8.4). Al-

though inequallty (8.16) prov1des a suff1c1ent condltlon under which

A

(k r) is adm1551ble, it does not deflne a pract1ca1 crlterlontfor
chooslng k given a fixed rank r. A more usefql condltlon may be
obtained by considering the COntext in.which it is proposed that the

combinedwestimator be “3§§ Marquardt (1970) recommended thét the

) *
' assigned rank r be choosen to remove the effects of the elgenvaIUes

T
. . - N~

i E A \/

A U S "
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4 t
) ~ 1
for the X’X matrix which are -assumed to b%quual to zero from the

estimation proce%s. ‘The biasing parameter k%is then choosen to .
. ,deflate the effects of the remaining small eigenvalues. In accordance
with this recommendation, a mean squared error admissible combined

%
estimator Bz(k,r) may be obtained by choosing the rank r such that

g B: is admissible and the biasing parameter k'SO‘that the mean squared

errorx of“B2 k, r) is less than or equal to that of the" generalized

’

least squares estlmator B+

4 - ’

. l ‘ -]
A sufficient mean squared error adm1551b111ty condltlon for

i

A%
Bé(k r) .based upop a coggarlson of the mean squared error functlons -
3

,for the comblned and generallzed least squares estlmators is glven

by the theorem: ' o . o ' . .

, . Theoremn 8 27 Suppose that the assigned rank r\for the

u ' ~ By %

X X matrix is chooseh so thaﬂflnequallty (3.48) is satlsfled

.The combined estimator Bz(k r) 1s@§ean Squared err%r ag-

»

m1531ble if: ' © .

Lt
[

)5’ s LAY

° h ; (8 "24)
| 0 < k < ——I . R {8. |
k N ] ' < ‘ k£
! ' . . "
for i = p-r+l, p—r+2, cee 4P e LI * S

' Ak
Proof: €. mean’ squared error functions for B “and Bz(k r) are

‘

) and (8 13) respectlvely. The combined estimator



_—.2+

MSE (8 (k,x)) =
A=p-r+l (}; + k)

2 P : .
+ k z —_—
i=p=r+l (Ai + k)
P p-t
.z 4 + I aiz
i=p-r+l “i i=1

AN = MSE(EZ) =

Inequality (8.25) is sa;isfied if:

~

’ 2 ’ 2 ‘
o2 M k2 Y . 26)

. 2 -
ooy o+ k) (O f k) : )

sfor i = p-r+lqp%rz2, es¢s ¢ Po In the proof of Theoremm 2.4, it was

i

Q.shown,that 1nequa11txg?8.26) is satisfied if condition (8.24) holds
Therefore, the comblned estimatog will be-mean squared Q?ror admis-
sible 51nce the mean. squared error function for B;(k r) 1s less
than "the meanvsquared error function fot the admissible gonorafized

least squares estimator B:.f
. . . . . .

’ A“ ° . - A. -

L S : S
ft was mentloned earller that both the generallzed 1east squaro;\\

1
t

and, ordlnary rldge estimators have geometrlcal 1nterpretations.’ These
1nterpretat10ns may be invokef ?o justlfy the use of the!estlmators.

]
A, geometrloal 1nterpretat10ﬂ of the comblned estlmator B (k,r) is

. a‘ . . "
prov1ded by: : ‘ * } . <
) \ ;

. S ooy : S L
/JTheorem 8.3: «The combined estimotor szk,qkbyinlmlzes

qﬁsidual sum of squares function ¢(b) within the
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r-dimensional subspace spanneé by ﬁr‘for a fixed valide-

T

of the Euclidean norm.

A o, e . L
Proof: ~Adopting the notation from Chapter 3, let: = ' 5o
Iy ‘ ' o G
E - XPr . . ‘ 'l a e E“v N ‘ . (8 [} 27 .
denote the prdjection of the points~of X onto the eigenveckors ">'
. ) . N ‘ -{"" * y \‘ =7
Jhﬁgﬁ form the last r columns, of P. Suppose that™8 denofes the
, ) ] i N , “ %_ 4
projection of 8 onto the e}geﬁgéctor coordinates. Thé sum of squares
{ ""‘*, . Yk Y * " ’
; of the residuals functions for aQY\gstimator /pf(B is given
. . \ \{.. R \\V ' . -« /
\‘ by: r" g . . vl" ) b “ <,
A P ey s B (8.28%,
* X L e L
Suppose that the estimator b is choosen to minimize (8;28)-?ubject'
o — * \ o oo ~
to the constraint tht the BEuclidean norm of b eguals a constant
NG * 4 a : * .
dz. The resultant estiﬁatqr eorresponds to the vector. b which
N 4 ‘( 4 N . - -
minimizes the Lagra ian equation: !
A ~ % % . *  * N ‘ . |
F(b') = (b)) - k' *p - a¥y 2 . g s
‘ 7 * - * *’ * ~ <
’ S (Y~¢tb ) (Y-8 )~k D -4 .3(8.29)u -
> ~ * . N
l . F(lh ) is m;nimized_when; . . , K 3
R I * ) )
‘ d F(b ) ='=2E°Y + ZE°Eb  + 2kb€' . : .
: > Y o .- ¥ N
| | * : - * - - . e
| ‘ , = 2(£7E + kI )b -\izay | . .
» oo -, =0 . e -~ (8.30)
* .. - ’ 'J ( - ! i . ’ T r N L
, ’ ) or: L . . , _
o o ". y i -1 N *
L AN g h = (g7 -+ kIr) ESY o ;‘)/J o . ‘
i * A . N - B p

‘;‘ '. -1 .":l 9‘/ .
(PIJSXPr+kI ): P,i_XY', g

{ . s
L o Aoy » N ) ¥ ‘
(A‘r £ kI) %«}%’ = I * .(8.31)

! ? - ‘ ‘ (' ‘\
» ~r
n - R ‘ - - o~ - N A
\ . ’ . T .
hd i et iR "“ - - .»f—*w- . -y B e i bt mﬂ—?« o e - v~ . bl
i
b3 N 0
2 ' -4 » A \ re AS
AL -
i/ A \ < W \ J c‘
.
' . < S , * ( .
. . / F 4 . 1 iy P
- »
- “ LN ’ A
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The solution for (8.31Y may be expressed in terms of the original

uogpdlnates as: : : ‘ BV

* b=p b

- -ﬂ ' . N ) .

. Pr(Ar'+ kIr) P_ XY . '\ (8.32)

It follows from equations (8.29) through (8.32) that the combined R
A* . .

estimator Bf(h,r) minimizes the residual sum of squareg for a fixed,

Euclidean norm wher the lengths of the estimates are measured using

the projections of the estimatoge on the eigenvector coordinates.

+

(G . ) h

. .The results of a series of Monte Carlo simulations are preserted

in order to illustrate the potential ﬁsefulness of the combined ,

L ~* )

estimator B (k,r). For the purposes of the 51mulatlons, it was'as-
kA

ﬂbmed that the design matrices were 6 x 4 mahrlces. The method of
singular value decomp051t10n was employed to construct the des1gn

matrices. In partlcular, the dE%lgn matrices were formﬁ@”ﬁy-
' , !
" = UAD . - (8.33)
‘5 \ .
where: U was a 6 x matrix whosa columns were o%thogonal; A was'a,

¢

4 x 4 dlagoqal matrix; and D was a 4 X 4 orthogonal matrlx. It ——

follow from (8 33) that the X“X matrices were glzpn by:
Z{, X*X = (UAD) * (UAD) ~ " ‘2«
A pA%D 4 Ao : . (8.34)

;t can be seen from (8. 34{/that theaeigenvalues for the X“X matrices

v

\ wene equa1 to’ the squares of the dlagonar elements of the A matrlces{
A .

-~

El

b} ; - r' . f
-~ . -

€ - ~
uI;&j:,'rhe methodoldgy of Dempster, Schatzoff and wermuth (?977) was -
- .
i

lized to- transfo}m the xfx matrices into correlatipn matrlces.

s
L4
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/

~

Suppose that 'T' is a diagoné%xmaﬁrix whose i'th diagonal element
2

» % 4 ] . . .
is the sgﬁare root of the (i,i) 'th element of the X°X matrix

\‘_& i - -
defined by (8.34);. In this case, the adjusted design matrix:
. .(ﬂg
9, X = UADT , “ . (8.35)
L - N . ) %
leads to the X“X matrix:
X“X = (UADT) ~ (UADT) / - »
[} o p .
h \ . = op pdyr N . (8.36)
//’é o h{sh is a correlatiap matrix. ‘ M o
/’ & '% A h ) ")
v & ¢ s ’
o ﬁ, -
The\two design matrices:
- N 4 1]
R \ > [ 0.61557 0.11557 0.52425 -0.16602
> . 0.16557 0.66557 -0.19478 ,-0.40224 -
S Xy = 0.48395 0.04719 0.63604 -0.26546 {8.37)
< ! ~0.01862 0.44976 -0.07947 ~0.64779 |
‘ 0.59719 0.03395. 0.51518 -~0.24375
/ 0.04976 . 0.58138 ~0.10464 --0.51101 )
L -~ ! /// w
- and: \ /
N ' ®.63182. 0.13182  0.49214. -0.11720
N 0.21088 0.71088 -0.2416¢% -0.32016 :
x21= . 0540300 . 0.04442 0.69583 -0.26295 (8.38)
N : , -0:06999 0.35930 *0.07469 -0.71661 P
- # | 0.62348 -0,01795 0.44973 '-0.25304 ‘
\' 0.01741 0.58812 -0.08604 -0.48690
»” = ‘ P
+ were constructed using (8.35).- " The corresponding X X matrices
, were given by:. )
. \ )
- ', /
7 . : 1.00000 0.24500 0.90221 -0.45619 ,;X
& X)7X) = .1+ 0.24500 f 1.00000 -0.11813 -0,89614| —(8:39)-
A7 0.90221, ¥-0.11813 1.00000 -07.19815 o
- !~0.45619+ +0.8 fl{ -0.19815 1.00000 .-
. ° o 9
5 i ‘ and: . 4 // ,
; , 1.00000 _ 0.22500 ' 0.82452 —-0.36361
X5 X, = 0.22500 =1.00000 -0.16150- —0.79%el | .(8.40)
. NOFS oy 0.82452 ,-0.16150 1.000000 -0:18166| - ’
- ¢ ) -0.36361 ¥}-0.79401 -0.18166 1.00000
( - » ; o .\ s
Ve 'é.' . s " 3 :, ' i\ _“ C
¢ ‘ s < LR ‘
e \ SRR 3 !




180 ‘ ‘ °
The eigenvalues for the ‘Xl X, and X,7X, matrices were { 2.32624,
.- 1156719, 0.09612, 0.01046) and ( 2. 14750 1. 55946, 0. 24099 0.05206)
respectiw}elf. |
v B ) ; d e
Two simulation modéls wen:_ constructed ds\idg t;lie gésign/ merrices
© defined by (8.37) and (8.38) .S The Eaﬁgm&wvgggjfor the simula-
tion models were taken'tO'bé}’—/t‘ -7 ’f .
. #- = (0.60119, 1.10539,. 0.265$3, -1.91277) (8.41)
and: ' ’ )

82’ = ( 1.15789, 1. 54238 -0 02996, -1.26172) . (8.42) .

o
The parameters for the canonical £ rms, of both models were given
N
by: .
: a” = (2.00, 1.00, 0.50, -0.25) . 48.43),

The four levels of 02: 0.005, 0.011, _0.02 and 0.08 were /assumed 4

for each modeél. The simulation experiments consisted of 1,000

simulations of each model at the four different levels of 62.

! N

\ . . PR
.+ |/ Eight differenf estimators were utilized to simulatd the N

" estimation of the parametér vectors Bl and,Bz. Besides the ordinary
least squares estiﬁtator, three generalized least -squarres and four
v ﬂ i
combined estimator-s were considered. The assigned ranks for the

A ” o . e

.~ ctombined est;uqators were taken to be 3 and 4. Two different ’al-— '

gorlthms were utlllzed to choose appropriate values of the blasing

- parameter k . As a result of T;eorem 8.2, the methodology of ‘—j;t .
¢
'Chapter 2 m‘ be ut:.l:,zed to develop rules for estimating k. IIBased

upon the procedures described in that chapter, the algorithms~

ey [T,

)




ra?/( I a2
I : i=1

"
n

(8.45)

v ‘ L . R
were employed t¢ calculate a value of%f;for the comhiggd estimator

| 4

~% ' - O .
‘Bi(k,r). Tables 5 aifl§ 6 summariz& the average values d?'the ki's

which were calculated in the simulation experiments.

. . { \ ¢
14 5 .

“The ?verage siwgﬁsggd mean squared errors for the various

0
'

estimators of B, and B, are summarized in Tables 7 -and 8. It

o

. . ~
can be seen. from these tables y%at both the generalized least

- - ' \
squares and combined estimators provided improvements in their

+

average simudated mean squared errors when compared with the
v “~ N ’

v ordinary least/ squares estimator. In fact;‘the generalized least
squares estimagor of rank 3 always,had/é\smaller ;verage meéﬁ
squared e}ror_than E.Q E; produced smaller average mean squared’
errors thania%l of the other géneraliied least,squ rés estimators

) gxcegt when 0? was~set to 0.08. In these cases, the generalized

least squares estimator of rank 2 had .the smallest mean squared
‘ errors. : ) . :

>

.

v . ’ ~ i .

//. It shbuld be noted that the combined estimator 8,(4,k;) cor-
' .- ' PR " ‘ l
‘;ésponds.td the ordinary ridge gstimatog with the biasing parameter

k;- It can be seen from Tables 7 and 8 that the ordinary ridge

estimators provided substantial improvements over B in terms of the
. — . o o~
2 : . ~% .
. average mean squared errors. -In all cases,’82(3,ki) prod¥ced .

x

o oo




Table 5 - A Comparison Of The Avérage Values Of The Biasing

Estimator

~%
Bp(3,%;)
~%
By(3/k,)

~%

A* |
B, (4, k)

Parameters ki For The Estimates Of 81

0.005

0.00126

0.00284

0.00126

£ 0.00350

« 7

el
0M11
0.00277
0.00618
0.00273

N

0.00717
/

-t

£ o2
“~0.020

~ o&aeo
\

0.00505

0.01110

0.00479

N
0.01198

Y
L

s

0.0R033
0.04134 °
0:01502 .

0.03453 , =,

’

;

Table 6 - A Co_parlson Of The Average values OfA‘he Blasmg

1

i:stimator

T ey
g P By(3,k,q)
—— R
: B, (3, k 2!

/

) B, (4, k)

65(4,k25

Parameters k For The Estimates Of 6/

0.005

5.00126

0.00%86

. 0.00126

0.00372

0.080

\\. y
2
Level Of o
0.011  0.020
0.00277  0.00506
s 0 -«
. 0.00629  0.01140
0.00277 0.00506
40.00804  0.01423

0.04452

0.02067

0.01992

0.04939
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?

'i‘able 7 - A Comparison Of The Average Mean Squared Errors

‘

For Various Est’im'ators Of The Parameter Vector Bl

Yo

1 B
,

"Estimator , Le%;el of o 2

0.005 0011 . 0.020  0.080

rm——

1.31467 1.31728 1.32119 1.34724

vt

. 0.31771 0.32396 0.33334 0.39585

0.11979 0.18855 -0.29167 0.97919
0.52830 1,16225 2.11319 8.45277
kS
1
0.11841 0.18242 0.27300 0.77903

0.11730 0%809 0.26181 0.70834

o
's

0.44745 30.86470 1.42747 5.11493

0.37987 0.70022 1.10858 .3.44913




-~

,A'* . - )
B,(3,k)  0.08852 0-31930 -b.16453
-~ '

"83(3,ky), . .0.08843 0.11877

\

Table 8 - A Comparison Of The Average Mean-Sguared Errors

For Various Estimators Of The Parameter Vectorxr

2

N

T~0,12080  0.2%577  0.48321

—

~

0 .1\6Q6
~

B, (4,k) . 0.11681 0.24732  0.42678

«

LY
0.11102 0.22553 0.37490

~%x . ’
B, (4,k,)

Estimator Level QOf 02
. 0.005 0.011  0.020 0.080.
BI 1.31485 ,1.31768 1(.32191 1.35015
. .. . 1
Loy By 0.31791 0.32439 °'0.33412 0.39899
o ; 0.08867 0.1“’2_007‘ 0.16717 0.48119
' .’\\& . T v

1.93&6

044,5

0.42268

1,39340

1.13675

]
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3

substantially srﬁallervaverage ‘mean squared errors than E;M,ki) .
“or the ordinary least(’squares estimatqorl In fact, the combined
estimator g;(3,ki) produced the smallest average simulated mean
squarl:ed errors of the eight estimators considered for both ,paramgtér
vectors and all‘ levels of- 02 except 0.08. In the simulation Tuns

. where 02 was set to 0.080, the use of the generalized least squares

estimator of rank 2 resulted in the smallest éveracje mean squared., °
| , .

erxrors. w ' w'

A

It can be seen from the results of the simulation expefiments
T:hat ‘the. combined estimta'gg;,, 'f;;(k,r). c')ffers‘po;entialv for significant
impz"ovements in the rﬁea 8Squared errors when compared to the .
generalized least sqfx es and‘ordinary ridge estimators. In add-
‘ition\, it was pointed earliex; that the c‘ombined estimator
provides. greater flexibility than either E; or E;\ At the same
time, the combined estimator retains a geometri:cal inte\;prgtatibn.
As a result, it is recommended that the combined estimatorféz(k',r)
be considered as an alternative to the other biased estimators
mentioned in this 4,‘t.h$sis‘ when some of the eigenvalues for trf&X’X

matrix are assumed to be equal to zero and other éigenvalu’\és close

. ~ 3
tO Zero. - - ¥ (

B

il B 3 ¢
@ . Rt
\ ' )
N .

I BT



. . " Appendix . -
A Convergence Theorem ' . .

. - o ' ’( ‘ , Lo
. . ' ‘ - . <. 5

The followmg convergence theorem’is required in the der:.vatlon

L of Hocklng, Speed and Lyu(n'7/(1975) 1terat1ve estimators:

, Theorem A.1l: The sequence def:ined by:
2

o] + L)"

= 2 \
iel TS /ey . (A.1)
has three points-of accumulation depending upon L and

the initial value of the sequence. Suppose that: ,é

N
1

(a.2)

4

> L]
c1'= 5 "'(} + L)

and: '

;-u—m* . ey

9

®
Assume that c denotes the 11m1t1ng value of the ‘Bequence
CT .defined by (a.l).- The posmble values of c are given
g © " by \ . n
‘ © i \‘ . . . . , § .
_ ’ , 1) If L > }\’ c = 0 . s . N f
. : i T 2) If1LZS3% and: ’ " |
‘ | i) 17hen ¢ LSey . . ¢
N ; R "\ ii) c0 < 2, /‘then c =0 .
‘ ' i
. ¢ - v - * - *
iii) Sy o thgn c cy; .

Proof: If the sequence deflned by .(A.1) has any accumulation

‘ pomts they Tmust satlsfy. e

5

c’.r = c /(c + L) . . (A.4)

; So‘lx‘finé (A.4) leads to .t

- * kS

. . . .
ible accumulation points:
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; . ' First, consider the case where L > % [s0 that: . .
. . s
N - >
° c, -D?-3+L<0 . | ; - AL,
e | A :
_ Inequality (A.7) is equivalent to: . W
2 o
- _ : . :
. €j- % + L > 0. o s . (A.8)
or: ’ ¥ \ ‘ o e
o o . & ‘& . < v . _ . N .‘
¢, /(c v L) <1 . o K (r.9) .
3 &‘ . A .
As a result of (A. 1) and. (A 9)., ‘ o
., 4/C: = C. /(c' ¥+ L) : '
1+ i ) .
L] S 11‘ - N ” w ‘
» u <,1 L. . . , (A.10)
It follows from (A.10) that the ci"s foni, a decreasing segquence.
o . . DT Y S
Since the _gi's are bounded from below by 0, it follows that c
.- equals 0 if L > 3./ u b P -3
" & B \ .t , e ¢ ’ ¢
] , o b ,
- . © . Next, /é/gngider the case where L =4}. It shodld be noted that
\ o * * - ¥ o ' .
" if ¢y > ¢y, then c, > c, for all pogitive .integers i.  This can' -
be seen by observihg that if:’ B & . "\
~ . , . ~ _— .
I . ci >&?1 ’; ,- . A ) -,‘ | .~ _:‘. (A.ll)‘l
L then: ¢ . “ S, N —_—
y 'k SRR oL . ;
. ~. . | ci+ = l/(l 4- L/c, ‘n ”"f '-\‘.‘ L . — .
L ; . _ FL(l + L/cl R IR
S | ’ Co(aa2) L
’ g P t.
A slmllar result holds if Coy <- cl. . The ratio test- provides that
'the sequence of cy 's "aeflned by (A. ZU is moﬁotonically increasing
.‘ . if: - , / | ' ‘ y
, s ‘ v Fs
-0 ‘ ' . c'i"'l/c = c; /»‘(c ‘* X> " . —
. . . 1‘;, o~ ’, %
N N . , . > 1 . « “.\ i i ..; - . +
v . . ' " ® . SA 13) . '
— ’ _—’.k— P _ ')n o . e B S m vsma— 2o 1"‘ e e S m e e emiveys
1,1 i . . o ' ° g .'f/'\ ot ‘ 2 ¥ '.‘9 l'
B ) g ‘
N " ? ] !
4 ) ’ P .
M -
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?h,the same manner, thg‘sequence' monotonically decreasing if:

;-2 -314+L>0 oA e
for each i. The accumulatéon points for the sequence when L £ } '
can be obtained by comparingudiffgtent combinations of (A.1l), - <

- ©

(A.14) and (A.15). ) ‘ '
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