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\ f§&Jurq due to buckling. In such cases it is often more echnomic to ]

- provide stiffening rings to resist buckiing, without being nessecary

v .
aboveground, ring-stiffened pipelines. It co]lecf% the essential matter
from a vast literature and presenis"desigq'formu1as,aﬁd other data for

pipelines under various loading conditions.
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RING STIFFENED PIPELINES

. ) ‘ Nicolaps I. Tselalis

+

Pipelines are being constructed in ever increasing diameters

Al

—

and at the same time wall thicknesses are reduced as high strenght i

steels are developed. As a result pipelines are more sensitive to
_,,,,';F » '

.
[ORPU—

to increase the pipe's wall thickness. C—

The purpose of this study is to present,in’éonvinient form
1 4 . «

metheds ‘of structural analysis and design, for both be]bwground and
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NOTATIONS ~ *_\\\\\\\\
, L
Cross sectional‘d;;;’of the pipe wall

Cross sectional area of the.ring stiffener .
Width of the stiffener in contact with the pipe shell
Effective trench width ‘

Mean diameter of the pipe

Mean diameter of the stiffening ring
External diameter of the pidé -

Modulus of Elasticity of thg piﬁe material
Secant médu]ué of the pipe mateﬁ;al
Tangent modulus of the piﬁe material
Cikcumferential stress : ‘ . A
€ritical buckliné stress

Longitudinal stress

Yield stress of the pipe material

Moment of Inertfa of the cross-section of the pipe wall

Effective moment of Ineriid_about the centroid of a section

comprising one stiffener plus an effective width of the sﬁe]} o

.
The unsupported length of the pipe’ ;Y

{
The effective width ) T ¢
.Center to center, stiffener spacing &;
Norinal-force in,the X direction -

- %""‘ ) N" . - . . ,
Circumferential Normal force.’ SR . *

X3
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Notations (cont'd)

\
Nx;’ Nux Shearing forces
Mx ;rBendinQ momgpt;jn the X diregtion
M, Circumferential Bending moment
Pe External pressure
P; Internal pressure
pc/ Critical buckling pressure o
R " Mean radius of the pipe
-ﬁo , Outside radius of the pipe
t Thickness of the wall of the pipe

tf - i Thickness of tﬁe stiffening Fing

w.' Unit weight of the filling material
W. - Verti external load
v’ ' Poisson"s ratio
1} ~ Unit weight of the ice
YL ﬁ © Unit weight of the Tiquid
T Unit weight of the pipe material
. . -
) " xi§ ;/, ’
‘v .o -t .
N" ".ﬂe.o . '
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- CHAPTER 1

“INTRODUCTION °

-

« o
- Pipes have been used for many centures for transportation of

fluids. The Chinese first used bamboo thousands of years ago, and lead ~
pipes were unearthed at Pompei. In later centuries woodstave pipes .
were used in England. It was only with the advent of cast iron, how-.
ever, that pressure pipelines were constructed. Cast iron was used’

extensively in the 19th century and is still used. Steel pipes were

first introduced towards the end of the last century, facilitating

construction of small and large bore pipelines. The increasing uge of

high grade steels and large rolling mills has enabled pipelines with

Vv
diameters over ten feet and working at high‘Pressures to be manufactu-

% [

red.

) Prior to this century Qatergand sewage were practically the
only fluids transported by pipelines. The first successful crude oil f
pipeiine was built in 1865 at Pennsylvania. If was a screwed cast iron
pipeline only gwo inches in’diameter and six miles 1069. This pioneer
effort hadSeffectively demonstrated the value of pibeIines for tran-
sportingLoil, and a network of pipelines f co]]ecting’and delivering )
cruae 0il rapidly grew up in and ar?und/fhe Pennsylvania oilfieldé.

. By 1900 there werewapproximately 18,000 miles of crude oil pipeéfnes
in the United Statéslalone. The infroduction of steel for pipe making

invplace of cast iron made possible the manufacture of pipes of large

?
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diameters. In consequence the pi&£1ine industry continued to grow arid
by 1920 there were 53,000 miles of pipelines in use. By 1940 a total
of more than 124,000 miles. of cruﬁe 0il and refined p;oduet pipelines
were used in the Unfted\Stéﬁgs-é1one‘With diameters over 12 inches.
The same period saw a greatqdeve]opment in pipeline construction out-
side the United States, especially in the Middle East. The second wonId
war provided a tremendous impetus for pipeline construction either
becauée of the sgortaée of tankers or to avoid the dange;ous,voyage to
pqrts, and to ensure continuity supplies to airfields and other 1ﬁpo?
rtant consumers.

Paralel with the development of crude 0il 'and refine& product
pipelines went the development of natural gas pipelines. At th@-end
of 1956 the,gotal 1engtﬁ of crude 641, refined prodﬁqt and n;tura}
gas pipelines in the world (exc]ud%ng the USSR, eastern European coun-.

s

tries and China) amounted to some 99,000 miles, 43,000 miles and

N

160,000 miles respectively.

. " Nowdays pipelines are the most common means for transporting

gases and oils over long distances. Liquid chemicalé and solids in
slurry form or in containers ‘are also being pumped through pipelines

on ever increasing scales.

¥

1.1« Comparison of Pipelines with Other Forms of Transport
. = .

b
-

1.1.1 Advandages

O———————

N

There are many advantage§ of pipelines trénsport compared -

- ‘ - " \
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' 5. A buried pipeline is reasonably secure against sabotage.

6. A pipeline,is independent.of extérna} influencé such as

~ cross. o

.W _3_
with other forms of tran§port,sugh as road, rail, waterways or air.-
Some of these advantages are listed below :

1. . Pipe]ine§ are often the most economic form of transport (con-

sidering either capital cost, running cost or overall gost ).

2. Pipelines costs are not susceptible to fluctuations in prices,

;$ﬁce the major cost is the capital outlay and sqbsequentfoperating
costs are relatively small.

3. Operations are most susceptible to labour disputes as little
attendance isArequiréd. Many modern systems'operate automatically.

4. Being hidden beneath the ground a'pipeline will*not influence

the natural enviroment. - -

‘fiﬁ congestion and the weather.

7. Therg‘is normally no problem of returning empty containers to
the.source. ’

8. It is reiatively easy to increase the capasity of a pipeline

by installing a-booster pump. e
. - CN

% . A buried pipeline wi}]‘not‘diStuhb éurface traffic and services
10. .. Way]eéveé for pip?1ines are,ugbaITX\easi%r to obtaiq tﬁaﬁ for
roads anhlrailwaysﬂ AX | \_\ \ r

/ 11.‘ Thgyaccident rate per ton-mile is consi&érabW} Tower than for

6ther forms of'transpg?tation.

212.+ A pipeline can cross rugged terrain difficult for vehicles to

* oA

- k)
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1.1.2° Disadvantages -

Pipeline systems‘are of course associated with some disadva-

ntages :

1

1. The initial capital expenditure is often large, so if there
is any uncertainty in the demand some degree of speculation may be
necessary. , ) p

2. There is often a high cost involved in filling a pipeline ,

(especially 1ong‘fuef‘1ines).
3, Pipelines cannot be used for more than one material at a time
( a]thougﬁ there are multi-product pipelines operating on batch bases).

4, ~ There are operating problem associated with the pumping of

solids, such as blockages or stoppages.

5. 7 It is often difficult to locate leaks or blockages.

‘

i

o {

. * ( "
1.2 011 and Gas Pipelines

. \\~ Pipelines serving the petroleum industry can be divided into‘

three main categories :

A\

a) Gathering lines for moving crude oil fram the wells

b} Trunk lines for the long-dfstance transport of oil frog the
praducing fields to the refinJries»and {ransshipping points.

c) Products lines for moving refined products ffbm the refine-

ries to marketing centers and shipping points.

&

13T e emre——
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In principle, the same method of stress calculation:is app]ied'.

to all pipe systems, regardless-of the fiuid or gas to be transported.
o,

But there are fgatures characteristic of the individual types of\pipe-
line, depending on the purpose of -application.

Gathering lines in the o011l field are designed on a provigional
basis, because their life is limited by the producing period of the
individual wells; ;nd by the highly aggressive nature of crude oil.
Therefore, a smé]] size will be~;elected,vregard]ess of pressure loss.
The Tines can be laid on thé surface by employing .simple supports,
if they cross traffic routes they can be pro%ected by a covering of
earth, capable of withstanding the weight of traffic.

Trunk lines must be designed for long life. b1ain-end pipe is used and .
the girth welds for joining together thé individua1;19ngths are made
in"the field. Because of the large quantities of ma£:ria1 employed,.
accurate design is essential’'so that ?he wall thicknes tguge precisely
calculated to ensure optimum utilization of the material. It is general

practice to bury trunk lines, the depth. being increased at roads cros-

sings, to prevent the pipes from being subjected to wheel pressure from

f
1

passing vehicles. Bridging is often considered wherever a stream or
small river crossing is encountered. It is on]y\in noncu]t@vatgd ter-
ritory, such as desert regions, that long-distance pipe]inés are
surface laid on suppg}ts. When pipes are constructed aboveground
particular attention must be paid td the stresses through expansion )
under climatic influences.

Products 1ines are used for moving the refined products from

7
the refineries to shipping points and marketing centers. The pipe is

s 2




~/ | o L .
similar to-that employed for the transportation of fluids in the large
scale chémﬁpgl prbcessing'pladts. Within the refinery area and along
the routes to shipping points; these pipelines are ugua]ly laid on ‘the
3 ‘ surface or‘onﬂpipeling bridges, ana the connections are welded.

o . On account of the smaller gizés employed in gathering and
product lines, the design of these pipelines and of)their supparts
and suspéﬁsions is simpler than that of large pipelines laid on the
surfiee. Thus, it is the des%gn of trunk 1ine§ and large size pipe

’

‘systems for refineri%s that call for panticuxdr attention. When desi-
gning pipelines of this kind, a detailed ahd extensive structural
ana]ysis.will generally be necessary. It must take account of all local
and operating conditions. No more than an outline of the essential
design process can be presented in this study, because each particular

project requires its own solution.

‘
'

1.3 Construction Modes »

Depending upon the differeni conditions along the route of a
pipeljne, there are two basic construction modes,. each with a number
" of variations. These are the belowground and the aboveground construc
tion modes. The belowground construction mode is generally the safest g
= and the m;;t desi;ab]e construction mode for a pipeline. In this mode -
.the pipe is placed in a trench, surrounded by select granular material

and covered at least with three feet of backfill ovér the crown. In

- this way the pipe is essentially restrained from motion. Buriedlpipe-

-

~
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ines can only be.used where the underlying soil remains stable under

-

static as well as earthquake conditions. Specific coPsiderat?on should
be given to slope stability and{HiQZefaction on a slope. In casgs‘
where the pipe]iné is constructed in frozen 5011; the warm fluid
f$pwing in the pipe will thaw nearby soil in a large extent. Thereforef
tﬁe belowground mode can only be used where the thaw will not have any
undesirabfe consequence, that is the pipg‘rests on bedrock or thaw

stable sand and gravel. In some placks, deeper than minimum burial

depth is used to reach one of the stable burial conditions, or to go

1 Af
below a g0¥ential unstable or liquefiable shallow layer. Deeper
burial is also required for scour protection at rivgp,crossings.

Aboveground pipeline construction on structural supports is

a meani'to overcome many of the problems of be]owgrouﬁd constructioy
mode. Usually the pipeline is unrestrainea with thermal expansion
accomhodatgd by cbntro]]@“ lateral displacement. In case of extended’
shut-down during winter the p%pe should be insulated. fhe structura]'d
supports may be provided in two basic ways. Either at close spacings
with the pipe Gifillelf spanning i;m# support to support, or at wider
spacing, Qith a structural éystem'such as a suspension structure

provided to span between supports, qés§hown in Figure {2).

The buried mode has several basic advantages, over the
aboveground construction mode. It is the safest, because the pipe is
‘Jcontinuous1y supported in the soii and itwcannq} be damaged from

surface hazards. There is long ex?eriénce in buried piﬁélinb constru-

r
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ction. Environmentai aspects and esthetic are best provided by buried -

{pipelines. But the most important advantage of buried pipelines is

that usually they have the lowest cost. ¢

-

A very important~“disadvantage of buried pipelines in permafrost

. o N ¢
is the large heat transfer to thé ground, which after some years of

N
operation cause extensive thaw and consequent potential stability

" . problems wherever_'thé ground is not inﬁerently stable. This problem

- can be avoided in some extent, by insulated and refrigerated burial

7 - & . .
construction in such a way so that to keep the soil below the pipeline

frozen at all times. But this construction type is asseciated with
high cost and it is therefore unattract{ve except for short lengths.
Another ‘important diadvantage of bqried pipelines is that,.in cases of
ground motions, the pipe is t?éht]y/held by the ground and would be~
forced to distort with the ground. Also inlﬁoqations where potential
scour in a river is deep, th pipe has to be placed below thag depth
to be safe, causing disturbance of the river regime and high cost.
o . ‘/Z
~ The main advantages of the aboveground construction system are
the reduced dependence of the pipeline support upon the ground stab{-
1jty and the great-reduction in pe;mafrost &Eiw. While the main disa-
dvadtageé are the increased exposure of the,pipe]ine to surface haza-
rd%, such as traffic, avalanches or human 1nf1uence;, éndithg high
cost of sttu;tﬂ?al system, structural supports and ;fvnecéssary the
insulation. In long pipelines both the belowground and aboveground

construction modes'are usually ‘used, depending on the specific site

aﬂﬁdinvironment conditions. )
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1.4 Ring Stiffened Pipelines.
. !” v .

<

Stiffening rings are used in pipes: for two purposes. Tﬁe S0
called tension rings may be,used to rgs1st internal pressure. In some
cases it is difficult %% form pipe walls thick ehough to resist the
tension produced by some high pressures-and it may be advantageous
to form the pipe of thinner plate and wind'it.with tensjpn angs. »
The second type of rings, the st¥ffening.rings ;re used‘to resist
buckling both in aboveground and belowground constructign modes.
~ Belowground pipe]ingsJaFe being constructed in ever-increasing diame-

ters and at the same time wall thicknesses are reduced aw high stréngh
steels are developed. In such cases the crLt1ca1 load is usually the
e;terﬁal pressure ‘which may cause:fai]ure due to buckliﬁg. It is of}en
economic to provide stiffening rings to :;sist buckling, and design
" the pipe gg]] to resist ﬂ}ternal pfessure only. Aboveground bipelines
are usually constructed as coptinous over many supports. As 5 result
bending moments are introduced, and' compression zones are developed
at the top and the bottom of the pipe, at the m1dspan and over the
supports respectively, Stiffening rings may be tised to res1st ek%k]ing
-at these compres ion zones without being necessary to increase the .

¥
- pipe wall thicknegs, and .in this way to have a considerable saving

\%

N It must be pointed out that tension rings are noterform the -

~

in the material.

-*

same function as the stiffening rings As a result the .tension rings

2 should be as flat and broad as possible. in order to keep the distance

. _ between them to a minimum S0 that they can resist the tensi]e stresses

e / 8
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) more effectively. Stiffening rings are usually spaced a number of dia-
AR ' meters apart and they should be as high as possible t&iincrease the
moment of‘?né@tia of the longitudinal section throught the pipe. In the

« ‘ ' . -
+ - . following chapters the stiffening rings will only be discussed,-and

in particular the case of equally spaced rings is considered. --
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CHAPTER 11 .
» - " BELOWGROUND PIPELINES
¢ »
3

Buried pipelines is the most widely used type-of pipeliné con-
struction, because they‘usualﬁy have 1ower‘cost,than aboveground pipe-
[ . v+ lines. The fiest problem encountered in the design of belowground pif

pelines is the eva]uapion of the imposed loads. This is‘due to the
'f fact that‘the 1oad§,jhposed on a-buried pipefine can vary widely depe-
nding on the method of 1nsta1{it1bn the shape of the trench, the pro-
x ' perties and the degree of compact1on of the fill, etc. While the ‘in- ‘
‘s®1lation methods are beyond fhe scope of this project, the estimati-
on of the various loads is essentially a probiem of soil mechanfge. "
r Therefore.in this project we will not present detailed analyses and
calcu]at1ons of the loading conditions. Even so it seems necessary ta
mention the more general design loads and the required theory to esti-
+ mate the loads transmitted to a pipeline. J

¥ ’
Large steel pipes reinforced with st1ffen1ng rings are the ma1n

W Wt

interest of\the project. The stresses developed in agpuried: pipeline

are evaluated by methods based on the concept of the nipe—soil inter- ~
- action. Also some basic concepts for the stat1c design of buried p1pe-
1ines under seismic Toads ére mentioned. In p1pe11nes with large dia-
meter to wall thicknass ratios the critica1 pressures are usually not
the 1ntere;1 pressures, but the externa] pressures due to ‘the .soil
load and live loads, which may cause buckling. In such cases the ring

{
— : (stiffeners ar&designed to resist bucking and the pipe wall to resist
. ~t

il
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the introduces stresses. The degign considered, is based 0;1) the fol-
. 'lowin'g principles : '
1. ’I‘h«"at° the l(;ad'—carrying capac:ity of a pipe must be sufficient for

L
the maximum load to be imposed upon it with an adequate factor of sa-

fety against fracture or excessive deformation. ‘

2. The design of the pipe wall thickness is based on the yield stre=
nght of the material of the pipe in compression, and in add%tion on
the yield strenght of the wall material in tension for pressure pipes.

The advantageous effect of the stiffening rings is not considered at

th]s .stage.

r

Since a flexible pipe has little inherent resistance to crushing,
because of its small stiffness, permits very large defqrmations under
" systained Toading without cracking, and fails by buckling or flattes”

ning. T'he presence of the stiffening rings helps the pipeline to resi-
, ’s‘t bucling by increasing the critical ’pressure. The required spacing

and moment of inertia of the stiffeners are evaluated at this stage.
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2.1 THE LOADS IMPOSED ON BELOWGROUND PIPEL INES

N~ .

%

2.1.3. Classification And Nature 0f The Loads %
o , /
The 1oads and forces imposed on a buried pié;eh‘ne can be clas-
sified into two categories:®
a. Primary loads.
b. Seucondary loads and.forces.
Sec/ondary loads can be the largely fortitous and freguently undetermi-

nable forces exerted either axially or transversely in any direction,

' by thermal and m@e changes in the conduit or in the soil, by soil

movements, by therelative settlement of any structur&to which the
conduit is connected, or by bedding of the con‘duit.’
The primary loads are furthermore subdivided in:- ‘
aj. The exter;naﬂy applied, Vertica]]’y acting, gravitational
load caused by the fill and surface surcharges.

Fluid pressures applied either e>5terna11y or iternally or

a2-
{ , «
both.
d
[+]
2.1.1.1 Primary External Loads
( L}

The primary external loads comprfse:
1. Permanent loads, such as the fill load.
2. Tran;sient load, such as the concentrated surcharges which may be
app]ied at any -point ommsthe surface by vehicle wheel loads.

3. Temporary loads. such as uniformly distributed surface surcharges

’

e e e s e ML
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© of large extent, b'y additional temporary fil11, or any similar load
w"hilch may'pbe p'lacerj over.
4. Permanent temporary or transient ‘loa‘ds, such és upiform]y distri-
buted §ur~charges of small extent applied at or-below the.surface, but
above the top of the conduit, by tracted construci:ion equipmént or any
similar 1oad. - .
5. Permanent or temporary fluid pressures applied to the external pe-
rifery of the conduif: by the immersion in wa'ter' or by any possible sub-
mergence of the ground surface, like at a river crossing, .or by partial

1)

vacuum il pressure pipes. .

2.1.1.2  Primary Interna1£ads .
‘ ' 7

The primary internal fluid pressure@oéds may be temporary or
transient and comprise the maximum ‘preésure to whi'ch‘a pressure pipe

may be subjected in service. ®

2.1.2  Factors Affecting Wus Component Loads

2.1.2.1 The Fil1 Load

-

This load is static and pernanggt and can be assumed to be un'i-
f formly distributed over the width of the conduit. Its value depends on
the soil-properties, the width and shape of the trench, and on the

method of instal ation.
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2.1.2.2  The Contained Liquid Load:
" . This lead contributes to the deflection of flegible pipés.’lg is

assumed to be permanent and to depenJ only on thHe fraction of the wei-

¥

dht of liquid per linear foot .

2.1.2.3  The Self-Weight Of The Pipé i

'This is a permanent load but i{§ effect on flexible pipe's de-

. flection is rather insignificant in thin-walled pipes.
} -

2.1.2.4° The Uniformly Distributed Surcharges Of Large Extent

‘These loads are static and usudlly temporary. Fhey depend upon
in almost the same factors as the fill load, namely, the intensity of

the surcharge, the width and sﬁapé of the trench, the soil properties

and the.method of installation.

»

-
LY

" 2.1.2.5 The Loads Imposéd'By Concentrated Sqrcharge§

Usua y\these loads are dynapic and transient and they caused by
”vehic]é wheels. Tﬁey debend on the magnitude of the wheei loads éna\*

- their pogitiohg relative tg'the pipe, and also on the depth and the .
pveﬁgli wigﬁh of~The trench. .

-

2.1.2.6 * The Loads Imposed BY Uniformlg'gistributed Surcharges Of
Smalls Extent. ‘ - T X

~—

These loads are applied at or below the surface but above the

pipe and they are of defined and limitéd area in plan. Th@y may be

- static or dynamic, and they depend on the same factors as the concen- ,

PR - L O
Y,
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trated surcharge Toads.

2.1.2.7 txternal Fluid Pressures .

. These pressures may be permanent gor temporary. They depend
"only on the height of the wate?ygurface above the axis of the pipe.
Althought they may reduce the fill lgad, no such reduttion must be con-
sidered except if-there is not any possibility of subsequent lowering
9? the water table. In flexure pipes they are of imﬁBrtance since they
contribute to the triticg\ buckling pressure when the pipe is not

under internal pressure.

2.1.2.8. Internal Fluid Pressures

-

L4

These pressures may be subjected to large varjations caused
by surges due to faulty operations or to test pressures which are hig-

her than operating pressures.

2.2.  THE THEQRYKAND DERIVATION OF THE LOAD FORMULAE L

-

Pipelines are usually constructed in relatively narrow trenches

and then backfilled with soil up to the ground surface. Therefore the

folowing analysis is limited to narrow trench loads only. The deriva-

.tion of the 1o ormylae for wide trench loads, althought similar, it

is not included here. ! . ‘

o~

AS
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2.2.1 Trench Fill lLoads

/‘\

‘/,« The following analysis presented by Spangler f 6) is based on.
the theory of Toads, originally proposed by Marston in 1913 and subse-
quently confirmed exﬁerimental]y. Marston's theory postulates that the
load on the pipe consists of the weight af the prism of earth fill
contained within thgytrench above thg top of the pipe, less the Suﬂl%f
| ‘ the upwqrd shearing forces which are due to the tendengy of the back-
fill to settle downward in relation to the sides of the trench. The co-
‘hesion between them is ignored. Therefore the shear forces depend upon
the coefficient of sliding friction between the backfill and the sides

of the trench and on the ratio, K , which Marston took to be Rankine's

value falfactive pressure :

| (ule 1)t - st
K = HZ . b ks i) (1)
(t—l + 1) +{J 1 +sing

Where ’ “
p = tang : coefficient of internal friction of fill material.

¢ : angle of internal friction of fill material.

* ]

Considering a thin horizontal element of the fill material, .as
shown in Figure (3 ), and equating the force§ acting on it, if V is
the effective total load imposed on the top of the element and K-ga
the lateral unit pressure on each side of it, we obtain :

o

VedV s 2pgdh o= V4 wBydh - (2)
d |

[EFFRN

Z % . . -
: =8
» .
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Figt:re r3' Free body ’qiagram for buried pipelines

i .

The solution of the linear differentfa] Equation (2 ) provides

2 ( 1 - e—ZKeh’Bd)
V= W.,Bd,

ZKP

o
P .

‘for h3 H we obtain " i r

e—ZKPH/Bd
C

\ W= w gl (L=
A : 2Ky

of Cd

T‘tfe expression in the brackets, is knowri as the load coefficient, Cd ,

versus il/Bd are plotted for several kinds of f11ling materials. °

(3)

(4)
Ve

and in order to eva1ut' ’t‘he Figure ( 5 ) can be used, in which values v




L}

NI

H : the height of the fill above the top of the pipe, in feet. ' -

Where:

h : the diétance from ground surface down to any horizontal plane
in backfill, in feet. )

e : the base of the natural logarithms.

W : the unit weight of the filling material. in pounds per ft3.
“ -’ '
By : the effective trgnch width. Tpe effective trench width is

fro—

depending on ‘the shape of the trench. In Figure (4) the effective

trench width for various types of trench, is shown.
Cl »

Equation (4) may now be written in the following form :

,w B 2 N (5);

W =2¢C d

c d

’.
Figure 4.

Effective trench width* By» .

[l
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2.2.
7
: »
per
the surface of BdUs
for h=0 and V= BU_ has the following solution :
., 2 - @
V= w By ( r ) + B
‘ ZKP
~
For - hz= H
) ] - e-ZKpH/Bd
= w Bd’L
ZKP
and
- -2KpH/ B¢
Wué'“ Bd Us( e P )
or . .
Wys = Cys By Ug

2 Loads Imposed By Uniform Surcharges Of Large Extent

-22-

-

»

t -~
If the intensity of the surcharge is denoted by, Us ,in pounds

9

square foot, there will be a load over the width of the trench at

if we substruct the fill load, the load imposed by the surcharge is

d

+

US e

-ZKPh/Bd

-2KuH/B
) + By U e 2KpH/Bd

[

. D
. In this case the.differential Equation (2 ),

(6)

(7Y

(8)

(9) -

Where, the expression in brackets has beew reptaced by a load coeffi-

cient, C

us

are plotted in Figure (6)~

i ‘ - o
. Values of C _~ for various values of K ahd "H/B,
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&
> . . ‘
2.2.3 Loads Imposed By Concentrated Surcharges
¢ \ ) o '
Marston and lTatter Spangler proved that the verlical load impo-’
‘sed on a conduit by a point load of P° pounds on the surface, vertica-
L] \r 5
- Hy above the centre of the pipe, wa$ practically aprox imated b'y'the
Boussineq's theory of stress distribgtion in a semi-infinite elastic
solid. If the transmitted load is denoted by, wcs ,and the effective
Tenght of the pipe by 1 , the formula which Marston introduced can
be written as follows : - ‘
-~ . . 3 ~ é
c . . ~ '

e e e e s e 8 W N
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- W = Cy PF, f 1 (pounds per linear foot) . (10)

In which the load coefficient, Ct , was obtained by summing the Boussi-
nesq stresses at a depth equal‘to the cover of the pipe, and Fi was

L4
an impact factor. : o

Spangler-and Hanresey (29) developed a more advanced method to
evaluate the load imposed on a pipe by'a po{nt load in any position on
the surface or.by any number and arrangement of pdint 1oqu,"using

Newmark's table of influence values. According ta this method the loads

which transmitted to the pipe, due to a concentrated surface load is

called the transmitted load and it is given by the following modified

Marston fornula - -

4 .
. s \\\“///
T(F ‘|°t1 1t Figbeafs v S+ FiConPy) . ()

n
[} ' . . ~

-y A

Where wbs is Ehe corrected 1oad per, 1inear foot of pipe,

ﬁ:;?F »...5 etc, are the impact fdctors appropriate to each

~ . 1ndividua1 wheel load.
- i

P1, Pé,.;ﬁiétc; Sfe the actual individual wﬁee] ledds ;in pounds,
1 : the lenght of the pipe or 3 feet, whicheverqis’ the less.

Ct]' CéZ"“’ etc, aﬁg the Load Coefficients. Thé& can be calcu-
lated with'the help of Newman's table ih Fiqure (7 ), as the a]gebra-

ical sum of the influence values, lg . ’ .

« The load W, must be modified for non-uniformity of loads inte-*

- n h ‘q .
‘nsity normal to the pipe.axis, by multiplying it by a corre;tiép factor

F_« + to obtain a corrected value W which can be used_as a comp-

xm

< . PO
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/ '2,7‘
onent of the total effective external load on the pipe .

wCS = wCS FL (12)

<

The‘%orrection factor, FL , can be obtained from Figure (8 ) presented

by Young. ‘

4

2.2.4 Loads Imposed By Uniformly Distributed Surcharges Of Small

*

Extent-

Uniformly distributed load of small extent is considered a <urc-
harge such as a column footing of which the contact area has a largest
dimension greater than .half the cover depth. The Boussinesqg theory of
stress in a semi-infinite elastic solid may be used again. For a rect-

angular, uniformly loaded with a load of intensity U, in pounds per

¥
square foot, the fo6llowing formula can be obtained for the load trans-

A

mitted to the pipe, wsu

wsu = Csu Bc Usu ( 1b/Linear foot ) (12)

’

Where = Zle » 15 equal to the algebravc sum of the influence
values of the necessary rectangles and can be obtained from Figure ( 7)
For mobile and transient loads such as tructed constructiop ve-

hicles, the load transmitted to the pipe is :

. )
W= W, |

e g v ey

e A Bl
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i
Where Fi is an impact factor of which the value estimation.is a
matter of experience. Usually a value greater than two is agggzég.
- RPN

2.2.5 External Pressure

External pressure usually caused by submergence or vacuum and
it can be a major load in cases like pipelines laid under lakes or
rivers. These pressures affect ce defTectiop of a circular flexible
pipe and they contribute largely to the compressive stress in the pipe
wall especially in thin-walled pipes.

If the maximum height of the water level above the top of the
pipe is HS in feet, the external pressyre is then :

o

Py = (Hy +B8./2 ")yw/ma ( 1b per inch square ) (14)
If partial, vacuum pressures may occur in the pipe, owing to faulty ope-
ration, the corresponding pressure Pv must be added, so that the
external pressure becomes : . ..

pe-_-. P +Pv

g ( pounds per inch square ) - (15)

L4

_2.2.6 Internal Pressure

Internal pressure is of major importance in gas pipelines, and

ﬂ%t is equal to the pressure of the gas. Also internal pressures may

¢

occur where a p%peline is hydraulically surcharged. Its value may be

. . '

(%7

2 ek et
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&

assumed as the mean static head at zero velocity Ph

In gravity pressure pipelines it must be added any !!!owance for surge
to provide for faulty 9perations or the maximum test pressure, which-

ever is' the greater.

R E R (17)
\ "\\ - ,
In pumping mains it must be added the sum of the velocity head .
plus the friction head. - ) s
5 Y

These pressures cause tensile ;ing skress in the pipe wall and’
in flexible pipes they tend to reduce the deflections caused by exter-
nal loads, to reverse the ring stress and reduce the bending moments

in the pipe wall.

2.2.7 Total Design Load
e 4

The maximuﬁ'}esu1tant external load on which the design of thev

pipe is based, .is the sum 9f the effective component loads which can

be imposed simultaneously on the pipeline. In calculating the average
vert}cal external soil pressiire acting at the elevation of the top of
the pipe, it is usua]]yuassumed,that any kind of concentrated surcha-

g

rges will not be imposed simultaneously with distributed sﬁrcharges of

large extent. The average external soil pressure must be modified by

a factor called the pressure transfer coefficient,cp , which relates

B »
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the calculated pressure to the apparent pressure modified by soil pres-
sure reduction (soil arching action) or soil pressure concentration.
The coefficient, Cp R can‘be obtained from Figurg (9), for. steel pipes. -
VaJues of the pressure transfer coefficient are also available for
. various materials and jhey~emn be obtained through the pipe manufactu-

réxs. ¢ .

The ring flexibility which is used in Figure (9) is given by the

| - formula: ° ~/ ' “
| e "2
: -F= (12/E)(D/t)
J t
t a
¥
)
3.0
2.0 |
1.5 - '
o
“ 1.0+ A
0-8 h
4
0.5 0 N
Ring/Flexibi]ity
¢ ) .

Figu[g%gz;_fressure transfer coefficient for steel pipes as

a function of standard soil density angring flexibility.
o , o

rd ‘ »
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2.3 + STRESS ANALYSIS OF BELOWGROUND PIPELINES

2.3.1 Pipelines Under External Design Load

A buried pipeline must contain enough strengtp’§o that it can

resist the“farces of handling and the compaction of
)

it. Once the fill has been placed to the tgop-of the structure, additi-

onal fill begins+to exercise pressure ©on the top so ag to reduce the

i’requirement formoment strength. At some point above the structure,

this fill reaches an amoupt wHich exdctly overcomes the active lateral

pressure on the structuré and the pipe then becomes completely a com-

pression ring. Analysis of the normal components on the active pressu- .

res an a structure performed by White and Layer (11), shows this‘point
of height of cover tﬁhgé‘approximate1y one-quarter the diameter of a
pipe. The composite perforpence of both the pipe and the soil in which
it is buried, must be con;idered in the design of buried pipelines.

w, The structural phenomenon is usually referred to aé soil-structure in-
teraction. The soil exerts pressure on tﬁe pipe and at the same time
if the pipe compresses or deforms under the soil load, soil pressure
on the structure may be relieved by the protective strength of the
soil. The soil actually arches over the structur@‘]ike a masonry arch.

\Arching action depends on the soil strength and on the relative compre-
ssion of the soil and pipe. The bhenomenon is statically indeterminate
to a high degree, sd perforhance qgta and simplified analyses are
necessary.” |

2

ol - . <
Based on the elastic theory of the rings an analysis to obtain

»

—)




-32-

-

stresses and d?f1ections in the pipe wall can bg Performed. Althought,
Jdt would appear thap a pipeline more exactly conférms to the condition
of plain strain, initial longitudinal stresses in the pipe due to slack
laying and uneveness in the bottom of the di;ch may modify this con-
dition to the exfent that it is impossible to say definitely :hether
a condition of plain strain or pltane stress is to be assumed. Spangler
in his classical analysis employed the condition.of plane stress, in o
whigh it is assumed that the pipe metal is free to deform in the dire-
ction normal to a cross section and, consequently, no stresses, due to
Poisson's ratio act upon gither end of a short segment of the pipe.
Mgfénts and deflections in a loaded thin ring can be determiﬁed
in the fo]]ow1ng manper, When external 10ads an the ring are symmetri-
cal abou:g\he vertical axis the tangents to the circle at the top and
the bottom wi]]ﬁremain horizontal, and the normal cross-sections at
thase poiﬁts remain vertical regard]esé of tﬁe.éirection and hagnitude
of the angular displacements of tangent and normal sections at inder-
mediate points. Therefore the sum of all the elementary angular dis-
placements will be zero, and this condition leads to the fol]owi;g
eqdation for the determination of the bending moment, M , at any point

j
on the ring .

n
/M de-= 0 " (18)
o

Where ¢ is the central éng1e between the vertical axis and the radius
to the point whose bendihg moment is considered.

From Equation (18) the moment and thrust may be obtained for either the
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a

top or bottom point on a ring, by substituting a general expeession

for moment of the actual 10ad for M. From the moment and thrust at
eiéher the top or the bottom point, thé moment, tangential thrust,'aﬁa
radial shear may be obtained at any point of the ring from the equations
of equilibrium. In Figure (10) the variation of moment around a pipe
rfng resulting from loads at diametrically opposite points, is shown.

/

/ The compressive ring stress in the pipe wall can easily obtai-
n

] ed if the compression ring theory of White and Layer (11) is adopted.

This theory postulates that the compressive ring stress is uniform
around the peripher&. The freer body diagram of half the circular cyli-
nder is considered, as shown in Figure (11) . The verticaﬂ combonent

of the external pressure at the top of the pipe will cause a force

~on the half structure. This must be carried by the pipe wall, ha1f on

. . - . . c s
each side. The resulting ringwompression stress in the wall is in -

_ this case givw :

Where
t : the pipe wall thickness.
DO: the oufside'diameter of the pipe.
The deflections of the ring, both vertical and horizontal,'hay

be derived by the displacement tMeory of the arches. According to this

.theory the origin is Eaken’ag a point on the ring that is assumed to

be'ftee to move with respect to any other point. If A, in Figure (10)

js the fixed point and C the free point, the displacement of any
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Figure 11. Free body diagram of a buried ipT, showing the

" ring compression force due to vertical pressure.
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fintermédiate point is the product of the moment at that point multi- -

recommended by Spangler (6 ).

’
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‘plied by its ordinate medsured perpendicularly to the supposed displa-

cementl Thus the ordinate in the case of horizontal movemént of any
intermediate point is the ver;igfl distance %rom C to this point.
When the ring is symmetrically loaded about the vertical axis the hori-
zontal ﬁisplacemént df the,poinéq B at ;idWay between A and C,
relative to A is one half the horizontai def]ection.*lf;fhe loads
are also symmetrical about the horizontal axfs; the qgnma1 cross-
sections at the ‘ends of the horizontatl diémeter will not rotate in »
relation to their unloaded position and the tangents at the sides of

the ring will remain vertical. In such a case it can‘be shown that:

-

* 2R2 i" -
- D, = 1 | M cos¢ do “ L "(20)

2
+ M . T

Sim%far]y Fhe vertical displacement of the point € relative to A
will be: | L
| ' 'Rz‘ "M éinq de . . -
D, = -ETCJ o S *(21)

‘.'

For vertical 1o§ds and reaétions on an elastic ring, thé above procé-
qﬁre leads to the follqyingf;huatipns for.momeﬁts gﬁd deflectiansi: 2
IR o
If W is the vertical external ‘load

R is the radius of the pipe | _

E is the modulus of elasticity of ring material L — ¥
- I .is the moment of inertia of cross-section of the ring

A - ’ ’ o LN

e Bt 4 ERs e T e——
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_ M= KWR

Dx: Kx
D = K
y Yy

The values of the parameter K can be obtained from Table (13). K

e e

) ™
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y
(22)
1
(23)
’ v (24)
La
~

b ]

Kt , and KS , are the parameters fof the moment at the bottom, top and )

sides respectively. Kx and Ky

are for the horizontal and vertical

deflections. The angles a and B are defined at Figure (12).

&

# o
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D':c DEL’ * K s x .
0 0.318 0.018 ° 0.182 0.149 013714,
30 0.259 0.317 0.180 0.146 0.1)5
60 0.213 0.312 0.175 0.138 0.130
0 / 90 0.182 0.305 0.168 0.129 122
120 ,0.162 0.299 0.161 0.122 116
150 0.153 0.295 0.156 0.117 0.111
150 - 0.150 0.294° | 0.153 0.116 0.110
Q 0,317 0.259 1 f; 0,180 0.1L6 0.13%
30 0.257 0.257 04178 0.143 0.133
. 60 0.211 0.252 | 0,173 0.135 0,127
30 90 0,180 0.246 “| 0.166 0.127 0.120
120 0.160 0.200 0.159 " 0.119 Oplil
15 L 0.5 0.236 0.154 0.115 0.109
180 0.148 0.23% 0.152 0.113 0.108
0 0.312 0.213 0.175 0.238 0.129
10 0.252 0.211 0.1 0.135 0.127
60 0,207 , | 0.207 0,168 0.122 0.127
60 90 0.17% 0.201 0.161 0.118 0.115
120 0.156 0.194 0.154 0.111 0.109
150 0.1L6 . 0,190 0.149 0.107 0.10k
180 0,143 "™\ 0.189 0147 0.105 0.103
0, 0,306 | 0.182 0,168 0.129 0.122
30 0.2L6 0.180 0.166 0.127 0.120
80 0.201 0.175 0.161 0.118 ¢.115
90 90 0.169 0.169 0,15k 0.110 0.108
120 0.150 0.163 0.147 0.103 0.101
150 0.1L0 0.198 0.142 0.0%8 0.097
180 0.137 0.157 0.1L0 0,096 0.096
0 0.299 0.162 0.161 0.122 0.114
30 0.240 0.160 0.159 0.119 0.114
60 0.194 0.156 0,364 0.111 0.109
120 90 0.163 0.1% i 0.103 0.101
120 0.1L3 0.1L3 0.100 0.096 0.095
150 0.13 0.139 0.135 0.091 0.091
180 0.131 0.138 0.11) 0.089 0.089
‘o 0.29% 0.153 0.156 0.117 0.111
30 0.236 0.151 0.154 0.115 0.109
60 0.1%0 6.1L6 0.14L9 0,107 0.10L
150 90 0.158 0.1L0 0.142 0.0%8 0.097
. 120 0.139 0.13L 0.135 0.091 0.091
150 0.129 0.129 €129 0.086 0.086
160 . 0.126 0.128 0.128 0.085 0.085
0 0.29h 0.1% 0.15) 0.116 0.110
30 0.23% 0.1:8 0,152 0.31) 0.108] -
0 0.189 . | 0.1 0.0 0.105 0.10)
180 %0 0.157 0.137 0,140 0,096 0.076
. 120 0.138 0.131 0,133 0.0897 +0,009
150 0.120 0,126 0.2 0.055 0,085
180 0.125 0,126 0.425 0.00) 0.003
« PR %

L

IEERN

. g

Figure 13.  Coeffitients for bending moments and deflec- .

tions of an elastic ring uﬁder uniformly distributed vertical

load and reactions. : i

) ] i ’
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‘ 2.3.2 °  Soil-Structure Intevaction
. d . V, » 2

- FI

Belowgrounﬁ pipelines may be divided into two classes on the =
basis of, the amount of deformat1on wh1ch they can w1thstand wighout

tructura) damage, r1g1d angx?ﬁex1ble pipe . Rigid pipes are less

. f1ex1b1e than the soil and consequent1y takg a greater share of the
4 ‘ vertical load. In the centrany flexible pipes have load shedding

. characteristics, i.e on account of their’flexibility vertical lo#d is’
‘f M 5 - 3
taken .up by the sidefil) and pipe as illustrated in Figure (14). It is

o

N

46‘

{ﬂ . l{'lmuhlc nng'

HM HH thy
L_L

A2

"a"'ék . i Figure | 14. Cbnceptua1 sequence for ring performance ‘-'» .

in (a) rigid and (b) flexible pipe.
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) '
therefore necessary any dttempt to analyse the structural behaviour of

- . J - ' —_—
a flexible pipeline to take into account the passive resistanse pressu-:

re§,developed by the soil at thg sides of Eﬁe pipe, as a major source’
~ P .

thin-walled steel pipes are flexible. In the following only the latter

ccase of flexible pipes is consider®™d.

) , e
- . . - . . '
Flexible pipes #re-capable of withstanding relatively very large _

‘deflections without any evidence of structural damage: The manner in

which such a pipe is deflected-is shown in Fjgure (15). The first

increase in the loading céuse a deflection to the circular ring'(curve A)
and the ring tends to take an elliptical sﬁgpe (curve B).lwith further
- ingrease of'the.loadihg this tendency continues unti]ﬂthe top of the

pipe is essentially flat (curve C). In case that the loading incre-

/

Figure 15. Stages of deflection of flexible pipéﬁ.

<

-
»

of supporting strengih. Concrete is an.example of rigid pipe, while :
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o / k
.ases more, the top of the pipe may reverse its curvature and become
concave upward, while the sides of the pipe-pull inward, as the pipe
procced toward complete collapse ( curve D). This deformation of the
pipe ring has as result, the sides to move outward against the soil

* L3 k3 » k\"b\’

a sufficient distance and to develop a substantial amount of the pas-
sive pressure of the soil. Hence, flexible pipes support the vertical
loads, to which they are subjected, in two ways. From the strength of
the pipe and from lateral earth pressures acting against the sides.
The<e lateral pressures produce stresses in the pipe ring that act in
the opposite direction to those caused by the vertical loads and in
this way increases the Toad-carrying capacity of the pipe. Sparfgler( 6 )
develeped a method to calculate the deflection of a flexible’ pipe* »

taking into account the lateral earth bressure. The Toads distribution

shown-in Figugs (16)was asssumed. . ‘ -

‘0

Y

-

. Figure 16. Assumed distribution of pressure on flexible pipe
i R / "'

4,

-

. e
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“The vertical load it is assumed to be distributed approximately unﬂi—

f‘ormlyﬂyer the width of the pipe. T‘he vertical reaction in the bottom
N mZ the pj’pe is equal to the vg,rtic\él load anq is distributed apprb-
o ! ximétel} uniformly over the width of bedding of the pipé. The passive
horizontal pressures on the sides of the pipe are assumed to be

distributed parabolically over the middle hunﬁ?eﬁ?ees of the pipe

L]
_with maximum unit pressure equal to :

4
I - D,
Maximum unit pressure : e —
“ ¢ . . 2

v
J

Where e :the modulus of passive pressure of the side fill soﬂ.l Ce
Dx;the horizontal deflection of the pipe.

Spangler also assumedsthat the deflection of z; pipe continueis to in-

crease slowly ove}\/a long period of time after the;verticﬂ load on -

the pipe has réached its maximum value, due to a gradual yielding of

the soil at the sigies. With the above; established load hypothesis, fthe

mathematical expression for the horizontal deflection of a flexible

[4

pipe in‘terms of the load, the properties of the pipe, and the prope- v
rties of the soil, is given by : -
3 ‘ ‘
D = De K wc‘R ' (25)
= 2 '

X' EI+0.061 e R

a4

Where . ' ' .
N D, maximum horizontal deflection of p-fpe. inches. .

Hc - : vertical load on pipe, pounds per linear inch.

. .
- o
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R ¢ the radius of the pipe, inches.

" E° : modulus of e1ast{city of pipe material, pounds per sq. in.
1 : moment of inertia of cross-section of pipg wall, in4per in.
K : parameter given in Figure (13).
e . modulus of passive resistance of side-fill soil, pounds
<,/‘ ~ per square inches per inch, ‘
De : deflection lag factor, having values between 1.25 to 1.50

The deflection lag factor is intended to allow for the slow
inc»l‘ease of deformation of the soil under sustained lateral pressure
. in non-pressure pipes. It is not normally applicable therefore to high
pressure pipelines or to temporary pressures induced in the soil by
- transient wheel loads and it need only to be applied to the defiection -
caused by"fﬂl and permanent or long~term uniform surcharge loads.
The modulus of passive resistance of side-fill soil, e, is
characteristic of the soil properties. The value of e 1is given by

Meyerhof (10), for & particula‘r‘ type of soil fill as :

E

e = 3 ( pounds per square in. per in.)

2(1\-m§ ) R

Where . . "

0y

m Poisson's ratio for the soil. ‘ e
Esﬂ > the “"modulus of deformation" of the compacted soil as
determined” by triaxial tests/

R *: the radius of the pipe. ' .

Poisson's ratio for the soil is usually equal to 0.5, if we put this

7

T e— g

\
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-
value in the previous Equation we obtain : e

]

ES/].S R.
For pipelines up to 60 inches diameter, Meyerhof states that
the value of K to be used in design should not be less than 20 1b.

per sq. in. per inch, and’that ES should not be less than 1,000 1b.

page-aiog

per square inch. This value of the modulus of deformation shou?d be in- .

creased by about 200 1b/in2 per foot of pipe diameter for D> 5 feet

2.3.3 Pressure Pipelines.

uThe stresses and deflections calculated in the preceding apply
only to externally loaded pipelines. In the case of internally pres-
sur1zed pipes new formu]as i\PU]d be developed in account of the com-
blned stresses due to both, exteéﬁal load and internal pressure. Prior
'to be@ggxcovered with fill, a steel pipeline it is nominally in a ci~
rcular shape. Afte} covering the load of the fill causes it to deflect
to an eliptical shape with the major axis horizontal and the minor

axis vertical. Because of this eliptical sﬁape of the pipe, when inte-

rnal pressure is introduced, the resultant of vertical cbmponents of

" the pressure will be greater than the resultant of the horizontal

components. As a result the deflection will decrease to some equili-
brium value and the sﬂape of tye pipe will be stabilized as an ellipse
intermediate between the one under pressure and a circle. Figure (17)
shows a typical seduence of loads on the pipe ring starting with a
circle.

When a long thin-walled pipe is subjected to an internal pres-

sure, Pi, which may be due to a fluid or gas enclosed within the pipe,

tensile circumferential stresses and longitudinal stresses are intro-

-

”

ca

+ a4
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duced. The circunferential or hoop stress which is the most important

A

is given by the formula :

P foa il | (26) v
c t .

Where ﬁ the uniform internal pressure

D the diameter of the mean circumference of the pipe

t the thicknéTs of the wall
The above formula is based on the assumption that the circumferential
stresg is uniformly distributed across the cylinder wil1. This assu-
mption hojg! only in the case of pipes having walls of infinitesimal
thickness but it can be used here since the pipes under consideration ’ J
are thin-walled. . - ]

When the internal pressure is introduced into a buried pipe=
line, and assgmi&g thag the horizontal deflection is substantially the
same as the vertical deflection, the excess vertical pressure over the
horizontal pressure will be Zpliand will cause a tendency go'the

pipe to return toward the circular shape. In the equilibrium position

we will have : ' | .
, | ' ]
- Dx /f ;
Ne = —— W_ +2p,D ' (27)
D
X
¥ e

Where Dx the deflection of the pipe under external load only
D; the equilibrium deflection under combined internal pressure
and external load
» AN

P; the internal pressure

W_ the external vertical load -




v % W

et A i e T 2

-45.

The width of contact between the pipe and the bottom of the dijtch,

is depended upon the amount which the pipe pushes into the soil bed-

ding due to the vertical load. If it is assumed that the bottom rea- h
ction will be distributed over a width about <30 degrees, the cor-
retsgzaing value of the vertical deflection of a thin ring is" : iegﬁm
' W RS :
D= 0.108 -=— (28)
X EI .
I <~

From Equ;tions (27) and (28), solving for Dy we obtain :

3
D' = 0.108 e R (29)
X

EL + 0.216 p,R’

4
The external 1oad bending moment is maximum at the bottom of the pipe

and at the equilibrium deflection is :
. . .4
1 DX EI 'rﬁ. 0
sz 2.170 —EZ-— (3 )
Substituting Equation-(29) into Equation (30) we have
Ml = 0.234 wC R EI Pl , (3])
b EL + 0.216 p.R®

| The corresponding tensile stress at the bottom of the pipe, is :

fos —t , ‘ (32)
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or» - - )

W_ R EI
fy = 0.117 —t ~ (33)
I " EtT 42,592 pR

t\
Th1s stress is additive to the tensile circumferential stress dua to
internal pressure, The max;mﬂm combined stress, from Equation (26) and

Equation (27) is '

&
P, D

L 0.117 K Ler (34)
‘ 2t Et3 +.2.592 piRT

-~
-

Watkins (9) has also investigated the problem of pressurized pipes

and he has concluded in the following formula to predict the final ring

‘/deflection

. DD : - - (35)
.‘ 288 (pi ~§§—§é%g—l

Where \

. D; . the pressurized ring deflection : N
w ?\ggfrtical soil pressure, pounds per sq;are foot +
t . pipe wall thickness ‘
A P; internal pressure, pounds per square fdbt.

Cp : pressure transfer coefficient

The pressure transfer coefficient C, to bé used is 1< C < 1.5

for the soil /wedge and crack pattern of Figure (17¢). This pattern is
associat;d with low soil cover H , so that H/D goes from 0 to about 1
Figure (17d) is associated with high soil cover roughly greater than D.

As the cover increases, the soil compresses rather than forming wedges.

e

b e
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Under these conditions the coefficient CP is 1.5¢ Cp( 2 as H /D
l{

increases from about 1 to infinity . Watkins, also presented a graph

which gives the pr’essurized ring deflection direct]xﬁ This graph is

shown in Figure (18).

The following three design conditions apply to pressurized fle-
xible pipelines. ) |
1. The tensile circumférential stress, fc , must be 1esscthan the‘,
strenght of the material, which is usually the yield 'point stress divi-

ded by an adequate factor of safety.

¢ F.s

¢ (36)

2. The pressurized ri'r'lg deflection D;/D shou]& be checked. Note '
that this deflection is the ring deflection still remaining in the pipe
after it has been pressurized and not the installed ring deflection
before the 1nterr:a1 pressure is applied. In case that the installed
ring deflection Dx is less than the predicf:ed pressurized ring defle-
ction D;( it is assumed that the ring deflection will not change but
will remain Dx

3. The maximum circumferential stress, hoop tensign-plus ?lexura],

should be checked with the allowable stress. This maximum combined

stress is given in Equation (34) or by the following formula présented

by Watkins i
X . 3D'/D

&> f = --«t-—p’ R + E (2t)(—-———5——-) (37) -
¢ LA D,/D

e et akm, s,
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If Equation {37) is to be used, the ring deflection afterepressurizings

2 n

should be taken from Equation (35). o -
- Finally jt shéuld be noted. that unpressurizing the conduit after
it has once pressurized is not a design condition. If the pressurized
ring de%lection‘is less than the iﬁstal]ed ring deflection, after the
conduit is unpressurizéd, the ring défleétion may increase part way
to the installed deflection. Even if it should increase all the way,

s

stress and deflection, will not be worse than during installation. Con-
\

sequently collapse of the pipe cannot occur. This has been confirmed by

experimentation.
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Figure 17. Conceptual sequence of loads and ring deflec;ion
~53:{,.3/Iburied flexible pipeline under internal pressure.

(a) Fi11 to top of pipe;(b) Fi1l compieted up to grade;(c) In-
ternal pressure, Cp= 1.0 to 1.5;(d) P, with : Cp: 1.5 to 2
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Reduced ning deflection Ay’/D after pressunizing, %

Void ¥

Figdre

S T

500

1.

1000

i
1500

o
2000

1b/ft?

Verticat sou pressure

B

250
200

150

o

250
200
150

2500

.

[20 pw -

1300 pu

=== 400 psi

-

= Pressure concerftration fuctor (1 < C <2as
fill height varies from O to o9)

18. Diagram giving‘the value to which the vertical

ring deflection D;/D‘ will be reduced after

-

an internal pressure is aﬁ%]ied.
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/) 2.4 BELOWGROUND PIPELINES UNDER SEISMIC LOADING

Experience has shown that buried pipelines have been damaged
heavily by earthquakes. The observed damages can be attributed to
either direct or indirect effects. Direct earthquake damaging forces

are taken as seismic shaking and vibration, fau]t displacement, andg
13

\tectonic uplife subsidence. Indirect damaging forces refer t9 mass

-« 4
ground movements, such as lands)ides, soil liquefaction, and compaction

Al

. of sediment. The pipeline failure modes due to landslide, tectonic up-
1ife subsidence, or lTiquefaction are catastrophic and cover a large
’ -
area. Usually such failures are accompanied by breakages of a large po-
- tion of the pipeline system in thegfailure area. Failure from seismic
———*———'/ .
\ shaking may result from- large dynamic tension that can cause a pull-out
at joints, compression that can cause crushing or buckling, or both,-~

shear that capscause craks or breakages of connections, and bending
- 4 p -

-

that can cause fracture. )

*

Based on damages observed in earthquakes like the 1964 Alaska

earthquake,. the 1971 San Fernando earthquake and earthquakes in Japan,a

- ~

attemps have been made to correlate s1m11ar pipeline damages to geolo-

gical and other conditions. These observaf?%hs conclunded that, damages
‘ -

A

occured least in bedrack, moderately in coarse-grained soil, and most

- frequznt1y in fine-grained soils such as chay or silt. Pipeline damage

. ' Y (
was highest in regions of transition from one type of soil to another,

e 2
& v

also pipes parallel to the main direction of propagation of the seismic

waves were more heavily damhéed than pipelines normal to the main dire-

o s -~

. ction of propagation. '
g : Y 0

»
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b.l 7 Seismic Design Philosophy
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Thé

o "

7 seismic'design criteria generally encompass two levels of
earthquake hLzard The lower level is that ‘associated with a return

Per1od for the des1gn earthquake of approx1mate1y fifty to a hundred

»

J;ar kears and i usually,des1gnated as the "Des1gn Probable Earthquake“.

The higher level is that associated with a Tonger return period, of the
- * L M

three hundred years or more, and is de-

!
i

Eignatgd as!the'“Design Max imum Earthqﬁ%*iﬂ. Thé first design earth-

quake is genarally considered as one through which the pipeline should

[
. }i»‘
be 'able to, gperate and continue operation after its occurence. The se-

cond design|earthquake sholld not produce damage that has not been

-N

. S

anticipated in the design of the pipeline. However, if the seismic data

4

. for the regjon may be inagcurate or 1nsuff1c1ent and also since usually

the desﬁgn n such a way, invalves an unreasonab1e degree of design ef-
;

fort, thg r lat1onsh1p between the intensities of the two desugn earth-

quakes normaily can been'taken as a factor of jtwo. The earthquake 1nte-
L d
nsity by itself has limited significance -in.the se1sm1C‘de§1gn, of

» \
equal impartance are the structural parameters governing response, such

as .stress on strain and deflqption that the designer intends to use

Qhr the'par icular eartﬁquake -selectedt Normally these cr1ter1a are se-

s

lected to make the Des1gn Maximum Earthquake govern the’ de519n.
& . v . ”»

Burie pipelings respond to earthﬁdake motions by moving with’

the ground in such & way as to have neariy the same curvature and nearly .,

.the same longitudinal strain as the ground. These strains imposé both .y

ag"’

oy g
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~pipe is de&igned to provide for mpderate amoﬁn;s of such fault motion.

[}

.

compres§4§e and tensile forjces in the pipe as we1j_as lateral pending. .
These }orces ahd moments can be computed reasonably well from the
earthquake ground motion; and the estimated wave propagation vé]ocity
arising from the eérthquake. Of course, the assumption that the pipe

moves with the ground is valid as long as the material surrounding

the pipe does nopﬁliquefy or is not grossly disturbed. Undg¢~1iquefa-
ction-conQitions, the pipe is no longer supported directly by the .
material and the possibility of further large deformationgrmust be -
coﬁsidgred. Consideration also must be given to the relative motion;
arising frem faults crossing the pipeline. Vertical and hoéizontal |

displacements of several feet might occur where, fault motipns take

place, but these’need not necessarily cause rupture or failure, if the N

3

“2.4.2 Design'Criter%a and ‘Procedures i
'; ﬂ vo@ ‘A :~

2.4.2.1 Strains In Belowground Pipelines f

- I .
Buried pipelines in general will deform with the ground and

[4

ha&strain in the ground w111 transmitted to the pipe without attenua-

t1on Actually, because of slip between the pipe and thé’medluE; and
local defSrmations between:the twd§31nc1ud1ng some s1ight ovaling of ’
the pipe, the deformattons of ‘the pipe may be slightly less than that

.of the ground. However, it is not deSirane to consider a reduction

“from ‘the strain in the medium. Assqﬁing that the relative displacement

‘between the pipe and the soil is neglisible and also that'the'shape of ~
) ( ~ A
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the seismic wave remgins constant as‘it transverses the pipeline, ;he

maximum a%ial strains and maximum cyrvature can be estimated. \
In a pipeline oriented along a radial line from the épicenter,

the radial component yf the ground motion induces axial strain, €
<G

whi¥h has a maximum value of : £ . .
€ max ?:T%m;/F ‘ . (38)
Where 0
vmax : the maximum grdung velocity in the radial direction

c : the propagation speed of the seismic wave with respect

Nk

to the pipeline.

-

A
Correspondingly, the'tangenpial component of the ground motion induces

bending in the pipeline, with maximum @hrvature equal to :
v / w
‘ - ‘ 2 ' has B4
curvature = A . /¢ | (39)
Where '
Ama" ‘. the maximum ground acceleration in the tangential direction

4 .
The problem of a pipeline at an oblique angle to the direction’

o? the propagation of the seismic waves can also been considered, and

similar formulas can be found. Here, the case of zero angle incidence, _

' whicﬁ is in gendral the critical is~considereg. 1t should be
noted that for reasonable vaTugs of Vmax and Amax , the axtal strain
would govern the design. _ : r

In abplying the preceding expressionsi the values of wave pro- -

»

%
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pagation velocity, ¢ , to be used is the effective ve]o&%ty applica-

ble to the type &f motion and medium being considered. In the case of

shear wave effects, the effective value should be taken as the value

4

representative of the actua1 motion of the med1um surrounddnd/hhe point

" of interest and not as-the“value §¢ the surface or at great depth. Re-- LY

presentative effective ve]ocity‘for shearing type propagation is
4:000 fps for rock or permafrost, 3,500 fps for massive gravel depo-
sits and s]féht]y lesser values for silt and clay deposits.

Considering relative settlement a strain in the pipe of the
order of 0.004 i§ a common operating Timit of defo;ﬁation. A reasonable
criterion for permisible deformation to avoi& rupture seems to be ]%
to 2% strain in the modegn steé] pipe at any sectios}-computeiaar a
nominal basis, or about twice as much at points of stress concentration.
In Equation (38), Vpax corfesponds to the maximum ground velocity in
the radial direction, While Amax in Equation (39) corresponds to the |
maximum - ground acceleration of tRe tangential component. To investigate
whether there is any difference between the radial and the tangeniia] ' “\\\"
companents o? ground motion, ground motion time histories recorded at
twenty six separate sites dhring the 1971 San Fernando earthquake were
analysed. The result of th?s investigatién was that the average values
of the ratios }/V 1 and A ]/A

1 » were all

rad1a tangentia radial’ "tangentia




2.4.2.2,.
SN

\ .

Complex Stress System

A ]

Since the seismicaQ}y induced axial strains are of greater con-

sequence than the curvature, the stresses in the 1ongitddinal difect-
ion are o? major importance. The Eonventiona] stress analysis of be-
1owg;oﬁﬁd pipelines for non §eismic loading 'is based/pn the plane
strain cdnditiog which- does not consider‘the stress or strain in the
longitudinal direction of the pipe. Thus, we mﬁst first 1ﬁc1ude what-
ever axial stress or strain which is produced under normal loading
conditions. Furthermore, a failure criterion for stresses in two dire-
ctions must be used.

« The axial stress, f, *, produced by internal pressure Jds given ’

1p
by the formula :

? f1p 2 ‘i;_{‘f (40)

¢

 Where N {( -"
p; the internal pressure )
R : the nominal radius of the pipe
t : the pipe wall thickness ) .

' This stress is ‘apeared near the end of a pipéline.'fhe’axial stress in

. ) /
the middle section of the pipeline may be very much smaller, since

. ¥
much of the axial forée generated by the internal pressure will be ,

resisted by‘?rictiona1 forces at the interface between the‘pipe and T'*

)
the sofl.

| Another source of longitudinal stress is this due to truck and

\ v o
. o\

L
«

4
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impact load. Rougke and Wang ( 13) presented a formula for this long-
itudinal bending stress,.given by :

R " (41)

f.o= 4

b = ekl . Q&
' \

In which W is the equivalent d{stributed load on the buried pipe

=

due to truck and ippact, EI is the flexural rigidity of the pipe and
e 15 the lateral soil resistance constant. For the longitudinal di-
recmﬁon of the p1pe the ax1a1 stress produced by 'seismic act1aﬁ\1§
denoted by f]s and can be obtained by multiplying the axial seismic
strain by the modulus of elasticity of the pipe material. The total

1éhgitudina1 stress f]”it will be the sum of the above three stresses

L

+ f ¥ (42)

The pipe wall should be checked for biaxial stress state. The Von Mises

failure criterion has been developed for the yielding under triaxial
4 !

stress conditions for homogeneous material. For biaxial stress state

.7 '
this c&iterion can be $xpressed as ¢
¢
¢ J‘
2, 2 L _ 2 ’
fC + f] "fcfl = fy 'S . (43)

Hhere>ffc and f. are the principal stresses and fy is the yield

1

* ., stress of the material from uniaxial testing. Here, as principal

’ B
stresses we can take the total circumferencial and Tongitudinal streff,f-\

e
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- . "
2.4.2.3 Fault Displacement )
A )

Newmark and Hall (15) presented a method that can\be used to

analyse belowgrourid pipelines for large fault disp]ac’nt. In the
vicinity of a break in the ground surface a buried pipe will strain
[

longitudinally and deform transversely. The pipe éenerally can be

displaced out of tﬁe trench and in that way conform to the transverse.

_components of motion of the fault break, although there may be disto-

rsion of the diameter. However, the longitudinal component of fault‘

'
motion can introduce compressio;\sr tension in the pipe. If the longi-

tudinal stresses in the pipe are kept well below the ductility limit
of the material of the ﬁq;e, shortening,of the pipe will be accompanied
by wrinkling‘Which can abgorb a great deal of strain. But extension of

. ¥ .
the pipe can produce tensile stresses that might cause failure. It is

therefore advised to avoid regions where the ang]é of fault plane with

the pipe axis is so small that nearly all of the fault displacement is
transmitted top the pipe as a longitudinal deformation of the pipe. - -
If the average pressure exérted on the pipe KS, P, the“resj§tw

ance of the pipe to slip in the medium is determined by the angle of
, \

internal friction, between the pipe and the soil, ¢ , multiplied by

the pressure, P . Hence the change in stress per foot of lenght in the

'Y

pipe, 9 , is given by the formula :

v t '

Where, t , is the thickness of the pipe wall.

0
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The average stfain between two points where the stresses are
defined, can be computed as the average of the two strains at the ends
of the region, and from this average strain mu]tiblied by the length of
the pipe that slips, the change in length of the pipe can be determined.
The length of the pipe that slips can be obtained by dividing the dif-
ference in stress between the two points by the quantity, 9 . In the
elastic range s)ip occurs from a point of zero stress to some mai?mum
stress, fl . The Iength, ]e , over which slip occurs, the average

strdin, £ , and the displacement or change in the length of the pipe,

de , are given by the following formulas :

o= /4 ' (45) .
€ ave = f]/ge/ - (46)

. .. ,
d, = fils / 2€ , (47)

(22N

If the Ehanqe in the Tenqth of the pipe in each side of the fault is
de , and the total“F#ult motion is, F-, with an angle, u , between
the plane of the fault and the pipe axis. the displacement is given by: -

Q

- d = Fcosu7 2 , (48)

Even a pure]y transverse fault motion will produce gross ]ongi-
tudinal strain in the pipe, additional to those corresponding to flexu-

»”
re of the pipe. For an anchor length, 1 , on each side, and an offset

—
-
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F , the average longitudinal strain, € , is well aproximated by :

/

B E2 = }(F/Z])2 + (F/21) cosu (49)
*®

Equation (49) can be solved to give the allowable values of,F/21 , for
a particular averagg strain, € , over the length, 2] .Résulté of such
calculations are given in Figure(19). This Table can be used to indica-
te the value of ‘anchor length, 1 , required to assure survival for a
combination of transverse and longitudinal components of f;u1t motion.
The approximate relation for 1/F 1is given by

. -
1/F > cosu / 2E (50) ~

}hé‘abgyé relation indicates that th? "free" length; 1 , on each side
of the fault, relative to the fault displacement, F , for y= Q
should be 16.7 for£=0.03, 25 for E=0.02 and only 12.5, for E=0.04
i The latter value implies a maximum strain over an appreciable length,
and thgrefore a value of 20 is recommended for 48 in. diameter pipe.
This f;quires a "free" length of 200 feet on each side of thé fault,

& for a 10 feet fault motion.

Angle, Deg. _~E = 0.04 € =0.03 €£=0.02

0 0.0400 “0.0300 0.0200

\ 15 . 0.0413 0.0310 0.0207

. 30 ©0.0459 0.0345 - 0.0230

45 ‘ 0.0555 0.0418 0.0280

60 s 0.0758 0.0579 0.0389

75 0.1266 0.0988 0.0689

90 ' 0.2857 0.2468 .0.2010

e Figure 19. Fault displacement divided by tot#1 free slip lenght

¢
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2.5. STABILITY OF BELOWGROUND PIPELINES

{

2.5.1 Buckling Under External Pressure

i

A ring-stiffened cylinder under external pressure may fail

-

/

either by yielding or by buckling at stresses considerably below the

yield point. The type of failure depends upon the properties of the

A

material of the pipe, the thickness of the wall and the spacing of the

stiffeners. If the cylinder is re]ative]y thin or if the stiffeners
"are widely spaced, buckiing will probably occur. If the cylinder is
relatively thick or {f the stiffeners are closely spaced failurewwill
proBably occur by shell yielding.
Windenburg and Trilling ( 8 ) héve suggested a thinness factor,
K, indicative of\fhe type of failure to be expected. For values of
‘the thinness faétor less than '0.8 , shell yielding is likely to occur.
Fcf values of K Tlarger than 0.8 shell buckling is prﬁbable to oc-
cur. Fu#therﬁore, for values of the factor farger than 1.2 elastic
» instability is likely to occur, while for values in the range of 0.8
to 1.2 p]astic-sﬁel] instability should be waited.\The thinness

factor is given by the formula

N

W

k = etamder et (51)
RS
Where
1 : the lenght of the shell between the stiffeners

D : the mean diameter of the shell

T et i i
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t : the thickness of the shell
f ¢ the yield point of the shell material g *

E ! the modulus of Elasticity of the pipe material

A ring- stwffened shell may fail by buckling, in one or more of
the three poss1b1e instability modes, shown in Figure (20 ), namely :
1. Axlsymmetrlc collapse of the shell between adjacent ring stif-

‘ feners. — ‘

2. Asymmetric or lobar bhckling of the shell between adjacent

ring stiffeners.

vy
.

General instability or overall collapse of the entige shell
and stiffeners.

Each of the above three modes is characterized by a specific collapse
. & »

, shape. The first one, by accordion-shaped pleats around the circumfe-

rence of the shell. The second mode, by the fonmingdpf two or more
lobes around the circumference. The third mode is characterized by
large dished-in portions of the stiffened ghgll, where the shell and
gtjffeners deflect together.

The ring stiffeners should not be placed too great a distance
apart, otﬁerwgse the shell region between stiffeners may behave under
pressure as though no stiffeners were present. The shortestllength of
cylinder for which the strengtﬁening effect of the stiffeners can be

jgnored is called the "critical length".
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Figuré 20.  Buckling modes for ring-stiffenéd pipes. ’
¥ (a) Local buckhng (astyrrmetric). (b) Local bucang {asymmetric);
. (c¢) General inst ihty ( overall col]apse) )
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’
2.5.2. Elastic Buckling of Stiffened Shells Between Ring Stiffeners

N

2.5.2.1 Axisymmetric or Asymmetric.

Elastic buckling between stiffeners usually occurs in a large
number of circumferential lobes and the Donnell's equation can be used.
The hoop compresgion Ny is usually assumed to be équa] to peR .
this would be strictfy correct only if the shell deformed freely until .
the onset of buckling, and supboﬁ&s were then introduced. Actually, the
rings exert some radial support from the beginning of loading, so that

N k’peR . N, can be found from the Equation :

y y
. d
Ny = f p?R (52)
Where «
Af ~ *
f=1- (1 - *V) g(e) , (53) ’
; Af + tl , i

Nhe;e

P the cross-sectional area of phe stﬁffener.

<>

-t : the thickness bf shell

1 . the unsupported lenght of shell -

v Poisson's ratio

R : thé mean radius of the shell

9(g)’ function of B which‘:}q%be obtained from Fig. (21)
Y o

Y S {54)
9 : (1 -v°) - Vel
- (Rt) s . —

Vo,

-

LA
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oig!

'
Figure 21. Hoop stress coefficient as a function of @ *

"
-~

°
L.
T

Combination of the foregoing results leads to the following equation

for the theoretical buckling pressure : ‘ ‘(\ . ‘

H]
+17/2 12(1 - v7)

Where .
n : the number of circumferentiafﬂlobes
£ : elastic Modulus ) 0 ,
If the prebuckling end restraint is neg1é‘ted N péR and the b
prevmus Equation }fxomes :

. . |

E 22 A\ (58)
= )(—--—-—2 (-*-) (0 +9%)° + —y=——n—,)

P 7 3212( 21 - v AL R (n° + 39)° R

-

)

"Equation (55) wids originally proposed by Von Mises. The correct value
"~ of n-tobe used in Equation (54) or Equation (85) 1s‘sbat which

makes pc a mlnimum Thi< can be found by trial and error substitu-
, . o )

O
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e be obtjined from the slightly different Eé{uatién (57). °

! 3 ®

Y
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) . . Y S .
tion of varigus values of n , or by differentiagion. Differentiation

of Equ tion (5;3) -leads to the equation : \

]

T N (se)
Pe= 0-8% 5% f6-1.28(f -1 N |

, ‘ )N
’ N
By chegking Equa\idh (56) with results.obtained by numerical\mintmi@

tion of Equation (54), it was found .tha't':‘g'light‘ly better accuraty can -

- .
-msss(tzi“v)f o (57)

% -T2 (f - M \ g U

end restr int is important only if © < 3 and is neghg1b1e for long- ‘

er Cyhn rs. Agreement ytween meory ann expériment is-fair for 40
'4 . H '\ .

‘cylinders with 6 > ]0 byt unsat(sfactory for shorter cy]inders

' The foregoing solutions are not valrid for yery'long cyhnd rs | ce
b,acause Gf the use of}he Donnell's equat'icywhich is’ appHcable B\Iy

" for N ))"“1 For given values of R and t ,n decreases as, ' .

“],‘ m«:reases _For a very’ 1ong cyhnder.g n= 2 . Riso m tms case |

. ¥ 1s approxlmatﬂy ‘equal to one. The theoret1ca1 bucang pressm'e - " .

in’ _s‘uch case is giygen by the follo}ying fOnSma;. : B

_—
’
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- L
pl = (S ()23 4 3D -———7—27'4 ) (59) )

€ 3492 R 12(1-§v)R (4 +3) o
N f\ N ) { %

*

"For véry large vilues of O  this result approaches the classical

formula for buckling of an infinitely long cylinder, which was pre-

sented by Bresse and Bryant :

— ’ Wi
’ i E t 3 : 5 ’
P = (=) . (60) «
: ) ) € 401 -v) R . >
‘For v = 043 . .
o 0. t 3 : \
« ' |
- . , A \ - ’
Limits can now be assigned to the varifus approxmations. /
Equation (57) may be¥ised if 8.< 1.6(1 )*(R/t) | / .

The simplest Equation (58), which do&s not require the calculation.of

: \ ~
f. , may be used in the range 3 < @ ¢ 1,5(/1 ..v?-)*( %

Equation' (60), may be usedJiffe > 41 - VZ)Q(R/t)
For intermediate values of © , Equation (59) should be used .

! ! -

~

Il

' For a short cylinder a ‘different solution ‘is necessary. For n=0

v
! . LY -

the buckling pressure’ is given by : e : v
»' - s . "'u . . ) \ ; . )
. p ' 2 2 N\ ‘ .
= 2,-3E 2, n 8
= 20 - W) Hemi i, .« 2 (62)"
N . ]29 N1 & )

-

| This. is_ the c]asgicﬂ éhuation for buckling of a short cylinder under
axia‘l compression This type of buckhng is poss1ble as a. result of the

» prebuckling end restraintewhis.h inCreases the resi stance of the shei\
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to unsympetrical buckling ' L - T e w
2.5.2.2 Elastic General Instability ,
. R
> @ To size the stiffeners, it is necessary to consider general
instability. In this mode of failure 3the shell and the rings buckle
\ {
together. A simple solution can be obtained theoretically and is given
.o . # : ‘
*by: o N
2 E I¢ : s TR
v pe= ("4 1) L eE () gy %
R}f R (f (n°-1) b/2)(n +)b.)
Y N ¢ . ’ ’ )
Where T : %
o . ) i Cot : .
’ Lf : center to center stiffener spacing .
‘ \ v
.),,:“a/Lb : ’[’_ . . ( ‘
,-' If : effectlive moment of inertia about. the centroid of a se_gti'on Ty
. compm’siné one stiffener plus an effective width of sigell e
e L Le on each side of the stiffener. . 3
‘, o The fist teﬁn on the right side of Equation (63) represents, the rigi- * 1

Iy > - N
K dity of the rings whereas the second ‘term ryes/érrltsv the membrane ri-

gidity. Befare Equation (63) "can be used,” f and I. “must be eva-
. . e >

luated..Since the shell e;mj stiffeners buck}e‘,togvether., it may be as-

,«' sumed that the hoe( stress. is uniform throug'hout the shell and stif-
" feners. In such case , ‘T is given by the formula : R (
S ’
~ A A O
Ty . > Af/~t1 PN | A o
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: the unsupported length of the cylinder

¢ "~ To evE%ﬁate the moment of inertia of the stiffemer, I , it is

3

x .

necessary to kpow what length of the Q\?]] s Lp » toconsider that

is_working together\w1th the st1ffener A satxs?hctory approxwmat1on

: §
1s @

—
i

L .= 1/2

(3(%

AT (rey! “
If 1y 20300 - Vi) Rty -

v

~ (65)

If

The'value of n

w

n is usually a small integer. *

2.5.3..

3

o

(4

Inelastic Buckling

[

Two basic inglastic modes bf rlng stYffénéd cylinders can occur>

v

i

-

1

.which gives the minimum Pe

€ 20300 - V) eyt

—
in Equation (63) must
i

‘e

™

*

*

\ be found by trial and error, but this requires only a few trials since
‘ v ‘m !

name]y, ax1symmetr1c and asymmetr1c or Iobar buckling. When the geome-

+ try and material properties are such that the computed buck11d§,stress

L)

is in the inelastic range, the critical buck]ing pressufe becomes a

funcg?bn of,the secan and tangent modu11

‘pressure lS given by

.\

Pe =

B 4

0.855(1 - _v‘?r*wa’(ﬁ;/et) (t/R)

¥

5 B+ 0.80(E/EHETE 1)

€e i

(.

»

(66)

I -
f0 - '1.22(Et/Es) (f- 1)

Ih this case the critical .’
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E_: the secant modulus E ~ .
E, : the tangent modulus : ' IR

v : the generalized Poisson's ratio, given by :
- /.
- _ - =S
ved - (- v .

1 4

ve : the Poisson's ratio in the elastic range. L
I} " b N

The determination of the p]astic*moduh‘ E, and E, present;s a pr‘o—"»fy

- -

" blem because of the biaxial stress state of *.;le pipe. A method presen-"
ted by J%hnston( 3) can be used to overcome this d1ff1culty Accordmg
~ t0 this method the cwcumfer‘%tw] and axial stresses are determmed
i the plas’?ic range then the Hencky-von Mises distortion energy cri-
terior{ is apph’ed and the effective stress ‘is obtafr;ed The plastic

e -

~fmoduli can then determlned from a representative stress strait curve

' of the pipe material for 'che effect1ve Mises stress BTﬁe applied stres-

“ses cqé&be obtam@% he following EquatmnS\ ' | "3

, / 1. Shell stresses

The circumferential shell strés§' can be approximated by :

y P, R A / . .
fe=- 00 AO'85 = o)) S
ftla t «

. Where
£ the cross-sectional area of a stiffener ; v
L : the effective width
: A .
o p : the apphed hydrostatié pressure - :

Fg) © 2 function which can. be approximated by the followiig
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ffj ¢ * and. the rest of the terms are. as previous. The circyu(:erentia] ‘stresk’

1} o

- _ . U B e - :
LI -
ﬂ |
- & 71-
‘ expression :
f )
3, F(Q) = 1 V for ) A<l
Flgy= 1.3 - 0336  for 1< 8<4 (68)
v \ ‘
F(e) =0 - ' for 0 ) 4 ’
The Tongitudinal shell sfress may be determined from the formula :
" / f.= - _p_e__}ig.
L 2 t : (69)
The radial shell stress is given by : . )
¢ . \ ”~
#
f.= P, e (70)
, Where, pe is the a'pph‘ed pressure , t is the pipe wall th;ckness and
L ]
R}che outside diameter of ~the, cy1inder.
2. Stiffener Stresses
The unit radial load Q acting on the stiffener ring, per unit
..\\‘ of circunferential Jenght, can be determined from the”following formula
i . applicable in steel pipes with v = 0.3
, : !
P oL
. L A, ” - ;
Q= -0.85 P (b s =t f ) . (7) A
Ae v bt + L t Y —

-

Where,. b is the'width of the stiffener web in contact with thé shell

is then given by the following equation . ' : \ ,*\] '
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. ,_.,f.‘,.“,,.,w — -
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. P R L - ’
)\/;/’ i f=-0.8522 5% ' .(73) (

.- curve of the material pf the pipe, the values of the desired moduli, E

_E

;72. ‘ A .&n

Y

Gk (72)
C ) <
Af + bt

LS

Equatiy-(\?\Z) can be approximated by :

¢ A

f-rLe't

The longitudinal and radial stresses can be determined by Equation (69)

and Equat‘i'ort .(.7.0) respectively. A1l terms encounter in these Equations
are as prev-ﬁous "

Assuming that the Hencky-von Mises criterion affbly in the plastic
range, the Stress intensity f; fora biaxial stress state is defined

as : . )
J -

- : _ (2 ‘ b

fo= (foefp - FD° (74)
4 » ] R
Having obtain the stress intensity, from a ‘representative stress-strain

3
@
and Et » which correspond to this.stress are determined.

. - | ‘
NN )
Equation (66) requires a trial and error solutmn but the pro-
{cedure is straight forward A stress intens1ty fiy s assumed, ES and
p are found from the stress strain curve, p  can then bg found from
Equatmn (66) after which the c1rcumferent1a1 and axial stresses fe \
and f, are evaluatied and findlly, fi fs found. The calculated value

of the stress mtensity f is compared with the assumed value, the’prb-
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cess is repeated until the assumed and calculated values of f. match

to the desired degree of accuracy. The corresponding value of p is

the buckling pressure, .

i

n

2.5.4, Effect Of Imperfections y

[

AN - Y
A1l of the above theoretical approaches assume a perfectly cy-

lindrical\shape, but in the reality it is impossible to built such a
<

cyllpder. }hese imperfections should be taken in account, since thgy

can reduce significantly the load carrying capacity of a cy]?hdér.
Most analyses of the effect of initial imperfections are based

on the assumﬁtion that the initial out-of-roundness is simi]dr in form

to one of tha assumed buck]jpg modes. Timoshenke (1) has devé?oped a
o

formula to determine the elastic critical pressure for a cy1f§der of

infinite length having somé eccentricity. The hydrostatic preSsure

i

at which yielding occurs is given by :

.

v

2. . 1.50e 2fut  _ :
Py (nyt/Df(]+—t—-°)pc)py*—-§——pc—0/ . (75)
N ~ ’
' wherq' : -
,,‘e0 \:(out f_rounénesg, given by :(Dmax' Dmin)/D = 4e/D
e :radial eccentricity / ’
p. : critical bressx;e " ) o - .
c e

14

Thip‘Equation,js applicable for buckling modes With n= 2 . The
Américan Petroleum Institute recommends a znge of e = 0.0V for fa-
_bricated tubes. ) .

L

‘ -

-
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A method to determine the initial eccentricity is the one
proposed by Holt (30) in which e 1is the maximum radial deviation from

a perfect circle when meadared over an arc length, A, correspond}ng

o to one half lobe length. The are length can be determined by :
a | |
D . 4
, Azoe . (76)

2n * ) ’ *

Where n is the obar number. Windenburg (31) developed an empirical

formula for the -maximum value of the rat&ﬁ of the initial eccentric{ty

over the thickness of thg pipe wall, which is pigmitted in the arc | . -
length of one half Tobe length. It was assumed that an imperfect shell
with the maximum permisible out-of-roundness would have a collapse

, pressure not les; than 80 % of‘that‘of a corresponding pprféct shell.

The allowable value for e/t is given by :

» ' 138
. - eft = + 0,015 n - (77)
A4

«© n (100 t/D)
The values:of n- were obtained from Vor-Mises's Eggption (55).

~ ]

C e
4 ,

. T;' v aThg initial out-of-roundness of.the stiffeniﬁg rings is equally
/‘ - important. Analyéizal stqgieslgf {he effects of stiffener out-of-round-
ness werg coﬁsidered by Hom. 'He developed the following approximate¥§l§
., formula for the maximum bending stress b/ introduced in the stiffener
| by stiffener eccenggjgity. This formula is app]icabl;lin the elaét?c' -

) S range only and 1s\giveh by 4 - !

N < ;
-, . b S
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75«

< : <

Pe
fb= t 11?6. (_.E_E_E._e_(nz - ])(.—-—-—-— ))
. D @ pc-p

(78) , . ’

Where Y

n : the number of circumferential buckling lobes

s ¢
.

e : the distance from midthickness of the shell to the ;axtreme 4
/f—' er of the stiffener, pbsitive or negative for internal
“or external stiffeners, respejctive]y. ’ |

p : the applied pressure  ( e

Pe - the critical pressure for perfect ring-stiffened cylinder . - 1

e : therradial eccentricity from a true circle

¢ ¢
{

N T ATTERAG T Se v,

.
v s AT

o
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2.6 , DESIGN PROCEDURE
A design procedure which may allow for the direct inclusion

of the effects of plasticity and imperfections on stiffened shells

is presented below. The results of this method are conservative, be-

cause it 1s assumed that the circumferential bending strengh of the

shell provides the resistance to ova]izatién of the shel}¥ and in this

way the appreciable contribufion of the stiffening rinags and the

membrane action are neg]ested. The method involves the following steps.

1.  The hnp%sed compressive circumfe;ential stress due to effernal’
pressure is determined. )
2. A §uitab1e factor of‘séfety against yielding is assumed:
3. The deflection of fhe pipe are checLed against the allowable.
4. The longifidjnal stresses included those due'to earthquake are
evaluated. , S+
5.  The Hencky Von-Mises distortion energy criterion is appiied and
’the stress intensity is defined and checked agaiﬁ%t the a%]oyab]e one.
6. If the cylinder is not overstressed, the critiéal‘buckTing stress
" for a perfectly routtd cylinder is determined,'assuming that the cylin-
der fails by elastic general instab{]it}i
7. The critical buckling stress of the stiffenea/cylinder is checked
against local buckling. " |

8. The critical circumferential stress for an imperfect cylinder
N ’ T~ [

» \ '

W

b

is determined. -

»
e

.
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9. _The ratio of the circumferential stress determineg in step eight
;o - -
to the applied circumferential stress is evaluated.

10. The ratio established in the previous step is compared to the

.

assumed factor of safety.: ' M,

Y -
11. The above procedure is repeated until an acceptable safety factor

v

is achieved. .

-
. . .
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3.1. Loads / - ' s

b=

‘Loading con'ditions vary in differest projects, but the follow-
ing general loads and forces Should be,considered in the design of
3
aboveground pipelines. The necessary combination of these loads can be

obtained from the appropmate design codes for each specifjc case.

o

!

.{a) Dead Load (oL)
(b) Live Load \ % (L)
) )
(c) * Wind Pressure (W) ) ’
L3 LY ! ‘
(d) Earthquake Force (E X
(f) ‘lemperature Effects (7

<

3.1.1 Dead Logd
>

Dead load computation is based on the unit weight of the

)
¥e) Icing . s (rt : \ -
(

n;a;.eria]s. Dead load is permanent and it consis‘ts‘of the weight of -the
pipe and.reinforcing rings In thm wa]'led plpeHnes the dead {:ad R H
msmnificant and usually it is not considered in the design, but if

,a detailed analys1s is. required the fcmov'nng formul a can be used to

~ 8btain the dead.load per- linear foot.

=,' ! ,' ) ”).!i ' " . ‘ ’ 3 s
oL vn_tys# 1 LEPRAN : A9,
UL
, / . & . ‘ 5%:
0 . ‘- - . ,‘ (Y
T _-u—: ’ ' :
‘/\”/ T p '
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Where
D -T'Vmean diameter of the pipe, in.\\ ‘ x v
t : thickness of the pipe wall, jn.. .. l

YS "+ unit weight of the matewial of the pipe, pound per in:.“ "

1 ‘ ' span Between two adjacent sipports

d N : number of stiffening rings“at the span
5 . y -”
D¢ “: mean diameter of the stiffening ring, in. Lo
te o thickness of .the stiffening ring, in. W ‘ ‘
\ \ . e
> “ ) ka .
3.1.2 Live Load P
'\ Sy
Live 1oad isydefined 3s the weight superimposed on the struc- .
ture by the use of it. It s a transient type of loading and {t ‘is not "
. , ) ) ,
climatologically dependent. "Livg load consists of the weight of the
fluid or the maximum gas pressure,, p1. ,_in gas pipelines. Interi\éa]
, : . _f.
pressure may also occur where a pipeline is hydraulically surcharged.
The weight of the ligquid is given by : -
’ ‘ ‘ Ve - ' ’
~ (a) Precisely full pipe. ™S ' \
ﬂDl T
' "c-—-l l
. ‘ L=—1Y, (80) :
r - —_ ‘- -
(a) _ (b} ' _

a

Figure 22. (a) Precisely full pipe; (b) Partially full pipe..

I ’ Y
1] - L4 * f
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(b) Partially fM1 pipe . )
(e Ly e
LL = (—2 - sin28 )= 81
> 90 ot g 'k
R

~D; : Inside diameter of the pipe, in.
Y| : density of the fluid , pounds per ‘in® -’
@, : gentral angle, defining the level of the fluid in the pipe

in rads.

1

3.1.3  Wind Pressure '
: | ‘ P
Wihd pressures are defined as those forces originating from
the naturql movement of the air. These pressures may produce forces on
a pipeline of significani magnitude. The design wind pressure, W (1b/ft)
is specified by the National Building Code of Canada, subsection 4.1.8.

The total force per linear foot on the pipe is given by :

. N

§

. N 4 - " N
W= qC, Oy B, , (82)
Where : e
| q elocity-pressure o .
Ce factor N
c_: T )
g s .
: Cp : shape factor, { 0.7 for circle ) .-
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3.1.4 Earthquake Forces'

ol

- . 4L

2
Earthquake forces should be considered according to deismic
“ - ' B

zones and following the provifions‘of the National hui]ding Codegof"

Canada, subsection 4.1.9. : s
™ - R -
3.1.5 Icing

Pipelines must be checked assuming an ice COveri5§ in accorda-

‘nce with the National Builqﬁng Code of Canada subsgetion 4.121L.
: [

& s
&

3.1.6 Temperature Effects << . ) ‘

" .

B v
. »

Temperature loads are originatéd from djmensional changes
1Aduced by variations in ambient teﬁperéture, If.extregeitémperature‘
variations are 1iké1y to occur, the magnﬁtude‘oizmovemenq§ and stresses
thét.may be induced by expansion and contracgjon, must be estimated in
erder“tqﬂdetermine the required controlling joints or the necessary

reinforcement. . -

4
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STRESS ANALYSIS OF ABOVEGROUND PIPELINES ' ‘

—

<

3.2.

~

To evaluate the introduced forces and the corresponding stres- -

ses in the p%pe’ wall, due to the,external loading, a snaH _e]enent of
the nipe shell is ‘considered ?nd the equations of equilibrium are de-
termined. In the case of bipelines some simplifications can be done

from the very begmmng regardmg the 1introduced internal forces and ’ .
moments. Th1s, is due to the cyhndrica] shape of the shell, and to the
fact that “in the )nost loading cases, pipelines are under the actmn
of forces dws)tmbuted symmetmcaﬂy w1th respect to the axis of the
p1pelme The, twisting moments are usuaHy equal to zero and thay will
‘mot be considered here.

Also the sheari ng force, Qx , and the bendi-

ng moment, M, are very small quantities and will be herein consi;

X
dered equal to zero. For loading cases f‘,‘Ch as, dead load or live load
in pipes precisely full, it has beep ’prov'ed by Skytte (26), that the®
shearing farce, Q)\j .» becomes zerq. With these simplifjcations, Tets
assume that ‘tﬂﬁ!generator of the cylinder is horizontal and paralef
An infinitesima]

w
ad:jacent generators and two cross sections perpendlcu1ar to the x-axis.

to the X-axis. element is cut.from the shell by two

Its position is defmed by the cgardmates x and 4 | The external

load acting“’ on thg element is represented by the ex'ternal fqrce compo-

}

- nents X , Y, and L . The element is held.in equilibrium by the int-

ernal forces and. n:omengr shown in ?i'gure (23). Namely, the noqpaf forces '

N_ and N , the shearing forces N =N

X ux
nu . Considering the equations of equﬂibnum obtained by projet:ting

R and the bendang moment

“the forces-on the x , y. , and z axes and by taking the voments dbdut

e e
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N /_Eibure 23. Free bodyvd'iﬁgrem of the pipe wall.
.. the x-axis , we will have. .’ T
.-, Projection on the z-axis : . \ } -
2% ) ¢ .‘ ‘," o R - .
/2R dudx + ( N, ¢ dN, )dxidu + budxidu < dQudx = 0 . .~ (85) -
' ! .
eliminating the differential of higher order dNydkidy , we obtain :
.. : . ' 3 .
‘. SR TN W Y- (84 -
. 4 » ’; - . ] - ’ .- .‘. \ \“ ) ) ‘k"
- ,
) , .
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Projection on the y&-s}xis, gives :

\

of dil u&x . Qu
de,u=--R-d—-¢ dx - Y dx
L] u. r
by. intergrating :
dNu B

N = -

»
-
@

Projection on the x-axis provides :

L]
»

By taking the moments around the x-axis

dMu + RduQu =0

or

Mu= - R]Qudu +.f3(u)

The functions f,(u) and fo(u) depend on the origin of the c‘oordinati

!

\s

‘ B dN , .
. N - - ._...ﬂdx -jx dx + f (u) R
T x R’ )02

_ o .

: d j-—-—qu d A fY d f |
X Rd,, R 1)

we obtain :

.
.,
O

4

)

)

YR dudx + (Nu N dNu)dx - Nudx - unidudx + (Nx yt deu)Rdu-quRdu:O

(85)
(86)

(87)

(88)

(89)

{90)

system and the conditions at the supports. With the origin &f the

coordinate system at the center

<

v S

the span, ,f](u-) = 0.
. ]




3.2.1 Dead Load
o —e : o Cs

. In calculating the applying fdrceé on thé pipe wall, it has

B

been proved by Larson (26) that under.dead Toad and under liquid

i 1oa& 1'n a pipe preciselly qu "the shearmg forces act tangehtml]y )

“

and consequently there are no cwcumferentla'l bending stres\se?m the

pipe shell under such ]oadmg. Therefore, the Equatwns of equﬂlbrium

' became : : ' ' °

- ’ ’ ’ ’
NU"= - R 7’ ‘ {' (91)..

f dx IY dx + f (92)
Rdu . '

. 4 . .

. _dexu dx -]x dx + f,{u) (93)

X Rdu o

Lonsidering a pipeé supported by two st:iff disks, which prevent ]'arge
deformations of the rim and designating the dead weight of the pipe

per unit area by ¢ the lcad components are- :

1= g cosu

B ' Y: g[ipu'
’ i

w -

) X 0 & s

~




X - B 8- =

. . From Equation (91) we obtain :

N = - R g cosu L "t (94)

[

From Equation (92), for dNy _ Rgsinu We have :
- . ' d’u o ‘

N
« " .
-

e .

rXu

e

o : N = -2g xsinu ' o (9% - .

.,

Equation (93), with 9—3-\—’:1‘-::-29)( cosu , becomes : .. f

P Y

X2

(=}

I
~|

cosu + fz(u) s (96)

e

sure on the end disks is resisted by cor"respon‘ding forces in the oppo-.

site direction, the stress component Nx mest be equal t,o‘ zero at the

supports, @r :

v 2 < *
g 1. . . ’
; fz(u) T - ——— COSU (97).
| ¥ . 4 R ‘. _ :
and Equation (96) becomes :
v g9 2 42 SR I
, Nx""-ﬁj { x°- T ) cosu (98)

1' ‘ -
'équation (98) shows that the longitudinal strdss ‘component has a

straight 1ine variation with maximm for . x= 0 , equal to :

o ~ max N = a2/ &

T R R VR e

The funct‘ian\f‘fz(u) can be cal,cuTa,‘ted assuming that any inside pres- -

»
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.The corresponding, unit stresses are obtained by dividing the stress

¢ - N e
components by the shell thickness, t , hence 7

. — o — o —— e — b

v, ~

2

"

7 / ‘

max f; =g 1%/ 4Rt g (99)

From Equation (94) becomes that the ring stress s independent of the.
- . 4 . . .

span, and -that it has a maximum of : % 5

. L
a0 max N = TgR 7t (100) -
This gtress is compressive at the top and tensile at the bottom of the - &

pipe cross-section. . , :

" The shearing Atresses réhch their maximum at the end disks, and they

are distri
subjected to begding. - T ‘

If: should be noted that the ‘sfress.es obtained with the preceding

- been presented by Trditsky (5); which was based on Russian references.

!

This analysis is based on the V'Iassov“s Theory‘f.or cy]indr_itaT shells.

‘In"viassov#® theory it is assumed that the longitudinal bending mament

and twisting moments are too small and can be neglected. It is allso

assumed that the shear deformations can be neglected and that in the
cross-section the shell is able to take without deformation the axial
forc,es; both Porma] and tangenttal and 'the transverse bending moment.

According to this analysis a parameter, B , is. introduced which .

I
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" depends on the support conditions and it has the following value§:‘

If the pipe may freely rotate at the support, then B =1 L

If the pipe cannot rotate .freeﬁo s ﬁhe} B‘ = -2/3 at the supports
‘and B = 1/3 at the midspan.. N

‘The results of this analysis will t;e- presented in the following for

1]
each loading case scparately. For the case of de@d load the _interqa]

. forces are given by :* A DTN ,
g ]2 n X ’
NX= B KNX —R— cos -T— ! (]01)
w X ” (102)
Nu"—- KNU g R CQS "':I—" '
X | (103)
qu== Kqu g 1 sin =
Where .- »
K = -0.258 cos @

N
A'KNuz 1.273 cos 8
Kqu': - sin @ «
1 @ the span between supports.
R : the radius of the.pipe.
® : central angle with the vertical, defining a spgcific

point on the pipe‘shell. .
;o 2
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3.2.2. L1velL0ad
3.2.2.1. Pipe Precisely Full o
-~ . .

*  When the pipe is precisely fuﬂﬂith a liquid-of unit weight
per unit area of, q ,the load components are equal to zero except in

the z-direction, where :

¥

Z=-~qR( 1 - cosu ) (Y. )

'Subst'ituting this value into Equations (91), (92), and (93) we-obtain :

,

From Equation (91) :

N, =4 32 (1 -.cosu) ' (104)
From Equation (92).:
L}
Ny, = 9 R x sinu (105)
From Equation (93) : ’ *
: ) ’ .
Nx =- %-(1 ‘- 4x2) cosu © -« (106)

-

The ring stress is tensile, it increas#s from zero at the top 'of the ~

cross section of the pipe, to a maximum value at the bottom equal to :

N, = 20R° u (107)

1%&3 shearing stresses and the-iongitudinal stress are identical to
those obtained by the ordinary beam theory. For a multispan pipeline
reinforced with stiffening rings the stress components can be found

witﬁ more accuracy from the formulas of a bartiaﬂy full pjpe for 8, 0

) 3o T
{

9

7

LA
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3.2.2.2. Pipe Partially Full

\

]
4

Tﬁe previously mentioned analysis based on Vlassov's Theory

Py

prbvides, the deowing formuias for the introducegf forces in a parti-

ally full pipe. The angle 90 defines the level of the liquid ih the

) W /
pipe. The forces at any point defined by the central angle @ are :
‘ - S
0 |
i
¥
3 v e - 4
—— %“ ) |
1 . )
~ | * » )
Figure 25. Pipe partially full. Definitions. - \\\\‘
M= Y R3 cos XX
u- KMu L 1
) :
- 2 m X
M= B Ky fp 17 cos == ‘ . (108)
ot ¥ ) | - .
\Nu’ KNu - cos = ‘ . (109)
. 4 " ! . ~ - “ !
R
L s T X : b . ‘
quz Kqu 3 sig = (110') m
The ‘coefficients K are given from the expressions: ‘Ki\ '
v Kux * KNu' Nxu* 9 P ’
. , -




'- } W
N . ' . 1 4 \ . . \ (\
’ . )
Ve . B |
. -91- ,
N ‘ ' 2 R ’
\‘ KNx = - 0.041 A‘ cos 0 » 128 € A.LCO\S 20 | .

1Mes.92€%e256 ¢ . -
(1 - Qo)cosgo + singo Al' cosOL A2 cd/szg ’
. Kyy = - 0-811 (- : + -~ :
_ S \ ? 2 3
+ Ay cos38'+ A, cos40 )

Ky = - O-F5%0, sind/e

2 .
3 21.33 A cos20 729 A3 c0s30 ‘
/KMU':: 081c( 2 3+ - 3 +
- / ) . 1168 92 E< . 256 ¢~ . 1168.92 € +6561 ¢ B
—_— 4096A costo 15625 A, cos50 L
+ —
nsa.ggez + 65536 ¢ 1168.92 E° 4 00685 ¢c> - -
\ L d ‘ 4
) Where _ ¢
€= R‘o'/tl3 defines tﬁe geometric characteristics of the pipe .
- A .
Aqs A2, Ay Rys Qs;‘constants which, can be obtained from Fig(26) ,
: T thé’moment of inertia of the stifférﬁngt r,i.q&‘inc']uding the . q‘
‘wall of the pipe in-width equal to the spacmg of the rmgs ;
¢ : defines the equivalent thickness of the shell in the trans- ' ;
- - verse direction, so that : )
) ' T, . )
) 3 - . .
I=T1 (ct)/ 12 - D S 1
.1 : the span between two adjacent supports of the pipe. /”
. ' . It should be pointed out that experimentaw it was proved
- -~ that the case. of a partially full pipe is mire critical than the, one
- T of a ﬂ;ﬂ pipe and therefore theoprecedind’ solution althought_ lenghtly
N . ” N
. N 1
* - N «
A ' ‘ -
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Lo v s ofygr;eat importance, wherever the provided accuracy is needed.
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i . Figure 26. Diagram for the constants Ays Aoy Ras Ags A
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/‘; 3.2.3  Wind Load N
R ’ : [N , ~ ; s-—
j - ' In the oase of a wind force w and assuming the wind pressure .
t .
! distribution shown in F1gm‘e (22), the fg,rces acting on each point of-
.o *
Lo .~ the pipe can be obtained acmrdmg to the prevfous ‘method *from - -
- .- the folowing E‘quations N ‘ i
‘ , . - _ A\
. , . 5 . ‘ . & L
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[} o ° : 3
LongTtudinal force Nx‘: v .
A ‘
. T G o
v N‘( = B KNX T cos T « - {112) .
/ : .
* Circumferential force N, . .
© ) S / ) ,
T Wt e ‘ S
N, = Ky, —g— cos rX ‘ (113)
. R 1 o ) ‘ o
¢ ' .
Shearing force qu o
e L L | v
qu--_; KNXU-—--- sin —— ’ 1 (114)
" \ t1 1o ’ .
. {
X Circumferential moment 'fdu’: ' , )s
- * . . 4 4
-~ . 1&’4 . ‘ . .
‘ noer ' '
| My = Koy H‘R cos o (1153 T .
» e M .
e
. .
- . L] -
. ) - x‘, ) . -
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460.8 € cos20 # v

1
K, = - 0.0581 = cosO
Nx 3 1168.92 € © 4 256 ¢

. P . | :
Ky, = 0.101 (- 5.026 + 5.66 cos@ + 9.6 c0s28 + 1.886 cos30 —
"y
. - 1.131 .cos5@) &

—

= 1o -
Koxu = -0.225-€-s1n9 - , -

-

- 61'4‘4 cos2@ . 1374.6 cos38
3( +

.o = 0.1 ¢ -+
s W 1168.92 £+ 256 ¢>  1168.92 E “+ 6561 c3
: 17677.5 cosh8 s

L= - )
* 1168.92 € %+ 390625 ¢S

3.2.4 © Icing

If the specific weight of the ice is Y-, and the maximum.
ice covey, is denoted by h as in Figure (28). thé forces acting on

the wall of the pipe can be obtained _?rom the following formulas.

t
@

Ty

Figure 28. Loading -due to ici»{on a pipeline,
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Circupferéntial force N,
W ht 12
Nu = KNU ""'—‘;2— COs

X
1

o

Shgarmg force .qu :

‘ 3 .
N ‘—K’msmﬂ'—’.ﬁ -
Xxu —  “Nxu 1 1

Circumferential moment Mu

' 2 . T X
Mu= KMuYihRCOS“-T//-

v

Where v ..
. 1 226.2 £ cos28
KNx = -0.129 — cosQ +
- 2 3
. 1168.92 €° + 256 ¢
. KNu = 0.318 £ (-1 42 cos8 + cos20 )

\{/ ; | |

- |
. Kqu... - 0.5 3 sin@ .
‘ 3 . cos26
KMu-"=-30.56c ey
I ) 1168.92 €~ 4 256 ¢
~ N *5

-(118)

(119)

-
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'3.2.5 Internal Pressure

Timoshenko and Kridger ( 2 ) presented a method to evaluate
the stresses acting'on a pii)eline subjecte-a to internal pressure and
ﬁ reinforced with_rings at equiépacing. This internal pressure p, may
be due to a fluid or gas enclosed within the pipe. According fo this
method the applied stresses are given by the following equations :

»
»

Circumferential pipe wall stress midway betweerd the rings :

p-i D - » 2t : .
fcz-——-t {1+ Z(frm —‘1)\ X4 ) (]?0)
» The ring stress ‘ S, ' - ,,
| pi'D/(K\E{&( xz)) (121)
f = — 1h - X, - —= = ,
& T2t a]? 2 X3
. &

The longitudinal bending stress in the pipe under the ring is :

-

4._p1.D 3 .4 2t .

°

The parameters X;, X,, X3, X,, are given by the-expressions :

AN

. X, — cosha + cos a )
1~ sinh a + sin a /*// ot

L) * . 4. L‘
y, = Sinha-sina - . S .

2 T sinh a+sin a ‘ ’ ‘

L 4
»r
’ ! >

¢
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X = cosh a-- cos a
’ "3 ™ sinh a + sin a

L3

. X _.'sin (a/21°cb§ﬁ (a/2) N cos(a/2) sinh {a/2)
' 4 sinh a + sTh a

Where
b barameter:given by :
b = 1201 - V%) 08¢
a : parameter given by :
o as=bT
v o Poisson'§"ratio .
: ﬁean'diqmeter of yhe pfpe
: pipe wall thickness ‘ A ‘ U

: ‘'spacing of the rings ,

» - & O

: cross-sectional area of stiffening ring

Stephenson { 7 ) observed that the above Equations are very
much simplified when the spacing.of the rings increases. He recomme~
nds that for spacing of the rings greater than 2(t D)i , the fol- ‘

. - - [ - +

Towing eqﬁations may be used

'

> © 0 f = 1piD - ) (123)
e o t+0.91 A / (t D) ARV
) fo=pd/2t "~ ' oz
0.827 Pi D A¢ B ey T
, P —pp— — . (125) '
P o) s At ‘ ‘ !
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3.2.6. Temperature Effects % .

If a cylindrical shell with free edges undergoes a uniform
temperature change, nd thermal stresses will 'be introdu;sd. Butyif thé
edges are supporte& or champedt free expaﬁsion of the shell is preven-
ted and bending stresses are introduced. For a pipe bf lénght, 1,

»
having a uniform thermal strain, the linear deformation Al due to

a change in temperature of AT is , i e
Longitudinal .
— o 3 . )
l
Al = a (AT ,Nj ) (126)
Radial a . . L

. AD =a (AT)D

127y \
Where |
a : the coefficient of thermal expansion

oo D : the diameter of the pipe

1 : the considered lenght of the pipe

In the above déforﬁations, the deformations produced by the 1iquiJ
* fiow should be added. If p. isthe uniform pressure of the pipe or
the average of the’ pressures at the edbes of the lenght 1 , the free

flongitbdinaX increase in lenght owin§ to this pressure is given by the

)

-




’ 4 r 4
' S g9
formula : , y py D1 ~
Al = —— (1 - 2v) (128)
™ 4Et
E : '
. .

If these strains are prevented by restrains an additional longitudinal

stress is introduced, which produce a longitudinal strain egual to :

3 / E . (129)

with a deformation over the lenght 1 ‘equal to :

fi1/E > ' : (130) -

The sum_of all the longitudinal deformatiohs should be equal to zero

due to the end restrains, or :

-

P; D1 f] 1 ‘
—(1 -2v) +a (AT)1 4 — =0 (131)
4ELt E-
.'K . :
# -
or ' it
p; D .
f]: - ——(1 -2v) -aE (AT) : ~(132)
4 &‘ 4 t -

. In'the above’ stress, the stress produced because olf the ‘internal pres-
sure should’ﬂe added.)DeQeﬁding on the value of the temperature change
the'abové's§(ess can be either negative or positive, and it will occur
atg the point with the minimum oy maximum liquid pressure respectivel‘;.
In cases in which the pipe is empty the pressure term should bé elimi-

nated.

N\

%
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. stiffeners in thin-walled cylinders subjected to bewding, is as essen-

. =100-

v/
3.3 Stiffener Stresses
£
The determination of the nature and forces actihg on ring ‘/
— \

‘tial as the rigidity of the stiffener .in the selection of the approp-’
riate ring propertiés. The stresses in the stiffeners are caused by
the beam bending moments in the structure and also by thg‘direct &
effect of the, transverse loading on the shell. The stre§§e§'on the:

-+

stiffener due to an gpplied pure bending moment on théécyl{ndér are
c;qsed by two types of action, the flattening and the bylging of the.
py]inder. Flattening of the cylinder is an increase in the horizontal
diameter and a decrease in the vertical dia%etér, caused by the curva-
~ure of the cylinder under bending. Due to ghis curvature the longitu-
'd§na1 stresses at the top aﬁd the bottom haives éf'the cylinder have
Fésultant forcés acting torards the center of 1he~cyiinder, ;2g in this
way cause the flattening of the cyTinder. Bulging 6f the cylinder is
the increaée of’thc radii of the cylinder on the compression side and
their decrease on the tensile side due to Poisson's ratio. The types
of stress due to these two types of action is shown in Figure (29).
Both of these two actions have the same sign of the ;tress at?point 9 - :
and opposite signs at point 1. At point 5 flattening will be the
main co“tributing factor to the stress, whereas bulging will be the

main contributing factor to the stress at points 3 and 7.

In Figure (30) the stresses on the outside face of the stif-

fener due to applied ﬁure applied bending moment, is shown, A Gompari-
son between Figures (29) and”?3o) points out that the stresses due

to flattening J’Fy at a faster rate than the stresses due to bulging.

‘ v
. P .
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3,3.1  Flattening OF The Cylinder

s

S

If we consider a cylinder under the action of a bending moment

x_'/ M , the resultant forces of both the compressive and tensile longi-

’

tudjnal stresses at the top and the bottom of the cylinder, are verti-
cal and acting toward the inside of the cylinder, as is shown in’

Figure (31). The longitudinal stress at a point on thé cylinder is

equal to : N
E R - 1 B f
fi=- -F-cose ' i (133)
¢ '/‘ ¥
Where ' » * - “

P : the radius of the curvature of the cylinder’
9 : angle measured from the vertical, defining .th(e point on the
pipe shell in which the stresses are considered.

E : lf ici o
the modulus o E]Astmlty,

R : the mean radius of the cylinder i B 1

The resu]ta. force acting towarg/b!{e inside of the cylinder, per unit

of surface, Wil1 be g(ven by :

L CF= o casd , (134)

Where t is the wall thickness of the pipe. Therefore the cylinder is

¥ike being subjecting to the action\ of vertical\gressure with magni-
tude equal to F . The distribution of the forces on any ‘'stiffener as

r

s 7, {

.
.
: .
. . 1
\g o -
.
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a result of flattening of the éyh‘nder is assumed to vary according

to the variation of the pres«%on the cylinder, and they are taken

¢
as : '
. <

-

ERt ) B
K cos® : 135
e . (135)
The term K, is a function of the ring spacing' and also of other pa-
,rameters and has the unit of length. The corresponding bending moment

v . .
Mr , and normal force, Nr » in the stiffener are given by :

, . '
. E Rt (29) (136 *
M = 'K_"'Z" cos(26 136
s r 4L ' ]
and 2
ERt 7 & ,
NY‘F - K Tz- 51}9 . - (137)

For closely spaced rings, it can be assumed that the flattening foggces

are resisted by the stiffe_nen.gnw. In such cases the \term K , may

be taken sﬁaéqual to the spacing of the, rings L'f . From Eqpat?/ (136)

N
we have 3 .
E Rt e
M.=-Ls—— cos(20) * (%38)
Y o ’
v ' }i \L"
For p=zEI/M Equation (138) becomes
X | L
e ] M| cos(20) S ()
’ = — L _cos :
T aplRE £ T |
- , .
Where

3

I : the moment of inertia of the cylinder

P
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! M : the applied on the cylﬁndef bending momeE?

Lf more accuracy js needed, a better approximation can be achieved by

~

considering the term K equal to :

K=' &~, ‘| . “ . a‘ (]40)
‘ L 2y ey ot .
| RV (a) T HIT,

rﬂ‘
Where -

If :  the moment of inertia of the stiffener //
. ’ )

.

C] , C2 » constants. .
o Exper%menta]y it was found thét the average values of the lconstants
. C] and GCZ to be uééﬁ) are C]== 1.0, and Cz== 1.1 . Values of

the function ¥x) are given in Fig. (34) . The.foment of. nertia ofg,

' the stiffener I can be calcu1ated'assuming that the effective width

i of the shell acting togethé; with the stiffener is équal to twenty ‘

four times the thickness of the shell.

LY
. A
) .
I g e SN FoSCN-CINL B
x K % P(x) x
TR T T 2000027 T U400 T 439 T T340
0.20 10.001 1.50 1370 3.60°
0.30 6.667 1.60 1.295 3.80
0.40 5.001 1.70 1230 4. W
0.50 4.002 1,80 1174 4.22
0.60 3.336 1.90 1.127 5 00
0.70 2.861 2,00 1.088 5 50"
5 080 2.506 2.20 1.021 8.00 v
0.90 2.230 2.40 0.576 6.50
1.00 2,011 2,60 0.945 7.00
110 1.833 2.80 0.927 7.50
1.20 1.686 3.00 0.919 8.00
. 130 563 3 20° 0.017
= T ™ W e ©
~ A
) .
Figure 34. Values of funation Wexy -
- ,‘\‘ N -
»
- . .
b t
R
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~ 3.3.2 Bulging Of the Cyh‘nder‘"“L
f\ L) L] .
> moment will be equal to :
. . ,
! ; M 0
f, = - cos® -
T

- .

L

(141)

The "distortion of the crosé-sectign d is given by the formula :

-

I A

MRtE

v

cosh

Where | ' ﬂ'
' M : the applied pure bending* moment
v : Poisson's ratio ®
ﬁ : mean radius of the Fylinder
t : wall thjgkness of the cylinder

E : modulus’'of Elasticity

[« +]

. angle -measured as in Figggg (32)

(142)

The longitud}nal stresses in the cylindegbdue to“pure bending

143

The radiat forces are assumed to be proportidhal to the distortion
» - and equal to 7 cos® , and the tangential forces equal to Z sin g,
This type of loading is shown in Figure (33). I¥ -the shedr and normal

Y‘ . . .
defQ‘mations are’ ignored, no bending moments are produced in the ring.

'

The normalgforce acting in the ring is in this case given by :

., (143)
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AR Y

Where, Z is a parameter for which the valde was given by Rumman (18)

in the following form

] T
v I Poisson's ratio

v M/ (144)
Z‘ = b N v “-— #
T ‘%'(W(btp)'%
1 f. v ,
Where

M : the applied bending moment

Af-: the cross-sectional area of the stiffener i

b, = 0.35/(R t)} ;

Substitu.ting the value of Z , given by Equation (144) into

Equation (143] the normal forces can be obtained in the following form

. (vM /T RZ) cosé
N = -

' (145)
v

b
1 i
F(?(b]‘f)) + t/Af

(5]

" The stresses in the stiffener, will vary linearly with the applied

between the calciated and measured stresses in a ring stiffenér.

\

3

.bending moment on the cylinder. The variations of the stresses around

the‘;‘ing stiffener due to bulging s@uldj be pmpg;ti‘ona] to cos 8 .

The forces produced by flattenifig and bulging, as well as,

those produced by any loca} loading, are considered to be the Wgr
- K

forces acting on ring stiffeners in long thin-walled cylinders e

| . »
gubjected to bending. Experimentaly it was confirmed a good agreement”™

]

) - v ! .
L ' . .
. g “
i . . ) X '
B . . A '
.- Vo . . - . -~ L . {
o . ' : ‘

P il .
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"

3.4 - ' Strenght Requi'r‘ements

!

The maximuym stress at a point of a cross-section, selected so
that the moments and forces due to one 10adi’ng case or a combination
of loading cases are maximum, must be sma]ler than the a‘llowab]e
stresses prov1ded by the appropmate des1gn code. In the preceéing the

_ resu1t1ng forces for each Toading case were eva1uated Due to these

stress components the following stresses are introduced in the pipe

>

wall of thitkness t .-
4 ¥
Longitudinal stress due to the lohgitudinal normal force N, .9

L ]

.~ f] = Nx /'t (145)

o

Circumferential stress due to the tangential normal force Nu

o fcz.-Nu/ t .- ) ’(14,7)
- LN . ‘ ' . . ‘

¢t
a <.

L3

Circumferential stress due to the tamgential bending moment My
. K P '

-~ 2 w I . . X
fo= 6M,/t (148) |
(/"‘\
Shearirig stress produced by the shearing force Nyu
. - .
N S == qu/ t . \ " 1(449)‘,
. % o \
P & !
. =
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Some of the loading cases, such as the own weight of the pipe,
are permaneht, while others, like the icing, are temporary. It is up
to the designer to decide which loading cases combination is necessary

to consider for each specific project. After .the loading combination

has been established, the corresponding stresses for each loading must
be added, and the total stresses are obtained. fFrom these stresses the
principal stresses and the maximum shearing stress can be evaluated

aécording to the formulas, for f, > f. .

fo+ f - - f, - f
f1 , = ] C + ( ( ] C )2 - 52 3 (.‘50)
’ 2
and )
G - fi-fe * (151)
max 2 ¢
Vi E]

Thesé stresses should be smaller than the allowable stresses. The
complex stress system of the principal stresses should be checked by
the appropriate yield criterio. The Von Mises-Héncky criterio is

defined as :

2 2 2 .2 (152)
1 2a (- tPae (fy-fpfa 2l U

For two principal stresses the Equation (152) is reduced to :

2
1

2 2 2
(<N ‘

Yl - f

Where fy is the yield point of the material n uniaxial testing.

. Id
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\-ﬁ‘:\‘(—\ Stability Requirements o \

( , I
* From the stress ana]vs1s of aboveground p1pe/}inés it was
concluded that the pipe sheﬂ is subjected to comprﬁesswn, in the
direction of its 1ong1tud1na1 axis. The stability of the c:ompressed
zone of the p1pe in the lonw:udma] direction should be checked

against buckling according to tfie formula :

f

] &— (154)
F.s

f

, is thecritical buckli f i d FS ‘is
Where fcr is itica b\uc ing stressq the p@g an S is

the appropriate factor of safety. The evaluation of the critical buck-

1ing stress is discussed in the following. Y

Pipes subject to axial compression, bending or internal pres-

. _sure may fail in buckling. Depending on the dimensions of the pibe,

either local or overall buckling failures may occur. The rir?g stiffe-
I -

ners provide additional strenght to pipes of relatively large diame-

ter to wall thickness gratios. Buckling failure on ring stiffened pipe-

llines may occur in several different modes, similar to those of ﬁ;sti-
ffened pipes. The prediction of the agpropriate buckling mode and the
calculation of the corresponding buckling stress in a ’pipéh’ne reinfo-
rced with rings, is a very complicated problem. Because stiffeners, in
addition to the nature of the applied load and the supporting condi-

tions, introduce even m'cfr"e parameters such as stiffeqers size, spacing
and position wlith respect to the pipe wall. Furthermore, the buckling
streng?}t of thin-walled pipes is very sensitivel to geometric imperfe-

P
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(ctions. A1l these parameters and the multiple mechaﬁisms‘of failure
sible, make the stability analysis of stiffened pipes very compli-
cated, so that a universal set of design formulas substantiated by
teéts\is virtually impossible to be provided. Therefore the désigner
is Forced to choose the applicable formulas from a very scatteréd
literature wherever referén&es are available, and to méﬁe approxima-
~ tions and assumptions based on the behaviour of unstif}ened pipes in
manyucases. In the following a review of the buckling of circular
pipes upder various loading conditions, as well as several forms of
structural interactions which c&n influense the Shck]ing strenght of

pipelines are discussed.

3.5.1 Axial Compression

g\)

.. 3
The buckling behaviour of-axially compressed circular cylin-

\‘ders'is usﬁally classified into four ranges, depending on the ratiq
of length to radius and the}$qgkljﬁg pattern. The four ranges are
“very long", "1ong“,/"fransition" and ﬂghort" cylinders, as shown in
Figure (35). Very long, aﬁe cylinders in which the ratio of -lenght to -
radius is very large and primary instability or Euler buckling occurs.

£ 1In short cylinders buckling occurs with sinusoidal bupkles, whereas

| long cylinders buckle in a characteristic diamond patfern. Transition
range covers thbse cylinders with lenghts between short and long cyli-

nders. The buckling in tranfition range seems to be an interaction

/////Qg;ueen the plate sine-wave bucle patte;n and the diamond pattern. .’

e s S A AW bt i g aanr e et v %
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3.5.1.1  Short Cylinders

The elastic buckling strenght of short cylinders depends on
both the lenght to'radiugxﬁgtio, and the diameter to ﬁpickness ratio
whi]e'thé buckling strenght of long cylinders depends on only the L
diameter to thickness(}atio. The dimensionless.paramgter I was
introduced by Bardorf (31) and it is used to define the four ranges.

This parameter is given by :

2 =20/0)%0)(1 - v¥)? ,(155)

> Where . -

D : the diameter of the cylinder
1 : the lenght of the cylinder

vV . Poisson's ratio : ,

t : the thicEness of the cylinder's wall
For values of parameter Z less than 2.§5 the surface qf the cylin-
der buckles like an infinitely wide plate. The theoretical buckling

stresg in this case is given by :

2
= k (156)
7 C1201 - vO)(1/t)¢
for v=10.3 : :
= 0.904 E (t/1)2 ‘ (157)

. 4 ' b
Where the coefficient kc has the following values depending on the

o
supporting conditions . : .

ST

e Skt B ba #srnn %
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¥

Simply supported edges

c 14 ,
6‘3
Ful ﬁ\c hamped edges : o
: 4 4+37
k = ‘—-'Z‘—-—
¢ b

As the ratio of lenght to radius decreases, kc approaches the buck-

Ting stress coefficiéﬁ:t of a flat plate, and the coxresponding criti-

ca) buckling stress becomes identical to that of.a pldte strip of unit

v r

width.

3.5.1.2. Very long cylinders

-

- Purely column type buckling of tubular members may occur with
no Tocal buckling as ﬂmg as the rati“o of diameter ty/wall thickness
does not exce;ed 3300/fy s Wwhere fy is the yield strenght of the
material in kips per square inch. 'The critical buckling sty‘ess of a
'very long cylinder is a function of a parameter c:ﬂed the slenderness

ratio of the cylinder. The nondimensioné] slenderness ratio A for a

cylinder with mean'8iameter D and lenght 1 may be expressed as :
5 , |
(f /E) . (158)

Where K1 is the effective Tenght ofacircular cylinder.
In terms of 2 the critical axial buckling stress is givén by the

CRC Column Strenght Curve, in the following form.

N
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for ')&%\/2—’- i
2
, fop=(1-0.262 )fyk (a) . |
for 3 >VZ e M (159) |
2 (b) |
fer=Ty /9
v

*

With the above Equation’ it is recomnende'd t6 yse a factof of safety '

g*ven by :
- {
for 7 & fé 0 o .
) 3
F.S= 1.67 + 0.265% -~ 0,044 X 4
for 1> ﬁ o :
' F.S= 1.92 T
L Y
£
Woldord and Rebhol1z){31) proposed a more conservative column - ]
curve, given b*:
for ] £ V3
- - a -
f o= (1 23\/3% (a)
for A>J3F , | {160)
f =f ' ¥
. cr y /2 . (b)
With a factor of safety of "
for 1 & ./3_, ) ‘ s .
, F.S=1.67+ 0,82 ° F~
for 2> J3 (
F.5=1.92
e / .
The corrgsp&ndhg curves to these two proposals, as well as expérim- N -

ental data are shown in Figure (36).
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3.5.1.3. Transitfé: Range

-

—
In the transition range where the number of integer forms
changes as in Figure (35), the buckling stress depends upon the lenght

to thickness ratio, the radius to thickness ratio, and aiso upon the

parameter, ZL ,which is given by the expression :
. .

r2

B LT L (161)

L Rt

. 0

Since ZLf is a function of length, and since linear theory predicts
changes of wave number with lenght, there is a basis for expecting
cusps in the empirical data as the wave number changes by integral
values in the transition region. Since th;re appears to be little pos-
sibility of establishing a completely theoretical variation, a sémi-
empirical approach has been presented by Gerard and Becker (27). In
this approach two basic data were selected; the flat blate buckling
coefficigpt at’ ZL= 0 and the straight line drawn through the loga-
rithmic plot of kc as a function of ZL for large values of ZL .
Transition curves were then fitted t ese data using linear theory
as uide. The simplest transitiéqﬁ‘ch matcﬁes the linear theory
in the\special case of C = 0.6 is obtained from Bardorf (30), with
the k. expressed as :

- 5 78 4 .

<

pl

- »
This expression was then modified to account for the effect or R/t

-

e s s b i e A =
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2 o :
p ke = ko + ((0.581 € Z,)/ k) q (163)

) »
‘o ~

The complete buckling coefficient curve is shown in Figure (35). For

»

. each value of R/t complete curves can be drawn, utilizing the values

of C obtained from Figure (37). C is-a coefficient which HFepends
» C"

primarily on the degree of initial imperfections associated with the
cylinder and on the R/t ratio. For cylinders of intermédiate lenght

in which the coefficient Z is greater than 2.85, the theoretical

L4

- buckling stress is : . » -

f

cri'—' C Et/R , (164)

»
-

The magnification ratio kexp/kempa’ of the test value of kc

to the theoretical value from the curve for the corresponding value
of ZL were plotted in Figure (38). The highest peak occurs at ZL=:35

approximately, with a second peak at about ZL

sumably dﬁe to the interactibh between the sipe-curve defliection shape

of the short plate and the diamond buckle pattern of the intermediate
_lenght cylinder. Because the cylinder is Tong enough to permit diamqng
buckles to form and yet is short enough for the end boundary conditio-

» *

‘ »
ns to influence the details of this pattern.

3.5.1.4. Long Cylinder Range

Axial compression, which denerates compressive membrane étres-

ses in a cylinder after buckling, has been shown by Gerard and Becker

= 650. These peaks pre- -
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to require conéider;tion of large deflection behaviour. Because the
diamond buck1e*pa¥tern deflection functions which are assumed in the
energy equations do not satisfy the end boundary conditions. Further-
more, experiments show thaf’for long cylinders the buckling stréSé,is\
independenf of the boundary cond%tions. Bardorf et al (371), have per-
formed an empirical correlation for long cylinders, in which kc is
'p]otted as a function of ZL, for various values of the ratio R/t
aﬁd which c}ea?]y depicts the dependence of the parameter C upon
the ratio R/t in the transition and long ranges. They'defined'an
expression for the buciling stress equivalent to the c¢lassical equation
_— :
' foo= CER/L ‘ " (165)

t

In the new expression the parameter C 1nsteadJof a constant value
( usually equal to O.g ) is n6w depended on the ratio R/t , as shown .
in the Figure (37). In Figure (37) there are also shown the theoreti-
\) ~;a] curves of Donnell and Wan (33) for several values of the unevena
ness factor” U , which is re]atgd to the initial imperfections o% the
cylinder. It can be seen that ‘a1l curves qonverge“%&wa very low value
hY

6f R/t to a value approaching the classical value of C= 0.6 as an

upper limit.

*
L]

3.5.1.5 Plasticity-Reduction Factor

.

The inelastic buckling stress of cylindrical shells is usually’

. - .
obtained using the elastic formula with an éffective modulus in place’
. ‘ . . ~

.
Al
P

’ Y

L
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. £

of the elastic modulus.A plasticity reduction facter, n , is intro-

’

@guced so that when the computed buckling stress is in the plastic range

s the elastic modulus E is replaced by nE , where :

-~

»

=gt e [osA s anh] e

Where . - ) . +
E. : the secant modulus | |
: the tangent modulus

v_ : e{astic value of PoiéQpn's ratio

v_ : plastic value of the ratio of Poisson

For the analysis of long cy]indefs the pldstic-buckling curves

shown in Figure (39) can be used, with Ecrf= C t/R ., The plasticity '/

2

correc?ion factor is apg]icabfe‘to'homogeneous materials such a;\alumi—
num a]]é&s and stainless steels. But, the inetastic buckling of cylin-
ders made from structurai‘steeI, which is generally nonhomogeneous due
to the presgncé of résidual°stéesses is more conviniently handled with

. - . J
an empirical. formula.. Such formulas havehpeen pr@éented by various

s

3 v
authors and a véry detailed review has been prepared by Johnston (3). .

v

. For manufactured tubes, the Qgst cqmmon]y used is the Plantema equation'

-

which is given'by :

fer/fy=1.0 ) For - a)8

, fer/Ty= 0.75 + 0.031 a For 2.54a¢8  (167)
e/ 0.33 2 ~ For  ag2.5 |

4
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~om

Where the function a can be expressed as : (:::;

Ta=( E/f, ) (/D) ~

3.5.1.6 Effect Of Internal Pressure

Many tests conducted by several investigators have shown that
internal pressure increases the dxial buckling stress as long és the
failure stress remains elastic. This increase in buckling stress can be

evaluated by a graphisal method which is presented in Figure (40). The
3
effective stress fi s given by :

\ - : T Py
| fi= f. +&C ( Et/R ) [’ - (168)

Where, fcr " is the critical buckling stress in axial compression and

AC  can be obtained from Figure (40).
) y.

Cm

>




Figure 40. Diagram for the increase in axial compressive

buckling stress due to internal pressure.
. ;

\

+
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3.5.2. éy]indrical Shells Subjected To Bending

-

The buckling behaviour of cylinders under bending loads is

similar to that of axially compressed cylinders, except that the bent

) cyl‘g:ers are influenced by several considerations beyond those encou-

ntered ingthe buckling of axially compressed cylinders. So, the linear

7
variation of bending strain‘across\;he section results in a strain
gradiént and hence a stress gradient at any location on the cylinder , Ao
surface. A "gradient factor" is used 'to calculate the bending-buckling
stress from the axia]-compressive° buckling stress of a corresponding

cylinder. Furthermore, in the inelastic range two additional effects

occur. First, the nonlinear distribution of bending stress across the

sectigi ]eids to the modulus of rupture. Second, the reduction of local
wall stiffness due to plasticity leads to the plasticity-reduction

factor.

t B 3

The local-buckling behaviour of circular cyTinderL in pure i

.

bending may be divided into ranges similar to those observed in cylin-

b

ders under axial compression. In the short-cylinder range , the buck-

ling coefficient kb apprqaches.that of & wide compressed plate as a

lower limit. The buckling stress is given by - r~

e kg EMP 2

¢ fcr= b - (t/1) o (169)
12(1-v %) -
and ®
. 2 .
1 v 2y} s
ZL..-- (1 Ve ) (170;_‘.
- Rt .
. . _




” Y TTTTrt T oot

N\ .

' 270

/’[ i .
In the Tong-cylinder range the buckling stress is of the form :

-

v

= \ ‘ -
f.=CER/L (‘7”\

Between these two limits is the transition region, and(Z;;oughout this
entire'region buckling occurs in the'diamohd pattern. When the cylinder
is very long, the flattening hﬁlthe cross-section leads to a large ' -~
vgﬂuction of'fhezgifectiye section modulus of the cylinder, and insta-
bility occurs as a sing]e transv;rse wave on the compression side of
the shell. This type of bucﬁﬁing caused by the radial components of

the axial deformation in the bent cylinder has been investigated by
Brazier (20) for the first time. In Figure (41) test data obtained from
Lundquist and Donnell are.shown, and also a theoretical curve account
for a 30 percent increase over the.c]assica1 axial value which.was
recommended by Flugge and Timbshenko. This increase is attributed to

\\
dis

i

the s Fain gradient associated with the linear cross-sectional strain
tchution and is noted as the gradient factor P . A comparison of

axial-compression and. bending d&ta obtained by Lundquist on Duralumin

cylinders apears in Figure (42). Lunquist reported an average value

of 1.4 for the graqient factor and this is in good agreement with

Donnell's tests on steel cylinders. -

\ Since stress and strain are linearly related in the elastic

range the gradient factor ﬁertains to both. The ratio of the f/t

intercepts at any value of the ratio R/t Tleads to the gradient factor -
Y since t;e slopes bf the curves are virtually the same. For exa-

mple, at R/t = l,doo » the gradieﬁtrfactor is equa!zt

-
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00250 ' .

00100

.00050—

f/E

000251

000/0 |

00008
" 200 ¥ (000 2000

R/t

Figure 42. Test data for long cylinders in axial compression and
bending.

A
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¢ = 0.000295 / 0.000205 or Y = 1.44.

P
To determine the buckling stress of long cylinﬂe&s;fhe fpllowing Equa-

A

tion may be used :

fo. = CEt/R . (172)

L

It is recommended that T, ='1.3C , where C is the coeff{ciqnt dete-
rmined for axially compressed cylinders. The gradient factor of 1.3 .
represents a conservative average value to be used with the curve of
C as a function of the ratio R/t oQtainab]e from Figure (37).\For
short and transition-range cylinders no data are available to permit

recommendation of a gradient factor.

3.5.3. Ring-Stiffened Circular Cylinders Under Bending

Design curves have been presented by Peterson (2§) which are
applicable to cylinders with heavy rings that fail as a result of local
buckling. Values of the buék]ing stresses for the cylinders are given
in Figure (43) on a plot which has-as ordinate and abscissa the para-
meters obtained by small-deflection theory. Also shown in Figure (43),
s a curve for the buckling stress of cylinders in compression as given

by small-deflection theory. This curve hasa slope of -unity for values

of the abscissa greater than 10 and is given by the équation :

~

- f ___E %
or =
. | [3(1-v)2]* R
4 . . .

73) N

L4

When data for a given radius to thickness ratio are parallel to this

N
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Figure 44, PJbt of test data from those‘cylinders with a ring.spacing ‘ .

~

over radius ratio greater than about 0.5
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theoretical curve, fﬁe effect of ring spacing on the buckling stress
, is negligible. There is some gain in strenght as the ring spacing is
decreased but the gain 1is neg]%gib]e until a value'of 1/R of 3/2

has been reached. The curves of Figure (43) give buckling sStresses

1

as much as two times’ the buckling stresses given by the corresponding

g

curves for cylinders tested in axiai.qompréésioh. But they were obtai-
ned from data on a different type of ;tructure asrwell as f%r diffe- d
rent loading coﬁditions,'and of course the specimens were ring-stif-

fened cylinders. Peterson recommends that the curves of Figure (435

are suitable for the predictionfﬁ?ithe bending strenght of ring-stif-
fened circular Eyli de;s in which the rings are heavy enough so that
genéra1 instabi]iﬂ%d;ypgs do not occ&r and failure is expected by local;

instability between the stiffening ringé. \
>

3.5.4 Inelastic Behaviour of Long Circular Cylinders In Bending
AN

-

When the extreme-fiber stresses are in the inelastic range,
the redistribution of the cross-sectional stressesvleads to a signifi-
cant reduction 1ﬁ‘the stress gradient, which would be expected to re\
duce. the gradient factor. As a countermeasure \\the diminished stress-
gradient effect, the non]inearity.of‘the\stress distribution permits

4

the cyfinder to sustain a plastic bending moment breater than the fic-

tit;;us.elast%c moment calculated according to fcr SC . This is the

well known modulus of_rupture effect. A further:plasticity effect is
. the decrease in the local rigidity ‘of the cylinder wall, which is re-’

®
- , 8
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]

. presented by the plasticity-reddéf%bn factor n .

-

In a beam with the“extreme fiber stress in the inelastic ran-

g% a fictitious elastic stress f
61" rur;ture!’w'he're :

TR

o 1 ' f =

‘ , r S¢ - //;>
- o . !

Since the actual stress distribution is ronlinear, a "shape factor" is

¢

€ .

’
ry .

Q’ .
f %
& * P \‘-;5“""—’.
A

. ~——
L€

_ Therefore, the ac’tua‘l ‘stress fb is :

-

-

Bl

r\

,

-

o

(174)

(175)

f. is defined a”'s the bending modulus

" ' y . L
used to determine the actual plastic stress’at the extreme fiber fb .

»

vo—
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_ It is assumed that —
. o |
YE:1.3'=£ Yoe = (f> /0 WF /ng)
_ ) ' ber Cer = . bep BT Cep
| 8

.3.5.5. Effect of Internal Pressygre . -

ol . -

h -

Internal pressure increases the bending buckling stress as
long as the failure stress remains elastic. The increased buckling *

stress is given by :

»

- f‘i = ftr * ACb(Et/R) c ‘ ' £I78)

Where, f.. is the buckling stress due to pure bending and AC, can
. ' =

be obtained from Figure (45).

—

s -

3.5.6 Axia~1 Compression and Bending
. - )

Since the nature of the buckle pattern is the same for axial.
compression and bengling of a circular cyHn&er, a linear interéctfon
equation might be expected. Bruhn (34)/has shown this to be a good
approximation to the experim?ntal data, as can be seer; in Figure (46).
The stress ratios R, and Rc represent the ratio of the allowable

valve. of the stress caused by a particular kind of load jn a combined -

Toading condition, to the allowable stress for the same kind of load

.

o
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L’ , s 4
: when 1t is acting alone. The subscripts b and ¢ are used to denote
°
the stress due to bending and axial compression respectively
‘((k\«\‘.‘,
10
8
—_—
2
e 1.0
#‘
o —"'//
(% ]
e . 4
. dog ' o '
4 .
2
o S N DA
0.01 0.10 1.0 10
Ei(R)z ‘
e
! . » : s b8 Co
Figure {45). Increase in bending buckling stress due .

to intetjna'l‘\)pre;ssure for a circular '&yﬁnder.
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Figure 46, interaction curves and test data for .combined stresses
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due to axia] compression and bending.




P

D S T Tpp,

REFERENCES

N

£

B sl




™

(1)

(2)

(4)

(5)

(6)

(8)

(9),

L -138-

- REFERENCES

A
-

-

Timoshenko, P.S., & Gere, M.J., " Theory of Elastic Stability"
Mc Graw-Hill. 2nd Edition, 1961. ‘ *

Timoshenko, P.S., & Krieger, S., " Theory Of Plates and Shells"
Mc Graw Hill, 2nd Edition , 1959,

Johnston, G. B., et al. " Guide to Stability Design Criteria
For Metal Structures". John Wiley & Sons, 3rd Edition, 1976.

National Research Council of Canada , Supplement No. 4 to
the National Building Code of Canada, 1975.

.
Jroitsky, M.S., " Design Gu%ﬁglines for Steel Tubular Thin-
Wailed Structures. " 4th Progress Report, Canadian Steel
b
Industries Construction Council, Project No. 724, Jan. 1974. __

*

Spangler, M.G., "Stresses In Pressure Pipelines and Protective

Casing PIpes." American Society Of Civil Engineers, Structural

Division, September 1956.

/

" Stephenson, D. " Stiffening Rings For Pipes. " Pipes and ,

Pipelines Integnational, April 1973.
| ¢ -
Winderburg, D.F & Trjlling, C. "Collapse By ‘Instability of
Thin Cylindrical Shells Under External Pressure". Trans.
ASME, Vol. 56, 1934- - .
Watkins, R.K., "Buriedetructures", Foundation Engineering
Handbook, " Edited by Winterkorn, H. F. & Fang, H., Van

- Nostrand Reinhold Co., New York, 1975.




¥ -139-

A

(10)  Meyerhof, G.G, & Fisher, C.L., "Composite Design Of Under-

Ground Steel Structures." The Engineering Journal, Sept. 1963.

e ' -
) |

(11Y  White, H. L., & Layer J.P., " The Corrugated Metal Conduit s

As A Compression Ring." Proc. Highw. Res. Board, Vol. 39, 1960

(12) Clarke, N.N.B.,\)Buried Pipelines." Maclaren and Sons, London,

1968.
. /
(13) ° Wang, L.R., & O'Rourke, M. J., "Overview Of Buried Pipelines

4' Under Seismic Loading". Journ. of Technical Councils of ASCE,

TC], November 1978.

LY

(14)  Hall, W.J., & Newmark, N.M., " Seismic Design Criteria For
Pipelines And Ficilities". Jour. Of Techn. Councils of ASCE,
TC,, November 1978.

(15)  Newmark, N.M., & Hall, W.J., "Pipeline Design To Resist Large
Fault Displacément." Proceedings of The United States National
Conference oh Earthquake Engineering, Earthquake Research Ins-

titute, 1975.

(16)  Meck, H.R., "A Survey of Methods of Stability Analysis Of Ring
Stiffened Cylinders Under Hydrostatic Pressure". ASME, Jour.
Eng. Ind., Vol. 87, Serfes B, No. 3, August 1965.




(17)

®

!\ ']40‘

Gallerly G., et al. "General Instability of Ring-Stiffened

Cylindrical Shells Subjected to External Hydrostatic Pressure

a Comparison of Theory and Expeximent". Trans. ASME, Jour. of

-—

/{Appl.Mech., Vol. 25,1958. )

(18)

(20)

/(21)

(22)

(23)

Rumman, WiS., "Stresses in Ring Stiffeners:in Cylinders".

ASCE» Str. Division, STB, December 1961. v

. -

Troitsy, M.S., "On the Local and Overall Stability of Thin-
Walled Large Diameter Tubular Structures”. Canadian Structural
Engineering’ Conference, 197?.

\
Brazier, L.G., "On the Flexure of Thln Cy11ndr1ca1 Shells and
Other Thin Sections". Philos. Trans. Royal SQ% London,
Vol. CXVI, November 1927.
Donnell, L.H., "A New Theory for-the Buckling of Thin Cylinders
Under Axial Compression and Bending". Trans. ASME, Vol. 56, 1934.

L4

V4

Seide, P. & Weingarten, V.I., "On the Buckling of Circular
Cylindrical Shells Under Pure Bending". Trans. ASME, March 1961.

L4

¢

Calcit. "Some Investigations of the General INstability of
Stiffened Mgtal Cylinders", National Advisor Comitee for Aeronau-
tics, Tech. Note 905, 1943. |

\ ! S
}

e




R L VEL L,

(29)

(30)

-141-
J .
Southwell, R.V., "On the General Theory of Elastic Stability".

o~

Philos. Trans. Royal Soc., London, Series A, Vo/l\.‘213, 1913.

Schilling, C.G., "Buck’;gg Strenght of Circular Tubes".

ASCE, Jour. Struct. Div., Vol. 91, No. ST5, October 1965.
*

Scharer, H., "Design of Large Pipelines". Trans® ASCE,

Vol. 98:101, 1933. ’ v

Gerard, G. & Becker, H., "Handbook of Structural Stability

Part 111- Buckling of Curved Plates and Shells". NACA,

Techn. Note 3783. August 1957.

Peterson, J.P., " Bending Tests pf Ring-Stiffened Circular
Cylinders". NACA, Techn. Note 3735, July 1956.

WindenbuWD.F. » "Vessels Under External Pressure", Pressure
Vessels Piping Des., ASME. 1960.

J

=

Holt, M., "A Procedure for Determining the Allowable Out-0f- ’
Roundness for Vessels Under External Pressure™, ASME Trans.,

Voi.74, ‘@52.




(31)

(32)

(33)

42—

Bardorf,5.B., "A Simplified Method of ETastic Stability Analysis
for Thin Cyﬁndrica‘! Shells," NACA Rep., 874. 1947.

Wolford, B.S., and Rebholz, K.J., "Beam and Column Tests of _
Welded Steel Tubing with Design Recommendations," ASTM Bull.,
No. 233, 1958. * !

Donnell, L.H., and Wan, C.C., "Effect of Imperfections on Buck-’
ling of Thin Cylyaders and Columns Under Axial Compression,"
Jour, Appl. YMech., Vol. 17, No. 1. 1950.

o

Bruhn, E.F., "Tests on Thin-Walled Celluloid Cylinders to

b

Determine the Interaction Curves Under Combined Bending, Torsion,

and Compress;'ion or Tension Loads," NACA. TN 9571, 1945.




