e . . RINGS

GENERATED BY THEIR UNITS

A
“ BOQG'DAN SZCZEPARA  _

’

Ae

A THESIS / ,

in / '
- ¢ THE DEPARTMENT

" of . 1

"MATHEMATICS . ~

‘for the degree‘of Master of Science at
Concordia University

Montréal, Québec, Canada

April 1979

LS

© Bogdan Szczepara, 1979

N . Ll
. )

t3e

Presented in Partial Fulfillment of the Requirement:s '

-

T4 e e Tt n
»




14
BERY ' {
. . s - /
r - . ' , -
v ABSTRACT Lo L
<
’ LR ¢ \ "\
RINGS GENERATED BY THEIR UNITS., .
t f ' ‘ A t . ’ e N \ .
. t l . ) ) ' . r‘
' Bogdan Szczepara //" L : . "
) N 4 o, Q/‘ , . “
. This t.:lhesisz is a study of the aréicle (51 writ‘n»-by
R. Raphael." The work contdins.d systematic theory of . !
P i - ! R
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INTRODUCTION

? 3
.o,

-

. .

‘. a In 155;, g Wolfson [ll]-_prov/%that the ring &f all linear
| L transform;ations of a vector space oft dimension at leaét two,‘ is
’ T L. generated by its J:_Lc;empotents'. The followin—gl year, D. Zelinsky showed
| that every element of this ring is™ a sum of t;vo nonsingular ones.}
\ Mot;tvat‘ed by these results, in 1958, Skornyakov posed the question ‘

{6, p.167}¢ "Can every element of a regular rirﬁ_‘with unit element be

represented as a sum of elements having inverses?"

»

The answer to the Skprnya}cov question is negative in general,
for a Boolean ring with more than two elements is never. generate“d by
its invertable elements (units). Thus the mn became, which
regular rings are generated by their units? For some time, it was sus-
pected that every element of a regular ring, in which two is a unit, can.
be written as a sum of ur.xits. . This conjecture ;ras settled in the negati:re
by G. Bergman. Finally, ir}l[ 5], R. Raphael developed a general theory

of rings generated by, their invertable elements. Such rings he calls

S-rings, after Skornyakov.

L

In the first part of his article, R. Raphael discusses S-rings

!

in general. He then answers when Artinian, perfect and semiperfect

rings are generated by their units, arguing ‘directly from the Wedderburn
theorem. After this, he demonstrate's that the familiar examples of
regular ringMco@tative, aﬁd self-injfctive ones) are S-rings
if the.y satisfy a generalization of the condition that two is a unit.
Furthermore, using the work of Utumi, he sﬁows that any regular ring

satisfying this condition can be embedded into a regular S-ring. The
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article is closed with questions and comments.

* S

.#+ . This work 1s a .study of Raphael's artiale (5]. Some results
of this artigle are generalized and the question [5, question 1., p.602]
is answered’. For a better understanding, other results of general ring

theory are proved. Lambek's "Lectures on Rings and Modules" [4] serves

here as a general reference. * o i o
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_.abe—]a-ul) = 1 and this shows that a ' and ab.a-re units.

CHAFTER I

THE S-RING

1.1 DEFINITION OF THE S~RING )
We begin with the assumpt:ion that by ring is meant ring with
identity such that 0 % 1.

3

DEFINTTION 1.1: An element r of a ring R 1is called a unit 1f 18 = 1 =

sr for some element s of R.

If a and b are units, we have alazaa '=1 and Cb-la_l)ab =

It follows -

that in a ring the units form a group with respect to multiplication.
’ A\
DEFINTTION 1.2:, Let R be a ring, define U(R) as the set of ele.ments\of

"R which can be written as the sum of a finite number of units of R.

LEMMA 1.1: U(R) is a subring of R and it is the smallest subring of R

’

that contains the group of units of R.
PROOF: 1€ U§® g0 U(R) is a non-empty subset of R.

If u 1is a unit of R then there exists s in R such that 1 = us = su =

v

(~u) (—8) = (-g) (~u) and it follows that —u 18 also a unit of R. There-

; are units then —a = Z‘.—ui

if a,b € U(R) then a and b are sums of units and therefore a +b is a

fore, if a = Zui € U(R) where u € U(R). Alwo,

sum of units, so at+ b € UQR).

1 and v:L are und.ts

This shows that

Moreover& if a = Zqi and b = Lv, are in U(R) where u

3

= Lu,v, € U(R), where u,v, are units.

k| i3 i]
UR) is a subring of R.

then ab = Zinv

-

. ] e . -
Now, lat U be the group of wmits in R and let' S be a subring of R such




by e

v
- ’

that U € S, If a\:)luie UR) where u, € U € S them a € §, and

i
therefore UQR]) € S. | Thus U(_Ry is the smallest subring of R that

pv{'ntains U. \

1]
DEFINITION 1.3: We call a ring R an S-ring if U(R) = R and say that R
is generated by fts wmits. . 7

4

1.2 EXAMPLES OF S~RINGS

3

EXAMPLE 1. The ring of integers Z 1s an S-ring, gifce any
integer can be written ags the sum of 1's and -1's.

Before the next example of an S-ring we will introduce some definitions
} ) « -
and res;ults. ' v

1

DEFINITION 1.t: A right R-module A_ ig called irreducible 1f it has
exactly ‘two submodules. These submodulés must be A and 0, and the

4 ‘ ‘ o
definition is meant to imply that' A # 0.

THEOREM 1.1: The following conditions concerning the ring R are

!
Y

equivalent: .
/ (1) O is a maximil right ideal.

(2) R is irreducible as a rigﬁt R-module.
. (3) Every nonzero element; is right invertable.

(4) Every nonzero element is a ‘unit.

’ )

DEFINITION 1.5: Under the conditions of theorem 1.1, R is called a

.

division ring.

PROOF: (1) * (2): O is the maximal right ideal

L , = rR = R for all nonzero r in R

= RR has exactly two submodules, O and R.

A ek - o P
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(2) = (3): RR has exactly two submodules’, @.and R

= rR =‘RR = R for all nonzeror € R |

' ‘ = For every nonzero r € R there exists g € R su}(\
. L]

that rs = 1. . o ‘

' 532‘ = gaz’: Assume (3) and let-0 ¥ r € R, then rs = 1 for s:ome
s € R. Now O # g, hence st = 1 for some t € R. But

t = let = (ra)t = r(st) = rl = r,
hence sr = 1, and so r is also left invertable. Therefore every non-
~ zero ‘r in R 4is a unit. ’
3 (4) = (1): Assume (4), then rR = R for every O ¥ r € R and

hence 0 is a maximal ideal.” : A . |

N * .\
DEFINITION 1.5: An ordered set (sometimes,called "partially' ordered)

is a system (S5,.%) where S is a set and < is a bipary relation on S
satisfying the{y:eflexive,' transitive, and antisymmetpdy laws: -
4 ;_‘.-; —— -

a<a (@a<badb<ec)®ac<c, (a<band b.<4a) ='a=b. (Universal

quantifiers are assumed.) '

4

DEFINITION 1.6: An ordered set is called simply ordered (also called -

"totally" ordered) if for any two elements a £ b or.b < a.

Let us now state an axiom, so called Zorn's Lemma, which is often used

in ring theory. . |

ZORN'S LEMMA: If every si.m'“pl;' ordered subset of a nonempty ordered set ‘.
S, 3 has an upper bound in S, ther; S has at least one maximal element
m, maximal in the sense that m < s implies m =-s, ofor all s € §, o
LEMMA 1.2: Every proper (right) ideal in a ring -1s contained in a -
maxim:al proper (right) ideal. a

PROOF: Let I be any proper (right) ideal of a ring R. Consider the

o

J
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~1CS8 upper bound U I

But m =1 - rs i§ right invertable, and’ this cod’tradic_ts the féct that -

THEOREM 1.2: The following conditions concerning the ring R are

set S of all prope.r (right) ideals of R whicb. contain L S is non— {

empty since I € §, and it is evident that (S C) is a partially ordered
set. Moreover, 1f {]: |[£ € A} 1s any a;tmply ordered subset of § -thes?®

L is also in S, since U Ii i,s an ideal and - ’ T
. i€A ,1€A
IC UI # R. The conditions of Zorm' a Lemma are satisfied th
1€A i \
has a maximal element M. Th.erefore ICwM where M is maximal (right)
p -
( .

ideal of R. - o } T

3

-

9

DEFINITION 1.7: The intersection of all maximal right ideals of ti}e

5 .
ring R is called The Jacobson radical of R and is denoted by .Rad R'

-

M The Jacobson radical Qf R, 1s the set of all . r € R such

that 1 - rs is right invertable for ‘all g€ R, - s L T \
PROOF: r € Rad R= r G M for all maximal right ideals' M.of R e : N
= 1 @M=M+ R for all.pa*imal right’ ideals M of R -
" =1 -rs &M for all's € R and all maximal righ?: ideals M - ‘ é

-

= (1 - rs)R is not a proper riwi; by Lemma 1.2, ‘ .

= (1 - rs)R = R for all s €R

=] - rs is right invertable for all s € R. .- ' . -
Conversely, assume that M is a maximal right ideal and r ¢ M wfiere' ' '

o '

1 - rs i3 right invertahle for all®s € R.

Then M + rR = R and hence m + rs =41 fof’some~mue M and s € Ra » _— >

o

%
’

M is a'proper right ideal. e £ P N

Il

equivalent: o . . O . ‘
) , X N s . . X ‘;
/ "

(1) R/Rad R is a division ripg. : o o ¥
(2) R has exactly one maximal right ideal. o o i ;_1
‘;- ) (3) All nonunits of R are co;tained in-a prope’I: 1&ea_1. - . S %
¢ . ) , . |




- { .
. 7 (4) The nonunits of R form a proper ideal.
Q] For e\;ery element r of R; efther r or 1 — r is a unit.

(6] TFor every element r of R, either r or 1 — r is right

2 x

invertable. .

»

a

DEFINITION 1.8: A ring R is called a local ring if it satisfies one

of these equivalent conditions.

PROOF: (1) = (2): R/Rad R is a division ring

"= T is a unit for allB*?:=r+RangR[RadR'.

= For all nonzero r = r + Rad R € R/Rad R there

exists s = s + Rad R € R/Rad R_sfich that r s = 1.

» For all r € Rad R there exists s € R such that

1l - rs € Rad R. ) v
' = Fér every r € Rad R there exists s € R such that

T 1-QQ- rs) = rs is right invertable (by Lemma ié3) .

iy

= For'every r € Rad R, r is right in\}grtablel §

-~

= Rad R is a n}aximal right ideal.
E ‘ a = R has exactly one maximal right ideal., SN .
(2) = (3): Let M be the unique maximal right ideal of R. ,
Ass;nne. that x & M.
éi.nce M is: unique and every proper idegl is contained in some maximal
ideal, then xR = R. This implies that xy = 1 for some y € R. If vyEM

then yx € M, and (¥yx) (¥x) = y(xy)x = ylx = yx, so yx is an idempotent,

say yx '.-. €. But e+ (1 ~e) =1€¢M, henc\e 1l - e M. Thus there exists
8 € R such that (1 - e)d = 1« and consequently e = e(l - e)s = (e ~ e?)s
:O‘. But'0=e‘= yx implies t%atx7//lx=xyx-x0=0, atnd this ‘
contradicts the f‘act that x & M. . Therefo;:e y & M. This again me:lies

that there exists z € R such that yz = 1, hence we have that xy = 1 = yz,

which implies that xy = 1 a yx.

F =7-
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It follows that £ér every‘x & M, x is a unit, and thus all nonuni ts ?
are fn M. Moreover, since M fs a proper ideal, M is the set of all
"nonunits of R This shows that M is also a ‘left;." ideal. Therefore all

‘nonunits are contained in a proper ideal.

(3) = (4): Assume that all nonunits of R are.contain,

-

ements of I'

n .  proper ideal I. Since I is a proper ideal therefore all '

are nonunits. It follows that I is the set of all nonugits of R.
- * -3

(4) ®-(5): Let I be the proper ideal of all nonunits of R.

For every r € R, if r €L then 1 ~r € I, since r+ 1l - r) =1 & L.
T"here‘fore, if r is a nonunit then 1 - r is a unit, for all r € R. Thus
for every c;lement r of R, either ror 1 - r is % unit. .

) = 66): This' implicat:ion“follows from t:.he fact that a !
unit is a right invert’ai:le element, ‘ ‘

(6) = (1): Assume that for é\iery r €R, eithetr rorl - r is

ot \ right invertable. Let r'=r + Rad R be an e]:eme.nt, of R/Rad R. Then,

r+ o

s

= r ¢ Rad R

= there exists s € R such that 1 - rs is pot ) . *

right invertable-(b‘, Lemma 1.3)
= 1- (1 - rs8) = rs is right invertable (by

assgmption)

0

s ——— n e a s em s

is right inve,rta‘e . . ;

= T is right invertable

r
’

So we have t/ t every nonzero element of R/Rad R is right invertable. . !
- 4 3

. . }
P i s 3

It follows (by Theorem 1.1, (3)) that R/Rad R is a division ring.

P




EXAMPLE 2: Amy local ring is an S-ring. ’ .

PROOF: Let R be a local ring.

-

If r is a nonunit of R then 1 - r lis a unit (by Theorem 1.2, (5)), and

hence r =1 - (L - r) is the sum of two units. Thus R is an S-ring.
»

Note that in particular any division ring is an S—ring{ N

EXAMPLE 3: If X is a topological space then C(X), the ring of real

valued continuous functions on X,is an S-ri

PROOF: It is easy to see that if £ € C(X), then the function |f|
(defined as |[£|(x) = |f(x)|) is also in C(X).
This implies that ‘

=2 Me+ |g)+ 1€ C® and u, = 271(¢£ - |£]) - 1 € C(X), where

u 2 =

1

f=zu, +u Moreover, since for all x € X

1 2°

ul(x) >1 and uz(x) <-1 '
hence u_l(x) - 1 and u—l(x) = 1 exist, and are in C(X). Thus

Y

u; and u, are units of C(X), and so C(X) is an.S-ring.

o

The same argument shows the following.

A .
EXAMPLE 4: If X 1is a topological space then C*(X) the ring of bounded

functions in C(X), and Q(X) their common full ring of quotlénts are
S-rings.

[

Note that in the above examples, X can be considered as a

completely regular Hasdorff space which is an important topological

L}

space. For more details about the supject see [ 2] . : \

/ '

¢

- -
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One can see that tHere are mény examples of §-rings in ring theory,

therefore it is propér to study their abstract structure.
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CHAPTER II

A

THE GROUP RING GENERATED BY ITS UNITS

) . :a.;i\

. L\
. ®

2,1 DEFINLITION OF THE GROUP RING AND ITS SIMPLEST PROPERTTES

" : *
DEFINITION 2.1: Given a group G.and a ring A, the group ring R = A¢G

“consists of all fmctions_ r: G = A with finlite support. The support of
~ g Support of

v is {g € G I r(g) # 0}.. R is endowed with ring operations by defining:

0(g) = 0 , 0

11if g =1 o -
1) = {o ifgr1 T
(1) (8) = ~r(g) A . >

(t+r')(@ =x@) +tr'@@ ,

. @r')(g) = L r()r'G') .
. gahh' .

fet us verify that R(0, 1, -, +, *) is in fact a ring.
PROOF: It is obvioug that the addition and the multiplication defgned

above are binary operations.

O+n)(g = O(g.) +r(g) = 0+ r(g) = r(g), therefore
0eR. . R
Aléo, Q- = T 1mrt") =1WrEh+t I 1k)rCt') =
. g=h_h_'
1r(g) +. L 0or(h') = r(g) + 0=
g=hh' '
h+1l

Therefore, 1 € R,
Addition in R is associative and commutative since an addition in a

ring A is.

T mere e neh e G g 0 F e




Now, = - .

(r (rr))(s) = r(h)'rr)Ch')= L Ch)( 5-' r(t)r (e! ))
1(ry75 b L,74 ! 2

L r,(h)r (E)r (t") = LorMr,(Or, (") = I r . (Mr, (t)r (t") =
genn L 200T3 genter L 203 guiet L2003
h'=tt’, . - ’ k=ht

L (2r LT, (e))r, ('Y= & (r rz)(k)r (t") = ((ryr 2)r3)(8)
g=kt' k=ht g=kt'
) AN
%o the multiplication in R is associlative,
Thus (R,0,-,+) is an abelian group and (R,1,*) is a semigroup.

1

Moreover,

(xy (ry T 1)) (8= L r,()(,+ )" I r. ()@, +
: gernt 102 YO T

N N N S IO RN O ENCO N N O ER O
‘ g-hh g=hh' '

g=§h'rl(h)r3(h') = (rlrz)(g) + (rlrs)(g)-

-

+ a +
Similarly, (r1 rz)r3 rlr3 rzr3

Therefore R is a ring.

+
With any a € A and g € G we associate elements a* and g

R = AG as follows. For any h € G, put
y ai
* -—
a*Ch) = {0 1

1
1
g+ () {(1, enl
(

LEMMA 2.1: If ¢:A - R such that ¢ é) = a*, then ¢ is a ring mono-
morphism of A into R.
PROOF: It is obvious that ¢ is well defined.

Since ¢(a) = ¢(b)

= a% = b*

» a*(1l) = b*(1)




= a =. b, therefore ¢ i3 1 - 1.
Also, because (ab)*(1l) = ab = a*(1)b*(1) and for any h # 1, (ab)*(h) =
0 = 0.0 = a*(h)b*(h), thus &(ab) = $(Ca)d(b). Moreover, since .
' y

(a + b)*(1) = a+ b = a*(l) + b*(1) and for every h # 1, (a+ b)(h) = _

02 0+0 = a*h) + b*(h), hence ¢(a + b) = d(a) + $(b). It follows

n

that ¢ is a ring monomorphism of A into R.
LEMMA 2,2: If $:G = R such that Y(g) = gt, then Yy is a semigroup mono-
morphism. ,
. PROOF: Noticé that Y is well defined.
Moreover, since for gl,'éz € G, W(gl) = w(éz)
~ & =8
= g{(h) = g%(h), fof all h €6

= g{(gl) = gh(g,) =1

= 8, = 85 thus Y is 1 - 1. Also, since ) ‘ g
: p ‘ 1if h = 8,8 ' :

+ + ' 2

ek = I ghe)gh(t") = 2 ge ),
. h=tt'

S
"hence b8 V(g)) = Vieiey)

0 if h * 8184

Therefore it %ollows that ¢ is a semigroup monomorphism of G into R.
LEMMA 2.3: For every element r € R = AG,

rd I r(g)*é+ = L gtr(g)*. Fﬁﬁ
/ geG gGG . \’.‘

PROOF: Notice that the above sums are finite since r has a finite

support. TFor every h € G, ( L r(g)*g+)(h) = I (r(g)*gh) (h) =
. g€6 ¢ g€6

“L ¢ I r(g)*(t)gt(t')) =8 (call it S).
g&G h=tt' . ) v

Observe that, since r(g)*(t)gt(t') ¥ O

-13-
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g
g, therefore s :r(h)*(ljg*’(g) = r(h)l =

r(h). .
Thus'r = L r(g)*gt, and similarly r = L gtr(g)*. . \‘
gEG g€

o

DEFINITION 2.2: A module MR is called free if it haas a ‘basis {mi(i € 1},°

my € M, such that every element m € M can be written uniquely in the form

m= ZmrY
iEIii

where fi € R and all but a finite number of .the ri are O.

LEMMA 2.4: If we write ra = ra* for any r € R and a € A, then R becomes

A
PROOF: R is an additive Abelian group and A is a ring.
. ¢
Also, the mapping R x A > A defined by (z, ’a)'-’ ra = ra* is such that:
_(rt+tg)a = (r+ g)a*x = ra* + sa* = ra t+ sa,
r(atb) =r(atb)*=r(a*+ b*) = ra*+ rb* = ra + rb
r(ab) = r(ab)* = r(a*b*) = (ra*)b* = (ra*)b = (ra)b
= x = -
rlA = r(lA) = rlR =T,
\ [+)
or all r, s €R and a, b € A,
merefore R is an A-module RA.
Now\ by Lemma 2.3, for all r € R

T = Eg'l'r(g)*- Zg—i"r(g).
geC 856

that {gt|g € G} spans R,. Moreover, if L gta_= 0 for 2
i A . gEG g '

some a then for al1 h € G, 0= ( E g*-ag)(h) (% g+a*) (h) =
& 256 §56

) (g*‘a*)(\\) L(zZ s+(t)a*(t )) = Lgth)a*(1) = & g*(h)a =
gEC 2€GC hmet' | 886 B &6




h.-i-Cb.)ah = ah‘

- It follows that {g+lg € G} is a linearly independent set, and so it is a

basis of RA' Hence R is a free A-module.

A

2.2 TFUNDAMENTAL THEOREM

In this section we introduce the theorem, whicﬂ?;ells us a
necessary and sufficient condiéion for the group ring to Ee an S-ring.
LEMMA 2.5: Let A be a ring, let G be a group and let'R be the group
ring defineﬁ by A and G. Then A is a homomorphic image of R.

PROOF: Def%ne $:R > A such that for all r = L gir(g)* € R,
gEG

$(x) = Z-r(g)
e gEG

It is clear that ¢ is well defined.

¢ is onto, since for all'a € A ‘there exists a* € R such that

¢p(a*) = L a*ag) = a*(1) = a,

g€G \
Moreover, for every IR € R, .
¥
$(xy + 1)) = géérl +r,)() = é_:é”l(g) *r, () = gécrl(g) + gécrz(m =
$(r,) + ¢(r,) and, ¢(r,r,) = ¢( I gtr, (g)* & h'r, (W)*) =
1 2 172 =" 1l hEG 2 ;
$C L ghr (e)*ifr, ()% = $C I gHh'r (8)*r,()*) =
g,h€G¢ g,hEC g

$C I cgtx')*crl(g)rzcg))*){ I r@r,m = I L& =
g shEG g,hEG g€ hEG

¢(r1)¢(r2)-

So ¢ is a ring homomorphism of R onto A. Thus A is a homomorphic image

of R.

-15-
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THEOREM 2.1: Let A be a ring, let G be a group and let R be a group
ring defined by A and G. Then R i8 an S—ring if and only if A is an

' S—ring‘

PROOF: *): Assume that the group riné'R = AG 1s-an S-ring. Bf
. Lemma 2.5, A is a homomorphic image of R. };oreover, it -is obvious
homomor?)éc image of an S-ring is an S—;:ing. Thus A is an S~ring.
(‘=)_: Let A be an S~ring. ' ®
If u is a unit inAthenuv:vu:lfc.rrsomeveA.,
This_implies that wtv* = (uv)* = 1% = 1, and similarly
viuk = 1R’ which meanns’ that u* is a unit in R.
Also, since g-l-(g-l)+ = (gg )t = 1} = 1, and similarly
(g-l)+g+ = 1g, then gt is a unit in R for all g € G.

Now, for every r €R, r = L gtr(g)*
g€G

. and, r(g) € A = x(g) = Xgi for some units u, in A
i where u; are units in R.

Hence it follows that r is a sum of units of R and therefore R is an '

>~ r@g* = (Cu)* = u
S'-ringc

From the above resulta, it is clear that any S-ring can be

imbedded in the group ring which 1is also an S;ring.

3 -1A~

that a

- s

.

«
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CHAPTER III
UNIT GENERATION AND ‘RADICALS

»

3.1 JACOBSON RADICAL AND UNIT GENERATIQN

7
’

LEMMA 3.1: Let R be a ring. Then every element of Rad R is the sum of
~two units. )

PROOF: r € Rad R = 1 - r is right invertable
""(l—r)u:lforsomeuGRv ‘ -
=='l-u=-—ru€‘RadR
=1~ (1 -u) = u is right invertable

= uv = 1 for some v € R

= uy(l - r) u(l - r)uv=ul v =uvs=1
= 1 -r is a unit. ’

Therefore for any r € Rad R, r = 1 — (1 -~ r) is the sum of two umits.

LEMMA 3.2: Let R he a ring and let I be an ideal of R contained in Rad R.
Then units can be 1lifted modulo I, in the sense_ that, if x = x + I is a
" unit of R/I then x is a unit of R.

— .

PROQF: X

x + I is a unit of R/I

= ¥ jJm1and 7 X = 1 for some ¥ € R/I

=1

Xy EI CRad Rand 1 - yx €1 C Rad R

=1

(1-xy)=xyisaunicandl-— (l—yxj = yx 1is
a unit, by Lemma 3.1 ‘

= xy is right invertable and yx is left invertable

= x is right invertable and x is left invert3®le

= x i3 a unit of R.



THEOREM 3.1: Let R he a ring and let I be an ideal contained in Rad R.

3

Then R is an S-ring if R/I is. : S

PROOF:

Assume that R/L is an S—ring.

%refore for allx=x+1¢€ R/i’., X = Zﬁi whers) u, are units of R/I,

and hence u, are wnits of R, by Lemma 3.2.

4

This implies that

x - Zui €1C RadR. Thus X - Zui is the sum of two units, by Lemma

3.1. Say x -~ Eui =z u + u' wvhere u and u' are units of R, So we have

that x = u+t u' + Zui is the sum of units. Hence R 15 an S-ring.

‘. 4

3.2 RADICALS OF R RELATIVE TO RADICALS OF U(R)
N o

THEOREM 3.2: Let R be a ring. Then Rad R C Rad U(R).

PROOF: We know that Rad R € U(R), by Lemma 3.1.
Thus, j € Rad R € U(R) == 1 - jr is right invertable for all r €'R
2 2

= 4 € U(R) and 1 - jr is right invertable for
all r € U(R) ' )

= { € Rad U(R).
Hence, Rad R € Rad UQRR).

DEFINITION 3.1: An ideal P of a ring R is prime if it is proper (that

8P ¥ R) and ABCP= ACPor BCP? for any ideals A and B of R:

DEFINITION 3.2: The prime radical of a ring R is the intersection of

\

ail prime ideals of R and is denoted by ra% R."

DEFINTTION 3.3: An element a of a ring R is called nilpotent if a = O

.for some natural nymber n.

.
[ 4




4 i

DEFINITION.3.4: An element a of a ring R is’'called strongly nilpotent

¢

provided every sequence a,, a «+o, such that

19 az’
a3, = & 2
is ultimately zero. . RIS

o

€ a Ra
n on

“ Note that everygstrengly nilpotent element is nilpotent, and if R is

»

commutative every nilpotent element is strongly nilpotent. "
-

LEMMA 3.3: The prime radical of R is the set of all strongly nilpotent

elements. -
.

PROOF: Assume that a ¢ rad R; then there exists a prime ideal P of R

such that a =a &P, Therefpre adR.ao q P? and so there is a; € aoRao .

y
. thi €
such that al &P Continuing in S manner, we find a 1 nanRan

such that a & P, Thus, for all nmatural numbergn, a & P, hence

a ¥ 0, and so a 1s not strongly nilpotent.

Conversely, assume that a is not stfongly nilpotent., Then
.

there exists a:.sequence a , a °** .guch-that a = a € a Ra
8ed o’ ’ ,c o * 8 n n

1’ %22
and all a_# 0. Let Tbe a set of all a, then 0 ¢ T. Let K ={I|I is

an ideal of Rand T N I = ¢}, then K ¥ @ since {0} € K, and so by Zorn's

Lemma K has a maximal element P. If we can show that P is a prime idesl,

it will follow from a € P that a € rad R. ¢ ‘

3 .

Now suppose A and B agﬂd}als of R such that A€ P and B¢ P,

Y

n . X .
Thus, by maximality of P, (A +P)NT * ¢ and (B+P) N T # ¢, hence

E AT € B+ ;
ay A Pandaj B + P for some ags 3

— 2 )
€ C = Cc = € 1I. impli
I of R, a_ €1 =’,\,‘.3B+l anRan IRI I I 341 ‘, I. This implies

a, € T. .Jote that for any ideal

that a € A+ P and a € B + P where m = max(i,j). Consequently, ,

Q 1




B
f
> [
2 ~ D '

n - s s

~

n‘ '
ay, €aRa C@ATPIRA* Py (A TER)@*P)C (ATPE =

+ PR C AB + P.. = ia - .
AB PB C AB P Therefore a A.Bl'l- P and a 4 & P, and so AB ¢ P

N <
Moreover, P is propie‘r since a € P. Hence P is a prime ideal.

»
- N,

REMARK: . If R is a commutative ring, then rad R is the sat of a1l

5 - . R
nilpotent elements of R. : . \

.DEFINITION 3.5: ’Let S be a ‘subr'ing of a r.,ing R. Then R is an iﬁtegral .

e+, a_ . € S such

extension of S 4if for all xie R there exists al, n=1
that x* + a xn—l +---'+ax+ a = 0. )
~ n=1 1 °o 7, . 4

LEMMA 3.5: If M is a maximal ideal of a commutatiye ring R and R is an

e

integral extension of S, then M N § i8 a maximal ideal of S.

L
o

PROOF: It is obvious thatM N S is a proper ideal of S. Moreover, it is

2
. %

clear that the proper ideal M of a ;oﬁmutative ring R is maximal if and

oniy if for all r & M there exists x € R such that 1 - rx € M. ¢

“-n
" A

“

Assume that MN S is not maximal in §. Therefore there exXists

» (- >

s, & MNS, (so € S), such that for all s € §,
(*) 1-8s@MNS

But, since M is maximal in R, for s there exists x € R such that

‘ xn—]_ teeet'a ‘
J [+

H

1 -3 x€ M. It follows that s x = 1 mod M, and x* + a
o ) o n-1

3}
?

= 0 for some a ,"""’a € S, since R is an integral extension of S,

\ n-1
2o

<

n, n - n-1 :
. o0 -— !
Thus we have so(x + a 1% +eoot ax + ao) =0
n n~-1 n-
+0 . -+
=> (sox) +. a/y E;O(SOX) a;s_

. n=-1 n
-1 + +5 ot + =
1 a_ _150. JTagsy a s, 0 mod M

42

-20-



- o - _ n-2 _ n-1 - v
1 C a _q T a8, .as s T Qmod M
e n-1 ’
=*‘1-—~sos.1=Qmmdl‘ls.rhere. sl=—a —~re.— a € 3

€ Mand 1 - 88 €-5

1

= - [ M N
) 1 SOSl M V'S ‘g

Hence for s there exists s, € S such that 1 - s s € MN s, which is

o o] 1 1
. ;&n
the contradiction to (*).
g i
COROLLARY: Let R be a commutative ring. Then
- rad U(R) € rad R C Rad R € Rad U(R). ~° ™

In particular, if R is an integral extension of U(R), then

Q v

4 Rad R = Rad U(R)..

4

%

PROOF: Si}nce a nilpotent of any subring of R is the nilpotent of R,
and U(R) is the subring of R, therefore rad U(R) C gad R; by the above

remark. Also, we know that every proper ideal (hence prime ideal) is

contained in a maximal ideal, thus 3

rad R = N{prime idealé} C N{maximal éals} = Rad R,
and by Theorem 3.2 Raﬁ R < Rad U(Ii). So the sfirst statement of the .
coroll’ary is proved. For the second statement it suffices to show that

Rad U(R) € Rad R. Let x € Rad U(R) and let M be any maximal ideal of

2

R. By Lemma 3.5,M N U(R) is a maximal ideal of U(R), so x € M.

IS k

Thus, x € Rad R and so Rad U(R) C Rad R.

-

We conclude this section with the example which illustrates

that R can be integral over U(R)..

-

DEFINITION 3.6 : A ring R-is cal];d Boolean if x = x2 for each x € R.

. ~21- ,
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.

LEMMA 3. : If R is a Boolean ring then U(R) = {0,1}. _ - _ ‘ ’

4
PROOF: Let u be a unit of R. .
‘ Then, u2 =u *.ﬁ—luz = q-lu ) .
o - *u=1l ‘
Thus 1 is the only unit of R. Moreowgr, 1 ; (-1)(-1) = -1
>1+1=0 v . SR

It follows that if a € U(R) then a is either the sum of an even number of

1, or the sum of an odd number of 1, and so a is either 0 or, 1.

-~

-~

If R is a Boolean ring with more than two elements then for all

x € R, xz + %+ 0 =0 and hence R is integral over U(R).

e s Srm S



CHAPTER IV

‘ EVEN §-RING

~

4.1 DEFINITION AND SIMPLEST PROPERTY

. -

y
.

DEFINITION 4.1: A ring R igjcalled an even S-ring if each element of R
<& . - ,

can be written as the sum of an even number of units.

’
\

Notice that the two-element field issessS-ring that is not even.

. 9 .
For 1if 1 can be written as the sum of an even number of units then 1 = 0,
. D

gince 1 + 1 ='0. Thds} in the two-element field 1 can not be written as

1

the sum of an even number of units.
i
!

LEMMA 4.1: 1In an even S-ring, 0 can bé written as the sum of an odd

number of units. /.

PPOOF: O = 17+ (-1) and by defidition of an even S~ring -1 can be writ-

ten as the sum of an even number of units. Thus 0 can be written as the

gum of an odd number of units.

o

We can generalize the above and state the following'imme&iate result.

LEMMA 4.2: Let R be an S-ring. The following conditions are equivalent:
(1) (R is an even S~-ring ‘
(2) O can be written as the sum of 4n odd number of units.

(3) Every element can be written as the sum of an odd number

of units.

PROOF ¢ (1) = (2): By Lemma 4.1

(2) = (3):§ If x 1is the sum of an even number_of units then

o
’

«




write O as the sum of an odd number of units, and so x = x + 0 is the :

sum of_gn odd number of units.

© (3) = (1): Write 0 as the sum of an odd number of units. If
x 1is ‘the sum of an odd number of units, then x + 0 is the sum of an even
_number of units.

5

4.2 RESULTS ON EVEN S-RINGS
LEMMA 4.3: If R is an S-ring that contains a unit u such that u + 1 is t

a unit, then R is an even S-ring.

PROOF: Letlg be a unit such tﬁat u+ 1 1s a unit. .

Then 0 = ku + 1) - (u+1) = (u+ 1) - u Wl is the sum of three units,
and so O can be written as the sum of an odd number of units. THus R is
an even S-ring by Lemma 4.2. A

N
We can generalize the above as follows:

LEMMA 4.4: If R is an S-ring that contains a unit which can be written’
as the sum of an‘“even number of units, then R 1is an even S-ring.

PROOF: Let u be a unit such that u = uy +e oot u for some units uy

and some even natural number n. Then, 0 = uy CRRE o u, - u is the sum

“of an odd number of units. Hence R is an even S-ring by Lemma 4.2.
LEMMA 4.5: A finite product of even S-rings is an even S-ring.

" PROOF: It suffices to showdtﬂh'result for the produét Rifﬁ\Rz. For

are units of R,.

€ = +...
any‘r Rl write r = uy +um whereﬁm is even and uy 1



3 F3 - 4o oot + —‘
Then, (r,0) = (ul,l) + (u2, 1) (um—l’l) (um 1) is the sum of

an even gumber of units. Similarly,

even number of units, for every s € R

]

Thus for every (r,s) € Rl ® R

(0,8) . can be written as the sum of an

, 2° 2°
(r,s) = (0,s) + (r,0) can be written as the sum of an even number of
¥
units. .
REMARK 4.1: A finite product of S-rings is not necessarily an S-ring.

\PROOF: Let ‘R be the two—eleﬁegt field. Observe that (1,0) € U(R ® R)

=-(1,0)

= (1,0)

o

odd.-

.

Therefore, (1,0) € U(R ® R) and so R ® R is not an S-rin

LEMMA 4.6:

R) is an even S-ring, for all n > 1.

PROOF: Let r € R.

(1,1 +e-e+ (1,1,

(0,0) if n is even and (

{(n—times).

™S—-

N

g

l’QELEﬁﬁl’l) if n is

N

If R is any ring, then Rn (the ring of n x n matrices over

-

Because the elementary matrices are unitsg, it suffices

to show that the n x n matrix with entry r in position one-two and zeros

[i1ro0 .o} (1o ..
et A=010"’0and1=i010'
0 ... 01 ‘Lo
\ y,
. \
0rO0... 0
and so 000...0 = A-1I
o ... 0

is the sum of two units.

3]

" elsewhere can be written as the sum of an even number of units.

N

LEMMA 4.7 If R is an even S-ring, and S is an S-ringﬂ then R 9 § is

5

. . -25-~
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" an S-ring. ;

PROOF: Let (r,s) E R & S.
(r,0) can be written as the sum of units, by the same argument as in
the proof of Lemma 4.5.

Now, consider (0,8) where s = uy +...+ u and u, are units of S. If n )

e

is even then (0,s8) = (l,ul) + (—l,ué) +.. .t (—l,un) is the sum of units.

If\ﬁ*is odd then write 0 € R as the sum of an odd number of units, it is

possible by Lemma 4.1). Saf,IO = v +...0+ vm‘where v, are units and m

is odd. Therefore (0,5).-'(v1 +...+ v u +.. .+ u). Ifm=n then o

1
(0,s) = (vl,ul)/+...+ (vn,un) is th sum of‘units, Ifm <m, then n - m

. _‘ .\+ -
is even and (0,8) = (vl,ul) cest (vm,um) + (1zum+;) + ( 1,um+2) +.. .+
(-1,u:) is the sum of units. Similarly, (0,s) can be written as the sum
of units if n < m. ‘Thus, it follows that (r,s) = (r,0) + (s,0) can be —

written as the sum of units. Hence R 9 S is an S-ring.

7 i

It is clear that S is a homomorphic image of R & S and that a
homomorphic image of an even S-ring is an even S-ring. Therefore, as

y }

for R® S to pe an even S~ring it is necessary that S be an even S-ring, !
y .

one cannot hope to strengthen the result of Lemma 4.7.
» t !
DEFINITION 4.2: The centre of a ring R, denoted by cent R, is the set
cent R = {a € R|lar = ra for all r € R}

It is easy to see that the cent R is the subring of R. » . ' ‘4 :
i - 1

REMARK 4.2: The centre of an S-ring need not be an S-ring. l ’ [

PROOF: Let R be the two element.field. N S ' '

RZ is an even' S-ring by Lemma 4.6. This implies that Rz ® R2 is an

-26- . . . i
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«

S-ring by Lemma 4.7. But, since

00 = |10
cencR={[00J=0, [01 =

. Y

i

hence cent (R2 ] Rz) = cent R2 X cent R2 =

R & R, and thus cent:(R2 1] Rz) is not an S-ring by Remark 4.1. ,'

~

{0,0,d,D,H@,0D,d,0n} Y

. -




CHAPTER V

INFORMATION ON S-RINGS INSPIRED BY THE WEDDERBURN THEOREM

v

5.1 THE WEDDERBm THEOREM . """I"“;‘“\M,
»

DEFINITION 5.1 The socle Soc A of a module AR is the sum of all irredu-

<

cible submodules of A. If there are no such submodules, Soc A = A.

I

DEFINITION 5.2 A module AR is called completely reducible if A = Soc A.

DEFINITION 5.3 A ring B¢/ is called completely reducible if a module RR

is completely reducible.
D

DEFINITION 5.4 A vector space is a module over a division ring.

DEFINITION 5.5 It is known that a vectdr space VD is a direct sum of

copies of DD. The number of these is called the dimension of the vector

a

space.

DEFINITION 5.6 The ring E = Hom.D€V,V) of endomorphisms of a vector space

VD is called the ring of linear transformations of VD.

DEFINITION 5.7 A ring R is called simple if it has exactly two ‘ideals,
that is, 1if 0 is a maximal ideal. : ’

THEOREM 5.1 (Wedderburn-Artin).

(a) A ring R is completely reducible if and only 1f 1t 1s isomorphic to

a finite prOduCtSDf completely reducible simple rings.
%

(b) A ring R is completely reducible and simple if and only if it is

the ring of all linear transformations of a finite dimensional

~-28- ‘ “



vector™ space.

PROOF : éee[ 4 ,p. 65]. \_S

1f VD is a finite dimensional vectotr space over the division

ring D, the ring HomD(V,V) of endomorphisms of Vo is well known to be

isomorphic to the ring of n x n matrices .over D, where n is the dimension

\ .
of VD. Thus we have the following immediate result:
. AN .

~

COROLI.ARY 5.1 A ring R is completely reducible if and only if it is

isomorphic to a finite direct product of D; , where Dri1 are rings of 4
i i ’
i .

n, x n, matrices over division rings D".

i i

5.2 RESULTS ON S-RINGS

In thn:.s section we will introduce the results on S-rings,

which foilow directly from the above Wedderburn theorem.

THEOREM 5.2: ©Let R be completely reducible. Then R is an S-ring if and
only if the two element field occurs at most once in the decomposition
of R into completely reducible simple rings. R is an even S-ring if and

only this field does not occur at all.

~

&
PROOF: / Let R be a completely reducible ring. Then by the above results,

the decomposition of R into completely simple rings is as follows:

C‘“«’ -

(%) _R¥p} & »% o ...0D" -
! ] ) . m
3
i ) - * ~ i 5
where Dn is a ring of n,ox o, matrices over a division ring D"
i .
If n, > 1 then Di. is an even S—ring by Lemma 4.6, and if n, = 1 then

i

~29-
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Di
n

. Di is a divigion ring. Notice that any division ring with more.

e

i

than two elements is an even S-ring, and the two-element division ring

is the two-element field. Hence for every i, D; is either an even S—
i

C ring or the two—element field which is the S-ring that is not even.

Now, let F be the two-element field. ‘ ¢

*

F occurs more thzan once in the decomposition (%)
= F occurs in (*) at least twice, |
= F ® F is an epimorphic image &£ R,'/and F ®F is
not an S-ring (Remark 4.3),
= R has an epirhorphic image that is not an S-ring;

= R is mnot an S-ring.

8

Therefore, if R is an S-ring then'F occurs at most once in the decom~

position of R.\,

o

Conversely F does not occur at all in (%),

= avery D"i1 1s an even S-ring,
i

= R is an even S-ring by Lemma 4.5

and ' F occurs exactly once in (%),

»R = Rl €& F, where Rl

")R is an S-ring by Lemma 4.7

is an even S-ring by Lemma 4.5

Thus, 1if E: ggcurs at most.once in the decomposition of R then R is an S-—
- ring. Hence the first statement of the theorem is proved. For the

- / ,

second it suffices to observe that if R is an even S~ring, then F does

not occur at all in the decomposition of R.

, u’ . -
N
- ‘ »
M -
.
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‘ ) Let I be an ideal of R contajned in Rad R. It is obvious that

if R is an (even) S-ring then R/I is an (even) S-ring. Allso, if R/I.ii/

3

an S-ring then R is an S-ring by Theorem 3.1. Moreover, observing the
proof of “Theorem 3.1, it is easy to see that if R/I is an even S-ring

then R is an even S-ring. _ Thus we have the following remark:

- REMARK 5.1: Let I be an ideal of R contained in Rad R. Then R is an

(even) S—-ring if and only if R/I' is an (even) S-ring.

Now combining the preceding remark with the Theorem 5.2, we have the

»

following immediate result:

COROLLARY 5.2: Let I be an ideal of a ring R such that I C Rad R and
¥

R/I is completely reducible. Then R is an (even) S-ring if and only if
the two element field occurs (never) at most once in the Wedderburn

3

representation of R/I.

'

;e

DEFINITION 5.8: -Let I be an ideal of a ring R. We say that idempotents
(-4

modulo I can be lifted provided for every element v of I such that

v2 - v E€ I there exists an element e2 = e € R such that e - v € I.

-

—_—

DEFINITION 5.9:. We call the ring R semiperfect if idempotents modulo

Rad R can be lifted and if R/Rad R i8 completely reducible.

In the case where I = Rad R, the Corollary/5.2 tells us under what won-

. ditions semiperfect rings are (even) S-rings. Thus we have the following:

-

COROLLARY 5.3: Let R be a semiperfect ring. Then R is an (even) S-ring,
if and only if the two-element field occurs (never) at most once in the

Wedderburn representation of R/Rad R.




~ =
Notice that left or right Artinian rings are semiperfect 4, p.74]. -

' Moreover, perfect rings are also’ semiperfect [4, p.170]. Therefore the
. Corollary 5.3 describes, in particular, when Artinian or perfect rings

are (even) S~rings. One can see that these results produce a large

'

class of rings generated by units. -




CHAPTER VI e

REGULAR S-—RINGS

6.1 GENERAL INFORMATION ON REGULAR RINGS

x

DEFINITION 6.1: A ring R is called regular if for every a € R there

"

exists x € R such that axa = a. 0
.

a

-

DEFINITION 6.2:’ A ring R fs called st‘rongly regular 1if for every

-

a € R there exists x € R such that a2x = a.

A

LEMMA 6.1: Let R be a strongly regular ring. Then R has no non-zero

, 2a
nilpotent elements. 2

o~

PROOF: Let a be a nilpotent element of R.' Then a" = 0 for some

natural number n, and a = azx for some x € R. This impliés &hat

a=ax = a3x2 = e = anxn-l = 0 Xn—l =0

Thus 0 is the only nilpotent of R.
\ )

LEMMA 6.2: Let e be an idempotent element of a ring R, which commutes

with all nilpotent elements of R, then e is central.

>

o
@

PROOF: For any a € R, (ea(l—-e))z = ea(l—e)e:a(l—e) = eala(l-e) = 0

and similarly ((l-—e)ae)2 = 0. Thus for any a € R, ea(l-e) and (l-e)ae

are nilpotent elements. Therefbre, ea(l-e) = e ea(l—e) = ea(l~e)e = 0

and similarly (l-e)ae = 0. Hence ea = ea e ae and so e is central.

4
<

COROLLARY 6.1: Every idempotent element of a strongly regular ring R

is central.

.
.
-
i ' /\)
.




7 ‘ / . . ! - .
PROOF: By Lemma 6.1, 0 is” the only nilpotent of R and 0O commutes with
sl ; ) :

]

every element of R., Now the ‘résult follows by Lemma 6.2.

LEMMA 6.3: Let a be an element of a stronély regular r‘ing R and x € R
' 4
be such that azx = a. Then azx = xa2 = axa = a andiax = xa 1s an

idempotent of R. " -

PROOF: Assume that azx = a. Then
2:

(a - axa)2 = ;12_ - azxa - axa2 + axazxa = a2 - l*.a2 - axa2 + axa” =0

Hence -2 -~ axa is a nilpotent and so a = axa by Lemma 6.1,

Also, (a — va)Z = a2 - axa2 - xa3 + xr(azng)a2 = a2 - (axa)a ~— xa3 +‘xa3= 1

a2 - a2 = 0. Thus a -~ x.?.2 is a fi’ilpotent‘ and so a = xaz. )

Tt"\is shows that azx = xa2 = axa = a. .-
Moreover (a.x)2 = (axa)x = ax and a% = (xaz)x = x(azx) = Xa, thus_

ax = xa is an idempotent. :
. s
From the above Lemmia we have the following immediate corollary.-"

COROLLARY 6.2: A ring R is strongly regular if and only if for every

element a € R there exists x € R such that a = axa ‘and ax = xa. \

~

LEMMA 6.4: Let R be a regular ring. Then for every a € R there exists

‘

al'E R such that a ala = a and a aa; = aly If R is 'strongly regular
then a, is uniquely determined by a.

i T
PROOF: Since R is regulaf, for each a € R there exists x € R such that

'a = axa. Let a; = xax, then aa,a = a(xax)a = (axa)xa = axa = a, and - "

a,aa; = (xax)aa

1 1= x(axa)a1 = xa:)a1 = xa(xax) = x(axa)x = xax =

¥

Now assume that R is stfongly regular. ] .

If for a € R there exists a and a, in R such that a = aaja = aazé and




S ¢ o

LI then by Lemma 6.3 and Corollary 6.1, a,a = aa,

—
1

= aiaal, a, =a

is a central idempotent, and thus

a = alaa,f .—,-‘al gaa’za)al = al(aaz)aal

alaa}l(aaz) =/alaa2 = al(aa?_a)a2=

a,aa, = a,, hence a, = a

{ - a‘la(.aza)a2 = (aza)alaa2 = az(aala)a2 1 9°

AN . “
LEMMA 6.5: Let R be a strongly regular ring. Then for every a € R

- there exists a unit u € R such t%hat a = aua. . [

PROOF: By Lemma 6,4 for every a € R there exists ale R such that

a = aa.a and’ a, = a

1

We know that aa a is a central idempotent, say aal = a.

17 %

Letu=a1+l—e ‘andv=a+1-‘e, then

-

a+a1—ae~+a+1—e-ea-e(l-—e)

uv:(al+1-e)(a+l-e)=§ 1

1

]
where ale = al and ea = a, thus uv =z e + a, - a

1

+ - - = Jl.
l+a 1 e a} 1

Similarly, vu = (a+l—-e)(al+l—e)=aal+a-ae+a1+l.—e—

-e(l~e) =eta-ata +'1'-e - a, = 1.

ea 1 1

1
~f o
Therefore u is a unit of R, and

'aua=a(al+1—e)a=‘(‘e+a-a)a=ea:a.

- ' A ¢

LEMMA 6.6: Let R be a regular ring. Then the centre of R is a commutative

regular ring. ¥ .
- y

- PROOF:  Let cent R be the center of R. It ‘s known that cent R is a
commutative stibring of R. Since R is regular, then by Lemma 6.4 for
every a € cent R there exists x € R such that ' \c’
: 2 2 '
azaxa=ax and X = xax = X a

d




1

We shall show that x € cent R. For every element r € R,
. ;

2 2 2.2 2.2 ' 2 2.2 2
Xr = X ar =X ra = Xra x =ax r¥ = axrx = axrx a = a2 Xrx = arx =

2 -
rx 8 = rk. Thus xr = rx and so x € cent R.

LEMMA 6.7: If e is an ildempotent of a regular ring R, then e R e is a o

regular ring.

PROQF: It is easy ‘to see that e R e is a ring with e as its identity.
Since R 1is regul/é\r, for every a.E':Q R e there exists x € R such that
axa = a. Moreover ae = ea = a, since a€ e Re. Definey = e x e.

Then y € e Re and aya = a exe a = axa,z a. Thus e R e is regular.

LEMMA 6.8: A ring R is regular if and only if every principal right

ideal of R is generated by an ic!empotent. o

PROOF: ZLet R be a regular ring and aR be a principal right i@ of R.
Then there exists x € R such that a = axa, where ax = axax is an idem-
potent. Since a = axa €(ax)R, we have a R € (ax)R, and the inverse

inclusion is.obvlious. Thus aR = (ax)R.

.
v

Conversely, assume that every principal g.ght ide;l, of R is geﬁerated by
an idempotent. Then for every a € R there exists an idempotent e € R
such that aR =*eR. This implies that there exists x €R and y € R such
that a = ex a:;d e = ay. Hence we have that

. aya = ea = eex = ex = a.

Thus for every a € R there exists y € R such that a = aya, and so R is a

regular ring.

LEMMA 6.9: In a regular ring every finitely generated ideal is prindipal.

2




.

PROOF: Let R be a regular ring. It suffices to consider akright ideal -
2

-aR + bR. Now by Lemma 6.8, aR = eR for some e = € € R, and bR C ebR +

(1 - e)bR sincebr = [e + (L - e)]br = ebr + ’(l - e)br. Therefore
N » .

i

aR + bR C eR + ebR+ (1 - e)bR where ebRC eR and (1 - e)bR = fR for

2

gsome f = £, Thus aR + bRC eR t+ fR where fr = (1 - e)br = br ~ ebr €

aR.+ bR and so aR+ bR = eR+ fR where ef = e(l - e)br = 0. Put g =

A)

£f(1 - e), then

LY ’ .
"gf’= £(1 - e)f = £(f ~ ef) = £(f - 0) = £2 = £,
2
4 gh-.-.‘gf(l—/e)=f(l—e)=g,
and eg = 0 =

Since g = f(1L - e) € fR and f = gf € gR, hence fR = gR. Thus we have
that aR+ bR = eR™ fR = eR* gR. Moreover for any r, s € R, since
(et g)(er+ gs) = e2r+ égs+ ger + gzs =er+ 0Os+ 0r+ gs =er+ gs,
hence eR + gRC(e+ g)R, and the inverse inclusion is obvious‘} So we

have that aR + bR = eR + gk = (e +, g)R is a principal ideal.

DEFINITION 6.3: A ring/R is called ﬂ-reg'ular if for each a€ R, there ‘.

exists an x€ R and a posifive integer n such that a" = a" ' x a".

LEMMA 6.10: If R is a commutative ring then R/Rad has no non-zero nil-

.

potent element.

PROOF: Let a = a+ Rad R be in R/Rad R.

A

+ 0. Then a® Rad R and so 1 - as is. not invertable for.

(R ]

Agsume that
some s € R. This implies that 1 - a252 = (1 - as)(1l + as) is not
invertable. Continuing in this manner we find that 1 - aZnSZn is not

invertable for every positive integer n. Thus 1 - an(anSZn) is not

invertable for every positive integer n. Thefefo_re a" ¢ Rad R and

*

)




hence (E)R* 0 for every positive integer n. So we have that a is not
‘a nilpotent element of R/Rad R. This shows that the only nilpotent

element of .R/Rad is 0. - .

A2

LEMMA 6.11: .If R is a commutative m-regular ring then R/Rad R’ is

!
strongly regular.

PROOF: For every a € R there exists x €R such: that a® = a" x a” for

some positive integer n. Let y = a™ X4 then .

rd

Lol ol n-1 n_n n n n
a yza "a x=aaxzaxa =z=a
Thus, for every a § R there exists y € R such that, .
n ontl

a =a .y
for some positive integer n.

This implies that for eJLry a = a + RadR € R/Rad R,
- n + ‘' ‘
A = En l?.

v

Now observe that

n. ._0-1.2 .-n-—n- -n-—-n-1 _n-l-n- 4+ =n-l-n-1

@y-3a ")" =ayay-aya ~a "ayta Ta =

-2n=2 =2n-2 =20-1- , -ntl--n-2 =2n-1- _ =2n-1- L
a"y -a’y -a y+a “ya = a y~ a y=10

Therefore Enfr -'?a'n-l is a nilpotent element of R/Rad R, ‘:md hence

., W ~n=1
a - a

v = U by Lemma 6.10. Thus we.have that,

a = 3y

Similarly, we get En‘z - 'énhlir, and continuing in this manner we §et

3 = 3°y. This proves that R/Rad R is strongly regular.

-

6.2 RESULTS ON REGULAR S~RINGS =~

Recall that U(R) = {0,1} for_any Boolean ring R, and so a

»

Baolean ring with more than two elements is never generated by its units.

-38-



Moreover, it is obvious that every Boolean ring is strongly regula;.

Therefore, there are regular rings which are not S-rings.

LEMMA 6.12: If 2 is a unit of'a ring R then any idempotent element of"

R can be written as the sum of two units.

FPROOF: Let e be any idempotent element of R. It is clear that 2 and

2-l are central elements. Observ? that

e+ -e2yce-e2tt1-erloet+r1-ea+rn2toet-
'e22_1 =e+1 ; e = 1, and

(l‘— e2—l)(e + 1) =e+ 1 - e2_le - e2-.1 = e +1 - ee2—1 - e2-1 =

e+tl-el-e2toet1-ea+ HDtlae+r1-e22lcet1-e-

” +

The%efore e +1 is a unit, and hence e = (e + 1) - 1 is-the sum of two

units.
One can generalize the above result as follows:

LEMMA 6.13: If a ring R contains a ng; u with the property that u

F

commutes with &11 idempotents and u + 1 is also a unit, thég every idem-

potent element of R can be written as the sum of two units.

PROQF: Let e be any idempotent and let u be a unit such that u commutes
with e and u + 1 is a unit. Since e commutes with u then e commutes

with u + 1, and so e commutes with u-1 and (u + l)fl. Observe that
r . ‘

-~

e+wal-ealw+rn™h " -

= et mewtu+ DT H+1 - gt + 7T
= 1+ eu—l - eu—l(u + 1)_1 -.eu—lu(u + 1)-1

o \
= 1+ eu?!- eu—l(l +u)(u + 1)—;

1+ eu"l - eu—l =1,

BN

~ "
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&

and R R DR Y
= u-}e +1 - eu_l(u + lb_le - eu_l(u + 1)‘lu
= u—le +1 - eeu_l(u + l)_1 - eu_l(u + i)—l
culet1-ewtw a4 w
= 1+ eu_l - eu_l = 1.

'
Therefore ¢ + u 1is a unit of R, and 55 e = (g + u) - u is the sum
of two units.
It is clear that the property of R, required in the preceding lemma,
‘is inﬂerited under ring homomorphism and thag any S-ring with this
property is an even S-ring (Lemma 4.3). If a ring R is- regular then
- . A
Rn is well known to be regular and by Lemma 4.6 it is an even S-ring.

One can ask the question, which regular rings are generated by their

units?E We will consider regular rings with the following assumption:

!
ASSUMPTION: Throughout this section we assume' that the regular rings

discussed have the propérty that any idempotent element can be written

2

as the sum of two units.

¢

THEOREM 6.1: 1If a ring R is strongly regular, in particular, if R is
commutative regular, then every element of R can be written as the sum

of two units.

PROOF: Let R be a strongly regula} ring. Then by Lemma 6.5, for every

element 2 € R there exists a unit u € R such that

4
{

a = aua

. Notice that au = auvau is an idempotent element, say au = e. This

‘eu-l. Moreover, by Corol{gry 6.2 R is a regular ring,

implies that a




thus e can be written as the sum of two

e = u, + u, where u, and u, are units of R. Therefore a = eu

1 2 1 2

(u1 + uz)unl = ulu-l + u2u-.l is the sum

o

DEFINITION 6.3: A ring R is called unit

units by Assumption. Say,

of two units.

regular if for every a € R

there exists a unit u/E R such that a =

aua.

COROLLARY 6.5: If a ring R is unit regular, then every element of R
m

can be written as the sum of two units,

LEMMA 6.14: Every nilpotent element of

suim of two units.

PROOF: Let a be a nilpoteént. element of

integer n such that a© = 0. It follows

(L - a)(l + a +--ot a™71

- n

=1l-a =z=1-0=1 and similarly

(L+ta+t-+a"Ha-a)=1-a"

=1,
Therefore 1 - a is a unit and hence a =
units.

THEOREM 6.2: If for each element a € R
2™

of four units. ' :

n

) =1+a++-+ a

4

a ring R can be written as the

R. Then there exists a positiv
that

1 - (1L -.a) is the sum of two

there exists x € R such that

a = axa and a'x = Xaz, then every element of R can be written as the sum

I

PROOF: . Let a be any element of R. Then a = axa and azx = xa2 for some

x € R. Let a; = azx, therefore

N

ajxa; = (azx)x(azx) = (xaz)x(a?x) = xa(axa)ax = ;an = azxax = a(axa)x

azx = al, and

a)x = (azx)x = (xaz)x = x(azx) = xa

1




Thus e have that a,xa; = and a;x = xa;. Hence, observing the proof

81‘

of Theorem 6.1, one can see that a, can be written as the swf two

1

« : = + - - -
units Say a; =u; tu, Moreover,. let a, =a- a;, then

2 2 /o

a2=(a—a1)(a—a1)=a - a -=a15.+a

Ll N

vz a’ - a(azx) - (azx)a + .azx) (azx)

nt
o
1

a3x - a(axa) t a(axa)ax
= a -a3x-a\2+a3x=0.
Therefore a, is a nilpotent element, and so it can be written as the sum

of two units by Lemma 6.14. Say a, = ug + u,- Thus a = a; + 3y = uy +

+ou +
ug +u, U, is the sum of four units.

“

REMARK REMARK 6.1: " From the above argument it is clear that if a = axa and a2x

is a sum‘:of units, t\an a 1s a sum of units. kg

COROLLARY 6.4: 1If R is a commutative 7m-regular ring then every element
m

s

of Rtafi be written as a sum of four units.
; .

PﬁOOF: R/Rad R is strongly regular by Lemma 6.11.
H¥nc’e by Theorem 6.1, for every a = a + Rad R € R/Rad R,

. B=d, +a

2
where El = Gl + Rad R and 32 = u, + Rad 'R are units of R/Rad R.
Notice that uy and u, are units of R, since according to Lemma 3.2, units

can be 1lifted modulo Rad K. !Thus we have that

a:(ul+u2)+RadR,

and so a-u, -u,€Rad R .
This implies that a - ‘ul - u, is-&he sum % two units by Lemma 3.1. Say
- | b ! ”
- - + : \ .
a }f“l u, = uy +u, for some units u, and .u, of R. Therefore .

e .

-42-

t
}

et b




/

su +outou, 4
a_ul u u3 1.14

is the sum of four units.

THEOREM 6.3: If R is a left (right) self-injective'regular ring then

R is an even S-ring.

PROOF: By [9, Theorem 3.2] R ¥ A & B, where A and B are ideals of R

such that A is strongly regular and B is generated by .idempotents. By
Theorem 6.1, A is an even S-ring, and B is an even S-ring by the

. . 3
Assumption. Therefore R is an even S-ring by Lemma 4.5

For information about seff—injéctive rings see [ 8]. *

3

-

COROLLARY 6.5: If R is a regular ring then.R can be embedded into a

regular S-ring.

-

Ttee—m—e—

PROOF: The right singular ideal of R is easily verified to be zero, so

-

}
the complgte ring of right quotients of R is a regular self-injective

ring [ 4, pp. 106-107).




CHAPTER: VII

QUESTIONS AND COMMENTS

1

1. We know by Leméa 6.7 Ehat for every idempotent e of a riqg R, eRe
s reguiar if R is. In [5, p. 203], the author asks whether e R e

must be a (regular) S-ring if R 1s a.(regular) S-ring. 'The answer to
this question is negative. To justify it, we introduce the following
example:

EXAMPLE 7.1: Let B be a Boolean ring with more than two elements. We
‘know that B is-a regular ring which 1s not an S-ring. Let R = Bzhbe the
ring of 2 x 2 matrices over B. Then R 1s a regular S-ring by Lemma 4.6.
But,

L

e R e B
!

where e = (3 g} is an idempotent element of R. Therefore e Re is a
L :

regular ring that is not an S-ring.

Naw the question becomes, undq{awhat condition 1s e R e an S~ring? One

can staté the following immediate result: |

5

h , ’
REMARK 7.1: 1If e is an idempotent of an S-ring R and if e commutes with

avery unit of R, then e R e is an S-ring.

1

PROOF: If u is a unit of R, then ‘

, L]
I - - -
(e ue)len L e) eueu e=euu 1 e=ele=e,.

H

'gnd‘so eueisa uniF of e R e. Moreover, since R is an S-ring then for




every r € R, r = Zui where u, are units of R, This implies that for all

x€eRe,

v

o f = e(Zui)e =Le u,e '

"where e u e are units of E R e. Thus e Rjie is an S-ring.

‘e ' ”
L]

2. In the case ‘where R is not an S-ring one can ask the question, what’

.

ring theoretic broperties are preserved by U?

. (a) ,If R is strongly regular, then U(R) is strongly regular because the
quasi-inverse of an element can be chosen to be a unit by Lemma 6.5. In
general 1if R is regular, must U(R) be regular? We do not know ‘the answer

to this question.

.
1

| (b) If R is completely reducible, then by fhe’proof of Theorem 5.2,

Ré’klaa

where R, 1S_an even S-ring and B is the product of at least two 2-element

- 1 .

fields, and hence B is a Boolean ring with more than two elements. If lB

is the identity of B, then the units of B are of the form (u, lB)' Thus
UR) =R 6 {0,1}4 =
éhd it follows that U(R) is a completely reducible ring. Therefore U .

/preéerves the property of being completely reducible. .

(c) U preserves the propert& that R/Rad R is completely reducible.

i

PROOF: From Lemma 3.2 it follows that for any ring R

g ' U(R/Rad R) = U(R))Rad R . (*)

Now, let R/Rad R be completely reducible. This implies that U(R/Rad R) ,




is completely reducible by (6) Since completely reducible(rings are
semiprimitive [4, p.68], thus ' ’
Rad U(R/Rad R) = O

= Rad(U(R)/Rad R) = O ' by (%)

= U(R) € Rad R

= Rad U(R) € Rad R
Moreover, Rad R C Rad U(R) by Lemma 32 Hen;:e we have that

| Rad R = Rad U(R)

'so U(R/Rad R) = U(R)/Rad R = U(R)/Rad U(R) . - .

‘Therefore U(R)/Rad U(R) is completely reducible.
(d) U preserves the property of being semiperfect, and hence left or

right perfect.

[ 1 -

PROOF: Assume that idempotents modulo Rad R can be lifted. Therefore
for every v € U(R) there exists e = e2 € R such that
e - v € Rad R. | ' et
Since Rad R € Rad U(R), thus e -~ v € Rad U(R). This also implies that
e G Q(R). Hence, idempotents can be lifted modulo Rad U(R). Now it

-

féllows from (c) that U preserves the property of being semiperfect. !

Ve —

\ -
3. If R 18 a regular S-ring and I is an ideal of R, then is End(I)

an S-ring? Notice it is known that End(I) is,a regular ring, if R is ’

!
regular. ' o )

- : ~46~
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PROOF: Let A be an element of D_. Then

y .
4, It is noteworthy that whenever one is able to show that a regular

ring s an S=ring, there is a bound on the number of units required

v
3

to represent the elements of the ring.

(a) If R is a regular self-injective rirg, then one must examine

the proofs of [ 8,,Lemma 5 and Theorem 21/ to see that a bound is
3

4

available. . s .

- ~

’
L4

(b) If D is a division ring qther than the two-element field, themn
o o P \ .
any element of Dn can be written as a sum of two units.

s
A

° S

A = PBQ . . .

\ . ’
where P and Q are products of elementary matrices and B is diagonal
&£h entries equal to Q or 1. ‘Thus P and Q are units and B is
idempotent. Notice that D contains a unit u such that-u + 1 is a o

unit. Hence ul is a unit of Dn such that ul + I is a unit and ul

commutes with B. It follows from the proof of Lemma 6.13 that B is

T e
3

a sum of two units. Therefore A is a sum of two units,

One can see that for the most interesting regular S-rings the bound

2 is available.

£ -
'

The above questions and comments.are left to the reader's interest.

-~

N
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