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ABSTRACT

RISC Architecture Enhancement for
Datz. Communications Applications

Ali Elkateeb, Ph.D.
Concordia University, 1991

Efficient RISC architecture for real-time multi-tasking applications in a data communication
environment has not been yet rigorously investigated. The aim of our work is to study the
suitability of RISC architectures in a data communication environment, such as Integrated Service
Digital Network (ISDN), and techniques to improve their performance. Since a register set
structure has a big role in the RISC performance enhancement, the RISC register set structure
will be the main focus of our research.

At first, a dynamic scanning approach is used to examine the software characteristics of
ISDN protocols and their effect on the RISC performance. Then, a new approach is proposed
to evaluate the state-swapping processing overhead under different load conditions in an ISDN
environment. This approach offers a simple and yet accurate mean to estimate the stale-
swapping overhead. It is found that the state-swapping overhead is significant in ISDN
processing. A RISC architecture using the Multiple Register Set (MRS) structure 1s introduced
to reduce this overhead. The performance of the MRS-based RISC architecture is evaluated in
terms of the size of the MRS, the number of tasks resident on the external memory, and the
frequency of their execution. A priority strategy for distnibuting tasks' siates among the MES i
proposed, and its implementation complexity is investigated. 1t is found that even if the number
of tasks existing in the external memory increases, the proposed priority strategy can stiil
maintain adequate performance improvement. Finally, the implementation of the priority strategy

in conjunction with MRS structure for ISDN applications is discussed.
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CHAPTER |

INTRODUCTION

1.1. Background

The trend towards digital communications has an impact on each type of transmission
media and each type of switch used in communication networks. Transmissions over
communications linis are already heavily digital and will be totaily so in the future. These
communicatinns links are intended for carrying the user information such as wideo, voice and
data. The processors used within the nades of these networks are to handle the received digital
information and to perform the required communication nodes functions efficiently. The
processed information will .hen passed to the required destination.

Optical fibers in today communications networks have provided a tremendously increased
transmission bandwidth. This large transmission bandwidth hzs encouraged the support of more
services and more users. Clearly, the increase in services and the number of users in a network
has led to an increase in traffic volume. Consequently, the functions processed by the nodes
would have to be performed at a faster rate and hence place a greater load on the processor
within each node. For exampie, the Integrated Service Digital Network (ISDN), which has been
proposed in last few years, allows more than one service to be processed simultaneously by the
network. The terminals connected to ISDN switches will permit the subscribers tc access various
communication services through the use of a set of layered protocols that are defined by the |
and Q series of the CCITT recommendations [1-4].

The Open System Interconnection (OSI) {20-24] model which was proposed in 1977 by
the International Standards Organization (ISO), provides a solution to the problems of

compatibility between computers from different manufacturers used in the same communication
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network [25,26]. This model eliminates the problems found in information representation,
communication techniques, and operating systems between computers used in the
communication nodes [27]. Although the OS! model is comprised of a hierarchical
seven-layered structure, only the first three layers are required for processing by the network
nodes, i.e., physical, data link, and network layers. The ISDN user-network interface, Signalling
System number 7 (S57), X.25 are some examples of such protocols based on OSI model.

In general, the implementation of the first three lzyers functions can be done in both
hardware and software. Layer 1 is always implemented by using hardware, part of the layer 2
functions can be implzmented by hardware and the other part by software, while layer 3 is
implemented by software. There are many VLSI chips which are used to perform the processing
required by the hardware functions inside these layers [37,40,41,44]. Many general purpose
processors have been used to support the processing required by the software functions of
these three layers [47,54,57). Designing a specialized processor to enhance the processing of
these software functions has also been reporicd in small scale [49]. However, the specialized
processors are not used widely because of their design complexity and high cost.

The latest development in the computer architecture has introduced a new approach in
designing processors called the Reduced Instruction Set Computer (RISC) [6S]. The reported
success of RISCs as a high performance architecture has resulted in intensive research to
investigate their performance, complexity, etc. However, the simple hardware design, the short
development time and the high performance of the RISC-based processors would make the
RISC architecture a promising one not only for general purpose computations but also for
special purpose applications.

The work on RISCs has focused on the aspects related to RISC as a counterpart

architecture to CISCs in general purpose computations. These researches examined the
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instruction set from different directions, such as the justification of the choice of a certain
irstruction set; statistical programs measurements and evaluations; how the simple instructions
were more ulilized than the other complex instructions; and what their impact was on the code
size; etc. Moreover, these researches also focused on the evaluation of register set organization
and the number of these registers as well as theirimpact on the performance of this architecture.
The performance measurements were evaluated by employing conventional benchmarks and
by using simulation techniques. So far most of these studies have concentrated on the general
purpose computations and have omitted studying this architecture for processing in specialized
applications, such as for communications applications and specifically for the processing at the
network nodes. The limited researches and studies for RISCs role in data communications
network nodes processing along with the need for high efficient processors to cope with the
demands to support the requirements speed of these applications, has directed this research
towards investigating current RISC architectures with respect to their suitability and possible

enhancements to supporting these requiremenits.

1.2. Thesis organization

The material presented in this thesis is organized into two parts. In the first part, data
communications processing is investigated and emphasis is given to the network nodes
processing. This part has two major objectives: first is to study the frequently used general
operations in such processing, and the second is to highlight the current architecture of
communications network nodes in different perspectives. These perspectives can comprise of
node hardware structures, the processors used as well as their types, and the multiprocessor
supports. Moreover, the investigation to the candidate processor architecture to be used in

such processing is done by analyzing and comparing the available architectures, namely CISC
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or RISC. The merits and drawbacks of the current RISC architecture are studied. It also focuses
on the mativations in using the RISC concept to build high performance data communications
processing architectures. Following this, we will also highlight the possible work directions to
be investigated in thic research.

The second part focuses on the selection of suitable RISC architectures, and to
investigale their drawbacks in supporting data communications applications in which task
switching operations occur frequentlv. In chapter 3 attention is focused on the characteristics
of the data communications software, by using a RISC-based computer system. Examples of
these characteristics are, High Level Language (HLL) statements frequencies, processor-memory
traffic, and procedures nested depths. The results shown in this chapter are used in the
following chapters to clarify the RISC architecture type which is more appiopriate to this
application. Chapter 4 investigates the impact ot RISC architectte on increasing the task
switching overhead by increasing the state-swapping cost. This has been studied from two
perspectives: the register set used in RISC, and the use of optimizing compilers. The state-
swappiny cost is also measured for different data communications processing workloads. in
chapter 5, the enhanced RISC architecture for this application is considered by adding Multiple
Register Sets’ (MRS) crganization, viewing the impact of MRS on the performance enhancement
of RISC, and by supporting MRS with a strategy to distribute tasks states to these register sets.
The effect of this organization on RISC architecture is investigated along with the possible
changes that we would include with RISC to incorporate this organization. Also derived and
evaluated the numerical method used to measure the performance improvements, which can be
achieved in comparison to the RISC architecture with a Single Register Set (SRS). The priority
strategy is derived and investigated in order to deterniine if such a strategy could further increase

the performance by using it with MRS and estimate its enhancements. Finally, RISC-based
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architecture using MRS is highlighted with the necessary instruction set.
This work is concluded in chapter 6. Some final recommendations for the further work

are also presented.



CHAPTER 2
PROCESSING IN COMMUNICATION NETWORK NODES

It is the Intent of this chapter to develop background material related to the main aspects
of computer architectures for data communications processing. This chapter attempts to
investigate the following topics:

. The processing features of a network node in data communications: This will help us to
understand the nature and structure of both hardware and software implemented in these
nodes.

i, The taechnologies currently used to implement such applications in presently existing
systems: This will review the status and possible drawbacks of the actual implementations

using currently available technologies.

The outcome from the study of the above topics will derive the motivation for this work.

It is also used to set the direction of our work and the general approach to reach our goal.

2.1. Processing Features

To find appropriate support to improve the processing performance in the network nodes,
it is important to investigate the processing features. This section will study and analyze the
processing features of data communications from three angles: their layer structure, instruction

set, and software organization.

2.1.1. Layer Structure

The OSI model distributes the functions of the data communications processing in
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seven layers: Physical, Data Link, Network, Transport, Session, Presentation, and Applications

(Figure 2.1). A network node usually includes only the first three layers. Since in this work we
emphasize on the network node processing, the attention will be only given tu thess first three
layers.

Layer 1 (or Physical Layer) takes the responsibilities for the information transter over the
links. This includes the electrical requirements of a data communication channel, the physical
interface between devices and the rules by which bits are passed from one to another. The data
link layer (layer 2) attempts to make the physical link reliable and provides the means to activats,
maintain and deactivate the link. The main service provided by the data link layer to the higher
layers is that of error control and flow control. The network layer services are responsible for
establishing, maintaining and terminating communications.

Many protocols based on OS| models have been developed. Although the general
functions are similar, each protocol car: include some variations. Thus, it is useful to consider one
of these protocols as an example for clarify the discussions throughout this work. Since ISDN
become very important :n today's and future of data communications applications, the ISDN user-
network interface protocol is chosen as an example in this thesis.

The ISDN protocols, which are specified by CCITT [1-4], has defined many procedures
and capabilities within the first three layers. CCITT has recommended that the Basic Rate
Interface (BRI), (284 D), of layer 1 of the ISDN user-network run at 144 kbit/s, and the Primary
Rate Interface (PRI) rate 1544 kbit/s (North America and Japan) and 2048 kbit/s (for Europe).
Layers 2 and 3 support a wide range of service capabilities. The physical layer provides
simultaneous, bidirectional transmission of information signals synchronized with the network.
In the case of the basic access, the physical layer alsc enables orderly activation and deactivation

and regulates simultaneous access by several terminals to the common D-channel. In PRI, this
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layer supports the point-to-point configuration, while no activation/deactivation capability is
supported. Since this layer is always implemented in hardware, we will focus our attention
towards the software aspects of layers 2 and 3.

It was intended by CCITT, that their recommendations for layer 2 and 3 should be applied
to a variety of interface structures, such as basic access and primary access [81]. Layer 2
recommendations describe the link access procedure on D-channel, called LAPD. LAPD is on
the basis of balanced mode HDLC such as X.25 LAPB. LAPD provides information transter
capabilities via point-to-point data links and via broadcast links. In order to handle multiple
terminal installations at the user network inter/aces as well as multiple layer 3 entities such as
signalling and packet communication, LAPD has the capability of supporting muitiple data link
connections simultaneously on a single D-channel. In order to identify a specific data link
connection, layer 2 address field consists of two subfields, namely, the data link layer Service
Access Point Identifier (SAPI) subfield and the Terminal Endpoint Identitier (TEI) subfield. Layer
2 also provides two forms of information transfer services, either the Unacknowledged Information
(U1) or the Acknowledged Information (Al) with muitiple frame operation only. Layer £ supports
the TE! assignment procedures to automatically assign a TEI value to newly connected user
terminal equipment at a specific user-network interface point. In this case no manua setting of
a TEl value is necessary every time terminal equipment is connected to a user-network interface
point.

Layer 3 recommendations describe the procedures for establishing and clearing of network
connections such as circuit-switched connections using B-channel, user-to-user signalling
connections using D-channel, packet-switched connections using either )-channel or B-channel.
The main feature of this layer is the handling of the wide variety of connections as mentioned

above through the same user network interface. This user network interface includes the
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procedures for terminals operating in a stimulus mode to facilitate functional expansion for such
terminals. The message structure of layer 3 consists mandatory and optional information

elements to be discussed in more details in Chapter 3.

2.1.2. The Instruction Set

The use of suitable instructions for specific applications, such as data communications,
will enhance the processing and make the processor more efficient than other processors
designed for general purpose applications. In order to define the type and guantity of instructions
within a set, it is necessary to study and analyze the software functions which are required to be
executed by the processor. This study will help us to answer some important questions such as:
Are there general purpose or special purpose instructions required with this set? Should the
instructions be simple or complex? Are all instruction groups ( e.g., logic, arithmetic, etc.)
necessary to be supported or could these groups be reduced by eliminating some of them?

The objective of this section is to answer these guestions, and in order to do so it is
important to first understand the nature of the processing functions that the processor should
perform in order to provide the required services.

The software processing part in the communication nodes usually deals with layer 3 and
part of layer 2, as layer 1 and lower part of layer 2 are often implemented in hardware. Thus, the
Instructions used for layer 2 and 3 processing are the ones which define the type of instruction
set required for the node processor. The instruction set used for these layers depends on the
type of functions required to be handled by these layers. Hence, the study of these functions is
important in determining the kind of required instruction set.

The amount of services and the complexity of these two layers become very large due to

the ditferent services which are required by different users, and these services are continuously
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increasing. For example, the ISDN access nodes are required to support signalling, circuit-

switched, packet-switchied, and telemetry tratfic. Software characteristics of the network node

protocols can affect the instruction set in the foliowing manners:

i

ii.

Programs implementing these protocols are large and complex, due to the large variety
of required functions. For example, the impiementation of layer 3 of the ISDN user-
network interface protocol (Q.931) is done with about 70K of assembly code [29].
Fequired functions are of general purpose type such as searching databases, scanning
messages, checking service availability, etc. Since the processing of these functions of
the general purpose nature needs a processor to support such processing, the general
purpose instructions are necessary to be supported in the processor used to handle the
data communications functions. Also, note that complex numerical computations are not
required.

The processing of these protocols usually requires some of the functions to be processed
repeatedly. These repeatedly used functions give the impression that there could be a
need for special purpose instructions. The investigation of the nature and the processing
of some of these repeatedly used functions will help to have a clear answer. Let us
consider the following repeatedly used functions: scanning and wrapping / unwrapping
messages. In scanning messages, ali messages arriving at layer 2 or layer 3 were
required to be scanned to determine the type of service required; identification of the
called terminal; and to verity the correctness of the message fields [4]. These messages
are partitioned in© many fields, each of these fields is dedicated for a particular service.
At the receiver, each field is tested, and this processing of message scanning can be
realized by a sequence of Compare and Branch instructions. Thus, there is no need for

special instructions and therefore the general purpose instructions can be used here. The
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other special function, i.e., wrapping / unwrapping operation, is required when the
messages pass between the layers, particularly between layers 2 and 3 (usually this is
done in layer 1 by the hardware which strips and inserts the flags) in which layer 2 strips
off the information which will not be used by layer 3. For instance, the message address
part (consisting of two fields, Service Access Point Identifier or SAP! and Terminal
Endpoint Identifier or TEI) and the control field within the LAPD frame format messages,
in the ISDN user-network interface messages, are inserted back when a response
message is received from layer 3. Similarly, this can occur when a signalling message
in the ISDN user-ratwork interface is passed on to layer 3 of the call control. If the
destination user number is not in this local node, then the signalling message will be
forwarded to another node via the Signalling System number 7 {SS7). In order for this
operation to be carried out, the signalling message must be embedded within the SS7
message header format [30). This wrapping/unwrapping operation can be processed by
using general purpose instructions in which the wrapped information could be ORed with
the original information, while the unwrapped could be handled by ANDing the unrequired

information with logical zeros, i.e., masking operation.

itis clear from the above discussion that the instruction set to be supported by the node
processor includes simple and basic general purpose instructions such as AND, OR, BRANCH,
COMPARE, etc. Special instruction(s) nan be useful for this application and enhance the
processing performance. For instance, the NTT processor which is designed for data
communications nodes processing is supported by some special instructions for the path scanning
operation [49). However, having some s ccial instructions within the instruction set will not

change the type of the instruction set from a general purpose one. Many processors with general
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purpose instructions are used in such applications, e.g., Intel 80386, Motorola 68020, etc.

2.1.3. Software Organization
2.1.3.1. System Software

When different data communications services with different priorities are concurrently
processed, it is important to have the means to p.ccess the high priority service first. For
instance, if the processor executes functions of twe different services such as packet data and
telephone signalling, then the packet data processing can be interrupted when the voice service
needs processing. Cilearly, this happens because the voice service is considered to have a
higher priority than the packet data service due to the delay-sensitive characteristics of the voice
service. The processing of such services can be managed in different ways. In the first way, the
processor can continuousiy look for the types of messages arriving at the node. This is a polling
technique. Clearly, it will require to stop the current processing until the processor finishes the
execution for the arrived message. Normally when a signalling message arrives during the
processing of a data message, the processor will decide to momentarily stop the data message
processing and serve the signalling message. However, if the processing of the data message
is very short and does not seriously delay the processing of the signalling message, the processor
will continue to serve the data message and store the signalling message in a buffer. When the
node processes a signalling message and receives another signalling massage, a buffer should
also be used to store the arrived message until it reaches its turn for processing. The use ot
many services with different priorities and more messages types will make the softv;are for
managing the system operations very complex and reduce the processing efficiency.

The above mentioned polling technique is not efficient. interrupt technique can be used

to enhance the performance. Each of the services used can be implemented as an interrupt
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service routine. However, it is still important to implement and manage the message buffers and
to schedule the operation of such service routines based on their priorities. It is also important
to give the services with low priority a chance to be processec when the high priority service has
many messages in its buffer waiting to be processed. A possible synchronization technique can
be implemented by allowing the process of one or few messages of low prioirty service from time
to time when the high priority service processes certzin number 5f messages. In addition, the
processing of data communications protocols also requires responses and actions in real-time.
For instance, if the signalling messages are sent to the other node and no response is recsived
within a specific time interval, the transmitting node will be interrupted by the real-time clock and
an appropriate action will be done by the node such as retransmitting the message.

In order to avoid the network node software designer from taking care of synchronization,
scheduling, m essages buffering, etc., a real-time multi-tasking operating system is normally used.
This will simplify the task of developing software for the communication nodes and increase the
processing performance. Such operating systems are designed to make the processor to be
efficient and to give a quicker response to the tasks which require it most. Thus, the node
software will be developed as a group of logically separated modules or tasks rather than a single
program [27]. The Intel iRMX [36], Duplex Multi-Environment Real-Time Operating Sysiem
(DMERT) [54], MCPOS [47], and CTRON [59, 56, 58] are few examples of such operating
systems.

Generally, these operating systems suffer from two types of overhead: the messages
passing and task switching. Practically, passing a long message between tasks is very time
consuming and hence passing the pointers (or tokens) of these messages rather than passing
the whole message itself greatly helps in reducing this overhead [35].

Task switching usually occurs due to the suspension of a running task, either deliberately
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or voluntarily, to allow another task to run. Basically, tasks are switched during different events
such as when an interrupt occurs and requests a task to be run, which preempts the currently
running task if this next running task has a higher priority than the current ong. Task switching
also occurs when a high priority task which is in ready state waiting for an objec! and this object
becomes available; then the task will run immediately if it has a higher priority than the currently
running one. Moreover, a task is switched when its time slot or limit has expired, and the
operating system will schedule the next task in the ready list to run. The processing overhead
of this operation consumes some of the overall processing. Hence, reducing this overhead will
improve the system performance.

Different possible ways can be used to reduce the task switching overhead. For instance,
designing the tasks in an efficient manner, by keeping the number of tasks minimal and especially
by binding the heavily related tasks which need a large amount of data exchange. However, this
could have a negative impact on software being developed and modified by making it more
complicated, time consuming and costly. In systems where tasks running time is shor, it is
possible to let every fask run to the end, and hence no preemption scheduling is implemented
[47]. Clearly, this wiil reduce the task switching frequency since a task will relinquish the
processor only when it has completely finished, thereby not allowing any other task to preempt
it. However, this is not applicable where different services are implemented with different

priorities and the tasks durations are lor.g.

2.1.3.2. Applications Software
Each of the protocol services can be processed as one or more tasks [27]. As the
services provided by these protocols become larger in today's and future communications

systems, the software represents the service within these layers will need to have more tasks
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where each task will represent a service or some functions of a specific service. For example,
in the present ISDN user-network interface protocol, layer 3 or Q.931 call cont;ol provides a basic
and supplementary signalling service in addition to the User-to-User Information transfer (UUI)
and the packet data services. Layer 2, on the other hand, includes the management functions
which are called the " TE| assignment” in addition to other functions supported by this layer [31-
34].

The distribution of the application tasks are basically dependent on the size of the nodes,
i.e., the small size nodes have different task distributions than the medium and large size nodes.
In small nodes where the traffic capacity is small, only one processor may be sufficient to manage
the processing of the whoe node software and to provide the users with the required service
within a minimal processing time. The nodes software is basically organized in such a way that
to improve the performance. Organized tasks differ from one node to another depending on the
amount and type of services required. As the amount of these services increases, the tasks
structure becomes more complex since each service might need more than one task. For
example, in the ISDN access node with low traffic capacity, the distribution of the tasks can be
managed as shown in Figure 2.2 (only the applications tasks are shown here). Depending on the
supported services, some nodes might implement only a subset of that shown in Figure 2.2. For
instance, in the ISDN point-to-multipoint subscriber radio system which organized as a star
topology network the need for the SS7 support as an inter-signalling between the system nodes
is not necessary, and can be substituted by a simple signalling system {5-10].

The concurrence nature of these asynchronous tasks have led to the use of mailbores
to transfer messages between each others. A task can be switched to get control of the
processor when it is in reaay state and has higher priority than other tasks. Otherwise, if tasks

are organized in such a way that they have to be switched for each arriving message, the
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communications processing overhead is increased and as a consequence the system throughput
decreases. Thus, the communications and tasks processing should be balanced. Tasks switched
with the arrival of each message makes the processing delay per message a minimum, however,
the throughput of the processor will also be reduced due to the high task communication
overhead. To illustrate the frequency of task switching in applications under heavy message
passing between tasks, we can use a node with two application tasks representing layers 2 and
3 in two separate tasks respectively (Figure 2.3). When layer 2 has a higher priority than layer
3, layer 2 can process the messages in its input mailboxes until no more messages are left at
which time task switching will occur allowing layer 3 to start processing (Figure 2.3a). Clearly,
if the traffic to the node is high, then layer 3 will not be able to provide processing within an
acceptable time limit unless the operating system intervenes to stop a layer 2 task and start a
layer 3 task. In another possible tasks organization (Figure 2.3b) assuming that a layer 3 task
has a higher priority than a layer 2 task, then each message received by the layer 2 task will be
processed and passed to the mailbox of layer 3 task. The layer 3 task will then preempt the layer
2 task, process this message and return a responsa message (if necessary) to the layer 2 task
maifbox. Therefore, with each incoming message to the node, there will be two tasks switched
(one switched to layer 3 and one switched back to layer 2). This will increase the task switching
overhead and reduce the processing throughput, but provide minimal message processing delay.
Should the organization of these tasks be such as to process a few messages before they switch
to another task, this will reduce the task switching cost at the expense of increasing the message
processing delay. This will then allow each task to process a number of messages before task
switching occurs.

In situations where the communication node becomes heavily loaded with traffic, it is not

practical to keep all the communication node tasks to be processed confined to just one
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processor. Processor costs have dropped drastically in the last decade, making the use of
multiprocessor in supporting nodes processing feasible. Node tasks can be partitioned to run in
different processors based on the services each provide, i.e. the tasks providing the call control
of layer 3 can be separated into one processor, while the tasks used to implement packet data
are separated into another processor and so on (Figure 2.4). The distribution of tasks in this way
accommodates the adaptation of new services in the future, hence making this a suitable solution
for the most recent data communication nodes, l.e. such as ISDN nodes. Task switching
overhead associated with the processing of such nodes is the same as the one discussed before
for single processor systems. In addition the inter-processor message transferring introduces
another overhead. Tasks distribution for multi-processor systems should be configured in such
a way as to reduce this overhead. One such method of reducing this overhead is by allocating
tasks of one service to the same processor [46]. This will minimize the message transfers
between processors thereby reducing this overhead as well as a potential bus bottieneck. In such
a configuration inter-processor message transfers only occur when a need arises to pass a

message from one service processor to another.

2.1.4 Some Concluding Remarks

The instruction set used in any general purpose processor is generally classified into different

groups, as follows :

i General purpose instructions groups which are usually partitioned into ditferent groups
such as data movement, basic logic, arithmetic, branch, etc.

ii. Speacial instructions to support the system operation, such as instructions for task
switching and for virtual memory support.

The processing for data communication nodes is required to perform non numeric
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functions such as scanning messages, data base searching, etc. Since all of these functions are
not numeric-intensive type, the processor used for data communications applications will be
different from the processor used for other applications such as robotics and digital signalling
processing, which are numeric-intensive applications. That is, the support for the floating point
operations can be omitted from the processor support for this application. Tie support for this
operation generally requires a large area of the chip which can be used to support other useful
features. The other support for the operating system is still very important to be included within
the processor used for this application because the software structure of the network node
processing is usually implemented with different software tasks. The support for virtual memory

Is also very important in view of the large amount of data being used in these types of application.

2.2 Implementation of Network Nocde Functions Using Existing Technology
Communication protocol processing has been strongly enhanced in the last few years.
This enhancement has been achieved with VLS! chips known as protocol controllers [37].
Software functions in both layers 2 and 3 have been implemented by both general purpose
processors and specialized processors. Processors used in communication nodes should be
suited to multiprocessor configurations in order to enhance node performance for nodes with high
traffic demands. This section will emphasize on the current implementations for these software

and hardware functions and the type of processors used to enhance the performance.

2.2.1. Implementation of Hardware Functlons
The functions which are performed by layer 1 and layer 2 such as bit rating, CRC, flag

insertion and deletion, etc., can be implemented by hardware. Progress in VLSI technology has
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made possible the realization of special protoco! controllers. Processing layer 1 and part of layer
2 can be done by these protocol controilers to relieve the load of the host processor.

Many chips which are available today are designed for processing specific protocols.
They cannot be used for different protocols and also become useless if the protocol has been
modified. The latter case has led to the design of partially programmable controllers. This
feature is very usefu! to cope with highly possible changes since typical protocol standards are
usually imprecise and incomplete [37).

One common feature in the architecture of these protocol controllers is the incorporation
of Direct Memory Access (DMA) and buffer management capabilities. The reason behind this is
more feasible to store the user data in a common area of the host computer memory as opposed
to storing it locally within the protocol controller itself. Moving data to and from the host memory
requires a DMA interface. In addition, the protocol controller needs a simple method for
accessing and referring to these buffers. This buffer management operation is a significant data
management function.

Many chips are available today which are classified as communication controllers such
as MC68605 X.25 protocol controller [39], MC68302 Integrated Multiple processor [38], and
MC68824 Token Bus controller [40] from Motorola, 82586 Ethernet LAN controlier chips from Intel
[41], the VLS! implementation of the X.25 protocol from the Nippon Telephone and Telegraph
Company (NTT) [42], etc. Some controllers are aiso avcilable to sup, * the ISDN protocol
processing, such as the support for the multiplexing of its D-channels [43], a complete chip set
supporiing the subscriber access protocol [44, 45]. Clearly, there are many chips available for
processing of different data communications protocols and they can be used as peripheral

devices of the node host processor(s) to achieve a higher performance.
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2.2.2. implementing Software Functions

The layer 2 and layer 3 iunctions such as the management, database processing,
message scanning, etc., are generally implemented in software and exectited by the node host
processor. The host procassors used in communication network nodes, in general, comprise of
general purpose processors or special processors. The general purpose processors are always
available and can be used immadiately, whereas the special processors can only be used once
they have been developed and produced. Clearly, the special processors designed for data
communication processing provide higher performance than the general purpose processors,

because their design is tailored to a particular application.

2.2.2.1. Existing Host Processors

Basically, the design of the general purpose processors is intended to be used in different
applications, and hence their structures are such that to provide a variety of features to satisfy
different users. This makes their structures complex. Unfortunately, these processors cannot
provide all possibie features on the same chip because of certain limitations, such as the number
of transistors which can be integrated on one chip, complexity of the designing chip, high costs,
etc. These limitations have led to compromises, that is, keeping on chip the features which are
believed to be more frequently used than others. For instance, in the intel 80386 chip the
memory management is kept on-chip while the floating point unit is integrated in a special floating
point coprocessor. All of these type of processors have some type of supporting chips such as
coprocessors to support them in applications that require some feature which is not directly
available by these processors. For example, if the application requires many interrupt lines, an
interrupt controller support chip can be used to enhance the host processor in dealing with this

demand, likewise, @ DMA controller can be used when there is a need for high speed data
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transfers.

However, the comprehensive structure of these processors has two main drawbacks when
using them in special applications:

i A high percentage of the chip resources will not be used. For instance, a processor with
a virtual memory suppnrt on chip will not need to be used if the target application requires
only a small memory size.

ii. The complexity of their structure has an impact on their performance. Clearly, the use of
larger hardware on chip will have an effect such as reducing its operation speed.
Moreover, having a large set of complex instructions wili contribute to the difficulties of

maintaining the streamline of the pipelining operations.

Despite the drawbrasks of the general purpose processors, many of today's cormmunication
network node processing is achieved by using some of the availabie general purpose processors
due to their low cost and their availability. The HDX10 distributed control digital switching {46},
nlass-5 exchange [47], etc., are few examples for nodes used general purnose precessors in their
node design.

One of the key points in selecting a processor to be used in communication network nodes
is the performance in terms of the processing speed. Therefore, it is crucial to have a host
processor capable to achieve this objective. The limited performance of general purpose
processors has led to the implementation of some specialized processors io provide the high
performance processing requirements of these nodes. Specialized processors always incorporate
within their architecture some special supports t¢ enhance their performance when they work in
a special environment. Generally, these specialized processars are designed to support specific

applications (e.g. image processing, data communications, signal processing), others support the
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specific programming languages, (e.g. C. Prolog, smalitalk, Lisp), and some support spacific
system configurations (e.g. data-flow machines, systolic array) [48].

In communication network nodes, a few special processors are used to enhance the
processing. One example of these is the chip set designed by NTT [49]. One of their chips has
been specifically designed for instruction execution which are required in such applications such
as manipulating of bit-wise data. The processing of these instructions are implemented by a
microprogram control unit within the chip. The reason behind having a processor with such
instructions is to substitute using a general purpose processor by a more efficient specialized
processor. The main objective of the other chips in this chip set is to reduce the amount of
circuitry which usually used to interface between the host and the chips used for controlling the
subscribers lines, i.e., the work like the controllers chips which mentioned before. This set of
VLSI chips is designed to be configured in a multiprocessor environment, and hence can support
a small to large network node processing need. The D70 digital switching system and the D51

packet switching system utilize this chip set [50, 51}.

2.2.2.2. Multiprocessecr Configurations

Communication nodes are required to provide service over a broad range of traffic
capacities, i.e. they should efficiently provide services for either small or large traffic capacities
at each node with minimal delay. Herice, the processing system of each node should be flexible
enough so as to accommodate different traffic capacities requirements. Moreover, with on going
development in communication systems, extra services may be required. In order to integrate
such services easily then the node required to handle them must be easily upgradeable. These
nodes should also be high reliable in order to keep providing services without any interruptions.

Such requirements will need to have a high degree of modularity and control distribution in the
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communication node design.

To support these requirements, processors used in communication nodes should be able
to provide the appiopriate enhancement needed in order to easily modify a multiprocessor based
node. There are two types of multiprocessor systems used for large and medium node
processing: the "tightly coupled”, where processors communicate through a shared mairn memory,
and the "loosely coupled" in which each processor has a large local memory. Both types are
used in present communication node processing [46]. The high performance achieved by using
the loosely coupled structure has made it a more favourable one for these type of applications
[52).

To facilitate functional expansion required by these nodes, the node functions should be
shared between node processors. A suitable division of the switching program in a system is to
dedicate each processor to a certain service; this division is also known as "function sharing” [51].
For instance, the line processor carries out subscriber signalling processing and line concentrator
functions, while the call control processor carries out service analysis and call control tasks.

Clearly, sharing the node functions between processors can allow new equipment and
services to be introduced without affecting the other processors which are not concerned.
Moreover, function sharing reduces the communication between processors and therefore
reduces the traffic congestion on the system bus while increasing the overall system performance.
In spite of this reduction on the system bus, it is still important, with the large traffic and long
message lengths in present communication nodes to reduce these effects eve: further. For
instance, a Message Passing Coprocessor (MPG) can be used to move this overhead from the
main processor and therefore increase the processing parallelism and enhance the systems

performance, e.g. Intel 80389 MPC [53].
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2.3. Reduced Instruction Set Computers (RISC)

The use of an efficient processor to perform functions of higher layers in the data
communications is an important issue. The latest developments in computer architectures have
made possible to design a high speed general purpose processor based on the new concept of
the Reduced Instruction Set Computers (RISC) which can provide the performance higher than
the CISC-based processor [69].

in 19/5, IBM designed a minicomputer, called 1BM 801, in order to achieve a better
costperformance ratio for High-Level-language (HLL) programs which endorsed the idea of
simple hardwired control [61]. Although at that time the term RISC was not well defined, this IBM
trial is considered to be the pioneer in the building of the RISC machine. At Berkeley, in 1980,
Patterson and his research team investigated the RISC architecture and constructed the first
RISC processor. By 1981 and 1983 respectively, the RISC | and RISC [l processors were the
outcomes of this intensive research [62]. Meanwhile, Hennesey's efforts at Stanford University
resulted in the microprocessor without interlock pipeline (MIPS) RISC processor [63,64]. The
success of RISC architecture have made many of such processors to be available in the last
years, such as the CLIPPER [74], MC88000 [65], 1860 [66], and R2000/3000 [67], etc.

The performance of the RISC-based processor has been evaluated in the first prototype
RISC processor (RISC 1). It was measured by comparing RISC | performance with some existing
CISC microprocessors [69]. The research outcomes of these RISC prototype machines have
shown that their performance is higher than that of existing CISC machines. There are many
reasons behind the higher performance of RISCs. They are as follows:

i Using complex instructions requires additional hardware components placed on the data
path that may be part of a critical data path. Longer wires and extra circuitry results in

slowing down the overall machine cycle, thus slowing down instruction execution.
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ii. Many complex instructions can be executed faster when they are replaced by a sequence
of simple instructions. For example, substituting the use of the instruction LOAD
MULTIPLE which is used in an IBM-370 with a sequence of simple LOAD instructions has
been proven to execute twenty percent faster than its complex counterpart [61].

iii. The simple instructions used with RISCs are typically executed in one cycle. This has a
positive effect on pipeline operations by allowing them to operate at a maximum speed.
Clearly, complex instructions will force the pipeline to freeze in certain circumstances, and
hence the full advantages of using pipelining cannot be explored. The use of simple
instructions helps to manage data dependencies easily and efficiently (as will be
discussed in the next chapters).

iv. Other reasons such as the use of large specially organized internal registers contribute
to the high performance as is characteristics of RISCs. This topic will be discussed in

the following chapters.

It is useful to mention here that the technology used in implementing a processor has a
great effect on the processor's performance, e.g. implementing preessors with ECL technology
will provide faster processors than implementing them with CMOS techneclogy. The latest
developments with Gallium Arsenide (GaAs) has made it possible for processors to attain a much
higher speed than those using ECL technology, have & lower power dissipation and can integrate
about 30K transistor on-chip [70, 71]. This achievement is very important when considering the
Stanford MIPS which was developed using around 24K transistors, 1.e., it Is possible to use GaAs
to develop a RISC as such taking advantage of this very higt: speed technalogy {14]. However,
the complexity of the CISC architecture requires a large number of transistors to implement such

processors far too many than can be implemented with this technology.
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The development of CISC processors is a very costly and time consuming process. The
RISC processor design has minimized this to the lowest possible level. This minimization comes
from the simplicity of the RISC architecture and the large degree of design regularity. This design
regularity and effective utilization of the hardware resources are very important factors in VLS|
design. The impact of these factors has reduced the developing cycle of these RISC-based
implementations which in turn has reduced their productions cost. This was considered an
important aspect in adopting RISCs to design a processor working in different applications, and

more specifically the specialized ones.

2.4. Motivations of This Research
There is no doubt that using an efficient processing element in the data communications

network nodes is a crucial factor in increasing the overall node performance. This is the main

reason why in this research we have focused on searching for a way to improve the efficiency
of these nodes through concentration at the processor ievel.
The research motivations can be summarized by the following points:

l As was mentioned in the previous part of this work, the RISC concept provides suitable
and useful features, e.g., high performance RISC-based processors; a short development
cycle at lower costs than CISCs; and very high performance p:ocessors with high-speed
technologies such as GaAs. These have made the RISC architecture more favourable
than the CISC architecture for use with data communications processing software at the
network nodes. Moreover, the reported success of the developed RISC-based processors

have also attracted our attention to participate in this new area of computer architecture.

ii. Much work has been done in the evaluation of the RISC architecture in general purpose
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computations. Unfortunately, few studies have been performed to investigate the
suitability of this architecture for specialized applications. Hence this has increased further
the importance of this work.

ii. Investigation of data communications software behaviour is very important when searching
for a realization of a processor architecture. The unavailability of such a study has added
another reason to this research motivation.

iv. In data communications processing (as mentioned in the previous part of this work), there
are some operations which are frequently processed (such as task switching and
wrapping/unwrapping messages). This fact motivates investigating the adequacy of the

present RISC concept to efficiently support such processing operations.

2.5. Work Directions In This Research

Two major issues have emerged in computer architecture designs since the introduction
of Berkeley's RISC. One concerns the merits of using an instruction set consisting of simple but
fast instructions as opposed to using complex and powerful Instructions. A second issue Is an
organization scheme that keeps more data in fast internal memories, such as registers and
caches. However, the study of developing a processor using the RISC architecture for data
communications appiications is required in order to investigate these two issues.

As mentioned previously, the processors used in the data communications node
processing have to be capable of processing a variety of functions which require general purpose
type of instructions. The processing of some frequently used operations in such applications does
not prevent the use of simple and fast instructions which are recommended by RISC
architectures. Using the simple instructions will not require more effort in the software developing

for such applications since most of these software are usually written by High Level Languages
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such as C.

Today thera are many RISC-based processors which are available and they have very
efficient instruction sets, e.g. the 1860, R2000/3000, MC88000, etc. There is no doubt that a
proposed processor for such applications will not require the support of one group of these
instructions (the arithmetic instructions) because this application is a non-numeric type, and hence
the floating point unit can be omitted from such a processor. This further simplifies the design
of the hardwired control unit and provides more free space on the 3 which can be used to
support other architecture features.

Based on the above discussion, we have decided to investigate other major RISC issues
which contribute to high performance, i.e., the use of an internal register set. Generally, the
number of these registers used in RISCs are generally greater than those used in CISCs.
Moreover, the organization of these registers, i.e., windows organization, as will be discussed in
the next chapter, in the Berkeley RISC have contributed to an improve the RISC performance.
All research and development which have been done relating to this area of RISCs focused on
utilizing these registars to improve general purpose computations. Meanwhile, none of these
studies have investigated the impact of using these registers on the network nodes applications
where their processing is classified as a real-time multi-tasking. We believe that there are two
reasons why these studies have not followed through such an investigation:

I. In the early stages of research of developing the RISC, the main concern was given to
general purpose computations and showing the superiority of this architecture in
comparison with the CISC one. All efforts were concentrated into enhancing the
architecture in this direction.

ii. Real-time applications are basically control systems [73]. Support provided to enhance

the RISC architecture to improve the performance of one real-time application will not
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necessarily work for others.

Utilizing the available register set used in current RISC architectures could have an impact

on the RISC performance adopted for this real-time multi-tasking application in two ways:

i The large number of these registers will increase th.a processor state and hence reduce
processor performance when task switching operations occur frequently.

ii. The register organization is also designed to support general purpose computations and
more specifically to process intensive procedure calls with large nested depths. However,
this is not the targst of network node processing (as will be discussed in the next

chapters).

In this research an emphasis is given to search for better ways to enhance the register
set within these general purpose RISC architecture type and to improve the performance of such
an architecture when it is applied to network node processing. The study of the register set within
the RISC architecture, however, raises some issues:

i, How does the present RISC register set perform when it is used for the network node
software processing?

i, What type of register set organization and what number of registers used in current RISCs
are appropriate for this application?

iii. What is the impact of using other register set organizations which are not currently used
in RISC architectures, i.e., such as non overlapping multiple register sets? Do they give

any performance improvements and, if so, what are they?

The main objectives of this research are to answer the above questions.
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2.6. The General Approach

To achieve the main objectives of this research, the general approach used in our work

presented in the next chapters can be summarized as follows:

I

ii.

lii,

The first part of this research is devoted to the study of the nature of the data
communications software which runs inside the network nodes. This will be done by
investigating some data communication software in order to understand their
characteristics and to determine which one of the available RISC-based architectures Is
more appropriate for networks nodes processing.

In the second part, an emphasis will be given in enhancing the architecture through
investigation of the register set organization. A special concern will be given to the study
of the impact of RISC register set organization for the task switching overhead, which is
not given enough study so far [64)].

Based on the results of the above two points, a RISC structure for data communications
using non-overlapping multiple register sets introduced and investigated. Performance

improvement and hardware complexity of the introduced architecture are studied.



CHAPTER 3

ISDN SOFTWARE CHARACTERISTICS

This chapter investigates the software characteristics of data communications and
specifically ISDN. The main objective is to study parameters which couid be used to design the
RISC processor for data communications applications. In particular, we are interested in
determining the appropriate structures of internal register sets of the processor. At first, the
subject of measuring software characteristics is investigated and its objectives are highlighted.
Then methods used for such measurements are outlined. To find the software characteristics
of the ISDN processing, two ISDN processing models are proposed and simulated. The results

of these simulations are also discussed.

3.1. Software Characteristics: Background

Software characteristic is a term used for investigating the internal structure of program
and measuring its parameters, ¢.g., the type of the instructions used, the frequency of using
each of these instructions, the amount of nested procedures depth, etc.. These measurements
are very important to select an appropriate structure for the RISC processor suitable for special
or general purpose applications. Taking these measurements will help to identify the necessary
features that have to be incorporated within the processor in order to improve its performance.
As it will be shown in next section, the use of register windows structure with Berkeley RISC is
one of such examples.

Roughly speaking measurement could be classitied as dynamic or static (75]. Indynamic
measurement, we counts the number of times that each HLL statement is executed when the

program is running. Conversely, static measurements are performed by counting the number
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of occurrences of each HLL statoment in the program. Dynamic measurement is preferred
because it indicates the frequency of each statement during the real-time execution of the
program.

Recently, a number of attempts been deployed in order to determine the characteristics
of HLL programs [75]. The main objective of these studies was to identify the type of the HLL
statements which occur most often in the program so that they could efficiently supported by
the designed processor. Numerous collections of programs have been tested for measuring
software characteristics. Knuth [91] has used a collection of FORTRAN programs used for
students’ exercises. Tanenbaum [63] studied Over 300 procedures, executed from operating
system programs and written in a language which support structured programming (SAL). Huck
[75] analyzed four programs representing a mix of general purpose scientific computing. The
results of all these attempts confirmed the predomination of assignment statements in programs,
and therefore suggest that the simple movement of data is of higher importance. Hence, these
results were exploded for designing instruction set for computers. The main drawback of these
studies, however, is that these results reveal which statements are frequently used but they do
not show which statements are frequently invoked during the execution time of a typical

program.

3.2. Impact of Software Characteristics on RISC Architecture

Berkeley researchers were the first to investigate the drawback associated with the
previous studies [69]. This investigation performed through the study of a collection of different
programs (which comprised of typesetting, CAD, Sorting, and file comparison), they found that
the procedure call/return operation represented the most time consuming operation and required

about 45 * 19 % of the total memory references executed by the processor [68]. Thus,
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reducing the memory references generated by the intensive use of machine instructions,
constituting the call/return operations within the HLL. statements, has given a large effort towards
the RISC architecture. There are two known schemes used to reduce memory references
generated due to the call/return operation. In the first scheme, which is proposed by the
Berkeley group for the RISC |, a large register set is used within the internal structure of RISC
I to keep the operands on-chip and therefore reduce the memory access. This large register set
is partitioned into a number of Overlapped Register Sets (ORS). Each set has three sections,
where two of these sections are used to pass the procedure parameters between the next and
previous procedures, while the third section is used to store the local variables. That is, in each
set, the overlapped registers are used to pass parameters among procedures, and the non-
overlapped registers are reserved for local variables. Both overlapped and non-overlapped
registers constitute one register set, called a window. In addition, there is also another set of
registers which are used to store global variables (Figure 3.1). The global registers are not
switched during the procedure call/return operations. Selecting the number of registers
allocated for local variables and passing parameters, as well as the number of chosen windows
is based on statistical results that have been generated from various studies [69]. One study,
in particular, has found that with eight windows, a save or restore is needed only 1% of all calls
or returns [77]. Other studies have shown that 98% of all procedure calls which were traced
dynamically were passed with fewer than six arguments, and that 92% of these procedures used
fewer than six local scalar variables [76]. Similar results were reported by the Berkeley RISC
team [62]. The Berkeley RISC computers use 8 windows of 16 registers each (6 are overlapped
registers and 10 are for Iocal variables), while Pyramid computer employs 16 windows of 32
registers each [60].

The second scheme uses the optimizing compiler to allocate the most frequently used
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operand to the internal registers. This state-of-the-art in compiler technology is used in the
Stanford MIPS architecture to maximize the use of registers. Improvements in compiler
technology, mostly in the form of good modeis for register allocation, makes it possible for
compilers to achieve very high register hit rates, and to handle saving/restoring in a more
efficient way at procedure call boundaries [62). In other words the first scheme is tixed by
hardware while the second is based on the facility of the optimized compiler (software). The
MC88000 [65], R2000/R3000 [67], intel iBBO [66] are examples of processors implementing such
techniques.

it was shown in [79] that, in general, the performance of both schemes is essentially
equal but in certain cases, the register windowing scheme performing better [80]. For instance,
the ORS scheme has a better performance in scme cases, such as for those applications
involving high frequencies of nested call/return procedures within the limited of the overlapped
registers. However, the high percentage of time spent in leaf procedures minimizes the
advantages of this technique.

Clearly, the effectiveness of any of the two RISC schemes depends on the type of
software which runs on the processor. Thus, it is important to know the characteristics of the
data communication applications in order to know which scheme is more appropriate for this
type of applications. To achieve this, it is required to determine the factors which have to be
measured and to show that some ISDN protocol functions will be simulated. It is also required

to determine the measurement method.

3.3. Factors to be Measured From ISDN Software
in order to identify the most suitable RISC architecture for ISDN processing and if this

architecture is to be enhanced for ISDN processing, we require that some factors be measured
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from ISDN software processing. These factors consist of:

. The utilization of HLL statements.
. The nested procedure depth.
. The size of parameters passed between the procedures.

We will focus on these factors since they can help to clarify one of the main differences
(i.e. the register set) between the Berkeley RISC and the Stanford MIPS approaches for
designing RISC architectures. These factors also determine which approach is more suitable
for our paricular application. Studying these factors will help to answer the following
questions:

. What is the ratio of the procedures call/return in comparison to the other operations?
Does this ratio encourage us to adopt the windowing or using optimized compiler
approaches?

. How large is the nested depth of the procedures calls? The answer to this will help to
decide on the size of the register set and hence determine the number of overlapped
register sets.

. What is the size of parameters passed between the procedures? The answer to this
question will help us in determining the size of the registers in each of the overlapped
sections within the overlapped register set. This could also show whether the optimizing
compiler approach is effective for managing the passing of parameters.

. Which instruction(s) are most frequently used within the programs? The answer to this

question will help the processors designer to support these instructions efficiently.

3.4. Measurement Method

Dynamic measurement of software characteristics are used to study the previously
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mentioned factors. This is done by running typical ISDN programs on a specific machine.
During the development of RISC | structure, programs were compiled on CISC-based
machines such as VAX, PDP-11 and a Motorola 68000 [69]. This was done to show the
drawbacks cf CISC processors and provided methods to enhance the performance with RISC
architecture. In our case, the simulation programs are compiled on a RISC-based machine in

order to find an efficient way to enhance the RISC architecture for data communications

applications.

3.5. Simulated Models of ISDN Functions

As software characteristics are important in general purpose computations and have
helped to adopt the windows structure in RISC | and I, it becomes crucial for the other
specialized applications to achieve the same goal of finding the appropriate support. Since ISDN
processing nature is of a general purpose type (as mentioned in the previous chapter), the two
RISC architectures schemes have already supported this type of processing. The study of ISDN
software characteristics will help us to identify which one of these two RISC architecture is more
appropriate for ISDN applications. Moreover, this will show whether there exists any better way
of enhancing the RISC architecture for ISDN processing.

Choosing the software to be analyzed is an important issue. The size of the ISDN
protocol is very large and therefore the full protncol simulation is a very complex and time
consuming process. Thus, we decided to simulate typical ISDN functions which can represent
the overall software characteristics. Two ISDN functions in different layers have been considered
for our studies, namely the Q.931 basic call control (layer 3) and the TEl assignment (layer 2)
procedures. This will enable us to study the general characteristics of the software for ditferent

layers rather than concentrating on a particular layer, hence making our study more
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comprehensive and accurate. The simulation program for these two functions is written in C

language.

3.5.1. Q.931 Basic Call Control Model

The goal of call contro! procedurc is o handle the calling user signalling in order to select
the desired user and communication services. This procedure is recommended by CCITT Q.930
[82] and Q.931 [4]. The model used to simulate the basic call control for layer 3 consists of the
sstablish/terminat phases (Figure 3.2). In the established phase, the calling user information
transfers to the network in the SETUP message. The network confirms through a CALL
PROCEEDING that call establishment is in progress and at the same time assigns a vacant B-
channel to the calling user terminal. As soon as the destination exchange deiscts the
connection request, it selects the addressed line and transmits the connection request (SETUP)
to the terminal equipment of the called side. The called terminal processes the signalling
information and informs the network accordingly with an ALERTING (corresponding to telephone
rings), and sends only a CONNECT when the terminal becomes ready to accept the call (e.g.,
telephone handset is lifted). The connection is now set by the network and assigned, on a
CONNECT ACK, to the called side terminai equipment. The calling terminal is informed of the
progress of the call establishment by the ALERTING and the CONNECT messages. The D-
channel in both calling and called sides terminals are used to convey all these messages.

For termination, either the calling or called user terminal, or the network can initiate
connection clear at any time and independently from each others by sending the DISCONNECT
message. ‘Nhen the call clearing is initiated by the user torminal, the terminal disconnects itself
from the traffic channel and releases it before sending the DISCONNECT message. After

receiving the DISCONNECT message, the network disconnects the traffic channel, initiates
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connection clear within the network and acknowledges with RELEASE. Finally, the user terminal
terminates signalling activity by sending RELEASE COMPLETE, and the network termirates the
signalling activity. Similarly, the network disconnects the traffic channel from the internal network
connection and, with the DISCONNECT message, requests the user terminal to disconnect itself
immediately from the traffic channel. The user terminai confirms this with a RELEASE message
and the network finally terminates the signalling activity by sending the RELEASE COMPLETE
message, upon which signalling activity is also terminated for the user terminal.

The call control model takes care of implementing ISDN signalling functions such as
checking the validity of a message, checking for service availability, performing B-channel
negotiations, issuing a status messages (if messages errors are detected), and updating
databases. All the messages processed are of Q.931 type as recommended by CCITT. These
messages are extracted from the information field of the LAPD (Link Access Procedure on the
D channel) messages. The information fizlds (the mandatory and the optional) of the Q.931
messages used here are shown in Figure 3.3.

To make the simulation feasible, we have made the following assumptions:

. Layer 2 has already processed all LAPD information and passed only the Q.931
information part to layer 3.

. All messages passed from layer 2 to layer 3 are of the Q.931 call control type, hence no
protocol discriminator information field is used (as recommended by CCITT Q.831
messages format).

. A message length is added to simplify message scanning, and it is used as the first
information field in the Q.931 messages.

. Any processing related to hardware functions such as digital switch controlling is not

considered in the simulation.
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The simulation model is organized as a set of procedures. Each ISDN message and
each information field form one procedure. This model also allows future modifications to
include more messages and services. The model is organized in one program, however in
reality ISDN functions are processed concurrently and the Q.931 protocol is typically processed
as one or more tasks in a realtime multi-tasking environment.

In the simulation we consider two types of processing namely message processing (e.g.
scanning, testing, etc.) and database processing (e.g. creating record, deleting record,

searching).

3.5.2. TEIl Assignment Model

Since every terminal equipment in a bus configuration must have a different Terminal
Endpoint Identifier (TEl), a management entity within the data link layer automatically handles TEI
assignments on the network side. Immediately after a terminal equipment initiates a new TEl
value (e.g. after the voltage supply has been restored), it sends a request to the network which
in turns will assigns it a free TEl value. Normally the network will hold a store of free TE! values
so that it can assign a TE! immediately following a request, thereby eliminating the time-
consumingtest. There are two schemes recommended in Q.921 for assigning terminals, namely
the specific TEl assignment and any TEI assignment. In the first scheme, a certain number is
required by the terminal, while for the second any number available by the network is requested
by the terminals.

As recommended by CCITT, the TEI assignment model includes both assignments, i.e.
specific-TEI and any-TEI (Figure 3.4). The messages which are used in this model represent the
TEl management information of the LAPD frame as shown in Figure 3.5. The special

management entity identifier used in the TEl management information in the first octet
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differentiates management from the signalling and packet information. These messages are
processed by scanning through their contents in order to decide upon the validity of the
messages and upon the type of service required, i.e. whether specific-TEl or any-TEl is required.
The model also performs the database searching and updating. Since the messages returned
to the terminal in response to terminal requests depend on the possibility of request, the
response messages are either identity-assigned or identity-denied. The format of the
management messages which simulated here are as recommended by CCITT in layer 2 of the

Q.921 protocol [3].

3.6. Results and Discussions

The simulation models are compiled on the R2000 RISC-based machine. The program
listing of the simulation included in appendices A and B. The 82000 processor is one among
the many processors which are designed based on the Stanford MIPS-RISC [67]. In order to
get the data required from these simulation models, we have to run them on R2000-based
machine with the data being dynamically collected by testing the models with different types of
ISDN messages [11]. Because the models are not 1unning under a real ISDN system, The
generation of ISDN messages is simulated. Different messages are simulated with different
originating addresses, destination addresses, types of services, certain B-channel numbers, etc.,
in order to test the functionalty of the models. The execution of these messages is dynamically
traced to study the software characteristics.

By dynamically scanning and running simulation software, the dynamic frequency of the
HLL statements for basic call control and TEI assignment models were caiculated for the
randomly selected amounts of ISDN messages. Along with these, the average number of

machine instructions and memory references per HLL statement type was calculated. By
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multiplying the frequency of occurrence of each statement type by its average usage of machine
instructions and memory references, the time consumption of each of these statement was
obtained as shown in Tables 3.1 and 3.2 respectively.

Columns 3 & 4 of Table 3.1 (the call control model) indicate the actual time spent in
executing various statement types. The resuits show that the ASSIGN statement is the most
time-consuming operation for typical ISDN basic call control HLL programs. They also show that
the call/return accounts for only 10% of the total memory references. The optimized compiler
used in this RISC-based computer system helped reduce the cost of this operation. The
SWITCH statement occupied only 0.3% of the total memory references and this constitutes the
lowest cost of all statements. The results for TEl assignment (Table 3.2) show that the LOOP
statement was the most time-consuming. This is due to the database searching requirements
of any-TE!l assignment procedure. In our simulation a simple sequential search was used.
However, more efficient search techniques could be considered to further reduce searching
operation time. Moreover, the procedure call/return was found to use only 2% of the total
memory references.

The depth of nested procedures in both models is shown in Figure 3.6. Each call is
represented by a line moving down and to the right, and each return by a line moving up and
to the right. Selection of amoment in order to see the depth of the nested procedures is chosen
where the nested depth reaches a maximum. Obviously there are many other moments where
the depth reaches a maximum but selection of only one of these situations is shown in Figure
3.6. The maximum procedure nested depth is 3 (in Q.931), while in TE! assignment model it
reaches a maximum depth of 2. Clearly, part of these call/return procedures are leaf
procedures.

The number of parameters passed between the procedures in both models is shown in
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Table 3.1 Relative Dynamic Frequency of HLL for Q.931 Basic Ca!l Control
" . : 1
statements dynamic machine memory
type occurrence instruction reference
(percent) (percent) (percent)
ASSIGN 66 49 63
LOOP 4 10 19
IF 11 15 4 |
SWITCH 4 7 03
CALL 12 16 10
GOTO 3 3 3.7
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Table 3.2 Relative Dynamic Frequency of HLL for ISDN TEI Assignment
statements dynamic machine memory
type occurrence instruction reference
(percent) (percent) (percent)
ASSIGN 37 32 46
LOOP 39 45 33
IF 17 18 18
SWITCH 1 1 1
CALL / RETURN 6 4 2 "
GOTO - - N “
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Table 3.3. The size of passing these parameters is 2 for TEl assignment and less than 6 for call
control functions. The smaller size of parameter passing helps the compiler to allocate these
parameters passed more efficiently on the CPU registers (32 registers exist within the R2000).

Clearly, all these results were derived by running the test software on a MIPS type RISC-
based computer system and hence a windowirg type machine was not used. However, these
results can be used to see how useful a windowing type machine would be for these types of
applications. The windowing or ORS based processors basically work better when the number
of nested procedures is large. Generally, the size of ORS’s are between 8 to 16 sets. Therefore,
using such processors for an application where the nested depths of their procedures is short
would not fully take advantage of using such large register sets. The short depth of nested
procedures (maximum 3) in ISDN applications efficiently use less than 50% of the register’s
resources which are available with ORS based processor, assuming that the number of sets is
8. Ciearly, this will waste the large register resource which is provided by this type of RISC
processors.

This short depth of nested procedures helps the compiler, used in the R2000 RISC based
computer, to reduce the cost of the call/return operation to less than 10% of the overall
operations cost. Moreover, the small number of passing parameters among procedures helps
the compiler to efficiently reduce the call/return costs. Therefore, a single register set associated
with an efficient register allocation scheme provided by an optimized compiler is more suitabie
to ISDN applications than in utilizing an ORS RISC based processor.

Another important point we shouid mention here is that in ISDN we are dealing with real-
timr applications where the software is organized in a multi-tasking manner. Thus, use of an
Ono will not be useful and can considerably increase the overhead time due to state-swapping

which frequently occurs in heavy task switching applications such as in ISDN. This will be
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Table 3.3 Number of Parameters Passed Between Procedures

Percentage of

Q.931 basic call

——

TEl assignment

executed procedures control (percentage)
calls with (percentage)

< 2 parameters 0 0
2 14 100
3 7 0
4 50 0
5 29 0
> 5 0 0




discussed in next chapter.
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CHAPTER 4
PROCESSING OVERHEAD OF RISC STATE-SWAPPING

OPERATIONS IN ISDM SOFTWARE PROCESSING

Both structures used for RISC-based processors are aimed at reducing the cost of the
procedure call/return operation, which is considered to be most costly in terms of execution time
[60, 83]. To this end, a large number of on-chip registers is introduced to retain more
parameters on-chip and consequently to reduce the access to external memory. However,
having more on-chip registers can seriously affect the task switching overhead. This overhead
is associated with the switching from one task to another which requires saving the state of the
present task from the processor to memory and loading the state of the ready-to-run task from
memory to processor. This state-swapping operation involves the entire set of parameters
contained in the on-chip registers. Therefore, a large number of registers associated with RISC
architecture requires a long state-swapping operation and hence implies a large overhead in task
switching.

Since in most large operating systems the saving of processor state can be a small part
of the task switching overhead, and the task switching occurs less frequently than that of
procedure calls, most of the previous studies tended to overlook the overhead problem of the
state-swapping operation [84-86]. The exact cost of this problem remains however unknown
[87]. The large task switching overhead will grow even larger when RISCs are used in real-time
multi-tasking applications, since the interaction among the tasks will be more frequent than in
the case of other systems such as time-sharing [73].

As discussed in chapter 3, since ISDN processing is considered to be a real-time multi-
tasking application, it becomes important to investigate the impact of the internal register

organization on the state-swapping overhead. A potential organization is to use Multiple Register
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Set (MRS)'to reduce the state-swapping overhead. Such an investigation is the focus of this
chapter. This overhead in terms of total instruction execution time and total memory references
is estimated. Although the processing of ISDN user-network protocol is used in this chapter as
an example to evaluate the state-swapping overhead, the results can be extended to other data

communications protocols processing.

4.1, Structure of Tasks in ISDN Network Node Processing

In a typical data communications processing, Layer 2 or Layer 3 can be implemented
in one or more tasks [27]. This will simplify the implementation of each layer, and will make it
possible to modify the tasks in the future (if necessary) with minimum eftort. All of these tasks
will run under the control of the realtime operating system which is responsible for their
synchronization, communications, etc., (as mentioned in Chapter 2). Due to the asynchronous
nature of these tasks, the passing of messages from one task to another should be managed
through certain rnessage buffers, e.g. mailboxes, rings. Because each service could be
implemented in one (or more) task, the messages which exists in the message buffers will be
of the same type, e.g., only management messages exist in management task input message
bufiers. The same thing applies for the signalling and packet datatasks. As an example, Figure
4.1 shows a task distribution of two ISDN user-network interface services, namely management
and signalling, in the ISDN node. The LAPD messages are first processed by task 1. Then only

the information field of these messages are passed to either task 2 or task 3 depending on the

'The Multiple Register Sets (MRS) organization [88] is used to
reduce or eliminate the state-swapping overhead. In this
organization, the task switching can be accomplished efficiently by
changing the contents of the current task register in the processor
so as to point to the register set containing the state of the
selected task.
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type of information that exists in the LAPD message (e.g. signalling or management). This
message type testing is done hy checking the address field, i.e. SAPI and TEl, of the LAPD
message in task 1. After lask 2 and task 3 process the messages, they will send back response
messages to task 1 which will reconstruct the LAPD format message and subsequently sends
the message back to the user (if necessary).

When a processor starts a task execution, it will process the messages stored in a task
message buffer. This operation will continue until certain events occur, such as when no more
message s left in its message buffer, or an external interrupt occurs, or when a high priority task
becomes ready to be run as its resources are available, etc. Hence, any ISDN task can be
modeled as shown in Figure 4.2.

The processing being performed in each running task is basically dependent on the
number of messages in its message buffer. However, it is not necessary that all remaining
messages which are left in the task input buffers be processed during the task execution period.
The number of processed messages depends on the organization of the tasks as well as other
operating system activities. As an example, if a management task has a lower priority than a
signalling task, and if we assume that the management task is processing some messages while
the signalling task was in sleep mode, waiting for messages to be available in its input buffer and
later on receired one or more messages, then the operati.g system will preempt the

management task and will start the signalling task.

4.2. Processing Overhead for State-Swapping Operation With RISC
For real-time multi-tasking applications and specially for ISDN applications, using RISC
will increase the overhead processing for state-swapping. This increase is due to two factors,

one of them is associated with the RISC architecture itself and the other one is the direct
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consequences of the processing nature of ISDN applications. RISC architecture has the effect
of increasing this overhead from two different ways: the use of large irternal registers, and the

use of optimizing compilers.

4.2.1. Size of Register Set

In general, RISC architecture is characterized by a large number of general purpose
registers. In window-based processors, the number of general purpose registers is very large.
For instance, there are 138 registers in RISC Il as opposed to 256 registers with Pyramid.
Obviously, general purpose registers are not th only registers which are involved in the state
swapping operation. Registers, like memory management registers, floating point processing
registers, program counters, etc., are also to be swapped.

In optimizing compiler-based processors, where there are normally 32 general purpose
registers, a smaller state-swapping overhead is generated. Thus, an optimizing compiler-based
processor seems to be most appropriate for applications which require fast and hcavy task
switching, such as in ISDN applications. However, the windowing approach can be justified for
such applications only if it can be proved that using such a large number of registers will
enhance the processing. Chapter 3 showed that there is no benefit in using a large number of
windows in ISDN software processing since the number of windows will always be constrained
by the relatively small (around 3) nested depth of procedures. Therefore, a window-based RISC
with, say 8 windows (as in the case of RISC II), will not be appropriate since more than half of

the on-chip registers are not used.

4.2.2. Optimizing Compiler

The latest developments in compiler design, mostly in the form of good models for
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register allocation, made possible for compilers to achieve very high register hit rates and to

handle saving and restoring at procedure call boundaries more efficiently [87]. This has reduced

the memory references, which are considered as the bottienecks in improving processor
performance.

In RISC, the state-swapping operation is handled as a series of conseculive
STORE/LOAD instructions as to save/reload the processor state of present and ready-to-run
tasks respectively. The numoer of instructions which are used to perform the state-swapping
operation depends on the number of involved registers. Obviously, having more on-chip
registers increases memory references during the state-swapping operation.

State-swapping overhead can be measured by two possible methods:

i In terms of the total task switching processing: The task switching is performed by the
operating system and is basically comprised of two parts: the state-swapping handling,
and the managing of the switched tasks such as the selection of the task next to be run.
The management of the switched tasks is optimized during the system initialization stage
where its corresponding program is compiled, hence the related mernory references can
be reduced. Therefore, the minimization of the total task switching processing time will
increase the ratio of state-swapping overhead to the total task switching processing.

i. In terms of the total application task processing: Since we can express the task
switching overhead as a percentage of the total application task processing and since
the state-swapping is only one stage of the task switching, then we can evaluate the
state-swapping overhead in terms of the application task processing. The application
tasks are already compiled and optimized, and hence their memory references are also
optimized. As the memory references generated by state-swapping increase in the case

of RISC-based processor, the memory references made by executing other application
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tasks will decrease due to the use of the optimizing compiler. Therefore, the ratio of
overhead processing for the state-swapping operation to the application task processing

will increase.

In addition to the reduction in memory references due to the usage of the optimizing
compiler, the optimizing compiler is also capable of further reducing the cost of the LOAD
instructions by using the Delay Load technique. This technique, which is used in many RISC
designs, enables the compiler to test the next instruction after the LOAD instruction and see
whether or not it needs data from the LOAD instruction [67]. Iif there is data dependetr zy, the
compiler will try to assign a useful instruction after the LOAD. Otherwise, a no operation (NOP)
instruction will be inserted after the LOAD instruction. This will reduce the LOAD execution time,
i.e. instead of making the processor wait until the LOAD operand is available (which could take
one or more cycles) the processor can execute some useful instruction(s) existing in the
following delay slot(s) after the LOAD instruction. Ideally, this technique could reduce the LOAD
execution time to one cycle only if all the delay load slots can be filled with useful instructions.
However, compilers can insert useful instructions only about 90 percent of the time [60).

During the state-swapping operation, the operating system needs to restore the state of
next running task by reloading the processor state. This is achieved by issuing a series of LOAD
instructions to reload the processor registers. Unfortunately, the load delay technique can not
be used during swapping time because the processor is completely idle during that stage and
also because there is no way to arrange a useful instruction before the processor state becomes
completely restored. Hence, the ratio of memory references required by the state-swapping
operation to the memory reference made by the application task processing will become larger.

The same discussion holds if the comparison is made with reference to the task switching
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processing.

4.3. An Approach to Measuring State-Swapping Overhead

To measure overhead associated with the state-swapping operation, an experiment
should be performed by executing an ISDN software program using a RISC type processor
controlled by a real-time multi-tasking operating system. This should also be tested under a real
ISDN traffic situation. This processing should be dynamically traced in order to calculate the
overhead, which is very time consuming task.

It is essential, therefore, to find a less complicated method to estimate this overhead.
Two things should be known beforehand: the processing of the state-swapping operation and
the processing of the ISDN application tasks. The number of processor registers involved in the
state-swapping operation, which is already known, will simplify the calculation of the processing
time for this operation. Moreover, our previous work on evaluating some ISDN software
(mentioned in the last chapter) from layer 2 and layer 3 can be used for estimating the ISDN
application tasks processing. Our purpose is to develop a simple and practical method to
evaluate the state-swapping overnead. Some ISDN functions already have software written for
them (as mentioned in the previous chapter). The processing associated with the state-swapping
operation with each task switching can be estimated easily. The measuring of the state-
swapping overhead therefore can be achieved by comparing the processing required for the
state-swapping operation with the application software processing.

it is obvious that the amount of processing of each ISDN task is proportional to the
number of messages being processed during the task execution time. The operating system
acts as the controller to start or to stop a task, or to determine which task is next to run, etc.

These activities are the ones which determine the number of messages being processed by each
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task, hence there is no definite number of messages which are processed during the task

execution period. Therefore, it is possible to simulate each ISDN task separately and measure

the amount of processing for a different number of ISDN messages. By doing so, we can

simulate each task on an available RISC-based machine without any need to use a real-time

multi-tasking operating system. This greatly simplifies our task as we do not need a real ISDN

environment to be implemented; and with only a few of the application tasks being simulated,

we can have an estimate of the state-swapping overhead [16].

fi.

fi.

iv.

Our approach can be summarized as following:

Typical ISDN funciions are partitioned and simulated as tasks. These tasks are prograrns
running separately with RISC-based machines under the UNIX operating system.
Synchronization and task communication are not included. The two programs to
measure the software characteristics described in the previous chapter are used here,
where it is assumed that each program is representing one separate task. These two
tasks are compiled on a RISC-based machine with an optimizing compiler.

The overhead processing will be estimated for the state-swapping operation in terms of
both the total machine instructions and the total memory references.

The amount of processing for each of these two ISDN tasks is measured for different
ISDN messages, and in terms of the total machine instruction and memory reference
processing.

The average amount of processing for each task is measured in terms of the processing
required for an average ISDN message.

Finally, the overhead ratio of the overhead processing for the state-swapping to each task
processing is calculated for different amounts of those messages which exist in the task

input message buffer.
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4.4. Measuring State-Swapping Overhead

The processor state determines the amount of processing required for the state-swapping
operation. Generally, most RISC processors which utilize optimizing compilers for register
allocations, use 32 general purpose registers. Thus, this number will be used in our
state-swapping calculations. Moreover, ISDN processing is a non-numeric type of processing,
i.e. the numeric processing registers will not be involved in the state-swapping operation. Since
other system registers differ from processor to processor, and in order to make our findings
machine-independent, these system registers will not be considered in our calculations. Hence,
the state-swapping operation will only involve 64 memory references (32 STORE instructions to
save the processor state of present task and 32 LOAD instructions to reload the next task state).
Since the state-swapping operation involves not only the general-purpose registers but aiso other
registers, this calculation will indicate the lower bound of the state-swapping overhead.

The execution of each of the ISDN messages, in terms of the total machine instructions
and in terms of total memory references is measured from these two ISDN task programs. This
is done by dynamically scanning the execution of each ISDN message being processed by each
relevant task. The ratios of the state-swapping overhead to the processing of each ISDN
message type used in both Q.931 basic call controi and TEIl assignment tasks are shown in
Tables 4.1 to 4.4 respectively. The calculations based on the load delay technique have been
obtained under the assumptions that the load delay slot is only cne instruction, and that the
compiler has a success rate of 90% to fill this slot with a useful instruction. The load delay slot,
on the other hand, will be filled during the state-swapping operation with NOP instructions {i.e.
another 32 NOP instruction will be added to 32 load and 32 store instructions).

Even when each input message buffer for each task has the same type of ISDN message

(e.g. signalling, management), the amount of processing required will vary from one message



Table 4.1 Processing Ratio of the State-Swapping Operation to the Q.931 Messages in

Terms of Total Memory Reference

Q.931 MESSAGE WITHOUT DELAY WITH DELAY
TYPE LOAD LOAD
SETUP 0.6 0.9 "
CONNECT 7.1 9.6 "
RELEASE_COMPLETE 6.4 8.7
ALERT 12.8 16
DISCONNECT 58 8
RELEASE 4.9 6.9
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Table 4.2 Processing Ratios of the State-Swapping Operation to the Q.931

Messages in Terms of Total Machine Instructions

Q.931 MESSAGE WITHOUT DELAY WITH DELAY
TYPE LOAD LOAD
SETUP 0.17 0.3
CONNECT 1.45 2.6
RELEASE_COMPLETE 13 2.5
ALERT 2.7 4.8
DISCONNECT 1.4 26
RELEASE 1.23 2.4
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Table 4.3 Processing Ratio of the State-Swapping Operation to the TEI

Assignment Messages in Terms of Total Memory References

TEI ASSIGNMENT WITHOUT DELAY WITH DELAY
MESSAGE TYPE LOAD LOAD

TEI ASSIGNMENT 1.4 1.9

(ANY TE))

TE! ASSIGNMENT 16 2.2

(SPECIFIC TE)

TEl REMOVAL 1.8 2.4

(SPECIFIC TEI ONLY)
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Table 4.4 Processing Ratios of the State-Swapping Operation to the TEI

Assignment Messages in Terms of Total Machine Instructions

m

TEI ASSIGNMENT WITHOUT DELAY WITH DELAY
MESSAGE TYPE LOAD LOAD

TEI ASSIGNMENT 0.38 0.7

(ANY TEI)

TEI ASSIGNMENT 0.44 0.9

(SPECIFIC TE)

TEI REMOVAL 0.5 1

(SPECIFIC TEI ONLY)
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to another. For example, in the Q.931 signalling task, the amount of processing required by the
SETUP message is different than the processing of the CONNECT message. Therefore, to find
the ratio of the state-swapping processing to the different number of the same type of ISDN
messages existing in the task input messag2 buffer, an average amount of processing is
calculated for the same type of different messages for specific services used by each task
separately (tabies 4.5 and 4.6).

As the task switching could occur when the task has already processed certain number
of messages, the average message processing for both Q.931 and TEI messages is used to find
the ratio of the state-swapping to the processing of the different number of these average ISDN
messages. Figures 4.3 {0 4.6 show the overhead percentage for both tasks in relation to the
total memory references and to the total machine instructions processed. These figures illustrate
the reciprocal relationships between the overhead ratio and the number of processed messages.
It is clear that this overhead becomes larger as the number of messages processed by each
task becomes smaller.

The exact number of the messages to be processed with each task is not known. But
it is possible to measure the average processing for the state-swapping overhead based on the
assumption that the probability of occurrence for all tasks, i.e. independent from the number of
messages being processed by each task, is equal. For instance, The probability of running a
task with 10 or 25 messages is the same. Table 4.7 shows these average processing overheads
when the maximum number of inessages processed by each task is 50. These measurements

are in terms of the total machine instructions processed.



Table 4.5 Processing Ratios of the State-Swapping Operation to Average ISDN
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Messages in Terms of Total Memory References

MESSAGE TYPE WITHOUT DELAY WITH DELAY
LOAD LOAD
Q.931 2.6 3.6
1.6 23

" TEl ASSIGNMENT

Table 4.6 Processing Ratios of the State-Swapping Operation to Average ISDN

Messages in Terms of Total Machine Instructions

r MESSAGE TYPE

WITHOUT DELAY WITH DELAY
LOAD LOAD
Q.931 0.64 1.2
TEI ASSIGNMENT 0.43 0.9
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Table 4.7 Average overhead processing for state-swapping operations in terms

of total machine instructions

MESSAGE TYPE WITHOUT DELAY WITH DELAY
LOAD LOAD
Q.931 9.2% 17.3%
TE! ASSIGNMENT 6.2% 13%

4.5. Discussions

The evaluation of the overhead processing associated with the state-swapping operation
is important to determine whether the processor should have a special support to enhance this
operation or not. As stated earlier, the method to measure the state-swapping overhead in real-
time multi-tasking applications, such as ISDN, is complex and time consuming. The complexity
arises from the needs to a real-time multi-tasking operating system running on a RISC based
machine, and the ISDN applications tasks should be dynamically evaluated under a real ISDN
environment. Thus, we have presented, in this chapter, an approach to estimate the processing
overhead involved with the state-swapping operation. The method of measurement proposed
in this approach to estimate the state-swapping overhead is based on comparing the overhead
processing associated with the state-swapping operation to the ISDN application task
processing.

The overhead processing of the state-swapping operation is measured based on an

assumption that the processor has a typical RISC register set size, i.e., 32 registers. It is
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assumed also that only these registers are involving with the state-swapping operation.
Generally, other system registers are also involves, and hence the measurement wili show only
the lower bound of the processing of the state-swapping operation.

Measuring the processing required by each ISON application task is more complicated
than measuring the processing required for the state-swapping operation. Part of this complexity
is coming from the fact that the task switching could occur in any time during the processing of
the task, and hence there is no gurantee about the number of messages processed by each task
when the task is in running state. The other part of this complexity is due to the processing
required for ISDN messages which is vaiied from one message to another. For instance, the
SETUP message of the Q.931 task requires amount of processing different than the CONNECT
message.

in our approach, the above complexities are overcome by measuring the average
processing required by each ISDN application task. This has been achieved by measuring the
processing required by each ISDN message, and then taking the average processing required
for these messages. As the processing of each application task is proportional to the number
of the ISDN messages processed, then the average processing of each of these application
tasks is measured with respect to the averaye processing of ISDN message. The state-swapping
overhead can therefore be evaluated by comparing the processing of the state-swapping
operation to the ISDN application task processing which processes different number of average
ISDN messages. Clearly, the state-swapping overhead will be larger as the number of average
ISDN messages, processed by each application task, are less. By assuming that the probability
of occurrence of all application tasks which process different number of messages is equal, then
the average of state-swapping overhead is evaluated by comparing the state-swapping operation

processing to the average ISDN task processing.
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The processing of each ISDN application tasks is evaluated in terms of total machine
instructions and total memory references processed during the dynamically executed of each
application task. Our measurements are also includes the impact of the delay load technique
since most of today optimizing compilers use this technique in their design.

The results show that using an optimizing compiler with a RISC-based processor
implementing 32 general purpose registers to process ISDN applications, will significantly
increase the state-swapping overhead processing. The overhead increases as the number of
messages processed by each task becomes smaller. The average processing for the overhead
is found to be significant in comparison to the total machine instruction processed (about 17%
for the Q.931, and 13% for TEI assignment tasks) [12]. Clearly, the overhead will become larger
when it is compared with the total memory references. Hence, the elimination of the state-
swapping overhead will theretore reduce the processor-memory traffic associated with the state-
swapping operation, and enhance the processor performance. To this and, in the next chapter
we will study the impact of using a MRS structure to reduce or eliminate the state-swapping

processing for ISDN applications.




CHAPTER 5
MULTIPLE REGISTER SET IN RISC-BASED ARCHITECTURE

USED FOR ISDN PROCESSING

This chapter investigates the possible reduction in the large processing overhead which
is associated with the state-swapping operation. Qur main emphasis will be on the use of the
Multiple Register Set (MRS) structure to reduce the state-swapping overhead. At first, the MRS
structure is studied and its necessary hardware support is highlighted. Then the possible tasks'
states allocation to the MRS, based on the priority approach, is considered in detail. The possible
performance improvemen’ by using MRS in RISC architecture is evaluated. The impact of using
MRS for ISDN processing is also discussed. Finally, the proposed RISC-based architecture using

MRS is presented.

5.1. Multiple Register Set Structure

In processors which use a single register set, each task switching requires a
state-swapping to save the processor state information of the currently running task into the
external memory, and to load the state information of the next-to-run task from the memory into
the processor registers. Examples of processor state includes Task State Segment (TSS) [7] or
Process Control Block (PCB) [8]). On the other hand, in processors which use the multiple
register set {(MRS) structure [88], the internal registers are partitioned into a number of register
sets, each set contains the processor state information of one task. At any given time, only ong
of these sets corresponding to the running task is active, while the others are keptin a non-active
state. A task register is used to hold the address of the register set of the active task (Figure
5.1). In addition, the task register contains the pointer to the running task descriptor which refers

to the location where the task state should be saved in the external memory. The
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content of this task register is updated only by the operating system.

Ideally, an MRS-based processor is able to store state information of all tasks and
eliminate the state-swapping processing overhead, completely.  However, the VLSI
implementation imposes a limit on the number of register sets, accommodated by the processor.
This constraint on the number of register sets will require the use of a scheme to distribute the

tasks' states between MRS and the external memory.

5.2. Allocation of Tasks’ States to MRS

Allocation of the tasks' states to MRS depends on the number of register sets in the MRS
structure, and on the total number of tasks. Tasks running on any processor include both
operating system and applications tasks. The number of tasks and their organization vary from
one system to another, depending on the complexity of the application and the services provided
by the operating system.

In applications where the total number of tasks is less than or equal to the number of
register sets, all task states can be resident on-chip. In such applications, the state-swapping
overhead is completely eliminated and the processor performance is maximized. If the number
of on-chip register sets is smaller than that of tasks, some tasks’ states should reside in the
external memory. In this case, the processing overhead for the state-swapping can be reduced,
hut cannot be totally eliminated. The amount of reduction in the state-swapping processing
overhead will depend on reducing the number of times that is required to move the state of the
currently running and next-to-run tasks to/from MRS.

There are four situations which can exist in swapping any task state between MRS and
the external memory. These are:

i The next-to-run task state which has already existed on MRS. The state-swapping
operation associated with the task switching will not require to load the state of the next-

to-run task to MRS.
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ii. The next-to-run task state is not on MRS. In this case, the task switching is required to
load the task state to MRS.

lii. The currently running task can keep its state on MRS after the task execution is
terminated. Task switching will not be involved for storing this task state back to the
external memory.

iv. The currently running task cannot keep its state on MRS after this task is terminated.
Task switching will be required to store the task state to the external memory.

In general, managing the tasks’ states allocation to MRS makes use of an approach based on

& certain criterion such as the frequency of task usage or their priorities.

When a task is executed, it is important to know whether its state is already on MRS or
in the external memory. Knowing this information will help the operating system to make decision
about whether it is required to load the state of the next-to-run task to MRS or to resume the
execution of the task immediately if the task state is already on MRS. To achieve this, it is
important to have a suitable support. A possible and simple support is to use a bit within the task
descriptor, called "exist bit". As any task becomes a running task, its descriptor will be checked
by the operating system. The exist bit will be tested in order to determine whether this task state
has been already on MRS or not. The exist bit has to be tested for every task switching. This
processing does not clearly exist with the SRS structure and hence it is considered as a
processing overhead associcted with MRS, albeit this overhead is very small.

In addition to the exist bit, each task descriptor should also have other fields (Figure 5.2).
The information provided by these fields is necessary for tasks’ states allocation to MRS. The
priority value and the temporarily raised priority (TR) fields are used in each task descriptor to
facilitate the allocation of tasks states to MRS wher: the priority-based approach is used for task
allocations. Details of these fields will be discussed in the next section. The MRS address field
is to be used to locate the MRS register set where the next-to-run task has already stored its

state. The MRS address will be loaded to the register set address field of the task register so it



8o

prioirty R E MRS other

value | address flelds

task state address on external memory

A. Task Descriptor

A 4

P 1 ‘
; pointer to task : MRS ! i
| descriptor address |
address J hd
|
task register
|
i
|
[
bnmend)y-

siate of task #i

siale of task #)

-,

external memory

B. Accessing Tasks' Descriptor

Figure 5.2 Task's Descriptor Organization

descriptor
o! task #i

descriptor
of task #}

tasks’
stales

areaq



86
can activate this set only. The use of the MRS address field is associated with the use of the
exist bit (E) field. Thatis, when the E field indicates that one set already exists on MRS, holding
the state of the next-to-run task, the MRS address field will show which set of MRS *as been
already used by that task.

in some cases, the state of the currently running task is required to be saved in the
external memory at the end of the task execution. In such a case the operating system must
know the address of the first location where the state of this task is stored in the external memory
(Figure 5.2). This is achieved by including within the task register, the pointer to the task state
location in the external memory. This kind of support to the MRS structure is similar to what is
being used with SRS structure [13,36]. Generally, tasks' descriptors can have other information
field such as information required for the memory management. However, the support for these
information will not be considered in this work since the attention is given only to the support of
the MRS structure.

Only the use of the exist bit, MRS address, TR, and priority value within the task
descriptor are an extra information required to be supported with the MRS structure compared
to the SRS structure. The processing involved with testing these fields is simple and it is not a
time consuming process. Hence, the processing required for supporting the MRS structure is
small and it is not largely exceeding what has been already used with the SRS structure. This
feature is an encouraging sign to investigate further the approach for managing the tasks’ states

aliocation to MRS.

5.3. Characteristics of An Approach for Assigning Tasks' States to MRS

To assign tasks’ states to MRS, an approach has to be employed. The potential approach
should be capable of achieving the following aspects:
i Minimizing the processing time associated with the execution of the strategy: The use of

an approach in assigning the states of the tasks resident on the external memory to MRS
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will contribute to some processing overhead. This overhead will be added to the
processing overhead of the state-swapping operation. Obviously, as the implemented
approach gets more complex, the processing overhead for the state-swapping operation
will get larger. As the processing overhead gets larger the performance improvement
achieved by reducing state-swapping overhead will become insignificant. It is also
important to mention that since MRS is intended to be used for real-time applications, then
the processing time spent by the processing of the proposed approach and the state-
swapping operation should be as minimum as possible in order to reduce the tasks
responses time.

ii. Minimizing the occurrence of the state-swapping operations: The state-swapping
operations involved with MRS should be less than that of SRS. The approach should be
capable of retaining the tasks’ states on MRS. This will guarantee the performance
improvement by reducing as much state-swapping as possible with the tasks whose states

retained in the externai memcry.

5.4. The Priority-Based Approach

Different possible approaches can be considered for tasks' states allocation to MRS.
Implementing an approach based on task frequencies, for example, will need a special support,
such as counters, to keep track of the frequency of each task. Such strategy will add large
overhead to the processing of the state-swapping cperation due to incrementing the counters and
comparing the frequancies of all tasks' states to find the one which is running more than the
others. The frequency-based approach is, however, similar to those approaches which have beei.
used in placement algorithms for virtual memory support [13]. Moreover, such an approach will
not be appropriate when some tasks, which are less importan than the others, run more
frequently. These less important tasks will have a faster responses sinc? their states are already

on MRS. Since in this study we consider MRS for real-time applications, it is important to keep
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more important tasks states on-chip in order to speed up their responses.

Another possible approach can be based on the use of the tasks' priority as a mean tc
allocate tasks' states to MRS [15]. As the priority for each task represents its order of
importance, then allocating these tasks to MRS will aliow them to raspond faster. This can be
considered as an important issue in real-time systems. Moreover, using the priority level of each
task will provide an easy way to allocate task state to MRS. Generally, real-time muiti-tasking
operating systems suppori different priority levels to distinguish between thz application and
operating system tasks. For example, the priority level of 128 is defined in iIRMX operating
system [36] to determine the boundary between operating system and application tasks, where
zero level is the highest level for operating system tasks and 128 is the highest level for
applications tasks. This boundary between the operating system tasks and the application tasks
will simplify the implementation of the piiority-based approach. This boundary will allow us to
implement the priority-based approach by assigning either the state of the high priority operating
system tasks or the high priority application tasks ic MRS. We will elaborate further on this issue
later. The use of MRS-based processor for real-tima application, specifically supported with a
priority-based approach, is not well addressed in the literature. This motivates us to study this
approach in more details.

The priority-based approach performs poorly when an operating system with large number
of tasks is used since it will be possible to allocate only a small number of operating system tasks
to MRS. In this case, the application tasks will not have a chance to be allocated to MRS since
the operating system tasks always have a higher priority than the application tasks. However,
in specialized applications, it is more suitable to have a small as well as a fast operating system.
This will provide these applications with the speed which they require and will avoid using any
unnecessary support which might be provided by the large operating systems and might not be
useful for this type of applications. This will also help us to assign more operating system tasks

to MRS and improve the performance. Therefore, for special purpose applications, such as ISDN,
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the chances of assigning tasks' states to MRS will be higher than those of other general purpose
applications. In additicn, the recem advances in VLSI technology, which make it possible to
integrate more transistors on chip, will allow us to provide extra support by having, for example,
more register sets in MRS.

in the next section, the priority-based approach will be studied based on both possible
strategies, i.e., assigning either the high priority operating system or application tasks to MRS.
The complexity of each of these two strategies will also be investigated. This study will take into
account the type of tasks used in different systems, i.e., dynamic or static tasks. Implementing

these two strategies will be evaluated in terms of complexity and performance.

5.4.1. Strategy for Placing High Priority Tasks of Operating Systems

5.4.1.1. Dynamic System
A dynamic system is defined as a system which contains tasks that can be deleted after

their creation [13]. Once a task is created and its state is changed to “running”, it should be

subsequently assigned to one of the MRS sets. At the initialization phase of operation, all sets
within MRS structure are empty and hence each running task will be assigned to one set of MRS.

After all sets of MRS are filled with states of different tasks, then the allocation of each
running task to MRS should be managed in a manner to keep only the highest priority tasks on

MRS. The assignment of these tasks can occur in one of the two following cases:

i If the next-to-run task has a higher priority than all the tasks resident on MRS, then the
state of this task will be allocated to the set which is occupied by the task with lowest
priority. To achieve such tasks allocation, the priority value of the next-to-run task should
be compared with the priority values of all tasks which reside on-chip. Clearly, this
searching process is a time consuming operation.

ii. If the next-to-run task has a priority lower than or equal to the priority of those tasks

resident on MRS, then a register set which is allocated to the task with the lowest priority
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should be given to the next-to-run task.

In order to reduce the processing which is associated w.ith the searching operation of the
task on MRS with lowest priority, the lowest priority value should be stored after the first search
and should be used in comparison whenever the task switching occurs. This will allow the next-
to-run task to compare its priority value with that of the task resident on MRS which has the
lowest priority. When the next-to-run task has an equal or less priority value than the MRS task
with the lowest priority value, the searching operation will be eliminated. In the situation when
the nevt-to-run task has a higher priority value than the lowest priority value of the MRS task, then
the searching operation will be necessary (as shown in pointi). The searching operation will be
also necessary when the MRS reside task with the lowest priority Is deleted.

Other processing associated with implementing this priority-based approach is associated
with the operation of keep tracking the location of the register set of the task with the lowest
priority. This set cannot be assigned to a fixed register set due o two reasons. Firstly, the
nature of the dynamic tasks which can cause deletion of a task with the lowest priority among the
tasks resident on MRS. Secondly, the allocation of the task state with higher priority to the set
on MRS which is occupied by the task with the lowest priority to MRS. This will require saving
the set of lowest priority in external memory and using this set by the high priority task. After
saving the set with lowest priority to extern | memory, it will be necessary to scan all tasks on
MRS to vearch for the set occupied by the task with lowest priority. That is, the set used by the
task with lowest priority will be dynamically change its place around MRS. Then the search for
the set occupied by the task with the lowest priority will be frequently performed.

The "task starvation" problem is usually harnd!ad by temporarily raising the priority of the
task with the low priority in order to give such a task a chance to run [13]. In the situation where
the tasks with temporarily raised priority become the running tasks, the priority strategy wili face

a problem. This problem occurs since it is required to give one of the register sets, which is
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assigned to the lowest priority task, to the task with the temporarily raised priority. As the task
with the temporarily raised priority has a higher priority value than the other tasks, then the task
state with the temporarily raised priority will reside on the on-chip set instead of swapping its state
to the memory after its termination. Tasks with a “real" high priority wi'l, therefore, not be ahle
to reside on the on-cr_\ip sets.

To overcome this problem, immediately after the processing of the task with temporarily
raised priority is completed, its state should be saved back to the memory. To achieve this, it is
required to detect whether or not the task priority has been tamporarily raised. Using a
"temperarily raised bit" or TR in the task descriptor will allow us 10 detect if the task priority is
raised temporarily or not. The operating system will set this bit when the task priority is
temporarily raised. As the next task switching occurs, this bit will be tested in order to determine
whether the register set of the lowest priority task belongs to task with temporarily raised priority
or not.

The complete mechanism is shown in Figure 5.3. Clearly, if the next running task is
on-chip and its priority has not been temporarily raised, the processing overhead with the strategy
execution will be insignificant. In any other situation, the processing overhead of this strategy will
be large. This large processing overhead due to the execution of the strategy with the MRS
structure will increase the amount of processing involved with the state-swapping operation which

is intended to be reduced by using MRS.

5.4.1.2, Statlc System

Any systern contains tasks which are kept for ever once they are created, is considered
to be static. This characteristic of task operation will not allow any on-chip task to be deleted in
any stage of operation, and hence, all the complexities arise due to tasks deletion associated with
the priority strategy of dynamic systems can be eliminated. This will make the strategy for the

static systems as a subset of the one for the dynamic systems. This is shown in
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Figure 5.4.

Since the tasks priorities in static systems were known during system initialization, then
the assignment of highest priority tasks to MRS can be moved to the system initialization phase.
Assigning the tasks with highest priorities to the on-chip sets during the initialization phase will
eliminate the search eperation for the on-chip task state with the lowest priority, because no
deletion will occur to on-chip task states when the system is operating. The elimination of the
searching operation reduces further the processing involved with the implementation of the priority
strategy for static systems. It is always necessary to use one set of MRS to allow storage of the
state of the next-to-run task if its state does not aiready exist on-chip. Inimplementing the priority
strategy with static systems, one fixed set of the on-chip sets can be used as a "working set" for
all those tasks which do not have already an assigned set on MRS. One fixed set assigned as
working set was not simple with dynamic systems because deletion could happen to any tasks’
states which exist on any on-chip set.

The task descriptors used to support the priority strategy with static systems are similar
to those of dynamic systems with the exception of the temporarily raised bit (TR) and the priority
value fields. The TR bi will not used here, since all tasks’ states with high priority are assigned
during the initialization time and the temporarily raised task will be treated as any other low
priority tasks which do not have a permanent assigned register set on MRS. Hence, tasks with
temporarily raised priority will be saved automatically back to the external memory when the
next-to-run task, which is not resident on the MRS, is loaded to the working set. The priority
value field on task descrirtor will not required since there is no need with static system to find an
MRS set which is occupied by a task with the lowest priority. All these reductions in the priority
strategy with static systems will make the implementation of the strategy very simple as shown

in figure 5.5.
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5.4.2, Strategy of Placing the High Priority Application Tasks

In this approach, the tasks with high priorities within the application tasks, will be loaded
first to MRS. This approach is most effective when few application tasks are controlled by the
general purpose real-time multi-tasking operating system which generally have many operating
system tasks, such as iRMX operating system [36].

It is useful to mention here that the drop in the processors cost durina recent years has
enabled us to connect many processors in different configurations such as cube, mesh, etc.
Therefore the application tasks can be distributed on these processors, and hence, each
processor will process only a few of them.

The basic mechanism of this approach is similar to the approach of placement ot the high
priority tasks of the operating systems, except that thz nigh priority of the application tasks will
be kept on MRS. When the number of on-chip sets is larger than the number of application
tasks, all the application tasks can be resident on MRS. In addition, the highest priority tasks of
the operating system can also be used to fill the free on-chip sets (if exist). One set of MRS wiil
be required t~ be used for the running tasks which do not have their states resident on MRS.
Clearly, processing any task, i.e., operating system or application, which does not have its state
already allocated to one set of MRS will require a state-swapping operation similar to the one

used with SRS.

5.5. Performance Evaluation

Generally, the performance evaluation of RISC architecture is carried out in terms of the
capability of this architecture to reduce processor-memory traffic [84,85]. The reduction of the
processor-memory traffic is emanated from the execution of the instructions within the processor,
and hence, form the reduction in memory access. The reduction of the state-swapping operation
will contribute to reduction of the overall processor-memory traffic, and hence will increase the

processor performance. However, it is not practical to evaluate the performance improvement
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that can be achieved using MRS, in terms of total processor-memory traffic, for general real-time

multi-tasking applications due to the following reasons:

i The processor-memory traffic which is generated due to the application and operating
system tasks processing, might differ from one application to another.

ii. The processor-memory traffic corresponding to the state-swapping operation is also
ditferent from application to application due to the task frequency and due to the number
of registers required to be saved/reloaded being different.

iii. The usage of optimizing compilers is another factor since using these compilers will
significantly reduce the processor-memory traffic for the application and system task
processing. This amount of reduction depends on the compiler design.

However, this measure can be only possible for a specific real-time multi-tasking application

where it may run under a certain RISC processor architecture, as will be shown in Section 5.7.
Since the main reason behind the MRS structure: is t¢ reduce the processor-memory

traffic, which is generated due to the state-swapping operation, it is possible then to measure the

performance improvement by evaluating the processor-memory traffic reduction with MRS
compared to the SRS structure. However, this relative performance improvement can be
evaluated from two perspectives: the sizi of MRS (i.e., the number of sets which exist within

MRS), and the strategy which is used to aliocate the tasks to MRS.

5.5.1. Etfects of MRS Slze

The contribution of the number of the on-chip sets and the rumber of tasks in reducing
the processor-memory traffic can be evaluaied theoretically under certain assumptions. This
performance evaluation can be achieved by comparing the processor-memory traffic generated

in both MRS and SRS. In SRS, the processor-memory traffic will be:



where:

Ngq : the number of registers in the set,

T : the task switching frequency.
As task switching requires saving of the internal registers to memory and reloading the next
running task state to the processor internal registers, then twice the number of registers should
be used in calculating Mgzs. However, we assume that the number of registers to be
saved/reloaded for both present and next-to-run tasks are equal.

For MRS, the processor-memory traffic for the state-swapping operation, is only atfected
by the number of tasks whose states cannot be residing on any of the processor sets.
Moreover, the operational characteristics of the total tasks running on the processor could
increase or decrease this traffic. For instance, when the tasks whose states are not resident on
the on-chip sets run less than those retained on MRS, the performance improvement by MRS
will be enhanced larger, and visa versa. Therefore, the processor-memory traffic due to the
state-swapping operation, with the existence of MRS, can be measured by the following empirical
formula [13}:

bXx
Mars=2 TN 175y 72 P !

where:
Np © number of registers in each of the register set,
X: the number of tasks whose states are resident in the external memory,
2 the number of on-chip register sets,
P: the probability that a task having its states resident in the external memory is

executed.
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Noted that the sum (Z+X) represents the total number of tasks.

By assuming that both MRS and SRS are processing the same application, then the

processor-memory traffic for MRS compared to SRS will be as follows:

Mses | (1-P)Z+PX = (5.3)
My px Tttt

The number of registers N is eliminated from Equation (5.3) since we assume that the number
of registers within a set of MRS is equal to the number of registers in SRS. Figure 5.6 shows
the ratio of the SRS processor-memory traffic to the MRS processor-memory tréffic, for different
size of MRS, versus the number of tasks retained on the external memory. The results of figures
5.6 (A, B,& C) show that with the MRS size is equal to 8 the reduction of the processor-memory
traffic enhances when the number of tasks resident on the external memory is less than or equal
to 10. When the probability of the tasks resident on MRS to be run is more than the probability
of those tasks resident on the external-memory, then the performance will be further improved.
For example, when the total tasks used in a system which has 13 tasks, i.e., 8 assigned to MRS
and 5 assigned to the external memory, then the processor-memory traffic for SRS will be about
8 times larger than the one with MRS (Figure 5.6A). This traffic is measured when the tasks
resident on MRS have the chince to run four times more than those on the external memory.
The processor-memory traffic will be reduced by a factor of two when the probability of running
tasks existing on MRS is one quarter of those tasks resident on the external memory (Figure
5.6C).

Generally, increasing the number of register sets will help reducing the processor-memory
traffic generated by the state-swapping operation. The large number of registers within each set
will increase the effectiveness of optimizing compilers in assigning operand to the on-chip

registers, and hence will reduce the processor-memory traffic. However, due to VLSI limitations
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in integrating large number of registers on-chip sets, the number of these sets can be increased
by reducing the number of registers in each set. For instance, instead of having four sets in the
MRS structure with 32 registers each, it is possible to have 8 sets with 16 registars each. This
will increase the number of task states which can be accommodated by MRS. Reducing the
nurnber of registers for each set, associated with the MRS structure, will lead to an increase in
the processor-memory traffic generated due to the processing of the system and application
tasks, and will also reduce traffic for the state-swapping ooeration. Conversely, the increase of
the number of registers in each set will increase the traffic for the state-swapping operation. As
in all currently operating RISC processors (based on the use of optimizing compilers with SRS
rather than the one based on ORS), there is a general agreement to use 1S with 32 general
purpose registers. Based on this fact, the reduction in the number of registers per set is not

investigated in this work and it is assumed to be equal to 32.

5.5.2. Effect of the Priority Strategy

As mentioned earlier, there are two possible ways of implementing the priority strategy:
Placement of tasks to MRS by starting firstly with the high priority operating systems tasks, or
placement by starting with the high priority application tasks. !n order to investigate when a
priority strategy is effective and whether it helps to improve the performance, we have to
investigate the strategy in different cases based on tasks distributed betw _n the on-chip MRS
and on the external memory.

In the strategy for placing high priority tasks of operating system, the reduced amount of
the processor-memory trafiic generated due to state-swapping operation, depenrds on the number
of operating system tasks which can be resident on MRS, as weli the number of application tasks
which have the potential to reside on MRS. In order to estimate the performance improvement
in each region, we will assume that each application task switching to any other application tasks

requires, on average, the service of one operating system task. The performance improvement
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in each case can be evaluated as follows:

i.

ii.

fii.

In the first case, all operating system tasks’ states can be resident on MRS, while all the
task states of the application tasks are resident in the external memory. In such situation,
the state-swapping oparation which is generated due to the loading/storing the operating
system tasks can be eliminated since the operating system tasks are resident on MRS.
Hence, based on the assumption mentioned before, using MRS can reduce the
processor-memory traffic by a factor of 2, on average, compared to the SRS structure.
In the second case, some of the tasks' states of the application tasks are loaded in MRS,
the rest of the application tasks are kept in the external memory, while the operating
system tasks are ail located in MRS. There is an upper and a lower bound for
performance improvement. The upper bound occurs when the application tasks in MRS
switch to other application tasks whose states are resident in MRS, i.e., the
processor-memory traffic for the state-swapping operation will be completely eliminated
within MRS. The lower bound occurs when the application tasks resident on the external
memory is switched to another application task on the external memory too (as in part i).
Therefore, the processor-memory reduction by MRS will be greater than or equal to 2 of
that on SRS.

In the third case, some of the operating system tasks need to be stored in the external
memory, i.e., MRS is not enough to accommodate all of the task states of the operating
system tasks. Similarly as in the second case, an upper and lower bound can be defined.
The upper bound exists when the application tasks switching occurs with the assis*ance
of the operating system tasks resident on MRS (as in first case). Therefore, MRS provides
improvementc greater than or equal to 2. The worst case condition occurs when the
application tasks are switched to another with the intervention of the operating system
tasks existing in the external memory, and hence, there is no performance improvement

compared to SRS.
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Considering the above three cases we can conclude that using priority strategy for
assigning tasks' states to MRS starting firstly with operating system tasks, will help us to enhance
the performance. The enhancement will occur when the number of the operating system tasks
is less than or equal to the size of MRS. As the priority strategy will be ab e to assign these
tasks’ states to MRS, the performance improvement in comparison with SRS wili be a factor of
two or more. Moreover, the priority strategy guarantees the lower bound of performance
improvement by two times more than that of SRS, regardless of the number of the tasks existed
in the external memory. Implementing the priority strategy with assigning firstly the operating
system tasks will be efficient when it is used with operating systems which consists of a small
number of tasks in their internal structure.

The same discussion is applied to the priority strategy based on placing the application
tasks with high priority to MRS first. In this case, the maximum performance improvement can be
achieved when all applications tasks and some of the operating system tasks resident on MRS
and the switching from one application task to another one is achieved with the assistance of
those operating system tasks existing on MRS. The worst case of the processor-memory traffic
reduction for the state-swapping operation occurs when only some of the applications tasks are
resident on MRS. Thus, this type of priority strategy is effective when the number of application
tasks is small and these tasks are controlled by a general purpose real-time multi-tasking
operating system. Assigning all these application tasks to MRS will guarantee the reduction of
the processor-memory traffic associated with the state-swapping operation. This reduction can

reach (on average) to half of the overall processor-memory traffic of the state-swapping operation.

5.6. Using MRS Structure for ISDN Processing
Generally, there are a number of real-time muiti-tasking operating systems which can be

used for ISDN processing. Some of these operating systems are general purpose real-time multi-
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tasking operating systems, e.g., ‘RMX [18], and some others are special purpose real-time
multi-tasking operating system, which are particularly used to support the processing of
telecommunications applications [47,50,19,89]. Since all of these operating systems have a large
number of tasks in their internal structure, it is not efficient to assign their tasks' states to MRS.
Thus, using MRS supported with assigning high priority tasks of operating system firstly to MRS
will not help to improve the performance of the ISDN processing. Clearly, this will put the
performance improvement in the worst region.

The declining cost of processors during the past few years has made it possible to use
multiprocessor structure within a reasonable cost. Therefore, user tasks for certain applications
can be distributed to run on more than one processor in order to increase the processing
throughput. This can reduce the nurnber of application tasks which are required to be run on
each processor. In ISDN node processing, for example, the user-network interface tasks can run
on one processor, the Signalling System number 7 tasks on another processor, trunk controlier
tasks on a third, and so on [46, 17, 51].

The number of tasks within the users-network interface can be organized in few tasks as
follows: call control, layer 3 of X.25, flow control of the link layer, and TEI assignment
management tasks (Figure 5.7). However, this is not the only possible way of partitioning these
protocols into tasks. Clearly, there are a few application tasks that can be used to run the
functions of the ISDN user-network protocecls on a processor. The priority of these tasks is
represented by their relative importance, for instance, the call control task has the highest priority
due to its critical time response behaviour.

As a few number of application tasks are required to be processed by each processor,
then it is become appropriate to use MRS to hold all their tasks' states. An MRS with a size of
6 to 8 sets will be useful for ISDN processing. Many other application might also benefit from
MRS of this size. Moreover, using the priority strategy which firstly assigning the application tasks

to MRS is effective for ISDN processing. It guarantees the reduction of the processor-memory
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traffic which is associated with state-swapping operating by half, on average. This performance

enhancement will be maintained even when the operating system used for su:ch applications with

a large number of tasks.

5.7. Incorporating MRS !n RISC-Based Archltecture

The significance of overhead processing, associated with the state-swapping operation,
and the effectiveness of MRS structure to overcome this overhead in ISDN application
processing, require an efficient processor by integrating MRS within the RISC architecture. The
use of the MRS structure in RISC-based architecture will nead some support to allocate the
appropriate register set for currently running task and to allocate the descriptor address, which
exists in the external memory, for the currently running task. Thus, on-chip task register is used
in the MRS-based architecture to provide such support by holding the required information which
is necessary to be used by the hardware part of the processor and by the operating system.

The register set address field which exists in the task register will be used by the hardware
part of the MRS-based processor to decode the register set of the currently running task. As the
task switching occurs, the address of the register set belonged to the running task will be loaded
to the task register by the operating system. This address will stay in the task register as long
as this task is kept running. On the other hand, the task descriptor pointer field within the task
register will be used by the operating system to store the task state which reside in the register
set when the decision is being taken by the priority strategy to free ong set inside the MRS, in
order to load the task state of the next-to-run task.

The evaluation of the MIPS-based architecture in this work has shown the suitability of
such architecture for data communication processing. Thus, it is required to support this
architecture with the MRS organization. Furthermore, it is necessary to support MRS based
architecture with MRS register file decoder and the task register. All these supports are required

in addition to the basic hardware parts which are already supported by the MIPS type
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architecture. Examples of such basic hardware are 32-bit bidirectional buses, sight sets of
registers with 32 register inside each set, two memory interfaces: one for da.a and one for
instruction. Figure 5.8 shows the processor core for the MRS-bassd data communications
processor.

Using MRS organization within the MIPS-based RISC processor could raise a question
about the complexity of the hardware for the registers decoder which should be used to decode
the register sets and the registers within the active set. Having a complex register decoder with
MRS-based architecture in comparison with the register decoder, used in SRS-based architecture,
will give an impression that the MRS-based will run at lower processor clock than the SRS-based
architecture. In fact, using MRS to replace SRS in MIPS-based type processor will not slow the

processor clock for two reasons:

i The decoding logic for MRS-based architecture has two part. The first part is responsible
for decoding the register set. This decoding will be occurred only at the task switching
time. The decoder circuit will then select the required set whose address is resident on
the task reqister. This part of the decoding does not occur with the execution of each
instruction. The decoding operation occurs only when the task register is being loaded
with a new contents. The second part of the register decoder circuit is effective when
each instruction is required to access certain register within the register set. This
decoding process is exactly similar to what is being used in any RISC-based processor.
The required register will be deccded based on the register field in any instruction.
Therefore, the register decoding is exactly as in the SRS-based RISC architecture and the
register decoding will not increase the instruction cycle time. Consequently, using MRS
will not slow the processor clock. The simulation for the MRS organization has supported
the above discussion. The decoding time is generated due to the decoding of certain

register within the set and the decoding time for selecting a certain set is not generated
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any overhead since it is already performed when the task switching is occurred. This
simulation is achieved by using the Verilog-HDL Programming Language (Figure 5.8 and

5.10).

The decoder logic for the register set of ORS type RISC architecture is more complex
than the one with the MRS-based architecture. The complexity with ORS is due to the
window switching as well as the decoding of overlapped registers and registers
underflow/overflow conditions. Even with this complexity of the register decoding,
associated with the ORS-based architecture, the processors, based on this organization
such as Sparc, are running with the clock speed similar to the processors based on SRS
organization [80]. This gives a clear indication that the processor based on MRS will have

similar or even higher clock speed as the SRS-based architecture.

The appropriate instructions set which can be used with this proposed MRS-based

architecture is similar to these used with MIPS type of architecture and it can be divided into four
groups: ALU, Load/Store, control flow, and special instructions. Since during this work the
emphasis is given to the architectural leve! of the processor for data communications applications,
particularly to the register set structure, hence we investigate here, in general, the type of these
instructions with each of the above instructions group. Clearly, within the ALU group there is no
tloating point instructions because the ISDN processing is not numeric intensive type of
applications, as we mentioned previously. The special instructions group has instructions for
supporting the task register and the system call. This system call will allow us to implement a
two level of operating system, i.e., user and privilege level. The Jump and Link instruction within
the control flow group supports the procedure call and return where the return address is stored

in one of the available registers, and hence there is no need to access the external memory to
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/* This program written in Verilog HOL language to reprecent the functionality
cf the Multiple Regcister Set (MRS} organization. Two buffers are used to
store the read data from the register file (Abuff & Bbuff) </

module reg_file(Abuff. Bbuff, clockl, Rladd, R2add., base, wrenable, Jdatain,

regloc};
input clockl; // register clock
input wrenable; // write enable signal
input [7:0] Rladd; /* 8 address lines for selecting specific
register within certain register bank,
chis coresponding to Rl field within
the instruction format */
input [7:0] R2add: /* 8 address lines for selecting another
reg. within register bank, this coresponding to
R2 field in the instruction format */
input {7:0) base; /* register bank select (8 bank on maximum) */
input [31:0) datain; /732 lines for input data
output (31:0] Abuff, Bbuff; //output data from register file
output [7:0) regloc: // physical locations of registers
reg {7:0)1 regloc;
reg [31:0) Abuff, Bbuff; //holds data value

reg (31:0) reg_content [255:0}; /* array of 256 register represent
8 memory banks, i.e 32 register/bank */

parameter setup =1, // assume setup time = 1n;
access_time =8; //assume accegs_time = 8as
// READ CYCLE

always @ (posedge clockl)
1f (wrenable == G}

begin
regloc = base [7:0] | Rladd [7:0}:
/* calculate physical address
for first register */
#access_time Abuff = reg_conten:t (regloc([7:0]};:
// select first bank
regloc = base [7.0) | Rladd [7:0):
/* calculate physical address
for second register */
Bbuff » reg_content (regloc{7:0]};
// read second register
end

//WRITE CYCLE

always @ (posedge clcckl)
if (wrenable == 1)
teg.n
rejloc = base {7:0] | Pladd [7-0};
/* calculate physical address*/
rej_content (regloc{7:0}] = Wsetup datairn,

end

endmodule

Figure 5.9
Listing of S8imulated MR8 Organization
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/* This program to generate the test vectors for testing the operation of the M
RS organizataion */

module test_regfile;

reg (7:0) Rladd;
reg (7:0] R2add;
reg (7:0] kase;
reg wrenable;

reg {31:0) datain;
reg clockl;

wire {31:0) Abuff;
wire {31:0) Bbuff;
wire (7:0] regloc;

parameter cycle = 20;

reg_file falel(Abuff, Bbuff, clockl, Rladd, RZadd, base, wrenable, datain,
regloc);

/* This to write data to all registers within certain bank of register
{here selected the eighth block), after writting is cver the
stored daca is read */

1nitial
begin
base = 8'b11100000; /* selecting bank 7 and test
writing and reading in its register */
clockl = 0;

lad? = 00;
R2add :00:
datain = 32'hf£f££0000;
end
1nitial
beg:in
while (Rladd < 8°'b00011111)
besgin
¥20 datain = datain « 1;
wrenatle = 1; /* write cycle, on'y one write is
possible in each cycle by using Rladd
only, i.e. no needs for R2add here<*/
Riadd = Rladd +1;: /* write datain in register defined by
Rladd =</
end
Rladd = 0; // start reading all stored data

while (Rladd <« 8'b00011111)
bejin
#20 wrenable = 0; // initiate read cycle
Rladd = Rladd +1;
R2add = Rladd + 1;
end

#100 Sstop:
end

always #(cycle/2)clock) = ~ clockl; // generate clock cycles

initial
$gr_waves{“clockl", clockl, “wrenable", wrenable, *datain®, datain,
*Rladd*, Rladd, *R2add“, R2add, *"Abuff", Abuff,
“Bbuff*, Bbuff, *base*, base, “reqgloc", regloc);

endmedule

L Figure 5.10
Lxstu.xg of Testing Vectors for the
8imulated MRS Organization
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get this address. Other instructions are conventional type which are already in use with many

processors. Table 5.1 shows such a possible instruction set.

5.8. Discusslons

The large overhead processing which is associated with state-swapping operations,
specially in ISDN environment, has directed this work to investigate the suitability of MRS for
reducing the state-swapping overhead. For the MRS structure, it is important to have some
support to enhance MRS operations. This support consists of the need for decoding the registar
set which is used vy the currently running task. There is also a need for knowing the address
of the memory locations in which the task state is stored, in order to store back to the memory
the content of the register set for any task state which is required to be swapped out of MRS.
It is necessary to use a task register with the processor to facilitate the register set decoding and
to keep the pointer to the task descriptor address in the external memory. When the number of
tasks used is greater than the number of sets with MRS structure, then it is required to support
the operation in such environment by having a means to know whether the register set of the
tasks is on-chip or in the external memory. To achieve this we proposed an exist bit to be tested
by the operating system with each task switching. This bit can be included with the descriptor
of eaci task state.

The investigation of the priority stratgy used tor assigning tasks states in the dynamic
system has shown that it generates a large overhead due to the behaviour of dynamic system.
However, the overhead associated with the processing required by execution of the strategy itself,
can be reduced. Tris reduction is emanated from the assigning of the states of the tasks with
high priorities to MRS during the initialization time. This reduction will be larger when the strategy
used for static systeins. Since the static systems allow us to eliminate the priority strategy part
which is involved with the task deletion. Moreover, in static systems it is possible to allocate

efficiently the tasks states of the high priority tasks to MRS during the system built-up since all



115

Table 5.1
Data Communications Processor Instruction Set

instruction group Instruction Comments
ALU Logical AND; rd <--rs1 & rs2
Logical OR; rd <--rs1 | rs2
XOR; rd <-- rs1 xor rs2
Logical Shift Left; rd <--rs shifted by value in
operand
Logical Shift Right; rd <--rs shifted by value in
operand
Shift Left Arithmetic; rd <-- rs shifted by value in
operand
Shift Right Arithmetic; rd <--rs shifted by value in
operand
Logical AND Immediate; rd <--rs & value in operand
Logical OR Immediate; rd <--rs | value in operand
Add; rd <--rs1 + rs2, generate trap
if overflow exist
Subtract; rd <--rs1 - rs2, generate trap
if overflow exist
Add Immediate; rd <--rs1 + operand,
generate trap if overflow exist
Subtract Immediate; rd <--rs1 - operand,
generate trap if overflow exist
Load/Store Load Byte Unsigned; rd <-- (address)

Load Halfword Unsigned;
Load Word Unsigned;
Store Byte Unsigned; Store
Halfword Unsigned;

Store Word Unsigned;

rd <-- (address)
rd <-- (address)
rd <-- (address)
rd <-- (address)
rd <-- (address)
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Table 5.1

Data Communications Processor Instruction Set (cont'd)

Control Flow

Unconditional Branch;
Branch if Equal;

Branch if Greater;
Branch if Smaller;
Branch on Zero;

Jump and Link;

PC <~ PC + OFFSET
ifrd = rs1 Then,

PC <- PC + OFFSET
ifrd > rs1 Then,

PC <- PC + OFFSET
frd < rst Then,

PC <- PC + OFFSET
it Rd = 0 Then,

PC <~ PC + OFFSET
rd <-PC + 1 Then,
PC <- operand
address

Special

Load Task Register;
Store Task Register;
Call System;

tr <~ (address)

(address) <~ tr

generate Trap signal and
immediate transfer control to
exception handler
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tasks priority are already defined during the system initialization and will not be deleted during the
system operation.

The placement of tasks for MRS in both static and dynamic systems is also studied when
the operating systems tasks with high priority are assigned to MRS before other tasks and when
the applications tasks with high priority are assigned to MRS before other tasks. We have found
in this chapter that each of these two possible placements works better in a certain environment.
That is, the assigned operating systems tasks first will improve the performance when the
operating system has a small number of tasks and the applications tasks are large. The assign
of the applications tasks first to the MRS will work better when the number of applications tasks
is small and is controlied by a general purpose real-time multi-tasking operating system.

The performance enhancement which can be achieved by using MRS has been studied
with and without using the priority strategy. When the priority strategy is not used, MRS can
improve the performance by a certain factor. This factor depends on the size of MRS, the
number of tasks which have no place to reside on MRS, and the probability of how large are the
tasks whose states resident on MRS running more frequently than the others. The performance
enhancement when the number of tasks resident in the exiernal memory is large (about over 15
tasks) will be very small and the lower bound can reach to the situation when MRS and SRS
provide the same performance. Reaching the region where there is no improvement in the
performance will be fast when the probability of tasks whose states existed on the external
memory are running mere than the others and the size of MRS is small. The use of the priority
strategy to support the operation of MRS will improve the lower bound of the performance
enhancemert. The lower bound will be independent of the number of tasks used which are
resident on the external memory. The lower bound will guarantee that MRS doubles the
performance compared to SRS.

For ISDN applications and other applications, specially the applications with a small

number of static tasks which are controlled by a general purpose real-time muiti-tasking operating
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system, the high priority of the applications tasks placement will be more appropriate than the one
starts with placement of the operating system tasks. The lower bound of the performance
improvement with MRS in such environment will be about 2 times of the one with SRS. This
performance improvement is obtained by reducing the processing required for the state-swapping
operation. The integration of MRS with the RISC processor is quite simple and similar to the

processors using SRS excapt the need for extra logic in the register set decoding circuit.
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CHAPTER 6

CONCLUSION AND FURTHER WORK

In this thesis, we have presented an evaluation study for using RISC-based architecture
in ISDN processing, in particular, and data communications nodes processing, in general. This
work also investigates the amount of overhead processing involved with the state-swapping
operations associated with the task switching and the possible enhancement of the RISC
architecture to overcome this overhead by using the MRS structure.

The software simulation of some ISDN functions from layer 2 and 3 of the ISDN user-
network interface protocols has allowed us to perform an analysis to investigate the
characteristics of the software structure for these protocols. Using a dynamic scanning, we
measured an important factors to evaluate the software structure such as the frequency of HLL
statements, the nested procedures depth, and the size of the parameter which passed between
procedures. The results show that only short depth of the nested procedure always occurs. Also,
the relative dynamic frequency of procedures call/return operations constitutes less than 10% of
the overall memory references made by all HLL statements used in the software of these
protocols. We concluded from these results that the short depth of nested procedure (maximum
3) will leave over 50% of the ORS structure useless if it is implemented within the RISC
architecture for ISDN processing. In addition, the memory-references made by the call/return
statements was found low when these statements are handled by a RISC processor based on
optimizing compiler to reduce processor memory traffic rather than using a large register set as
in ORS. These results look favourable to adopting RISC architectures, which are based on using
optimizing compilers rather than an ORS organization.

Since a register set within the RISC architecture based on optimizing compiler is usually
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much larger than that of the CISC architecture, the impact of the RISC register set on the state-
swapping processing overhead is an important issue. The intensive task switching operations in
real-time multi-tasking applications, such as in ISDN, has also increased the state-swapping
processing overhead. The results of the evaluation of the cost of the state-swapping overhead
processing, show that it is significant where the average state-swapping overhead processing is
about 17% and 13% of the totally executed machine instructions for the Q.931 and TEI
assignment tasks, respectively. These state-swapping overhead processing were measured with
the using of an optimizing conpiler supported with delay load technique and were tested under
load conditions which could reach to 50 messages processed with each task switching. We
concluded that the use of RISC architecture with MRS would be useful for ISDN applications.
MRS will enhance processor performance by reducing the overhead generated by the state-
swapping operation.

The analysis (Chapter 5) shows that the performance improvement of the RISC
architecture using MRS is affected by the size of MRS, the number of tasks used in the real-time
multi-tasking application, and by the probability of the running tasks which are resident on the
external memory. It is indicated that an orgadnization with 8 register sets is adequate to ei.~ance
the performance when a total of 18 tasks are used (10 of them states are resident in external
memory). However, as the number of tasks resident on the external memory is increased, then
the performance improvement will be dropped. In this case, the priority strategy is introduced to
enhance the performance by increasing the lower bound of the performance improvement and
making this bound independent of the number of tasks existing in the external memory. The
lower bound of the performance enhancement is about 2 times better than the SRS. This is
based on the assumption that the task switching from one application task to another requires the

service of one operating system task, on average. We have also proved that MRS is more
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effective in applications with static tasks where the applications tasks with high priority are

assigned to MRS first, such as in the ISDN environment.

i,

lii.

iv.

The contributions of this work can be summarized as follows:

The study of the processing nature within the communications network nodes and
specifically for ISDN protocols. This has not been studied in the literature.

The study of software characteristics of the software running in ISDN applications has
clarified the nature of the register set organization, which is required in RISC-based
architecture. This can be considered as the first trial of this type of study for ISDN
processing.

The estimation of the state-swapping overhead has added another important finding to this
work, where all previous works overlooked the sizs of this overhead. This study can be
considered as the first one of its kind to contribute such measurements to find the size of
this overhead in terms of the applications software processing.

The performance of MRS-based RISC architecture has been evaluated and compared
with the SRS-based RISC architecture. The approach we used in this evaluation has not
been studied in literatures.

Finally, supporting MRS-based RISC architecture with the Priority-based approach to
allocated tasks states to MRS has not investigated in previous studies. This has added

more to our contributions in the area of RISC architecture.

There is no doubt that there are some points in this work that have been left to future

studies. These points can be summarized as follows:

i.

The MRS-based processor is simple and attractive for ISDN processing. All attention

given in this work to the architecture aspects of this processor. The VLS| implementation
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is important and has not performed in this work. Such implementation could give answers
to many importarit issues like the physical area requirement of MRS, the processor speed,

design complexity, critical paths, etc.

The MRS-based architecture is evaluated with the use of two priority strategies. This
evaluation is performed theoretically and based on some assumptions. We believed that
it will be useful if the processor based on MRS structure is tested under the real 1ISDN
environment in order to see the actual performance improvement achieved by using the
MRS supported with the priority strategies.

The development of the real-time muilti-tasking operating svstem which integrate the
priority strategy. This will help to use this strategy practically with ISDN processing and

other applications.
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Appendix A

Listing of Q.931 Basic Call Control Program
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This program shows the list for the Q.931 Basic Call Control functions. Functions processed in
this program are as follows:

1. Check the validity of a message.

2. check for service availability.

3. B-Channel negotiations.

4. Issuing a status messages.

5. Updating databases.

The establish and terminate phases of the Q.931 Basic Call Controi is processed in this program
by several procedures. Each procedure activates by each subfield within the Q.931 messages.
For instance, the check_refno procedure is invoked when the reference number field is detected
in any Q.931 message.

The database structure includes several records which necessary to this program processing.
These records which necessary to this program processing. These records consist the call
reference, calling terminal number, called terminal number, service available, and call status.

In this listing, some Q.931 Basic Call Control messages are shown as an example to illustrate
the program behaviour and response to these messages. Some display messages are printed
to trace and debug the program.

This program is used to process different type of Q.931 Basic Call Control messages. These
messages are dynamically scanned during the processing of this program and as described in
Chapter 3. This program is compiled and tested under the R2000 RISC-based machine.

ﬁiﬁi*itfﬁiii**titiii***Qitiﬁilttttttitﬁ'tti*tttittt.‘tiitittﬂiiittt‘i.i*ﬂititttt.tﬁttlﬂt/

struct table {
/* table for working database, this for "sub"
user-network interface */
unsigned short callref[128];
/* call reference */

unsigned int originating [128],
/* subscribers numbers */

unsigned int destination [128];
/* subscribers number */

unsigned short status_orig[128];
/* status of originating
user */

unsigned short status_dest[128];
/* status of destination
user */

unsigned short service_req[128];
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/* services requested */
b
main()
{
short type; /* message type */
short length; /" length of message */
short “msgp; /* pointer to the ISDN messages buffer */
short *msgp1; /* pointer to calling messages buffer */
short *msgp2; /* pointer to called messages buffer */
short count; /* counter for how many messages we

need to process from each buffer */
short countt;
short count2;
unsigned short refno; I* reference number */
unsigned short skip; I* flag to skip messages in buffer */

int  *malloc();

struct table ‘ptable;
/* the following ISDN messages are just an example of the
messages  used in this work */

static short calling[61] ={
17,  /* message length */
200, /* call reference */
0x05, /* message type (set-up) */
0x04, /* bearer capability */
0x00, /*length=0"%
0x18, /* channel identification */
0x01, /*length */
0x01, /* B1 channel requested */
Ox6¢, /" originating information field */
0x03, /*length */
Oxc0, /" local calls */
0x00, /* first two digit, only four used */
0x01, /* second two digits */
0x70, /* destination information field */
0x03, /* length */
0xc0, /* local calls */
0x00, /* first two digits, only 4 used */
0x04, /* second two digits */

17, /" message length */



200,

0x05,
0x04,
0x00,
0x18,
0x01,
0x01,
0x6¢,
0x03,
0xcO,
0x00,
0x02,
0x70,
0x03,
0xcO,
0x00,
0x03,

17,
200,
0x05,
0x04,
0x00,
0x18,
0x01,
x01,
Ox6c,
0x03,
0xcO,
0x00,
0x05,
0x70,
0x03,
0xcO,
0x00,
0x06,

61
200,
0x4D,
0x08,
0x02,
0x00,

0x90,
ki

static short called[20]= {
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/* call reference */

" message type (set-up) */

I* bearer capability */

/* length = 0 */

I* channel identification */

/* length */

/* B1 channel requested */

* originating information field */
/* length */

" local calls */

/* first two digit, only four used */
/* secend two digits */

/* destination information field */
/* length */

* local calls */

/* first two digits, only 4 used */
/* second two digits */

I* message length */

/* call reference */

/* message type (set-up) */

/* bearer capability */

/* length =0 */

/* channel identification */

/* length */

/* B1 channel requested */

/* originating information field */
/* length */

/* local calls */

/* first two digit, only four used */
I* second two digits */

/* destination infermation field */
/* length */

/* local calls */

/* first two digits, only 4 used */
/* second two digits */

/* length of releasc message */
/* reference number */
" message type = release */
/* inf. element identifier= cause */
/* inf element length */
/* coding standard(CCITT=00)
location (user =000)*/
/* class cause = normal event*/

/* end of calling messages buffer */



2,
200,

0x01,

2,
200,

0x07,

6,
200,

0x45,
0x08,
0x02,
0x00,

0x90,

6,
200,

0x4A,
0x08,
0x02,
0x00,

0x90,
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/* alerting message length */
/* reference number */
/* alerting message type */

/* connect message length */
/* reference number */
/* nessage type (connect) */

/* disconnect message length */
/* reference number */
/* message type = disconnect */
/* inf. element identifier= cause */
/* inf element length */
I* coding standard(CCITT=00)
location (user =000)*/
I* class cause = normal event*/

/* length of release_comp message */
/* reterence number */
/* message type = release complete */
/* inf. element identifier= cause */
/* inf element length */
/* coding standard(CCITT=00)

location (user =000)*/
/* class cause = normal event*/

}; /* end of called messages buffer */

static unsigned int

perm_db[3][11] = { /* permanent database */
2,3,4,56,7,8,9, 10},
4,4,4,4,4,4, 4,4 4},
000000000}
I* three array first for user number,

msgp1 = &calling{0};
msgp2 = &called[0];

second for service availability,
both B-channels are available for
all subscribers, third for

charging */

/* pointer to calling messages buffer*/
/* pointer to called messages huffer */

ptable = (struct table *) malloc ((unsigned)

countt = 1;

count2 = 1;
msgp = msgp2;

sizeof (struct table));

* count1, count2, & count are variables
can be changed to any number of messages
required to process from each buffer */

7* useful in initialization only */
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/* this statements to switch bet~een both

buffers (called and calling) and process

one message from each( this can be changed

to any number by changing count1, count2 values */

again: if (‘msgp1 != 0 && count1 != 0) { ' i.e messages exist in

calling buffer */
msgp2 = msgp ; /* update msgp, needed for initialization */
printf (" content of msgp2 =");
printf (" %d\n", *msgp2);
msgp = msgp1;
printf (" content of msgp1 = *);
print (" %d\n", *msgp1);
count = count1; /* to set the number of messages to process */

count1 -= count; I* to ensure other buffer will run
next*/

count2 = 1;  /* not useful for initialization but necessary
later on */

length = *msgp++;
refno = *msgp++;
length -= 1;
type = "msgp++,;
length -=1,;
if (type == 5 && (skip = check_refno(ptable, refno)) == 1){
/* check if refno is already exist with
the setup messages only */
printf (" setup message will be skipped: refno in use \n");
msgp = msgp + length;

" then skip this message
and go back to the buffer*/
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msgp1 = msgp;
I* useful it more than one
message need to process each
time */

goto again;
NoooritY

goto end,
} /it

olse if ("msgp2 != 0 && count2 = 0} {
r i.e messages exist in
called buffer */
msgp1 = msgp ; /* update msgp1, needed for intilization */
msgp = msgp2;

count = count2; /* to set the number of messages to process */

count2 -= count; /* to ensure other buffer will run
next*/

countl = 1;  /* not useful for intiization but necessary later on */
length = *msgp++,;

refno = *msgp++;

length -= 1;

type = *msgp++;

length -=1;
if (type == 5 && (skip = check_refno(ptable, refno)) == 1){
I check if refno is already exist with the setup messages only
*f

printf(" skip setup message since refno in use \n"),

msgp = msgp + length;
/*  then skip this message and go back to the buffer*/

msgp2 = msgp;
r useful if more than one message need to process
each time */



end:

138

goto again;

b /it
} /* elseif*/

while (count != 0) {

count -= 1;

switch (iype) {

case 0x05:

setup (&

break;

case 0x01:

/* this can be adjusted to any value equal to the messages required
to be processed */

/* switch according to message type */

msgp, length, ptable, refno, perm_db);
/* call setup procedure */

/* alerting message */

alerting (&msgp, length, refrio, ptable);

break;
case 0x07:

connect

break;

case 0x45:

/* call alerting procedure */

/* connect message */

(length, ptable, refno,perm_db),
" call connect message procedure */

/* disconnect message */

disconnect(&msgp, length, ptable, refno, perm_db);

break;

case 0x4D:

* release message */

release(&msgp, length, ptable, refno);

break;

case Ox4A:

I* release complete message */
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release_comp(&msgp, length, ptable, refno);
break;
default:
printf ("this message is not used in ISDN \n");
break;
} " switch */
} /* while */
printf(" next ISDN message will be processed \n");
goto again;, /* start again */

} /* main */

/iI.Ottﬁ..i'Qﬁ.i..ﬁttﬁi..t.ttt.'...ﬁ‘.iit LA R R A2 22 S a1 22 312123222222 22 232223}

check reference number procedure
function: to check if the reference. number assigned by the calling terminal
is already in use.
input parameters: ptable,
refno.
output parameters: value which either 1 when the refno is already in user or
0 if refno is not in use.

RERRRAAS RN AR AN A A RN AR AR AR R AR R R AR R AR RN AA RN R RN R RN RO AARR R xtt'.itﬁii'iﬁtitﬁ/

vheck_refno(ptable, refno)
struct table “ptable;
unsigned int  refno;

{

unsigned int  reason;

unsigned short skip;

printt (" check refno procedure in progress \n ");

if ((ptable -> callref[refno]) == 0){



else {

b
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/0 is indication of free refno, 'n CCITT 0 is indication of
stimulus terminal (here we assume all terminals are
functional type ) */

printf(" refno not in use \n");

ptable -> callref[refno] = refno;
I*  set reference number on working database */

skip = 0;
return (skip);
} Tl |
I* if refno already in use, then send to calling terminal status message
*
printf (" refno already in use \n ");

reason = 0x05; /* class: invalid message
value: invalid reference number */

status(reason, refno);
skip =1,
return(skip);

I* else */
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,ttt"'."ttl".tt'.‘tttt’.t't.thl.tti'iDQ.'til'.'Q'i!.t.'t"ttt.i.t'.itt..iﬁ't

check service procedure
function: to check if the requested services is available to both originating
and destination terminals. The terminal status is organized as
follows:
7 3 2 1 0

] | service | lines status |

service: 0= only B1 channel allowed.
1= both B-channels allowed.
lines status: 00=both free.
01=B1 busy.
10=B2 busy.
11=B1 and B2 busy.
input parameters: ptable,
refno,
direction.
output parameters: none.

.t."'..tii'iﬁ'i"ﬁii.'i.ttﬁit.tti'l't!itiﬁ'ttt..ii*itt.ﬁ't.i!tti'ﬁﬁiﬁttiiit.t/

check_service(ptable, refno, direction, perm_db)
struct table “*ptable;

unsigned short refno;

unsigned short direction;

unsigned int  perm_db[3][11];

unsigned int  temp_status; /* temporarily area for user status */

unsigned int  temp_req; " temporarily area for requested services */
unsigned int  state;

unsigned short reason;

unsigned int  index;

if (direction ==0){  /* check service of the originating */

temp_req = ptable -> service_reqfrefno];
r get service requested from working database,
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service request is set by ch.ld */
temp_req = temp_req & 0x03;  /* mask B-channel field */

temp_status = ptable -> status_orig[refno];
r get user status from working db */

switch (temp_req){

case 0: I* no channel requested, this will processed in tuture */
break;
case 1: /* B1 channel requested */

if (temp_status == 0 || temp_status == 4)
/* B1 free and this service available */

state = (temp_status | 1); /* set B1 busy */
else if (temp_status == 1 || temp_status == 5) {
/" B1 already in use, i.e network assign this while the user send this
message */
reason = Ox11;
/* class: normal event.
value: user busy. */
status (reason, refno);
printf(" requested B1 channel is busy\n");

printf (" no update to all database \n");

goto last;
/* go back with out saving the lines status in both
database */
},  [else*/
break;
case 2: /* B2 channel requested */

if ( temp_status == 4 || temp_status == 5)
/* channels free or B1 busy */

state = (temp_status | 2);
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/* set B2 busy in working db */

else if ( temp_status == 0 || temp_status == 1){
/* service is not allowed or B2 busy */

reason = 0x15;
* class: normal event.
cause: call rejected */
status ( reason, refno),
printf(" B2 service is not allowed\n");
printf (" no update to all database \n"),
goto last;

/* go back with out saving the lines status in both
database */

}
else if (temp_status == 6) { /* B2 busy */
reason = Ox11;
/* class: normal event.
value: user busy */
status( reason, refno);

printf(" requested B2 channel is busy\n");

printf (" no update to all database \n");

goto last;
/* go back with out saving the lines status in both
database */
|5
break;
case 3: /* any channel requested */
it ( temp_status == 4 || temp_status == 0)
" Both channels services are allowed and free or B1
free */

state = (temp_status | 1);
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" set B1 busy */

else if(temp_status == 5)
I* B2 free */

state = (temp_status | 2);
[*  assign B2 & set it busy */

else if(temp_status == 1){
/* no channel free since B2 is not allowed */

reason = Ox11;
/* class: normal event.
value: user busy. */
status (reason, refno);
printf(" B2 service is not allowed\n");

printf (" no update to all database \n");

goto last;
I" go back with out saving the lines status in both database */

b
}; /" switch */
index = ptable -> originating[refno];
" get originating user number*/

printf (" originating user number = ");

printf ("%x\n", index);

printf (" status_orig (in working db) before updating = ");
printt ("%x\n", (ptable -> status_orig[retno]));

printf (" status in perm_db before updating to: ");

printf ("%x\n", perm_db[1][index]);

ptable -> status_orig[refno] |= state;
/* update working database */
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perm_db[1][index] |= state;
/* update permanent db */

printf (" status_orig (in working db) after updating = ");
printf ("%x\n", (ptable -> status_orig[refno}));

printf (" status in perm_db after updating to : ");

printf ("%x\n", perm_db[1]index]);

}

else{ /* check if the destination can provide the service and the lines are
not busy */

temp_status = ptable -> status_dest[refno};
/* get user status from working db */

printf(" status_dest before updating = "),
printf("%x\n", temp_status);

if (temp_status == 0 || temp_status == 4){
/* B1 free for destination */

ptable -> status_dest[refno] = temp_status | 1;
* set B1 busy for destination */
index = ptable -> destination[refno];

/* get destination user number */

perm_db[1][index] |= 1;
/* update permanent db */

printf ("status_dest updated to : "),

printf ("%x\n", (ptable -> status_dest[refno]));
}
else if(temp_status == 5){  /* B2 free */

ptable -> status_dest[refno] = temp_status | 2;
/* set B2 line busy for destination*/

index = ptable -> destination[refno];
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I* get destination user number */
perm_db(1][index] |=2; /* update permanent db */
printf ("status_dest updated to : ");
printf ("%x\n", (ptable -> status_dest[refno]));
}
else{
reason = Ox11;
* class: normal event */
* value: user busy */
status(reason,refno);
printf(" service can not be provided by destination \n");
5
oot

last: return;

}

/itttiiti'ittt.iti'tit*tQQﬁiiﬁtt'"ittit.itt.t.ttii.titttii.t'.tt!.t!ﬁ't

set up procedure: this procedure is assumed only the bearer capavility;
channel identification; originating and destination
information field are used.

input parameters: pmsgp (pointer to ISDN-msg )
len (length of ISDN-msg)
ptable (pointer to ti:e database table)

output parameters: no.

ittti".ﬁitﬁ*ﬁ'it.itﬂ.'t!tt.".ht..tit..Qtl.'..'.'it..ttt.t.t'.tti'.t.../

setup (pmsgp,len, ptable, refno, perm_db)
short **pmsgp;

short len;



struct table *ptable;

unsigned short refno,
unsigned int perm_db[3]{11];
{

int  test;
unsigned long temp = 0;

unsigned long proceeding = 0x80000200;
I* fixed format
for proceeding
message,from left:
80 = protocol discriminator.
00 = refno, to be update.
20 = message type ( call
proceeding ).
00 = not used. */

printf (" setup procedure in progress \n ");

while (len >0) {

test = **pmsgp;

/" get information field identifier. This represent length of ISDN
message when last information field of set up message processed
*f
‘pmsgp += 1,

/* update ISDN messages buffer pointer (msgp) */
len -= 1;
/* decrement length of the current message */
switch (test) {
case 0x04:
len = bearer (pmsgp,len,ptable);
break;

case 0x18:



-
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len = channel_id (pmsgp, len,
refno, ptable);

break;

case 0Ox6c:

len = originating (pmsgp, len, ptable,
refno, perm_db);

break;

case 0x70:

len = destination (pmsgp, len, ptable,
refno, perm_db);

break;

} /* switch */

} 7 while */

/* construct the call proceeding message, this always send after
the setup message */

temp |= refno; /* get refno */
temp <<= 16;

proceeding |= temp; /* construct the message */
/* now the call proceeding message is ready to send */

proceeding &= 0xffO0f00; * clear refno for next run */

return;
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/Q".t.tt.t.'ti.i'QtQt!.......i...tt..t...'.'t'i't‘ii..'ttt.tt'i.ti.i

Alerting procedure
function: received alert message from the called terminal, processed by the
network and send to the calling terminal to indicate that the
called terminal has begun to notify human user of the incoming call.
input parameters: len,

pmsgp,
refno.

output parameters: non.

ilt.ﬂt.....iit...tt't'i.'th.‘...tt..ii..ttt.t.it.Qti'.tttt..i.i.t.h.iﬁi.ﬁit/

alerting(pmsgp, len, retfno, ptable)
short len;
short **pmsgp; /* pmsgp = pointer to ISDN messages pointer */
unsigned short refno;
struct table “ptable;
{
unsigned short reason;

if (ptable -> caliref[refno] != refno){
I* refno is not valid */

reason = 0x53;
/* class: invalid message,
cause: call identity does not exist */
status(reason, refno);
printf (" error in processing alert message\n”);
}

else printf(" alert message processed successfully \n");

return;
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/ﬁt.t!i'ﬁititt'liii‘iti.'.i‘..t..i'ii'...tQitt.ti'tiQtttt'ttttt..'it.ii*‘ttti

connect procedure
function: message received from the called terminal, processed and passed to
calling terminal to indicate call accepted by the called terminal. the
processing is involved in testing the validity of the call and
start charging. Only mandatory fields are used at this model. More
serviced can be added in the future.
input parameters: pmsgp,
len,
ptable,
refno.
output parameters: non.

i*"ttit.t*tﬁ*ﬂi.'tii'ttttQ.'*.iiiiti.'i..t'.t.iitﬁﬂtt.."‘ittt‘tt.i'..*..t.t./

connect (len, ptable, refno, perm_db)
short len;

struct table “ptable;

short refno;

unsigned int perm_db[3][11];

int  charging;
unsigned short reason;,
unsigned int  index;

unsigned long connect_ack = 0x08000f00;
/* connect acknowledge message

without refno. From left:
08= protocol discriminator,
00= reference number to be

updated later on,
0f= message type: connect_ack,
00= not used yet. */

unsigned long temp;

if (ptable -> calirefrefno] != refno){
/* refno is not valid */

reason = 0x53;
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I* class: invalid message,
cause: call identity does not exist */

status(reason, refno);
printf (" error in processing connect message\n“);

return;

else|
index = ptable -> originating[refno];
perm_db[2][index] += 10;
" add charge to the charging field of the calling terminal only,
here we add 10 cent..dummy! */
printf(" connect message processed successfully \n");

temp |= refno;

temp << 16;
/* adjust refno to be used to construct connect_ack message */

connect_ack |= temp;
/* construct connect_ack message */
I* connect_ack message is ready to send */

temp &= OxFFOOFFQO;
/* clear refno in connect_ack message for next use */

printf(" connect_ack message send to appropriate terminal \n");

return;

b o
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/t.i.i"i.ii.'.i'."..tii"t't"iﬁ‘..i..'..tit.it.itt.i.tit.ti.t.'.iii.'i‘i.".

disconnect procedure
function: this receive the disconnect message from the terminals ( either
calling or called terminal), then stop charging , pass the
message to other side, and send back to the terminal who's
generate this message the release message.
input parameters: pmsgp,
len,
ptable,
refno,
perm_db.
output parameters: none.

.i.ﬁ.QQ'.‘.Qﬁt...‘t.it"itttititttt.t.'t.it'i"’t.i'l'ittit."tt.t.i.itﬁt.i"t/

disconnect (pmsgy}., len, ptable, refno, perm_db)
unsigned short **pmsgp;

unsigned short len;

struct table “*ptable;

unsigned short refno;

unsigned int  perm_db[3][11];

{

unsigned int  index;

unsigned long release[2];
unsigned long temp;
unsigned short test;
unsigned short reason;
test = **pmsgp; " get inf. element identifier */
if (test = Ox08){
r check the availability of the mandatory information element
field, here only cause is mandatory */
reason = 0x5D;

/I* class : (101) invalid message
value: mandatory information element is missing */
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status(reason, refno);
printf (" disconnect message is incomplete \n");
*pmsgp += len; /* skip this message */

return;

}

else{ /* mandatory fields are exist */
‘pmsgp += len; /* skip the rest of this message */

index = ptable -> originating[retno);
/* get the calling terminal number */

perm_db[2]{index] += 3;
/* add an extra charge to the calling terminal charging*/

release[0] |= 0x08004D08;
I* construct the release message. From left:
08 = protocol discriminator,
00 = refno, to be updated,
4D = message type (release),
08 = inf. element identifier
(cause). */

temp = refno;
temp <<= 16; " adjust refno */
release[0] |= temp;
release[1] |= 0x02009000;
/I* construct second word of release message, from left:
02 = length,
00 = coding standard CCITT
and location ( network).
09 = cause class: normal event.

release[0] &= 0x08004D08;
/* clear refno filed for next run */

I* release message is ready to send*/

printf ("disconnect message process successfully and release");
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printf (" message send to appropriate terminal \n");

return;

/titttii'iii‘.i.t.*ti.t't'.ﬁtt.i.i..t.tt'.tt"itﬁ.'ttﬁi.ﬂt..titt.'ii.tt.t'tiﬂti

release procedure
function: this receive the release message from the terminal which does not
generate the disconnect message, release all the information in the
working database except the reference number. It send later the
release complete message to this terminal.
input parameters: pmsgp,
len,
ptable,
refno.
output parameters: none.

'ﬁ'ﬁ.ﬁi.'.iiii'tﬁ.t'ﬁt.ﬁiiﬁi.tiiti..t.iittiti.i'i"iﬁt'.'.tt.'ti.'t".t.ii't../

release (pmsgp, len, ptable, refno)
unsigned short **pmsgp;
unsigned short len;

struct table “*ptable;

unsigned short refno;

{

unsigned long release_comp([2];

unsigned long temp;

unsigned short test;

unsigned short reason;

test = **pmsgp; /* get inf. element identifier */

if \test 1= Ox08){

P check the availability of the mandatory information element

field, here only cause is mandatory */
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reason = 0x5D;
/* class : (101) invalid message
value: mandatory information element is missing */
status(reason, refno);
printf (" release message is incomplete \n");

‘pmsgp += len; /* skip this message */

return;
}
else{ /* mandatory fields are exist */

‘pmsgp += 1;

len -= 1;

‘pmsgp += 1;

r update the ISDN message buffer pointer msgp, nothing to

be done here to the rest of the cause information element
*/

len -= 1;

‘pmsgp +=1; /* pass pointer to the second byte of cause info. element
(cause) */

len -= 1;

ptable -> originating[refno] = 0;
/* clear working database except refno */

ptable -> destinationfrefno] = 0;
ptable -> status_orig[refno] = 0;
ptable -> status_dest[refno] = 0;
ptable -> service_req[refno] = 0;
release_comp(0] |= 0x08005A08;
/* construct the release complete message. From left:

08 = protocol discriminator,
00 = refno, to be updated,
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5A = message type (release),
08 = inf. element identilier
(cause). */

temp = refno;

temp <<= 16; * adjust refno */

release_comp|0] |= temp;

release_comp[1] |= 0x02009000;
/* construct second word of release message, from left:
02 = length,
00 = coding standard CCITT
and location ( network).
09 = cause class: normal event.

release_comp[0] &= 0x08004D08; /* clear refno filed for
next run */

" release_comp message is ready to send */
printf ("release message process successfully and release");
printf (" complete message send back to the terminal \n");

return;

b

/iﬁt'iitiiﬁ'ﬁi’itiﬁtQtiiiiii.tiiﬁti*tttliitiﬁtittiiﬁ’i..’#’tit'it.t.*i.tt't‘it.

release complete procedure
function: this receive the release complete message from the terminal who's
generate the disconnect message, dgelete the reference number from
working database.
input parameters: pmsgp,
len,
ptable,
refno.
output parameters: none.

it.Qﬁttﬁ*'ti!itttti.tiititﬁﬁ’ﬁit.tiitt!ttt‘ﬁ".tttt.ﬁ'it'i.'tti.!it't"ﬁtﬁ.ttt/

release_comp (pmsgp, len, ptable, refno)

unsigned short **pmsgp;
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unsigned short len;
struct table  “ptable;

unsigned short refno;

{

unsigned short test;
unsigned short reason;
test = **pmsgp; * get inf. element identifier */
if (test != 0x08){
/* check the availability of the mandatory information element tield,
here only cause is mandatory */
reason = 0x5D;
I’ class : (101) invalid message
value: mandatory information element is missing */
status(reason, refno);

printf (" release_comp message is incomplete \n");

*pmsgp += len; /* skip this messaye */

return;
}
else{ /" mandatory fields are exist */
pmsgp += 1;
len -= 1,
‘pmsgp +=1;
r update the ISDN message buffer pointer msgp, nothing to
P/e done here to the rest of the cause information element
len -= 1;
‘pmsgp += 1;

/" pass pointer to the second byte of cause info. element
(cause) */
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len -=1;

ptable -> caliref[refno] = 0,
/* clear working database refno */

printf ("release_comp message process successfully\n );

return;

/lii.t*i!'itti.t*iﬁit.‘tﬁitt.t‘!..it'.'t."'ttit.ﬁliﬁt'...i'ﬁ'Q......i.i.ttti.'

status procedure
function: to construct a status messages and send it to the appropriate
terminals.
input parameters: reason,
refno.
output parameters: none.

*"ii..ﬁii.'.ﬁ..ﬁiﬁﬁ..‘.ﬁ...t.ﬁ'..'.t'..'.'ﬁ...."f...'."i.......'..‘t."‘tit/

status (reason, refno)
unsigned short reason;

unsigned short refno;

{

unsigned long status_ptr [2];
/* status message is 8 bytes */

unsigned long temp:

status_ptr[0] |= 0x08007D08;
/* from left
08 = protocc discriminator
00 = refno, should be updated
7D = message type (status)
08 = inf. element identifier
(cause). */



status_ptr[1] |= 0x02820000;

temp = temp | refno;
temp = temp << 16;

status_ptr{0] |= temp;

temp = temp * temp;
temp = temp | reason;

temp = temp << 8;
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" from left
02 = length of cause (in bytes)
82 = location :local network.
coding standard: CCITT.
00 = class and value (should be
updated)
00 =notused. */

* align refno on 2nd byte */

/* include refno in status massage */

/* clear temp */

/* align reason in 3rd byte */

status_ptr[1] = status_ptr[1] | temp;
I* update second word of status message */

/* message is ready to send */

temp = temp * temp;  /* clear temp for next run */

return;

/"QI (AR 22222 R 22 SRR 22 22 R 2 A2 A X S L2 2 2 22 2222222222220 234 2228220 ]

Bearer capability procedure: this procedure needs some information
about the system hardware. At the present time this does not do any
thing and it is included because it is mandatory with the setup message.

input parameters: msgp and len.
cutput parameter: len.

Qﬁ...Q..QQ.t..ti..‘it.t'ﬁ...ttiQ"ti.'l'ti.ttt.titt.i't.t‘titi..'t.t.i/

bearer (pmsgp.len,ptable)
short len;

short *‘pmsgp;
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struct table  *ptable;
{
int inf_leng; /* information field length */
printt ("bearer procedure in progress \n *);
inf_leng = **pmsgp;  /* length of information field accessed */
‘pmsgp += 1;
it (inf_leng == 0) { /* if this information field length = 0 */
len -=1;
return (len);
b
}

/i'tt.'.t.ttit.t.ttﬁtﬁt.i'i.."ttttiiiit.i!tiit.tﬁ..tti#i.t'.tlt.'.i.iittt

Channel identification procedure: only the B-channel select is used
here.
input parameters: pmsgp,
len,
refno (reference number),
ptable ( pointer to the database table which is structure).
output parameters:len.

channel_id (pmsgp, len, refno, ptable)
unsigned short **pmsgp;

unsigned short len;

unsigned short refno;

struct table *ptable;

{

unsigned short inf_leng;
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unsigned short Bchannel;

printt (" channel identification procedure in progress\n” );
inf_leng = **pmsgp;  /* get information field length */

len -= 1;

‘pmsgp +=1; /* update ISDN messages bufter (msgp) */
Bchannel = **pmsgp;

‘pmsgp +=1;

Bchannel = Bchannel & 0x03;
I mask the low order 2 bit, i.e channel select field */

ptable -> service_req[refno] = Bchannel;
” set requested services in working db to be tested later */

len = len - inf_leng; /* calculate ISDN message length */

return (len);

/..'t..".lQil...itti'.i.....t'ti."t'.'.tii.tit."tti.i..'.iii'.t.i".

Originating address: this to process the originating address information
field.
input parameters: pmsgp,
len,
ptable.

output parameters: len.

..".'iQi"'t..'t!.t."..'t.iQ!..ti‘it.tit.ti.ti.Qiiti.i.t..tQﬁi.i't.’il't/

originating (pmsgp, len, ptable,refno, perm_db)
struct table *ptable;
short **pmsgp;

short len;



-
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int refno;

unsigned int perm_db(3][11}];

{

int inf_leng;

short direction; I* to select either destination or originating */
unsigned int index;

unsigned int user_status;

printf (" originating procedure in progress \n ");

inf_leng = **pmsgp;  /* get length of this int. field */

*pmsgp += 1;

len-=1;

direction = 0, /* O for originating, 1 for destination */

insert_db (pmsgp, refno, direction, ptable);
" insert in db */

len = len - inf_leng;
I* decrement ISDN message length */

index = ptable -> originatingfrefno};
* get originating address */

user_status = perm_db|[1][index];
/* get the user status from permanent db */

ptable -> status_orig[refno] = user_status;
/* save user status in working database */

check_service(ptable, refno, direction,perm_db);

return (len);




163

/'.tﬁt.tt.t."l'..tti.t'tii.t...'..ttit..."Qttt.."t.ttt.t'..tiittt.it

Destination adciess: to proc3ss the originating address information field.
inpt parameters: pmsgp,

len,

refno,

ptable.

output parameters: len.

."......'.‘h..I'.I'."'.'..."'.’.""'I.'.'.....I...l'...'..’.'.Q.....'Q/

destination (pmsgp, len, ptable,retno, perm_db)
struct table *ptable,

short **pmsgp;

short len;

int refno;

unsigned int perm_db[3][11];

short inf_leng; /* length of this information field */

short direction; /* to enable insert_db routine to update the database */
unsigned int  index;

unsigned int  user_status;

printf (" destination procedure in progress\n *);

inf_leng = **pmsgp;
/* get length of this infor. field */

len -= 1;
/* update ISDN message length */

‘pmsgp += 1;
/* update the ISDN messages buffer pointer */

direction = 1;
/* 1 = destination address */
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insert_db(pmsgp., refno, direction, ptable);
len = len - inf_leng;
I* update ISDN message length */
index = ptable -> destination[refno};
/" get originating address */

user_status = perm_db[1][index];
/* get the user status from permanent db */

ptabie -> status_dest[refno] = user_status;
/* load user status in working database */

check_service(ptable, refno, direction, perm_db);

return (len);

/t.i.i'i'ttt.'.itt..Q..Qt.ﬁti!.'tttt..i.t.."t.t..Qt't!...tt.ittt..'

Insertdb: This to insert in the data base the address of the
originating or destination subscriber address.
input parameters : pmsgp,
refno,
direction,
ptable.
output parameters: non.

.."...".ﬁ....'!t.‘...'Q....it....'.t.....Q..‘..'..'.QQ...Q.t...../

insert_db (pmsgp, refno, direction, ptable)
short **pmsgp;

int refno;

short direction;

struct table *ptable;

unsigned int  type,;
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unsigned int  temp;
type = “*pmsgp;

/* get address type of numbering addressing plan */
‘pmsgp += 1;

printt (" insert db procedure in progress \n “);
/* assume all calls are local */

type = type & 0x0070;
/* mask the type address field */

if (type == 0x0040) {
/*'is it local call */

temp =""pmsgp;
I access high order two digits */

*pmsgp +=1,;

temp = temp << 8;
/* shift left 8 bits */

type = “*pmsgp;
/* get next two digits */

‘pmsgp += 1;

temp = type;
/* put all digits in one location */

if (direction == 0)
/* this is originating */

ptable -> originating[refno] = temp;
/* insert originating address in db */

else
ptable -> aestination[refno] = temp;
I

return;
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Appendix B

Listing of TEI Assignment Program
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/.t.t‘..ttt't....t..Q.tttﬁti'.'.ttt'tt'h.tt'b.."t.t'.Qt....'.ti..tt.t.t.ittt...ittt..t'

This program shows the list for the TEI assignment functions. The functions processed in this
program are:

1. Any TEI assignment.
2. Specific TEIl assignment.
3. TEl removal.

Each of the above functions has processed by more than one procedure. Each procedure
activates by certain subfield within the TEI assignment messages, such as TEI-Assign, TEl-
Denied, and TEI-Removal message.

The database is organized to keep the records for the terminals which are in use with the
reference number of the call. The reference number is used as an index to extract the
information from the records inside this database.

In this listing, we shows only two messages to illustrate the program behaviour and responses.
Some display messages are printed to trace and debug the program functionality.

This program is used to process different TEl assignment messages. These messages are
dynamically scanned during the processing of this program and as described in Chapter 3. This
program is compiled and tested under R2000 RISC-based machine.

ARAN SN AN ARR SRR AR N SR AE R AN RO ANANARN RN R N A RN R AR RN AR R A RN AR RSN RN SRR R R AR ANA AR AR E N RN A Rk [
!

#include <stdio.h>
#define IDENTIFY_REQUEST 0x01
#define IDENTIFY_ASSIGNED 0x02
#define IDENTIFY_DENIED 0x03
#define IDENTIFY_REMOVE 0x06
#define IDENTIFY_CHECK_RESPONSE 0x05
#define MANAGEMENT_ENTITY OxOf
#define FREE 0x00
#define BUSY Oxff
struct database_record{

unsigned int i,

unsigned int taken;

}; /" keep track of tei and reference number assigned */

unsigned int no=1; /* keeps track of packet being process */

main ()



/* functions used */
int tei_removal();
void assign_identify();
void preferred();
void any_tei();

int free_tei();

I* variable declarization*/

register int i;
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static struct database_record database[64];

static unsigned packet[]={
/i

0x08,
Ox3t,
Ox7f,
0x10,
0x0f,
0x00,
0x00,
0x01,
Oxff,

the following messages are just an example of the TEI
messages */

/* first packet */

/* length of packet */

/* SAPI */

/* terminal endpoint identifier */
I* control *

/* management entity identifier Y

/* least significant byte of reference number*/
/* most significant byte of reference number */
/* message type - identify request *

/* action indicator - any tei acceptable  */

/* second packet */

0x08,
0x3f,
0x7f,
0x10,
0x0f,
0x01,
0x00,
0x01,
Oxff,

/" length of packet */

/* SAPI */

{/* terminal endpoint identifier */
/* control *

/* management entity identifier */

/* least significant byte of reference number*/
/* most significant byte of reference number */
/" message type - identify request *

/* action indicator - any tei acceptable  */
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h

int number_of_data_packets=2; /* number of test packet */

short int unsigned *send_packet;

short int unsigned packet2[7);

int length; /* length of packet */
int error,

/.t'.'i..‘.it.tﬁt.iittittt.it'/

I* Get packet and Manupilate */

[ressesnnesanassisasaninnise
int j;
i=0;
while (no<=number_of_data_packets)
{
j=0;

length=packet[i++];
/* get length of packet */

it (packet{i++}]'=0x3f)
/* SAPI value wrong, skip to the next packet*/

i += length; /* goto next packet */
printf("SAPI value wrong\n“);
continue;

}

if (packef[i++]=0x7f)
/* TE! value wrong, skip to the next packet */
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i +=length - 1; " goto next packet */
printf("TE| value wrong\n");
continue;
}
i++;
/* get control value */

packet2fj++]=packet[i++];
/* get management entity */

if (packet2[i-1)'=MANAGEMENT_ENTITY)

/* management entity wrong, skip to the next packet */

{
i += length -4; I* goto next packet */
printf("mangement value wrong\n");
continue;

}

packet2[j++]=packetifi++];
I* get reference number(LSB) */

packet2[j++]=packet[i++];
/* get reference number(MSB) */

packet2[j++)=packetfi++];
/* get message type (identity type)*/

packet2[j++]=packet[i++];
/* get action indicator */

switch (packet2[j-2]}
/* check message type */

case IDENTIFY_REQUEST: assign_identify(packet2,database);

send_packet=packet2;

I* try to ailocated */
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/* send return packet */
packet[i-length+6]=send_packet[3];

packet[i-length+7]=send_packet[4];

break;

case IDENTIFY_CHECK_RESPONSE: error=tei_removal(packet2,database);
if (error==0)
{
send_packet=packet2:

" send return packet */
packet[i-length+6]=send_packet[3];

packet|i-lenigth+7]=send_packet[4];

glse

/* ignored packet */

}

break;
default: printf("unknown message type\n");

break;
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/’I‘ﬁtQ.iiiii'tithitiiiilﬁ.Q.. CRRRRRARARANRRRARN TR R AP O RN NGRS

Name : assign_identify
Purpose : to assign identity to terminal
Input Parameters : packet2

database

Output Parameters : database

Functions called : preferred
free_tei
any_tei

".".‘.ﬁ..'iQ..‘*ﬁi'..‘it‘..i.t‘.'Q.“.ﬁ."..."'..'..t./

void assign_identify(packet2,database)
short int unsigned packet2[];
struct database_record database[63];

{

int not_found;

if (packet2[4] >=0x80 && packet2[4] <=0xfe)

{

preferred(database,packet2);
/* assign the specified TEl value requested by terminal */

else

not_found=free_tei(database,packet2);
/* check if database is free and reference # is not in used */

it (not_found==0x80)
return; /* reference # in used */

if (not_found)

{

/* database full - return denied value */

packet2[3]=IDENTIFY_DENIED,;
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printt("%d : identify denied - database ful\n",no++);

}
if (packet2[4] == Oxff)
{
any_tei(database,packet2); /* assign any TEI value to terminal */
}
else
return,
}
}
Name : free_tei
Purpose : to clear the TEI
Input Parameters : packet2

database
Output Parameters : database
not_free = 0x00 (database full)
0x01 (database free)
0x80 (reference #
already taken)
Functions called : none

'..‘.'..‘.Q.i't.i‘.'.i..'i".i..'.....'..'ii'.'i.'i‘i‘../

int free_tei(database,packet2)
short int unsigned packet2(];
struct database_record database[63];
{
int not_free;

register int i;
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not_free=1;
for (i=0;i<63;i++)
{
not_free=not_free&&database[i].taken;
it ((database[i].ri==(packet2[2]<<0x08)+packet2[1])&& (database]i].taken==BUSY))
{
I* reference # already in use */
packet2[4]=IDENTIFY_DENIED;
printf("%d : ignored identify request - reference # already in database\n”,no++);

return(0x80);

}

return(not_free);

/ﬁ'.'tt"i.tih't.t.ﬁ.i.t"itii.‘ﬁit...tt.ﬁttt..'ﬂt.ii.ttta
Name :any_tei
Purpose : to assign any TEI to a terminal
Input Parameters : packet2
database

Output Parameters : database
Functions called : none

..".f.f..tﬁ*i.ﬁ""..".""""t.I...'ﬁ"'t.ﬂ.i"..t‘./

void any_tei(database,packet?)
short int unsigned packet2(];

struct database_record database[63];

{
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register i,
i=0;
/* find first free value */
while(databasel[i].taken==BUSY &8& i<=62)
i++;
packet2[3]=IDENTIFY_ASSIGNED;

database[i].ri = (packet2[2]<<0x08) + packet2[1};
r* stored reference number in database */

databaseli].taken=BUSY;
printf("%d : identify assigned to TE! value %d\n",no++,i+0x40);

packet2[4]=i+0x80;

/l‘.....'.....'..........'i.'.....'.'Q....t..'."....‘...'

Name : preferred

Purpose : to assign the preferred TEI to
a terminal

Input Parameters : packet2
database

Output Parameters : database
Functions called : none

i.'..'it.'t..i..'n....t'..itt'nt..nt..i!tt...iiti'it..tt./
void preferred(database,packet2)

short int unsigned packet2(];

struct database_record database[63];

if (database[packet2[4]-0xc0].taken==FREE)
{

/* assigned preferred value > terminal */
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database[packet2[4]-0xc0].taken=BUSY;

/* stored the low and high byte as one number */
database[packet2[4]-0xc0].ri = (packet2[2]<<0x08) + packet2[1];

packet2[3]=IDENTIFY_ASSIGNED:;

printf("%d : identify assigned to index(referred) %d\n",no++,pr. :ket2[4]-0x80);

}
elise
{
" preferred value already taken */
packet2[3]=IDENTIFY_DENIED,;
printf("%d : identify denied - preferred value taken(%d)\n",no++packet2[4]-128);
}
return;
/‘i"i.ttﬁ.tt.ti'tt."t"'....t‘ﬁ..tt.t.t'ti.tQtt'itttitt‘
Name : tei_removal
Purpose : to removed TEI
Input Parameters : packet2

database
Output Parameters : database
function returns = 0 (no error)
1 (error)
Functions called : none

.ii.tiﬁi't..it.ﬁti‘it.tti.ttﬁiﬁﬁ....ﬁﬁﬁ...Qt...ﬁt..'t‘t.t,

int tei_removal(packet2,database)
short int unsigned packet2{];

struct database_record database[63];

register i;
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it (database[packet2[4)-0xc0].ri== (packet2{2]<<0x08) + packet2[1]
&&database[packet2[4]-192].taken!=FREE)

printf("should not occured\n”);
return(1); /* error occurred */
}
packet2[6]=IDENTIFY_CHECK_RESPONSE;
if (packet2[4]==0x7f)
{
/I* clear the complete database */
for (i=0;i<=64;++i)
databaseli).taken=FREE;

printf("%d : Removal of all TEIl value from equipment\n”,no++);

else

I* clear specified TE| value in database */
database[packet2[4]-0xc0].taken=FREE;

printf("%d : Removal of TE| value %d\n",no++,packet2[4]-0x80);

}

return(0);




