National Library
of Canada du Canada
Canadian Theses Service

Ottawa, Canada
KiAON4

NOTICE

Thequality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort hasbeen made to ensure the highest quality of
repraduction possible.

i pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially il the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproducticn infull or in part of this microformis governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

NL 319 (r 88/04) C

Bibliothéque nationale

Service des théses canadiennes

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfifmage Nous avons
tout {ait pour assurer une qualité supérieure de reproduc-
tion.

S'il manque des pages, veuillez communiquer avec
funiversité qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser 4
désirer, surtout siles pages originales ont été dactylogra-
phiées 4 l'aide d'un ruban usé ou si l'université nous a fau
parvenir une pholocopie de qualité inléricure

La reproduction, méme padielle, de cette microforme esl

soumise & la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents

Canadi

Robotic Agents anu Assembly Process :
A Formal Specification Case Study

Kasilingam Periyasamy

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfilment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University

Montréal, Québec, Canada

June 1991

© Kasilingam Periyasamy, 1991

R |

Mational Library
of Canada

Bibliotheque nationale
du Canada

Canadian Theses Service

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, foan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/fher per-
mission.

Service des théses canadieanes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliotheque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protége sathése. Nila thése nides extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-68764-9

Canadi

Abstract

Robotic Agents and Asserably Process:
A Formal Specification Case Study

Kasilingam Periyasamy, Ph.D.

Concordia University, 1991.

Formal specification enables a software developer to detect and eliminate incon-
sistencies and ambiguities in the requirements and promotes reasoning ahout the
behavior of the software being developed. Formal specification case studies exist now
for a wide range of problems varying in complexity from very simple applications such

as floating point arithmetic in microprocessors to reactive systems such as robotics.

This thesis is devoted to developing formal behavior specification for a large scale
industrial software system. Some of the inherent difficulties in specifying such large

scale project are brought out and some solutions are suggested.

The case study chosen for this thesis is the problem of performing automated
assembly of mechanical parts in a single static robot environment. Specifications
for problems in the three subdomains solid modeling, robot kinematics and assembly
environment are provided in this thesis. The model-based specification technique
VDM is chosen for specifying the problems. A new methodology to derive an object-
oriented design from a model-oriented specification is proposed and is illustrated
for kinematics and solid modeling specifications. The current limitations of VM,
further extension to the specification language and possible specification refinerents

are mentioned.

i

To

M.N. Periyasamy
Seethalakshmi Periyasamy
S. Rajendran
Vijayalakshmi Rajendran

v

3 oy S ST

o POI Tt S,

ACKNOWLEDGEMENTS

I'sincerely express my gratitude to my supervisors Dr. V.S. Alagar and Dr. T.D. Bui.
I have received an abundant measure of technical guidance, constant encouragement
and frequent criticisms which made me possible to complete this work. I also thank
them for generous financial support for the duration of my graduate studies.

I am grateful to the Quebec Ministry of Education for awarding me the inter-
national fee remission award and Centre de Researche Informatique de Montreal for
their three year bursary to conduct this research.

It is my pleasure to personally thank my wife and my family members for their
support and encouragement.

Finally I wish to thank all my friends, especially Dr. K. Arumugam and his family

members for their moral support during my stay at Montreal.

Contents

1 Introduction

1.1 Need For Formal Specifications
1.2 Formal Methods : Some Recent Trends
1.3 Some Issues In Specifying Large Scale Software
1.4 Case Study : Automated Assembly Plant
1.5 Specification Techniques o .
1.6 Thesis Organization o

2 Vienna Development Method - A Brief Summary

2.1 Primitives of a VDM Specification,
2.1.1 Notations i i e
2.1.2 Consistency of VDM Specifications
2.1.3 Somemoreconventions oo

3 Regularized Boolean Operations

3.1 SolidModeling e
3.1.1 Regularized Operations
3.2 Abstract Modelofa Solid,
3.2.1 Imitial Hypotheses
3.2.2 Illustration of the Boolean Operations
3.3 Specifications for Boolean Operations
34 Typelnvariants o oo
3.5 Behavior

4 Specifications for Robot Kinematics

vi

S Ov W o

o

10
11
11
13
18

20
20

21

4

29

-

24
20
29
40
46

55

4.1 Characteristics of a Robotic Agent &6

4.2 Rigid Solids and Primitive Operations 56
4.2.1 Specification for a Rigid Solid 57
4.2.2 Specifications for Primitive Operations on Rigid Solids 60
4.2.3 Specifications for Prismatic and Revolute Joints 70

4.3 Formalism of Robot Kinematics T3
4.3.1 Robot Structure. L 74
4.3.2 Formal Modelof Robots 74
4.3.3 Specifications for Forward Kinematics. 17
4.3.4 Specification for Inverse Kinematics 80

4.4 Remarks onthe Current Work 97

Formal Definition of Assembly 99

5.1 PreviousWork 99

5.2 Abstract Definition of an Object 100
5.2.1 TFeaturcof anObject 101
5.2.2 Primitive and Composite Features 102
5.2.3 Specification for Primitive and Composite Features 108
524 NormaltoaFeature 117
5.2.5 Functional Description of Features 119
5.2.6 Closed boundary of an Object 122
5.2.7 Relationship between Features of the Same Object 124

5.3 Formal Description of Assembly 120
5.3.1 Assembly Requirements 126

Deriving Design from Formal Specifications 138

6.1 Refining to an Object-Oriented Design 139

6.2 Schema for Object Oriented Design Paradigm 139
6.2.1 Relationship Between Classes 140

6.3 Schema for Model-Oriented Specifications 143

6.4 Transformation Process. 144
6.4.1 Identifying the Classes 145

vii

6.4.2 Identifying the Attributesof Classes

6.4.3 Deriving the Operations of the Classes

6.4.4 Inheritance and Part-of

6.4.5 Invariants

7 Conclusion

7.1 I'uture Work

...................

7.1.1 SolidModeling o e
7.1.2 Robotics o v e e e e e

7.1.3 Assembly

714 Design

7.1.5 Refining VDM Specification

A Design of a Robotic Agent

viii

158
161
161
161
162
162
163

172

List of Figures

1.1 A Simple Life-Cycle Model with Specification Phases 2
3.1 Intersectionof Solids 22
3.2 Dangling Face due to Intersection 23
3.3 Directed EdgesinaSolid. 24
3.4 Directed Edges in a Hollow Solid 25
3.5 Solid Obtained as the Difference of Two Solids 27
3.6 Regularized Boolean Operationson Solids PA
4.1 Translation paralleltoan axis. 62
4.2 Additivity of Translation. 62
4.3 Rotation aboutanaxis. 67
4.4 Additivity of Rotations. 69
4.5 Structure of a Prismatic Joint. 71
4.6 Structure of a Revolute Joint. 71
! 4.7 A Two-Link Manipulator (with only Revolute Joints).. (5!
51 AfiniteCylinder. 104
52 AfiniteCone. e 106
5.3 Intersecting Cylinders. 120

5.4 Possibility of more than one assembly between two given objects. . . 127
5.5 Example for one feature covering the other. 130

5.6 Example for partial overlapping of features. 131

6.1 Role of Formal Specifications and Application Domain Model in Soft-
ware Development. L ... 139

6.2 An Object in the Object-Oriented Design 140

P B P TRE YRL MT S BT

ix

6.3
6.4
6.5

7.1

A Schema of a Model-Oriented Specification. 144

Opyand Opy are distinet. v v v v vt i it e 153
Opiand Opyarethesame. . . . o . v v vttt it n 153
Automated Assembly Cell 159

.« =l L

Chapter 1

Introduction

1.1 Need For Formal Specifications

Computer scientists, software engineers and managers of software systems have been
expressing real concern with the lack of rigor in the practice of software development.
As a solution, a recent software development paradigm treats the development as a
process that proceeds from a formal specification to a final product. That is, the
entire process may be considered as a transformation of the formal specification into
a code that functions correctly whk.zn executed. The final product may be declared
correct only if it is shown to meet the initial requirements and the transformation
used to convert the formal specification (of the requirements) to the final product
is proved to be correct. These two activities in any software development process
model are known ac validation and verification. This thesis argues for and provides
formal specifications for a large scale industrial system platform to perform robotic

assembly.

The terms verification and validation are misunderstood by a majority of novice
software users to mean the same thing. It is to be emphasized that validation answers
the question ‘Are we producing the right product?’ and verification answers the
question ‘Are we producing the product right?’. Ideally, verification performed at
every stage of development removes errors tha. otherwise might occur in a software
product. Verification demands a formal medium for expressing user requirements,
design and program implementation details so that the outcome at any stage can be

formally proved to be the same as the expected result. Such a mathematical proof

Requirements System Design 1 @
Program Development @——— System Design 11

Integration
Implementation Test Operation

BS — Behavior Specification
DS — Design Specification (modules, interfaces)
PS — Program Specification

Figure 1.1: A Simple Life-Cycle Model with Specification Phases

indicates the correctness of the processes in that stage. It is generally agreed that
verification is a difficult task and formal methods must provide sufficiently powerful
and yet easy to use proof systems to conduct formal verification.

The formal verification medium of a process must be flexible enough to reason
about the behavior of the process. A computer program in itself can be considered to
be a formal representation of the user needs sin~e the programming language itself is
formal; however, it is difficult to reason about this form of representation and hence
is not suitable for verification. What is required is a more abstract representation
of the user needs from which a computer program can be derived either manually
or automatically. Being formal ,mathematical), this abstract representation enables
the developer to assure correccness of the final program, by eliminating ambiguities,
inconsistencies and contradictions, if any, present in the user requirements, design and
implementation. In software engineering terminology, such a formal representation
is called ‘specification’. This term has the same meaning as is conventionally used in
engineering applications; that is, the specification of a system refers to a theory about
the behavior of the system. Depending on what stage of the software development
process is being verified, the specification is named as behavior specification, design
specification and program specification [Ala91].

Figure 1.1 [Ala91] represents a simplified software life cycle model which is an ab-

2

| |

straction of several classical software process models augmented by the three stages of
specifications : behavior specification, design specification and program specification.
The behavior specification is a formal statement of what the system does, and is writ-
ten in a declarative style. This stage of specification will eliminate ambiguities and
contradictions present in the user requirements. The design specification contains
more information on the structuring of the system, preserving the properties stated
in the behavior specification. When compared to the behavior specification, the de-
sign specification is more detailed in the sense that it carries additional information
pertaining to the system architecture, modules and their interfaces. Verification per-
formed using design specification will remove inconsistencies in the design. Program
specification deals with correctness of the implementation. Program verification is
usually carried out during coding and may reveal errors such as non-termination of

the program.

1.2 Formal Methods : Some Recent Trends

Formal methods are gaining importance in software development. Leveson [Lev9()
has briefly discussed the current state of the art and the future potential of formal
methods in software engineering. Gries ;Gri91] has forcefully argued for the teaching
of formal methods in computer science and pleaded for the use of such methods by
software engineers in large scale software projects. Froome and Monahan [FrM88)
discuss the role of mathematically .ormal metheds in the development and in the
assessment of safety critical systems. They have discussed pertinent industrial ex-
perience gained on ucing some of the most matured formal methods such as VDM,
Z and CCS. Most importantly they mention that UK Defense Standard on safety
critical software will make the use of formal methods mandatory for software to bhe
used by the Ministry of Defense. It is also worthy of mentioning here that in Britain
[CRN90] the Queen’s Award for technological achievemnent for the year 1990 has been
given to Oxford University for the development of formal methods in the specifica-
tion and design of microprocessors. In particular, it is reported that the use of formal
methods in the design of floating point arithmetic unit has enabled the development

time to be reduced by 12 months. For example, the formal design of microprocessors

3

[CRN90] pointed to a number of errors in the informal (ad hoc) design that had not
shown up in months of testing. Formal methods are applicable to a wide range of
problems - from very simple applications such as floating point arithmetic to most

complex systems such as robotics.

1.3 Some Issues In Specifying Large Scale Soft-
ware

This thesis is devoted to developing formal behavior specification for a large scale
industrial software system and its correctness proofs. Since the architectural design
is to be derived from the formal specifications, we also describe a transformation for
deriving a correct design from the specifications. Our study brings out some of the
problems inherent in specifying a large scale project and suggests solutions for them.

Large scale industrial software development encompasses multiple application do-
mains. For example, the software for a flight navigation system consists of the com-
ponents : software for sensor subsystems, software for visual display of the controlling
activities and software for manipulating the control system elements. It is easy to see
that developing software for each one of these domains is an independent problem by
itself. Developing a specification for large scale projects is inherently difficult due to

the following reasons :

Design Complexity Specification for problems in individual domains may have to

be developed independently and combined later.

Abstraction Levels The specification for the problem in one domain may not be
at the same level of abstraction as the specification for a problem in another
domain. Hence inconsistencies will arise if they are combined directly and
permanently. On the other hand, finding the same level of abstraction for
two problems in two different domains and/or determining the exact stage for
combining the independent domain specifications are not trivial tasks and often

requires the guidance of an application domain expert.

Specification Approaches Often a different specification technique is required or

used to specify problems in two different domains. This is partly because of

4

the nature of the application domain itself and partly because of the limitations
and versatility of the existing specification techniques. Consequently, combining
these specifications into a single framework is a complicated problem. One has

to ensure semantic consistency between several specification lavers.

A conventional approach is to study the behavior of each application domain indepen-
dently and then derive an implementation for each domain and ultimately combine
them at the coding stage. A disadvantage of this approach is that the behavior of
the total system, in general, need not be the sum of the individual behaviors. More-
over, this will lead to a potential danger if there arises an error in the communication
between two modules belonging to two different domains of the application.

The primary motivation of the thesis comes from the intent to alleviate these
problems. Even though we do not provide a complete solution for all these problems,
our attempt reveals the potentials and limitations of formal specifications in industrial

software environment and brings out the need for further research in this area.

1.4 Case Study : Automated Assembly Plant

The case study chosen in this thesis is the problem of performing automated assembly
of mechanical parts in a single static robot environment. The three major component
domains in the application are solid modeling, robotics and assembly operations.
Solid modeling deals with the representation and manipulation of complex solids
in computer systems. The correctness problem here requires the resolution whether
the complex solid as obtained by the implementation (derived from our specifications)
is indeed a practically realizable object as expressed in the requirements. According
to Requicha [Req80], it is always possible to provide a computer representation for a
solid which may not exist in the real world. The correctness proofs make sure that
this does not happen. The key part of solid modeling responsible for this problem
is the regularized boolean operations using which primitive solids can be combined
into compound solids. Therefore regularized boolean operations are specified in this
thesis. For simplicity, we restrict ourselves to polyhedral solids; however the given

specifications can be extended to include solids with curved faces as well.

5

In robotics, especially when dealing with a single static robot, the fundamen-
tal problems call for specifying forward and inverse kinematics. Every movement
performed by a robot relics on the correct implementation of forward and inverse
kinematic operations and hence we specify these two operations in this thesis.

Research in automated assembly is continuously evolving. At present, no standard
definitions and operations have come to exist; see for example [BAL91, HoS89, HuL90,
PGL89, Wol89]. Therefore verification of automated assembly operations requires a
formal definition of an object, formal definition of assembly and the specification
of assembly operations themselves. In this thesis, we address the first two parts,
namely formally specifying objects in assembly environment and defining the concept
of assembly. Automated assembiy of mechanical parts as opposed to other types of
assembly such as assembly of electronic components in a printed circuit board is
treated in the thesis.

Some people design the software first from the informal set of requirements and
then specify the design using formal techniques [Gio90]. Such specifications are called
design specifications and the correctness of such a design is derived or argued from
the design specifications. This approach is iterative in the sense that anomalies in
user requirements can be found only in the design stage and hence a major change
in both the specification and design will be required every time an error is found
in the design phase. We therefore recommend the derivation of design from formal
specifications using mathematical principles rather than from the set of informal
requirements. In this context, we provide a new methodology to derive an object-
oriented design from behavioral specifications. Object-oriented design methods are
known to be superior to the traditional functional design methods [Boo86, Cox86,
Mey88a, Mey88b]. Consequently our approach has an added advantage of designing

either a functional or an object-oriented design.

1.5 Specification Techniques

The existing formal techniques can be classified into three major categories - az-
iomatic approaches. opcrational specification techniques and definitional specification

techniques. Specifications based on propositional, predicate and temporal logic be-

6

long to the first category. The specifications in this category are expressed as a sct of
axioms or logical assertions. On the other hand, operational specification techniques
build an abstract model of the application and specify a number of operations on the
model portraying the behavior of the model. VDM (Vienna Development Method)
[BjJ82] and Z [Suf82] are two well known model-based specification techniques. The
third approach namely definitional approach builds a mathematical theory of the
object being specified which is analogous to an algebra in mathematics. The alge-
braic specification technique developed by Burstall and Goguen [BuG80] and Guttag,
[GuH80] are examples of definitional specification technique.

From these three approaches, we have chosen the operational approach for the
following reasons : (i) Operational approaches builds an abstract model of the appli-
cation which is required for realization in applications such as robotics and assembly.
(ii) There exist refinement techniques such as operation decomposition and data re-
finement which provide stepwise refinement of the modecl-based specifications into
design. (iii) Model-based specification techniques use simple mathematical primi-
tives to build a high-level model of the object and hence it is easier to refine the
abstract model into standard structures in existing programming languages. (iv)
Model-based techniques provide formal and rigorous proof techniques for reasoning
about the behavior of the system being specified.

The model-based approach VDM (Vienna Development Method) is our choice for
specifying the three application domains stated earlier and hence the entire assembly

plant. The reasons for choosing VDM are as follows :

Syntax The language for VDM, called Mcta-IV, has very few syntactic constructs
[CHJ86, And90] and so VDM is easy to learn and use. Morcover, British

Standards Institute is now standardizing the syntax of Meta-1V.

Semantics and Reasoning The goal is to specify only the behavioral aspects of
the assembly plant and reason about correctness. VDM provides a sufficient

set of abstract data types to model the cbjects in the application domains.

Top-down-design VDM is a top-down approach. Hence it is possible to state the

most abstract specification of a problem in VDM and refine it stepwise into

7

more concrete specifications. Techniques such as operation decomposition and

data reification can be used to refine VDM specification.

Real-time aspects and concurrency are two important attributes which coexist in
robot manipulations. However, these issues are to be associated more with the design
and in particular with an implementation of the software for robot manipulations.
Consequently they have to be dealt with at a lower level of the software development
for robotic applications. We claim that higher level behavioral specifications for robot
manipulations such as the one described in this thesis need not address the issues
related to real-time and concurrent aspects. However, if the goal is to specify the
control software of an actual robot, then mechanisms must be provided to map higher
level specifications into real-time and concurrent specifications, the former capturing
correctness issues and the latter addressing the performance aspects related to timing

constraints.

1.6 Thesis Organization

The thesis is organized as follows : Chapter 2 gives a brief introduction to VDM
specification technique. Only the necessary syntactic structures and their associated
semantics that are used in this thesis are given; In addition, the language for VDM,
Meta-IV, is continuously evolving and there are no standards published at the time
of writing this thesis. We, however, follow the notations given in [CHJ86] which
gives a fairly complete syntax of VDM published till then. The next three chapters
are devoted to the specifications for each one of the application domains mentioned
earlier.

The specifications for regularized boolean operations for combining polyhedral
solids are given in Chapter 3. In Chapter 4, we give specifications for the structure
of a general-purpose robotic agent and specify forward and inverse kinematic oper-
ations. The specifications for a robot and its operations use specifications for rigid
solids and their primitive operations translation and rotation. Chapter 5 provides a
formal definition of objects, their surface characteristics which are used in defining
assembly between objects and outlines the verification process of an assembly. The

notion of shape opcrators is introduced in the context of assembly. This is a new

8

concept which distinguishes our work from others in this area. In Chapter 6, we
describe a methodology for deriving an object-oriented design from a model-based
specification. The methodology is illustrated for a subset of the specifications given
in earlier chapters. Chapter 7 outlines future research work and provides a conclusion
of the thesis. Some of the specifications stated in the Appendix are more general and
can be used for a variety of applications. Consequently, they may be treated as a

reusable set of library specifications.

Chapter 2

Vienna Development Method - A
Brief Summary

The Vienna Development Method (VDM) is a high-level model-based specification
technique, designed in the late 70’s after the success of its predecessor The Vienna
Definition Language (VDL). Initially, it was designed to specify the semantics of
a programming language; however it is widely used now for specifying many other

applications as well.

The main advantage of VDM over its competitor Z is that VDM follows a top-
down approach. This enables the specification analyst to provide a very high level
abstraction of the problem and stepwise refine it towards design and implementation.
Moreover, VDM uses very few simple mathematical primitives compared to the richer
syntax of Z and hence is easier to read and understand. It is for these reasons that we
chose VDM for the current work. One advantage of Z over VDM is that Z provides
the schema calculus capability for combining two or more state space specifications
into one. This is in contrast to the inherent limitation in VDM wherein everything
must be stated within one state space specification. Even though this does not pose
problems for several information processing applications as it is currently used, we
find that it 1s one of the problems which future versions of VDM should address. We
discuss this problem in more detail in a later chapter. A detailed treatment of VDM
can be found in (BjJ87, CHJ86]; consult [Spi89] for Z syntax and refer [Hay88] for

several case studies written in Z.

2.1 Primitives of a VDM Specification

VDM is based on well-defined mathematical primitives — sets, maps, lists and trees.
In addition, it also provides facilities for the user to define new data types which are
aggregations of the primitive types. VDM is based on the approach to programming
language theory known as denotational semantics [CHJ86). The behavior of an entity
in VDM is specified by a set of operations defined on the abstract model of the
entity. Operations are specified as a collection of predicates, grouped into two major
categories, namely pre-conditions and post-conditions. Predicates are combined using,
the logical connectives and (A), or (V) and not (~). The pre-condition for an
operation is a logical formula stating the system constraints to be satisfied before the
operation is invoked; that is, if any one of the predicates in the formula is false or
undefined, the operation fails. The post-condition specifies the constraints that are to
be satisfied after the operation successfully terminates. There are propertics that are
to be satisfied at every instant. These properties, called invarianis, are also specified
in VDM as a set of constraints. Invariants are further classified into type invariants
and state invariants; the former refers to the properties of each data type which are
to be retained at every instant of that data type while the latter corresponds to the

properties of the system state.

2.1.1 Notations

Specifications in VDM use notations from logic and set theory with their conven-
tional semantics. There is no standard notation yet for VDM. Recently, efforts are
underway at National Physical Laboratory, UK for standardizing VDM notations.
We follow the notations given in [CHJ86]. Some of the standard notations used in

this thesis are the following :

11

A = B A implies B

A & B A is equivalent to B
for all

there exists

there exists exactly one
logical AND

logical OR

logical NOT

union

set membership
discriminated union

defined as

IP—mC e <>Wuw<

In addition to these standard notations, we introduce the following additional nota-

tions and conventions in writing specifications :
e The symbol @ is used for logical Exclusive-OR operation with the semantics

false, p=q=true (OR) p = q = false

true, otherwise

that for two predicates p and q,
pdq= {)

e The case construct is used with its semantics as defined in Pascal.

e We use the notation T; X T; — T in the signature part of auxiliary functions
(explained later) to mean that there are two input variables of types T; and
T3 and the output variable is of type T. Consequently, when there are k (> 2)
input variables, the notation used is

Ty x Tex...x Ty =T

e Upper case alphabets are used for variables in declaration, while the same
variables are written in lower case within expressions. Type names are written
with their first letter in upper case. Individual fields of a composite type are
written in upper case. When used, they are still written in upper case with the
name of the composite variable in lower case; this is the selector operation in

VDM.

o The variable A’ in an expression indicates that variable A is updated by that

expression.

12

o The ‘=" operator is overloaded in the sense that it is used both for assignment
as well as for comparison. Composite objects of the same type are comparable

and are compared component by component recursively until a resolution is

obtained.

The following example illustrates these conventions :

Example 1 :

Primitive geometric objects such as Points and Line segments can be described in
VDM using the primitive data type Nat0, the natural numbers. In the specifications
given below, the two composite types ‘Point’ and ‘Line-segment’ are defined using
the primitive type ‘Nat0’. ‘Distance’ is an operation defined for points which spec-
ifies the distance between two points in space. ‘Line-length’ is an operation defined
for line-segments which specifies the length of a line segment using the ‘distance’
operation for points. Thus complex geometric objects such as square and rectangle
can be specified in terms of the simple ones such as point and line segment. For
both ‘Line-length’ and ‘Distance’, the pre-condition is not given. This means that
the pre-condition for these operations is always true. The type invariant for a line

segment asserts that its end points are distinct.

Point X : Nat0

Y : Nat0

Z : Nat0
Line-segment :: END-POINT1 : Point

END-POINT?2 : Point

Line-length : Line-segment — Nat0
post-Line-length (1, l) £ I = distance (END-POINT1({), END-POINT2(!))
Distance : Point x Point — Nat0
post-Distance (p, q, d) =
& = \/(X(p) - X(@P + (Y(p) = Y(9)? + (Z(p) - Z(9))?
2 END-POINTI(!) # END-POINT2(!)

inv-Line-segment ({)

2.1.2 Consistency of VDM Specifications

Consistency of specifications can be checked by asserting that the state invariant is

respected by every operation. That is,

13

pre-OP A inv (S) A post-OP = inv (S’)
where “inv (S)” and “inv (S’)” refer to the state invariants before and after the
operation OP respectively and “pre-OP” and “post-OP” denote the pre- and post-
conditions of OP. If every operation in the specification respects this condition, then
the specification is consistent. Often it is tedious to derive formal consistency proof
for every operation in the specification because additional predicates describing facts
about the environment may be required. Hence a rigorous approach as suggested by
Jones [Jon86] is taken. The following example illustrates these concepts :
Example 2 :
A Database for a Personal Address-Phone Book is specified below :
Assume that the names are unique and each page of the book contains information
about only one person. It is also assumed that the pages are sorted using the names.

The book is modeled as a list of pages.

State ::

BOOK : Page-list

Page :: NAME : String
ADDRESS : String
PHONE : Nat

INIT ()

(* Initialize the Book *)
ext BOOK : wr Page-list
Post book’ = <>

ADD (P : Page)
(* Add a new page to the book. It must be assured that the name does not exist in
the book before adding the page. The new name is inserted into a position such that
the name before the new name is alphabetically less than the new name and the one
after the new name is greater than the new name and the other pages in the book
are not corrupted due to insertion. *)
ext BOOK : wr Page-list
Pre

(Vi€ {1 - len book}) (NAME (book[i}) # NAME(p))

14

ALETETE VR L e AT

Post
(~ (3 k€ {1 lenbook}) (NAME(book[k]) < NAME(p))
=> (book’[1] = p) A

(Vi€ {1 len book}) (book’[i+1]) = book]i])
)@
(~ (3k € {1 len book}) (NAME(book[k]) > NAME(p))
= (Vi€ {1 - len book}) (book’[i] = book[i]) A
(book’(len book + 1] = p)
) &
(3' k € {1 -+ len book})
((NAME(book[k]) < NAME(p)) A
(NAME(book[k+1]) > NAME(p)) =
(Vi€ {1 k})(book’[j] = book[j]) A
(book’[k+1] = p) A
(Vj € {k+1 - len book}) (book’[j+1] = book]j]))

DELETE (N : String)
(* Delete an already existing page corresponding to the given name; if the page does
not exist, the operation fails. The post condition asserts that the intended page does
not appear in the updated book. In addition, it is also to be stated that pages arc
not corrupted by the DELETE operation. The reason for introducing such a strong
post condition is that it is possible to have several implementations satisfying the
first condition, but corrupting the book; for example, some other page may also get
deleted or pages might have been rearranged changing the order.x)
ext BOOK : wr Page-list
Pre

(3'i € {1 -+ len book}) (NAME(book[i]) = n)
Post

~ (3k € {1 .- len book’) (NAME(book’[k]) = n) A

(Vi€ {1 lenbook})

((NAME(book[i]) < n = book’[i] = book([i]) A

15

(NAME(book([i]) > n = book’[i-1] = bookl[i]))

GET-PHONE (N : String) P : Nat
(* Get the phone number for the given name. *)
ext BOOK : rd Page-list
Pre

(3'i € {1 lenbook}) (NAME(book[i]) = n)
Post

(3'ie {1 lenbook})

((NAME(book[i]) = n) A (p’ = PHONE(book[i])))

State Invariant : The state invariant in this case asserts that the names are unique
at any instant and they are alphabetically ordered at all times.
inv-State 2
(Vi) € {1 len book})
((i # j = NAME(book[i]) # NAME(book{j])) A
(i < j = NAME(book|i]) < NAME(book[j]))

)
Consistency Check :

We give the proof for only one operation - ADD. The proofs for other operations are

similar.

We prove the consistency using the convention

pre-Op A inv (s) A post-Op = inv (s)
Since the post-condition consists of three predicates connected by @, only one of
them can occur at any one time. Let us take the most general case; proofs for the
other two cases are most straightforward. Thus, it is be proved that
(Vie {1 -- len book}) (NAME(book[i]) # NAME(book[p])) A
(Vij€ {1 - len book})

((i #j = NAME(book[i]) # NAME(book[j])) A

(i < j = NAME(book[i]) < NAME(book]j]))) A
(3' k € {1 -- len book})

16

((NAME(book[k]) < NAME(p)) A

(NAME(book[k+1]) > NAME(p)) =

(Vje€ {1- k}) (book'[j] = book][j]) A

(book’[k+1] = p) A

(Vj€ {k+1 - len book}) (book’[j+1] = book[j])) =
(Vij € {1 lenbook'})

((i #j => NAME(book’[i]) # NAME(book’[j])) A

(i <j = NAME(book’[i}) < NAME(book’[j])))
From the post-condition, it can be easily observed that all the pages in the old book
are retained and the new page is added among them. Since the invariant is true
before the operation, for any indexes i and j in the new book, if bookli] and bookfj]
are pages already available in the old book, then it is true that NAME[i) # NAMEj).
Henceit is to be proved that there is no page in the old book that has the same name
as the new name to be added. This is assured by the pre-condition and hence it is

proved that
(Vi,j€ {1 len book'}) (i #j= (NAME(book'[i] # NAME(book’[j])))
For the second part of the proof, we have to show that
(Vi,j€ {1 - len book’)
(i <j = NAME(book’[i]) < NAME(book’[j}))
There are four different situations to be considered here; let the new page be added
at the (k+1)* position :
Case 1:1i,j < (k+1)
In this case, NAME(book’[i]) < NAME(book’[j]), since all the pages from I to k in
the new book are retained from the old book as stated in the post-condition and the
invariant is true before the operation.
Case 2: 1,j > (k+1)
The same arguments in Case 1 are applicable here as well.
Case 3:1i < (k+1) and j = (k+1)
From the post-condition, it is clear that the new page is greater than the k'* page;
i.e.,

NAME(book[k]) < NAME(p)

17

and the first k pages are retained. Hence the following are true :

(1 <i<k) A (NAME(book[i]) < NAME(p))
Case 4 : i = (k+1) and j > (k+1)
The same arguments as in Case 3 are applicable.
Therefore we have proved the consistency of the specification with respect to the
stated invariants. In addition to consistency checking, we used a rigorous approach
to reason about the system. A number of such rigorous proofs are shown, for example,

on solid modeling, robotic motion and assembly in subsequent sections.

2.1.3 Some more conventions

The let ...tel clause is used to simplify expressions. For example,
let r = RADIUS (Cir) in
A’ =11 * r?
tel
is an abbreviation for A’ = IT x (RADIUS (Cir))2.

We also introduce type equivalences such as
Line = Axis-Rep
Solid = Structure
in our specifications. Types Ty and T; are type equivalent in the sense that a variable

of type T, can be used in a place where a variable of type T; is expected.

In VDM, two different styles of specifications, namely pure functional style and model-
based style can be followed. If a specification does not require an explicit reference to
a global variable, then it can be written using the functional style. However, when
a specification requires an explicit reference to one or more global variables, which
incidentally define the state of the system, it is written in model-based style. An-
other major difference between these two styles is the presence of ext clause in the
niodel-based style that lists all the global variables accessed in that operation with
their read/write attributes. Invariably, both styles of specifications will be required

for a large problem specification.

18

We use a number of auziliary functions in the specifications. These are, in fact,
modules of a complex specification. They are generally written using the functional
style of VDM. In this thesis, auxiliary functions represent actions returning some val-
ues as opposed to the constraints which always return logical values. The following
example illustrates the use of auxiliary functions.
Example 3 :
From plane geometry, it is well known that two intersecting line segments have only
one point in common to both line segments. In designing a geometric reasoning sys-
tem, this requirement can be specified as follows :
Intersect : Line-segment x Line-segment — Point
post-Line-segment (;, I3, p) 2
(p’ = convex-comb (END-POINTI(!;), END-POINT2(L,))) A
(p’ = convex-comb (END-POINTI(i;), END-POINT2(!;)))
Convex-comb : Point x Point — Point
post-Convex-comb (p, q, r) & BA0ZA)('=Ap+(1-))q)
Here, ‘Convex-comb’ is an auxiliary function returning a point which is the convex

combination of two points p and q.

19

Chapter 3

Regularized Boolean Operations

One of the important tasks in solid modeling is the creation of complex solids from
primitive solids. Almost all solid modeling techniques use regularized boolean oper-
ations to combine solids into compound solids [Req80]). However, they are all algo-
rithmic in nature; i.e., they describe how the compound solid can be created and/or
represented in the modeling system. Qur goal is to study the behavior of compound
solids and reason about their behavior in an assembly environment. Hence it is neces-
sary to build abstract models of primitive solids and specify the regularized boolean
operations using these abstract models. In this chapter, we provide formal specifi-
cations for regularized operations for combining polyhedral solids. Generalization to

solids with curved faces is not treated in this thesis.

3.1 Solid Modeling

Solid modeling is a design aid for the construction of complex mechanical structures.
Software for solid modeling deals with representation and manipulation of solids
within computer systems. Existing solid modeling techniques such as Constructive
Solid Geometry (CSG), Boundary Representation (B-Rep) and Cell Decomposition
are all constructive in the sense that they describe algorithmically how to create and
represent complex solids from primitive solids, but do not address the question of
correctness of those algorithms. It is mandatory to ensure correctness of the solid
modeler; otherwise the software may represent objects which are not practically re-
alizable. Requicha claims that in computer systems it is possible to represent solids

which do not exist in reality. We therefore formally characterize the representa-

tions and specify operations of a solid modeler. The most important operation of a
solid modeler which exhibits its behavior is that which combines primitive solids into
compound solids. Other operations such as boundary approximation, boundary eval-
uation and membership classification [ReV85, Til80] are representation dependent
and deal with the implementation of the solid modeler rather than with its behavior.
Almost all solid modeling techniques use regularized boolean operations for combin-
ing solids [Req80]. Hence in this chapter, we formally represent a solid and specify

the regularized boolean operations within this abstract model.

3.1.1 Regularized Operations

The three Boolean operations supported by a majority of solid modelers are union,
intersection and difference. A straightforward application of these set theorctic op-
erations on solids may produce a dangling edge or a dangling face (see Figure 3.1 and
Figure 3.2). Hence Requicha [Req80] has considered the theory of r-sets and r-set
operations for modeling solids. Thy= theory views a solid as a closed point set and
meandates that the result of every regularized operation is also a closed set.
For two point sets X and Y, the regularized operations are defined as

XU Y=%ki(XUY)

XMY=FLi(XNY)

X=—"Y=%ri(X-Y)

c*X = ki (cX)

where k refers to closure and i refers to interior of a point set. This definition can
be viewed as a very high level specification for regularized operations. Algorithms
of Tilove [Til80, Til84] and Requicha [ReV85] are naive one step implementations of
the above definition. However, using these algorithms, it is difficult to reason about.
the behavior of the operations which combine the solids. For example, proving that
the implemented operations do not create dangling edges or dangling faces, requires
neighborhood approximations and hence is a tedious task. Hence we move to the
next level of abstraction to define the solid and the regularized operations and prove
that these abstract operations will not produce any dangling edges or dangling faces.

Any implementation derived from these formal specifications will therefore respect

21

Figure 3.1: Intersection of Solids

the r-set theory. In addition, we have also discussed extensions to the representation

techniques to include physical properties of solids [ABP88b, ABP90).

3.2 Abstract Model of a Solid

As mentioned earlier, we consider only polyhedral solids in this thesis. An abstract
polyhedral solid is defined in terms of its bounding surfaces, called faces. It is to
be noted that the abstract model is not a boundary representation of a solid; it
provides only an abstract view of the solid. Each face is identified by the set of its
vertices and by its ordered collection of directed edges. An edge, in turn, consists of
two vertices V1 and V2, and is directed, say from V1 to V2. The ordering imposed
on the edges of a face and the direction of each edge, enables us to find out the

interior of a face. Associated with each face is a vector, the normal to the face whose

22

Figure 3.2: Dangling Face due to Intersection

direction determines the side of the face contributing to the interior of the solid. This
normal is a directed line segment perpendicular to the plane of the face (and hence
perpendicular to every edge belonging to this face) such that looking from the other
end of the normal towards the face enables one to see the direction of edges follow

one convention (say clockwise).

This definition of normal allows us to view the interior of an object from its
collection of faces. See Figure 3.3 and Figure 3.4. The directed edges of the face with
vertices (1,2,3,8) are {<1,8>, <8,3>, <3,2>, <2,1>}. Similarly, the directed edges
of the face with vertices (1,2,5,6) are {<1,2>, <2,5>, <5,6>, <6,1>}. Notice that
the edge common to these two faces has opposite directions as shown in Figure 3.3.
In Figure 3.4, the hollow solid is obtained by scooping out the solid portion with
vertices (9,10,...,16) from the solid with vertices (1,2,...,8). The resulting solid has
sixteen vertices (1,2,...,16) and ten faces. Notice that the directed edge <13,12>
of the face with vertices (12,13,14,15) of the inner solid becomes the directed edge
<12,13> of the face with vertices (4,5,6,7,12,13,14,15) in the resulting solid. Similar

remarks apply to other edges. The concept of normal as defined here is central to

23

our discussion in later sections.

7 4

v

Figure 3.3: Directed Edges in a Solid

In order to state and prove type invariants, we need an initial set of hypotheses.

These are enumerated below :

3.2.1 Imitial Hypotheses

H1 Every input solid is polyhedral with no holes and has a well-defined interior. It

is enclosed by at least four bounded planes called faces.

H2 A faceis a bounded plane defined by the enclosure of at least three line segments

called edges. The edges of a given face lie in the same plane.

H3 Associated with each face is a directed line segment called normal which points

to the interior of the solid of which this face is a constituent. By the definition

24

15 12

14 13

Y
3

16 11

Figure 3.4: Directed Edges in a Hollow Solid

of normal, this directed line segment is perpendicular to the bounded plane of

the face and hence is perpendicular to every edge of the face.

H4 Every face is simply connected; that is, starting from a verlex of an edge, it
is possible to traverse sequentially through the adjacent edges (recall that the

edges are directed) and return to the same vertex.
H5 Two faces sharing an edge are adjacent and normals to adjacent faces are distinct.

H6 An edge is incident to two distinct points called vertices; these are the end points

of the edge.

H'7 Two edges of a face having one vertex in common are adjacent and vertices of

adjacent edges are non-collinear.

25

H8 Every input solid s is a regular solid; i.e., s does not have a dangling edge or a
dangling face. Every vertex in s is shared by at least two edges and every edge

in s is shared exactly by two faces of s.

3.2.2 Illustration of the Boolean Operations

In this section we illustrate the three regularized Boolean operations - UNION, DIF-
FERENCE and INTERSECTION with an example. In general, the result of applying
one of these operations to two solids s, and s, may produce a single solid s or a collec-
tion of solids s3. The input solids satisfy the properties H1-H8; however, the resulting
solid s3 may not inherit all these properties. For example, the difference operator may
produce a solid with holes in some faces. That is, some faces may enclose a multi-
ply connected region, which is a region defined by a disjoint collection of edges with
each collection of edges satisfying H4. See Figure 3.5. However all the other stated
properties, in particular the regularity property H8, will be inherited by the resulting
solid.

A face { of s3 is created from only one of the following possibilities : (1) It is an
unmodificd face of s; or an unmodified face of sz; (2) It is a face of s; modified due
to the interference of one or more faces of s; (3) It is a face of s; modified due to the
interference of one or more faces of s;.

Example1 :

Consider the two objects s; and s; shown in Figure 3.6. For notational convenience,
the vertices of s; are given in upper case letters and those of s; are given in lewer
case letters. We denote a face by its bounding vertices. The table following the figure
gives the faces of s3, created by each one of the operations on s; and s;. The ordering
of faces and the starting vertex of each face is immaterial for the discussion. For each

face the direction of edges are given in clockwise direction as seen from its normal.

UNION

Facel - VI1,V2,V3,V4,V1 unmodified
Face 2 - V1,V4,V8,V5V1 unmodified
Face 3 - V1,V5,V6,V2,V1 unmodified
Face 4 - V5,V8,V7,V6,V5 unmodified

26

Vi
V,
V4 V3
Vi /
Vg Va A&+
Vs Vg
Vs A\
Vs Ve
Figure 3.5: Solid Obtained as the Difference of Two Solids
Face 5 - V4,V3,v14’,v4’,v8' v58’,V7,V8,V4 modified from V4,V3,V7,V8,V4
Face 6 - V3,V2,V6,V7,v58’,v5'v1’,v14 V3 modified from V3,V2,V6,V7,V3
Face 7 - v3,v2,v6,v7,v3 unmodified
Face 8 - v2,v3,v4’v14’v1’ v2 modified from v2,v3,v4,v1,v2
Face9 - v3,v7,v8,v4'v3 modified from v3,v7,v8,v4,v3
Face 10 - v7,v6,v5’,v58’ v8’ vT modified from v7,v6,v5,v8 v7
Face 11 - v2,v1’,v5' v6,v2 modified from v2,v1,v5,v6,v2
DIFFERENCE
Facel - V1,V2,V3,V4,V1 unmodified
Face 2 - VI1,V4,V8,V5,V1 unmodified
Face3 - V1,V5,V6,V2,V1 unmodified
Face4 - V5,V8,V7.,V6,V5 unmodified

27

Figure 3.6: Regularized Boolean Operations on Solids

Face 5 - V4,V3,v14’ v4’v8 ,v58,V7,V8,V4 modified from V4,V3,V7,V8,V4
Face6 - V3,V2,V6,V7,v58,v5'v1’vl14’ V3 modified from V3,V2,V6,V7,V3
Face 7 - v4,vl,v5,v8,v4 unmodified

Face 8 - vl,v1’v5’,v5,vl modified from v2,v1,v5,v6,v2
Face9 - v8,v5,v5’,vb8’,v8'v8 modified from v8,v7,v6,v5,v8
Face 10 - v4,v8,v8’,v4’ v4 modified from v4,v3,v7,v8,v4
Face 11 - v4'wv14'vl’,vl,v4,v4’ modified from v1,v2,v3,v4,vl
INTERSECTION

Facel - vl,v4,v8,vH,vl unmodified

Face2 - v1,v5,v8’ vl’ vl modified from v2,v1,v5,v6,v2
Face3 - v1’,v5,v58’ ,v14’ v]’ modified from V3,V2,V6,V7,V3
Face4 - v4',v14’v58’ v8' v4’ modified from V4,V3,V7,V8 V4
Face 5 - v4,v4’v8 v8,v4 modified from v4,v3,v7,v8,v4
Face6 - v8,v8’,v58’,v5’,v5,v8 modified from v8,v7,v6,v5,v8
Face 7 - vd4,vlvl’vl4’ v’ v4 modified from v1,v2,v3,v4,vl

It is clear from this example that the resulting solid s3 can be defined unambiguously

28

if s; and s; have been defined in terms of their respective faces and normals. Since
each face f of s; is either a modified or unmodified face f of s, or s;, the normal of {
can be easily computed from f; this is because of the fact that the normal to a face is
invariant due to the modification of the face. Hence the interior of the resulting solid
s3 can be defined using the normals to its faces. In section 3.5, we use these invar int

properties to assert the validity of the specifications.

3.3 Specifications for Boolean Operations

We follow a top-down approach in providing the specifications for the three opera-
tions - UNION, DIFFERENCE and INTERSECTION. The constraints may include
auxiliary functions whose specifications are given. Simple functions are not specified
and only their signatures are stated at the end. The data type modcling an object is

given below :

Object = TYPE : {SIMPLE, COMPOSITE}
FACES : Facetype-set

Facetype :: FACEID : Nat0
NORMAL : Direction
EDGES : Edgetype-list-set

Edgetype :: EDGEID : Nat0
VERTICES : Point-list
Surface = Point-set
Operation = {UNION, INTERSECT, DIFFERENCE}

An object can be a simple polyhedron (satisfying the properties H1-H8) or a compos-
ite polyhedron (a polyhedron with holes in some faces). For simplicity of discussions,
we assume that every input object type is SIMPLE, although the type of the result
may be COMPOSITE. It is easy to modify our specifications for COMPOSITE type

inputs as well.

An object is defined in terms of its faces without regard to the ordering of faces

29

and so the field ‘FACES’ is defined as a set. However, for each face, there is an
ordering imposed on the edges due to the definition of normal (see Figure 3.3) and
so ‘EDGES’ is defined as a list-set. The cardinality of this set is 1 for each face of a
SIMPLE type object and for COMPOSITE type, the cardinality of the set is greater
than 1 for at least one face. Each element of EDGES is a list of vertices ordered by the
direction of iraversal of edges required by the normal to this face. The identification
fields in Facetype and Edgetype are essential. An edge may be shared by two faces
of the same object type and two faces of two different object types may be touching
each other. In such situations we need to identify each edge or face without any
ambiguity. So, we insist on unique EDGEIDs and FACEIDs. This is also justified
because an edge e shared by two faces f; and f; has opposite directions when viewed
from their normals; hence EDGEID (e) in f; # EDGEID (e) in f; must hold. So, we
add the additional hypothesis :

H9 Every edge in the input solid has a unique EDGEID and every face has a unique
FACEID. Consequently the cardinality of the set of EDGEIDs representing the

edges of a given face equals the number of edges in that face.

Notice that no identification field is associated with the object definition given above.
However, when this specification is embedded in the specification of an environment
such as robotic assembly of mechanical parts, the identification field for objects may
become necessary.

Types ‘Point’ and ‘Direction’ in the above specifications are assumed to have been
defined already. ‘Nat0’ refers to the set of natural numbers including zero. It is to be
noted that the above types capture the inherent structure of any polyhedral object
in terms of its bounding faces, edges and vertices without regard to any specific
representation.

The specifications for the three regularized Boolean operations - union, intersec-
tion and difference are given next. Since the two operations difference and intersection

can produce multiple objects, the result of Boolean operations is of type Object-set.

BOOLEAN-SOLIDS (s, sz : Object, OPR : Operation) s3 : Object-set
(* The specifications cover the boolean operations UNION, INTERSECTION and

30

DIFFERENCE. The type of operatioi: is passed as a parameter OPR. The result is
a set of objects. *)

Post
s3 = {s | s € Object A validate (s, 1, s2, opr)}

(* The operation ‘Validate’ ensures that the resulting solid s obtained by the operation

Opr on solids s; and s;, indeed satisfies the properties of a SIMPLE or COMPOSITE
polyhedron.)

Validate : Object x Object x Object x Operation = Boolean
p:e-Validate (s, s;, sq, Oopr) 2
(* the input solids are of type SIMPLE. *)
(V f; € FACES (s;)) (card EDGES(f;) = 1)
A (V f; € FACES(s2)) (card EDGES(f;) = 1)
post-Validate (s, sy, s, opr, b) 2
b’ <« let f-col; = FACES (s;), f-col, = FACES (s;),
f-colz = FACES (s) in
case opr of
(* For the ‘UNION’ operation, each face of the new object must
be either from s; or from s; or newly created from the faces of
s; and sy; however, the three domains from which this face is
created, must all be distinct. *)
UNION : (* post-conditions for UNION)
(* assert the volumetric properties *)
volu-space (s;) C volu-space (s) A
volu-space (s;) C volu-space (s) A
(V{3 € f-cols)
((3! f; € f-coly)
(fs = mk-facetype (get-new-faceid, NORMAL (f1),
copy-edges (f1)))
@& (31, € f-colp)
(f3 = mk-facetype (get-new-faceid, NORMAL (f2),

31

copy-edges (12)))
@ f3 € create-faces (s;, s3, opr))
(* For the ‘DIFFERENCE’ operation, every face f3 of the newly
created solid s must be a face f; of solid s,, or it can be a tace
f, of the solid s,, provided that it is within the solid s, or a
newly created face. Note that the ‘DIFFERENCE’ operation
subtracts volume of solid s; from s; and so s is a part or whole
of s;. This implies that if a face f3 in s is an unmodified
face f; of s;, then it will have its NORMAL reversed. *)
DIFFERENCE : (* post-conditions for DIFFERENCE x)
(* assert the volumetric properties *)
volu-space (s) C volu-space (s;) A
(V 3 € f-col)
(2 £, € f-coly)
(fs = mk-facetype (get-new-faceid, NORMAL (f1),
copy-edges (f1)))
® (3 f; € f-coly)
(bounded-plane (f3) C volu-space (s;) A
f; = mk-facetype (get-new-faceid, reverse (NORMAL (2)),
copy-edges (f2)))
® f; € create-faces (s, s3, opr))
(* For the INTERSECT’ operation, every face f3 of solid s must
be a face f; of solid s;, provided it is within solid s,, or a face
f, of solid s, provided it is within solid s; or it belongs to the
newly created set of faces. %)
INTERSECT : (* post-condition for INTERSECTION *)
(* assert the volumetric properties *)
volu-space (s) C volu-space (s;) A
volu-space (s) C volu-space (s3) A
(V {3 € f-col3)
((3' f; € f-coly)

32

(fa = mk-facetype (get-new-faceid, NORMAL (f1),
copy-edges (f1)) A
bounded-plane (f3) C volu-space (s;))
® (3! f; € f-coly)
(f3 = mk-facetype (get-new-faceid, NORMAL (f2),
copy-edges (f2)) A
bounded-plane (f3) C volu-space (s;))
® f3 € create-faces (s, so, opr))
endcase
(* assert that adjacent faces are not coplanar. *)
A (V f31, f3; € f-cols)
(Adjacent-faces (f3;, fa2) =
NORMAL (f3;) # NORMAL (fz;) A
NORMAL (f31) # reverse (NORMAL (f3;)))
(* construct the new object s. *)
A if card EDGES (f-cols3) = 1 then
s’ = mk-object (TYPE = ‘SIMPLE’, {-col3)
else s = mk-object (TYPE = ‘COMPOSITE’, f-col,)

tel

(* Function ‘copy-edges’ produces a copy of all edges of the input face f, witlh
EDGEIDs replaced by new ids. *)

Copy-edges : Facetype — Edgetype-list-set
pre-Copy-edges (f) g i # NIL
post-Copy-edges (f, set-of-e-col)

o

(V e-col € set-of-e-col)
((3! e-col; € EDGES (f))
((V e € elems e-col)
((3! e; € elems e-coly)
(e'= mk-edgetype (get-new-edgeid, VERTICES (e,))))))
(* The function ‘Adjacent-faces’ checks whether the two faces f; and f, share a com-

mon edge in reverse directions. %)

33

Adjacent-faces : Facetype x Facetype — Boolean
pre-Adjacent-faces (f;,) £ (f; # NIL) A (f; # NIL)
post-Adjacent-faces (f;, f2, b) 2
b’ & (Je € elems el; | el; € EDGES (f;))
((3! e; € elems el, | el; € EDGES (f3))

(VERTICES (e;) = rev VERTICES (e;)))

(* ‘create-faces’ is a function which creates a new set of faces from two collections
of faces belonging to two different solids. The specification for this function shown
below also checks for the relationships between the three sets of faces. *)
Create-faces : Object X Object x Operation — Facetype-set
post-Create-faces (s, sz, opr, f-cols) 2
let f-col; = FACES (s;), f-col; = FACES (s2) in
(* f-col; denotes only newly created faces. *)
(f-col; N f-colz = {}) A (f-col; N f-colz = {}) A
(V 15 € f-coly)
(case opr of
UNION :
(3" £, € f-coly)
(fs = intersect-face (fi, f-col;) A
bounded-plane (f3) C volu-space (s;))
& (3! f; € f-coly)
(f3 = intersect-face (f;, f-col;) A
bounded-plane (f3) C volu-space (s;))
DIFFERENCE :
(3" £, € f-coly)
(f3 = intersect-face (fj, f-col;) A
bounded-plane (f3) C volu-space (s;))
® (3! £, € f-coly)
(f3 = intersect-face (f;, f-col;) A
bounded-plane (f3) C volu-space (s;) A
NORMAL (f3) = reverse (NORMAL (f;)))

34

INTERSECT :
((3! f; € f-coly)
(fs = Intersect-face (fi, f-coly) A
bounded-plane (f3) C volu-space (s;))
V(3! 1, € f-coly)
(f3 = intersect-face ({s, f-col;) A
bounded-plane (f3) C volu-space (s;)))
(* If the newly created face can be obtained as a modified face f; of
s; and can also be obtained as a modified face f; of s,, then
normals of f; and f; should point in the same direction in order
to assure that the resulting face contributes to the interior of s3.)
A if f; = intersect-face (fi, f-colp) A
f3 = intersect-face (fz, f-col;) then
~(opposite-direction (NORMAL (f;), NORMAL ({;)))
endcase)
tel

(* The function ‘Intersect-face’ computes a new face created by the intersection of
a face with another set of faces. Since the newly created face is the original face
modified only by the intersection of all faces in the second parameter, the NORMAL
of the newly created face is set to that of the original face. *)
Intersect-face : Facetype x Facetype-set — Facetype
post-Intersect-face (f,, f-col, f,) 2
~ unmodified-face (f;, f,) A
let set-of-e-col; = EDGES (1)), set-of-e-col, = EDGES (f,) in
(V e-col, € set-of-e-col,)
((Vie 1 len e-col,)
(let e = e-col,(i) in
(3! e-col; € set-of-e-col,)
((3! e; € elems e-col,)
(€’ = mk-edgetype (get-new-edgeid, VERTICES (¢,))))
(* unmodified edges of f,)

35

@ (3! f € f-col)
(~ unmodified-face (f, f,) A
(3! e-col, € EDGES (1))
((3! e; € elems e-col,)
(planar (f;, e;)
(* assert that e, lies in the plane of f;. *)
A €' = mk-edgetype (get-new-edgeid, VERTICES (e3))))
(* unmodified edges of some f *)
® (e € create-edges (f,, f) A
planar (f;, €))))
(* assure the connectivity information between the edges. *)
A (Vie2.. len e-col,)
(let verl = VERTICES (e-col.(i 1)),
ver2 = VERTICES (e-col,(i)) in
hd ver2 = hd tl verl) A
hd e-col,(1) = hd tl e-col, (len e-col,)
tel
(* assure that vertices of adjacent edges are non-collinear. *)
A (V v,u,w € Point)
((v,u,w € union {elems VERTICES (e) | e € elems e-col, } A
(u# v) A (w # v)) = (v # convex-comb (u,w)))
(* assure that the elements of set-of-e-col, are not connected. *)
A (V e-col,y, e-col,p € set-of-e-col,)
(e-col,y # e-col; =
(Ve € ecoly)
((V er € e-colyy)
(elems VERTICES (e) N elems VERTICES (e;) = {}))) A
f, = mk-facetype (get-new-faceid, NORMAL (f;), set-of-e-col,.)
tel

(* ‘unmodified-face’ asserts that the face f; is a copy of the face {,, except for the face

and edge identification fields. *)

36

Unmodified-face : Facetype x Facetype — Boolean
post-Unmodified-face (f;, f,, b) 2
b’ ¢ let set-of-e-col; = EDGES (f;), set-of-e-col, = EDGES ({,) in
(V e-col; € set-of-e-col;)
((Y e; € elems e-col,)
((3! e-col, € set-of-e-col,)
((3! e, € elems e-col,)
(VERTICES (e;) = VERTICES (e,)))))

tel

(* ‘create-edges’ function creates a new set of edges from the two faces passed as
input. *)
Create-edges : Facetype x Facetype — Edgetype-set
post-Create-edges (fi, f,, e-col) 2
(Ve € e-col)
((3! e-coly € EDGES (f;) A
(3! e-coly, e-col; € EDGES (f;))
((3! e; € elems e-col; A
3! e; € elems e-col; A
3! e5 € elems e-colz) A
(~ unmodified-edge (e1, €) A ~ unmodified-edge (e, €) A
~ unmodified-edge (e3, e) A
(e = part-of (e, e3) &
e = extension-of (e;, e2) @ e = in-between (¢, e;) &

e = (in-between (eq, €3) A e; # €3)))))

(* ‘unmodified-edge’ asserts that e is a copy of e, except for the identification field.
*)

Unmodified-edge : Edgetype x Edgetype — Boolean
post-Unmodified-edge (ey, e, b) =
b’ & (hd VERTICES (e) = hd VERTICES (e;) A

hd tl VERTICES (e) = hd tl VERTICES (e,))

37

vV (hd VERTICES (e) = hd tl VERTICES (e1) A
hd tl VERTICES (¢) = hd VERTICES (e;))

(* ‘part-of’ asserts that edge e is a portion of the edge e; by the intersection of e;. *)

Part-of : Edgetype x Edgetype — Edgetype
post-Part-of (e;, e, €) £
let v,, v, = VERTICES (e) in
v; € elems VERTICES (e;) A
v, = convex-comb (hd VERTICES (e;), hd tl VERTICES (e;)) A
(vi # v2) A € = mk-edgetype (get-new-edgeid, vy, v;)
tel

(* ‘extension-of * asserts that e is obtained as the extension of the edge e;. This case
occurs only when two edges each belonging to different faces are adjacent and their

vertices are collinear. *)

Extension-of : Edgetype x Edgetype — Edgetype
pre-Extension-of (e, e2) 2
let v;, v, = VERTICES (¢,),

v3, v¢ = VERTICES (e;) in

(v = v3) A (collinear (vy, va, v4))

tel

e

post-Extension-of (e, e, €)
let v, v, = VERTICES (e) in
v; = hd VERTICES (e;) A
v, = hd t] VERTICES (e;) A
vi# va A
e’ = mk-edgetype (get-new-edgeid, vq, va)
tel

(* ‘in-between’ asserts that the vertices of the edge e are obtained as the convex
combinations of the vertices of the edges e; and e;. Note that e; and e; must be

distinct in this case.*)

38

In-between : Edgetype x Edgetype — Edgetype
pre-In-between (e, ;) =]
(% assure that e; and e, are not intersecting. *)
let vy, v = VERTICES (e,),
v3, v4 = VERTICES (e;) in
(vs # convex-comb (v;, v3)) A (v4 # convex-comb (vj, v2))
tel
post-In-between (e;,e,,¢e) 2
let v, vo = VERTICES (e) in
v1 = convex-comb (hd VERTICES (e,), hd tl VERTICES (e;)),
vz = convex-comb (hd VERTICES (e;), hd tl VERTICES (e2))A
vi #va A
e’= mk-edgetype (get-new-edgeid, v, vj)
tel

(* ‘Collinear’ asserts that three points passed as arguments are, in fact, collinear. *)

Collinear : Point X Point x Point — Boolean
post-Collinear (p, q, r) 4

p = convex-comb (q, r) V q = convex-comb (p, r) V r = convex-comb (p, q)

(* ‘convex-comb’ asserts that point w divides the line segment defined by the points

u and v, into two parts. *)

Convex-comb : Point x Point — Point

post-Corvex-comb (u, v, w) = (3AN0SAL)(W=Au+(1=Xv)

(* The auxiliary functions ‘get-new-edgeid’ and ‘get-new-faceid’ return new identifi-
cation numbers for newly created edges and faces respectively, every time when they
are called. These functions can be specified as below *)

Get-new-edgeid : — Nat0

post-Get-new-edgeid (n) 2 (Y x € Edgetype) (EDGEID (x) # n)
Get-new-faceid : — Nat0

post-Get-new-faceid (n) = (V x € Facetype) (FACEID (x) # n)

39

Bounded-plane : Facetype — Surface

Volu-space : Object — Surface
Opposite-direction : Direction x Direction — Boolean
Reverse : Direction — Direction

Planar : Facetype x Edgetype — Boolean

3.4 Type Invariants

One of our major goals is to prove the correctness of the formal specifications in the
sense that only regular solids are produced as a result of BOOLEAN-SOLIDS. In
this section, we state and prove the invariants for FEdgetype and Facetype, these type
invariants are used in the next section for proving the regularity of resulting objects.

In the following proofs, we use the style of Jones [Jon86), number the equations
on the left and show the references on the right following three ‘dots’.

Edgetype Invariant

Every edge of the newly created solid has exactly two distinct vertices. Formally
stated,
inv-Edgetype (mk-edgetype (eid, ver)) £ (len ver = 2) A (ver(1) # ver(2))
Proof :
In ‘copy-edges’,
e’ = mk-edgetype (get-new-edgeid, VERTICES (¢;)) ... Copy-edges
= VERTICES (e) = VERTICES (&)
(1) = len VERTICES (e) = len VERTICES (e;)

from e, € elems e-col, | e-col; € EDGES (f) ... Copy-edges
= e € elems e-col; | e-col; € EDGES (f,) A f; € FACES (s;) ... Validate
OR

= e; € elems e-col; | e-col; € EDGES (f2) A f2 € FACES (s;) ... Validate

infer e, is an edge of an input solid.

from (1.1) and len VERTICES (e;) = 2 ...(H6)
infer len VERTICES (e) = 2
from (1.1) and VERTICES (e;)(1) # VERTICES (e;)(2) ...(HS6)

infer VERTICES(e)(1) # VERTICES(e)(2)

40

In ‘Intersect-face’,

e’ = mk-edgetype (get-new-edgeid, VERTICES (e,)) ... Intersect-face
| from e, € elems e-col; ... Intersect-face
|
1 = e € elems e-col; | e-col; € EDGES (f;) A f; € FACES (s;)

OR

= e € elems e-col; | e-col; € EDGES (f;) A f, € FACES (s;) ...Create-faces
infer e, is an edge of an input solid.

from len VERTICES (e;) A VERTICES(e;)(1) # VERTICES(e;)(2)
infer len VERTICES(e) = 2 A VERTICES(e)(1) # VERTICES(e)(2)

The proof is similar for

... (116)

e’ = mk-edgetype (get-new-edgeid, VERTICES(e;)) ... Intersect-face
In ‘Part-of’, ‘Extension-of’ and ‘In-between’,

e’ = mk-edgetype (get-new-edgeid, <v;, vy >)

(len VERTICES (e) = len <vy, vo > = 2) A (vq # v32) ... Tuple

Facetype Invariant

Every newly created face f satisfies the following properties :
1. Every edge e in f has a unique EDGEID.

2. The sets of edges in f are disjoint.
3. Within each set of edges in {,

o All edges must be simply connected as defined in H4.
e Vertices of adjacent edges are non-collinear.

o The normal computed from the vertices of every pair of adjacent edges
has either the same direction or the opposite direction of the normal to

the face.
Formally
inv-Facetype (mk-facetype (fid, direct, sel)) =
Y. lenel = card {EDGEID(e) | (e € elems el) A (el € sel) } A

el € sel

(V el € sel)

41

((lenel > 3) A
(Vi€ {2 - lenel})
(let ver; = VERTICES (el(i—1)),
ver, = VERTICES(el(i)) in
hd tl ver; = hd ver; (* connected *)
A~ collinear (hd ver;, hd vers, hd tl ver;)
(* vertices of adjacent edges non-collinear *)
A let dir = compute-normal (hd ver;, hd ver;, hd tl ver,) in
(dir = direct) V (dir = reverse(direct))
tel
A hd VERTICES(el(1)) = hd tl VERTICES (el(len el)))
tel)
(* first and last edges are connected. *)
A (Vel, el; € sel)
(el # el =
(V e; € elems el;, e; € elems ely)
(elems VERTICES (¢;) N elems VERTICES(e;) = {}))

We state and prove the following Lemmas which constitute the proofs for the Facetype
invariant.

Lemma N1 : The number of distinct edges returned by Copy-edges (f) is equal to the
number of distinct edges in EDGES (f) and it is also equal to the number of unique
EDGEIDs returned by Copy-edges (f). Formally

> len el = > len el;

el€ copy—edges(f) ely € EDGES(f)
= card {EDGEID (e) | (e € elems el) A (el € copy-edges(f))}
Proof :

from post-Copy-edges
infer copy-edges(f) « EDGES (f) is bijective.
=> card copy-edges(f) = card EDGES (f)
(1.1) = > len el = > len el;

el € copy—edges(f) ely € EDGES(f)
from post-Copy-edges and post-Get-new-edgeid
infer card copy-edges(f) = card EDGES (f) =1 ... Pre-Validate

42

(1.2) A > len el = card {EDGEID(e) | (e € elems el) A

el in copy—edges(f)

(el € copy-edges(f))}
Jrom (1.1) and (1.2)

infer Y len el = > len el,
el in copy—edges(f) ely € EDGES(f)
= card {EDGEID(e) | (e € elems el) A (el € copy-edges(f))}

Lemma N2 : For every face f in the newly created solid, the number of distinct edges
is equal to the number of unique EDGEIDs of all edges in f. Formally,

> len el = card {EDGEID (e) | (e € elems el) A (el € EDGES (f))}
el € EDGES(f)

Case 1 : fis copied from an input solid.
from post-Validate
infer EDGES (f) = {copy-edges(f;) | f; € FACES(s,)}
OR {copy-edges(f) | f € FACES(s;)}
Now the proof follows from Lemma N1.
Case 2 : fis a newly created face.
from post-Intersect-face
(2.1) infer > len el = 3 len e-col,
el € EDGES(f) e=coly € set—of—e~coly
(V e-col, € set-of-e-col,)
((Vk € {1 -- len e-col,} A e = e-col,(k))
(2.2) (EDGEID(e) = (EDGEID (e) e € A) @
(EDGEID (e) | e € B) @ (EDGEID (e) | e € C))

where
A = {e | e = mk-edgetype (get-new-edgeid, VERTICES (e;)) A
(e; € elems el;) A (el; € EDGES (f,))} ... Intersect-face
B = {e | e = mk-edgetype (get-new-edgeid, VERTICES (e;)) A
(ez € elems ely) A (€2, € EDGES (f)) A ... Intersect-face
(f € FACES(s;) V f € FACES (s;))} ...Create-faces
C = {e | e € Create-edges (f,, f) A ... Intersect-face
(f € FACES (s;) V f € FACES (s;))} ... Create-faces

from post-Create-edges, post-Part-of, post-Extension-of and post-In-between

43

(2.3) infer e € Create-edges (fi, f3)
= e = mk-edgetype (get-new-edgeid, <v;, v, >)
fron: (2.1), (2.2), (2.3) and post-Get-new-edgeid
infer > len el = Yy len e-col, =

el € EDGES({) e~-coly € set—of —~e—col,
card {EDGEID(e;) | e; € A} + card {EDGEID(e;) | e; € B} +

card {EDGEID(e3) | e3 € C}
= card {EDGEID(e) | (¢ € elems e-col,) A (e-col, € set-of-e-col,)}
= card {EDGEID (e) | (e € el) A (el € EDGES (f))}
Lemma N3 : The normal computed from the vertices of every pair of adjacent edges
of a face f belonging to the newly created solid, must be in the same direction or in

the opposite direction to the normal of the face f. Formally it could be stated as

(Vf € FACES(s) A V e-col € EDGES (f))
((V e1, e € elems e-col)
((2! v € Point)
((v € elems VERTICES(e,) N elems VERTICES(e;))
=> let d compute-normal (hd VERTICES(e,), hd VERTICES(e;),
hd tl VERTICES(e;)) in
(d = NORMAL (f)) vV (d = reverse (NORMAL (f))))))
tel

(* The auxiliary function ‘compute-normal’ returns the direction of a normal to three
non-collinear points passed as parameters. *)
Proof ;
Case 1: f is copied from a face {; of an input solid.
from post-Validate and post-Copy-edges
(3.1) infer EDGES(f) « EDGES ({;) is bijective.
(3.2) = card EDGES(f) = card EDGES(f,) = 1 ...(H1)
from (3.2)
infer (Ve e; € elems el | el € EDGES(f,))
((3! v € Point)
((v € elems VERTICES(e;) N elems VERTICES(e;))
= compute-normal (hd VERTICES(e;), hd VERTICES(e;),

44

hd t1 VERTICES(e2))
= NORMAL (f;) ...(H7, H3)
= NORMAL (f)) ... Validate
Case 2 : fis a newly created face.
from post-Intersect-face
(3.3) infer NORMAL(f) = NORMAL(f;)
= (NORMAL (f;) | f; € FACES(s,))
OR (NORMAL (f;) | f € FACES(s2)) ... Create-faces
(V e1, e; € Edgetype)
((ey € elems el, | el; € EDGES(f)) A
(e; € elems el; | el; € EDGES(f)) A
(3! v € Point)
((v € elems VERTICES(e;) N elems VERTICES(e;)) => el; = el;
A~ collinear (hd VERTICES(e,), hd VERTICES(e;),

hd tl VERTICES(e;)) ... Intersect-face
A planar(f;, e;) A planar (f;, e2) .. . Intersect-face
A planar(f, e;) A planar (1, e3) ... (3.3)

= compute-normal (hd VERTICES(e;), hd VERTICES(ez),
hd tl VERTICES(e2))
= NORMAL (f;) ..(H7, 13)
= NORMAL (f)) ... (3.3)
Lemma N4 : For each face of a newly created solid, there are at least, three edges in
each list of edge-list-set. Formally,
(V{ € FACES (s) AV el € EDGES (f)) (lenel > 3)
Proof :
ase 1: f is a copied face.
EDGES(f) = (copy-edges(fi) | fi € FACES(s;)) OR
(copy-edges(fz) | f2 € FACES(sy)) ... Validate
= card EDGES(f) = card EDGES(f;) OR card EDGES(f;) ...Copy-edges
=1 ... (H1)
= (lenel | el € EDGES(f) = (lenel; | el; € EDGE5(f1)) OR

45

(len el; | el; € EDGES(f;))
>3 ...(H2)
Case 2 : fis a newly created face.
This part of the proof is given by contradiction.
Let el € EDGES ({).
Case 2.1: lenel=1
hd VERTICES (el(1)) # hd tl VERTICES (el (len el))
= violates the connectivity property = contradiction.
Case 2.2: lenel = 2
Case 2.2.1 : VERTICES (el(1)) = rev VERTICES (el(2))
= the same edge is viewed in opposite directions with respect to NORMAL
().
= violates the property as stated in the definition of normal.
=> contradiction.
Case 2.2.2 : el(1) and el(2) are adjacent and are distinct.
= hd tl VERTICES (el(1)) = hd VERTICES (el(2))
A hd tl VERTICES (el(len el)) # hd VERTICES (el(1))

= violates connectivity = contradiction.

3.5 Behavior

In this section, two important properties of the specifications are stated and proved.
We show that the specifications remain valid when one of the input solids is empty;
that is, the validity of the specifications for the boundary cases is established. Sec-
ondly, we show that only regular solids can result from the specifications when the
input solids are regular. Once again, we follow Jones’ rigorous approach [Jon86] for
the proofs.
Lemma R1 : The specification

BOOLEAN-SOLIDS (s;,s; : Object; OPR : Operation) s3 : Object-set
is correct when either sy or s, is null,
Proof :
The proof for UNION operation is shown below; the proofs for DIFFERENCE and

46

- e

INTERSECTION are similar.
Case 1 : Let s; be empty.

In function ‘Validate’,

f-col; = {} since s; is empty.

Hence (3! {; € f-col,) (--+) is false.

We will prove that {3 € create-faces (s;,52,0pr) is also false and therefore,
only the second clause of UNION will hold good; it is to be noted that

this clause does not concern with f-col;.
In function ‘create-faces’,

f-col; = {} since s, is empty.
Hence (3! f; € f-col;) (:--) is false.
Tii the second clause, there are two predicates connected by A. The second
predicate

bounded-plane(f;) € volu-space(s;)
is vacuously true since s; is empty. Hence in order to show that the result
of create-faces is false, it is to be shown that the first predicate

f3 = Intersect-face (f;, f-col;)

is false.

In function ‘Intersect-face’,

f-col = {}

Therefore, (3! [€ f-col) (- -) is false.

This indicates that all edges in EDGES (f,) should have been obtained
from EDGES (f,) as stated in Intersect-face; .e.,

(V e-col, € EDGES ({,))
((Vke{l: lene-col})
(let e = e-col,(k) in
(3! e-col; € EDGES (f,))
((3! e, € elems e-col,)
(€' = mk-edgetype (get-new-edgeid, VERTICES (e,))))))

(* direct or unmodified edges #)

47

This shows that f, is exactly similar to f;, which is f, (in ‘create-faces’)
belonging to s,. However, the predicate

~ unmodified (f,, f;)
shows that f. cannot be a copy of f;. Due to this contradiction, the result
returned by ‘Intersect-face’ as well as the result returned by ‘create-faces’
are FALSE. It is thus proved that the resulting solid s3 is nothing but the
solid s, (from ‘BOOLEAN-SOLIDS’).

Case 2: Let s; be empty.

The same arguments as in Case 1 apply here with the roles of s; and s; interchanged.
Lemma R2 : The newly created solid s does not contain any dangling edge.

Proof : From the post-conditions of ‘Validate’, it can be observed that only one of

the following is true for every face of solid s.
(1) copied from a face f; of solid s,

(ii) copied from a face f; of solid s,

(iii) newly created.

When Case (i) or (ii) applies, the result follows directly from H8. So, it is sufficient
to prove for Case (1ii).

From the post-conditions of ‘create-faces’, notice that f is obtained due to the
modification of either a face {; of s; or a face f; of s,. The modification is presented
in ‘Intersect-face’. From the post-conditions of ‘Intersect-face’, it can be observed
that the modified face consists of a set of list of edges set-of-e-col,. For each list
e-col, in this set, the connectivity between the vertices of all edges is assured in the
post-conditions. Hence e-col, does not contain any dangling edge; this implies that f
does not contain any dangling edge.

Lemma R3 : The newly created solid s does not contain any dangling face.

Proof :

As stated earlier, a dangling face is one not contributing to the interior of the solid.
It is therefore to be proved that every face f of the newly created solid s contributes

to the interior of s.

48

The post-conditions of ‘Validate’ assert that every face f of the newly created solid

s is created in exactly one of the following ways :

a) it is copied from a face f; of solid s;.

b) it is copied from a face f, of solid s,.

c) it is a modified face f; of solid s; (as given by the post-conditions of ‘create-faces’).
d) it is a modified face f, of solid s; (post-conditions of ’create-faces’).

e) it is a modified face f; of solid s; and a modified face f, of solid s, (and here

indicates that it could be obtained in either way); this is possible only when

the operation is INTERSECT".

From the post-conditions of ‘Validate’ and ‘create-faces’, observe the two facts : (i)
the normal of a copied (or modified) face is retained; (ii) the volumetric space and
hence the interior of the resulting solid s is obtained from those of its constituents.

The situations corresponding to the three Boolean operations are as follows :

1. UNJON : From post-Validate, it is clear that the volumetric space of S includes
both the volumetric spaces of s; and s,. This implies that the normals of faces
of s must point to the interior of either s; or s,. Faces of s which are copied
faces of s, contribute to the interior of s; (post-conditions of ‘Validate’). The
same is true for copied faces of s;. Faces of s which are modified faces of s,
also contribute to the interior of s, (post-conditions of ‘create-faces’) since their
respective normals remain unchanged. The same remark is true for modified

faces of s; as well. Hence every face { in s will contribute to the interior of s.

2. DIFFERENCE : From post-Validate, notice that the interior of s should he

part or whole of s;. When s is the whole of s;, nothing is to be proved. When
S is a part of s;, there is a portion S’ of s; such that

volu-space(s;) = volu-space (S) U volu-space (S’) and

volu-space(S’) C volu-space (s;)
Every normal to a face of s obtained from the faces of s, (copied or modified)

points to the interior of s; (post-Validate, post-create-faces). Normals to faces

49

of s which are obtained from faces of s, (copied or modified) have their directions
reversed (post-validate, post-create-faces); this implies that they point to the
interior of s and not to the interior of S’. Hence every normal to a face of s

points to the interior of s.

3. INTERSECT : The interior of s should be common to the interior of s; as
well as s,. If a face of s is copied from a face of s;, then this face also lies in
the interior of s, (post-Validate). This implies that the normal to this copied
face points to the interior of s; as well as to the interior of s;; i.e., it points
to the interior of s. Similar arguments apply to a face of S copied from a face
of s, (post-Validate). Faces of s which are modified faces of s; or s; have to
satisfy the same constraints as their copied counterparts (post-conditions for
INTERSECT in ‘create-faces’). But here arises the situation when a face f in
the result can be obtained as a modification of f; belonging to s; and also as
a modification of f; belonging to s;. If the normals of f; and f; are in opposite
directions, the face { is not created due to the post-condition for INTERSECT
in ‘create-faces’. However, if the normals are in the same direction, the interior
of s, and s, when viewed from f; and f; contribute to the interior of s and hence
the normal to f is also assigned the same direction. Hence every face f in s

contributes to the interior of s.

This completes the proof that no dangling face is created as a result of any of the
operations - UNION, DIFFERENCE and INTERSECTION.
We remark that the following type invariants are associated with type Object and

every solid s produced by BOOLEAN-SOLIDS satisfies these invariants.

1. Every newly created solid s has at least four faces.

(8]

. FACEID of every face f of s is unique.

w

. Every edge e in s is shared by exactly two faces f; and f; of s.
4. Adjacent faces f; and f; in s are not coplanar.

Formally these invariants can be expressed as

50

inv-Object (mk-object (type, fset)) 2
card fset > 4 A
card fset = card {FACEID (f) | f € fset} A
(V 1 € fset)
((V e, € elems el; | el; € EDGES (f3))
(3! f2 € fset)
((3 ez € elems el; | el; € EDGES (f,))
(VERTICES (e;) = rev (VERTICES (e2)))))) A
(V £, f; € fset)
((V ey, e2 € Edgetype)
((e1 € elems el; | el, € EDGES (f;)) A
(e2 € elems el, | el; € EDGES (f;)) A
(VERTICES (e;) = rev (VERTICES (e3))
= NORMAL (f;) # NORMAL (f,)
A NORMAL (f;) # reverse (NORMAL (f3))))

The following lemmas constitute the proofs for the first three type invariants; the last
invariant is asserted in the post-condition of the function ‘Validate’.

Lemma R4 : Every edge of the newly created solid s is shared by eractly two faces of
s.

Proof : We prove this by contradiction. Let e be an edge belonging to a face { of S,
which is not shared by any other face of s. Obviously {is a dangling face. However by
Lemma R3, s does not contain any dangling face. This is a contradiction and hence
every edge of S is shared by at least two faces of s.

Next, we show that every cdge e of s is shared by eractly two faces of s. Once
again it is proved by contradiction. Assume that there is an edge e of s shared by
three faces fi, f; and f3 of s. There are two cases to be considered here :

Case 1 : Two of the faces, say f; and {,, contribute to the interior of s and the third,
fs, lies outside the interior. Face f3, in this case, will not contribute to the interior
of s. But by Lemma R2, every face of s should contribute to the interior of solid S
and hence f3 will not be a face of s. Therefore edge e is shared by exactly two faces

f; and f,.

51

Case 2 : Two of the faces, say f; and f,, contribute to the interior of s and the third,
fs, lies in the interior of s. By the definition of normal, there is only one side of face
f2 that can contribute to the interior of s. Since f3 lies in the interior of S, a normal
cannot be defined for {. Hence f5 cannot be a face of s and therefore edge e is shared
by exactly two faces f; and f,. This completes the proof.

Lemma R5 : Adjacent faces of the newly created solid can share exactly one edge.
Proof :

We prove this Lemma by contradiction. Let f; and f; be two adjacent
faces of s. Assume that e, and e, are two edges of f, shared by f,. Then
by Hypothesis H2, both e; and e, lie in the plane of f; and f;. This implies
that the faces f; and f; are coplanar. But, as stated in the post-conditions
of ‘Validate’, adjacent faces of s are not coplanar. This is a contradiction

and therefore, {; and f, can share at most one edge.

Lemma R6 : Every newly created solid s has at least four faces.
Proof :

By Lemma N4, each set of edges in a face f of s has at least three edges.
Assume that each face has one edge-list with only three edges in each list.
Similar arguments apply when a face has more than one edge-list, having

more than three edges in each list.

Case 1 : There are only three faces in s.

Let {,, f; and {3 be the faces of s.

Let e-col; = <ey, €12, €;3 > and e-col; € EDGES (f;) and
e-coly = <ey;, €22, €23 > and e-col, € EDGES (f2) and
e-coly = <eaj, esy, €33 > and e-col; € EDGES (f3).

By Lemma R4, every edge in s is shared by exactly two faces

of s.

Let ey, be shared by the faces f; and f, and e;, be shared by f;

and fa.

Case 1.1 : Edge e;3 is not shared by any other face.

92

This implies that face f; is a dangling face. But by
Lemma R3, s does not contain any dangling face. Hence
there is a contradiction in the initial assumption that

ej3 is not shared by any other face.
Case 1.2 : Edge e is shared by f; and f,.

In this case, f; and f, share the two edges e;; and e;3.

By Lemma RS, this leads to a contradiction.

Case 1.3 : Edge e, is shared by f; and fs.
Same arguments as in Case 1.2. Hence s cannot have only

three faces.
Case 2 : s has two faces.

Let the faces be f; and f,. By Lemma N3, each face should have

at least three edges.

Let e-col; = <eyy, €13, €13 > and e-col; € EDGES (f;) and
e-col, = <ey;, €39, €23 > and e-col, € EDGES (f,).

By Lemma RS, only one of the edges of f; can be shared by f,.

This implies that the other two edges of f; are not shared and

hence f; is a dangling face. This is a contradiction to Lemma

R3. Hence s cannot have only two faces.
ase 3 : s has only one face f.

This implies that every edge of { is not shared by any other face
and hence f is a dangling face. This is again a contradiction to

Lemma R3.

Hence, s should have four or more faces.
Lemma R7 : For every newly created solid s,
card FACES (s) = card FACEID (f) |[f€ s

Proof ;

In “Validate’,

53

(7.1) card FACES (s) = card {-col;
(V {3 € f-cols)
(7.2) (f3 = mk-facetype (get-new-faceid, NORMAL (f;), copy-edges (f1))
A f; € FACES (s1)
(1.3) OR (fs = mk-facetype (get-new-faceid, NORMAL (f;), copy-edges (f2))
A f, € FACES (s;)
(7.4) OR (f3 = mk-facetype (get-new-faceid, reverse (NORMAL (f,)), copy-
edges (f2))
A f; € FACES (s;)
from (7.1), (7.2), (7.3), (7.4) and post-get-new-faceid
infer card FACES (s) = card f-colz = card FACEID (f) | f€ s

The formal specification presented in this chapter constitutes the basis for verification

of an offline programming environment for robotics and CAD applications.

94

Chapter 4

Specifications for Robot
Kinematics

An intelligent robot is a physical machine endowed with computational mechanisms to
plan, choose and execute actions and reason about the consequences of such choices.
Intelligent robots are autonomous and they are required in environments where hu-
man interaction is hazardous or impossible. The computational mechanisms that
make a robot intelligent are mainly software packages consisting of a variety of com-
plex programs whose inputs and outputs are not just mathematical entities but repre-
sent physical objects. Ensuring correctness of the software used for intelligent robots
is mandatory because online error recovery is almost impossible. Consequently, there
is a need for a formal offline framework to specify the structure and properties of
robots and their application domains so that (1) a static analysis can be conducted
to reason about the behavior of the robotic system to be built and (2) the speci-
fications can be transformed into robots implementing the specified tasks. In this
chapter we describe formal specification supporting a rigorous analysis and a correct
synthesis of robotic agents.

Online verification techniques are not generally preferred for robotic applications
since they are expensive. Moreover, error recovery is sometimes impossible. Hence
offline verification is an important development tool in robotic applications. Several
offline techniques have been devised in recent years; among them, simulation and pro-
totyping are the most notable ones. However, these techniques suffer from one basic
disadvantage in that they do not provide reasoning capabilities to study the behavior

of robots and are not sufficiently general to be used for all robotic applications. In

addition, prototyping and simulation systems require additional resources apart from

the development of the actual product and hence are very expensive.

4.1 Characteristics of a Robotic Agent

A robot abstracted away from the physical characteristics and particular physical
environments of an actual robot is called an agent, a mathematical object endowed
with operations whose manifestations in the real-world will drive a robot into its
actions. Devoid of irrelevant details, an agent represents, in general, a class of real-
life robots and the behavior of an agent permeates through this class of real-life
robots. In this thesis, the term ‘robot’ is used to mean its ‘agent’.

Our goal has been to formalize the structure of agents and the architecture of
systems encompassing intelligent robots. Given the vastness and diversity of ideas
that one has to gather and bring to bear on a problem of this magnitude and com-
plexity for specification purposes, we have been very selective in the initial choice
of subdomains. Brady [Bra89] has recently remarked that the automation of indus-
trial processes such as mechanical parts assembly using robots is an important open
problem. The most fundamental aspect that supports many robotic applications is
“robot kinematics” which is to be well understood in order to study the behavior
of a robotic agent. Robots are generally built using rigid solids and their kinematic
operations are extended versions of the primitive operations on rigid solids such as
translation and rolation. In subsequent sections, we specify rigid solids and their
primitive operations and use them for specifying the structure of robotic agents and
their forward and inverse kinematic operations. The formal specifications provided

in this chapter can be used for offline verification of robotic applications.

4.2 Rigid Solids and Primitive Operations

A robot consists of several links joined together to form a chain, each link being a rigid
solid. Robot kinematics is the study of the positional information and the associated
transformations of these links in 3-dimensional space. Hence it is appropriate to

study the behavior of rigid solids before specifying an actual robot. In this section,

56

we provide the definition of a rigid solid without regard to physical properties such as
mass, density and type of material, and give specifications for two primitive operations
on rigid solids, namely translation and rotation. Theorems are stated and their proofs
are derived from the specifications given in this section; we indicate, for important
steps in a proof, the specification for which it is a consequence. These theorems will

be useful in proving other theorems on robot kinematics.

4.2.1 Specification for a Rigid Solid

A rigid solid in space is defined by its shape and its position and orientation with
respect to a global coordinate frame. Hence the type definition of a rigid solid can
be stated in VDM as
Structure 2 POSI-ORIE : Transformation

SHAPE : Primitive | Composite
Solid = Structure
One of the important properties used in subsequent specifications is the concept, of
equality of two vectors belonging to two different coordinate systems. Below, we give
the specification for equality of vectors and state a theorem to assert the commutative
and transitive properties of the function ‘vector-equal’.

Equality of Vectors : Two vectors u and v belonging to the coordinate frames T,, and

T, respectively are said to be equal if
¢ norm (i.e., length) of u is equal to norm of v.

e angles subtended by u with the X, Y and Z axes of T, are equal to the respective
angles subtended by v with the X, Y and Z axes of T,.

Vector-equal : Vec-Frame-Pair x Vec-Frame-Pair — Boolean

post-Vector-equal (A,B,b) =

b’ =let u = VECTOR (A), v= VECTOR (B),
Ty, = FRAME (A), T, = FRAME (B) in
(norm (u) = norm (v)) A (angle-X (u,T,) = angle-X (v,T,)) A
(angle-Y (u,T,) = angle-Y (v,T,)) A
(angle-Z (u,T,) = angle-Z (v,T,))

a7

tel

Theorem 1 vector-equal (u,v) = vector-equal (v,u);

vector-equal (u,v) A vector-equal (v,w) = vector-equal (uv,w)

Proof : Follows immediately from the symmetric and transitive properties of equality

(‘=") for natural numbers.

We consider three primitive rigid solids in our specifications - Cube, Cone and
Cylinder. A composite rigid solid is built from primitives or already defined compos-
ite objects by successive application of regularized boolean operations. Formally,

Primitive = Cube | Cylinder | Cone | - - -

Composite 2 OPERATION : Operation-types
LEFT : Structure
RIGHT : Structure

Operation-types = {U~, N, -"}

Specifications for primitive objects can be found in [PAB90).

Informally, a rigid solid can be defined as follows :

For every point p, distinct from the origin O of the local coordinate frame of the solid,
the vectos (_);1 is an invariant; i.e., every new placement of the solid S, effected by
a transformation T, produces a unique image of p, called p’, such that vector-equal
(O—;)', (-)_;;) is true where O’ is the image of O under this transformation T.
Formally,

Rigid : Solid — Boolean

post-Rigid (S,b) £

b' = let O = position (POSI-ORIL (S)) in
(V p € Point)
((p # 0) A (on (p, §)) =
(V T € Trausformation)
((3! p’,O’ € Point)
((p’ = transform-point (T,p)) A

58

(O’ = transform-point (T,0)) A
(let u_T, = const-vec-frame (point-vector (O’,p’),
POSI-ORIE (S))),
v_T, = const-vec-frame (point-vector (O,p),
POSI-ORIE (§°))) in
vector-equal (u-T,,v.T,)

tel)
)

tel

The totality of all points p’ define S°, which we call, the image of S under the trans-

formation T.

Theorem 2 The image S’ of any rigid solid S ts unique under a given transformation
T.

Proof

The proof follows from the specifications ‘Rigid’ and ‘Vector-equal’.

Next let us consider the problem of determining whether or not two given solids §,
and S, are images of each other. The following function determines the transform, if
one exists, for two given solids S and S,.

Image : Solid x Solid — Transformation

pre-Image (S;, S2) 2 rigid (S;) A rigid (S2)

post-Image (S;, Sz, T) a

let O; = position (POSI-ORIE (S,)), O, = position (POSI-ORIE (S;)),
T, = POSI-ORIE (S;), T, = POSI-ORIE (S;) in
(O3 = transform-point (T, O;)) A
(V p € Point)
(on (p, S1) =
(on (transform-point (T, p), S;)) A

(let u_-T, = const-vec-frame (point-vector (O, p), T;)

59

v.T, = const-vec-frame (point-vector (Og,
transform-point (T,p)), T2) in
vector-equal (u-T,, v.T,)

tel)

tel

4.2.2 Specifications for Primitive Operations on Rigid Solids

In this section, we define two primitive operations with respect to rigid solids, namely

translation and rotation and later apply them for robot kinematics.

Translation

Translation of an object is that transformation which defines the positional change
in the object without change in its orientation. In space, an object can be translated
parallel to a fixed plane or parallel to a fixed axis. In robotics, translations parallel to
the axes of the joints in a manipulator arm are of interest. So we consider translations
of a rigid body parallel to a fixed line, called the axis of translation. Informally,
The line joining the origin O of the local coordinate frame of S and the origin O’ of
the local coordinate frame of the translated solid S’ is parallel to the azxis of translation
A. For cvery other point p on S, line Op is parallel to the line O'p’ where p’ is the
image of p on S".
Formally,
Translation : Solid x Axis-Rep — Solid
pre-Translation (S, A) 2 rigid (S)
post-Translation (S, A, S) 2
(rigid (S7)) A
(let O = position (POSI-ORIE (S)),
' = position (POSI-ORIE (S’)) in
(parallel (const-line (O, O’), A)) A
(let T = image (S,S") in
(T % NIL) A

60

(V p € Point)

((p#0) A (on (p, S)) =
parallel (const-line (O, p), const-line (O’, transform-point (T,p)))

tel)
tel)

Translation through a given distance

The above specification for translation is more abstract in the sense that it captures
the behavior of all instances of the translated solid. However, in practice, translation
is specified for a particular distance. Below an enriched specification for translation
is given which defines translation through a particular distance.
Translate-dist : Solid x Axis-Rep x Dist-Rep — Solid
pre-Translate-dist (S, A, d) £ (rigid (S)) A (d # 0)
post-Translate-dist (S, A, d, S’) 2
(S’ = translation (S, A)) A
(let O = position (POSI-ORIE (S)),
O’ = position (POSI-ORIE (S")) in
distance (0, 0’) =d
tel)

Theorem 3 FEvery point on a rigid solid S is moved through the same distance by

translation.

Proof :

The image S’ of S under translation is rigid. -+« (post-Translation)

Let O and O’ be the origins of the local coordinate frames of S and S’ respectively.

Let p be a point on S and p’ be its image on S’.

Since S and S’ are rigid solids, from the specification of ‘rigid’ and ‘vector-equal’,
norm (O_’-;)’) = norm (5;')). (1)

From post-Translation,

line Op is parallel to line O’p” and

line OO’ is parallel to the axis of translation. - (2)

61

axis of translation

oe

Figure 4.1: Translation parallel to an axis.

Consequently, line pp’ is parallel to the axis of translation. - (3)
From (2) and (3),
distance (pp’) = distance (00’).

i.e., O and p get translated through the same distance.

A,

A;

Figure 4.2: Additivity of Translation.

Theorem 4 (‘Translate-dist’ s additive.) Translation of a solid S by a vector Z

followed by another translation by a vector d, is equivalent to translation by vector

7=E+—CE‘.

Proof :
(Refer to Figure 4.2.)

62

Let S; be the image of a solid S translated along the axis A, through a distance d,
and S, be the image of S,, translated along the axis A, through a distance d,.
Let O, O, and O, be the origins of S, S; and S, respectively.
By the specification of ‘translate-dist’,
norm (0_51) = d, and direction (0—51) is parallel to A;.
Similarly, norm (0:62) = d, and direction of (Ol_ég) is parallel to A,.
By property of vector addition,
00, + 0102 = 00,.
ie., d1 + d2 = 7
Hence
S; can be obtained by a single translation using translate-dist (S, A, d).
Thus translate-dist (translate-dist (S, Aq, d,), Az, d;) = translate-dist (S, A, d)
Hence the function ‘translate-dist’ is additive.
Corollary : (‘Translate-dist’ is commutative.)
translate-dist (translate-dist (S, Ay, d;), Ag, d3) =
translate-dist (translate-dist (S, Az, d3), Ay, d;).
Proof :
From Theorem 4,
translate-dist (translate-dist (S, A1, d;), Az, d2) = translate-dist (S, A, d).
By property of vector addition (See Figure 4.2),
translate-dist (translate-dist (S, Ao, d2), A}, d;) = translate-dist (S, A, d).
Hence function ‘translate-dist’ is commutative.
Since the function ‘transform-point’ is bijective and hence has an inverse, the function

‘translate-dist’ is also bijective.

Theorem 5 (There erists an inverse for ‘Translate-dist’ function.)If S, = translate-
dist (S, A, d) then S = translate-dist (S), A, -d) where -d denotes the distance d in

the direction opposite to azis A.

Rotation

Rotation changes the orientation of an object continuously in such a way that every

point on the object describes a circular path. Informally,

63

Any rotation of a rigid solid S with respect to an azis A takes every point p on S to
ils unique tmage p’ on S’ such that p and p’ lie on the same circle having @, the foot
of the normal from p on A, as centre and Qp as radius.

Rotation : Solid x Axis-Rep — Solid

pre-Rotation (S, A) = rigid (S)

post-Rotation (S, A, S7) =

(rigid (S’) A
(let T = image (S, §’) in
(T # NIL) A
(¥ p € Point)
(on (p,S) =
(p’ = transform-point (T, p)) A
(let circ = circle-pt-axis (p,A) in
lie-on-circle (p, circ) A lie-on-circle (p’, circ)

tel)

tel)

Circle-pt-axis : Point x Axis-Rep — Circle

post-Circle-pt-axis (p,A,Circ) £

let ¢ = CENTRE (Circ), r = RADIUS (Circ) in
¢ = intersect (normal (p,A), A) A r = distance (p,c)

tel

Rotation for a definite angle

As in the case of translation, we now specify rotation for a particular angle.

Rotate-angle : Solid x Axis—-Rep x Angle-Rep — Solid
pre-Rotate-angle (S, A, 0) £ (rigid (S)) A (8 # 0)
post-Rotate-angle (S, A, 4, S7) =

(S’ = rotation (S, A)) A

(let T = image (S,S’) in

64

(T # NIL) A
(if ~ lie-on-axis (O, A) then
let O = position (POSI-ORIE (S)),
O’ = transform-point (T, O)
Q = intersect (normal (O, A), A) in
angle (const-line (O, Q), const-line (0’, Q)) = #
tel)

st

¢

els

(V p € Point)
((p # O) A (On (p, S)) A (~ lie-on-axis (p, A)) =
let p’ = transform-point (T, p),
R = intersect (normal (p, A), A) in
angle (const-line (p, R), const-line (p’, R) = 0
tel

tel)

Similar to our remarks on the inverse of ‘translate-dist’, the function ‘rotate-angle’ is

bijective and has an inverse.

Theorem 6 (There exists an inverse for ‘rotate-angle’)Ilf S’ = rotale-angle (S, A,
0) then S = rotate-angle (S’, A, -0).

Lemma 1 : Every point on a rigid solid S is rotated through the same angle when the
rotation is about an axis passing through the origin of the local coordinate frame of
S.

Proof

Let T represent a coordinate frame whose origin coincides with the origin O of the
local coordinate frame of S, such that axis OZ of T coincides with the axis of rotation.
Any property of the solid computed with respect to the local coordinate frame can
be derived from the properties computed with respect to 7.

The proof for this lemma is given in two parts.

The first part proves that rotation of S through an angle 6 causes the frame T to be

65

rotated through an angle 6.

Since OZ coincides with the axis of rotation,
the image z’ of every point z on OZ coincides with z itself due to rotation. (1)
Let x be a point on OX and x’ be its image due to rotation through 6.
Similarly, let y be a point on OY and y’ be its image due to rotation through 6.
All the four points x,y,x’ and y’ lie on the same plane (i.e., XOY plane).

Since £x0x’ = LyOy’ = 0 and /xOy = 90, from the specification for ‘rotation’, we

derive

L x'0y’ = £x’0y + LyOy’ = (x’Oy + (xOx’ = (x0y = 90.

£x’0z" = £y’0z’ = £x’Oy’ = 90. - (2)
From (1) and (2),

frame x’y’2’ is the image of frame xyz under rotation through 4. -+ (3)

The second part proves that every point p is rotated through an angle 6.
Let p be an arbitrary point and let p’ be its image due to rotation.
By specification of rigid solid,
vector-equal (51;, 6;’) is true. i.e., {pOx = Lp’Ox’
By specification of rotation, p and p’ lie on a circle.
= rotation of vector O_I; creates a cone whose vertex is O and
the base of the cone lies in a plane parallel to the XY-plane of T -+« rotation
about OZ axis.
= angles made by the vectors O_;.) and 5;’ with the OZ axis is the same.
Consequently,
it is suflicient to prove that the angle between the vectors O—;() and O_p.o’ is 6
where pg and pg are the projections of p and p’ on the XY-plane.
£x0py = £x’0pg =«
LpoOpd = £x0pg - £xOpg
= (xOx" + £x’Opg - £x0py
=40.
Lemma 2 : Let O be the origin of the local coordinate frame of a solid S. Let S’ be

the image of S when § is rotated about an axis A and O’ be the origin of the local

66

w O RRTEE

o d S SEatla i S

<9

Figure 4.3: Rotation about an axis.

coordinate frame of S’. Let A’ be the axis through O, parallel to A. Rotation of S
through an angle § about A is equivalent to rotation of S through 0 about. A’ followed
by a translation through 00"
Proof
Let S” be the image of S under a rotation of § about the axis A" and p” be the image
of an arbitrary point p on S.
If p’ on S’ is the image of p on S, then by specification of rigia solid,

vector-equal (5;;, O_’[.)’) and vector-equal (5]3, 5];") <+ (1)
Let p”’ be the image of p” due to translation of S” by a distance d = distance (0,0°).

By specification of translation,

67

O’ is the image of O under translation.
By specification of rigid solid,

vector-equal (C;).”, 07;”’) -+ (2)
From (1), (2) and Theorem 1,

vector-equal (O_';)’, OT;;”’) = p"’ coincides with p’.
=> p’ is the image of p” under translation.
Since p is an arbitrary point on S, it follows that S’ is the image of S” under trans-
lation. That is,

Rotation of S through # about A =

translation ((rotation of S through 6 about A’), distance (0,0)).

Theorem 7 Every point on a rigid solid S is rotated through the same angle by

rotation.

Proof :

The proof follows from Lemma 1 and Lemma 2.

Theorem 8 (‘Rotate-angle’ is additive.) Let S be a solid and O be the origin of its
local coordinate frame. For any rotation of S through an angle 0, about an azis A,
passing through O followed by any other rotation through an angle 8, about an azis
A, passing through O taking S to S,, there ezists an angle 05 and an azis Az through
O such that rotation of S through 03 about As will take S to S;.

Proof :
From the specification of rotation, it is clear that the image of a point p due to rota-
tion lies on a circular arc and points on the axis of rotation are unchanged.
The proof is based on the properties of spherical triangles constructed by the circular
arcs of the images of points due to rotation [Par65]. Assume that OA; and OA, are
of unit length so that A; and A, lie on the unit sphere about O.
Construct the spherical triangle A;A;A; with the ZA, = %01 and LA; = %02 as shown
in Figure 4.4. We claim that

e OAj is the resultant axis of rotation and

® 03 = - 2[A3

68

Figure 4.4: Additivity of Rotations.

The first claim is proved if we prove that the line OAj3 is an invariant under the com-
position of the two rotations. To prove this, consider the spherical triangle AALAY
which is the image of the triangle AjA; Az on the arc AjA;. The first rotation takes
As to A% and the second rotation brings A% back to As. This being true for every
point on the line OAs3, it follows that OAj is the axis of the resultant rotation.
The proof for the second claim is as follows :
Let the spherical triangle AjA,A; be the image of the triangle A;A Ay on the are
AjA;.
The first rotation will leave A, fixed and the second rotation will take Ay to AYy. leav-
ing A, unchanged (Ajs remains unchanged as shown in the proof for the first part).
Hence,

0y = LA A3A) =2 (I - LA3) = - 2 [As.

cos 305 = cos 10, cos 30, ~ sin 10, sin 30, cos A
where) is the angle between axes OA; and OA,. The principal angle to the solution

to this trigonometric equation gives 03, the angle of rotation about OAs.

69

Corollary : (‘Rotate-angle’ is not commutative.)
rotate-angle (rotate-angle (S, A;, 6,), Ay, 6;) #
rotate-angle (rotate-angle (S, A,, 6;), A;, 61).
Proof :
From Figure 4.4, notice that
rotate-angle (rotate-angle (S, Ay, 6;), A, 6;) will have OA;
as the resultant axis of rotation, where as
rotate-angle (rotate-angle (S, Ay, 6,), Az, 02) will have OA%
as the resultant axis of rotation, where A% is the image of A3 on the arc A;A,.

Hence, rotate-angle is not commutative.

Theorem 9 For any rotation of a solid S through an angle 0, about an arbitrary azis
A, followed by any other rotation through an angle 8, about another arbitrary azis A,
taking S to S,, there erists an angle 65 and an azis As such that rotation of S through

03 about Az will take S to S,.

Proof : The proof follows from Lemma 2, Theorem 4 and Theorem 8.

4.2.3 Specifications for Prismatic and Revolute Joints

Prismatic and Revolute joints are commonly used structures for building robotic
manipulators. A joint connects two rigid solids in which one of them is fixed (with
respect to the joint) and the other moves along/about an axis defined within the
joint. This motion is a franslation in Prismatic joint and a rotation in Revolute

joint. Figures 4.5 and 4.6 show the structures of Prismatic and Revolute joints.

Prismatic Joint

Type Definition

Prisjoint . S1: Solid
S2 : Solid
AXIS-OF-MOVE : Axis-Rep
MIN-DISPL : Dist~Rep
MAX-DISPL : Dist-Rep

Solid S2 can be moved by translation along the AXIS-OF-MOVE. MIN-DISPL and

70

S1

/ s
/

%p AXIS-OF-MOVE
—Ypl P2
MAX-DISPL .
MIN-DISPL

Figure 4.5: Structure of a Prismatic Joint.

P2

MAX-ROPATI S2
</

S1
MIMNROTATION
P1

A 4

Figure 4.6: Structure of a Revolute Joint.

MAX-DISPL specify the minimum and maximum permissible displacements of S2.

Informally, the main characteristics of a prirmatic joint are

1. There exists a point p on the AXIS-OF-MOVE common to both S1 and S2.

That is, the two links S1 and S2 are always connected.
2. There exist two points p; on S1 and p, on S2 such that

e line p;p; is parallel to the AXIS-OF-MOVE

¢ MIN-DISPL < distance (p;, p2) < MAX-DISPL

e distance (p1, pz) > MIN-DISPL indicates that S2 has been translated along
the AXIS-OF-MOVE by a distance d = distance (p;, p2) - MIN-DISPL.

71

Formally,

inv-Prisjoint (jn) 2
(3 p € Point)
((on (p, S1(3n))) A (on (p, S2(in))) A
(lie-on-line (p, AXIS-OF-MOVE(jn))) A
(3 p1, p2 € Point)
((on (p1, S1(jn))) A (on (p2, S2(jn))) A
(parallel { onst-line (p;, p2)), AXIS-OF-MOVE (jn)) A
(let d = distance (p;, pz) — MIN-DISPL (jn) in
(MIN-DISPL (jn) £ d £ MAX-DISPL (jn)) A
d > 0 = on (p2, translate-dist (S2, AXIS-OF-MOVE (jn), d))
tel)

)

Reyolute Joint

Type Definition

Revoljoint 81 : Solid
S2 : Solid
AXIS-OF-RO1ATION : Axis-Rep
MIN-ROTATION : Angle-Rep
MAX-ROTATION : Angle-Rep

Solid S2 rotates with respect to the AXIS-OF-ROTATION. MIN-ROTATION and

MAX-ROTATION specify the minimum and maximum permissible rotations by which

S2 can be rotated.

Informally, the important characteristics of a revolute joint are

1. There exists a point p lying on the AXIS-OF-ROTATION common to both S1
and S2.

2. There exist two points p; on S1 and p, on S2 such that

e (p# p1) and (p # p2)

72

e lines pp, and pp, are perpendicular to the AXIS-OF-ROTATION
e MIN-ROTATION < angle (pp1, pp2) < MAX-ROTATION.

¢ angle (pp1, pp2) > MIN-ROTATION indicates that S2 is rotated about the
AXIS-OF-ROTATION through 6 = angle (pp1, pp2) - MIN-ROTATION.

Formally,

inv-Revoljoint (jn) =
(3 p € Point)
((on (p, S1)) A (on (p, S2)) A
(lie-on-line (p, AXIS-OF-ROTATION (jn))) A
(3 p1, p2 € Point)
((on (p1, S1)) A (on (p2, S2)) A
(perpendicular (const-line (p, p;), AXIS-OF-ROTATION (jn))) A
(pe-pendicular (const-line (p, p2), AXIS-CF-ROTATION (jn))) A
(let 6 = angle (const-line (p, p1), const-line (p, p2)) in
(MIN-ROTATION (jn) < 8§ < MAX-ROTATION (jn)) A
(8 - MIN-ROTATION (jn) >0 =
on (p,, rotate-angle (52, AXIS-OF-ROTATION (jn), 0)))
tel)

)

4.3 Formalism of Robot Kinematics

In this section, we provide formal specifications for robot kinematics. Since there
exists a variety of robots in practice. we rest ict ourselves to a particular class of
robots whose structure is discussed in the following section. We claim that our
assumption is sufficiently general to formally capture the geometric structure and

functionalities of many existing robots such as PUMA and Stanford Manipulators.

73

4.3.1 Robot Structure

In order to simplify the discussions, we consider a general-purpose multi-link robot
with multi-fingered end-effector. One end of the first link of the robot is assumed to
be fixed at a known location in the workspace. Two links are assumed to be joined
by cither a Prismatic join’ or a Revolute joint. As explained in the previous section,
a joint definition includes the two links joined at that place and the maximum and
minimum permissible displacements of the moving link. The end-effector is attached
to the last link of the robot and is treated differently from the links. In this report, the
terms ‘end effector’ and ‘gripper’ are used interchangeably. The base of the gripper
is called the ‘wrist’ to which the fingers or tools may be attached. In order to give
a full picture of a robot, fingers are included in the state definition. However, we do
not provide specifications for the fingers in subsequent sections since we only deal
with kinematic aspects of robots. Specifications for fingers and tools, if any, will be
considered in the context of specific applications such as grasping. Figure 4 7 gives
the structure of a robot discussed in this section.

The shape of the links is usually described by a sclid modeler. However we do
not consider sweeping and volumetric aspects of the robot structure in this paper
and hence we restrict ourselves to the primitive shapes cone, cuboid and cylinder and
those composite structures that can be built from these primitives using regularized
operations union, intersection and difference. Associated with every geometric en-
tity is a position and an orientation. The position refers to the origin of the local

coordinate frame embedded in the geometric entity.

4.3.2 Formal Model of Robots

IFor us, a robot environment consists of a robot and its coordinate frames. We do not
consider the workspace of the robot in our discussions. The type definitions given be-
low show the robec environment in bold face. The robot consists of a list of joints,
a list of links and an end-effector (gripper). Each link has a unique identification
number for reference. Its structure is defined by the variable ‘GEOMETRY’. The
base of the gripper is denoted by the variable ‘WRIST’ to which fingers are attached

using prismatic and revolute joints. The types ‘Prisjoint’ and ‘Revoljoint’ have al-

74

GJOINT 2

l lﬁ ><— FINGER 2

WRIST

JOINT 2 O

Q

FINGER 1

<—LINK 2
GJOINT 1
O JOINT 1

«— LINK 1

Figure 4.7: A Two-Link Manipulator (with only Revolute Joints).

ready been introduced in Section 3. There is a one-to-one correspondence between
the fingers and the joints at the gripper, which is denoted by the map ‘Fingertype —
Jointtype’. Fingers will also have unique identification numbers.

State ::

BASE-COORD : Transformation

ROBOT-ARM : Manipulator

Manipulator :» LINKS : Armtype-list
JOINTS : Jointtype-list
GRIPPER : Grippertype

Armtype :» LINKID : ID-Rep
GEOMETRY : Structure

75

Jointtype = Prisjoint | Revoljoint

Grippertype :: WRIST : Wristtype

FINGER-GRIP-JOINTS : Fingertype — Jointtype
Wristtype :: GEOMETRY : Structure
Fingertype :: FINGERID : ID-Rep

GEOMETRY : Structure
Type Invariants

The type invariants for the robot-arm are the following :
1. The links, the wrist and the fingers are all rigid.
2. LINKIDs as well as FINGERIDs are unique.

3. The number of joints is one less than the number of links since there is a joint
between every two links. However, we treat the end-effector differently from the
links and so there exists another joint between the }ast link and the end-effector.

Hence the number of joints is numerically equal to the number of links.

4. The specification is concerned with linear chain of links; i.e., there is no closed
structure formed by the links and the end-effector. This property can also be

stated as follows :

o Except for the first link, every link becomes part of exactly two joints.
The first link is part of the first joint only. This is an assumption made
as part of the robot structure. Thus the first link does not move and is
static.

e Except for the last joint, every joint connects exactly two distinct links.

The last joint connects the last link and the end-effector.

Formally, these type invariants are stated as follows :

inv-Manipulator (lns, jns, grip) £

76

let fns = dom FINGER-GRIP-JOINTS (grip) in
(* Every link, the wrist and every finger is rigid. *)
(Vi{l- lenlns }) (rigid (GEOMETRY (Ins(i)))) A
(rigid (GEOMETRY (WRIST (grip)))) A
(V fn € fns) (rigid (GEOMETRY (fn))) A
(* LINKIDs are unique *)
(V Iny,lnz € elems Ins)
(LINKID (In;) = LINKID (Ing) = In; = In,) A
(* FINGERIDs must be unique *)
(V fn;,fn, € fns)
(FINGERID(fn;) = FINGERID(fn;) = fn; = fn;) A
(* no.of joints = no.of links x)
len jns = len Ins
(* Except for the first, every link is part of exactly two distinct joints. *)
(Vie {2 lenlns})
((3! jny, jn; € elems jns)
((jn1 # jn2) A (Ins(i) = LINK2 (jny)) A (Ins(i) = LINKI1 (jn2)))
) A
(Ins(1) = LINK1 (jns(1))) A
(* Except for the last, every joint connects exactly two distinct links. *)
(V jn € elems (jns — jns(len jns)))
((3'1,j € {1 -+ lenlIns})
((i #j) A (LINK1 (jn) = Ins(i)) A (LINK2 (jn) = Ins(j))
)
)} A
(LINK! (jns(len jns)) = lus (len Ins)) A (LINK2 (jns(len jns)) = grip)
tel

4.3.3 Specifications for Forward Kinematics

In this section, we address the forward kinematics problem, namely “given the change

in positional information of the " link, determine the entire configuration of the

17

robot”. Since there are two types of joints, we provide the specifications for two
operations, namely translate-link (corresponding to the prismatic joint) and rotate-
link (corresponding to the revolute joint). The specifications describe the effect on
only one link; the consequences on the entire configuration are described by the

theorems following the specifications.

Translation of a Link

TRANSLATE-LINK (TLINK : ID-Rep; DIST : Dist-Rep)
(* Translate the link with i.d. ‘TLINK’ through a distance ‘DIST’. *)

ext ROBOT-ARM : wr Manipulator
Pre
let Ins = LINKS (robot-arm),
jns = JOINTS (robot-arm) in
(* Verify that the link i.d. passed as parameter is valid. *)
(' ke {1- len Ins})
((LINKID (Ins(k)) = tlink) A
(* Verify that the corresponding joint is Prismatic. %)
(3! jn € elems jns)
((jn € Prisjoint) A
(LINK2(jn) = Ins(k))
)

tel
Post
let Ins = LINKS (robot-arm) in
(3' k € {1 -+ len Ins})
((LINKID (Ins(k)) = tlink) A
(3! jn € elems jns)
((LINK2(jn) = Ins(k)) A
(let axis = AXIS-OF-MOVE (jn) in
Ins(k)’ = mk.Armtype (LINKID (Ins(k)),

78

translate-dist (GEOMETRY (Ins(k)), axis, dist))
tel)

tel

Rotation of a Link

ROTATE-LINK (RLINK : ID-Rep; THETA : Angle-Rep)
(* Rotate the link with i.d. ‘RLINK’ through an angle ‘THETA". x)

ext ROBOT-ARM : wr Manipulator
Pre
let Ins = LINKS (robot-arm),
jns = JOINTS (robot-arm) in
(* Verify that the link i.d. passed as parameter is valid. *)
(' ke {1 lenlns})
((LINKID (Ins(k)) = rlink) A
(* Verify that the corresponding joint is Revolute. *)
(3" jn € elems jns)
((jn € Revoljoint) A
(LINK2(jn) = Ins(k))
)

tel
Post
let Ins = LINKS (robot-arm) in
(3! k€ {1 len Ins})
((LINKID (Ins(k)) = rlink) A
(3! jn € elems jns)
((LINK2(jn) = Ins(k)) A
(let axis = AXIS-OF-ROTATION (jn) in
Ins(k)’ = mk-Armtype (LINKID (Ins(k)),

79

rotate-angle (GEOMETRY (Ins(k)), axis, theta))
tel)

tel
Let len Ins = n and (n+1)* link be the wrist.

Theorem 10 For | < i < n, translating the #" link by a distance d causes all the
links from (i+1) to n, the wrist and all the fingers to be translated by the same distance

d along the aris of translation of ©** link.

Proof

Since link, is rigid, by Theorem 3, all the points of link, are translated by a distance
d along the axis of translation. Since every joint j, 1 < j < n, is static, the relative
position of the origin of the local coordinate frame of the j** link with respect to the
i* link remains unchanged. Hence, by Theorem 3, every point on the configuration
of the robot from link (i+1) to n is translated by a distance d along the axis of
translation of i** link. i.e., every link from (i+1) to n, the wrist and every finger is

translated by a distance d along the axis of translation of i** link.

Theorem 11 For | < i < n, rotating the it* link by an angle 8 causes all the links
from (i+1) to n, the wrist and all the fingers to be rotated through the same angle 0

about the aris of rotation of #" link.

Proof

The proof is stmilar to that of Theorem 10.

4.3.4 Specification for Inverse Kinematics

Task level descriptions of robot manipulations can be realized through inverse kine-
matics solutions. The problem of inverse kinematics can be informally stated as
follows : “given the positional changc in end-effector, determine the valid configura-
tions for the links of the robot”. Any tools or fingers attached to the end-effector

are not considered in finding solutions for inverse kinematics problem. In general,

80

there are many feasible solutions for this problem. We do not provide procedures for
finding ail possible solutions; rather, we characterize these solutions so that an offline
formal verification of an algorithm computing these solutions can be carried out.

As stated earlier, commercial robots greatly vary in their structure. For example,
a PUMA robot has only revolute joints. Hence any feasible solution for the inverse
kinematics problem which requires a translation may not be successfully applied to
a PUMA robot. Similarly, solutions requiring rotations cannot be applied to robots
which have only prismatic joints. Therefore, in order to characterize all feasible
solutions of inverse kinematics problem applicable to all types of robots, we categorize

the problem into four parts :

1. Given two positions P,, and Q, of the wrist having the same orientation, de-
termine the valid configurations of the links to obtain Q,, from P, using only

translations.

X

Given two positions P,, and Q, of the wrist having the same orientation, de-
termine the valid configurations of the links to obtain Q. from P, using only

rotations.

3. Given two positions P, and Q. of the wrist with different orientations, de-
termine the valid configurations of the links to obtain Q,, from P,, using only

rolations.

4. Given two positions P, and Q, of the wrist with different orientations, de-
termine the valid configurations of the links to obtain Q, from P,, using a

combination of translations and rotations.

For each problem, we first informally describe a solution and then give a formal
specification.
Problem 1

An Informal Description of Solution

Let A be the line joining P, and Q,. This is the required axis of translation with
respect to the base coordinate frame and its direction is from P, to Q,,,.

Lot d = distance (P, Qu) and Pjn be the set of prismatic joints.

81

A feasible solution requires the existence of an arbitrary subset of prismatic joints

SPjn such that

e SPjn C Pjn.

e card SPjn = k.

e Ay, Ay ..., A are the axes of translation of the prismatic joints SPjn,;, SPjn,,
. ovy SPjny.

o BA,, BA,, ..., BA, are the axes of translation of the k joints with respect to

the base coordinate frame.

It is now clear that Q,, can be obtained from P, by translating the second link of

SPjn, through a distance d, along the axis A,, 1 <i < k, such that

o d; < MAX-DISPL (SPjn,).

—y

L Zf=l-d-:= d'

where I is the vector of length d; along the axis A, and "d is the vector of length

d along the axis A.

Specification

MOVE-WRIST-T (DESTINATION : Transformation)
(* Move the wrist to 'DESTINATION’ using only translations. *)

ext
ROBOT-ARM : wr Manipulator
BASE-COORD : rd Transformation
Pre
let jns = JOINTS (robot-arm),
grip = GRIPPER (robot-arm),
wrs = WRIST (grip) in

(* Assure that the orientation of the wrist is unchanged. *)

82

let oldorie = orientation (POSI-ORIE (GEOMETRY (wrs))),
neworie = orientation (destination) in
same-orientation (oldorie, neworie)
tel
A let oldposi = position (POSI-ORIE (GEOMETRY (wrs))),
newposi = position (destination),
d = vector (oldposi, newposi) in
(* jnlist is the set of prismatic joints *)
(3 jnlist € Jointtype-list)
((elems jnlist C elems jns) A
(Vie {1 - len jnlist })
((jnlist(i) € Prisjoint) A
(Vje {1- lenjnlist })
(G # 3) = (inlist(i) # jnlist(3))
(* vlist is the set of vectors applied to the links of jnlist.
Bylist is the set of vectors vlist w.r.t the base.)
(3 vlist, Bvlist € Vectortype-list)
((len vlist = len jnlist) A
(len Bvlist = len jnlist) A
(norm (vlist(i)) £ MAX-DISPL (jnlist(i))) A
(parallel (direction (vlist(i)), AXIS-OF-MOVE (jnlist(i)))) A
(Bvlist(i) = vector-base (vlist(i),
POSI-ORIE (GEOMETRY (LINK2(jnlist(i)))),
base-coord)) A
(v = vector-sum (Bvlist))
)
)

)
tel

tel
Post

83

let jns = JOINTS (robot-arm),
grip = GRIPPER (robot-arm),
wrs = WRIST (grip) in
(3 jnlist € Jointtype-list,
dlist € Dist-Rep-list)
((len jnlist = len dlist) A
(elems jnlist C elems jns) A
(Vi€ {1 len jnlist})
((jnlist(i) € Prisjoint) A
(translate-link (LINKID (LINK2 (jnlist(1))), dlist(i)))
)

)
& POSI-ORIE (wrs)’ = destination

tel

In the above specification, the variable ‘jnlist’ denotes the subset of prismatic joints
SPjn, as stated in the informal description of the solution. We have chosen ‘jnlist’
as a list of joints rather than a set, so that it is easier to associate the corresponding
elements from ‘list’ and ‘Bvlist’ later. Moreover, we do not use the ordering property
of elements within ‘jnlist’. However, VDM allows duplication of elements in a list. In
order to assure that ‘jnlist’ does not contain any duplicate elements, we have provided
the predicate
(Vj € {1 - len jnlsit})
((# j) = (jnlist(i) # jnlist(j)))
Problem 2

An Informal Description of Solution

Let the revolute joints be the set Rjn.

In any feasible solution, there exists an arbitrary subset of revolute joints SRjn sat-

isfying the following constraints :
e SRjn C Rjn.

e card SRjn = k.

84

e There exists a set of angles ¢;, ¢2, ..., # such that rotating the second link
of SRjn; through an angle ¢; causes a change in orientation to the second
link of SRjn;; call this change in orientation T, and the corresponding linear

displacement of the second link of SRjn, due to rotation through ¢, by d;.

It is easy to see that Q, can be obtained from P, by rotating the second link of
SRjn; through an angle ¢; about the axis of rotation of SRjn,, 1 < i < k, satisfying

the constraints
o ¢; < MAX-ROTATION (SRjn;).

i Z:£c=l T“’-‘ = 0? Zf:] le = 0’ E?:l ng = 0 a«nd z:5=] Z = 7

where 4 is the vector from P, to Q.

In fact, problem 2 is a special situation of problem 3; i.e., if the change in orientation
between P, and Q,, is set to null, then problem 3 becomes problem 2. Hence we do
not give the specifications for problem 2; rather, we give the specification for prow.cm
3.

Problem 3

Informal Description of the Solution for Problem 3

The position Q,, can be obtained from P,, by rotating the second link of SRjn, through

an angle ¢, along the axis of rotation of SRjn;, 1 <1 < k, satisfying the constraints
e ¢; < MAX-ROTATION (SRjn;).

b E:‘:] Tfl‘ = T-‘B’ t"‘=1 Ti!l = Ty’ Z:’c:l T:z = Tz and Zf:] d! = d
where T, T, and T, are respectively the x, y and z components of the change in
orientation of the wrist between P,, and Q,, with respect to the base coordinate

frame.

Specification

MOVE-WRIST-OR (DESTINATION : Transformation)
(* Move the wrist to ‘DESTINATION’ by pure rotation with a change in orientation.

*)

85

ext
ROBOT-ARM : wr Manipulator
BASE-COORD : rd Transformation
Pre
let grip = GRIPPER (robot-arm),
jns = JOINTS (robot-arm),
wrs = WRIST (grip),
oldorie = orientation (POSI-ORIE (GEOMETRY (wrs))),
oldposi = position (POSI-ORIE (GEOMETRY (wrs))),
newposi = position (destination),
neworie = orientation (destination),
(* Ty is the change in orientation of the wrist and Xy, Yuw, 2w
are its x,y,z components. *)
T, = change-in-orientation (oldorie, neworie),
xy = X-component (T,,),
Yw = Y-component (T,,),
2y = Z-component (T,,),
d = vector (oldposi, newposi) in
(* jnlist is the set of revolute joints. *)
(3 jniist € Jointtype-list)
((elems jnlist C elems jns) A
(Vi={l- lenjnlist})
((jnlist(i) € Revoljoint) A
(Vj€{l- len jnlist})
(G #5) = (nlist(i) # jnlist(})))
(* ¢list is the set of angles applied to the second links of jnlist.
Tlist is the corresponding set of change in orientations after @list applied.
dlist is the corresponding set of linear displacements duc to @list.*)
(3 ¢list € Angle-Rep-list,
Tlist € Transformation-list,

dlist € Vectortype-list)

86

((len ¢list = len jnlist) A
(len Tlist = len jnlist) A
(¢list(i) < MAX-ROTATION (jnlist(i))) A
(let T,y = orientation (POSI-ORIE (GEOMETRY
(LINK2 (jnlist(1))))),
Tew = orientation (POSI-ORIE
(rotate-angle (GEOMETRY (LINK2 (jnlist(i)))
AXIS-OF-MOVE (jnlist{i)), ¢list(i))))
Tlist(i) = change-in-orientation (T4, Thew)) A
tel A
(let P,y = position (POSI-ORIE (GEOMETRY
(LINK2 (jnlist(i))))).
Ppew = position (POSI-ORIE
(rotate-angle (GEOMETRY (LINK2 (jnlist(i)))
AXIS-OF-MOVE (jnlist(1)), list(i))))
dlist(i) = vector (Poidy Prew)) A
tel A
(* Xlist, Ylist, Zlist are the x,y,z components of Tlist. *)
(3 Xlist, Ylist, Zlist € Real-list)
((len Xlist = len Tlist) A
(len Ylist = len Tlist) A
(len Zlist = len Tlist) A
(Xlist(i) = X-component (transform-base (Tlist(i), base-coord)) A
(Ylist(i) = Y-component (transform-base (Tlist(i), base-coord)) A
(Zlist(i) = Z-component (transform-base (Tlist(i), base-coord)) A
(Real-sum (Xlist) = x,) A
(Real-sum (Ylist) = y,) A
(Real-sum (Zlist) = z,,) A
(vector-sum (dlist) = d)

87

-

)

)
tel

Post
let jns = JOINTS (robot-arm),
grip = GRIPPER (robot-arm),
wrs = WRIST (grip) in
(3 jnlist € Jointtype-list,
@list € Angle-Rep-list)
((len jnlist = len glist) A
(elems jnlist C elems jns) A
(Vi€ {1 lenjnlist})
((jnlist(i) € Revoljoint) A
(rotate-link (LINKID (LINK2 (jnlist(i))), ¢list(i)))
)

)
< POSI-ORIE (wrs)' = destination

tel

Problem 4

Below, specifications are given for two cases — interleaved activation (i.c., activation
of only one link at a time) and concurrent activation (i.e., activation of more than
one link at a time).

Case | : Interleaved activation.

An Informal Description of the Solution

Let the set of prismatic joints be Pjn and the set of revolute joints be Rjn.
Pjn U Rjn = Jns, the set of joints.
Between Q,, and P,, there exists a non-empty list of intermediate positions Plist
such that
length of Plist = n, n > 0 and Plist(1) = P,, and Plist(n) = Q,.
For alli, 1 <i < (n-1),

Plist(i41) can only be obtained from Plist(i) by a translation imposed on

88

one of the prismatic joints or by a rotation on one of the revolute joints. If
the orientation between Plist(i) and Plist(i+1) remains unchanged, then
translation is applied; otherwise, rotation is applied. Notice that a single
rotation necessarily causes a change in orientation. Multiple rotations be-

tween successive positions cannot be applied in an interleaved activation.

Specification
MOVE-WRIST-OTR (DESTINATION : Transformation)
(* Move the wrist to ‘DESTINATION’ with change in orientation by a combination

of translations and rotations applied to the links. Only one link is activated at a

time. *)

ext
ROBQT-ARM : wr Manipulator
BASE-COORD : rd Transformation
Pre
let jns = JOINTS (robot-arm),
grip = GRIPPER (robot-arm),
wrs = WRIST (grip) in
(3 Pjn, Rjn € Jointtype-list)
((Vie€ {1- len Pjn}) (Pjn(i) € Prisjoint) A
(Vj e {1- len Rjn}) (Rjn(j) € Revoljoint) A
((elems Pjn U elems Rjn) = elems jns) A
(let oldposi = position (POSI-ORIE (GEOMETRY (wrs))),
oldorie = orientation (POSI-ORIE (GEOMETRY (wrs))),
newposi = position (destination),
neworie = orientation (destination) in
(3 Plist € Transformation-list)
((len Plist > 0) A
(position (Plist(1)) = oldposi) A
(orientation (Plist(1)) = oldorie) A
(position (Plist (len Plist)) = newposi) A
(

orientation (Plist (len Plist)) = neworie) A

89

(Vi€ {2 len Plist})
(POSI-ORIE (wrs) = Plist(i) =
(* If the orientation between successive positions remains
the same, a translations is applied. *)
(same-orientation (orientation (Plist(i-1)), orientation (Plist(i))) =
(' ke {1 - len Pjn})
(let v = vector (position (Plist(i-1)), position (Plist(i))) in
(parallel (AXIS-OF-MOVE (Pjn(k)), v)) A
((norm (v) < MAX-DISPL (Pjn(k)))
)
tel)
)V
(x If the orientation between successive positions changes,
a rotation is applied. *)
(~ same-orientation (orientation (Plist(i-1)), orientation (Plist(i))) =
(3! k € {1 -+ len Rjn})
(* Get the angle 6 and axis of rotation from the
intermediate positions. *)
(let § = angle-from-orie (Plist(i-1), Plist(i)),
a = identify-axis (Plist(i-1), Plist(i)) in
(parallel (AXIS-OF-ROTATION (Rjn(k)), a)) A
((0 < MAX-ROTATION (Rjn(k)))
)
tel)

tel)

tel
Post

90

let jns = JOINTS (robot-arm),

grip = GRIPPER (robot-arm),
wrs = WRIST (grip) in
(3 Pjn, Rjn € Jointtype-list)
((vi€ {1- len Pjn}) (Pjn(i) € Prisjoint) A
(Vj€ {1 len Rjn}) (Rjn(j) € Revoljoint) A
((elems Pjn U elems Rjn) = elems jns) A
(3 dlist € Dist-Rep-list,
¢list € Angle-Rep-list)
((len dlist = len Pjn) A
(len ¢list = len Rjn) A
(Vi€ {l- lenPjn})
(translate-link (LINKID (L.INK2 (Pjn(i))), dlist(i))) A
(Vj € {1 - lenRjn})
(rotate-link (LINKID (LINK2 (Rjn(j))), ¢list(j)))
)
) & POSI-ORIE (wrs)’ = destination
tel

The stated pre-condition for rotation can indeed be tested; see {Cra89] for details.

The post-condition strongly asserts tha* the final destination is reached if and only

if there exists a set of translations and rotations as implied in the predicates.

Interleaved activation of links obtain successive positions due to a single transla-

tion or a single rotation. Consequently, the path traversed by the wrist is a collection

of piecewise line segments and circular arcs. The converse is also true; i.e., if the

trajectory consists of piecewise line segments and circular arcs, then there exists an

interleaved activation of links corresponding to this trajectory. However, if the trajec-

tory is not composed of piecewise line segments and circular arcs, then an interleaved

activation of the links cannot realize the trajectory. In this situation, a concurrent

activation of links becomes necessary. We discuss this solution next.

Casc 2 : Concurrent activation

Informal description of the solution

91

Let Pjn and Rjn be respectively the set of prismatic and revolute joints such that
(card Pjn = I) and (card Rjn = k), Pjn U Rjn = Jns, the set of joints.
Between P, and Q,, there exists a non-empty list of intermediate positions Plist
such that

length (Plist) = N, N > 0, Plist(1) = P,, and Plist(N) = Q,,.
Forallt,1 <t < (N-1),

Plist(t+1) can be obtained only from Plist(t) by applying translation on
some subset (possibly empty) of prismatic joints and/or rotation on some
subset (possibly empty) of revolute joints simuitaneously. The subsets
cannot both be empty simultaneously. With reference to the base coordi-
nate frame given in the state definition, this situation is mathematically

described as below :

e Let SPjn and SRjn respectively denote arbitrary subsets of prismatic
and revolute joints chosen for activation.

e Let (card SRjn = m) and (card SPjn = n).

e (0<m<k)and (0 <n L).

o Let T be the change in orientation of the wrist between Plist(t+1)
and Plist(t) and let T,, T, and T, respectively renresent its X,Y 7

components.

e Let d be the linear displacement vector between Plist(t41) and
Plist(t).

e Let ¢, be the angle of rotation applied to the second link of SRjn,,
let T; be the change in orientation of the second link due to ¢, and
let T, Ti, and T,; be the X,Y,Z components respectively of T, 1
<i<m.

o Let 4_1: be the displacement vector applied to the second link of the

prismatic joint SPjn,, 1 <j < n.

The following conditions are to be satisfied for moving the wrist from

Plist(t) to Plist(t+1).

92

.Z u: "‘Tz‘a Z:':- ly —TandZ;— IZ_T

® ZJ—I 7 dl .

—

e d = dl -+ ddl
where d, is the net displacement vector due to rotations of m links

of SRjn.

Specification
MOVE-WRIST-OTRS (DESTINATION : Transformation)

(+ Move the wrist to ‘DESTINATION’ with change in orientation, by a combination
of translations and rotations applied to the links. More than one link may be activated

simultaneously. *)

ext
ROBOT-ARM : wr Manipulator
BASE-COORD : rd Transformation
Pre
let jns = JOINTS (robot-arm),
grip = GRIPPER (robot-arm),
wrs = WRIST (grip) in
(3 Pjn, Rjn € Jointtype-list)
(Vi€ {1 - len Pjn}) (Pjn(i) € Prisjoint) A
(Vj € {1- len Rjn}) (Rjn(j) € Revoljoint) A
((elems Pjn U elems Rjn) = elems jns) A
(let oldposi = position (POSI-ORIE (GEOMETRY (wrs))),
oldorie = orientation (POSI-ORIE (GEOMETRY (wrs))),
newposi = position (destination),
neworie = orientation (destination) in
(3 Plist € Transformation-list)
((len Plist > 0) A
(position (Plist(1)) = oldposi) A
(orientation (Plist(1)) = oldorie) A
{position (Plist (len Plist)) = newposi) A

93

(orientation (Plist (len Plist)) = neworie) A
(Vt € {2 len Plist})
(POSI-ORIE (wrs) = Plist(t) =
(* dvec is the vector displacement and T is the change in
orientation between successive positions. *)
let dvec = vector (position (Plist(t)), position (Plist(t+1))),
T = change-in-orientation (orientation (Plist(t)),
orientation (Plist(t+1))),
T, = X-component (T, base-coord),
T, = Y-component (T, base-coord),
T. = Z-component (T, base-coord) in
(3 SPjn, SRjn € Jointtype-list)
((Vi € {1 - len SPjn}) (SPjn(i) € Prisjoint) A
(Vj € {1 - len SRjn}) (SRjn(j) € Revoljoint) A
(len SPjn < len Pjn) A
(len SRjn <len Rjn) A
(len SPjn + len SRjn # 0) A
(* dlist is the list of vector displacements on prismatic joints.
olist is the list of angles, imposed on revolute joints,
and Tlist is the corresponding list of orientations of the
links of revolute joints. *)
(3 dlist € Vectortype-list,
¢list € Angle—Rep-list,
Tlist € Transformation-list)
((len dlist = len SPjn) A
(len ¢list = len Tlist) A
(len ¢list = len SRjn) A
(Vi€ {1 len SPjn})
((norm (dlist(i)) £ MAX-DISPL (SPjn(i)))) A
(vje {1 len SRjn})
((¢list(j) < MAX-ROTATION (SRjn(j)))) A

94

(let Toq = orientation (POSI-ORIE (GEOMETRY
(LINK2 (5Rjn{}))))),
Trew = orientation (POSI-ORIE
(rotate-angle (GEOMETRY (LINK2 (SRjn(j)))
AXIS-OF-MOVE (SRjn(j)), ¢list(j))))
Tlist(j) = change-in-orientation (Toid, Trew)) A
tel A
(% dvec = dlvec + dd:;ec where
d¢_1;ec is the net displacement due to rotations @list. *)
(let dlvec, dévec € Vectortype,
@vec € Vectortype-list in
(dlvec = vector-sum (dlist) A
(len ¢vec = len Tlist) A
(Vj € {1 len ¢vec})
(let P,y = position (POSI-ORIE (GEOMETRY
(LINK2 (Srjn(j))))),
Ppew = position (POSI-ORIE
(rotate-angle (GEOMETRY (LINK2 (SRjn(j)))
AXIS-OF-MOVE (SRjn(j)), #list(j))))
dvec(j) = vector (Pod, Prew)) A
tel
(dévec = vector-sum (¢vec)) A
(let dvec.B = const-vec-frame (dvec, base-coord),
dl_¢.B = const-vec-frame
(vector-sum (dlvec, dgvec), base-coord) in
vector-equal (dvec B, dl-¢_B)
tel)
tel) A
(3 Xlist, Ylist, Zlist € Real-list)
{(len Xlist = len Tlist) A
(len Ylist = len Tlist) A

95

(len Zlist = len Thist) A

(Vje {1 len Tlist})
((Xlist(j) = X-component (Tlist(j), base-conrd)) A
(Ylist(j) = Y-component (Tlist(j), base-coord)) A
(Zlist(j) = Z-component (Tlist(j), base-coord)) A
(Real-sum (Xlist) = T';) A
(Real-sum {Ylist) = T}) A
(Real-sum (Zlist) = T.)
)

tel

tel)
)
tel
Post
let jns = JOINTS (robot-arm),
grip = GRIPPER (robot-arm),
wrs = WRIST (grip) in
(3 Pjn, Rjn € Jointtype-list)
((Vi€ {1 len Pjn}) (Pjn(i) € Prisjoint) A
(Vj e {1 lenRjn})(Rjn(j) € Revoljoint) A
((elems Rjn U elems Rjn) = elems jns) A
(3 dlist € Dist—Rep-list,
¢list € Angle-Rep-list)
((len dlist = len Pjn) A
(len ¢list = len Rjn) A
(Vi€ {1 len Pjn})

96

(translate-link (LINKID (LINK2 (Pjn(i))), dlist(i})) A
(V)€ {1l len Rjn})
(rotate-link (LINKID (LINK2 (Rjn(j))), ¢list(j)))
)
) & POSI-ORIE (wrs)’ = destination
tel

4.4 Remarks on the Current Work

The additive properties for translation and rotation can be used to advantage in ob-
taining efficient solutions for inverse kinematics problems. The existence of feasible
solutions is consirained by the geometric structure of the robot arm. For example,
two translations along two different joint axes can be replaced by a single translation
if and only if there exists a prismatic joint whose axis coincides with the resultant axis
of these two translations. Similar remarks apply to revolute joints for combining ro-
tations. Optimization schemes based on the additive properties must be investigated
at the implementation level.

We remarked earlier that an agent represents a class of real-lif. .obots. For a given
application, there usually exists a set of trajectories constrained by the environment.
Using the framework outlined in this chapter, we can compare the performances of
robots having specifications that are consistent with the agent’s specification and
which can best accomplish the given task along the given set of trajectories. Con-
sequently, from the specifications on rigid solids, joints and primitive operations,
robots may be generated automatically and the specification for forward and inverse
kinematic operations can be the basis for a formal verification of the software imple-
menting kinematics. Forces, cognitive mechanisms, sensors and control aspects can
be specified independently and then combined for a particular class of application.

For simplicity at the logical level, we have considered joints having only one
degree of freedom. This is consistent with the mechanical design considerations being
practised [Cra89]. It is only rarely that the joints with n degrees of freedom are used
in practice. Such joints can be accommodated in our formalism by letting n joints,

each with one degrec of freedom, connecting links of negligible length. That is, the

97

structural integrity of a joint with n degrees of freedom has been modeled without
loss of generality in our formalism. We also remark that the behavior of the controller
for the joint with n degrees of freedom is also faithfully captured in our formalism.
A Controller that activates only one degree of freedom at a time corresponds to the
interleaved specification model whereas the controller which activates more than one

degree of freedom at a time corresponds to the concurrent model.

98

Chapter 5

Formal Definition of Assembly

In this chapter, we define abstract objects and their surface characteristics and use
them in defining the notion of assembly. We start describing previous work done in
this area and show how our approach is different from others. In all our discussions,
we refer to assembly of mechanical parts as opposed to other types ol assemblies such
as assembly of electronic components. For simplicity, we restrict ourselve: to assembly
requiring no tools such as hammer and screw driver for the operation. However, the

specifications can be extended to include these situations once the tools are modeled.

5.1 Previous Work

Assembly was thought of as a pure mechanical operation until late 70’s. With the
introduction of Computer Science principles into engineering applications these tasks
became inter-disciplinary. With robots brought into several engineering tasks, the
development of robotic software for ezch application became a crucial! requirement
for automation. For example. robots were placed in hazardous environments where
human interaction was tedious and so research turned *towards developing control
software for those particula - robots. In a similar way, assembly of mechanical parts
was haadled by only humans in the traditional approach. When robots took their
place in assembly, researchers concentrated cn developing task level robot program-
ming languages pertinent to assembly tasks. Among the notable ones in this area are
RAPT [PAB73), VAL and AUTOPASS [LiW77]. RAPT is the only language on which
experimentation was continued after its initial design; no further improvements have

been reported in the literature so far about VAL and AUTOPASS. Popplestone and

his colleagues [LiP89, PABS0, PWL88, PGL89] have extensively reported on develop-
ing a complete working system for assembly of mechanical parts. Recently, Thomas
[ThC88, ThC89] and others also looked into the same problem. Both Popplestone
and Thomas used group theory concepts for d=fining the relationships between the
objects being assembled. Our approach pursued in this thesis is different from them
in that the notion of shape operators is introduced in defining assembly relationships.

Another interesting problem attempted by several researchers in the arca of me-
chanical parts assembly 1s deriving the sequence of assembly operations, given the
shape of the objects to be assembled. Homem de Mello and Sanderson [HoS88, HoS89)
have demonstrated the use of AND/OR graph in deriving and representing the as-
sembly sequences. Others [BAL91, HuL89, HuL90, Wol89] have followed a slightly
different approach using precedence knowledge. In all these reports, the task was
to devise a cost effective method to derive a valid sequence of assembly operations.
However, they do not address the issues of defining or characterizing the geometric
relationships between two objects being assembled.

In this thesis, objects, their surface characteristics and the notion of assembly as a
relationship between the surface characteristics of the objects, are abstractly defined.
We state and prove theorems which help in verifying the assembly of a given set of
objects. In the next section, we give the definition of the shape operator and show
the computation of shape operators for primitive surface characteristics. Subsequent

sections define the concept of assembly based ¢ shape operators of objects.

5.2 Abstract Definition of an Object

In a typical assembly enviionment, a solid modeler is used for the representation
of the objects. The choice of representation techniques depend on the application
and the versatility of the representation technique selected. However, at the ab-
stract level, the description should be independent of the representation in the de-
sign /implementation phase and at the same time describc the properties of intended
operations on the objects. With this view, we model abstract objects in terms of
their surface characteristics and describe assembly operations as a set of relations

on the surface characteristics. The primitive entity by which an abstract object is

100

described is called a feature.

5.2.1 Feature of an Object

A feature is a visible patch on the surface of an object. Conversely, everything that is
visible on the surface of an object is associated with a feature of that object. Below
we define features more abstractly and state the conditions under which a given set
of features constitute a closed boundary of an object.

The abstract definition of a feature requires the definitions of two other terms :

‘shape operator’ and ‘directional derivative’. They are defined next.

Definition 1 The shape operator of a surface M is a vector valued function defined

at every point p on M along every tangent vecter v atpto M.

The shape operator of a surface M at a point p along a tangent vector v is denoted
by S, #(M). This is the same as the directional derivative of the outward unit normal

U at p, as p moves along .

Definition 2 The directional derivative of a vector field U at a point p along a
tangent vector v is defined to be the initial velocity of the curve t — U(p+tv).

The directional derivative is denoted by VzU(p) and hence V;U(p) = U’(p+tv)i=o.
A theory of shape operators and directional derivatives can be found in [Bar66).
Using the definitions of shape operator and directional derivative, a more rigorous

definition of feature can be given as follows :

Definition 3 A feature f is a surface for which the shape operator defined at every

point on f satisfies the following conditions :

1. For every point p on [AND for every tangent vector v at p, ||Sp,z(f)|| is finite.

to

For any two points p and q on f AND a given direction v, Sp5, (f) = Sp.5.(f),

where v; and U, are tangent vectors at p and g respectively, parallel to .

3. For a given point p on f, and for every tangent vector v at p, Sps(f) has a

continuous derivative.

101

Our concept of features is somewhat similar to that used in pattern recognition
and vision systems. A feature in pattern recognition systems belongs to one of the
two sets stored features and ertracted features. Stored features constitute the model of
the object being recognized while the extracted features are taken from the image of
the same object. The primary goal in pattern recognition is to find a match between
subsets of these two sets of features. Accordingly, the definition of feature is restricted
by the information that can be extracted from the image of an object. The extracted
features must ensure that the recognition process is view-independent, size invariant
and orientation invariant. In [Pau88], the features are selected in such a way that they
can be easily extracted or computed from the information in the image of an object
and the shape of the object can be reconstructed from these features. Consequently,
surfaces are treated as composite features and are defined by shape operators. These
shape operators are uniquely determined from the first and second fundamental forms
of surfaces which can be easily computed from the data in a range image of an object.
It is therefore clear that the shape operator is a well defined mathematical property
of a surface.

We do not deal with the representation or computation of shape operators; rather
we use them to define features and assembly of objects based on features. In contrast,
the purpose of shape operators in vision and pattern recognition systems is to define
features which are used to recognize objects. They represent shape operators by

means of fundamental forms of surfaces and compute these forms from range data.

5.2.2 Primitive and Composite Features

The features are divided into two categories : primitive and composite. Primitive {ca-
tures are in fact the features of primitive solids. We consider the following primitive
solids in our discussion :

Primitive solids = {rectangular cube, cylinder, cone }
These primitive solids are sufficient to model a number of objects in the real world.
Consequently, the set of primitive features are the following :

Primitive features = {rectangular face, circular face,
lateral surface of a cylinder, lateral surface of a cone}

102

Hereafter, we use the terms ‘cylindrical surface’ and ‘conical surface’ to refer to the

lateral surfaces of a cylinder and a cone respectively.

Next we show the derivation of shape operators for the primitive features along

their principal tangent vectors at every point p. The principal tangent vectors are

any two orthogonal vectors in the tangent plane at p such that any other tangent

vector at p can be expressed as a linear combination of the two principal tangent

vectors. In deriving the shape operator for a feature, we use the following steps :

1.

Define the equation for the feature F(x,y,z).

. Obtain the equation for the normal vector fields C; U, + C,Uz + C3U; where C,,

C, and Cj are the normalized coefficients obtained from the partial derivatives

or ar

9z Oy and %{; respectively.

. Choose a point P(x;. vy, ;) on the feature.

Derive the equation for the principal tangent vectors at P. These tangent vectors
are expressed in the from v : (¢, m, n) where £, m and n are the direction

numbers of v .

The normal U, at the point P and the principal tangent vector v, at P are
orthogonal and hence their dot product is zero. This condition is to be checked

for both the principal tangent vectors.
Obtain the expression (p+tv) as (x,+t€, y1+tm, z;+tn).
Substitute (p+tv) in U(p+tv).

Differentiate U(p+tv) with respect to t and obtain the expression U’=o. This

is the shape operator S, 3 = V;U.

Planar Primitives

Both the rectangle and the circle are planar primitives and hence the shape operator

at every point on a rectangular surface is the same as the shape operator at every

point on a circular surface.

The equation for a plane Ilis ax + by + cz + d = 0.

103

The equation for the normal vector field is aU; + bU; + cUsz = 0.
The normal vector field has constant coordinates and hence for any tangent vector

at any point on the plane, the derivative is always zero. Hence Spa(Il) = 0.

Cylindrical Surface

The equation for an infinite cylinder is x* + y? = r* where r is the radius of the
circle. This equation assumes that the origin of the coordinate frame coincides with
the centre of one of the circles of the cylinder and the axis of the cylinder is the Z-axis
of the coordinate frame. A finite cylinder thus can be described with an additional
constraint 0 < z < £, where £ is the length of the cylinder. This additional constraint
does not have any effect on the process of deriving the shape operator as shown below

and hence the process for an infinite cylinder is the same for finite cylinder.

Y4

p=d
x
x
N
N

v p' is the image of p on the XY-Plane.

Figure 5.1: A finite Cylinder.

Equation for the cylinder : x* + y? = 1%

Coefficients of normal vector field U derived from the partial derivatives : (2x, 2y, 0).

Normalized coefficients : (7;22_'_ = \/:c2y+ mh 0)= (%, 4,0).

104

Equation for U : U = %Ul + ‘174U2.

The principal tangent vector v, in Figure 5.1 coincides with the ruling line of the
cylinder (a line parallel to the axis and is on the cylindrical surface) containing the
point P(x1, y1, 21). Thus v, is parallel to z-axis and hence has the direction numbers
vy : (0,0, 1).

It is obvious that the normal at P and v, are orthogonal to each other.

Expression (p+tv) : (x1, y1, Z1+t)

U(p+tv) = ELU, + LU,

T
This is independent of 1 and hence the derivative of U is zero.
i-e-, U’t:o = 0-

Therefore S, ; (Cyl) = 0.

The principal tangent vector v, in Figure 5.1 is parallel to the XY-plane.

Let (¢, m, 0) be the direction numbers of v,.

Clearly, 2 + m? = 1.

v, is perpendicular to the radius of the circle at P and hence the dot product of the
radius line and the tangent vector v, must be equal to zero.

The direction numbers of the projected line of the radius (see the figure 5.1) on the
XY-plane is (x;, y1, 0) which when normalized, becomes (er’ %.1, 0).

(’-‘I-‘,:l-i-my,.l:O.

={x; + my; =0
=>y%-=—;"—l=k,say.
= (= ky; and m = — kx;.
But 2+ m?=1= Kk (x} +y}) =k’ =1
=>k=%.
Hence (= %.Land m= — -T;l

Thus v, : (%}-, —51.1, 0).

Check : A simple calculation will show that v, and the normal at P are orthogonal
to each other.

Expression (p+tv) : (x1+£3;{-1, y1 — t—‘ﬁ-l, zZ1).

Ulp+tv) = £ ((a+42) Us + (3 - 52 Ua).

105

Hence S, (Cyl) = U0 = 1;1_21 U, - %% U, = % vy

Conical Surface

p' is the image of p on the XY-plane

Figure 5.2: A finite Cone.

The equation for an infinite cone is x? + y2 = z2. However, a finite cone is constrained
by its radius and height. Accordingly, the equation for a finite cone is x* 4+ y* =
2
Az2, where A= ;;—2 These equations assume that the origin of the coordinate frarne
coincides at the vertex of the cone and the axis of the cone is the Z-axis.
Coeflicients for the normal vector field derived from the partial derivatives :
(2x, 2y, —2)z).
Normalized coefficients : (ﬂ%’ ﬁ%, - %)
p= #_,— Vr2 4+ h?
= Z ; _A
Thus U = & Uy + 5 Us — 4 Us.

The principal tangent vector v; in Figure 5.2 coincides with one of the slanting

lines passing through the point P(xy, y1, z1) (a slanting line is the one, one of whose

106

end points is the vertex of the cone and the other end point lies on the periphery of

the base circle). The direction numbers of v, are (X;, ¥1, z1) which when normalized

b
ecomes (7 5m \/1+Az, v
Expression (p+tv) : (x; + m—, 1+ ﬁ—l, z; + 71__.*_—-)
lr; ty;
U(p+tv) = o] + Az y nr + ’\Zi U,
wlzy + m) ;t 2+ \/ﬂ_

Differentiating U, we get,

4 Iy tzy 2
U,___”(zl+\/1+/\)\/1+)« (z‘+f+,\z1)\/i+,\U "

21+ \/-l_'*_'_)z
1

*+7r+—

Thus Sp,5 (Co) = U'i=o = 0.

The other principal tangent vector v, in Figure 5.2 is parallel to the XY-plane. The

derivation for the direction numbers of v, are

1.y 1 o
V2'(\/X"1 \/le 0)

The derivation steps are similar to the tangent vector vy for the cylinder.

Expression (p+tv) : (x; + 7«%{— ¥ — 7;1—1 z1).

T+ _t.y.]_ 0 i \
U(p+tv) = ——[—Lﬂzl z Ul + ——L*pz, 4 U, - AU

) Co) =1 =0 = U - 4 U,.
P.)() t=0 “\/Xz? 1 l[\/—A_Zf 2
D Wy
=nxn v
Using the equation for cone and the expression for pand A, the magnitude of the

shape operator becomes

- _ VA]
Sy (Co) = (m)

_ YA 1
i Gadiis of crcle al P- ...(1)
= iy - (2)

Expression (1) shows that the shape operator depends on the radius of the circle at P.
Expression (2) indicates that the shape operator depends on the height of the partial

cone at P.

107

5.2.3 Specification for Primitive and Composite Features

Though the mathematical definition of a feature is sound, the notations used to de-
scribe a feature and its properties are not conventional to the software community
which rely on simple programming language-like notations. Hence the mathematical
definition of features are to be restated in the notation of ithe specification language
(in our case, VDM) in order to derive a valid design as well as to ensure its correct-

ness. A formal dcfinition of a primitive feature in VDM is given below :
Primitive-feature = Rectangle | Circle | Cylindrical-surface | Conical-surface

Rectangle :: LENGTH : Line-segment
BREADTH : Line-segment

Circle :: CENTRE : Point
RADIUS : Nat0
PLANE-OF-CIRCLE : Plane

Cylindrical-surface :: CIRCLEI : Circle
CIRCLE? : Circle

Conical-surface :: BASE-CIRCLE : Circle
VERTEX : Point

The invariants for the primitive features are given below. A more detailed treat-

ment of these primitives can be found on [PAB90].

Invariants :

inv-Rectangle (Rec) =
(END-POINT1 (LENGTH (Rec)) = END-POINT1 (BREADTH (Rec))) A
(perpendicular-line-segments (LENGTH (Rec), BREADTH (Rec)))

inv-Circle (Cir) = pt-on-plane (CENTRE(Cir), PLANE-OF-CIRCLE(Cir))

inv-Cylinder (Cyl) =
let P, = PLANE-OF-CIRCLE (CIRCLE1 (Cyl)),

108

Pl, = PLANE-OF-CIRCLE (CIRCLE2 (Cyl)),

axis = mk.Line-segment (CENTRE (CIRCLEI (Cyl)),
CENTRE (CIRCLE2 (Cyl))) in

(~ line-on-plane (axis, Pl;)) A

(~ line-on-plane (axis, Pl,))

tel

inv-Cone (Co) 2
let axis = mk.Line-segment (VERTEX (Co), CENTRE (BASE-CIRCLE (Co))) in
~ line-on-plane (axis, PLANE-OF-CIRCLE (BASE-CIRCLE (Co)))
tel

The specification for shape operator, based on its definition stated earlier, is given

below :

Shape-operator : Feature x Point x Vector — Vector.
pre-Shape-operator (f, p, v) = tangent-vector (f, p, v)
post-Shape-operator (f, p, v, S) £
(norm (S) < 00) A
(V vy, v2 € Vector, q, r € Point)
((tangent-vector (f, q, v;)) A
(tangent-vector (f, r, va)) A
(parallel (vq, v)) A (parallel (va, v)) =
shape-operator (f, q, v;) = shape-operator (f, r, v2)
) A
(V6>0)(312>0)
(norm (diff (shape-operator (f, p, v) —
diff (shape-operator (f, p+4é, v))) < A)
In the above specification, the function ‘diff” represents conventional differentiation
and is not further defined here. Any further description of shape operator requires
procedural details and these can be addressed on the design.
Composite features are obtained from primitive features or already constructed com-

posite features using the functions ‘Funion’, ‘Finter’ and ‘Fdiff’. These three functions

109

respectively denote the union, intersection and difference operations among the fea-
tures. In addition to the two input features f; and f;, two additional parameters area,
and area, representing the overlapping area between f; and f; must also be input.
Areas are represented as point sets in the abstract level.

A composite feature can also be obtained from another feature f by chopping
a portion of f. It is to be noted that the chopping plane and its positive normal
should be given as arguments to the ‘chopping’ function along with the feature to
be chopped in order to decide which portion of the original feature is to be retained
after chopping.
A formal definition of composite feature obtained using these functions is given below.
In all these specifications, we assert that every point in the resulting feature belongs to

one or both of its constituents and the shape operator is also consistent at that point :

Funion : Feature x Point-set x Feature x Point-set — Composite-feature

pre-Funion (f, pset,, f2, pset) £
(* pset, and pset, refer to the areas on f; and f; respectively. *)
(V p1 € psety) (on (pi, f1)) A
(V p2 € psetz) (on (p2, f2)) A
(card pset; = card pset;)
post-Funion (f}, psety, fa, psetq, f) 2
(* pset, and pset, are merged together. *)
(V p1 € psety) ((p1 € psetz) A on (py, f1) A (on (py, f2)) A
(V p2 € psety) ((p2 € psety) A on (pa, {i) A (on (p2, f2)) A
(* every point p on the resulting feature f is either a point on f, or
a point on f; *)
(V p € Point)
(on (p, f) =
(on (p, f1) V on (p, f2)) A
(* every tangent vector v to every point p on the resulting feature f is
also a tangent vector to f; at p or a tangent vector to f, at p and

shape operator at p along v is preserved from the input feature. *)

110

(3 vy, v2 € Vector)
((V v € Vector)
(tangent-vector (f, p, v) = (3 a, b € Nat) (v = av; + bvz))
(tangent-vector (f, p, v;) A tangent-vector (f, p, v2)) A
(on (p, ;) =>
(tangent-vector (f1, p, v1)) A
(shape-operator (f, p, v;) = shape-operator (f1, p, v1)) A
(tangent-vector (f;, p, v2)) A
(shape-operator (f, p, v2) = shape-operator (fi, p, v2))
) A
(on (p, f2) =
(tangent-vector (f2, p, v1)) A
(shape-operator (f, p, v;) = shape-operator (f2, p, v1)) A
(tangent-vector (fa, p, v2)) A
(

shape-operator (f, p, v2) = shape-operator (f2, p, v2))

Finter : Feature x Point-set x Feature x Point-set — Composite-feature

pre-Finter (f;, pset;, 2, psets) =
(V p1 € psety) (on (p1, f1)) A
(V p2 € psetz) (on (p2, f2)) A
(card pset; = card pset,)
post-Finter (f;, psetq, {2, psetz, f) £
(V p1 € psety) ((p1 € psetz) A on (p1, f1) A (on (p1, f2)) A
(V p2 € psety) ((p2 € pseti) A on (pa, f1) A (on (pa2, f2)) A
(V p € Point)
(on (p,) =
(on (p, f1) A on (p, f2)) A
(3 vy, va € Vector)
((V v € Vector)

111

(tangent-vector (f, p, v) = (3 a, b € Nat) (v = avy + bvy)) A
tangent-vector (f, p, v1)) A
tangent-vector (f, p, v1)) A
tangent-vector (fz, p, v1)) A
shape-operator (f, p, v;) = shape-operator (f;, p, V1)) A

tangent-vector (f, p, v2)) A

fla p, v2)) A
f21 P v2)) A
shape-operator (f, p, v2) = shape-operator (fy, p, v2)) A

(
(
(
(
(shape-operator (f, p, vi1) = shape-operator (f2, p, V1)) A
(
(tangent-vector (
(tangent-vector (
(
(shape-operator (f, p, v2) = shape-operator (fz, p, v2))

)
)

Fdiff : Feature x Point-set x Feature X Point-set — Composite-feature

pre-Fdiff (f;, pset;, fz, psets) =
(V p1 € pset;) (on (pg, 1)) A
(V p2 € psetz) (on (p2, f2)) A

(card pset; = card pset;)

e

post-Fdiff (fy, psety, 2, psets, f)
(V p € Point)
(on (p, f) =
(on (p, f1) A~ (p € psely) A ~on (p, f2)) A
(3 vi1, vo2 € Vector)
((V v € Vector)
(tangent-vector (f, p, v) = (3 a, b € Nat) (v = av; + bvy)) A
tangent-vector (f, p, v1)) A
tangent-vector (fi, p, v1)) A

tangent-vector (f, p, v2)) A

(
(
(shape-operator (f, p, v1) = shape-operator (f;, p, v1)) A
(
(tangent-vector (f, p, v2)) A

(

shape-operator (f, p, v;) = shape-operator (f, p, v2))

112

)

Composite features may also be obtained by cutting a feature by a plane. We use the
term ‘chopping’ in a very strict sense such that the chopping plane cuts the feature
into exactly two halves. This condition eliminates the situations where the chopping
plane touches the feature or stays away from the feature. The function ‘chopping’ is

informally defined as follows :

Let f, denote the feature to be chopped, Pl the chopping plane and N the
positive normal of the plane Pl. Let f, denote the feature obtained after
chopping. There exist two points p and q on the periphery of f; such that
for any two points p; and q; on the periphery of {,, the line pq is always
longer then the line p,q;. In some sense, the line pq denotes the major
axis of the feature f;. In addition, p and q should be on the opposite sides
of the chopping plane Pl and their respective distances from the plane are
not zero. After chopping, for every point r on f,, the vector TS points to
the same direction as that of the positive normal N to the chopping plane

Pl, where s refers to the foot of the perpendicular line from r to the plane
Pl

Summarizing these informal conditions, the formal definition of the function ‘chop-

ping’ is obtained as follows :

Chopping : Feature x Point x Point x Plane x Vector — Composite-feature

12

pre-Chopping (f,, p, q, P1, N)
(V p1, q1 € Point)

(distance (p, q) > distance (p1. q1)) A

(let r = intersect-line-plane (const-line (p, q), P1) in
(r#p)A(r#q) A
(distance (r, p) # 0) A (distance (r, q) # 0)

tel) A

(V € € Line-segment) (line-on-plane (¢, P1) = perpendicular (¢, N))

113

>

post-Chopping (f,, p, q, P, N, {,)
(V p € Point)
(on (p, fo) =
(on (p, fi) A
let { = normal-pt-plane (p, Pl) in
let q = intersect-line-plane (¢, P1) in
let v = vector (q, p) in
same-direction (v, N)
tel
tel
tel
) A
(V v € Vector)
((tangent-vector (f,, p, vi) = tangent-vector (f,, p, vi)) A
(shape-operator (f,, p, v1) = shape-operator (f,, p, v1))

)

Tangent-vector : Feature x Point x Vector — Boolean

pre-Tangent-vector (f, p, v) 2 on (p, f) A pt-on-vector (p, v)
post-Tangent-vector (f, p, v, b) =

~ (3 q € Point) (on (q, f) A pt-on-vector (q,v)
Lemma 1 A composite feature is a feature.

Proof : In order to prove that a composite feature f is a feature, we have to prove
that the shape operator at every point p on f is defined and satisfies the conditions
for the shape operator as defined earlier. In addition, if the point p is common to
both the input features (in case of funion and finter), then we need to show that
the shape operator to f; and f, at p along every tangent vector v must be the same

(consistent). We will prove the lemma for each one of the operators funion, finter,

fdiff and Chopping separately.

114

-

Case] : in function ‘funion’
Every point p on { is either a point on f, (exclusively) or a point on f2 (exclusively)

or a point on both {; and f5.

Casell: (pef)A(p¢gl2)
As mentioned in post-funion, every tangent vector v to f at p is also a
tangent vector to f; at p. Moreover, the shape operator (f, v, p) is the

same as the shape operator (f;, v, p). Hence the shape operator at p is

well defined.

Case 1.2: (p g i) A (p € 12)

The arguments are similar to that of Case 1.1.

Case1.3: (pefi)A(pef)
In this case, as seen from post-funion, every tangent vector to f at p is
also a tangent vector to f; at p as well as a tangent vector to f; at p. In
addition, shape-operator ({f, v, p)

= shape-operator (f, v, p)

= shape-opcrator (f;, v, p).
The three-way equality constraint implies that the shape of f; and f; is

the same at every common point p on f. Hence the lemma holds good.

Case 2 : in function ‘finter’
As scen from post-finter, every point p on { is a point on f; as well as a point on f,.

The rest of the proof then follows from Case 1.3.

Case 3 : in function ‘{difl’

From post-fdiff, it can be observed that every point on f is only a point on f; and
every tangent vector v to { at p is also a tangent vector to f, at p. Moreover, the
shape operator at p for f is also the same as the shape operator to f; at p along v.
Therefore, it is easy to see that the shape operator of f at every point p is the same

as the shape operator of f; at p, which in turn is well defined.

115

Case 4 : Chopping

The arguments are very similar to that of Case 3.

The following observations can be made regarding the composite fcatures :

e a composite feature cannot be constructed using a flat feature (rectangular or
circular) and a curved feature (cylindrical or conical), since the shape operator
will not have a continuous derivative along every tangent vector at the meeting

poinil between the features.

e a cylindrical feature cannot be joined with a conical feature to form a composite

feature for the same reason mentioned above.

e a cylindrical feature can be joined with another cylindrical feature to form a

composite feature only if they are of same dimensions and their axes aligned.

e a conical feature can be joined with another conical feature to form a composite
feature only if both of them have the same angle at the vertex and their vertices

coincide.

Lemma 2 With respect to composition, the primitive features are partitioned inlo

three disjoint subsets {{rectangular face, circular face}, { cylindrical surface}, {conical

surface}}.

Proof : It is already proved that a composite feature is a feature. Hence the shape op-
erator at every point on the composite feature along every tangent vector is uniquely
determined. It is therefore sufficient to prove that each member of one partition
cannot produce a composite feature with a member from another partition.

Let C be the composite feature produced from the two features f; and fz.

Case 1 : f, is rectangular and f; is cylindrical.

For rectangular features, the shape operator at any point along every tangent vector
at that point is 0. However, the shape operator at a point p on the cylindrical feature
is 0 only along the tangent vectors that are parallel to the axis of the cylinder; the

shape operator for the same point p along the tangent vector v perpendicular to

116

the axis is }? For any other tangent vector which is a linear combination of these
two tangent vectors, the shape operator is definitely not 0 since there is at least one
non-zero result. Hence the shape operator for the same point on a rectangular face
is different from that for the same point on a cylindrical surface. Hence C cannot be
obtained from f; and f{,.

Case 2 : f; is rectangular and f, is conical.

The arguments of Case 1 are equally applicable to Case 2 as well.

Casc 3 : f i1s cylindrical and f; is conical.

In this case, there is no value for the shape operator common to both cylindrical
and conical surfaces. Obviously C cannot be composed from cylindrical and conical

surfaces.

It is also to be observed tha. composite features obtained by chopping will not modify
the shape of the original feature and hence the shape operator at every point on a
composite feature obtained by chopping is the same as that of the original feature at

that point.

5.2.4 Normal to a Feature

Associated with each feature is a normal which always points to the exterior of the
object. The normal to a feature f at a point p on f is the same as the normal to
the tangent plane to f at p. Consequently, the normal to a planar feature f, at every
point p is perpendicular to every line on f, passing through p. For cylindrical feature
f.;, the normal at any point p is perpendicular to the axis of the cylinder and for
conical feature {.,, the normal at any point p is perpendicular to a line { passing
through p and making an angle with the axis equal to half of the conical angle. A
formal definition of axis of a cylinder, axis of a cone and angle of a cone are given in

[PADB90].

Normal ;: Feature x Point — Vector
pre-Normal (f, p) 2 on (p,)
post-Normal (f, p, N) =

(f € Rectangle =

117

let P1 = derive-plane-pts (END-POINT1 (LENGTH (f)),
END-POINT?2 (LENGTH(f)), END-POINT2 (BREADTH (f))) in
perpendicular-line-plane (N, PI)
tel
) A
(f € Circle = perpendicular-line-plane (N, PLANE-OF-CIRCLE (f))) A
(f € Cylindrical-surface =
let axis = axis-of-cylinder (f) in
(3! q € Point)
((pt-on-line (g, axis) @ pt-on-line (g, extrapolate (axis))) A
(* q is the foot of perpendicular from p to the axis. *)

(same-direction (N, vector (p,q)))

)
tel

YA
(f € Conical-surface =
(p # VERTEX (1)) A
(perpendicular-line-line (N, line (p,VERTEX({))))
) A
(f € Composite-feature =
(3 f;, f; € Feature, pset;, pset; € Point-set)
(f = funion (fy, pset,, f2, psety) =
(on (p, f;) = N = normal (f}, p)) V (on (p, f2) = N = normal (f;, p))
) @
(3 f,, {2 € Feature, pset;, pset; € Point-set)
(f = finter (fi, pset,, f2, psety) =
(on (p, f;) Aon (p, f3) A (N = normal (f;, p)) A (N = normal ({3, p))
) @
(3 f,, f; € Feature, pset,, pset; € Point-set)
(f = {diff (f1, psety, {2, psetz) => (on (p, fi) A N = normal (f;, p))
) @

118

(3 {5 € Feature, r, s € Point, Pl € Plane, N; € Vector)
(f = chopping (f3, 1, s, P1, N;) = (on (p, f3) A (n = normal (fs, p)))
)

5.2.5 Functional Description of Features

Although our choice of primitives will be sufficient to describe a large number of ob-
jects in the real world, they are still inadequate to describe some features belonging
to objects that are commonly encountered in the real world. Therefore it is some-
times necessary to functionally describe a feature using the primitive features; see

the example below :

Example 1 :

Intersecting Cylinders.

Consider the penetration of a cylinder A into another cylinder B as shown in Fig-
ure 5.3. For simplicity, we consider only regular cylinders and only the situation
where cylinder A penetrates cylinder B such that their axes are at right angles. Let
p. be the point of intersection of the axes. The distance of p, from the centre of
CIRCLE! of A as well as the distance of p, from the centre of CIRCLE1 of B are
also passed as input parameters in order to define the penetration. The common
curve comprising the points of intersection is called a ‘profile’. The profile is formally

defined as a list of points. Below, we give a formal definition for ‘penetration’.

Profile = Curve = Point-list
Penetration : Cylindrical-surface x Cylindrical-surface x Nat x Nat — Profile
pre-Penetration (Cyly, Cylp, dy, dp) =
let axis); = axis-of-cylinder (Cyl,,,
axis; = axis-of-cylinder (Cyl,) in
(perpendicular-line-segments (axis;, axisy) A
let p, = intersect-line-segments (axis;, axis;) in
(pr # NIL) A
(d, = distance (p,, CENTRE (CIRCLE1 (Cyl;)))) A

(d; = distance (p,, CENTRE (CIRCLEI1 (Cyl,)))) A

119

A —»

Figure 5.3: Intersecting Cylinders.

(di # 0) A (d2 #0)
tel
tel
post-Penetration (Cyly, Cyls, dy, d2, pf) £
(* every point on the profile is obtained as the intersection of two
circles cir; and cirg, ciry € Cyl; and cir, € Cyly. *)
let axis; = axis-of-cylinder (Cyl,),
axis, = axis-of-cylinder (Cyl,) in
(Vie {1l - len pf})
((3! ciry, cirp € Circle)
((pt-on-line (CENTRE (cir,), axis;)) A
RADIUS (cir;) = RADIUS (CIRCLE, (Cyl,))) A
perpendicular-line-plane (axis;, PLANE-OF-CIRCLE (cir)) A
pt-on-line (CENTRE (cirz), axisz)) A
(RADIUS (cir;) = RADIUS (CIRCLE,; (Cyly))) A
(perpendicular-line-plane (axis;, PLANE-OF-CIRCLE (ciry)) A

(pf(i) € intersect-circles (ciry, ciry)) A

(
(
(
(

120

(distance (pf(i), CENTRE (cir;)) = RADIUS (ciry)) A
(distance (pf(i), CENTRE (cirz)) = RADIUS (cir;))
)

tel

Now, the specification for the composite feature C (portion of the cylindrical surface
A only) can be given as below :
Composite-cyl-inter-1 : Cylindrical-surface x Cylindrical-surface — Feature

pre-Composite-cyl-inter-1 (Cyl;, Cylz) 2

(2 dy, d2 € Nat)
(let pf = penetration (Cyl;, Cyl,, d;, d2) in
pf # NIL
tel)
post-Composite-cyl-inter-1 (Cyl;, Cyla, f) =
(* The portion C of the cylinder is composed of a set of line segments
all of which are parallel to the axis of the cylinder A and are at a distance
equal to the radius of CIRCLE! of the cylinder. One end point of each line
segment lies on the circumference of CIRCLEL and the other end point lies on
the profile, formed by the intersecting cylinders. *)
(V p € Point)
(on (p,) =
((on-cyl-surface (p, Cyl1)) A
(3 € € Line-segment)
((lie-on-periphery (END-POINT1 (¢), CIRCLE1 (Cyly))) A
(let pf = define-profile (Cyl;, Cyl;) in
(31 € {1 len pf}) (END-POINT2 (¢) = pf(i))
tel) A
dist-line-line (axis-of-cylinder (Cyly), 1) =
RADIUS (CIRCLE1 (Cyly))

121

It is easy to prove that Composite-cyi-inter-1 results in a composite-feature and hence

a feature; the proof is similar to that of Lemma 1.

5.2.6 Closed boundary of an Object

In order to prove that an object can be uniquely determined by its features, we have
to show that every feature in the set of features of the object is completely connected
to form a closed boundary. This can be shown by first establishing the connectives
(point sets) of a feature and then stating that every connective of a feature should be
joined to exactly one other connective of same type, belonging to another feature of
the same object. We define a connective to be a curve so that line segments, circles
and circular arcs can be also be defined.

Connective = Curve

Connectives-of-feature : Feature — Connective-list

post-Connectives-of-feature (f, Cfs) =

(CONSTRUCT(f) € Rectangle =
(len Cfs = 4) A (Cfs € Line-segment-list) A
(Cfs(1) = sidel (f) A Cfs(2) = side2 (f) A
Cfs(3) = side3 (f) A Cfs(4) = sided (f))
) A
(CONSTRUCT(f) € Circle =
(len Cfs = 1) A (Cfs € Periphery-of-circle-list) A
(Cfs(1) = periphery {f))
) A
(CONSTRUCT(f) € Cylindrical-surface =
(len Cfs = 2) A (Cfs € Periphery-of-circle-list) A
(Cfs(1) = periphery (CIRCLEL (f))) A (Cfs(2) = periphery (CIRCLE2 (f)))
) A
(CONSTRUCT(f) € Conical-surface =
(len Cfs = 1) A (Cfs € Periphery-of-circle-list) A
(Cfs(1) = periphery (BASE-CIRCLE (f)))

122

) A
(CONSTRUCT(f) € Composite-feature = Cfs = compute-connectives (f))

As remarked earlier, composite features obtained from cylindrical features will result
in a cylindrical (composite) feature; the same argument is true for conical features
as well. Hence the connectives of a cylindrical composite feature are directly derived
from those of the cylindrical primitive features; similarly, the connectives of a conical
composite feature are also derived from its constituents. However, for composite fea-
tures obtained from planar primitives or ‘chopping’, the determination of connectives

is quite complex.

We next state the conditions to assert whether or not a given set of features form
the closed boundary of an object. Informally, every feature in the set is completely
connecled; i.e., every connective ¢ of a feature f is connected to eractly one other con-

nective ¢; of another feature f,, leaving no connective open (unconnected). Formally,

Closed : Object — Boolean
post-Closed (Obj, b) 2
b & (Vf, e FEATURES (Obj))
((¥ cf; € elems connectives-of-feature (f;))
((3! f, € FEATURES (Obj))

((fy # f2)

(3! cf, € elems connectives-of-feature (f3))
((V p € Point)
(on (p, cfy) ¢ on (p, cfz))

123

5.2.7 Relationship between Features of the Same Object

The normals to features play an important role in identifying the relationship between
adjacent features of the same object (two features are said to be adjacent. if they have
a common connective). Since, in our discussion. objects are described by features,
portions of an object such as a ‘hole’ is also defined in terms of relationship between
adjacent features of the same object. Since, strictly speaking, ‘hole’ is a term to be
defined with respect to something, we define a hole with respect the interior of the
object. Our notion of hole is based on the normals to features which aiways point to
the exterior of the ubject.

The curved features and flat features have distinct characteristics in composing a
hole (A curved feature is a cylindrical surface, conical surface or any composite feature
obtained using one of these two primitive features. A planar feature is a rectangle,
circle or any composite feature obtained using one or both of these primitive features).
For example, a cylindrical or conical feature can by itself represent a hole whereas a
flat feature (rectangular or circular) cannot by itself represe: wle.

A feature 1s said to ‘participate’ in a hole if it by itself rep.. uts a hole or forms
part of a hole. The participation of a flat feature in forming a hole is identified from

its neighbors or adjacent features.

e Tor a curved feature f, let I1 be the plane perpendicular to the axis of the curved
feature and cut the axis at a point p. If for every point q common to the feature
and plane II, the normal to f at q converges towards p, then the curved feature

f participates in a hole (in this case it by itself represents the hole).

e For a flat feature f, if there is at least one adjacent feature f; which is curved

and participates in a hole, then f also participates in a hole.

e For a flat feature f, if there is at least one adjacent feature f; which is flat and
normals defined at any two points p and q such that p € f and q € f, intersect,
then f participates in a hole. It can be observed that if f participates in a hole
having met the constraints above, then f; which is also flat, participates in a

hole.
e In all other cases, f does not participate in a hole.

124

A formal description of participation of a feature in a hole is given below :

Participate-in-hole : Feature x Boolean
post-Participate-in-hole (f, b) 2
((f € Cylindrical-surface) V (f € Conical-surface) =
b ¢ (3 IT1 € Plane)
((perpendicular-line-plane (axis(f), II)) A
(let p = intersect-line-plane (axis (f), II) in
(V q € Point)
((on (g, f) A pt-on-plane (q, II) = vector (p,q) = normal (f, q))
tel)
)
) A
((f € Circle) V (I € Rectangle) =
b « (3 f; adjacent-features (f))
(participate-in-hole (f;)) V
(3 f; € adjacent-features (f))
((3 p, P1, q € Point)
(on (p, f) A on (py, f1) A

q = intersect (normal (f, p), normal (fi, p1))

)

) A
(f € Composite-feature =
((3! {,, {2 € Feature, pset,, pset; € Point-set)
(f = funion (f;, pset;, {2, pset;) =>
b < participate-in-hole (f;) V participate-in-hole (f;)) @
(f = finter (fi, pset—1, fz, psety) =
b & participate-in-hole (f;) A participate-in-hole (f2)) ®
(f = {diff (f,, psety, 3, psety) =
b < participate-in-hole (f;)) A ~ participate-in-hole (f;) &
(3 p,q €Point, II; € Plane, N, € Vector)

125

(f = chopping (fi, p, q, I}, N;) = b & participate-in-hole (f;))

5.3 Formal Description of Assembly

At the abstract level, assembly is defined as a set of contacts between the features
of the objects to be assembled. These contacts are classified into three categories,
namely point contact, linc contact and area contact. Although it is possible to for-
mally define all the three types of contacts, we restrict ourselves to only area contacts
because the other two types of contacts are practically of no interest in the context of
assembly. The reason is that the stability of the object resulting from point contact
and line contact types of assembly cannot be assured. However, these two types of
contacts are still of interest in the case of grasping an object by a robot. In this case,
stability is achieved with the result of forces applied at the gripper and frictional

forces at the points of contact.

5.3.1 Assembly Requirements

In all our discussions below, we assume that assembly can be defined only between

two objects at a time; the objects may themselves represent subassemblies as well.

Assembly is defined by a set of area contacts between two non-emply subsels of
features, one belonging to each component being assembled. These two subsets put
together are called assembly features. The set of assembly features are classified into
two groups, namely mating features and consequent features. Maling features are
those described by user requirements while consequent features represent the set of
features which automatically make area contacts as a result of joining the mating
features. It will be shown later that every pair of consequent features results due
to the joining of a pair of mating features which are of same type and are of same

dimensions.

126

Informal Description of Assembly

Let Obj; and Obj, be the two objects being assembled and let Obj; be the resulting
object. Let F;, F, and F3 denote the set of features of the objects Obj,, Obj, and
Objs respectively. Let the mating features be denoted as fset, and fset; and the
consequent features be denoted as cset; and cset. Both fset; and fset; are given by
the users and cset, and cset, are automatically generated.

It is known that (fset; C Fy), (fsety € Fy), (cset; C ¥y) and (cset; C Fy)

For every feature f; in fset,, there exists exactly one feature f, in fset; such that f;
and f; are of same type and are defined to make area contacts. Note that, there may
exist another feature f’; in fset, such that f; and f’; are of same type and area contact

is possible between them. This situation indicates that two objects can be assembled

in more than one way.

Figure 5.4: Possibility of more than one assembly between two given objects.

To illustrate, consider the assembly of two objects shown in Figure 5.4. Assume
that the cylinders are positio.. ! in the corners of an equilateral triangle and the
holes in the other object are located at the corners of another equilateral triangle of
the same size. Let these two triangles be centered with respect to the circular faces

ir the two objects. Assume that all the three cylinders in Obj; and the three holes

127

in Obj, are of same dimensions. It is easy to see that a cylinder in Obj, can fit into
any one of the three holes in Obj,. However, once it is decided to mate the feature
f11 with f5;, say, then the other two mating features are fixed as fj; with f3; and fi3
with f23. Thus there exist three possible mutually independent assemblies for these

two objects as described below :
<fyy, f21 >, <fiq, f20 >, <fi3, f23 >
<fn, f22 >, <fi2, f21 >, <fi3, f23 >
<f, faz >, <fi2, for >, <fi3, fo1 >

At the abstract level, our specifications capture the geometric relationships that are
common to all these sequences.

As a consequence of assembly, some features in both F, and I'; do not appear
in F5 and some other features appear in F3 which do no exist in Fy or in Fa. We
denote these two sets of features as ‘flost’ and ‘fnew’ respectively. We can observe

the following relationships among the various sets of features described thus far :

e There exists a one-to-one correspondence between the subsets fset, and fsct;
a similar relationship exists between cset; and cset; as well. By one-to-one
correspondence, we mean that for every feature f; in fset,, there exists a unique
feature f, in fset, such that f; and f, make area contacts.

card fset; = card fset,

card cset; = card cset,

(V f; € fset;) (3! {, € fsety) (area-contact (fy, f2) # NIL)
(V ¢; € cset;) (! ¢, € csety) (area-contact (cy, ¢z) # NIL)

o Al these four subsets do not appear in the resulting object and hence they are
all lost. i.e.,

union (fset;, fset,, cset;, csety) = flost

o The features which are lost are part of the features of the components Obj,

and Obj, and do not appear in the resulting object. Consequently, ‘flost’ can
be defined as
flost = (F) U Fg) - F3

128

e Similarly, the set of features ‘fnew’ can be described as

fnew = F3 - (F1 U Fg)

o Both ‘flost’ and ‘fnew’ will never be empty; i.e., as a result of the assembly,

some features are always lost and some are always created. Hence

Fs # (F, UF,)

e In the resulting object, there is at least one feature which is preserved as such

(unmodified) from the original feature set of either Obj; or Obj2. Thus,
Fs N (F, UF,) # {}

These descriptions belong to the quantitative analysis of assembly. They are useful
in reducing the complexity of computation in assembly operations, an important
requirement in this context.

Next, we describe the relationships between the set of consequent features and
mating features. When a feature f; in fset, is joined with a feature f; in {set;, two

cases arise :

Case 1: f; and f; are of the same dimension.

In practice, for two features to fit, one of them should have more volume space than
the other; in other words, a clearance space is to be given for fitting the two features.
However, such tolerance limits are dealt with in the implementation phase of the soft-
ware process model. Hence we ignore tolerances in the specification. Consequently,
at the specification level, if two features are to be fitted together, it is sufficient that
they be of same dimension. In the present case, f; fiis exactly with f;. By exact fit,
we mean that no portion of either f; or f; is visible in the resulting object. Con-
sequently, the features that are previously connected to f, and f; will automatically
make area contacts and thus become the consequent features. If gset;; represents the
set of features connected to f; and gset,, represents the set of features connected to
f,, then gset;; is a subset of cset; and gsety; is a subset of csei,. That is,

(gsetyy C cset;) and (gsety; C csety)

In addition, there exists a one-to-one correspondence between gset;; and gset;; and

129

hence
card gset;; = card gset,, and
(V & € gsetqy) (3! g2 € gsety) (area-contact (g, g2) # NIL)
By generalizing this concept for all the features in fset; and fsets, we conclude
cset; = {g: | g € connected (f;) A f; € fset; A
(3! {; € fset,)(same-dimensions (f;, f,))} and
cset; = {g; | g, € connected (f,) A {, € fset, A
(3! f; € fsety)(same-dimensions (f,, f,))}

ase 2 : the dimensions of f; and f, are different.

Two situations arise in this case.

Case 2.1 : one feature, say f;, is completely covered (and hence becomes
invisible) by the other feature, f;.

In such a situation, f; is completely lost. However, f; is modified and
appears as a new feature in Obj;. See Figure 5.5 which gives a pictorial

description of this situation in case of primitive features.

Figure 5.5: Example for one feature covering the other.

Case 2.2 : f; and f; will partially overlap with each other; i.e., some

130

portion of f; and some portion of f, are still visible even after the assembly.
This situation gives rise to two new features in the resulting ocbject Objs
which are modified versions of f; and f;. This is illustrated in Figure 5.6

for primitive features.

Figure 5.6: Example for partial overlapping of features.

From 2.1 and 2.2, we conclude that every new feature in Obj, is a modified version
of a feature { where { belongs to either Obj; or Obj,. Hence

(Vi € fnew) (3! f € (fset; U fset, U csety U csety)) (f, = modified (f))
which also gives rise to the following relation

(Vi € fnew) (3! f € flost) ({, = modified (f)) and

card fnew < card flost

Specifications for Assembly

Summarizing all the informal descriptions stated previously, we now provide the for-

mal specifications for assembly relationships.

Object :: POSI-ORIE : Transformation
FEATURES : Feature-set

131

Mating-Features = Feature — Feature

The VDM map data type is used to describe the mating features which automat-

ically assures one-to-one correspondence between fset; and fset,.

Assembly : Object x Object x Mating-Features — Object
pre-Assembly (Obj,, Obj,, Mfeatures) =

let Ty = POSI-ORIE (Obj;), T, = POSI-ORIE (Obj,),

fset; = dom Mfeatures, fset, = rng Mfeatures in

(fsety € FEATURES (Obj;)) A
(fset, € FEATURES (Obj,)) A
(fsety # {}) A (fsety # {}) A
(
(

card fset; = card fset;) A
V f; € fset,)
(can-mat-eachother (f;, Mfeatures(fz)))
tel
post-Assembly (Obj;, Obj,, Mfeatures, Objs)
let F; = FEATURES (Obj,), F; = FEATURES (Obj,),
F3 = FEATURES (Objz), fset; = dom Mfeatures,
fset, = rng Mfeatures in
(Fa# (F1UFy)) A
(Fan (F1 UTF2) # {}) A
(3 csety, csety, flost, fnew € Feature-set)
((fsety C Fy) A (fset; C Fo) A
(cset; C Fy) A (cset; C Fy) A
(fset; N cset; = {}) A
(fset; N cset, = {}) A
(

>

card fset; = card fset;) A
(card cset; = card cset,) A
(V c; € cset,)
(3! f, € fset;) (connected (cq, f1)) A

132

(V c2 € csety)
(3! f; € fsety) (connected (cq, f2)) A
(flost = (F, U F3) = F3) A
(fnew = (F3 — (F; UFy)) A
(flost = union (fset,, fsety, cset;, csetz)) A
(card fnew < card flost) A
(V 1, € fset,)
(3! f; € fset,)
((let pset; = area-contact (fi, f2) in
pset; # {}
tel) A
(same-dimensions (f;, f2) =
(3 gset,, gset, € Feature-set)
((gset; C csety) A (gsetz € csety) A
(gset; = adjacent-features (f;)) A
(gset, = adjacent-features (f3)) A
(V g1 € gsety)
(3! g, € gsets)
(let pset, = area-contact (g, g2) in

psety # {}
tel)

)
) A
(V{3 € fnew)
(3 f;, f; € Feature, pset,, pset; € Point-set)
((fy € fsety) A (f; € fsety) A
((fz = funion (f;, pset;, f;, psety)) &
(f3 = finter (fy, pset,, f;, pset;)) @)
(f3 = {diff (fy, psety. f2, psetz))
)

133

Connected : Feature x Feature — Boolean
post-Connected (f, g) =

(f € adjacent-features(g)) A (g € adjacent-features (f))

Adjacent-features : Feature — Feature-set
post-Adjacent-features (f, fset) =
(card fset = len connectives-of-features (f)) A
(V cf € elems connectives-of-features (f))
(3! f; € fset)
(3! cf; € elems connectives-of-features (f,))

((V p € Point) (on (p, cf) & on (p, cf})))

Area-contact : Feature x Feature — Point—set
post-Area-contact (fj, fz, pset) =
(V p € pset)
((on (p, f1) Aon (p, f2) A
opposite-direction (normal (f;, p), normal (fz, p))
) A
(* the contacting area must be continuous *)
continuous (pset) A
(* the contacting area is neither a point nor a line *)
(3 p1, p2, p3s € pset)
(~ collinear (pi, pz2, p3))

The function ‘continuous’ specifies the continuity of a point set. This will be defined
in detail only in the implementation.
Same-dimensions : Feature x Feature — Boolean
. . A
post-Same-dimensions (f;, f, b) =

b & (f; € Rectangle =

134

(f2 € Rectangle) A (LENGTH (f;) = LENGTH (f;)) A
(BREADTH (f;) = BREADTH (f;))
) &
(f; € Circle =
(f2 € Circle) A (RADIUS (f,) = RADIUS (f,))
) B
(f; € Cylindrical-surface =
(f2 € Cylindrical-surface) A
(RADIUS (CIRCLEI (f,)) = RADIUS (CIRCLE1 (f;)))
) D
(f, € Conical-surface =
(f2 € Conical-surface) A
(RADIUS (BASE-CIRCLE (f;)) = RADIUS (BASE-CIRCLE (f;))
) &
(f; € Composite-feature =
({2 € Composite-feature) A
(3 fs, {4, f5, f¢ € Feature, pset,, psets, psets, psets € Point—set)
((same-dimensions (fs, f5)) A (same-dimensions (fs, fg)) A
(card pset; = card psetz) A (card pset, = card psety) A
((f; = funion (fs, psety, fy, psetz) =
f = funion (fs, psets, fs, psets) @
(f; = finter (fs, psety, {4, psets) =
{; = finter (fs, psets, fs, psety) @
(f; = fdiff (f3, psety, {y, psets) =
fy = {diff (fs, psets, fg, psets) &
(3 p,q,r.s, € Point, II;, Pi; € Plane, N;, N; € Vector)
(fi = chopping (f3, p, g, P71, Ny) =
f, = chopping (s, r, s, Pig, N3))

135

The function ‘Can-mat-eachother’ validates every pair of mating features for the
assembly. It is first informally described as follows :

For every pair <fy, f > of mating features,

e Iff; and f; are defined with respect to a common coordinate frame T such that
the origin O of T is a common point between f; and f;, then both f; and f;

should make an area contact. Let this area be denoted as ‘pset’.
e f; and f; must be of same shape.

o If there exists a feature g; adjacent to f; such that its connective to f; is com-
pletely enclosed in the contacting area pset and g; is not part of any hole,
then there must exist another feature g, adjacent to f; such that connective
between f; and g9 is also completely enclosed within pset and g, and g; can-

mat-eachother.
o If f; and f; are of same dimensions, then

— the number of adjacent features to f; is equal to the number of adjacent

features to fo

— for every adjacent feature g, to f, there exists a unique adjacent feature

g2 to f; such that g, and gy can-mat-eachother.
e If f; is part of a hole, then f; cannot be part of any hole.
A formal description of ‘can-mat-eachother’ now follows :

Can-mat-eachother : Feature x Feature — Boolean
post-Can-mat-eachother (f;, f2, b) =

b & (3 T € Transformation)

(let O = position (T) in
on (0,f;) Aon (O, f;) =
(let pset = area-contact (fj, f;) in
(pset # {}) A
(V p € pset, v € Vector)

(tangent-vector (f}, p, v) =

136

(tangent-vector (fz, p, v) A

(shape-operator (f;, p, v) = shape-operator (fz, p, v))
) A
(V g1 € adjacent-features (f;))
(connectives-of-feature (g;) C pset) A
~ participate-in-hole (g1) =
(3! gz € adjacent-features (I2))
(connectives-of-feature (g;) C pset) A
(can-mat-eachother (g, g2)
)
tel) A
(participate-in-hole (f;) = ~ participate-in-hole (f2)) A
(same-dimensions (fi, f;) =
(card adjacent-features (f;) = bf card adjacent-features (f3)) A
(V g1 € adjacent-features (f;))
(3! g2 € adjacent-features (f3))
(can-mat-eachother (g, g2))

The quantitative and qualitative properties of assembly are captured in the speci-
fication. We remark that the given specification is incomplete and requires several

extensions before being found useiul for assembly process verification.

137

Chapter 6

Deriving Design from Formal
Specifications

A behavior specification describes WHAT the system is supposed to do and is there-
fore independent of any design or implementation details. In contrast, the design
specification expresses the structure of various modules in the design, their exported
components and the interface between the modules. Thus the design specification
is more detailed than its behavior specification. Several methods have been re-
ported recently in the literature on refinement of formal specifications into design
{Jon86, CDD90, Gio90].

Rapid prototyping is one of the design approaches by which a quick implementation
is derived from the specifications. This prototype captures most of the functionalities
of the end product. However, this method is cost-eflective only if it is possible to
develop an inexpensive prototype. In addition, if more errors arc found at later stages
of implementation, this approach is not cost-effective; the prototyping must be redone.
Stepwise refinement of the formal specifications to design and implementation is an
alternate approach for software development.

Stepwise refinements of VDM specifications have been advocated by Jones [Jon86]
using operation decomposition and data refinement techniques. Operation decompo-
sition is a method of decomposing complex operations into more primitive operations;
hence it is generally algorithmic. Data refinecment, on the other hand, refines the ab-
stract data types in the specification into more concrete data types. The selection of
concrete data types and the mapping from abstract data types to concrete data types

depend on the application. We therefore recommend a refinement approach such as

the one shown in Figure 6.1.

Requirements Formal Specifications

Application Domain Model Design

Figure 6.1: Role of Formal Specifications and Application Domain Model in Software
Development.

6.1 Refining to an Object-Oriented Design

In this chapter, we propose a methodology to refine model-based specifications into
object-oriented design. Advantages of object-oriented design over traditional func-
tional design have been extensively discussed in the literature [Boo86, Cox86, Mey88a,
Mey88b]. Researchers who attempted to derive an object-oriented design for a set
of requirements have either first informally designed and then specified the design
[Gio90] or extended the specification style to suit their lower level design needs
[CDDY0]. In both the attempts, the design decisions preempts formal specifications.
Consequently, they do not effectively make use of the power of formal specifications
in verifying the ultimate design. We claim that our attempt is general in the sense
that it is applicable to any problem domain and is also independent of any particular

object-oriented design method.

In the following sections, we give schema for model-oriented specification and
object-oriented design paradigm, both abstracting most of the existing techniques in
their respective domains (VDM, Z, Eiffel and HOOD). The proposed transformation
requires user interaction at critical stages and can be automated with support from
a knowledge-based system. See Appendix where the designs for the specifications

discussed in Chapters 3 and 4 are derived using the proposed methodology.

139

w1 e s

6.2 Schema for Object Oriented Design Paradigm

Informally, an object is a software unit whose behavior can be completely character-
ized by the actions that it suffers and the actions that it imports. The importation
gives the relationships among objects and the extent to which one affects the other.
For us, there are two kinds of objects, application domain objects and system objects.
There is no distinction between them in terms of their formal representations.
Objects exhibiting similar properties are grouped into a class. Consequently, a
class is the abstract data type of an object-oriented design paradigm and objects
belonging to a class are the instantiations of this abstract data type. Every class has
a non-empty set of features which is the union of two non-empty sets, namely the
set of operations affecting an object of the class and the set of variables, also called
attributes, over which the operations are defined. Figure 6.2 represents a schemn of

an object.

Object A € Class C

Features /
Attributes /

Communicate with
Other Objects

Exported Features

Operations

Figure 6.2: An Object in the Object-Oriented Design

6.2.1 Relationship Between Classes

One of the primary goals of object-oriented design is reusability. The three impor-
tant concepts of object-oriented paradigm which promote reusability are inheritance,
polymorphism and dynamic binding [Mey88b, Mey90, KoM90, Bud91]. The latter
two concepts deal with implementation of objects and are thus rclated to run-time
behavior of objects. Inheritance deals with the dependency relationships between

classes which can be determined statically. Meyer [Mey90] states that inheritance can

140

be determined at early stages of software development; however, he also comments
that the inheritance structure representing the dependency relationships among the
classes has to be reorganized during implementation in order to achieve effective reuse
of components. Budd [Bud9l] has given a few heuristics for obtaining inheritance
between classes; however, no methodology seems to be known. Since efficiency is a
concern of implementation, we do not address efficiency of the inheritance structure
in this thesis; rather, we provide rules for deriving the inheritance structure from the
specifications. The structure thus obtained may serve as the initial structure which

might be reorganized for the sake of efficiency during implementation.

Inheritance

People differ in providing a precise definition for inheritance. However, the following
concepts regarding inheritance have been agreed by several researchers in this area
[Mey88b, KoM90, Bud91].

When a class A inherits another class B,

o A becomes a specialization of B; i.e., the features of A form a superset of the
features of B. Accordingly, A is called the specialized class and B is called the
general class [KoM90, Bud91]. As an example, Rectangle inherits Polygon; in

this case, Rectangle is a specialization of Polygon.

e The feature set of A is strictly different fror *he feature set of B in order to
be specialized [Bud91]. This might be obtained by adding new features to A
in addition to the features inherited from B (for example, Rectangle inherits
Polygon) or by renaming and/or redefining some of the inherited features in
A [Mey88b, Mey90] (for example, Square inherits Rectangle). In the latter
case, the renaming and redefining of features must be consistent with the other

features in A.

¢ A should not re-export the features (without renaming or redefining) which are
already exported by B [Mey90]; otherwise, confusions and inconsistencies might

arise.

141

The inheritance relation is also called is-a relation [KoM90] and sub-class relation
[Bud91].

Part-of Relation

Another important relationship between classes is part-of or component-of relation-
ship. Sometimes, it is called has-a relationship [Bud91] or client relationship [Mey88h].

When a class A is part-of another class B,

o A is strictly a component of B; stated otherwise, B cannot survive without A.
For example, Wrist is a part-of Robot. This also implies that at no time B and
A are one and the same [Bud91]; otherwise, redundancy will occur, contrary to

reusability.

o The features of B may exploit (make use of) the features of A. However, B
cannot alter any feature of A. This implies that some features of B may be

implemented using the features of A.

According to Meyer [Mey90], the two relationships inheritance and client are distin-
guishcd so that “Being a client means reusing the specifications and being a spe-
cialized class means having access to the implementation. A client class A, thus,
communicates with the class B for which it is a client only through the exported
features of B whereas a specialized class has complete access to the general class.

In addition to inheritance and part-of relationships, hierarchical object-oriented
design methods such as HOOD [Gi090] define additional relationships between classes.
These include use, implemented-by, parcnt-child and senior-junior hierarchical rela-
tionships. However, inheritance and part-of 1elationships are common to most of the
existing object-oriented design methods and object-oriented programming languages
such as HOOD [Gio90], Eiffel [Mey88b], C++ [Str89] and Smalitalk [McG87]. In
this thesis, only inheritance and part-of relationships are addressed and we adhere
to the definitions for these two relationships mentioned earlier. Issues such as poly-
morphism and dynamic binding arise at a more detailed design and implementation
levels and so we do not discuss them in this context. Hereafter, by ‘design’, we mear

an ‘object-oriented design’.

142

6.3 Schema for Model-Oriented Specifications

As remarked earlier, we restrict to model-oriented specification languages that are
traditionally used for functional decomposition techniques and are believed to be
not well suited for the description of abstract objects. As we demonstrate in the
next section, an object-oricnted design can indeed be derived from model-oriented

specifications.

The two major components of a model-based specification are state space def-
initions and specifications for operations affecting the state spaces. A state space
consists of a set of global variables. In the case of VDM, there is only one state
space and all the global variables are defined in it. In Z, more than one state space
definition can exist and the global variables are distributed among them. The static
relationships among the global variables can be asserted by invariants, which in the
case of VDM, can be combined into a single logical formula and in case of Z, consists
of individual logical assertions pertaining to the state spaces. The schema calculus
mechanism in Z permits combining the state spaces and hence the local invariants can
be combined. In either model, the specifications are consistent only if the invariants

are respected by every operation.

An operation in a model-based specification is specified by two predicates, namely
pre-condrtion and post-condition. The syntax of VDM distinguishes a pre-condition
from a post-condition; however, in Z. we have to infer them from the predicate part of
the schema. Pre-condition is a set of system constraints that are to he satisfied hefore
the operation is invoked while the post-condition is another set of system constraints
that must be satisfied after the operation successfully terminates. Both the pre- and
post-conditions are defined over the global variables accessed in that operation and
the parameters of the operation. The set of global variables accessed in that operation
is made explicit indicating how the operation affects the state space. A schema of a

model-oriented specification is given in Figure 6.3.

Hereafter we use the term ‘specification’ to refer to ‘model-based specification’

throughout this chapter.

143

Model-Based Specification

State space (global variables) Invariants

Operation-1

Operation-2

Operation-n

Operation in Model-Based Spec.

Operation-name (parameters)

Global variables accessed

Pre-condition

Post-condition

Figure 6.3: A Schema of a Model-Oriented Specification.

6.4 Transformation Process

The transformation from formal specifications to design is explained below informally;
a more formal definition will be taken up later as a continuation of this work. There

are four stages in this transformation process :
e identifying the classes in the design.
e identifying the attributcs within each class.
e deriving the operations for each class.
o deriving the inheritance and part-of relationships between the classes.

A design contains more details than its corresponding formal specification, and con-

sequently may require some information in addition to what is stated in a formal

144

specification docunent. These additional information must be obtained from the ap-
plication domain model through user interaction. This interaction may be automnated
with the help of a good domain model and a knowledge-base support for reasoning
and retrieving the information. In our discussions below, we point out the particular

stages where additional information may become necessary for the design.

6.4.1 Identifying the Classes

The state spaces in a formal specification contain the entities modeled within the
specification language. As remarked earlier, the state space models system objects
such as sets, maps and lists as well as domain objects. These models are abstract
data types built from the primitive data types provided by the specification language.
Hence each abstract data type in the state space that models an entity can be mapped
into a unique class in the design.

For each simple type such as String and Nat, in the state space definition, a
unique class is created in the design. For each composite type in the specification, a
new class is created in the design corresponding to the composite type and a unique
class is created for each component type of this composite type, making sure that

redundant classes are not created.

Example 1 :

Consider a VDM state space specification in which a composite type called, ‘Customer-

record’ is defined as follows :

Customer-Record :: NAME : String
ACCOUNT-NO : Nat
ACCOUNT-TYPE : String
BALANCE : Nat0

In the design, a class corresponding to ‘Customer-Record” will exist; in addition,
classes coriesponding to ‘String’, ‘Nat’ and ‘Nat0’ are also created.

In the above example, it is easy to see that ‘Nat’ is a subset of ‘Nat0’ and hence
‘Nat' can inherit ‘Nat0’ and restrict its domain to only numbers greater than zero.

Since at the specification level, data type dependencies are not explicitly addressed, it

145

is up the designer to identify such dependencies in the design and resolve whether or
not to keep them in the design. An analogous situation arises in renaming data types.
Type renaming becomes vital for a meaningful understanding of the specifications.
While transforming a renamed type, we create a new class for the renamied type and
inherit the class corresponding to the type being renamed. The reason for inheriting
will be made clear in a later section.

Having generated the classes from several data types in state spaces, we create a
super class or root class corresponding to the global state space of the specification.
The only state space in VDM is the global state space. Although VDM is revised to
include several state spaces, at the time of writing this thesis, there is no publication
reporting the extended feature. Hence we assume here that there is only one state
space definition in VDM. The schema calculus in Z allows combining multiple state
spaces to create a global state space. All other classes are made as components of
the root class and hence there exists part-of relation between the root class and every
other class derived earlier. The justification for creating a root class and making all
other classes as components comes from the fact that every problem is initially viewed

from top-down although it can be developed bottom-up at several intermittent stages.

6.4.2 Identifying the Attributes of Classes

Attributes of a class are the variables that are manipulated by the operations of the
class. Some of these attributes may also be exported by that class. There exists a
one-to-one correspondence between global variables of the specification and attributes
of the classes. The transformation identifies how attributes of various classes can be
directly derived from the global variables of the specification.

We first transform the global variables of the state space directly into the at-
tributes of the root class. Since we have already identified all classes corresponding
to the data types in the specification, it is straightforward to map these attributes to
their respective classes. Variables corresponding to the fields of composite types are
mapped to the attributes of the class corresponding to the composite type. Since the
type corresponding to a field variable may itself be composite, this process is applicd

recursively until all the variables in the specification are mapped into the attributes

146

of the classes.

Ex>mple 2:
Consider the VDM specification fragment below :

BASE-COORD : Transformation
ROBOT-ARM : Manipulator
Manipulator :: LINKS : Armtype-list

JOINTS : Jointtype-list
GRIPPER : Grippertype

Armtype :: LINKID : ID-Rep
GEOMETRY : Structure
Jointtype = Prisjoint | Revoljoint
Grippertype ;. WRIST : Wristtype
FINGER-GRIP-JOINTS : Fingertype — Jointtype
Wristtype :: GEOMETRY : Structure
Fingertype :: FINGERID : ID-Rep

GEOMETRY : Structure

It is to be noted that, the line

Jointtype = Prisjoint | Revoljoint
should not be viewed as type renaming. Here, it refers to a type equivalence. In
VDM, the operator ‘=" is overloaded in the sense we use the same operator for type
renaming, type equivalence, assignment and comparison. So, in this case, Jointtype
becomes a general type which can be either Prisjoint or Revoljoint depending on the
context. The classes and attributes within each class obtained by the transformation
are the following :
class ROBOT (* Super Class %)
attributes

Base-coord : TRANSFORMATION

Robot-army : MANIPULATOR

147

class MANIPULATOR
attributes
Links : LIST[ARMTYPE]
Joints : LIST[JOINTTYPE]
Gripper : GRIPPERTYPE
class ARMTYPE
attributes
Linkid : ID-REP
Geometry : STRUCTURE
class JOINTTYPE
attributes
class PRISJOINT
attribates
inherits JOINTTYPFE
class REVOLJOINT
attributes
inherits JOINTTYPE
class GRIPPERTYPE
attributes
Wrist : WRISTTYPE
Finger-Grip-Joints : MAP[FINGERTYPE,JOINT 'YPE]
class WRISTTYPE
attributes
Geometry : STRUCTURE
class FINGERTYPE
attributes
Fingerid : ID-REP
Geometry : STRUCTURE
class STRUCTURE
attributes
class ID-REP

148

attributes
class TRANSFORMATION

attributes

6.4.3 Deriving the Operations of the Classes

As shown in Figure 6.3, an operation in a model-based specification has four major

components, namely the operation header (includes name of the operation and the

input and outpul parameters along with their types), the set of global variables

accessed in that operation, the pre-condition and the post-condition. In VDM, these

divisions are explicit whereas in Z we have to infer them from the structure of the

specification. There are three steps in transforming operations in specifications to

operations in the classes. In the first step we assign; in the second we redefine some

of the operations, if necessary; and finally in the third, we clean up by removing

redundancies.

Step 1:

1.

If an operation Op in the specification accesses a set of global variables and
these are mapped into attributes of the same class C in the design, then Op
is transformed into an operation Op’ of class C. The justification for this rule
comes from the fact that the set of global variables accessed in Op determine
the portion of the state space affected by Op. Consequently, their mapping into
attributes of class C confirms that this portion of state space corresponds to an

isolated object belonging to class C.

If an operation Op in the specification accesses a set of global variables and
these are mapped into attributes of different classes C;, Co, ..., C,, then Op
is transformed into a set of operations {Op, | Op, € C,, 1 <i < n }. The
justification is the same as before. This may seem redundant at this stage;

however, in step 3, we eliminate such redundancies.

If a global variable is of composite type T, then due to the presence of subtypes
in the composite type. the transformation creates operations in addition to

those created in (1) and (2). Notice that a subtype itself may be composite;

149

in this case, the process is recursively applied until all the composite types are
exhausted. Let the final set of classes to which Op is transformed be {C,, 1 <
< k} where k is the number of classes affected by Op. Operation Op, belonging

to class C, is created (i.e., transformed from Op) if and only if

e C, is the class assigned by the transformation to a subtype T, of the

composite type T.

e there exists an attribute v in C, such that there is a variable 7 of type T,

associated with the composite type T and gets mapped to v.

e the variable 7 is affected either by the pre- or post-condition of Op.

For example, the operation ‘Translate-link’ in the specification given in Chap-
ter 4 is transformed to the super class ROBOT in example 2 since this operation
accesses the variable *Robot-arm’ in the super class. In addition, the same oper-
ation is also transformed to the classes MANIPULATOR, ARMTYPE, JOINT-
TYPE and STRUCTURE since the variables ‘Links’, ‘Joints’ and ‘Geometry’
are all accessed by this operation. However, ‘Translate-link’ is not transformed
to the class GRIPPERTYPE although it is one of the component types of the
composite type MANIPULATOR. This is due to the fact that none of the vari-
ables corresponding to the attributes of the class GRIPPERT Y PI (as given in
the specifications) is affected by ‘Translate-link’.

If an operation Op in the specification is transformed to an operation Op, in a class
C, then Op. may have to be redefined so as to remain meaningful in the context.
We claim that the information for this redefinition is available in the pre- and post-
conditions of Op. Depending on this information, Op, may be redefined into one or
more operations Op., Opea, ..., Ope in a class C where Op,, implements one or
more assertions stated in Op. As an example, the operation ‘Translate-link’ trans-
formed to the class STRUCTURE is renamed to ‘Translate-dist’ since its purpose in

this class is to translate a rigid solid through a finite distance.

Step 3 :

Some redefined operations that are redundant must be deleted from the classes and
some operations may have to be merged. User interaction is necessary at this stage
to validate elimination and merging based upon the semantics of the objects. Refer-
ring to the same example discussed in Steps 1 and 2, all the operations transformed
to the class STRUCTURE are finally renamed into two operations ‘Translate-dist’
and ‘Rotate-angle’; that is, every operation transformed to this class is ultimately
implemented by one of these two operations.

Polymorphism is a consequence of such merging activities across several classes by
finding a common object (code) required by several operations in several classes (not
related by ‘inheritance’ and ‘part-of’). This cannot be determined in the architectural
design stage and consequently we believe that polymorphism is an implementation
rather than a design issue. Since dynamic-bindingis a consequence of polymorphism,
we ignore dynamic-binding also in our discussion.

Notice that the transformation process assigns an operation, say Op, in the spec-
ification to one or more operations across several classes; i.e., for an operation Op in
a class C, there exists exactly one operation Op in the specification. We call Op, the

image of Op and Op, the pre-image of Op under the transformation.

6.4.4 Inheritance and Part-of

Having derived the classes and their components, it is necessary to derive the de-
pendency relationships between every pair of classes. At the specification level, the
relationships between abstract data types are explained in terms of the semantics
of the specification language. The derivation of classes and their components is a
syntactic process. The semantics of the specification language is used to derive the
static communication between the classes.

First we obtain the part-of relationships and then we state the rules for deriving
inheritance. The two reasons for doing in this order are - (i) part-of relation depends
only on the state definition and hence it is easy to derive and (ii) the classes which
have part-of relations do not have inheritance relations among themselves. Hence

these pairs can be eliminated from consideration for inheritance.
p

The part-of relationship is directly derived from the state space definition of the

151

specification. Classes corresponding to component types of a composite type are
parts of the classes corresponding to the composite type. It is easy to observe that
this rule obeys the definition of the part-of relationship mentioned earlier. Although
it may suggest that the specification is written with the part-of relationships between
the objects in mind, it is indeed the casc that the part-of relation is explicit in an

application domain; however, inheritance is not.

According to Budd [Bud91], there must exist a relationship of functionality be-
tween two classes which are related by inheritance. Consequently, we derive inheri-
tance relationship between classes by analyzing the existing relationships among all
pairs of operations, one from each class. The derivation process is divided into two
major steps. In the first step, we derive the relationships between every pair of op-
erations <Op;, Op, >, Op, € C, and Op, € C, where {C;} denote the set of classes
in the derived design. We define the term Op-inheritance to denote the relationship
between operations in two different classes. An operation Op; is said to Op-inherit
another operation Op;, if Op; accesses Op; and modifies internally (local to Op,) the
code of Op,. In the second step of derivation process, the inheritance between pairs

of classes will be derived.

Relationship between Operations

Let C; be the collection of pairs of classes such that no pair belonging to C; is related
by the part-of relationship. Let <C,, C; > € C;. For Op; € C, and Op; € C;, we
derive the dependency relation as follows :

Let Op; and Op; denote the pre-images of Op; and Op: in the specifications. Let
pre(Op) and post(Op) denote the pre-condition and post-condition of Op. Any con-
junct in the conjunctive normal form of a formula is called a subformula. Two situa-
tions arise :

Case 1: Op, and Op; are different opcrations.

Let pre(Op) = A’A X’
pre(Op2) = B'AX
post(Op2) = AAX

post(Op,) = BAX

152

— L [— o
On. P2
Op A’ X’ B’ 2

e e

7]

0 A X B 3

1]

[]

Figure 6.4: Op; and Op; are distinct.

If (A’ = B’) A (A = B) then Op, Op-inherits Op,. The justification for
this claim is the following : Overlapping subforraulas, whether in pre- or

in post-condition, indicate a functional overlap between the operations.

The formula (P = Q) = ((P A Y) = (Q A Y)) is a tautology and
consequently, P = Q is a sufficient condition for the dependency relation

to hold. This is the reason why we extracted subformulas from the pre-

and the post-conditions.

Case 2 : Op; and Op;, are one and the same in the specification; call this Op.

Op”l Op”2
Op

E A” X” B”
¢

Op’1 Op,Z
P
0 A X’ B’
S

I

Figure 6.5: Op, and Op, are the same.

This situation arises when Op is transformed into two different opera-

tions in two different classes, possibly redefined or renamed as Op; and

153

Op,. As explained in the previous section, the redefinition cr renaming
occurs when an operation in the design is due to only a portion of the
pre-condition or the post-condition or both of its pre-image in the speci-

fication. Let Op”; and Op”; be the subformulas of pre(Op) such that

Op”] _ A” A X”
Op’; = B AX

Let Op’; and Op’, denote the subformulas of post(Op) such that

Opy = A'AX

Op, = B AX
The subformulas Op”; and Op’; together constitute the pre-image of Op;;
the subformulas Op”, and Op’; together constitute the pre-image of Opa.
If (A” = B”) A (A’ = B’) then Op; Op-inherits Op,. the validity of the
implication depends on the correct interpretations of the subformulas and
hence the application domain model. Consequently, the transformations

must be supported by a knowledge-base or user interaction.

Specifications given in Chapters 3 and 4 address only two application domains within
robotic assembly. Due to the independent nature of these two component domains,
inheritance in the partial design does not arise. When all the subdomains for an
assembly environment are specified, the overall design derived from the specifications
will give rise to inheritance. For the sake of completeness in illustrating the full
expressive power of the methodology, a portion of a library management system

discussed in [AIP91b] is extracted and is given below :

Example 3 :

Consider the VDM state definition below :

LIB-SYSTEM : Library-System

Library-System :: COLLECTION : Books-set
USERS : Borrowers-set
RESERVED : Queue

Borrowers = Faculty | Student

Let Op, be the operation ‘FACULTY-BORROW?’ in the class ‘Faculty’ and Op, be the
operation ‘BORROW-BOOK’ in the class ‘Borrowers’. Assume that the pre-image

of both the operations be only one in the specification and is named as ‘BORROW".

154

Let pre(BORROW) is TRUE and post(BORROW) be the following:

(u € USERS (lib-system)) A

(STATUS (b) = ‘loaned-out’) A

((u € Faculty = due-date’ = current-date + 30) &

(u € Student = due-date’ = current-date + 15))
Since the pre-condition is TRUE, we consider only the post-condition for deriving
the relationship. Let Op,, the pre-image of Op, be post(Op) itself and let Op,, the
portion of post(QOp) which is the pre-image of Op; be the following :

(u € Faculty) A (u € USERS (lib-system)) A

(STATUS (b) = ‘loaned-out’) A

(due-date’ = current-date + 30)
Op; and Op, have a common sub-formula

(u € USERS (lib-system)) A (STATUS (b) = ‘loaned-out’)
The resi of Op, (denoted as P) is

(u € Faculty) A (due-date’ = current-date 4 30)
and the rest of Op, (denoted as Q) is

((u € Faculty = due-date’ = current-date + 30) @

(u € Student = due-date’ = current-date + 15))
Cleatly P = Q and hence Op; Op-inherits Op; i.e., FACULTY-BORROW Op-inherits
BORROW-BOOK. This is meaningful since FACULTY-BORROW is a more special-
ized operation than the BORROW-BOOK operation.

Relstionship among Classes

Having defined the dependency relationships between pairs of operations in all classes,
we next derive the inheritance relationships among the classes.

For a pair of classes <Cy, C; > € Cy, C,; inherits C, if for every operation Op; €
("5, there exists an operation Op; € C; such that Op; Op-inherits Op,. However, if
there exists at least one pair of operations Op; € C; and Op; € C; for which Op,
Op-inherits Op. holds. and for the rest of the operations in Cz, no such claim can be

made, we can create a new class C; with the following properties :

e every operation in Cz is a copy Opz € C; for which there exists an operation

155

Op, € C; and Op, Op-inherits Op; holds.

e the attributes in C3 are precisely those attributes in C; that are affected by the

copied operations.

e no features are exported from Cs, meaning that Cj is internally used by the

classes C; and C;.

Now, C, inherits C5 and C, inherits Cs.

Identifying Exported Features

The specification describes only what a system does and not how it does. Hence,
every entity in the specification (variable, data type, operation) is related to some
other entity. By transforming these entities into the design, we carry over their
respective relationships. Therefore we claim that every feature of a class obtained
by the transformation is exported by that class; that is, for our consideration in this

thesis all features are exported.

6.4.5 Invariants

Invariants stated in the specifications should be carried over to the design in order
to assure the consistency and correctness of the design. As stated earlier, invariants
assert the static relationships among certain global variables. Asa consequence, every
operation is to be checked to assure that the invariants are not violated. Although
many object -oriented design methods do not include a separate section for invariants
we feel that some means must be found to distribute the invariants to the classes in
order to assert the validity of every operation in the design.

Since invariants are defined over global veriables and the global variables are
transformed into the attributes A;, Az, ..., Ax belonging to various classes in the
design, we can determine the dependency matrix between C,, ..., C, and the rows
are the global variables A;. Ay, ..., Ax. The (i,j)** entry in the matrix is empty if
the attribute corresponding to A, is not in the class C,. Assuming that the invariants
are combined into a single formula expressed in Conjunctive Normal Form (CNF)

we consider each subformula and examine the global variables in that formula. If

156

the attributes corresponding to these variables belong to one column C,, put this
subformula in class C,. However, when the attributes do not belong to any one
particular column (class), determine the minimum set of columns such that the union
of attributes in these classes match the variables in the subformula. Assign this
subformula to the smallest super class which is related by inheritance or usage to the
set of classes determined earlier.

The collection of operations within each class must not violate the formulas as-
signed to that class or its nearest super class. The lower level implementation must
assure that the execution of every operation in a class respects the validity of the

formulas in that class.

157

Chapter 7

Conclusion

The goal of integrating formal methods with the software development process is to
ensure correctness of the tasks or processes at each stage of development. The soft-
ware engineering community believes that such an integration will make the software
development process cost-effective [IEE90a, IEE90b, IEE90c]. Formal methods are
applicable to all stages of the software development process. Being formal, they en-
able the designer to reason about the processes at various stages in a software life
cycle and hence study the behavior of the entities being specified.

Our aim in this thesis is to study the behavior of entitics involved in a large
complex software system. Leveson [Lev90] has mentioned that more work on formal
methods is necessary (i) to develop tools for writing specifications (ii) to apply formal
methods to more complex problems and (iii) to optimize the design process with the
help of formally specified requirements. Only a few case studies in applying formal
methods were reported in the literature [Hay88] during the tenure of this thesis;
however, the problems attempted in these case studies were not as complex as the
one chosen for this thesis. Froome and Monahan [FrM88] have also discussed the
need for formal methods in developing software for safety-critical systems such as
robotics.

One of the major problems in specifying a large complex software system is the
multiplicity of domains involved in the project; i.e., the system involves the coordi-
nation of tasks from several distinct domains. It is required to study the behavior
of entities involved in each domain separately by independently specifying them and

then studying their combined behavior by properly aggregating these specifications.

Such an integration requires the interfaces to be specified and subsequently force the
component specifications to be changed. Moreover, the choice of appropriate speci-
fication approach for specifying tasks in each domain is another important problem
to be tackled.

The case study chosen in this thesis is the problem of performing automated as-
sembly operations in a single static robot environment. It involves subtasks from
three different application domains, namely solid modeling, robotics and assembly
environment. Figure 7.1 shows a schematic view of an automated assembly cell and
its components. In this figure, the boxes with asterisks indicate the contribution of

this thesis.

Assembly Cell

Solid Roboti Assembly
Modeling OOt Environment

[— 1]

Geometric * Dynamics Sensors Grasping
Structure & Control —]
& Kinematics :
Definition * Assembly
& Verification Operations

Figure 7.1: Automated Assembly Cell

In solid modeling, previous work concentrated on developing new representation
techniques and algorithms for processing geometric information [ReV83]. However,
no attempts were made to verify these algorithins. Such a verification is necessary
because the algorithms may generate a solid which does not exist in real world. The

specifications for regularized boolean operations given in Chapter 3 can be used for

159

verifying a solid modeler.

Hoffmann and Hopcroft [HoH87] have developed a simulation system applicable
to robotics. Even though this system can be used for offline verification of robotic
systems, it is not sufficiently general to be applied to several applications. We claim
that an abstract model of a robot must be developed in order to exhibit the behavior
of several real life robots. Such a robot is called a robotic agent. There have been only
a few attempts [Chr89] to formalize the notion of an integrated architecture for an
intelligent robot. Our approach is different from these and can be extended to various
problem domains in robotics. The specification for robot structure given in Chapter
can be instantiated by several robots in practice and the specification for kinematic
operations can be the basis for a formal verification of the software implementing
kinematics. Even though the specification for the structure of a robotic agent includes
only prismatic and revolute joints, each having only one degree of freedom, joints with
n degrees of freedom can also be modeled using this structure. This is accomplished
by letting n joints, each with one degree of freedom, connecting links of negligible
length. The operation of a controller for such joints which activates only one degree
of freedom at a time can be specified using the specification for sequential activation
of links given ix: Chapter 4 whereas the controller that activates more than one degree

of freedom at a time corresponds to the concurrent model.

We claim -hat our contribution to automated assembly is unique for the following
reasons : (1) There has been no attempt reported in literature so far to define the
topology of assembly. (2) Verification of assembly process between two objects has
been carried out only by a few rescarchers [PGL89, ThC88]. 'i'he method given by
them is based on group theory. In this scheme. two objects can be assembled only
if they belong to the same symmetry group and are dimensionally consistent. The
basic requirement in using this approach is that the objects should possess rotational
symmetry. Hence the approach is not general enough to be applicable to any solid.
Moreover, group theory is used as a mathematical tool for the verification of the
assembly process; no attempt was made to define the notion of assembly using group
theoretic concepts. (3) In this thesis, the mathematical definition of shape operator

is used to define feature of an object and subsequently the concept of assembly. Our

160

approach does not impose any constraints on the nature of objects that are assembled.
Paul Besl [Pau88) has described the computation of shape operators and their use in
computer vision applications. Therefore, the definition and verification of assembly
as given in Chapter 5 can be practically realized.

The method proposed in this thesis for the refinement of VDM specifications to
object-oriented design is different from other approaches in the same field because 1t
is independent of any existing object-oriented method and hence our contribution in

this regard is significant.

7.1 Future Work

The work presented in this thesis is actually a subset of a much larger project. The
ultimate goal is to develop an offline verification platform for an automated assembly
environment using robots. The formal specifications to be developed for such a
platform will become a geometric reasoning system independent of any lower level
architecture and programming environment. The geometric reasoner can be used in
environments where human interaction is hazardous or impossible: for example, the

tasks performed by robots in space station belong to this category.

7.1.1 Solid Modeling

The specifications given in Chapter 3 can be extended to include objects with curved
faces as well. To achieve this, it is necessary to specify curved edges and curved
faces analogous to their planar counterparts. However, problems might arise in de-
ciding the number of faces especially when a curved face does not fit into a regular
primitive shape such as the lateral surface of a cylinder or a cone. We recommend
using shape operators for defining surfaces and characterizing objects. Though this
method is computationally expensive, Besl [Pau88] claims its applicability for vision

applications.

7.1.2 Robotics

Robotics, by itself. is an independent discipline in Computer Science. The behavioral

study of a general purpose robot is related to its kinematic and dynamic operations,

161

sensor and control operations, path planning and collision avoidance in the robot
environment. A complete set of formal specifications developed to include all these
aspects will characterize an intelligent robotic agent. Such specifications will be quite
useful in studying the behavior of autonomous systems.

Our contribution in this thesis addresses only kinematics. To develop an offline
verification platform, the first stage is to study only the kinematic aspects. This
will help modeling a robotic agent in a graphics based simulation system which is a
model of the offline platform. However, if the aim is towards studying the behavior of
an actual robot, then the specifications have to be extended to include all the other
aspects mentioned earlier.

Grasping is an important component of every robotic application. In particular,
automated assembly operations performed by robots require a great deal of work in
grasping. Therefore, grasping is the the next component to be specified in developing

the specification for automated assembly cell.

7.1.3 Assembly

In this thesis, we formally specified objects and their surface characteristics based on
the notion of shape operators. These specifications are used in defining the topology
of assembly process. Yet, much more work is to be done in the field of assembly. The
actual assembly operations such as MOVE, PICK and PLACE are to be specified in
order to complete the description of assembly. Specifications for assembly operations
are to be developed concurrently with grasping in robotics and both of these will use
the specification for kinematic operations.

The specifications for assemblv can be extended to include the formal description
of tools such as screw driver and hammer that are used in the assembly process.
These specifications enable one to study the behavior of the tools used in assembly

environment and also to identify the necessary tools for a given application.

7.1.4 Design

Recently, several attempts have been made to refine formal specifications into design

[Jon86, Gio90]. Techniques such as developing ereculable specifications and rapid

162

prototyping enable the designer to get a quick implementation of the end product
which captures most of the important functionalities of the software. However, there
are pros and cons to these approaches as compared to the stepwise refinement of
formal specifications. We follow the stepwise refinement approach because our aim
at this stage is not to develop a cost-effective product but to study the total behavior
of a large scale software. In this context, we proposed a new methodology to derive
a design from a model-based specification. Further, the design is object-oriented
and hence has the advantages over traditional functional design methods such as
reusability and maintainability.

The methodology as proposed in the thesis can be easily implemented in a Prolog-
style language with minimum user interaction. A complete automation of this method
requires an application domain model to be built before deriving the design to be
used during the derivation process. A knowledge-based approach is suitable for such
purpose because a knowledge base is expandable. Therefore it is possible to reuse
the application domain model for developing new software.

By introducing dependent types, loose VDM specifications can be transformed
to a more detailed specification that lends itself to an error-free implementation; see
[HDL90, AlPY1a). Data reification [Jon86] refers to the mapping from abstract data
types to more concrete data types. After several applications of data reification and
introduction of dependent types, we can assure that an object-oriented design derived
from the original specification is free of any junk object. In some sense, this process
may be called design time testing. A detailed design may be obtained by resorting
to operation decomposition within the obtained object-oriented design. We have

illustrated these principles in [AlP91a).

7.1.5 Refining VDM Specification

As stated in the introduction, the specification approach VDM has several limitations.
For example, a specification in VDM cannot capture real-time and concurrency as-
pects which may be inherent in the application itself. In particular. tasks in robotics
require thesc aspects to be captured in the lower level design specification. Though

we claim that concurrency and real-time aspects are not part of behavior specifica-

163

tion, design specification at a lower level must incorporate real-time and concurrent
aspects. Therefore, we strongly recommend a continuation of this work towards map-
ping the behavior specification given in VDM or Z into a design specification which
can address the real-time and concurrency aspects. Alagar and Ramanathan [AIR91]
have demonstrated a functional approach for the specification of real-time and dis-
tributed systems. In their approach, events are the primitives and propertics of events
are expressed using functions. Since VDM, as well as purely functional formalisms
are founded on denotational semantics, it may be possible to combine VDM speci-
fications (sequential) and functional specifications [AIR91] that express concurrency
and real-time into a single formal framework. Continued work in this rescarch will

be a challenge to the application of formal methods to software development.

164

Bibliography

[ABPSSa]

[ABP88bH]

[ABPYU]

[ABP91a]

[ABPY1b)

[A1P91a]

[AIP91D]

Alagar V.S., Bui T.D. and Periyasamy K. A reasoning system for solid
modeling techniques applicable to robotics. In Proceedings of the Sympo-
stum on Robot Control, October 1988.

Alagar V.S., Bui T.D. and Periyasamy K. Semantic CSG trees. In Sensor
Fusion : Spatial Reasoning and Scene Interpretation — Proceedings of the

SPIE, pages 101-112, November 1988.

Alagar V.S., Bui T.D. and Periyasamy K. Semantic CSG trees for finite
element analysis. Computer Aided-Design, 22(4):194-198, May 1990.

Alagar V.S., Bui T.D. and Periyasamy K. A formal framework for spec-
ifying robot kinematics. In Proceedings of The European Robotics and
Intelligent Systems Conference, June 1991,

Alagar V.S., Bui T.D. and Periyasamy K. Formal specifications for regu-
larized operaions in solid modeling. revised and submitted to Science of

C'omputer Programming.

Alagar V.S. and Periyasamy K. Formal verification and testing of an
object-oriented design. submitted for presentation in COMPSAC’91,
Japan, 1991.

Alagar V.S. and Periyasamy K. A methodology for deriving an object-
oriented design from functional specifications. submitted for publication

to Software Engineering Journal (under revision).

[AIR91]

[Ala91]

[And90]

[BAL91]

[Bar66)

(BjJs2)

[BjJ87]

[Boo86)

[Bra89]

[Bud91]

[BuG80]

Alagar V.S. and Ramanathan G. Functional specification and proof of cor-
rectness for time dependent behavior of reactive systems. Formal Aspects

of Computing, pages 1-31, January 1991.

Alagar V.S. Specification of software systems. Lecture Notes, Department

of Computer Science, Concordia University, Montreal, Canada, 1991.

Andrews D. The Vienna Development Method. In Darrel Ince and Derek
Andrews, editors, The Software Life Cycle, chapter 11. Butterworths,
1990.

Baldwin D.F., Abell T.E, Lui C.M., De Fazio T.L., and D.E. Whitney.
An integrated computer aid for generating and evaluating assembly se-
quences for mechanical products. IEEE Journal of Robotics and Automa-

tion, 7(1):78-94, February 1991.
Barret N. Elementary Differential Geometry. Academic Press, 1966.

Bjerner D. and Jones C.B. Formal Specification and Software Development
Method. Printice Hall, 1982.

Bjerner D. and Jones C.B., editors. VDM 87 : VDM - A Formal Mcthod
at Work, volume 252 of Lecture Notes in Compuler Science. Springer-

Verlag, 1987.

Booch G. Object-oriented development. [EEE Transactions on Software
Engineering, 12:211-221, 1986.

Brady M. Robotics Science. The MIT Press, 1989.

Budd T. An Introduction to Object-Oriented Programming. Addison-
Wesley Publishing Company, 1991.

Burstall R.M. and Goguen J. The semantics of clear, a specification lan-
guage. In Dines Bjgrner, editor, Abstract Software Specifications, Proceed-

ings 1979. Springer-Verlag, LNCS 86, 1980.

166

[CDDY0]

[CHJ86]

[CRN90)]

[Chr89)

[Cox86])

[Crag9)

[FrMs8]

[Gio90]

(Gri91]

[GuHS0]

Carrington D., Duke D., Duke R., King P., Rose G., and Smith G. Object-
Z : An object-oriented extension to Z. In Formal Description Techniques,

11, pages 281-296. North Holland, 1990.

Cohen B., Harwood W.T., and Jackson M.1. The Specification of Complex
Systems. Addison-Wesley Publishing Company, 1986.

Computing Research News. The News Journal of Computing Research

Association, 1990.

Christiansen A.D). A framework for specifying robotic agents. Techni-
cal Report CMU-CS-89-155, Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, 1989.

Cox B.J. Object-Oriented Programming - An Evolutionary Approach.
Addison-Wesley Publishing Company, Reading, MA, 1986.

Craig J.J. Introduction to Robotics. Addison Wesley Publishing Company,
1989.

Froome P. and Monahan B. The role of mathematically formal methods
in the development and assessment of safety-critical systems. Micropro-

cessors and Microsystems (UK), 12(10):539.546, 1988.

Di Giovanni R. HOOD and Z for the development of complex software
systems. In VDM’90 : VDM and Z, volume 428 of Lecture Notes in
Computer Science. Springer-Verlag, 1990.

Gries D. Teaching calculation and discrimination : A more effective cur-

riculum. Communications of the ACM, 34(3):44-55, 1991.

Guttag J.V. and Horning J.J. Formal specification as a design tool. In
Proceedings of the " ACM Symposium on the Principles of Programming
Languages, 1980.

167

[HDL90]

[Hay88]

[HoH87)

[HoS88]

[HoS89]

[HuL89)

[HuL90]

[IEE90a)]
[IEE90b)

[IEE90C]

[Jong6)

[KoM90)

Hanna F.K., Deache N., and Longley M. Specification and verification
using dependent types. IEEE Transactions on Software Engineering,
16(9):949-963, September 1990.

Hayes 1. Specification Case Studies. Printice Hall, 1988.

Hoffmann C.M. and Hopcroft J.E. Simulation of physical systems from ge-
ometriz models IEEE Journal of Robotics and Automation, RA-3(3):194-
206, June, 1987.

Homem de Mello L.S. and Sanderson A.C. Automatic generation of
mechanical assembly sequences. Technical Report CMU-RI-TR-88-19,
Carnegie-Mellon University, The Robotics Institute, December 1988.

Homem de Mecllo L.S. and Sanderson A.C. A correct and complete al-
gorithm for the generation of mechanical assembly sequences. In IEEE

International Conference on Robotics and Automation, pages 58-61, 1989.

Huang Y.F. and Lee C.S.G. Precedence knowledge in feature mating op-
eration assembly planning. In IEEF International Conference on Robolics

and Automalion, pages 216-221, 1989.

Huang Y.F. and Lee C.S.G. An automated assembly planning system.
In IEEE International Conference on Robotics and Automation, pages

1594-1599, 1990.
IEEE Computer, September 1990. Special Issue on Formal Methods.
IEEE Software, September 1996. Special Issue on Formal Methods.

IEEE Transactions on Software Engineering, September 1990. Special

Issuc on Formal Methods.

Jones C.B. Systematic Software Development Using VDM. Printice Hall,
1986.

Korson T. and McGregor J.D. Understanding object-oriented : A unifying
paradigm. Communications of the ACM, 33(9):40--60, September 1990.

168

[Levy0]

[LiP89)

[LiW77]

[M=G87]

[Mey88a]

[Mey88h)

[Mey90]

[PABTY]

[PABS0]

[PABYO]

[PGLSY)

Leveson G. N. Guest editor’s introduction - formal methods in software
engineering. IEEE Transactions on Software Engineering, 16(9):929-931,
September 1990.

Liu Y. and Popplestone J. R. Planning for assembly from solid models.
In IEEE International Conference on Robotics and Automation, pages

222-227, 1989.

Licherman L.T. and Wesley M.A. Autopass : An automatic programming
systern for computer controlled assembly. IBM Journal of Research and

Development, 21(4), July 1977.
Mevel A. and Gueguen T Smalltaik-80. Macmillan Education Ltd., 1987.

Meyer B. Eiffel : A language and environment for software engineering.

The Journal of Systems and Software, 8(3):199-246, 1988.
Mever B. Object-Oriented Software Construction. Printice Hall, 198S.

Meyer B. Lesson from the Design of the Eiffel Libraries. Communications

of the ACM, 33(9):68-88, September 1990.

Popplestone J. R., Ambler A.P., 2nd Bellos .M. Rapt : A language for
describing assemblies. The Industrial Robot, 5(3):131, 1978.

Popplestone J. R., Ambler A.P., and Bellos I.M. An interpreter for a
language for describing assemblies. Artificial Intelligence, 14(1):79-107,

Janua' ; 1980.

Perivasamy IK., Alagar V.S., and Bui T.D. Specifications for geometric
primitives. Technical Report CSD-90-04, Department of Computer Sci-

ence. Concordia University, Montreal, Canada, 1990.

Popplestone J. Rebin, Grupen R.A., Liu Y., Dakin G.A., Oskard D., and
Nair S. Planning for assembly with robot hands. In Intelligent Control and
Adaptive Systems - Proceedings of the SPIE, pages 190-205, November
1989.

169

[PWLSS]

[Par65]

[Pau8s]

[ReV83)

[ReV85]

[Req80)

[Spig9]

[Str89]

[Suf82)

[ThCsS)

[ThC89)

Popplestone J. Robin, Weiss R., and Liu Y. Using characteristic invariants
to infer spatial relationships from old. In IEEFE International Conference

on Robotics and Automation, pages 1107-1112, 1988.

Pars L.A. A Treatisc on Analytical Dynamics. Heinemann Educational

Ltd., London, 1965.

Paul Besl J. Surfaces in Range Image Understanding. Springer-Verlag,
1988.

Requicha A.A.G. and Voelcker H.B. Solid modeling : current status and
research directions, IEEE Computer Graphics and Applications, 3(7):25

77, October, 1983.

Requicha A.A.G. and Voelcker H.B. Boolean operations in solid modeling

: Boundary evaluation and merging algorithms. Proceedings of the 1ELL,

3(1):30-44, January 1985.

Requicha A.A.G. Representation of rigid solids : Theory, methods and

systems. Comupling Surveys. 12(4):437, December 1980.
Spivey J.M. The Z Notation - A Reference Manual. Printice Hall, TORY.

Stroustrup B. The C++ Programming Language. Addison-Wesley Pub
lishing Company. 1989.

Sufrin B. Formal specification of a display-oriented text editor. Seen s

of Compuler Programmang. 1(3), May 1982,

Thomas F. and Carme T. A group theoretic approach to the computation
of symbolic part relations. IEEE Journal of Robotics and Aulomation,

4(3):622-634, December 1988.

Thomas F. and Carme T. Inferring feasible assernblies from spatial con-
straints. Technical Report 1C-DT-1989.03, Institute of Cybernetics, Di-
agonal 647, 2 planta, 08028 Barcelona, Spain, June 1989.

170

[Til80]

(Ti184]

[Wol89)

Tilove R.B. Set member classification : A unified approach to geometric
intersection problems. IEEE Transcations on Computers, C29(10):874,
October 1980.

Tilove R.B. A null-object detection algorithm for constructive solid ge-

ometry. Communications of the ACM, 27(7):684, January 1984.

Wolter J.D. On the automatic generation of assembly plans. In IEEE
International Conference on Robotics and Automation, pages 62-68, 1989.

171

Appendix A

Design of a Robotic Agent

class ROBOT (* Super Class #)
attributes
Base-coord : TRANSFORMTION
Robot-arm : MANIPULATOR
inherits
part-pf
operations
Translate-link
Rotate-link
Move-wrist-t
Move-wrist-or
Move-wrist-otr

Move-wrist-otrs

class MANIPULATOR
attributes
Links : LIST[ARMTYI'E]
Joints : LIST[JOINTTYPE]
Gripper : GRIPPERTYPE
inherits
part-of ROBOT

operations

Translate-link
Rotate-link
Move-wrist-t
Move-wrist-or
Move-wrist-otr
Move-wrist-otrs

(+ These operations implement the correspodning operations in the super class. x)

class ARMTYPE
attributes
Linkid : ID-REP
Geometry : STRUCTURE
inherits
part-of AMANIPULATOR
initially assigned operations
Translate-link
Rotate-link
Move-wrist-t
Move-wrist-or
Move-wrist-otr
Move-wrist-otrs
final set of operations
Translate-the link

Rotate-the-link

class JOINTTYPLE

attributes

inherits

part-of MANIPULATOR, GRIPPERTYPE
initially assigned operations

Translate-link

173

Rotate-link
Move-wrist-t
Move-wrist-or
Move-wrist-otr
Move-wrist-otrs

final set of operations
Check-Joint-type
Check-displacemnet

Check-rotation

class PRISJOINT
attributes

inherits JOINTTYPI
part-of

operations

class REVOLJOINT
attributes

inherits JOINTTYPE
part-of

operations

class GRIPPERTYPL

attributes
Wrist : WRISTTYPE
Finger-Grip-Joints : MAP[FINGERTYPE,JOINTTYPL]
inherits
part-of MANIPULATOR
operations

class WRISTTYPFE

174

attributes

Geometry : STRUCTURL
inherits
part-of GRIPPERTYPE

operations

class FINGIRTYPE
attributes
Fingerid : ID-REP
Geometry : STRUCTURE
inherits
part-of GRIPPERTYPE

operations

class STRUCTURI
attributes
inherits SOLID
part-of ARMTYPL, WRISTTYPE, FINGERTYPE
initially assigned operations
Trauslate-link
Rotate-link
Move-wrist-t
Move-wrist-or
Move-wrist-otr
Move-wrist-otrs
final set of operations
Translate-dist

Rotate-angle

Classes TRANSFORMATION, SOLID, ID-REP are assumed to be defined already.

175

