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ABSTRACT

Robust Adaptive Control of

Robot Manipulators

Raad A Al Ashoor, Ph D,
Concordia University, 1990

It s well-hnown that the dy namic hehavior of even the simplest multi-link manipu-
lators .5 described by highly nonhnear and strongly coupled differential equations During
the last decade, many papers have been woitten that discuss the control of multi-link
manipulators tahig their dynamic behavior into account It has been noted that the
use of conventional hinear control technmques himts the dynamie performance of such
manipulators and mahkes it difficult, If not impossible, to obtaln uniformly high perfor-
mance over 4 wide range of tasisan a dynamically changing environment This limita-
tion arnses primanly becsuse of the highly nonhneasr pature of the dyvpamic characteris-
ties of robot mampulators and the degradation an their dyvnamie performance hecause of
the unmaodeled nertia properties of the objects being mampulated This has led to the
development of advanred contral schemes such as adaptive control which attempt to
tahe mto account the effect of the dynamics that are unmodeled or difficult to model

arcyrately

This thesis s concerned with the problem of adaptive control of rigid-hink rohot
mampulators  The mun objective of the pesearch a8 ta provide a powerful and robust
adaptive control teehmque that will maimnton closed loop stabihity and achieve trajectory
tracking th the presence of model uncertanety due o uninodeled dynamies and parame-
ter vanations

An on-line adaptive control sehorme for nigid hnh and flesible joint robot manipulse
tors In Joint space and Cartespan space s desopibed The solieme gaes Jeast squares

dentification to generate 3 set of proewgse hneat tme-invarant reodeds onchine for the
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nonlinear, time-varying dynamics of the robot manipulator. Feedforward and feedback
controllers are then used, which are updated using the identifled parameters, to achieve
trajectory tracking in the presence o' modeling uncertainties and unmodeled dynamics
The adaptive control scheme has a decoupled structure. The effects of coupling between
the joints and other unmodeled dynamics are taken into account by including a correc-
tion term in the control law which attempts to reduce the errors resulting from these
effects to zero. This correction term gives the adaptive controller the desired robustness
characteristic which allows the reference trajectory to be tracked in the presence of pay-
load and parameter variations. The feedback and feedforward controller parameters are
selected and updated on-line to ensure asymptotic stability of the closed-loop system
Several simulation studies are carried out to show the applicability of the proposed

robust adaptive control scheme.
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CHAPTER ONE

INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

Industrial robots are multifunctional programmable devices which manipulate and
transport manufacturing components in order to perform manufacturing tasks, which
are physically demanding, menial, or repetitive for human operators to do efficiently.
Manipulators have been used extensively in hostile environments, such as in nuclear
power plant and waste handling, deep under-sea exploration, and maintenance opera-
tions, and in space. Typically in these applications, the manipulator is controlled by a
remote human operator in what is often termed a teleoperator configuration, only
requiring the use of relatively simple control laws. Manipulators have also been used
increasingly in industrial automation applications without the involvement of human
operators. In both types of applications, operating speeds and performance indices are

relatively low, and relatively simple control systems have proven adequate.

Present day industrial robots operate vith very simple controllers, which do not
take full advantage of the inexpensive computer power that has become available. The
result is that these fairly expensive mechauisms are not being utilized to their full poten-
tial in terms of the speed and precision of their movements. With a more powerful con-
trol computer, it is possible to use a dynamic model of the manipulator as the heart of a
sophisticated control algorithm {33]. This dynamic model allows the control algorithm to
know how to control the manipulator’s actuators in order to compensate for the compli-
cated effects of inertia, centrifugal, Coriolis, gravity, and frictional forces when the robot
is in motion. The result is that the manipulator can be made to follow a desired trajec-
tory through space with smaller tracking errors, or perhaps move faster while maintain-

ing good tracking performance.



Direct digital control of manipulators is one of the most proniising applications of
this new generation of computers. With the precision, speed, programming versatility
and low cost of these computers, it is expected that manipulator systems will be able to
perform complex tasks at high speeds automatically, making possible a wide range of
new manipulator applications in high productivity industries as well as in environmental
and energy-related fields. With increased demand on manipulator performance will come

the need for improved manipulator control techniques.

The use of conventional linear control techniques limits the basic dynamic perfor-
mance of a manipulator. This is a consequence of several factors such as the dynamic
characteristics of a general spatial manipulator which are highly nonlinear functions of
position and velocities of the manipulator elements, and the degradation of the dynamic
performance characteristics of manipulators by the inertia properties of the objects
being manipulated (1,8,10]. Hence, in general, it is not possible to design a linear control
system which will yield uniformly high system performance over a wide range of mani-
pulator tasks. So it is necessary to apply an advanced control scheme such as adaptive
control so that the control algorithm can update the model terms as well as the con-
troller parameters with time, according to the change of the manipulator's environment
thereby compensating for the nonlinearities due to the manipulator dynamics, frictional

forces and disturbances acting on the manipulator.

A new algorithm is presented in this thesis that is based on the adaptive least-
square identification technique. In this algorithm the complex dynamic equations and
parameter values of the rohot are not used in generating the control action. This is one
of the major advantages of the approach. The task of an adaptive controller is to adjust
its gains based on the response of the robot in such a way that the performance of the

robot closely matches the daesired one.

The adaptation scheme uses on-line identification of the unknown matrices of a
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linear time-varying model. Its parameters are used to generate the input control torque
for the manipulator. A proportional plus derivative (PD) state feedback is used to
maintain stability of the closed-loop system. The feedback gains are updated linearly in
terms of the identified parameters to satisfy the required tracking performance. The
algorithm is robust in the sense that it takes into account the effects of unmodeled
dynamics and parameter and payload variations. A new method for robustness and sta-
bility analysis is proposed to maintain stability of the resulting closed-loop system in the
presence of the unmodeled dynamics. The desired path can be described either in joint
space or in Cartesian space. The proposed control scheme has a simple structure, is
computationally fast and does not require knowledge of the physical parameters of the
robot and/or of the payload. The adaptive controller does not use any nonlinear terms

in the feedforward or feedback paths.

In this thesis, for the sake of anal’sis and simulation, the manipulator is modeled
as a set of n moving rigid bodies connected in a serial chain with one end fixed on the
ground and the other end free. The bodits are joined together with revolute joints with
sensors incorporated in each joint tu enable the position, velocity and acceleration of
each joint to be measured. An actuator is provided at each joint to apply a torque on
the next neighboring link. The number of degrees of freedom, is the number of indepen-
dent joint position variables, usually equal to the number of joints. In this thesis a revo-
lute joint manipulator is considered. However the algorithm can also be applied to a
manipulator that contains prismatic joints. Elasticity at the joints is also considered
and the algorithm proposed for rigid links is modified for this class of manipulators.
Several methods are available for formulating the dynamic behavior of a rigid-link mani-
pulator [1,3,5). The Newton-Euler formulation is computationally more efficient and is

used in this thesis for modeling and simulation of the manipulator.



1.2 LITERATURE REVIEW

During the past decade, many schemes for direct digital control of manipulators
have been proposed. Most of the approaches are based on a mathematical model derived
on the basis of Newtonian mechanics (33] and are, in general, not efficient. Such schemes
belong to the class of computed torque methods [8-11,91.92] which involve the computa-
tion of the inverse dynamics in the feedforward path. Paul (8] and Bejczy [81], use a
computed torque method for calculating the torques required to follow a nominal trajec-
tory. The method involves a considerable amount of computation and memory storage.
The resolved motion rate control and resolved acceleration control techniques developed
by Whitney [8] and Luh et al. {10], compute the joint angle rates and accelerations so as
to cause the end point of the manipulator to move along a specified trajectory. They can
also be classified as computed torque methods. Another approach was given by Golla et
al. {82], using a variation of the computed torque method to obtain the centralized and
decentralized state feedback control which involves placement of closed-loop poles.
Jamshidi et al. {11] used an inverse dynamics model in the feedforward path with a PID
feedback controller. These methods are computationally expensive and the convergence
of the control depends on high sampling frequency. None of the above approaches show

stability of the closed-loop system or rejection of disturbances.

Some manipulator control schemes use optimal control theory [12,13,16,18,93]. For
example, Kahn and Roth (12}, Luh and Walker {13}, Snyder and Gruver [93], Saridis and
Lee [18] use optimal control theory based on linearized continuous tirne models. For
most cases results are given, for simulation studies, for a particular system only. A
method in this category [16] uses a table look-up for optimal control inputs. This
requires a very large memory, particularly when the trajectory or the object size
changes Another class of control schemes, such as that in (15!, solves eigenvalue assign-
ment problems for linearized models This scheme is not based on the minimization of a

performance index
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Another approach to robot control is based on sliding-mode or variable structure
theory {14,19,31]. Young [14] was the first to propose a variable structure controller to
control a manipulator. In this method the exact determination of the switching instances
for the control input is diflicult to achieve. In the approach given by Balestrino et al.
(31], a linear compensator is used to produce a switching signal that ensures that all the
trajectories reach the switching surface and achieve good tracking. The adaptation
schemre used to determine the feedback gains 1s based on seclviug two independent ine-
qualities. However, the high-freanency control action 11ay excite resonances and the
derivative of errors goes to zero only in the mean. These schemes do not provide any

identiflcation of parameters. The output response may be highly oscillatory.

The method of linearizing and decoupling of the nonlinear terms in the manipula-
tor dynamics is proposed by Craig [5]. This is called model-based control which is
accomplished by introducing a nonlinear controller in the feedback loop so as to cancel
the nonlinear terms in the dynamics. A servo control is then constructed for the linear
model. Another approach, given by Singh and Schy [7] is also based on the cancellation
of nonlinear terms in the manipulator dynamics. This uses two controllers, one for the
hand and one for the joint angles. It uses an inverse model based on determination of
the inverse of the Jacobian. These methods assume exact cancellation of the nonlinear
terms of the manipulator’s inverse dynamics, which requires that the exact nonlinear

terms be known a priori and should not change. However this is not possible in practice.

Another class of advanced robot control systems covers methods based on adaptive
control theory. One category of such schemes uses Model Reference Adaptive Control
(MRAC) techniques {17,19,20-24,31,40,67]. The resulting controller designs are generally
stable, and the closed-loop state follows the desired trajectory within a small range of
error. When a robot manipulator operates at high speed, however, the effects of non-
linearities, time-varying coeflicients, and additional uncertainties, such as backlash and

friction, may cause the system errors to become large. Dubowsky and Desforges {20,
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applied MRAC for motion control of a manipulator using a second order model as a
reference model for each joint. The gains are adjusted using the method of steepest des-
cent to minimize the error between the model and the actual manipulator outputs. This
model is very approximate, and does not take into account the coupling between the
joints, nor any changes in the external load or the effects of disturbances due to friction.
Takegaki and Arimoto [21] used a decoupled linearized perturbation model for the mani-
pulator in Cartesian space. The model neglects coupling between the joints. The control
law is designed to cancel the acceleration term in the manipulator’s inverse dynamics to
stabilize the system and reject disturbances. A feedforward nonlinear controller is deter-
mined based on the dynamics of the manipulator which are assumed to be known. The
results given in [21] show that the control law does not compensate against the effects o
changes in the inertia of the end-eflector or the payload. Singh [19] proposed an adap-
tive model following control scheme for uncertain systems. His work Is restricted to
manipulators with revolute joints and only a mathematical study is presented. A
dynamic compensator is used to genecrate the feedback elements, this requires that the
compensator be stable. The approach also assumes that the manipulator’'s dynamical
terms are bounded. On the other hand Horowitz and Tomizuka [55-57| have proposed a
scheme that takes some of the manipulator dynamics Into account They write the
dynamics with portions that depend only on the manipulator position which is described
by a set of unknown parameters that are identifled on-line. Accordingly, in order for the
theory to be valid. the rate at which the manipulator changes configuration must be

slow compared to the adaptation time constant

Seraji '22,38.43.,68, propoged an incremental NMMRAC scheme for robotic manipula-
tors. The control law depends on a linearized decoupled model  1ts parameters are
updated according tc a scheme based on Lyapunoy stability theory  An ausibary inpat
15 used to represent the effect of igh order nonhnearities A trial and error approach is

used to select the weighting matrices and scalar factors to ensure atability and obtain



good tracking performance. Such selection becomes difficult as the number of degrees of
freedom increases. In the adaptive control scheme proposed by Oh et al. (17] a nonzero
steady state error is obtained unless certain conditions are satisfied. Lim and Eslami (23]
proposed an algorithm based on mode] reference and feedback controliers. The manipu-
lator model includes the effect of friction and other disturbances. They use Lyapunov
stability and solve a Riccati equation to get the updating control laws, which minimize
the error between the desired output and the actual output. They make an approxima-
tion that a certain time-varying matrix is constant. As seen from their results, the error
is high initially and vanishes with time along the trajectory. In the adaptive control
approach of Yuan and Book [40], the reference input is directly derived from the refer-
ence model, which is not necessarily equivalent to the actual manipulator inverse
dynamics. The state feedback controllers consist of constant gain matrices. The stabil-
ity of the system depends on a certain matrix function whose magnitude is required to

be less than 1 at all times.

Another class of adaptive control techniques uses self-tuning control
{25,26,59,60,61]. Koivo et al. {26,58), proposed an adaptive self-tuning controller using
an autoregressive model to fit the input-output data for the manipulator. This algo-
rithm assumes that the interaction forces and other disturbances are negligible. The
algorithm uses a linearized discrete-time invariant decoupled model for parameter
identification, and the optimal input is computed by minimizing a performance criterion
whose weighting matrices are selected by the designer. There is no rigorous proof of sta-
bility. Leiminger [59,60] and Backes et al. [{61] assume linear decoupled models for each
joint and then proceed to apply self-tuning-regulator theory based on least-squares
identification and pole placement control. There is no proof for closed-loop stability of
these schemes. Kubc and Ohmae [62] implement an adaptive controller in Cartesian

space, but make gross approximations by neglecting terms in the dynamics.

Another category of adaptive control techniques uses least-squares identification of
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perturbation models [25,27,38,48,51,63]. Lee et al. {27,63] give an adaptive controller
based on linearized perturbation models in Cartesian space in the vicinity of a nominal
trajectory. A recursive least-squares identification technique is used to identify the
parameters of the mode), and an optimal adaptive celf-tuning controller is designed to
mint.aize the error. The applied joint torques consist of the nominal torques computed
from the manipulator’s inverse dynamics in the forward path and a correction term
from the adaptive controller. The use of inverse dynamics in the feedforward path s
very expensive computationally. The trajectory conversion scheme used is very compli-
cated, and the study represents an ideal system because it neglects all high order non-
linearities. The method proposed by Lobbezoo et al. (53] is based on the estimation of
the inverse Jacobian in the feedforward path. This method is computationally expensive

and the estimation of the inverse Jacobian is not possible near singular points.

Another approach in adaptive control uses nonlinear model-based controllers
(6,19,32,50,52] in the feedback and feedforward paths and assumes exact cancellation of
some of the nonlinear terms in the manipulator dynamics. Such cancellation is not possl-
ble in practice. Craig et al. {32] have used a nonlinear model based controller. T'wo non-
linear terms in the feedforward and feedback paths are estimated and their values are
updated according to Lyapunov theory. The method assumes a fixed value for the state
feedback gains. Slotine et al. [50,66] proposed an adaptive controller hased on estimation
of the unknown parameters of the manipulator. A non-recursive fast algorithm Is used
for estimation of these parameters The adaptation scheme involves the solution of a set
of differentia. equations and uses a set of integrators  The technique s sensitive to
measurement noise from the encoders and tachometers They propose the use of a flter
with dead zone to suppress the high frequency components Al solving the differential
equations needs a priorr knowledge of the imtial values of the paratneters The response

shown is highly oscillatory and converges with sinall steady state errors

Recently research im adaptive control hias focussed on the problem of robuntiess [t
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was shown by Peterson et al. [46] that if poor knowledge of the system parameters
exists, the control scheme may not be decoupled and linearized, but may cause the sys-
tem to be unstable. The robust controller given by Singh and Schy [7] is valid onlv for
small deviations in the joint angles about the nominal values. The approach given by
Gilbert and Ha [45] used decoupled PID controllers. The method of robustness given by
Spong et al. [47) assumed that the velocity terms quadratic in écould be bounded with
linear bound. This assumption requires that the linear bound should hold over all range
of 0 The method of using servocompensators [48] in the control system, requires that
the compensator should remain stable along the trajectory. Craig [33] proposed a robust
model based controller by specifying an upper bound for the uncertainty vector and
assuming that the upper maximum bounds for all parameters are known. The approach

does not ensure that the errors due to the unmodeled dynamics will converge to zero.

1.3 MOTIVATION AND SCOPE OF THE THESIS

A major requirement for robust and accurate manipulator contro] is that accurate
values of manipulator parameters and payloads be available in implementing the con-
trollers. The reference models used in adaptive control in general do not often represent
the actual dynamics of the manipulator. Such approaches are therefore not robust to
variations in the system parameters. Furthermore, the nonlinear controller often has the
same order of complexity as the robot dynamics, making these techniques computation-

ally expensive.

The need to overcome the difficulties mentioned in the preceding section has pro-
vided the motivation for the research described in this thesis. A new algorithm that
uses an adaptive control technique is proposed in this thesis, which is based on explicit
least-squares recursive identiflcation to identify a piecewise linear time-varying dynami-
cal model on-line. Based on this model, feedforward and feedback controllers are
designed. The implementation of these controllers depends only on the identified model

and the controller parameters are updated on-line in terms of the identified model
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parameters. The algorithm takes into account the effects of coupling and other unmo-
deled dynamics and compensates against these effects by incorporating a robust control

scheme.

A new approach is given in this thesis to ensure the required degree of robustness
for the adaptive controller. This enables the controller to maintain the asymptotic sta-
bility of the closed-loop system and to achieve trajectory tracking in the presence of cer-
tain unmodeled dynamics, parameter and payload variations. The adaptive control algo-
rithm provides on-line selection of various gain matrices and other controller parameters
without requiring a trial and error approach. The implementation of the adaptive con-
troller is based on the identified model and does not require any knowledge of the physi-
cal parameters of the manipulator or the use of any nonlinear terms such as the inverse
dynamics in the feedforward or feedback paths. The adaptive controller has a relatively
simple structure and an operations count shows that it Is computationally fast and
therefore feasible for real-time applications. The adaptive controller Is implemented as
decentralized control in joint space or Cartesian space. With some modifications, it Is

also applicable to flexible joint manipulators

The main contents of each chapter are as follows:

Chapter 2: Manipulator Dynamical Structure

This chapter introduces the basic dynamical equations for a rigid-hnk, open-chain
manipulator. The nonlinear inertia, centrifugal and Cortols, gravitational and fric tional
terms of the manipulator are specified The Newton-Euler formulation of manipulator
dynamics is given an both joint space and Cartesian space The spmubation methodology

for the manipulator dynamics, used in this thesis, f4 alwe, discussed

Chapter 3: [teview of Adaptive Control Schemnes

This chapter introduces the hasie concepts of sare of the adaptive control s hemen

which are widely used 1o mamipubator conteal and whph are telated o the witd
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presented in this thesis. In particular, model reference adaptive control and recursive
least-square identification are reviewed since the proposead algorithm makes extensive use

of these techniques.

Chapter 4: Adaptive Control of Robot Manipulators: Joint-Based Control

In this chapter the problem of robot manipulator control is presented. A new
approach using adaptive control is described which determines the torque required to
track desired trajectories in joint space. The controller is designed to compensate
against the effects of unmodeled dynamics. A new approach is also presented to study
the stability of the resulting closed-loop systemn. The computational complexity of the
technique is discussed and an example is considered to illustrate the applicability of the

proposed algorithm.

Chapter 5: A Bounded Perturbation Approach for Robustness of the Adaptive

Conlroller

This chapter is concerned with the development of a new robustness method for
the adaptive control scheme proposed in Chapter 4. The method is shown to be robust
against the effects of unmodeled dynamics and model uncertainties. The approach is
more accurate and efficient than the existing ones. An example is described to illustrate

the capability of the proposed algorithm.

Chapter 8: Cartesian Control of Robot Manipulators

In this chapter the problem of motion control of the end-effector of a manipulator
in Cartesian space is described. The algorithms developed in Chapters 4 and 5 are
extended here to control the motjon of the end-effector in Cartesian space, and an exam-

ple is given to illustirate the main results of this chapter.

Chapter 7: Adaptive Control of Flerible Joint Manipulators
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In this chapter the effects of flexibility at the joints of a manipulator are discussed.
First the formulation of the dynamics of a flexible-joint manipulator is presented. The
dynamics are then reformulated in terms of a singularly perturbated system with slow
and fast modes. The adaptive control strategy described in the preceding chapters is
then modified to control this type of systems. A stability analysis for the resulting con-

troller is given and the main results are illustrated by an example of a single link

flexible-joint manipulator.

Chapter 8: Conclusions and Future Work

General conclusions concerning the algorithms, analysis and the results of the thesis
are given in this chapter. Possible extensions of the results to more specific problems or

new problems in manipulator control are discussed.
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CHAPTER TWO

MANIPULATOR DYNAMICAL STRUCTURE

In this chapter the general structure of the dynamic equations for a rigid-link,
open-chain robotic manipulator is discussed. All the important basic definitions that will
be used in the rest of this thesis are given. The focus here is only on the rigid body

dynamics. The case of joint flexibility will be discuss in details in Chapter 7.

2.1 INTRODUCTION

A manipulator generally consists of an arm (to which an end-effector, or gripper is
affixed), a power source and a control unit. The arm consists of rigid links connected
through joints, either revolute for rotary motion or prismatic for sliding motion. Each
joint is provided with position and velocity sensors to measure the joint angle and its
velocity, and an actuator to apply a torque on the neighboring link. The degrees of free-
dom that a manipulator possesses is the number of independent position variables, usu-
ally equal to the nurber of joints. The kinematics of a manipulator is the study of its
motion without regard to the forces which cause the motion. The equations of motion
describing the kinematics, relate the joint positions, velocities and accelerations to the
displacement of the end-effector in Cartesian space., This formulation is important for

Cartesian control of the end-effector.

Manipulator dynamics is the study of the forces and torques required to cause
motion of the manipulator links. In order to accelerate a manipulator from rest, a com-
plex set of torque functions must be applied by the joint actuators. The exact form of
the required functions of the actuator torques depends on the spatial and temporal
characteristics of the path to be taken by the end-effector as well as the mass properties
of the links and payload, friction of the joints, etc. One method of controlling a mani-

pulator to follow a desired path involves calculating these actuator torque functions
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using the dynamic equations of the motion of the manipulator.

2.2 JOINT SPACE EQUATIONS FOR MANIPULATOR DYNAMICS

Several methods are available for formulating the dynamic behavior of a rigid link
manipulator [1,3,5]. The recursive Newton-Euler formulation [6] is computationally one
of the more efficient methods and involves the successive transformation of velocities
and accelerations from the base of the manipulator out to the end-effector, link by link,
using the relationships between moving coordinate systems. Forces are then transformed
back from the end-effector to the base to obtain the joint torques. The complete deriva-
tion of the Newton-Euler formulation can be found in [1,3,5]. We can write the dynamic

equations of the manipulator in closed form as |8)
T=M@) 0+ V(©@,0)+ GO +JITO) K, + n(t) (2 2.1)

where, K, is the NV X1 vector of exterial forces and moments acting on the end-

h

effector. The 1™ equation of (2.2.1) can be written in the sum of products form as [40)]

n . n o n oo N
1= m(0)0,+ 3 3 viu 0,0, +g,(0)+ 3] .ij!\’,}+1}, (t) 1=l..n (222

j=1 ) =1k =1 =1
where
my; is the (1,7 )"‘ element of the inertia inatrix

i,k 0505 is the centrifugal and Coriolis term

g; is the gravity c¢lement
J],- is the (7.1)™ eclement of the Jacobian matrix J (0)
K, is the 7% element of K,

n, (1) is the 1% element of uncertainties

It is sometimes usefu! to write V' (0,0) in configuration dependent form for ease of fmple-
mentation. In such a form, the rentrifugal terms are separated from the Copjolis termns
The dynamic equation (22 1) can then be wrntten (assunming free space motion and no

uncertainties) as
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r=M(0) 0+ B,0) [éb] + B (6) [é"’] + G (6) (2.2.3)
where B (f) is an n X—;-n(n —1) matrix of Coriolis terms, (00] is an E—(rg—_-llXI

vector of joint velocity products given by
60| = 16,6, 6,0,....80,_,0, ,
B,(0) is an n X n matrix of centrifugal terms and (02] isan n X1 vector given by

2] = [or a7 .52]
2.2.1 The Manipulator Inertia Matrix, M(9)

The manipulator is modeled as a mechanism of a set of n rigid links connected in

series through joints, with one end flxed to the ground and the other end free to which
T

is attached a gripper or end-effector. Let = (6, , 6, ,...., 8, ] bean n X1 vector

of generalized coordinates describing the joint positions, M () an n X n matrix describ-

ing the mass distribution of the manipulator, and 7 an n X 1 vector of joint torques.

Then the kinetic energy of the manipulator can be written (3,33] as
1 T .
K.E = 0 M©) 6 (2.2.4)

Each element of M (f) have units of inertia (kg -m %). Clearly, M (#) must be positive-
definite. The quantity on the right-hand side of (2.2.4) is therefore always positive and

represents energy.

The potential energy of the manipulator can be described by a scalar function of

positions only, say P, (). Therefore, we can write the Lagrangian of the system (33] as
1 . T .
L = Py 9° M (6)0- P, () (2.2.5)

Using the Lagrangian method, the dynamic equation of the manipulator can be derived

using the relation [33]
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Therefore,
d [ ] 3 |1,T '
—_ A - Nl = .
T M) 6 = 20 M@) 6 - P,(0) T (227)
or
. R .. lT a . a . e
M@)o+ A (@0)0 - 20 80}\1(0) 0+ 001’,(0)——r (228)

From (2.2.8) we find that the coefTicient of 0is M (8). that is, the manipulator inertin
matrix is the kinetic energy matrix [33].

One important property of the manipulator inertia matrix is that each of its ele-
ments is a complex function depending on @, the positions of the joints of the manipula-
tor. Also this dependence involves sine and cosine functions of ¢ (3,33]. Since sine and
cosine are bounded for any value of their arguments, and they appear only in the
numerators of the elements of M (), then A (0) is bounded for all § We can state
several properties of M (0)

1- It is symmetric.
2- It is positive-definite and bounded from above and below
3- Its inverse exists and is positive-deflnite and bounded

4- It is the kinctic energy matrix of the manipulator

2.2.2 The Centrifugal and Coriolis Terms, V' (0, 0)

The vector of centrifugal and Coriolis terins s a complex ponlinear fune tion of 0

and 0 It can be written '23,31,33  ay
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i V() ]
6T 17 60) 6

V6,0 = (2.2.9)

67 V,; ) 0 |
where V,(0) are n Xn symmetric matrices. Clearly it can be written as the product

V@,0)=B@,08 (2.2.10)
B (6,8) can also be written as

B(6,8) = V,(8) V, (0 (2.2.11)

where V, (0)isann X%n (n 4+1) matrix whose structure depends on the kinematics of

the manipulator, and

[ 0, I, ]
On-1.1 b, I, ,
V(@) = |0, 2, N (2.2.12)
01,1 bn ]
where
0;,; 15 an ¢ X j null matrix
I ts a k Xk identity matrix

It can be shown ([3,33] that the dependence on @ appears only in terms of sine and cosine
functions. Therefore V (6,0) has a bound that is independent of &, but increases qua-

dratically with 0

From the Lagrange formulation (2.2.8), it can be shown that

. _ . . l.T _a- .
V(@.0)= M@ 0- 20 [aoM(O)}H (2.2.13)
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from where it follows that [40]
M(8) =2B(6,8) - K (2.2.14)

where K is some skew symmetric matrix. This can be useful in that it implies the fol-

lowing relationship between quadratic forms
-3-0?1(4 0)0= 6T B(,0) 0 (2.2.15)

Now, we can state the general properties of V (8,6):
1- It is quadratic in .
2- It can be factorized in dilferent forms, e.g. (2.2.10-2.2.12).

3- It is related to the time derivative of the inertia matrix by (2.2.15).

2.2.3 The Friction Term, F, (9

Frictional forces will be quite significant for manipulators that have gears at the
joints. Friction terms are complex and nonlinear and may be represented approximately
by deterministic models. A simple model for friction is that for viscous friction, in which

the torque due to frictional forces Is proportional to the velocity of the joint motion, l.ec.
Tj riction = € 0 (2 2.16)

where ¢ is the coeflicient of viscous friction Another possible model for friction s that

for Coulomb friction, which is represented as
T/nctlon = ¢, sgn(0) (2217)

where ¢, is the Coulomb friction constant and sgn is the signum function The value of
C 5 Is taken to be the static coeflicient, when 0:(). and a lower value, the dynamie
coefTicient, when 0740 In many manipulator joints, friction also depends on the joint
position because of the effect of gears which are not perfectly round In generasl we can

model friction as a sum of all these effects
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2.2.4 The Gravity Term, G (9)

The effect of gravity loading on the links can be included quite simply by setting
the initial translational acceleration to be equal to g vertically upwards, where g is the
gravity constant. This is equivalent to saying that the base of the robot is accelerating
upward with 1 ¢ acceleration. This will cause the same effect on the links as gravity
would. The gravity term is a function of the joint angles # and can be expressed
[23,31,33] as

G)=C(0) 6 (2.2.18)

where C (0) is an n Xn matrix containing the gravity constant g.

2.3 THE MANIPULATOR JACOBIAN

The Jacobian matrix is used to map velocities in joint space to the velocities in
Cartesian space. The nature of this mapping depends on the joint angles and link
parameters. The Jacobian in general, is a multidimensional form of the first derivative of
a vector function with respect to a vector variable. Suppose we have six functions, each

of which is a function of six independent variables, i.e.

,=/[, [3/1' Yar Y20 Y40 Y5 3/6]

To = j2 [?/1’ Yor Y3 Yy U 3/5]

Te=[¢ [yl, Yor Y30 Yoo Vs, ?/6]
which can be written in vector form as
X =F(Y) (2.3.1)
using the chain rule we can find the differential of z; as a function of the differential of

Y, as
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of, of , [
1 By, Y 9y, Yo 3!15 Ve
af, of . af,
bz, = by, + Syot. . . + b
2 ayl yl ay2 y2 a 6 yﬁ
3fs f s af ¢
b, = by, + ——by, + .. .+ 6
5= By, U7 By, 3 By, °

which can be written in vector form as

. OF
X = 37 oY (2.3.2)

The 8 X 8 matrix of partial derivatives in (2.3.2) is the Jacobian J of F with respect to

Y. If the functions [ ,(Y) through [ ¢( Y ) are nonlinear, then the partial derivatives

are functions of y,; . Then we can write (2.3.2) as
X = J(Y)éY (2.3.3)

By dividing both sides by the differential time element, we get the Jacoblan which maps

velocities in Y to those in X :
X = J(Y) Y (234)

At any particular instant, Y has a certain value, and J(} ) is a Hnear transformation
Thus when Y changes with time, then so does J(Y ) The Jacoblan is therefore a time
varying lincar transformation in general In roboties, Jacoblans relate jolnt velocities to

Cartesian velocities of the end-eflfector je

v, = J(0)0 (235)

X
where 0 is the vector of jomnt angles of the manipulator, and vV, o vedtor of Cartesian
velocities Note that i (23 5), J and v, written in the same cootdinate frame For g

six jointed mampulator with 6 degrees of freedom for the end-effector, the Jacobian v a
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86 matrix, § and v, are 6 X1 vectors. The 6X1 Cartesian velocity vector contains

a 31 linear velocity vector and a 3 1 rotational velocity vector stacked together.

Jacobians of any dimension (including nonsquare) may be defined. The number of
rows equals the number of degrees of freedom in Cartesian space. The number of
columns equals the number of joints of the manipulator (degrees of freedom in joint
space). For a planar arm, there is no reason for the Jacobian to have more than three
rows, although for redundant planar manipulators , there could be arbitrarily many
columns (one for each joint). The Jacobian may be found (5] by directly differentiating
the kinematic equations of the mechanism. This is straightforward for linear velocity. To
include the orientation vector, one may use the method of velocity propagation from

link to link to find the Jacobian (for details see [5]).

In the force domain the Jacobian relates joint torques to forces acting on the end-
effector. This relation can be defined by equating the work done in Cartesian terms with
the work done in joint terms. In a multi-dimensional case, work is the dot product of
the vector of forces or torques and a vector of displacements. i.e.

F . 6X =1.60 (2.3.6)

where

F is a 8 X 1 Cartesian force-moment vector acting on the end-effector,

6X is a 81 vector of infinitesimal Cartesian displacement of the end-effector,
T is a 8 X1 vector of torques at the joints and

50 is a 81 vector of infinitesimal joint angle displacements.

Expression (2.3.6) can be written as

FTéx =T & (2.3.7)
Using (2.3.3), with @ in place of Y, in (2.3.7) yields

FTJsg=1T & (2.3.8)

which must hold for all 84, and so we have
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By transposing both side, we get
= JT(O) F (2.3.9)

Thus the transpose of the Jacobian maps Cartesian forces acting at the hand into
equivalent joint torques. This is useful in implementation of Cartesian control of the
end-effector. Note that the Jacobian and the force are written in the same coordinate
frame. When the Jacobian loses rank, there are certain directions in which the end-

eflector cannot exert static forces.

2.4 CARTESIAN SPACE FORMULATION OF MANIPULATOR
DYNAMIC EQUATIONS

Cartesian space dynamic equations which relate the acceleration of the end-effector

expressed in Cartesian space to the Cartesian forces and moments acting at the end-

effector can be obtained using the manipulator Jacobian {5,34]. From (2 3.5) we have
X =J06 and X =J0O)0+J(0)6

Using these relationships, one can write the Cartesian space dynamic equations as

F=M@JX +V, 0,0+ G, (0) (241)
where
F is the NV X1 force-torque vector acting on the end-effector
X is the /N X1 position and orientation vector of the end-effector

M, (0) is the N XN Cartesian inertia matrix

V, (0.0) is the NV X1 veetor of velocity terms in Cartesian space

G, (0) is the N X1 vector of gravity terms in Cartesian space
Note that the forces acting on the end-effector, F o could tn fact be apphed by the artua-
tors at the joints using the relationship

r= JT(0)F

where J(6) 15 wntten i the same coordinate frame an Foand X
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In Cartesian space the kinetic energy is written as
1 - T .
SX M (0) X (2.4.2)

By equating (2.2.4) and (2.4.2), and using (2.3.5), we can write the Cartesian inertia

matrix as
M, (6) = J-T(8) M(6) J'(0) (2.4.3)

where J-T (9)=[JT(€)]‘1. The other Cartesian space quantities can be expressed simi-

larly in terms of joint space quantities [36] as

V00,0 =JT0)(ves - Mo J0) J©)6) (2.4.4)

G, (0) = JT) G (2.4.5)

Note that when a manipulator approaches a singularity, certain quantities in Cartesian

dynamics become infinite.

2.5 MANIPULATOR SIMULATION METHODOLOGY

The computer simulation of the dynamics of a rigid-body can be done by many
methods [1,6]. Because of the comriexity of manipulator dynamics, most researchers
apply simplifying assumptions to the model, such as ignoring Coriolis and centrifugal
forces, or neglecting joint offsets, etc. In such cases, the results obtained are accurate
only for a limited range of operations. A more general solution, can be obtained for
manipulator simulation using the Newton-Euler equations, in which most relevant effects

are considered.

Following the method given in [6], the computer simulation of the dynamic
behavior of a manipulator can be summarized as follows. A computer subroutine SUBI
is written to compute the joint torques for a given trajectory and external forces acting
on the n'* link of the manipulator. Based on the closed-form dynamic equation (2 2.1),

the dynamics for a given set of torques can be computed. First we initialize the
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procedure by setting the angular acceleration and velocity equal to zero, and the linear
acceleration equal to the gravity constant. Next we Jet B, to be a "bias vector” equal to
the torques due to gravity, centrifugal and Coriolis accelerations, and external forces and

moments acting on the n th link, i.e.
B, =V(@#8) +GO)+JT(0) K,
This bias vector can be easily computed by setting 8, 6 and K, to their current state,

letting = 0O, and calling SUB l(0.0,é.1\', B, ). The computational complexity of this

step, measured in terms of the number of multiplications and additions, is found to be
159 n mulliplicalions  and 126 n additions

where n is the number of joints. Having computed the bias vector. we can find the

accelerations of the joints by solving the lincar equation
M@)6=r-B, (251)

The difficult part in solving (2.5 1) Is in evaluating the ¢lements of the inertin matrix,
M (6). This is accomplished by setting 4 to its current state, by letting 0 == 0, K, =0,

fs an n X1 vector with the

deﬂningb = r,, and calling suB l(0,0,r1 .O,AIJ ) Here r,

_7'"l element equal to 1 and O everywhere else, and .\l] is the ]”' column of M, Je

AIJ is the torque on the joint actuators when the joint velocities are zero, there are po
external forces or gravitational effects, and the joint accelerations 0 are equal to T,

The computation of the inertia matrix, one column at a time, requires
159 n? multiplicahions  and 120 n?  addihons

Once the elements of the inertia matrix are obtalned, the joint aceelerationn are com-
puted by solving (25 1) for @ The veloclties and positions are obtained Hy wpplying any
of the several well-hnown numesical integration technlgues 42 to ntegrate (2% 1) for.

ward in tune
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CHAPTER THREE

REVIEW OF ADAPTIVE CONTROL SCHEMES

In this chapter, a brief review of the relevant concepts in adaptive control that are
related to the work presented in this thesis is given. The model reference adaptive con-

trol scheme and the recursive least-squares estimation technique are reviewed.

3.1 INTRODUCTION

When the knowledge about a system is limited, the issues of adaptive and robust
control become important. One way to deal with poor knowledge of parameters in a con-
trol scheme is through techniques of adaptive control. By adaptation we mean the pro-
cess of changing the parameters, structure and possibly the control of a system on the
basis of information obtained during the sampling period, so as to achieve some desired
behavior for a system when the operating conditions are either incompletely defined ini-
tially or changed. An adaptive system measures a certain index of performance using the
inputs, states and outputs of the adjustable sy.tem and compares the measured index of
performance with some given index. The adaptation mechanism modifies the parameters
of the adjustable system or generates an auxiliary input in order to maintain the perfor-

mance index values closc to the given ones.

In general, an adaptive controller can be viewed as being composed of two parts:
an identification portion, which identifies the parameters of the system itself, or parame-
ters that appear in the controller for the system, and a control law part, which imple-
ments a control law that is in some way a function of the identified parameters [33].
Adaptive control schemes can in some cases be computationally fast and require little
computer memory. Thus they are suitable for implementation in real-time control of
robot maripulators. The most widely used adaptive control schemes in robot manipula-

tor control are those based on model reference adaptive control and recursive estimation.
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Since these two schemes are related to the work presented in this thesis, we will review

them briefly.

3.2 MODEL REFERENCE ADAPTIVE CONTROL (MRAC)

In model reference adaptive control, the desired closed-loop performance of the sys-
tem is described by specifying a reference model that exhibits the desired dynamic
response. The adaptive controller observes the output errors between the desired and
the actual system and, based on these errors, updates a vector of parameters used by
the controlier in order to reduce the errors. Basically, there are two classes of MRAC
techniques: signal synthesis methods and parameter adaptation methods. In the signal
synthesis method, an auxiliary signal is synthesized by the adaptation mechanism and is
injected into the system to supplement the operation of some nominal constant controll-
ers. In the parameter adaptation method, the gains of the controllers are tuned by the
adaptation mechanism and no external signals are introduced in the system. In hoth
methods, however, the objective is to match the response of a given system with that of
a predefined model. The basic configuration of a model reference adaptive system s

shown in Fig.3.1.

Assume that the adjustable system Is described (28] by
s()=A)r(t)+ B{)u(t)+ w(l) (321)

where
r €IR™”7!Y is the state vector,
u €M™ is the input vector,
w EIR"’!Y isthe vector of auxiliary inputs to be synthesized,
AEIR" ™" and 3D €IR"™™ are matrices to be adjusted
The desired performance of the system is embodied in the definition of the reference

model given as

T = Ay T, (L4 Dy u(l) (322
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where 2, € R " X! and A,, and B,, are constant prespecified matrices of appropriate
dimensions.
Let e = 1,, — T represent the generalized state error. Then the error between (3.2.2)

and (3.2.1) satisfies
e(t) = A, e(t)+ [Am—A] z(t)+ [Bm-—B]u(t)— w(l) (3.2.3)

Now the adaptive control problem can state as follows: Given an unknown initial
difference (at {=={, ) between the parameters of the adjustable system and those of the
reference model ie. (A,,-A), (B,-B) and a known initial state error
e(t )=z, (,)-2(t), ind an adaptation law which minimize the quadratic cri-

terion
P.I =:f°{eTP e+tr[(.4m—A] Tn,a (A, -A) ]+tr[(Bm—B] Tlc,, [Bm—B)” dt

where Ir denotes the trace operation, £, , &5 and P are positive-definite matrices.

The adaptive control laws can be designed by minimizing the performance index
or by using Lyapunov's second method. Here, we will describe briefly the MRAC
approach proposed by Seraji [22), which uses Lyapunov stability to derive the adapta-

tion laws. Deflning the scalar positive-definite Lyapunov function as

V(t) =eTP e+wTQow+tr[(Am~A] TQ,[A,,,—A)]

+tr[[B,,, -B) TQQ(B,,,—B]] (3.2.4)

The matrices @, , @, and @, are arbitrary positive-definite constant n X n matrices

and P is the solution of the Lyapunov equation
P Ay, + AnTP = -Q (3.2 5)

with @ any positive-definite matrix. In (3.2.4), the terms € Tpe and w7 0, w denote

the distances of e and w from the origin while (A, -4)7 Q (A, -4) and

R L £ 2 ot
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(B, —B)T Q.(B,, -B) represent the distances between the adjustable matrices of the
system and those of the reference model
Now, by differentiating the Lyapunov function V() ulong the trajectory (323) we

obtain
. T
V(t)=c71’c +eT e +2u'TQ‘, w+2r | (A, A) Q,[A,, A)

T
+2tr | (B, -B) Q.(8, B)
or
. T
V(t) =el [l’.-l,,, +.'l,,rl’] e 20T Peqas’ [.1,,, .4] Pe v2u 7 Q,w

T T

+auT [nm,n] Pes2tr| (A, A) Q,({A,, A)
T

+tr|(Bn B) Q. 8, 1)

Using the identities a T b=bT a=xtr[ab T} ana tr{ab? M| tr|Mab T for any

n X1 vectors @ and b and n X n matnin M, the above equation can be simphified to

‘.'(l) =-¢eTQe 2w T [I' Q. tr]

T .
+ 20| (A, A) (PP e T Q) A)

-
w20r L (B, B} (P e u? Q1) (20

Now, for the adaptation etror e (8} to vansh asvimptotically e for {01 o 1 (1) the
error equation (32 3) must be asvinptotioalhy stalle From Paapunes =+ atabihity resylt
this requires the functon Vil ) ter be negative definite Jrom (40200 snee the tenn

4 T Qr 1s negative-definmte at ds sgffopent to regugte
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Therefore, the adaptation laws for the auxiliary input w and the adjustable gains A
and B are found to be
w(t)=@Q, 1P e

A)=Q* Peal

B(t) = Q;' Peul
with these adaptation laws, V(t) becomes equal to —¢ T Qe which is a negative-definite
function of € only, implying that e(£) — Oas t — o0; i.e. T(t) — I, (t). However,
this does not imply that A — A, , B — B, or w — 0. Also, the behavior of
w(t), A(t) and B(t) in the adjustable system (and therefore of the adaptation
scheme) depends on the choice of the matrices @, , @, and Q,. It may be difficult in
practice to choose these matrices to achieve suitable closed-loop behavior. Seraji [22]
used a trial and error approach to select these matrices, Such an approach is, of course,
not suitable for on-line implementation where it may be necessary to change the values

of Q,, @, or @, to ensure satisfactory closed-loop response.

3.3 RECURSIVE LEAST SQUARE IDENTIFICATION

The basic difficulty in robot controller design is that the dynamics are not
sufficiently known and/or that they are time-varying. A recursive on-line identification
scheme can be used to identify the parameters of the system. These identified parame-
ters can be used to design a suitable control scheme. One of the popular methods of
identification is the recursive least squares identification method (RLSI). The basic
conflguration of RLSI is shown in Fig.3.2. In this method the error between the actual
system and the estimated model is used to update the parameters of the model. We will
present here an outline of the RLSI method since we will use it extensively throughout

this thesis; (for more details the reader is refered to (29]).

Assume that a stable process is time-invariant and linearizable so that it can be

described by a linear difference equatijon
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which can be put in a vector equation as
Y(m+d+nr)= ¥(m+d+nr) &(m+d +nr-1) + E(m +d +nr)

The algorithm of recursive estimation is used to minimize a loss function

m+d+nr

r= Y e%k)
k=m+d
and therefore
dr
Tele=6 =0

With the assumption nr > 2m and the abbreviation

P(m +d+nr)= [\IIT(m +d+nr) ¥(m+d +nr )]-l

we have the estimate,
O(m +d +nr-1) = Pm +d +nr ) ¥T (m +d +nr ) Y(m+d+nr) (3.3.8)

Equation (3.3.8) represents nonrecursive parameter estimation as the parameter esti-
mates are obtained only after the measurement and storing of all signal values. Writing
the nonrecursive estimation equations for ©(k +1) and ©(k) results in the recursive

parameter estimation algorithm
O(k+1) = &(k) + L (k) [y(k ) - wT (k +1)é(k)] (3.3.9)

The above recursive equation indicates that the estimate of the parameter vector O at
the instant (k +1) equals the previous estimate corrected by the term proportional to
y(k)- ¥T(k+1)6(k). The term ¥ T &. is the prediction of vy (k +1) based on the
estimate of parameters ©(k ) and the measurement vector. The correcting vector L (k)

is given by

Pk (k +1)
Tk +1) Pk YV (k+1)+v

L(k)=

and

Pk +1) = -117 [1 - L (k)\l/T(k+l)] Pk)
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and consistent in mean square

im E(é(nr)) =0,

fnr —00

Ilm E{ [é(nr)—e,,] [é(nr)—eo]T} =0

nr —00

Also it requires that the process order m and the dead time d be known, the input
u (k) and the output y (k) be exactly measurable and the error e (k) be uncorrelated
with the elements of the data vector \I’T(k‘ ). It is also found {44] that the convergence

of the recursive algorithm depends on the choice of the starting values P(0) and 6(0).

Next, we will show how the estimation algorithm can be programmed in a way that
is suitable for adaptive on-line control applications. Let us consider a flrst order system

model

y(k) + a,y(k-1) = b u(k-1) + &k)

where £ is the noise in the output. Equivalently we can write

y(k)=¥T(k)o(k) + € (k)
with

VT (k)= [~y (k1) v k)]

ok) = [a,k) 6:0)]"

The estimation algorithm can be described by the following steps:
a) New measurements y (k) and u (k) are taken at time k.

b) Calculation of the error between y (k) and the estimated output which is given as

d](k_l)
e(k)=y(k)~[-y(’°‘1) "(k'l)] by(k-1)

¢) Finding the new parameter estimates from

a,(k) a,(k-1) L, (k-1)
6.6 = s,k-1y | F Lok -0 €
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To start the recursive algorithm, we use

where o is a large positive number.
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CHAPTER FOUR

ADAPTIVE CONTROL OF ROBOT MANIPULATORS:
JOINT-BASED CONTROL

4.1 INTRODUCTION

In this chapter a new algorithm is presented for adaptively generating input control
commands for robot manipulators to achieve trajectory tracking in joint space while
maintaining stability of the resulting closed-loop system. The adaptive control scheme
uses feedforward and feedback controllers to generate commands for a robot manipula-
tor to achieve trajectory tracking in joint space. Independent joint control is used in the
proposed scheme and the effect of coupling between the joints is accounted for by a spe-
cial structure of the adaptive controller. The adaptation scheme uses least-squares
identification on-line to identily the diagonal terms of the unknown coefficient matrices
of a linear time-varying model which has the same inputs and outputs as the manipula-
tor and a similar dynamical structure in differential equation form. Its parameters are
used to generate the input control torques in the feedforward path. Proportional-
derivative feedback is used to ensure stability and shape the transient behavior. An
additional term obtained using Lyapunov theory is incorporated in the adaptive con-
troller to take into account the coupling between the joints and other eflects of unmo-
deled dynamics and parameter variations. The proposed controller, has a simple struc-
ture, since the nonlinear complex dynamics of the manipulator are not used in generat-
ing the control commands. An operations count for the computation required for the
proposed scheme shows that the method is computationally fast and feasible for real-
time applications. This chapter is divided into 8 Sections: Section 2 gives the state-
space representation of manipulator model which is to be identified. In Section 3 the

mathematical derivation of the proposed adaptive control scheme is given. New
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approach to ensure stability is given in Sections 4 and 5, using Lyapunov'a theorem and
a pole assignment technique. In Section 6 the Identification method ia described In See-
tion 7, computational complexity of the proposed scheme is discussed  To show the
capability of the proposed adaptive controller, an application to a two-link robot manl-

pulator operating in the vertical plane is considered In Sectlon 8

4.2 STATE SPACE MODEL OF MANIPULATOR DYNAMICS

As discussed in Chapter 2 the dynamic model of an n-}oint rigid link manipulator

is given by
r(t) = M@ 0(t)+ V(0.0)+ G©O) + n(t) (421)

For the time being, we shall ignore the term 7({) which represents the uncertaintien
such as those due to friction, backlash, etc  but its effect will he aceounted for later In
designing the adaptive controller In the analysis that follows the argument £ will be

dropped for convenience.
The vectors V' and G can be written as (23,31,33,

V(0.0) = J3(0,0)0

and
G0)y= C(0)0
where B (0, 0) and (C(0) are n X n  matrices ‘Therefore the set of nonlinest equa-
tions (4 2.1) can he written as
r=M(0)0 4 2(0.0)04 C(0)0 (421
This equation can be rewnitten in the state-space form

0 0 / 0 0
o) = Moo sropen|le] |y e ) (123
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Assumption 1:

Assuming that the manipulator parameters are slowly time-varying, equation
(4.2.3) can be approximated by the following piecewise linear time-varying state space

model

. o I 0]
X = ~A, -A, X + ):d (4.2.4)

i.e.
x=®x+0Qr

where, x EIR2"*! 7€ R"*}), € IR**?" and Q€ IR 2 X" | The matrices
® and {2 are constant at a given value of time and are to be identified. Since the matrix
H has full rank for all values of time, it follows that the linear model is controllable and

therefore stabilizable by state feedback.

Assumption 2:
The total trajectory time is divided into a number of intervals, say r, of duration
At k =1,...,r . Over the interval Aty , the time-varying system (4.2.4) is approxi-

mated by a linear time-invariant system

. 0 1 o
X= oA () A )| X T HG )] T (4.2.5)

where, ¢ _, denotes the time at the start of interval Af .

The parameters of (4.2.5) are to be estimated on-line using recursive identification.
As a robot moves along the trajectory, for each Af;, we have a particular model of the
system. This set of models represents the dynamic behavior of the manipulator along

the trajectory. A feedforward-teedback controller is designed for each linear time-

. Al v %k
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invariant model.

4.3 THE ADAPTIVE CONTROL ALGORITHM

We now consider the design of a controller for the manipulator to enable it to
track a desired trajectory specified in terms of a set of time-dependent desired joint
position. velocity and acceleration vectors, fe., 8,(t) , bd(!) and dd(l) . The goal of
the controller s to minimize the deviation from the desired path, i.e, to achieve traching
while maintaining stability of the resulting closed-loop system ‘The adaptive controller
that Is obtained in this section is based on the model (4.2.4) and its basic structure is

shown in Figure 4.1.

The control law for the manipulator is chosen as
T=04 + 67+ w(l) (13.1)

where, 61 € IR ® X! is the correcting torque vector obtained from a feedbuck con-
troller, and w () is generated by a feedforward controlier The feedback controller Is

chosen as a multivariable proportional-derivative (PI>) controller defined by

br=K, e + K, e (4 3.2)

where e, e EIR™ 7! are vectors of position and velocity errors, respectively

and Kp K, EIR™™ are the proportional and derivative feedback galn matrices

To design the feedforward controller, let us substitute the control law (4.3 1) into

the model (4.2 4). This yields

0 0 ! 0 0
ol = 14, a,lle + |y [044(‘)r+ u']

from where

0= A0 A0+ 10, + 1 s H v



41

Substituting for @, 8, 8 from the error equations, we get

b -6=-4, [od —e]-A2 [é,,—é]+H'éd +Hér+Huw

Using (4.3.2), we get

O, + A0, + A0, =€ +Aje +Ae +HO, +H[K,,é +K,e +w]

which can be rearranged to give
¢ + [A2+HK,,]é + [A1+HKp]e +Ho =0, + A, 0, + A, 6, — Hb,
In order to make the steady state error zero, we choose

Hw=0; +A,0; +A,0, - H 8,

or
w = H! [(I—H)lo'd + A 8, +A,0, ]

It is seen that the feedforward control w is based on the reference input, and is updated
in terms of the identiied model parameters. The control input to the manipulator is

now given by
T='0.d+Kué+K‘,6 +H‘1[(I—H)04 +A2éd +A16d] (4.3.3)

Now, let us consider the manipulator dynamic equation (4.2.2). On applying the control

law (4.3.3) to this model], we get
6+K, ¢ +K, e +H [(1 CH) O 4A, 0,44, 0, ]=M’é+3 9+CH (4.3.4)

From (4.2.3) and (4.2.4), auring the time interval Af;, we have

A, =M1C (4.3.52)
A, =M"'B (4.3.5b)
H =M (4.3.5¢)

Using (4.3.5) in (4.3.4), yields

Gy K, 6 +K, e +H g6, +1T A0, +HA 0, =H ['0'+A +A ,o]

which can be simplified and rearranged as
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H ['éd -'o'] + H'A, [é, - b] + H'A, [o, - 0] +K,e +K,e =0
from which we obtain the error equation ( during the interval &f; )
¢+ [.4,+11K,,]e + [.4,+m\',, ]e =0

which can be written in state space form as

= . (430)
where
A, = A, + I K,
Ap = A  + H I\',J
The controller gains are therefore given by
KV =ll_l J\t, ‘AQ

K, =H"'[r, -4,

P p

The matrices Ap and A, are obtalned from the desired performance of the traching
error. The model used in the controller design is a continuous-time model  The
identification of such a model requires about (4712) parameters  ‘The digital simulation
of the model is very time consuming because of the large number of floating polnt opera-
tions involved Therefore, to simplify the construction of the contratler, we drop the cou-
pling terms due to joint interactions Such a control s called independent joint control
Dropping these coupling terms will give rise to errors which will affect the stabibity and
response of the system However, we can compensate for these errors to same extent by
considering the terms that are peglected as bemng part of the unmodeled dynamicos and
by modifying the contred strategy to account for them §or independent jomt control

(neglecting jomt interactions) we have

K, = diag ik ) K, = dwaq(h, ) R PV

A, = duagla,) A, = diagthy N diag(h,y 1 1...m

Then A, and .\; can Le wnitten as
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A, = diagle; + b k,] i=1,..n

A, = diag[b; + b; k] t=1,...,n

On neglecting joint interactions, the model equations are decoupled and can be written

-0 31 BT fe]e v o

for each joint the error equation is then given by

in the form

[é,- } o 1 {3.‘ } )
e | = . 1 =1,...,n (4.3.8)
€; - ( a;+h; ky, ] - ( b; +h; k, ) €

which implies that ¢€; , ¢;—0 as ¢—oo provided that @;-+h;k, > O and

by +hik, >0,i=1,.,n

Desired Performance

Now, let us define the desired performance of the tracking error for the manipula-
tor. This can be done by requiring that the error satisfles a set of second-order homo-

geneous differential equations of the form
.é.‘ + 2¢; w; é,‘ + w,ge,- =20 t=1,...,n (4.3.9)
where ¢; and w; are the damping factor and undamped natural frequency respectively

and are to be specified by the designer. Equation (4.3.9) can be put in the state space

form

, o I
2z, = "Ap -A, z, (4.3.10)

where A, = diag (2¢;w;) , A, = diag (w?) are n Xn constant matrices and

T
z, = [erT e,T] € R X1
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Inclusion of the Effects of Unmodeled Dynamics

The error equation (4.3.10) can be written as

2, =11z (43 1)
where, IT € IR 2" X2  Equation (4.3.11) represents the desired behavior of the closed-
loop system. If the model parameters are taken to be diagonal matrices, | ¢

A=A, A,=A, H=H,,

then we get the following error equation

€s 0 l €, 0 0 €, 0

7 il 7 VO S 8 PSR L B YIRS VO I PO B 0D

(41312)

where, M|, M, EIR """ denote the cffect of coupling between the Joints and €, Iy
the actual error. The vector §({) = H n(t) EIR" "' denotes the effect of distur-

bances and other unmodeled dynamics Equation (43 12) can be written as
2, =11z, + F, (1) (4313)

where F, (t) is a vector denoting unmodeled dynainics and disturbances and hans the

form

0 4] Q) Cq 0
F, (1) = H (1) A M, M, 1 &)

a

Equation (4.3 13) represents the behavior of the system without compensation for the
unmodeled dynamics

Next, we assume that F'_ (1) is an unknown slowlv time-varying function and we
introduce another term in the feedback law to compensate for its effect "The manipulia.
tor dynamical model (12 1) can be represented o terms of the pominal salues of the
mampulator dynanues, M7 (0), 8°(0,0), ('° (6) and a nonhinear teem [, (1) which

represents coupling between the Jomnts and othor unmodaied slow iy timme sarsing Ay nam
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ics. Then (4.2.1) can be rewritten as
T=f,(t)+M°(6)0+B°@B.0)0+C°(6)0 (4.3.14)

In order to compensate for the effects of these unmodeled dynamics, a control term

J ¢ (1) is added to the control law (4.3.3). The total input to the manipulator becomes
r= H- [(I—H Yo 44 0y +A 0, ]+ By + Ky b + K, eg +1,(t) (43.15)

where K, , K,, H, A, and A, are diagonal matrices. The control scheme (4.3.15)
developed in this section consists of three parts. The first part is a feedforward con-
troller and is a special form of full dynamic compensation with three terms, correspond-
ing to inertial, centrifugal and Coriolis, and gravitational torques/forces. This part,
based on the estimation of the parameters of the manipulator, attempts to provide the
nominal joint torques/forces necessary to make the desired motions (assuming that the
identified dynamics are exact). The second part contains two terms representing the PD
controller, which also depends on the estimated parameters. Its purpose is to regulate
the trajectories resulting from the feedforward part about the desired trajectories. The
third part, is a compensation term which is used to compensate for the effects of unmo-
deled dynamics. The overall block diagram of the above adaptive control scheme is

shown in Fig. 4.1.

Remarks:

1. The control scheme (4.3.15) is simple to construct and does not require a priors
knowledge of any nonlinear terms or complex dynamics of the manipulator. The diago-
nal entries of H, A, and A, are obtained using the recursive identification scheme
described in Chapter 3. The convergence of the adaptive controller is independent of
the initial values chosen for A ;, A,, H, K, and ]\’p.

2. It should be noted that the guaranteed convergence of the tracking errors to zero does

not imply convergence of the estimated parameters to their exact values since only the
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diagonal elements of the model are identified.

4.4 STABILITY ANALYSIS OF THE CLOSED-LoOOP SYSTEM

In Section 4.3, the input control torque (4.3.15) for the manipulator i derived A
compensating function f( () was added to compensate against the effects of unmodeled
dynamics. In this section we will compute f.({) so as to approximate f,({) This can

be derived by applying the control law (4 3 15) to the manipulator (4 3 14), and get
fe(t)+K, e, +K, e, +H " [’o’, +A04+A 0, ]-_-/a ()+MOO+BO+C0 (441)

where e, = 0; — 0 is the actual error with independent joint control Assuming that

M?, B° and C° satisfy (4 3.5), we obtain the following error equation
6+ [Aq+ K, Jeo + [40+ 1K, e, = 1.0 - fe)] wan

which can be written in state space form as

or

o=z, +8(f, [.) (443)

(§)
3 = I

Let, foo =/, -fc e [o=[m 4 [, where [ denotes the eror i the

where,

approximation of the actual unmodeled dynuamics by the computed value /, {(t)y In

(143). we note that A, A, and I are diagonal matrices Therefore, by rearranging

t

the elements of 2, as

r
:=[:T :T :3‘7] (s 1 1)




17

where 2z, = [e, e ]T , we can write (4.4.3) as a set of n decoupled second order
a, a, a,

systems of the form

2o, =1L 2o + B; [ m, f=1,..,n (4.4.5)

where

and f,, isthe i element of f,, .

Theorem 4.1

Assuming that f, (t) is slowly time-varying, ie. [, (£) = O, the closed-loop sys-

tem (4.4.5) is asymptotically stable if [ c, (¢ ) satisfies the equation

felty=—=—8TP; 2,

Proof

Choose a Lyapunov function
Vity=12,T P, 2z, +q, [,2 (4.4.6)
: 2, 1 “a, 9, J m, <t

where 9o, > Oand P, €IR 2X2 jsa positive-definite matrix. Taking derivatives (with

respect to ) of both sides of (4.4.6), we get
Vi =3, TP TPis, +2 '

1 _za, tza, + za, 1za, + %.fm,fm,

Substituting for éa' from (4.4.5) yields
V. =2, T |nTP, +P, 11 +210 St m + [ BTP
' za, 1 7 1+ za. qo, m,/ m, m, s szo,
where P,' is the positive-deflnite solution of the Lyapunov equation
nx'TPi+PiH|="2Qs (447)

with Q‘- €IR X2 an arbitrary positive-definite matrix. Then,




"

". = -2.’.‘TQ| :‘. + 2 [ Q,'/..../.... + /n,",nr,.l ‘s, ] (44m)

For stability. it is required that ", (r) S 0 along the trajectorny 2, (! Jof (44%) For

this, It is sufficient (from (4 4 §)) that
/m, [qp, /m, + ‘.;'T I'o :c.] ~ 0

which can be satisfled of [, == Oorf

Qo Jom + ATH 20 0 (446
je,if
l FRANT)
/"‘.“) - —-‘t Il “a (4 410)

The case where [m‘ ==() {8 trivial because the atability of (4 4 9) then follows from the
fact that I, s ( by choiee of X,' atd Ay ) an asymptotically stable mately Since ].' in
slowly tme-varying, [, = 0 Therefore by defimtion of f o f J, Yhen the
seeond case 1= satisfied af

1
/. - — 3 4411

Te.
q-

At this potnt we chowwe the adapUse Jaw as (4 111 Canmeguenthy we get

Sinee "l I negative st definate and ‘. v pemitive deflnate we oonclude that the o

gin s stable  Noow by anvebang Ta Salle = Thearern 0465 gt can be sleown that regula

ten of the chmed o svetom tabes place gl o 00 0 and that fte {1y —

-
f [ —"

constant  Thiwroanpdetes the pree 00 the the rery

temark:
L Y R R A o Y e R A T A R U T LRI I U AL PR RLY 1

T
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jm = —_1' ﬂl'T Pf za, - ag. fm' (4.4.12)

' o,
where o, is a positive scalar. Then using (4.4.12) in (4.4.8), we get
Vi = ‘2za,T Qi 2z, +2 [qo.fm, (“qa,-l ﬂiT Pi z, -0, I m, ) +fm, ﬂ:‘T P; za,]
Choosing g, ==0, results in
/. == -2 77 Q 2, ~20,%[p? <0

for all z; #0, f,, 70, i.e. V; is negative-definite and the system (4.4.5, 4.4.12) Is
asymptotically stable.

The result in Theorem 4.1 gives us a way of determining fc'(t ). Writing P; as

Py, P2
P, = pa Pa
we can express (4.4.11) as
. 1 pl. p2| ea,
= — 10 k ] : 4.4.13
l‘-'. qo' [ 4 p 2, p 3, ea' ( )
which gives,
: h; .
fc.(t )= - [p 2, ca' + pg. eﬂ. ] (4-4.‘4)

0,

Equation (4.4.14) can be solved for f . (¢) as

hip, ¢ h; p
Jet)=Jot) + —=[ e, (1)dt + ——=e, () (4.4.15)
o, t, o,

where [, (t,) denotes the initial value of f . (t). This gives the term f. (1) which
compensate against the effects of unmodeled dynamics in the adaptive control law.

In the next section we will show how and can be determined.
P, Da,



4.5 POLE ASSIGNMENT TECHNIQUE

From (4 410) and (44 11) it Is seen that /{.(l) and /m_(l ) depend on p, and

P3, . In this section we will show how p, and p, can be determined (subject to the

constraint that the corresponding Q, I pasitive-definite) by placing the cloaed lanp

poles at desired locations in the left-half of complex plane ‘This allowa uys to achieve

satisfactory transient behavior for =, (8) and [, (1)

Writing (44 5) and (44 10) together results in the following augmented closed. loop

system
:‘. ll' d. :‘
== tews),. . ,..n
/m (l'r O /m
where
| hl
e e 2 )
J0 9.,
or
r A . ,
Ca, 0 1 0 .
€a = .\;, A, h, e
/m‘ "l hl ]m
L —p, —p, 0O
9. q.

The charactenistic equation corresponding to (4 5 )i given 30 Ly

sdet sl 1)) ru,’ ad {+] 11, ] 4, - o

which can be simphified ta yvirly

) h’i' h'v
' . \.‘A‘o ,\’ e e ()
q. q,

Froom 0452000 x cdear that we 0 0ot bave ene gl freedd g, t.

cigenvalizes arbitrany by e 0o anb p 0 minee Y coa et o s

(4% 1a)

(4% 1Ly

(4%

arrigh ali thitee

w oinlepen
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dent of p, and p; . However, there is additional freedom available in the choice of
)\,,' and )\p', but this makes the problem nonlinear since P2, and ps depend on
Ay, and X\, via (44.7). Since II; , P; and Q; are 2)X2 matrices, it is not difficult to

obtain explicit expressions relating )\,,' » A, and the elements of P; and Q; (as we will

P

show below). From these expressions and (4.5.2), it is possible to choose values for the
elements of @); which will ensure that the roots of (4.5.2) are at or near desired locations
in the left-halfl of the complex plane. This, in turn, will ensure that

2,,(t) and fp, (t) — O sufficiently fast or in some desired manner.

Remark:

It should be noted that in obtaining an expression for fc‘(t ), we have assumed
that f,(t) is slowly time-varying in comparison with [ m,(t) . The validity of this
assumption can be ensured by choosing qo.(> 0) sufficiently small which will tend to

increase the magnitude of jm,(t ).

Since the 2 X2 symmetric matrix P,‘ is required to be positive-definite, the element
P 3, should be positive. Also from (4.5.2), it is necessary that po, > O for stability. we
now show how P, > 0 and P, > 0 can be selected. In the proposed algorithm, it is
required that the closed-loop poles be placed at desired locations in the left-half of the
complex plane. This can be achieved by tequiring that the closed-loop characteristic
equation (4.5.2) has a desired set of coefficients. Assume that the desired characteristic

equation is given by

s%+a, s°+a, s +a; =0 (4.5.3)
By equating the coeflicients of like powers of s in (4.5.2) and (4.5.3), we get a; = )\v'.
which can be chosen equal to 2¢;w,: also, we can choose Xp' = w?. Here, ¢, and W,

are the damping factor and undamped natural frequency, respectively (see Eq.(4.3 9)).

Also we have



A2

h,? h,?
ay = A, + Py, and a, = ——p, (45 4)
9o, o,

from which we get expressions for p, and p, as

l aq, AP' l 9o, a.,, 9.,
Py = and p, = - (455)
h,? ' h,?
The solution of Lyapunov equation (44 7) with Q, == d1ag (¢ 1, 92, ). given
91, | 92, 94,
Py = anc Py, = ——t—— (4 90)
A, LS Y
by using the values of p o, and p a, (4 55), we get
91, @3, 9o, | (a2 %) 9o, 93, '
= . afic - == 4 (457)
>‘P. h'2 h"2 ‘\u, '\p,'\'
from which we can get the expressions for g and @, as
asy, >‘P. 0, 9o,
9, = — and q,_..::—"-[la‘. Ao oM a‘] (4% N)
h,* h,? ' ' '

Therefore, we can see that to have a posiive-definite diagonal Q, mateisy  we must

select the desired locstions for the closed-loop poles sych that

1,
a, >0 and a, >\ T (454)
L

Remark:

It can be shown that the above resylte Jegd to a pesitive definite solytion of

Lyapunov equation Ly (44 7) can be written an

PP TR 0N PyoP 29, 0
P, Py ’\‘;, ’\', ! ‘\| p., oMo 0 tLy

Thie gives

N
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-2 p2| k?l = -2q 1,
Py, = Pg, Xy, —Pa Xy =0
2p 21—2p3l )\v' == —2q2l
The solution of these equations is
gy, 9, 9o,
p, = + A, + Ay, (4.5.103)
)\,,‘ >‘p. v )‘v. 4
q4,
Py = — (4.5.10b)
1 Xp'
——q 2 A (4.5.10¢)
P3 = .5.10¢
>\,,‘ )‘p.>‘v.

Ir 9, and ¢4, are positive, then for P,- to be a positive-definite matrix, the eigenvalues

of P; should be positive. The characteristic equation for P; is
62— (p1,+P3) s +(p 1, pa,—Ps) =0 (4.5.11)

The eigenvalues of P,' are positive, if and only if

(p,,+pP3)>0 and  (p, p3-Py°) >0 (4.5.12)
Using (4.5.10) we get
A A ]
1 1 v, 1 1
— r— . G e 4.5.13
P, +p3=9,, )\v' + )\p‘)\v. +)\p' +qq o, r>‘u, J ( )

and

91,92, 91.2 91,92, ‘12.2>‘P.
+

= + +
sz kmxmz Xm X%

P1,P3 —Po, (4.5.14)

Since, )\p', )\,,‘ > 0 and from (4.5.8) and (4.5.0) we ensure that ¢, and g, > 0.
Therefore, it can be seen that conditions (4.5.12) are satisfled and P; is a positive

definite matrix. Also, p, , p, and pg > O.

4.6 IDENTIFICATION TECHNIQUE

In order to estimate the model parameters on-line, a recursive least-squares param-

R e et o
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eter identification technique is used [28,20]. The autoregressive identification model Is
assumed to have the same number of inputs and outputs and the paramcters of the
model are assumed to be slowly time-varying but that the speed of variation Ia slower
than the adaptation speed. This is illustrated in our simulation results The same
assumption have been made in [25]. In order to simplify the identification scheme it in
assumed that the measurements noise is negligible. Also, all the states of the manipula-

tor are assumed to be measurable.

The model can be written in the general form

y(t+at)=g{t+at]t)+ e (1 +a1) (4061)

gi+at|ty=wvT(t)e() (4162)

where €, is the prediction error vector and y represents the output vector. This model
is used to identify the diagonal matrices Al ' AQ and I in (124) The vector

6(1)E IR ™ contains the m parameters to be identified and is written as
. T
e(t) = [a, g by by hy L hy ey ey ] (103)
or
. . . T
oty = [, 6]
where ¢, is the residual error coeflicient. The vector Y1) containg the measurements
upto time ¢ and can he written as
wl(t)= [0T(t 1y 0T 1y T 1y e x)] (16 1)
where e, is the residual error vector given by
e, (t+Al)=y(t+al)- ¥7(1)6(1+A1) (16 15)

The algorithm for parameter estimation as structuted so that one vector at a tme s

estimated (for each joint) The algonithm pinimzes o Joss function of the form

I'( y ¢ ()
)= 3 ' (106)
n(—Jx‘ v+ v (o) Moy wim
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The solution for the least-squares criterion, i.e. minimization of I'({) relative to the
estimated parameters, uses the recursive parameter estimation scheme (Fig. 3.2) given in
Chapter 3 [29]:

S(t+At)=6(t) + L(t) [y(t+At)— T (t)é(t )] (4.6.7)

where L (t+At)= P(t+At) ¥(t+At) is the correcting factor. The term

P(t +At) is the adaptation gain given by

Pyt +at)oT (t+at)P(t) } 58)

Pit+at) =2 |pt) -
(t+al) v[ ) v+ Tt +ATIP(t)(t+AtL)

where V is the forgetting facter with O0<v<<1l and P(t) is a block diagonal
positive-definite matrix, each diagonal block is a 4 X4 matrix represents one joint. The

initial value, P(O), is chosen as P(O) = ol , o is a large positive scalar.

4.7 COMPUTATIONAL COMPLEXITY OF THE ADAPTIVE
CONTROLLER

For the independent joint control scheme proposed in this chapter, an operational
count shows that the computation of the joint torques requires approximately

2n24+9n multiplications and 2n? + 11n additions

and the identification scheme requires approximately

76 n multiplications and 60 n additions

resulting in a total of
2n%+85n multiplications and 2n? + 71n additions

for the adaptive controller. For a 6 degrees-of-freedom manipulator, this gives 582 mul-
tiplications and 498 additions. For full joint interaction, the same adaptive control
scheme would require approximately 2565 multiplications and 2455 additions for a 6
degrees-of-freedom manipulator, which would result in a significantly lower servo rate

than when independent joint control is used.
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4.8 NUMERICAL SIMULATION

To illustrate the application of the proposed adaptive control scheme, we consider
an example of the control of a two-link planar manipulator in a vertical plane as shown
in the Fig. 4.2. The closed-form dynamic equations for the manipulator are given in [5].
The following parameters are assumed for the links [22]: For the first link,
mass=15.91kg, length = 0.432m, and for the second link, mass=11.36kg,

length==0.432m. The reference trajectory given in [22], i.e.,

0, = 7.8539 exp (-t ) - 9.4248 erp (-t /1.2) (4.8.1)

0, = 1.57 + 7.8539 erp (-l ) - 9.4248 exp (-1 /1.2) (4.8.2)

was generated to move the joints from their initial values of (—m/2, 0.0) radians at rest,

to the final position of (0.0, 7/2) radians at rest.

The simulation was performed on a VAX 11/780 computer with an inner loop sam-
pling rate of 500Hz. The controller gains were updated every 0.1s. The initial values of
the controller gains were chosen to be K, = diag(10,10) and K, = diag(8,8). The
desired performance of the tracking error was specified by a natural frequency (w;)of 4

rad/sec and a damping ratio (¢, ) of 1 .

To illustrate the applicability of the proposed adaptive control given in this
chapter, the control law (13.15) was first applied without feedback control. Figures
{-4.3a-b) show the open-loop response of joint 1 and 2. From these figures it is seen that
the system is unstable. Then the control law (4.3 15) was applied without the tern,
S (t). The response of the system is shown in Figs. (4 4a-b) and it shows that the
response is improved, but still unstable. Now, the control law (4 3 15) was applied with
J . (t) obtained from (4.4.15), with Q ==ql in the Lyapunov equation (4.4.7) and
P2 .+ Pa, given by (13.6) The value of ¢ was varied from 2500 to 35000. The systen;
response is as shown in Figs (15a-b) for several values of ¢ and indicate that the sys-

tem response hecomes stabile From these figures it is clear that the system response is
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greatly affected by the choice of @ . However, a value of @ which gives good tracking
response is not easy to obtain and may not ensure stability in the presence of unmodeled
disturbances or parameters variations. A trial and error approach has been used in
[38,43] to select a suitable value for @ . A better way of chousing Q has been given in

the proposed algorithm presented in this chapter.

To illustrate this approach, the control law (4.3.15) was used where f,(!) was
given by (4.4.15) with p, and p5 given by (4.5.5) with w; =4, ¢;=1, )‘p.=m and
)\u‘ ==8. The coeflicients a, and a5 of the desired closed-loop characteristic equation
(4.5.4) were then selected to satisfy the inequalities (4.5.9), while ensuring that the roots
lie at or close to desired locations in the left-half of the complex plane. The values
a,,==269500 , a3 =132120 and @,=1360300, a3=0640000 were obtained. These
values ensured that ¢, and ¢, are positive and were used to compute p, and p5 in
(4.5.5) which were then updated on-line in terms of the identified parameter h,-. Figures
(4.6a-b) show the behavior of f,, (¢) i.e. the mismatch between f, and f,. The sys-
tem response using the proposed control law is given in Figs. (4.7a-b) and can be seen to
be significantly better than the corresponding responses in Fig. (4.5a-b). The estimated
values of the diagonal entries of the matrix H are shown in Figs. (4.8a-b) and indicate
that the assumption that the manipulator parameters are slowly time-varying is
justified. The variations of the gains (k, , k, ) are shown in Figs. (4.92-b) and Figs.
(4.10a-b) .

In order to examine the adaptability of the control system, it was assumed that the
payload changes suddenly at { =2 second, such that the effective mass of the second
link is changed from 11.36kg to 15kg. With this change the adaptive controller still gives
good performance. Figures (4.11a-b) show the response of the joint angles under this
situation and it is seen that good tracking of the reference trajectory is achieved in spite
of the change in the payload. The small oscillations in the responses result from the step

change in the payload.
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From the results of Section 4.8, it is evident that the application of the method
given in this chapter results in a stable system and gives good tracking performance in
the presence of unmodeled dynamics and payload variations. However, it should be
noted that the accuracy of the method depends on the selections of the desired closed-

loop characteristic polynomial.
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Flg.(4.2) Two link planar manipulator in vertical plane
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CHAPTER FIVE

A BOUNDED PERTURBATION APPROACH FOR
ROBUSTNESS OF THE ADAPTIVE CONTROLLER

5.1 INTRODUCTION

Stability analysis using Lyapunov’s stability theorem requires the selection of
positive-definite weighting matrices and scalar parameters. This selection is still an issue.
It is important because it determines how fast e ({) — O as { — 0o and the way in
which it does so. In the previous work in adaptive and robust control which used
Lyapunov stability theorem, these matrices were selected arbitrarily by the designer
(7,21,23,25,32,33,40,45,46,47] or by a trial and error approach [22,43]. Almost always,
this selection affects the robustness of the adaptive controller. Arbitrary selection may
not result in fast convergence or may result in oscillatory response. The trial and error
approach is time consuming and becomes difficult as the manipulator complexity

increases.

The vector f,(t) introduced in the previous chapter represents slowly time-
varying unmodeled dynamics, which arise from ignoring the off-diagonal terms in the
model matrices and parameter variations, payload changes and environmental distur-
bances. In Chapter 4 a control function f.(¢) was designed to approximate [, ().
Then, a method based on the assignment of the coefficients of a cubic characteristic

polynomial was developed.

In this chapter, a new technique is developed to compute the term f, () so as to
achieve robust control i.e. to maintain trajectory tracking in the presence of a class of
parameter uncertainties and payload variations. A simple iterative technique is used to

select the control parameters on-line to ensure that the mismatch fm (¢) is bounded for

e
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all ¢ of interest. This chapter contains four sections: In Section 2, the design of the
robust controller is given. Section 3 discusses the method of obtaining the control
parameters on-line. To show the capability of the proposed robust adaptive controller,
an application to a two-link planar robot manipulator in the vertical plane is considered

in Section 4.

5.2 ROBUST CONTROLLER DESIGN

In Chapter 4, we obtained the dynamics of the actual closed-loop system as
2, =M, z, +B; [ i =1,..,n (5.2.1)

where [, = f, - [, . We have assumed that j;a'% O, but this is not necessarily
true in reality. There will always exist an error f, (¢). It is therefore important to
keep the magnitude of fm,(t) as small as possible to maintain stability of the overall
closed-loop system. Since (from (4.4.10)) the value of f,, (¢) is affected by the matrix
P;, we can use the positive-definite matrix @; in (4.4.7) to ensure (if possible) that the
magnitude of /,,,.(t ) remains small. This choice is important because it determines how
2, (£) — 0. Therefore our aim is to choose a positive-definite matrix @; such that the
nonlinear term f,, (£) in (5.2.1) is bounded.

The unmodeled dynamics in the closed-loop system (5.2.1) are bounded and kept

below a specified level if the nonlinear term f,, (¢ ) is bounded as

118 f
<
EAE
Since || B;|| = h; and [, () is a scalar, we can write the above inequality as
ht‘l fm.l " (5.2.2)
Nzl =

where u, is some (small) tolerance which can be specified in a number of ways to ensure

that (5.2.1) remains asymptotically stable, eg. see [37,41]. If the result of [37] is used,




_ min >‘(Qt)
Bi = max MP;)

(5.2.3)

where, P; and @, are positive-definite matrices satisfying (4.4.7). Such a choice of Q)
will ensure that the effect of unmodeled dynamics is kept below a specified level in the

closed-loop system. To see this let us choose Q,- as:

@, O
Q,‘ == o Qz‘

Then in (4.4.7), different choices of Qll and le will generate different solutions for
P;. To take advantage of the decoupled nature of the problem that arises from using

independent joint control and thereby simplify computations, we choose:
Q) =¢; NN, and @, = (s;-0;) X, )\, s > ¢; > 0 (5.24)
Then the solution of the Lyapunov equation (4.4.7) for P; is given by

9i>‘p.)‘v.2 + s >‘p.2 gi Ap, Ay,

Pi= 9i M Ay, 8i Ay,

Therefore using (4.4.14), we obtain the function [, (¢) from

. h; )
[ (t)= -q-'— [ Gidp Ny, g+ Sy, ea‘] (5.2.5)
0y
ie.
h; t
Je(8)=Jo(to) + — gidg Ny, Jeg, (L)dt + 5;%, € (5.2.8)
0, t,

where f. (t,) denotes the initial value of J¢(t). 1t should be noted that S ()
depends on the choice of the matrix Q;, i.e. on the selection of g; and s;. Therefore,

this selection will also affect the value of fm‘(t ).
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Applying the control law (4.3.15) (in the decoupled form with f,(¢) given by

(5.2.8)) to the manipulator whose dynamics are given by (4.3.14) yields the closed-loop

error equation

£yt [az' + h,-k,,.]éa.+ [al' + h,-kp']ea' = h; [ja'(t)— fc'(t)] = h; [ ()

which can be written as
hi [, (8) =€, + X, €, + X, €, 1 =1,0.,00 (5.2.7)

The value of h; fm'(t ) which represents the mismatch in the closed-loop system due to

the unmodeled dynamics can be determined from (5.2.7) if the position, velocity and

acceleration errors €, , €, and €, are known. We wish to find values of N, and X,

in terms of the two independent parameters g; and s; such that / m, is bounded as

Hi
[/ () < - [12,]] (5.2.8)

where, z, == [ea' éal]T =0 oy » 0 << 1 and Yy pay is the largest value
of p; in (5.2.2) such that the closed-loop system is asymptotically statle. The inequal-
ity (5.2.8) is satisfied by appropriate choices of ¢g; and §; . For example, we can let
@,,=@Q,, and get

8; —9;

9i

A, =

9, 1=1,..,N (5.2.9)

Choosing the damping factor ¢; =1, we have )\m = 2,/)\,,' , and hence (5.2.7) can be

written as

5i =i

95 )

hi fn (1) =€, +2 (5.2.10)

From (5.2.10), ¢; and s; can be determine on-line such that f, (¢) is bounded and
satisfies (5.2.8). These values of §; and ¢; are then used to update the robust control

term f . (¢) which can be written as
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T T T A a4 . o D R e

83
3
: hl' (8" -9 ) 2 5 (8,‘ —¢y ) .
t) = 2 + — (5.2.11
fc.( ) qo. \/3'- €, g, €s, )

5.3 EVALUATION OF [, (t;,,)

In this section we will show how s, and g¢; can be determined to satisfy (5.2.8). In
the following analysis, for the sake of notational ciearity, we will drop the index 1 since
the same analysis is applied to all the links, and we will denote the time instant

t, and { ;| by the arguments 7 and j +1, respectively.

At the sampling time {,, the errors €, (j) , €,(J) and €, (j ) are measured, and
according to these measurement, a new model A'IJ is identified. Also at this sampling
instont (7)) is computed using €,(7), €,(J) . €,(7) and (7)., g(J). The
parameters 5§ () and g (7 ) are computed during the preceding time jnterval Aty y.
The feedback gans lcp . /:,, are updated in terms of the identified parameters

a,,a,and h

In order to move the system from postion 0(7 ) to a new position #(7 +1), a new
control input 77 4+1) needs to be computed during the interval Aty in terms of the

measurements at £, The control input (7 +1) can be represented as

)+1) =71,(3+1)+ [.(7+41) (5.31)

where 7, (7 +1) is given by
T, (7 +1)=h"" [bd(J +1)+a,04(7 +1)4a, ()d(j+1)] +hoeg(J)Hk, e (7)) (5.32)

As shown 1 (532), 7, {7 +1) can be computed in terms <f the refz:»nce trajectory, the
identified parameters and the measured errors at tJ . The term [ (7 +1) can be found

from (52 11) by integration. If Euler integration Is used, we get

Je(g+1) = [.(3)+ a4, [ (3+1)

|

v

(s (741) 93 +1))

= [.(J)+2Aal =
Jelr2al, V(5 +1)

e, (1)
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var, 200G 409 41))
g(j+1)

e (7) (5.33)

In (5.3.3) the term [ (j) is computed during the interval At ,_; and the errors
€, (7) and e, (7 ) are measured at t;. Then f.(j+1)can be changed by choosing the
parameters s(j +1) and ¢g(J +1) during the interval At;. By adding (5.3.2) and
(5.3.3), we get the total torque input at tJJ,1 :

(j+1) = h™ [0¢(1'+1)+a20d(j+1)+a194(J'+1>]+k‘ e, (J)+k, e,(J)

3
(s(j+1)>9j+1)} 2 e. (/)

y 2Af, ————
+/.0) +2a¢ TEESY
sGG+D(s(+1)-g(G+1)) . .
+ At Y €, (2) (5.3.4)

By applying the control input 7(J +1) to the manipulator at t, .. we get the following

error equatijon’

: g o s(y+1)-g (J+1)
h fo()+1) = ca(]+1)+.\/ TG +1) €, () +1)

e, (J+1) (535)

s(j+1)-g(7+1)
g(j+1)

Our aim is to determine suitable values for s (j +1) and ¢ (7 +1) such that f, (7 +1)
is bounded and satisfies (5.2.8). In order to compute f,, (j+1) during the interval Af ).
we replace €,(J+1), €,(J+1). €, (J+1) by their predicted values €, . €, . &,
using the identified model .\A!) . Now, to find the values of the predicted errors in terms
of the previous measurements at tj, we apply the torque input (5 3 4) to the model ‘\‘I)

and get
fj+1)=-a, 6(j)-ay 8(j)+ h7(j+1) (5.3.6)
The error between the desired input and the output of .\'IJ is

64 (7 +1) = 4 (j+1) - () +1) (537)
=0,(j+1)+a,0(j)+a,8(y)-hj+1)
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By substituting for 7(7 +1) from (5.3.4), we get
e (J+1) = a,0(7)+a,8(1)~a 0, (5 +1)a 84 (j+1)-hk,eq(5)

3
. _ . 2
bk, ey (7)-hf (5 2 at, 12U f/’g)(jfl;“”) eai)

s+ s +1)-g (G +1)) ¢, (j) (5.3.8)

-h At :
g(J+1)

04(7) - €,(7) and 6(j) = 0,(j)~ €,(j) Then (5.3.8)

We can wnte 8(7)

hecomes
6 ()+1) =a, [o,,m 0,04 + ag[(’)m) m;m]
r 3
(s(+1) ga+1)) ® -
a, + hk, + 2h At DA ¢
1 F J \f(J(]'f-l) a(])
aybhk, +h AL s OGN a0 ), () ar (G)sa)
I glj+1)

Denoting
a, [ﬂd(J)w 0d(1+1)] + a, [(JdU) 04‘]'“)] - hf ()= ®()+1)

3

(s(141) g +1)) 2
a, + hk, + 20 At : = (] +1) (53 10)
: F g Vo (+1) i ’
_ sO+Ds+y g+ |
{ag+in(t +h At 711 = (7 +1)

we can write (53 9) as
(5311)

€ (1+1)=®(1+1) + (7 +1) e, (1) + () +1) €, (1)

Using Euler integration. we can find é,(7+1) and ¢, () +1) as
(5312)

€, (J+D)=e, (1 )+ 21, (1 +1)+01, (1 +1)e, (7 )+AL, () +1)e, (1)

and
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. 3 . . .
é, (7 +1) =+ At o(54+1) + [1+-2—At,-2 (7 +1)] e, (7) (5.3.13)
3 . . .
+ [Atj+-2-m,'-’ Yo 3 +1)] e, (7)

From this, we can see that 'é'a , éa , €, are functions of [g(7+1). s(j+1)
€, (7)), €, (J)] within the interval At; . Since e, (j) and e, (J) are assumed to be
constant during this interval, &, (7 +1) , €, (7 +1) and €, (7 +1) change when 5 (j +1)
and ¢ (J +1) are changed. We now replace the actual error values in (5.3.5) by the
predicted ones to get the predicted value of the mismatch fm () +1):

f N s(J+)-g(J+1) 5
hfm(+1)= éa(1+1)+2\/ TG+ e, (J+1)

€, (7 +1) (5.3 14)

s(j+1)-9(7+1)
g(j+1)

To ensure that @, and Q, are positive-definite matrices, we need to have

0 < g < § . Therefore, we define
s =0t 4+ & and g =o

Then using (5.3.11), (5.3.12) and (5 3.13), f,,, (7 +1)is given by

JETRRSEEN

P 6(7 3 8() .
h [ (J41) = [1+2At,;((—i—%+;f-‘-‘f;;%§%}¢u +1)  (5315)

2 At B gt Ak 2o

26(7 +1) [ Kj+1) 3 ,.,2860+1) l . BG+1) |, .
—_— | 142A, ———— i — Al —— \ Al —— e
[0(1 +1) To(741) 27 7 0% +1) T A+, o j+1) € (1)

Flitn) [ §j+1) 8 ., 280 +1) . ,’
+ + QAI ——ers - At - , :
L?(J'H) L oGtz 20 o) 11) ,7,(1 +1) le, (1)

As shown above, f,,,(j+1) is a function of the previous measurements
e, (7)and e (5), 8(7+1) and o(j+1). It should be noted that ~,(j+1) and
~o(7 +1) are also functions of §j +1) and o(j +1). The term [ (J+1) can be
changed during the interval Af; by changing the values of &j+1)and o(j+1).

Accordingly we can use an jterative technique to obtain the best values for

mm»n\mrqnmw,n .. Ce e e Y TR P P
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&j +1) and o(J +1) which make S, (j+1) bounded and satisfy (5.2.8). These values
are then used to compute s(j+1)and ¢g(7+1) and update the control term

S (G+1).

5.4 NUMERICAL SIMULATION

To illustrate the application of the proposed robust adaptive control scheme, we
consider the example of the control of a two-link planar manipulater in a vertical plane

that was considered in Chapter 4 The reference trajectory is given {22] by

0, = 7.8530erp (1) 9A248erp (/1.2

0, = 1.57+7.85380erp (1) 94248crp( ( /1.2)

and was generated to move the joints from their intial values of ( 7/2, 0.0) radians at

rest, to the final position of (0.0, 7/2) radians at rest

The sunulation was performed on a VAX 11 780 computer with an inner-loop sam-
phing rate of 500H7 The controller gajns were updated every 0 1s The fnitial values of
the controller gains were chosen to be Kﬂ diag(10.10) and K| diag(8.8) The
desired performance of the traching error was specifled by a natural frequency (W, ) of 4

rad sec and a damping ratio (¢, ) of )

To lustrate the approach given tn this ehapter, we used the control Jaw (13 15}
with /,‘(! ) given by (5210) For wy=1, ¢ =1 and using (52 3), ¢, _ wax cideulated
to be 03807 Figures (5 ta-b) <how the heliavior of /,,,'(f }re the mismatch between
/f. and /a, The sywtem response using the proposed control law s given in Figs
{5 2a-L) It can be scen that the system s stable and the response o significantly better
than the corresponding responses i Figs (4 %a-b) and Figs (4 Tu-b) The estimated
values of the dingons]l entties of the mates H (assumed diagonal) are shown o Figs
(5 3a-h) and andicate that the assumption that the mampulator parameters are slowlh

ume-varving s justiffed The vialuyes of Q are selected an-line so that the corresponding

O T e I PO L e . . FRREAY

v
o e —q"]




bounds i, change with time. The variations of the bounds u; are shown in Fig. (5.4).

The variations ot the gains (kp' » k,,) are shown in Figs. (5.5a-b). In order to examine

the adaptibility and robustness of the control system. we assumed that the payload
changes suddenly at ¢ ==4 second, such that the mass of the second link is changed from
11.36kg to 18.36kg . With this variation the adaptive controller still gives good perfor-
mance. Figures (5.6a-b) show the response of the joint angles under this situation. It is

seen that good tracking of the reference trajectory is achieved in spite of the change in

the payload. The system response converged to the desired one within about 1 second
of the payload change being applied. This illustrates that the robust controller designed

in this chapter is able to compensate effectively against sudden variation in the payload
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CHAP™ER SIX

CARTESIAN CONTROL OF ROBOT MANIPULATORS

In this chapter we will extend the adaptive control algorithm developed in
Chapters 4 and 5 so that it can be applied in controlling the end-effector of the manipu-
lator. We will first introduce a new coordinate system, the Cartesian coordinate system,
and define the transformations necessary to transfer the system dynamic equations from
joint coordinates to the end-effector coordinates by determining the forces acting on the
end-effector. In the first section we discuss the basic principles of Cartesian control. In
Sections 2-5 the algorithm described in Chapter 4 is modified for Cartesian control. An

illustrative example is given in Section 6 to show the applicability of the algorithm.

6.1 INTRODUCTION

The motion of the end-effector of a robot manipulator is affected by the nonlineari-
ties in the dynamics, unknown load vatiations, physical nonlinearities such as friction,
backlash and unknown or unmodeled parameter variations and other disturbances. It is
therefore necessary to focus on the design of robust controllers for robot manipulators so

as to ensure that the end-effector tracks a given trajectory in Cartesian space.

Manipulator control is usually performed in joint space since the manipulator
dynamics are described in terms of joint variables. So the desired trajectory in Cartesian
space must be transformed using inverse kinematic relations to obtain the required joint
trajectories [27,48,51]. The trajectory conversion process is quite difficult in terms of
computational complexity since it requires the use of the inverse of the Jacobian as well
as its derivatives (as deflned in Chapter 2). Furthermore, such transformations are not
possible near singular points, and also they are not in general unique unless some con-
straints are imposed. The inverse kinematics computations are usually performed many

times during the motion of a manipulator thus making this type of control scheme very
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complicated.

In order to control the motion of the end-effector in Cartesian spac'e, it is necessary
to get measurements of the end-effector motion using some form of sensing such as
vision. This information can also be obtained by measuring the joint variables using
encoders, and then solving the forward (direct) kinematic to get the Cartesian coordi-
nate varjables. This is a very much simpler problem than the inverse kinematics prob-
lem and gives a unique solution. In this case the desired reference trajectory can be writ-

ten in Cartesian space.

In this chapter we consider such an approach and propose an adaptive control algo-
rithm that uses least squares identification to obtain a piecewise linear Cartesian space
models in differential equation form, based on which, feedforward and feedback controll-
ers are determined to generate control commands to enable a robot manipulator to
achieve trajectory tracking in Cartesian space. The adaptation scheme uses on-line
identification of the diagonal terms of the unknown coefficient matrices of the piecewise
linear time-invariant models which have the same inputs and outputs as the manipula-
tor Cartesian dynamics model and similar dynamical structure. The feedforward con-
troller is updated on-line according to the identifited parameters of the model. Also a
proportional-derivative feedback term which is obtained in terms of the identified
parameters is used to ensure stability and yield good tracking performance. The algo-
rithm takes into account the effects of unmodeled dynamics by adding an extra term to
the controller to compensate for the eflects of coupling hetween the subsystems and

otuer unmodeled dynamics such as friction, backlash and payload varjations.

The adaptive control scheme described in this chapter has a simple structure, is
computationally fast and feasible for on-line implementation The adaptive controller
does notv require knowledge of the physical parameters of the robot or of the payload.
The adaptive scheme does not use local linearization, inverse dynamics, or hnowledge of

any nonlinear terms in the feedforward or feedback paths. The algorithm allows for the
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effect of unmodeled dynamics and ensures stability of the system and asymptotic con-

vergence of tracking errors.

6.2 CARTESIAN STATE SPACE MODEL OF MANIPULATOR
DYNAMICS

As defined in Chapter 4, the manipulator dynamic equation can be written as
T=M()8+B(0,8)86+ C(®#) 0 (6.2.1)

It should be noted that the above formulation relates the joint variables, 8, é, 0 to the
joint torques 7, i.e. it is a joint-space formulation. Cartesian space dynamic equations
which relate the acceleration of the end-effector expressed in Cartesian space, to the
Cartesian forces and moments acting at the end-effector can be obtained using the mani-
pulator Jacobian [5,54]. The manipulator dynamics in Cartesian space can be
represented by the block diagram shown in Fig. (6.1). The Jacobian J () is defined by
the relationships:

i =J@) 0 (6.2.2a)

r=JT(0)F (6.2.2b)

where,
F is the N X 1 force-torque vector acting on the end-effector
T is the /N X1 position and orientation vector of the end-effector

Using (6.2.2), we can write (6.2.1) as:

F=M@®Z+B(0,006+C,0)0 (6.2.3)
where,
M, (0) = J-T(8) M(6) J-1(6) (8.2.4a)
B, (6,8) = J-T(6) (B©8.0) - M(6) J70) J(6)) (6.2.4b)
C,0) = JT6) C©) (6.2.4¢)

Note that the Jacobian J(f) is in the same frame as F' and z. By using the kinematic

equations [1,52]

[ TR N
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z = KIN(9) (6.2.52)

z =J(0) 0 (6.2.5b)
F=J@O) 8+ J®) 8 (6.2.5¢)

M, , B,, C, can be expressed as functions of £,  and ¥ . i.e. (6.2.3) can be written as
F=M(z)z +B,(z,z2)z +C,(z)z (6.2.8)

Equation (6.2.8) relates the motion of the end-effector to the forces acting on it. Eq.

(6.2.6) can be rewritten in state-space form as

: o I 0
X = A, -A, X + H, F=% X+0Q, F (6.2.7)

I
where, X € IR 2N X1 — 1 F EIRNXI, o, € R 2V X2N gnq Q, GIR"’NXN

and A ,=M,'C,, A,=M,'B, and H,=M,' and N < 8 is the number of

degrees of freedom in the Cartesian space.

: The matrices ¢, and 2, are constant matrices at a given value of time, and are
to be identified. If the matrix H, has full rank for all values of time, it follows from the

structure of (6.2.7) that the linear model is controllable and therefore stabilizable by

state feedback. Assuming that the matrices M, , B, , C, are slowly time-varying, we

can approximate the nonlinear, time-varying model (6.2.7) by a number of piecewise
linear, time-invariant models having the same structure as (6.2.7) but with constant
matrices ¢, and 1, . We divide the total trajectory time into a number of intervals,
say r, of duration Aly ., k==1,...,r and over the interval Af; , the time-varying system
(6.2.7) is approximated by a linear time-invariant system

. 0 I 0
X =

-A l(lkﬂ) _AQ('k—l) X + l’:('k-|) F (0’28)

where, 4, _; is the starting time of the interval Al . Using recursive identification, the
parameters of (6.2.8) are to be estimated on-line  As the end-effector moves along the

trajectory, for each At, , we have a particular model of the system This set of models
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represents the dynamic behavior of the end-effector of the manipulator. A feedforward-

feedback controller is then designed for each linear time-invariant model.

6.3 THE ADAPTIVE CONTROL LAW

We now consider the design of a controller for the manipulator to enable it to
track a desired path. The desired path is described in Cartesian space. The goal of the
controller is to minimize the deviation from the desired path, i.e. to achieve tracking
while maintaining stability of the resulting closed-loop system. The model used in the
controller design is the piecewise time-invariant model (6.2.8). The identification of such
a model requires approximately 4N? parameters as described in Chapter 4. The digital
simulation of the model is very time consuming because of the large number of floating
point operations involved. Therefore, to simplify the construction of the controller, it is
assumed that the coupling terms representing the interactions of subsystems can be
neglected. Such a control is called decoupled control. Therefore, for decoupled Cartesian
control, each Cartesian coordinate is considered as a subsystem of the overall system.
Then the model (6.2.8) can be divided into N equations for the N interconnected sub-
systems and it can be written as:

z; o 1 I 0

B el IO 1 S U PO P PR S P (8.3.1)

Dropping the coupling terms will gives rise to errors which will affect the stability and
response of the system. However, we can compensate for these errors to some extent by
considering the terms that are neglected as being part of the unmodeled dynamics and

modifying the control strategy to account for them.

For decoupled control, we choose the control law:
fi=1Z; +6f; + W, (t) (6.3.2)

where, §f € RN*1 s the correcting force vector obtained from a feedback con-
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troller, where f; is the it

element of f, and W, (¢) is generated by a feedforward
controller. The feedback controller is chosen as a multivariable proportional-derivative

(PD) controller defined by

6fi =k, e, +k, €, (6.3.3)
where
€, =Ty = I;
éz. = id. - I

th

are, respectively, the 1 elements of the Cartesian position and velocity error vectors;

and kp., kv. are the diagonal elements of the proportional and derivative diagonal feed-

back gain matrices, K,J and K, € R NxN

Next we will design the feedforward controller for the end-effector by substituting

the control law (6.3.2) into the model (6.3.1). This yields

j'i 0] 1 I 0 . )y

.:l:x' = -a; _bx 3."' + hI. [Id' t 6.[, * ‘VI'A‘
from where

I, =-a, 1, - b 1; + hz,':r.d, + hz.éfi + hz. Wz.

Substituting for z,, 7,, Z, from the error equations and using (8 3.3), we get
€, + [b, +h, ky, ] €, + [a, +hy k, ] e, +h, Wy =124 +b, 14 +a, 74 h, 74
From this equation, it can be scen that if we choose

W, =h,"! [(1 ~h,)1q + b 14 +oa, xy ] (6.31)
then the steady state error will be zero
The feedforward control H', is based on the reference {nput and I8 updated

linearly in terms of the identifled model parameters  The conuol apput to the end.

effector of the mampulator 1s now given by
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[ = Eid. + kv, éz, + kp' €, + hz"'l [(1 - hz,) ::fdl + b; .'I.Jd‘ + a; .’L‘d.] (8.3.5)

Now, let us consider the Cartesian manipulator dynamic equation (6.2.6). The force

input for each degree of freedom of the end-eflector in Cartesian space can be written as

N N N
f P = .Elmz-) 27]' + 21 bzu zj + '21 czu z; 1 =1,...,N (6.3.6)
J= J= J=

For the time being, we will assume that the interconnections between the subsystems
are neglected and we will control each degree of freedom in Cartesian space indepen-
dently. We will consider the interconnection terms as being part of the unmodeled

dynamics later on. Therefore Eq. (6.3.6) becomes
[i =my 2 + b, 3, + ¢, 3 (6.3.7)

Now, by applying the control law (6.3.5) to the end-effector of the manipulator model

(6.3.7), we get
Ty +k, e, +k, e, +h; " [(1—}1,' )Z4 +b; 24 +a; 24 ] =m, 1;+b, T;+c, z; (6.3.8)

From the system model (6.2.8) and (6.2.7), during the time interval Af; , we have

a; =m, "¢, (6.3.92)
i =m, 1b, (6.3.9b)
h,, = m, ! (6.3.9¢)

Using (6.3.9) in (6.3.8) and simplifying, yields
hz'-l [‘:l’:d, - 1',) -+ b" [.‘i’dl - I') + a; [.’L‘d‘ - ] -+ kv‘ éz‘ + kp. Czl =0

From which we obtain the Cartesian error équation

Ez. + [b, + hz‘ kv‘ ] éz, + [a‘- + th kp. ] ez. =0 (6.3.10)
which can be written in state space form as
e 0 1 €z,

Bl =  =1,...,
T o-(aihy k) (bR k) e, =1 N
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which implies that e, , €, —0 as t-—o00 provided that a;-+h,k, >0 and
bi+h, k,, > 0,1=1,...,N. Let

)‘v. bt’ + hz. ku.
=a; +h; k,

&

from which the controller gains can be found as :

kv. = hz‘—l [>‘v. = ba]

kp, = h;,”" [>‘p. - “i]
The matrices A, =diag (A, ) and A,==diag (\, ) are obtained from the desired per-

formance of the tracking error which can be specified in the following state space form

, [ o I
2z, = L_Ap -A, 2y, (6.3.11)

where ¢;,w; are the damping factor and undamped natural frequency and

A, = diag (26;w;) and A, = diag (w?) are N X N matrices.

6.4 COMPENSATION FOR THE EFFECTS OF UNMODELED
DYNAMICS

The error equation (6.3.11) can be written as

2 1=1,....N 641)

where. TI, €IR2’2 and 2z, = le, ¢, |7 € IR*"' . Equation (641) represents
1 ’ 1 ’
the desired closed-loop system. Let f,_ denote the unmodeled dynamies due to cou-

pling between the subsystems and other unmodeled dynamics Then the error equation

(6.3 10) can be written as

G, =1, 5 + [,01) (64 2)
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Equation (8.4.2) represents the behavior of the system without compensation for the

unmodeled dynamics.
Next, we assume that f,. (t) is an unknown slowly time-varying function and we

introduce another term in the feedback law to compensate for its effect.. The manipula-

tor end-effector dynamical model (6.3.7) can be represented in terms of the nominal

0

values of the manipulator end-effector dynamics, m, °, b, °, ¢; °, and a nonlinear

term f,_.‘ (t) which represents coupling terms between the Cartesian subsystems and
13

other unmodeled slowly time-varying dynamics. Then (6.3.7) can be rewritten as
fl' = IZ.'(t) + mz..o ml + b:c,,o if + Cz, o Ii (6.4.3)

In order to compensate for the effects of these unmodeled dynamics, a control function

f,‘ (t) is added to the control law (£.3.5). Then the total force input for each subsystem

of the manipulator end-effector becomes
f ‘ =..Z:d' +kv| éI.'+kp. Cz.‘+hz' = [(I—hz. )ﬁ.l:d' +b' .'i'd' +a; Iy ] +f z"(t ) (6.4.4)

The above control computes a Cartesian force vector which should be applied to the
end-effector. However, we cannot actually apply this force to the end-effector directly.
Instead, we compute the joint torques needed to effectively apply this force by using the

Jacobian, i.e.,
r=JT(0)F

So that the input torque for each joint of the manipulator is

N
= J70) /; i =1,..,n (6.4.5)

J=1

The control scheme (6.4.4) developed in this section is simple to construct and does
not require the inclusion of any nonlinear terms, or complex dynamics of the manipula-

tor. The terms hz', a, and b; are obtained using recursive identification. The conver-

gence of the adaptive controller is independent of the initial values of a;, b; hz. and
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6.5 ROBUST CONTROL AND STABILITY ANALYSIS

By applying the control law (6.4.4) to the manipulator end-effector (8.4.3), we get
f,“(t )+k, é,_..'+kp' e,.'+h,_,."1 (%4 +b; 34 +0;24) =fz‘l(t y+m, °Z;+b, ° i+, ° %
Assuming that mg e bz" o, ¢y, ° satisfy (6.3.9), we obtain the following error equation

G, + [b,- +hy k, ] by, + [a,- thy by, ] s, = by [ IRORYM( )] (8.5.1)

which can be written in state space form as
. 0o 1 €, 0
'e'z. - _xpl ‘>‘u' éz‘ + hz. (fz.l"/zg.)

B.'za| = nz‘ 22" + ﬂz| /zml (652)

0
i

and f, = f, - f, ., ie [, = [, + [; ,where [, denotes the error in the

or

where

approximation of the actual unmodeled dynamics by the computed value of /,' .
]

Let f, be given by

1, == h'B, Tp, 4, (6:3)
where
Py, P
o=
! Va, Py

is a positive-definite solution of the Lyapunov equation
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n, TP; + P11, = -2Q, (6.5.4)

where, Q; is a positive-definite matrix. Equation (6.5.3) and Eq.(6.5.2) together give rise
to the following augmented system

/;zm‘ = ~h,, —lﬂz' TP,- 0 fzm' t=1,..,N (6.5.5)

z:,l Hz, ﬂz 2z,

Theorem 6.1

The closed-loop system (6.5.2) with f,m satisfying (6.5.3), is asymptotically stable.

Proof

Let us choose a Lyapunov function

Vity=2, TPiz, +4q,/,° (6.5.6)
where, ¢, > 0. Taking derivatives of both sides of (6.5.6), we get
V; = -2z,“T Q; %, + 2 [ 9, fr.,._fz.,., + f,m‘ﬂ,‘ T p, Z, ] (6.5.7)

For stability, it is required that V, (t) < 0 along the trajectory z, (t). This can be

satisfled by using (6.5.3). Then (6.5.7) becomes
Vi (t )___:_22,:"7‘ Qx’ z:.| + 2]1:,,.‘ [6:. TP:' Z,_."- 9, hz,_lﬁz, TPI' zz.'] (6.5.8)
Since gy, is any positive number, let us choose g, =hz'. This yields
V,(t y=-22, T ¢, 2,
i.e.
Vit) <o
Since 1",- is negative semi-definite and V; is positive-definite, then the origin of (6.5.5) is

stable. As in Theorem 4.1 (Chapter 4), by invoking La Salle’s Theorem, it can be shown

that the system (6.5.5) is asymptoticaly stable, i.e. zz‘(t) —+ 0 as t — 0. This
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completes the proof of the theorem.

Remark 1
Since, f,. is slowly time-varying, fz. /0, then fz,.. = —fz‘ and Eq. (6.5.3)

becomes

jz,' = hz,-lﬂz, T P; “"’z:,l

or

Py, Pa | |%=,
=h,"! [0 K
fl't' I, [ zy ] p2‘ pa‘ ex‘
resulting in,
fz, (t)= Po, ez.' + Pa, éz‘ (6.5.9)
Equation (6.5.0) can be solved for f, () as
t
[ (=1, )+ po e, dt+p, e, (6.5.10)
) 1 t‘ ) [}

where [, (f,)denotes the initial value of [, (t).

Remark 2

As we discused in Chapters 4 and 5, p, and Pa, depend on the solution of the
Lyapunov equation (6.5.4) i.e. on: the choice of Q,. Similar analysis can be applied to
the Cartesian control scheme for selecting Q, f.e. using the pole-assignment technique of

Chapter 4 or the bounded uncertainty approach of Chapter 5.

6.6 NUMERICAL SIMULATION
In this section, we will show the trajectory following capability of the proposed
control scheme by considering the problem of controlling the Cartesian motion of the

end-effector of a 3-link PUNIA type manipulator shown m g 62 ‘The nominal param-



eters of the manipulator are assumed [7] to be as follows: The mass of the links are:

m,=33.0kg, m,=77.0kg, and m,=36.2 kg

The inertia of the links in kg —m? are :

Iz =14, =1.0, Ilyy =1.5, [g,, =4.37
I,y =148, I,,,=10.9, Iz, =4.77, I3, =4.79 and I,,,=0.15

The locations of the centers of mass of the links (In meters) are :

P,,=[o 0 0.08)T, P,,=[-0.225 0 0.217)7 and P,z=[0 0 0.22)T

The Denavit-Hartenberg parameters (as indicated in the Fig. 6.2) are :
a,=a,;=0, a,=0.45, d,=d,=0, d;=0.125, d,~0.44 meler

The twist angles are given as [-7/2 0 7r/2]T radians.

The kinematic equations of the manipulator {7] are :
Pr=¢ 5034 5 ,(do+d3)+a,c 5,

Py ==5,593d 4+ (dotdg)+a,s s,
P, =cCg3d stayc,td,

and the Jacobian matrix is given by :

~5 93810 +~(do+d3z)c1—a05,5, € (coadtaycy) €1C03d,
J(0)=| ¢ 593d ;~(dy4d3)s +a,c,5, §,(coadytayey) sic0d,
0 ~5930 898y  —Sgady
where, ¢; = cos §; , 8§ =sIn 0; , 6,3 = sin (§,403) , ¢ 3 = cos (0,+63)
The manipulator arm is initially assumed to be at rest. A reference trajectory of
cubic polynomials of the following form was adopted

Ty =Cp+Cy t+Coit34+c,t 1=1,2,3

where

€,,=0.03201 ¢,;=0.0 ¢€,,==0.04278 ¢ ,,=-0.0057
C2==0.80558 ¢ ,=0.0 €gu=-0.0448 ¢ 3,==0.00588
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The end-effector of the manipulator is required to move from its initial position
T, =(0.033, 0.81, -0.5) meter at rest to the final position r, =(0.39, 0.233, 0.8)
meter at rest in 5 sec. These positions correspond to the movement of the joint angles
from an Initial position 8, =(75, 100, 60) degree to the final position 6, =(15, 20, 20)

degree.

The simulation was performed on a VAX 11/780 computer with an inner loop sam-
pling frequency of 500Hz. The controller gains were updated every 0.1 sec. The initial
values of the controller gains were chosen to be It'p =dtag (30,32,30) and
K, =diag (35,34,30). The desired performance of the tracking errors was specified by a
natural frequency (w; ) of 3 rad/sec and a damping ratio (¢; ) of 1.

To illustrate the proposed approach, the control law (8.4.4) with f,‘.(l) given by

(6.5.10) was applied to the manipulator. First /,‘(t) was evaluated using method of

pole-assignment technique given in Chapter 4. For w; =3, ¢; =1, Xp_=9. and >\v|=6.
the coeflicients of the desired characteristic equation (4.5.3) were selected to he

a21==8744510. a 5,=415840, @ ,=5778170, @ ;=5508250, a,,=2545000 and
a38=8238710 to give closed-loop 1oots in the left half of the complex plane and satisfy
inequalities given in (1.5.9). These values were used to compute ¢, and g, on-line and
are updated in terms of the identified parameter hz' Figures {6.3a-¢) show the system
response in 3-dimensional space. The behavior of fz.. (L) is shown in Figs (6.4a-¢). The
estimated diagonal elements of the I!z matrix are shown in Figs. (6 5a-c) and the varia-
tion of (kp‘ , kv‘) are shown in Figs (6.6a-c) Figures (6 7a-c) show the response of the
end-effector in 3-dimensional space under payload varlation. At { =1 sec., the mass of
m, was changed to 100 kg and the inertia was changed to [y, =4.% and
I3, ==1'3yy =8. These results show that the control scheme is robust and the system

tracks the desired trajectory in the presence of these variations

L‘M
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For the same example, the method of bounded uncertainty, described in Chapter 5,

was also used to evaluate f,‘ (t). The bound M, Was found to be equal 0.43. The sys-

tem response is shown in Figs. (6.8a-c) and it shows a good tracking performance by the

end-effector for the reference trajectory. The behavior of f :m(t) is shown in Figs.

(6.9a-c). The estimated values of the diagonal elements of the matrix Hz are shown in
Figs. (6.10a-c). The variation of the gains Kp and K, are shown in Figs. (6.11a~c). The
robustness of the proposed controller under payload variations was tested by changing
the mass of the 3rd link from 36.2 kg to 100.0kg at { =1 sec. The inertia was changed
to I'3,, =I5, =8 and I,,,=4.8. For the same reference trajectory as before, the sys-
tem gave good tracking response as shown in Figs. (6.12a-c).

The behavior of the adaptive control, scheme was also examined for the following

trajectory

p, = 0.5 sin (-}t)
T
= 0.61 cos (—1
Py (4 )
p, = - 0.5 cos (-Z—t)

The response of the end-effector is shown in Figs. (6.13a-c) and Figs. (6.14a-c). It is seen

that the reference trajectory is tracked very closely.
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FFig.(6.2) A Three-link PUMA-type Manipulator
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CHAPTEF. SEVEN

ADAPTIVE CONTROL OF FLEXIBLE JOINT MANIPULATORS

In this chapter the control problem for robot manipulators with flexible joints is
considered. A reduced-order flexible joint model is constructed based on a singular per-
turbation formulation of the manipulator equations of motion. The concept of an
integral manifold is utilized to construct the dynamics of a slow subsystem. A fast sub-
system is also constructed to represent the fast dynamics of the elastic forces at the
joints. A composite control scheme is developed based on on-line identification of the
manipulator parameters, which takes into account unmodeled dynamics and parameter
variations. An approach for stability analysis of the closed-loop full-order system is

investigated.

This chapter is divided into the following sections: Section 1 gives a general intro-
duction covering the problem definition for control of manipulators with joint elasticity
and a brief review of the recent literature. In Section 2, a sipgular perturbation model of
the manipulator is constructed. A control strategy and a robust controller for a
reduced-order flexible subsystem (slow subsystem) are derived in Section 3. Section 4
gives the dynamics of the fast subsystem with a fast controller. Section 5 discusses the
construction of the full-order controller with a composite control strategy and its stabil-
ity analysis. The parameter estimation method and the control scheme implementation
are discussed in Section 6. A numecrical example of a single link flexible-joint manipula-

tor is considered in Section 7 to illustrate the application of the proposed algorithm.

7.1 INTRODUCTION

In the process of modeling the dynamic behavior of robot manipulators, some phy-
sical phenomena like joint elasticity are usually neglected Most methods assume that no

compliance exists in the mechanical elements composing the manipulator arm, so that
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the dynamics of the robot can be described by a rigid body model.

Elasticity implies that the position of an actuator (i.e. the angle of the motor shaft)
is not equally related to the position of the driven link. From the modeling point of
view, this internal deflection is taken into account by inserting « linear torsional spring
at each joint. As a consequence, the rigid arm dynamic model has to be modified in
order to describe completely the relation between applied torques and link motion {89].
Most industrial robots use DC or AC motors connected in series with harmonic drives
(high-torque, high-ratio gear boxes) used mainly for speed reduction. In some applica-
tions, transmission belts, or long shafts in the drive system (usually in the joints) are
also used. This results in lightly damped oscillatory modes in the open-loop response,
and a typical resonant behavior [70]. To capture the above behavior the flexible mani-

pulator is modeled by a chain of rigid sub-links interconnected by flexible joints [78].

It is shown in [71,72] that the control schemes which assume a rigid model for the
manipulator are limited in their applicability to real robots where the assumption of per-
fect rigidity is never satisfied exactly. The resonant behavior in some range of frequen-
cies imposes bandwidth limitations on any'control algorithm that is designed assuming
perfect rigidity and may cause stability problems for feedback control laws that neglect
joint flexibility (75]. For quasi-static applications, simplified models which consider only
the dynamics of the drive system, have been used by Kuntze et al. [76]. L.pong [78] has
investigated a simplified model which neglects the inertial coupling between the actua-
tors and links. Models including full nonlinear dynamic interactions among joint elasti-
cities and inertial properties of links and actuators have been introduced by Nicosia et
al. (77]. It is shown by Cesareo and Marino {83], for a model of a three-link elastic joint
robot, that the necessary and sufficient conditions for feedback linearizability are not

satisfled.

Recently several advanced control algorithms for flexible-joint manipulators have

been proposed. They use different approaches such as singular perturbation techniques
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[79], sliding modes [80], pseudo-linearization [81] and model reference adaptive control
[82]. All of the above methods are designed by assuming perfect knowledge of the
parameters of the system, and the designed control system is unable to capture the
results obtained in the nominal case for fully rigid manipulators. A method based on the
concept of integral manifold was suggested by Khorasani et al. [73-74] and Spong et al.
[75]. In this approach, they assume exact cancellation of the nonlinear terms of the
manipulator in the case of rigid and reduced-order flexible models. Also the control
scheme is designed for the slow modes only. In addition they give no stability proof for
the composite system. De Luca [69] uses dynamic feedback for linearization, with no
uncertainties. A theoretical study of robust control was performed by DeWit and Lys
[70]. The approach uses a two-step estimation procedure for the unknown parameters of
the manipulator. No stability analysis was given for the case of parameter variations.
Since the estimation of the rigid body dynamics depends on the elasticity of the joints, a

two-step estimation procedure for flexible-joint manipulators is not possible.

In this chapter, the concepts of linearization, singular perturbation, integral mani-
fold, and composite control have heen utilized for dynamic investigation of flexible-joint
manipulators. A full-order dynamic model is constructed for the manipulator using the
concepts of singular perturbation. A reduced-order model which has the same dimension
as the rigid model is then obtained. This, in turn, yields an implicit expression for the
computed torque that incorporates the effects of elastic distortion. An approximate
reduced-order system hnown as the slow subsystem is constructed using a power series
expansion about ¢==0 (a parameter indicating the degree of Joint clasticity) A fast sub-
system representing the deviation of the flexible-joint dynamics from the rigid dynamics
is also derived We consider the link positions as slow variables and the elastic forces as
fast vanables As a consequence, we separate the full system into two subsystems, a slow

subsystem and 4 fast subsystem

The adaptive control scheme developed in Chapter 4 1s apphed here to the rigid
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body model (which can be constructed from the reduced-order model). A corrective con-
trol to compensate for the deviations of the dynamics of the flexible-joint system from
those of the rigid system is developed using the reduced-order model. A last control
scheme is designed based on the fast subsystem model to ensure attractivity of the flexi-
ble joint dynamics to the integral manifold. To overcome the effects of uncertainties due
to mismatch in the parameters and to compensate for the effects of parameter varia-
tions, a robust controller similar to that given in Chapter 4 is designed using Lyapunov
theory. The overall composite control strategy consists of four parts: A feedforward
computed torque with a PD feedback controller, a robust controller, a corrective con-
troller, and a fast control scheme. The performance of these controllers depends on the
accuracy of the measurement of the link motion (position, velocity, and acceleration),
and hence, we assume that high precision sensors are instrumented directly on the link.
The composite controiier is based on the on-line identification of the unknown parame-
ters of the manipulator. For the identification we use the reduced-order flexible-joint
model, since it contains the rigid body parameters and the elastic parameter. The
remaining system parameters which are used in the implementation of the control
scheme can be constructed from these identified parameters as will be discuss later. Sta-
bility analysis of the closed-loop full-order system (with the composite control strategy)
is investigated. The methods developed in Chapters 4 and 5 are not directly applicable
because of the nature of the dynamic equations of the full-order system. A new tech-
nique which employs modified versions of these methods is used. Similarly, the @
matrix in the Lyapunov equation is selected on-line to ensure that the lull-order closed-

loop system is asymptotically stable.

7.2 A SINGULAR PERTURBATION MODEL FOR FLEXIBLE JOINT
MANIPULATORS IN JOINT SPACE

In formulating the dyvnamical model of a manipulator with flexible joints, we will

consider the link positions (velocities, accelerations) as slow variables and the elastic




forces at the joints and their time derivatives as the fast variables. Let us consider a
manipulator consisting of n +1 links interconnected by n fiexible revolute joints and let
0;, { =1,...,n, denote the position of the i™* link. and ¢, . i =1....,n, denote the posi-

h actuator. Let

T
o= o7 o] =00,

tion of the 1!

T
¢, ... &,
Then the equations of motion of the manipulator can be written as [75]

M(g) +B(g.¢)+(q)=P"u

In comparison with rigid body dynamics this model consists of 2n equations. The iner-

tia matrix M (g) € IR*" ' 2" s a positve-definite symmetric matrix with ¢ € It 2",

B (g, q ) represents the Coriolis/centrifugal and gravity vector and u ==(u 1 LU, )T,

h

where u, is the torque/force delivered by the 1™ actuator The vector

T
Vg ) = {U',(f/ oo (g )]

with

(ke q) 1< 0<n
vilg) = | k(g n ¢) n+1 <1 < 2n

represents the elastic force-torgue veetor at the joint, where b denotes the ot elasti-

city The 2n XX n matrix [’ * has the form

In the case of all nigd Jomnts, I., —+ o and the model will reduce to a ngid maodel of n
equations (as (421)) m wheh ¢, = ¢, . t==1,...,0n, with v, remmmng finite (for
more details see 75,79 )

Now consider o mampulator with flexible joints whose ™k e shown
Fag (7 1) i which the flesable gjomt s ede]ed as o linear torsional sping of dastoty

}.'l We will assume that all the <pring constants I., are of the same (large ) order of
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magnitude K , and we will take the gear ratio N = 1 for simplicity. The dynamic equa-

tions for this system are given [70] as:

JJ6+B 6+ R(8.9)=K (-0

and

Jm 6+ B, ¢+ Rp(dg) =K (0~ )+ 1,

Jm» Jy  are the inertias of the motor and the link respectively,

Bm ' Bl are the centrifugal and Coriolis terms of the motor and the link,
R, . R, are the gravitation and friction terms of the motor and the link,
K is the stiffness of the flexible joint,

is the total torque applied to the motor,

g is the gravity constant

Equations (7.2.1) and (7.2.2) can be written in state-space form as

) 0 I o 0 0 0

6 -JK -07B K 0 él -Ji 'R,

sl =1 o 0 0 1 o| 0 +
é JIIK o -J7K -J7'B, éSJ JR,

Let us define

b=K(0-¢)

(7.2.1)

(7.2.2)

(7.2.3)

1 .
where, 7 is the elastic torque at the joints. By introducing the parameter € = I (-in

the case of rigid links, € = 01.e. K — 00, at which § = ¢). we can express (7.2.1)

and (7.2.2) as a singular perturbation model as follows:

From (7.2.3) we have ¢ = 8§ — € 1. By substituting into (7.2.2), we get

JoO0-€Jn v+ B, 6-€¢B,, v+ R, (0. 9,%) =19+ 1,

Using (7.2.3), we can find 0 from (7.2.1) as

0=-J"'¢-J VB 6-J ' R
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By substituting (7.2.5) into (7.2.4), we get

€= [J," + J,,;‘]w +J' B, P+ [J," B, - J;' B, ]b (7.2.8)
+ [J," R -J'R, ] + It

Equations (7.2.5) and (7.2.6) represent a singular perturbation system In terms of the
slow variable 0 and the fast variable . The full-order model (7.2.5), (7.2.6) represents a
complex highly nonlinear system which is difficult to analyse or use directly in control
design.

It can be shown that the full-order model can be used to obtain the rigid model.
This can be achieved by setting € to zero in (7.2.8) (i.e. neglecting elasticity). This will
reduce ¥ to T,, where T, is the quasi-stecady state of the fast variables (rigid mani-

fold). From (7.2.6) we get,
- [J," + Jm"]‘ro= [J, ''B,-J,' B, ]b+ [J,“‘ R, -J,VR,, ]+J,,;' T, (7.27)

where 7, is the control input for the rigid model It has been shown in [23.31,33" that
the term J; 7' Ry -J,;' R, can be written as a,(6, g) 0. where a; consists of all the

terms containing the gravity constant ¢ Let us deflne

Jl l+ ‘]ml = i,

SR SR, =0
LB B, =, (7 28)
J,'=a,
J, ' B, = a,
Then (7 2 7) becomes
a, T, =a, 17, +0, 0+ a,l

Thus T, . the quasi-steady state of 1, can be obtained as

Y, = a, [al 7, +a, 04+ 0] (729)

By substituting (7 2 9) into (7 2 5) and rearrangig, we get
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b= [J,“ e; ay - J;7V B ]() + [J," ala, - ;7' R, ]0 (7.2.10)
+ St ay T,
Let us define
-J ol ey + 07 By =B,
-heta,+ TR = 6, (7.2.11)
St agta, =4,
Note that ﬁ2 is an inertia matrix which is positive-definite. Using (7.2.11), (7.2.10)

becomes
0=-8,0-08,0+8,1, (7.2.12)

This represents the dynamics of the rigid model, which can be written in state-space

form as

0 0 I 0 0

= i T 7.2.13

6 -8, -8, | o] T |6 (7.2.13)
Since EQ has full rank, this system is controllable and thus can be stabilized by state
feedback. The model (7.2.13) is of order 2n and is the same form as the rigid model

obtained in Chapter 4. The full (2n )th order system (7.2.5), (7.2.6) will be considered

further in the following sections.

7.3 REDUCED ORDER FLEXIBLE MODEL (SLOW SUBSYSTEM)

As we have seen from the previous section, the full-order system (7.2.5), (7.2.6) is a
complex, highly nonlinear system and is difficult to analyse. The rigid model (7.2.13)
does not accurately model the system if joint flexibility is not negligible. Since the full-
order system can be represented as a singularly perturbed system the theory of singular
perturbations can be applied to derive the reduced-order flexible model (using the con-
cept of an integral manifold [73-75,84,90]). The reduced-order flexible model, like the
rigid model has dimension 27, but incorporates the effects of joint flexibility. Since the

inertia matrix of the manipulator is invertible, the theory of singular perturbations {90]




161
allows us to obtain a reduced-order flexible model.
7.3.1 A Reduced Order Flexible Model
To derive the reduced-order flexible model, let us rewrite (7.2.6) using (7.2.8) as
-e;j»=ao¢+aoc¢+a2é+a,0+a,rm (7.3.1)

In general 9 can be written as

Y=T+¢
where T (integral manifold) is the quasi-steady state value of 10, i.e. it represents % in
the integral manifold, and & represents the transient behavior of 1, i.e. it is the fast part
of 1. Now let us consider the system in the integral manifold at which

Y= T(9, b, Tm » €) and 111 = ’i‘(@. é, T €). By substituting for ¥ in (7.3.1), we get
—e"f=ao‘r+a,,e'f+a2?)+a,0+a,rm (7.3.2)

where, T is the total differential and is calculated along the trajectories ¢ and 0. We can

define T as [75]

- d ' or , , 0T 4 or .
= —7(,0,7,,€=— — 0 3.
T dtT(o Ton + €) 50 6+ Py + o Tm (7.3.3)

Noting that T is twice continuously differentiable, T can be found in the same way.
Equation (7.3.2) represents a partial differential equation in the unknown T. Equation
(7.2.5) (with ¥==7) is used to substitute for 9 so that only # and 0 are present in (7.3.2)
and no other higher terms are needed. Once T and T have been found, we substitute

them into (7.2.4) to get the reduced-order flexible model
é:(’f—aoé+(ao'i‘—a,[\’m+a,‘r+a,r,,, (7.3.4)

This model has the same dimension as the rigid model and incorporates the eflects of the

flexibility restricted to the integral manifold T.




7.3.2 An Approximation for the Reduced Order Flexible
Model

The reduced-order flexible model (7.3.4) is feedback linearizable [73], but the com-
putation required for solving the partial differential equations (7.3.2) are quite difficult.
An approximate reduced-order flexible model can be found by using a power series
expansion about €. This yields a practical computational technique for controlling the

flexible model.

The control input 7, in (7.3.4) is a composite control and is expressed as

Tm == Tg + Ty . In the reduced-order flexible model only 7, is present since on the
manifold 7, (§ = 0) = 0. So let us denote

T=7"T,+€7T, (7.3.5a)

Ty =Ty + €Ty (7.3.5b)

where 7, is the control input to the rigid model , and 7 is the corrective torque vector

for compensating for the effects of T,. The vector T, represents a zero-th order

approximation of T, and T, represents the first order correction to T, . Equation (7.3.5)

represents an approximation up to the first power of €. Note that an approximation to

any power is possible. By substituting (7.3.5) into (7.3.1), we get

- € 'f'a - €2 :1;1=ao e'i‘o+ a, Cf'i‘l +a, T, +€a, T +a,7, (7.3.86)
+€alTl+a20+Ozl0

By equating the terms of like powers of € on both sides of (7.3.6), up to the first power

of €, and neglecting all terms of higher power of € , we get

_.'-I“o =a0 TO +a0 Tl +alTl (7'3'7)

and

-a, T, =alro+a2é+a10 . (7.3.8)

From (7.3.7) we obtain

Y, =-a; [To 4+a¢ T, +a, T,] (7.39)
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and (7.3.8) yields
T, =-a,;! [al T, + 0,0+ a, 0] (7.3.10)

It can be seen from these equations that (7.3.10) relates the rigid control 7, to T,, and
(7.3.9) relates the correcting control 7; to T,. Using (7.3.9) and (7.3.10), we can get

T = T, + € T, which after substitution (¥="T) into (7.2.5) gives

+J et a1, + € [J,“ elay 4t oM T, + e 6, T, ]+O(€2)
Using the notation in (7.2.11), (7.3.11) becomes

b="ﬂo 0B, 0+ By 7, +€ [ﬂz n+b e’ ;fo’*'ﬂzal-l ao'i'o]+0(€2)

which can be written in state-space form as

g o I1|]e 0 o .. 0 .
61~ -8 B, | |6 + B o+ €f,a? Tot €Ba'a, To (7.3.12)

0 2
+ €B, T, + O(€7)

If the O (€?) terms are neglected, equation (7.3.12) represents an approximate reduced-
order flexible model (slow subsystem), and it is clear that as € — 0, (7.3.12) reduces to
the rigid model (7.2.13). Note that (7.3.12) has dimension 2n . It will be used for design-

ing the corrective control 7, and the rigid control 7,.

7.3.3 Control Algorithm for the Slow Subsystem

The corrective control 7, can be designed from the reduced-order flexible model by
setting the € terms in (7.3.12) equal to zero, i.e.

Bymy+ Byat Ty +Bya e, T, =0

from which the corrective control is obtained as

T, =-aj' [’fa + aq, ‘i‘o ] (7.3.13)

-d

To implement (7.3.13), we need to compute T, and T,. These can obtained by
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differentiating (7.3.10) and using & from the rigid model (7.2.12). By applying 7, to the
slow subsystem (7.3.12), we obtain the rigid model

0 o I |le 0 o1
il = |-8, -8, p + 8, 7, + O(€) (7.3.14)

In order to design the rigid comtrol 7,, we first assume that the manipulator
parameters are slowly time-varying during the interval Atj defined by
t; <t <ty e gy, @y, @p, ay 0y By By By are assumed to be constant dur-
ing the interval Atj. So we can approximate the reduced-order flexible model (7.3.12)
by a linear piecewise time-invariant model during the interval Atj. This model is

identified on-line. Accordingly, we can choose the rigid control input 7, as
T, = {1[04 + K, ¢ +K,e + 7, 0,1+f616d] (7.3.15)

where, §;, 8;,0; € R" are the desired position, velocity and acceleration trajectories

respectively; Kp K, ER™" X% are proportional-derivative gain matrices, and
e =0, -0 , ¢é&=20,-6 and e€=0, -0 (7.3.16)
In (7.3.15), Bo , Bv B, € IR " X™ are the estimated values of 3, , B;, O , respectively.

Applying the control (7.3.15) to the rigid manipulator (7.3.14) (neglecting O (62) terms)

yields
§=-8,0-5, b+ﬁ2232“['éd + K, 6+ K¢ +B, 0 +51‘9¢]

Note that a, and @, in (7.3.13), are replaced by their estimates @, and d,, respec-
tively. We shall discuss in Section 7.6 how these estimated parameters can be obtuined.
During the interval Atj, assuming that the estimates of the parameters converge to

their true values, the error equation is

e+ (K, +8,) ¢+ (K, +B)e=0 (7.3.17)
It is required that the error satisfles a given desired second order differential equation of

the form
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€ +A€ +Ae =0

from which the controller gains can be obtained as
K, = A, - B K, =A, -3, 7.3.18)

where A, =diag (2w) and A, =diag (w?) € IR ™™ are given constant matrices. and
¢ and w are the desired damping factor and undamped natural frequency respectively.
Thus the total control input to the reduced-order flexible model becomes

Ts =Ty + €7 (7.3.19)

= 2‘1 [gd + Kvé+Kp6+ﬂo 0d+ﬂl 0d ]—6 dl_l [To +d0To ]

It is seen that the ¢ 1trol 7, can be implemented easily in terms of the desired trajec-
tories, the measured slow variables § and 0 of the link and the identified parameters of
the reduced-order flexible model. Note also that ‘i‘o and '.I“o can be computed in terms

of the slow variables § and . Now by applying the control 7, to the reduced-order

flexible mode] (7.3.12), we get the closed-loop error equation

. 0 I
z = A, -A, z ATl z (7.3.20)

where z = (eT éT) € IR * X1 By appropriate choice of A, and A, we can

ensure that the closed-loop poles lie in the left-half of the complex plane. This will

ensure that e(t) — 0 as t — oo.

7.3.4 Robust Control and Stability Analysis for the Slow
Subsystem

In this section, we will assume that the system (7.3.12) is not completely lincariz-
able, due to the existence of a mismatch between the actual manipulator dynamics and

the estimated ones. Therefore we write the manipulator parameters as
B, =B, +AB,, By=20B,+ 4B, and B, =B, + AB, , ....., ele.

Then, the reduced-order flexible model (7.3.12) can be represented in terms of the
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parameters 3, , f,, B, 4,, @, and a nonlinear time-varying term 7({) which contains
all the A terms, and order € and higher order terms. Neglecting O (€2) terms, (7.3.12)

can be rewritten as
=_-B,0-B,0+B,7, +€p, [a;‘ T, +a;' 4, T, + rl]-n(t) (7.3.21)

Now, applying the control input (7.3.19) to (7.5 *), using the error equations (7.3.16)

and rearranging, we get the closed-loop error equation

£+ [30 + K,,] e + [ﬁl + K,,] e = n(t) 7.3.22)
which can be rewritten in state-space form as
{ € 0 I e 0
el = -8, -a, [ e T 1] 7®)
fe.
2 =11z + B* n(t) 7.3.23)
where,

- 0 1 4 B 0
= A, A, an =11

Equation (7.3.23) represents the closed-loop slow subsystem without compensation for

the unmodeled dynamics.

In order to compensate for the effects of the unmodeled dynamics, another control

term S (¢ ) is added to the rigid controller 7, :
o = B3 [éd +K, ¢ +Kye + B, 6, + B, 0, + S(t)] (7.3.24)

Applying the control 7,, with 7, from (7.3.24), to the slow subsystem (7.3.21) yields the

error equation

€ +A, € +A, e =7n(t)-S(t)

2 =02+ B'o(t) (7.3.25)
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where o(t) = n(t)- S(t). In order to compute S (¢) and study the stability of the

system (7.3.25), we will use Lyapunov stability theory.

Let us choose
Vit)=z2T P z+07 Q, 0 (7.3.26)

where @, € IR 2" X2" and P IR 2" X2" are positive-definite matrices and P satisfles
the Lyapunov equation

n? p+Pn=-2qQ (7.3.27)
with @ a positive-definite matrix. Taking the derivatives (with respect to ¢) of both

sides of (7.3.26) and using (7.3.25), we get
V=-2:TQ z+207 [Qa &+B* P z]

We see that V(t) < O along the trajectories of (7.3.25) and consequently the system

(7.3.25) is asymptotically stable if

. T
ol [Qo &+ B* P z] =0
which is satisfled if
. T
c=-Q,'B* Pz (7.3.28)
Since we have assumed that the system parameters are slowly time-varying , and
since 7(¢ ) is a function of the system parameters, therefore n(t ) is slowly time-varying.

In this case, P == O and 6 = — S (t). Then from (7.3.28), we obtain

S(t)= Q,! B Pz (7.3.29)
writing P as
b P, P
~ |P2 Ps
equation (7.3.29) gives
S(t) = Q,! [PQ e + P, é] (7.3.30)

This can be solved for S (1) as
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t
St)=S(,)+ Q" |[P,e dt +P,e (7.3.31)
t

(4

where S (£, ) denotes the initial value of S (¢ ).

7.4 THE FAST SUBSYSTEM

In this section, we derive a control law for the fast subsystem resulting from con-
sideration of joint flexibility. To derive the control law we first consider the dynamics of

the fast subsystem.

7.4.1 Dynamics of the Fast Subsystem

The dynamics of the variable 7 from its quasi-steady state Y are governed by the
fast subsystem. Let £ denote the fast dynamics of %, where ¢ = Y + £. Then from

system (7.3.1) we get

-€ [E+’f,,]=ao [§+’ro+e'r1]+eao [£+To] (7.4.1)

+ a0 +a,0+a, 71, + O0(€)
where 7,, is the total control input delivered to the actuator, which is

Tm = T, + Ts (7.4.2)

with 7, = 7, + € 7, the control input to the slow subsystem, and 7, is the control
input to the fast subsystem. By applying 7,, to (7.4.1) and using Y, from (7.3.10) and

7, from (7.3.13), we obtain

—e'é'=a,,€+€a,, T, +€aqa, E+a11f (7.4.3)

t
Now by defining a new fast time-scale T=—\/-_- , 5O that
€

de _ 1 de 0 d% _1d%
dt Ve d dt? € dT?
. ' d*¢ d¢§ . )
and denoting f = T? ’ f =T and so on for the other variables, we can write

(7.4.3) as
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¢ =a, E+€a, T,+ Veaq, £ +a, 7
Now by formally letting € — 0, we get

- =a, £+ a1y (7.4.4)

Equation (7.4.4) represents the fast subsystem in the fast time-scale. We can rewrite

(7.4.4) in terms of the slow time-scale as

—€é=ao€+alrf (7.4.5)
the state-space form, becomes
é 0o e€eI|l¢ 0
€ E = —a, O 3 + ~a, Tf (7.4.6)

Equation (7.4.6) represents the dynamics of the fast subsystem in the slow time-scale,

approximated up to O (€).

7.4.2 Control Law for the Fast Subsystem

As can be seen from (7.4.8), the flexible modes are undamped [75], since the fast
model contains poles on the imaginary axis of the complex plane. This requires that a

fast controller Tf be designed to guarantee asymptotic stability of the flexible modes.

Let
£
r = |,
£
Then (7.4.6) can be written as
€z =Az+Cry (7.4.7)
where
o ¢l 0
A=_aoo and C = _a,

Since the pair (A ,C) is controllable, then (7.4.7) can be stabilized by state feedback.

Therefore, we can choose Tr as

1, =k E-k,E=-K 2

E)
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where K° = (lcl Ic2] . Applying 7; to the fast subsystem (7.4.7), yields

e:i=[A—CK°]x (7.4.8)

Equatijon (7.4.8) represents the closed-loop fast subsystem. The terms £, and k, can be
chosen such that all the closed-loop poles of (7.4.8) lie in the left-half of the complex

plane.

7.5 FULL ORDER SYSTEM
7.5.1 Singularly Perturbed Model of the Full Order System

The dynamic equations of the full-order system in terms of the slow variable # and
the fast variable £ can be obtained by considering the full-order singularly perturbed

system given by (7.2.5) and (7.3.1). By replacing ¥ by T + £, and using (7.2.5), we get
[ — [r+g] ~J'B, 6-J' R, (7.5.1)

Since T = T, + € T, and T, and Y, are given by (7.3.9) and (7.3.10) respectively,

equation (7.5.1) becomes

6= J1 o [al T, o, 040, 0]+€ St ot [To +a, T,+a, 71]
N E-JTV B 607 R+ O(€d)

By rearranging terms and using the notation given in (7.2.11), we get
6= -5,0-8,0-Fra " 0, € 481, + €Ba it [X, 40, Ty 4,17, | +0 ()

which can be approximated up to order € and put in the state-space form

= [ ol o “
o= . + . .
l.0 By B, | 18] 1Bt e, : €ya (T, +a, T, +a,7,)

0
+ [ﬁ} r (7.5.2)

-

Similarly, from (7.3.1) we get

€ [éﬁ*o ]=a,, [E+T,,+(.’I‘l]+6ao [E+'f,, ]+a2é+a10+alrm + O (€?)
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By using (7.3.9 ) and rearranging terms, we obtain
€f=ua, E+€a,€+a,T,~€a, T+, 0+a, § + a, 7, +0(€?)

which can be approximated up to order € and put in the state-space form

- LY 2l

0 [ o
+ ca, T+ “a, Tm (7.5.3)

Equations (7.5.2) and (7.5.3) represent the dynamics of the full-order system in singu-
larly perturbed form and in terms of § and £ approximated up to order €. Note that

Y, is a function of f.

7.5.2 Control Scheme and Stability Analysis for the Full
Order System

By combining the slow controller and the fast controller, we get a composite con-

troller for the full-order system which is given by

Tm =Ty + T =T, + €7, + 7 (7.5.42)
where
romBt U+ Kyé 4 Kye 48, 0, 3,0+ 5] (san)
Ty o=—d ["I.',, +a, T, ] (7.5.4¢)
and
7 =k, E-ky¢ (7.5.4d)
and S (f ) satisfles
S(t) = Q,™! [P2 e + P, é] (7.5.4e)

Note that 7,, represents the total control to be applied to the manipulator. Now we
will study the use of this control scheme, by applying the composite control (7.5.4) to

the full-order system (7.5.2) and (7.5.3). By proceeding in the same way as in section
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(7.3.4), we get the following closed-loop error equations approximated up to order €

€ 0 I e 0 0 1
s1= A, A, | |é + B0 a &+ I [n(t)-—S(t)_+O(62) (7.5.5a)

13 o el |]¢ 0 0 ¢ 0
¢ el T |-, -€q, | €| ~d.k, -a.,k, E +0(€)  (7550)

Neglecting the O (€2) terms, equations (7.5.5) can be written as

2 =INz+T'"z2z +B'c (7.5.82)
€1 = [.:1 -C K"] T (7.5.6b)
where A is
; [ o el }
A =
~-a, -€a,
and T'* is
. 0 0
r = a,-a, 0
Stability Analysis

Since the control input to the full-system is the composite control which consists
of the slow control and the fast control, it is necessary to ensure the asymptotic stability
of the full-order closed-loop system (7.5.6). To show how this can be achieved, let us
choose a composite Lyapunov function

Ui)y=1V, + v, (7.5.7)

where Va js the Lyapvnov function for the slow subsystem :

V,=2TP 2407 @, o

and Vf is the Lyapunov function for the fast subsystem :

where P and P € IR 2" X2" are positive-definite matrices satisfying the Lyapunov
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equations
nTp+PI=-20Q, (7.5.82)
- T _ - -
[A—CK"] P+ P [A—CK°]=—2Q2 (7.5.8b)

Taking the time derivatives of both sides of (7.5.7) along the trajectories of (7.5.6) and

rearranging, yields

Ut)=-2:TQz—2cT Q,z+2sTr* Pz +207 [B'TPz +Qoé] (7.5.9)

If o satisfles (7.3.28), then

ol [B"Pz+Q,, é]=0

and (7.5.9) becomes
Ut)y=-2:T Q,2-2s7 Q,z +2cTr*" P 2 (7.5.10)

For stability it is required that U < 0. It is clear from (7.5.10) that the term
T
z TI" P 2z represents the interaction between the slow subsystem and the fast subsys-
T
tem. Computing'* P gives
(a,-a )P, (a,-a,)P4

0 0
where P, and I’ ; are obtained from the solution of the Lyapunov equation (7.5.82) i.e.

r*'P =

p, P}
P= P, P,| For @, = diag (Q,,, @ ,2). this solution is given by
P,=@Q, A} and Py= QA + QA AL (7.5.11)
To simplify the computation and the analysis, we choose

Qu=K"'"A, A, and @Q,,=K"A, (7.5.12)

whee K* , A, and A, EIR n XM are diagonal positive-definite matrices. By using

these in (7.5.11), we get

P,=K'A, and Pa=K"'A AJ+K" (7.5.13)



In order to obtain U () < O, we rearrange (7.5.10) in the quadratic form

_ -2Q, PT* ||,
U = [zT xT] . . 7.5.14)
-2Q, PT1°’
Let N* = TP 20 Since P is a function of @,, if we can choose
ek

Q, and @, such that Q° is negative-semidefinite, then the stability of the full-order
closed-loop system will be ensured, i.e. the equilibrium points 2 = z = O are stable.
As in Theorem 4.1 (Chapter 4), we can show by La Salle’s Theorem, that the equili-
brium points of the system (7.5.8) are asymptotically stable, i.e.

z2(t)y,z(t) = 0as t — oo.

Now we will discuss, how the elements of @, , @, can be selected to ensure that
n* is negative-definite. For decoupled control, by row and column permutations
corresponding to orthogonal similarity transformations, * can be written in the form
of a block diagonal matrix with n (4X4) blocks aloag the diagonal, i.e. 2* =diag (Q,").
Then 0% is negative-definite if and only if —Q,-' is positive-definite., According to
Sylvester’s criteria, —Q,-' is positive-definite if and only if all its principal minors are posi-
tive. By using (7.5.13) with K *=diag (L"), A, =diag (N, ), A, =diag (Ay,) and

choosing @ ,=dtag (q,; ), then -Q;* can be found to be:

[ 2k, 0 k™ (@6 —a, ) o |
Ap,
0 +2k;°N,, —k;'(;\—+1)(ao'—al') 0
v,
-— ﬂ‘.' ——3 x
2 P
~ki"™, (ap-a,) —k; (T'*'l)(ao.’al.) 295 0
v
i 0 0 0 2(] aj |

From this, it is clear that the first and second principal minors are positive. Next, we

find a condition that will ensure that the third and fourth principal minors are positive.
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We write
det(-0,") = 2¢,; (3rd principal minor)

where the 3rd principal minor is given by

A
3rd principal minor = 8k X, 2\, ¢20-2k"" X, N, (@0, -0, )? (-x—”'-+1)2+x,,'

Y

Therefore, it follows that for —Q;* to be positive-definite, we require

ki' (ao‘_a 1, )2 (—)2+)‘u.

Y,

Xp,
A

92i >
4N,

So if g,; is chosen to satisfy the above inequality, then ©2* will be negative-definite

which, in turn, will ensure asymptotic stability of the full-order closed-loop system.

7.6 CONTROL SCHEME IMPLEMENTATION

In order to implement the adaptive control 7,, it is required that the system
matrices f,, By, By 0y » €y, @y, @, , and @, be known. These matrices are identifled
on-line using the reduced-order flexible system (7.3.12). Since these matrices are assumed
to be slowly time-varying, we can approximate the system (7.3.12) by a linear piecewise
time-invariant model which has the same outputs and inputs as (7.3.12) and a similar
dynamical structure during the interval Atj :

§=-A,0-A0+ A, + AT, +A,T, + A7, (7.6.1)
where A,-A; are unknown parameters to be identified on-line using least-squares
identification. These parameters are then used to obtain the coefficient matrices of the

system and to generate the input control to the manipulator.

The model (7.6.1) can be written as

0=06T v (7.6.2)

where © is the vector of parameters to be identifled.



of = [—Aa A, A, A, A, As]

and ¥ is the vector of measurements at time tj written as

vl = [oT o7 T x T xt rlT]
The method of recursive identification (as described in Chapter 3) is used for
identification. Note that the current measurements § and § and the previous parameter

estimates are used to compute Y, and T,. By comparing (7.3.12) and (7.6.1), we have

B, =A, , By=A, ,B,=A, , 8B4 a, = A, (7.6.32)

and

efa' =A,,eB8,=A, (7.8.3b)
From (7.6.3) we get

E=AA;' ,a;' =A A7 , a4, =AzA]" (7.6.4)

By using the relationship between (7.2.8) and (7.2.11), we can write

&, =AZ A? [As— A2A4]_ (7.6.52)
a,=A A &, [Al ~A,A 4“] (7.8.5b)
&= G(d,,8,9,0) (7.6.5¢)

where g is the gravity constant. Now we can write the input controllers, 7, and 7, in

terms of the identified parameters as

T, = A2‘1 [011 +KU 8+Kp C+Ao éd +A lﬂd +S(t)] (7.6.6)
where
KV=AU—A1 Kp =AP—A0
and
n=-A,Ag" ["1",, +AAT, ] (7.8.7)

where T, (4, é’) is computed from (7.3.10) in terms of #, § and the identified parameters.

The fast control is

T o=k, E-ky € (7.68)
with
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§=1v- 100 (7.8.9)
where 1 is measured and Y(4,) = T, + € Y, Is computed.

7.7 NUMERICAL EXAMPLE

To illustrate the use of the adaptive control scheme presented in this chapter, we
consider a single link manipulator with a flexible joint as shown in Fig. 7.1. The manipu-
lator consists of an actuator of inertia J,, and viscous damping B,,, connected through
a gear box of ratio N:1, to a rigid link of mass m and length [. The elasticity in the
joint is modeled as a torsional spring of stiffness k. The equations of motion for such a

manipulator can be written [75] as

-Elg-ml2 0+ B, 0 + _%gl sind + &k (0 + %) =0 (7.7.1a)
and
J. 6+B, ¢+ Lo+ Ly=1 (7.7.1b)
m m N N m .

The nominal values of the manipulator parameters are given in (75) as: [ =3 meter,
m =10 kg, €=0.01, N=100, B,, =0.015/N.m /rad. sec”!, B, =36N.m. /rad. sec™,
Jp =0.04kg -m ? and g =9.8m /sec. Equations (7.7.1) can be converted into the stan-
dard singular perturbation form :

§=-J " 9~J B - J 'R, sind (7.7.22)

and

.. J ! . .
eh== [0+ ) v s By b (47 By - Uit B )
-1
- J;7' R, sind + —1-"\',— Tm
or equivalently

€Y=-a, Y- € a, @—agb—alsln0+alrm (7.7.2b)
where

-1
a, = J,7' + —1-:-,"-2— = 0.03583




a, = J;7'B, - J,;1B,, = 0.825
a, = J,;'B,, =0.375

J -1
a, = -7"\"— = 0.25
J,! = 0.0333

Simulation Results

The manipulator of Fig. 7.1 was assumed to be initially at rest with 6, 9. 0 =0
The initial condition of the fast variable  was set % O, otherwise the dynamics of the
fast mode will not excited at all. The initial values of the feedback gains for the slow
mode were chosen to be A,=16 and k,=8. For the fast mode, we chose
k ,==100 and k,==20 such that the eigenvalues of the fast subsystem are placed far in
the left-half of the complex plane. The reference trajectory given in Chapter 4 was gen-
erated. This is given by

0 = 1.57 + 7.8539¢xp (-t ) — 9.4248exp(-t /1.2)

The simulation was performed on a VAX11/780 computer with an inner loop sampling

rate of 2 ms.

First, the composite adaptive control law (7.5.4a), without the corrective controller
(7.5.4c) was applied to the full-order manipulator system (7.7.2a-b). The response of the
closed-loop system is shown in Fig. 7.2 . It is seen that the response is oscillatory. Fig.
7.3 shows the system response when the full composite control (7.5.4a) with the correc-
tive and robust controllers was applied. This illustrates that without the corrective con-
troller, the closed-loop system cannot have stable tracking performance and use of the
corrective controller is necessary. Note that it can be seen from the figures, that track-
ing is achieved after an initial transient period during which the fast variables converge
to the manifold. Fig. 7.4 shows the response of the system with 66% variation in the

system parameters &, and a, . This illustrates the robustness of the control scheme.
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CHAPTER EIGHT

CONCLUSIONS AND FUTURE WORK

8.1 CONCLUSIONS

This thesis deals with the problem of controlling robot manipulators. A new algo-
rithm for adaptively controlling the motion of a manipulator, with special attention to
robustness of the controller, is developed. The main contributions of the research
described in this thesis have been to provide a reliable and powerful technique to main-
tain closed-loop stability and achieve trajectory tracking in the presence of unmodeled

dynamics and parameter variations.

The adaptation process used least squares identification to generate a set of piece-
wise linear, time-invariant models on-line for the nonlinear time-varying manipulator
dynamics. The identifled parameters of these models were used to update the input feed-

forward and feedback controllers.

The adaptive controller was designed using a decentralized control The effects of
coupling between the joints and other unmodeled dynamics were taken into account by
including a correction term in the control law which attempts to reduce the errors
resulting from these effects to zero. The gain and weighting matrices were selected and

updated on-line to ensure that the crrors e () — 0 as t — oc.

The decoupled adaptive control scheme consisting of a number of decentralized
controllers has several advantages over a single centralized controller. A major advan-
tage is that the joint control algorithms require much less computation than algorithms
for centralized control. Furthermore, due to the simplicity of the controller structure
and the possibility of using parallel processing, the decoupled control scheme can be

implemented on n single and fast microprocessors at a high sampling rate. thus improv-
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ing the system performance.

Another major advantage of the decoupled control scheme is its reliability and
failure tolerant feature. Suppose that one joint encoder gives erroneous readings of the
joint position In the centralized control system, this will affect the entire control action
for all joints, where-as in the decoupled system, only one control loop is effected and the
remaining joint controllers are unaffected In general. however, the decoupled controller
will yield a larger tracking error than the centralized controller, since it has to compen-
sate for the unmodeled joint couphings However, by incorporating a robust control
feature, we have been able to compensate against these effects to some extent  Accord-
ingly, we conclude that the decoupled control algorithm, at the price of a relatively
small decrease 1n the manipulator performance, Is considerably siimpier than the central-

12¢d contro) Jaw

A Cartesian robust adaptive control scheme was designed in Chapter 6 to control
the motion of the end-effector of the manipulator in Cartesian space. Note that
although the Cartesian controllers are independent and decoupled, the equivalent joint
control law 1s coupled This is because of the fact that to control the end-effector motion
in e ch Cartesian direction, appropriate torgues must applied to all Joints simultane-

ously

Asg can be seen from the simualation results given in Chapters 4-8, the controllers
achieved cracking of the reference trajectory with very small error and in the presence of
unmodeled dynamies and payload vatlations The results also justify the underlying
assumption that the dyvnatnie paratneters are slowly thne-varyving  Note that, in the
simulation results the method of bounded uncertainty achieved better tracking of the
reference trajectory with dess erroran comparison with the method of characteristic poly-
nomial assignment However, more computation s needed tn the former since computa-
tion of the @ matrin as done iteratively On the other hand, the accuraey of the second

method depends on the seleetions of the desired chartactenstie polynomial So that
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another choice of the desired characteristic polynomial may give better results.

In Chapter 7, the algorithm has been extended to the case of manipulators with
flexible joints. The dynamics of the full-order system was constructed in a singularly
perturbed form in terms of slow and fast variables, and a composite control strategy was
designed. The composite control scheme consists of a slow controller and a fast con-
troller. The slow controller comprises a rigid controi (7, ) based on the rigid model, and
a corrective controller (7;) based on the corrective slow subsystem, to compensate for
certain O (€) nonlinearities. Since the dynamics of the fast subsystem are osclllatory, a
fast control Tf has been designed to ensure asymptotic stability of the fast subsystem
and to guarantee that the fast modes will be on the slow manifold and the full system

dynamics are governed by a reduced-order flexible system model.

The composite stability analysis gave us a way to design robust control for the
slow subsystem to compensate for the effects of unmodeled dynamics which result from
neglecting the O((Q) terms and other unmodeled dynamics or parameter variations
arising from the mismatch in the estimated parameters and the actual ones The stabil-
ity of the full-order closed-loop system is achieved by selecting the weighting matrices
on-line and updating them in terms of the identifted parameters of the reduced-order
flexible model. The control strategy is based on the identification of the reduced-vrder
flexible system in a single step identificaticn process. Note that the implementation of
the composite control only needs measurements of # and 6 and the reference input. This
makes the scheme easy for real-time applications Simulation results show the validity

and robustness of the composite control scheme.

In summary, the controller simplicity and ease of implementation, its decoupled
nature and robustness to parameter variations are desirable attributes which make the
proposed adaptive control schemes feasible for solving many of the complex manipulator

control problems.
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8.2 SUGGESTIONS AND FUTURE WORK

The ideas in this thesis can be extended in several directions:
1- The algorithm developed in Chapter 4, can be extended to inciude the force control
problem Problems of position and force control can then be tackled together by design-
Ing a hybrid controller When a manipulator is constrained by reaction surfaces in some
directions (e g during comphant control), an interesting approach would be to modify
the dy namic model of the mampulator to tnecorporate the dynamies of the hand and the
reaction surfaces
2- The results of Chapter 7 can be extended to control an n-link flexible joint manipula-
tor A fast robust controller can be added to the composite control input if the fast varl-
able 5 excited along the trajectory because of yncertuinties in the fast dynamics
3- Further study is required to estimate the alze of the time step for updating the
identified models and the cantroller gains ‘This will result in further saving i the com-
putational rost
- Another area of reseatel s te devddaop o VESHaimplementation of the control algo-
nthm This can result n agmfloant speedup of the camputations invaolved “This ahould
woanae of the telatively simple structure of the algorithm Implementation
of the algerithm anvolves g large number of matny multphe ations and additions with
many of the coeflicients bang Boating point numbers I the computatiems for evaluation
of the models or the ectitpnated parameters s amplemented sy on g mintcomputer or
work station then the computation e will be high and the system response will he
slow A speaial purpese system architestgre s required Go tabe advantage of the mexdy-
larity of the algonithm an torms of somputational complexity In order to increase com
putational speed aperations have to, be paralledized or pipelined using speciud furpose
hardware with gh capalabits of matp woultiphoations A poaaible system architectyse
for each joant g« shown an hig w1 A bLand of weelepators working aa stases oo the

number crunching <imultanecys Their number vaties depending on the ntegaction
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allowed between the joints. These accelerators may well be math-coprocessors of the
master processor selected (i.e. 87 family of coprocessors for the 86 family of processors).
The main processor acts as a master and has the function of a supervisor performing
distribution and ccllection of new and computed coeflicients from the accelerators, esti-
mation of the parameters and communication with higher levels of control. Any special
chips required for interfacing may be implemented in VLSI. The type of microproces-
sors to be used may be selected depending on detailed calculations of the required com-
putational time. Fig. 8.2 shows the system architecture for the whole manipulator
hardware, with the slaves corresponding to each joint communicating with the master in
programmed 1/0 or interrupt mode. The above architecture will accelerate the response

of the system by at least a factor of n over a standard serial implementation.
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