.* National Library
of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontano
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontario)

Your e Volre référemnc e

Our e Notre idlorence

AViIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

$’il manque des pages, veuillez
communiquer avec I'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a Il'aide d'un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

Routing and Broadcasting in

Two-dimensional Linear Congruential Graphs of Degree Four

Kuo-Jui Raymond Lin

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada
June 1994

© Kuo-Jui Raymond Lin, 1994

ﬂ*. (I;J'ationa! Library Bibliothéque nationale

Yow hie Volre réMvence

Ohw e Notre rélérence

du Cana
Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques
335 Wellington Street 395, rue W
Otiaws, ORatio Onawa (Ontane)
K1A ON4 K1A ON4
THE AUTHOR HAS GRANTED AN

IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-315-97642-X

Canadi

Abstract
Routing and Broadcasting in
Two-dimensional Linear Congruential Graphs of Degree Four

Kuo-Jui Raymond Lin

A two-dimensional linear congruential graph G({fi, f2,* - -, fi},(81,82)), or 2-D LC
graph for short, of size s; x s is a graph in which the set of vertices is the set of
pairs of integers {(z,y) | 0 < = < 81,0 < y < 3,3}, and there is an edge from (z,y)
to fi(z,y) mod (s;,s;) for any (z,y) and any function in the set {f;, fa,- -+, fi} of
two-dimensional linear functions. 2-D LC graphs were introduced in [1].

In this thesis, we consider the problems of routing and broadcasting in 2-D LC
graphs of degree 4 in which f; generates a Hamiltonian cycle, and f, generates a few
disjoint cycles. First, some symmetric properties of 2-D LC graphs are discussed. We
then discuss a greedy global routing algorithm with a breadth first search scheme,
which uses a large number of path tables, and provide a more efficient scheme having
only one path table for all vertices of a graph. Two depth first distributed routing
algorithms are proposed. In absence of faults, both algorithms route messages along
the shortest path between a pair of vertices. They are evaluated in various cases of
faults. We also discuss an algorithm for finding a set of disjoint paths between a pair
of vertices. A broadcasting algorithm in LC graphs is proposed. We give functions
for which the broadcasting can be done in time O(log, n), which is asymptotically
optimal. We then investigate the broadcasting problem for 2-D LC graphs and

propose strategies that improve the broadcast time.

i

Acknowledgement

First, I wish to express my sincere gratitude to my thesis supervisor, Dr. Jaroslav
Opatrny, for his excellent guidance and kindly support during the course of this

thesis. I am also grateful for his patience and encouragement.

I thank Mr. Ching-Chun Koung for his encouragement and friendship. His work
on the properties of the network model has inspired ideas and his diligence has

influenced me in more ways than he knows.

I appreciate my parents for their constant support, and finally I thank my wife

for her consideration and support.

iv

Dedicated to my parents

Contents

1 Introduction 1
1.1 Motivation and Problem Domain 1
1.2 ThesisQutline. 4

2 Review of Current Network Models 6
21 Overview. e e e 6

2.1.1 Basic Notations of Graph Theory 7
2.1.2 Network Topology, Routing and Broadcasting Algorithms . . . 8
2.2 The Hypercube Graph 11
2.2.1 Definitions and Properties I
2.2.2 Routing .and Broadcasting Algorithms 12
23 ThedeBruijnGraph 15
2.3.1 Definitions and Properties 15
2.3.2 Routing and Broadcasting Algorithms 18
24 TheStarGraph L, 20
2.4.1 Definitions and Properties 20
2.4.2 Routing and Broadcasting Algorithms 23

3 Symmetries in Two-Dimensional Linear Congruential Graphs 30
3.1 Definitions 30
3.2 Review of Properties of Linear Congruential Graphs 32
3.3 Symmetric Properties of Two-Dimensional Linear Congruential Graphs

G, fo}y (B 4k4+1)) . o o et e 34
3.3.1 Graphsof SimpleForm. 35
3.3.2 Graphsof ComplexForm 45

vi

4 Routing Algorithms of Two-Dimensional Linear Congruential Graphs 53

4.1 GlobalRouting e 53

4.1.1 Global Routing in Graphs of Simple Form 55

4.1.2 Global Routing in Graphs of Complex Form 60
4.1.3 Comparison of the Global Routing in Graphs of Simple Form

and ComplexForm 61

4.2 Global Routing in Graphs of Simple Form with a Unique Path Table 63

4.2.1 Construction of the One-to-one Mapping Path Table 65

4.2.2 Construction of the Mapping Table 70

423 Evaluation. o oo 73

4.3 Distributed Routing 0oL 73

43.1 Construction of Length Tables 76

4.3.2 Conservative Algorithm 78

4.3.3 Progressive Algorithm 80

434 Evaluation. 0. 82

4.4 Finding Disjoint Paths 84

44.1 Connectivityofagraph 87

4.4.2 Algorithm of Finding Disjoint Paths 88

443 Evaluation.............. .. 0000, 96

4.5 Broadcasting e 97

4.5.1 Introduction and Definition 97

4.5.2 Broadcasting Algorithm 99

453 Evaluation. 120

5 Conclusion 124

5.1 ResearchResults 124

5.2 Future Considerations 126

vii

List of Figures

2.1
2.2

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Two ways of decomposing a 4-stargraph 22

n — 1 disjoint paths between two verticesof S, 26

Two-dimensional Linear Congruential graph G({fi, f2},(2',s2)) of

complexform e, 17
Data structure of global routing 56
Paths with the same valueof A(p) 72
Disjoint paths e 90
Upper bound on lengths of disjoint paths 95
Broadcasting Algorithm 00 100

Broadcasting in a one-dimensional graph containing fiy(z) =z +1 . . 102
Broadcasting in a one-dimensional graph 111
Broadcasting in a two-dimensional graph of simple form. 113

Modified broadcasting algorithm for Strategy3119

viii

List of Tables

4.1
1.2
4.3
4.4

4.6
4.7
4.8
4.9
4.10
4.11
1.12
4.13

The shortest-path table for vertex (0,0)of G, 62
The shortest-path table for vertex (0,0)of G, 63
An exampleof thedyo-table 74
Comparison of two global routing algorithms 75
Comparison of two distributed routing algorithms 85
Comparison of two distributed routing algorithms (continue) 86
Test results of finding disjoint paths 96
The actual run-time of broadcasting. 115
The expected broadcast time. 115
The test results of Strategy 1 117
The test results of Strategy2 118
Evaluation of Strategy3 120
Evaluation of empirical broadcast time 122

ix

Chapter 1

Introduction

1.1 Motivation and Problem Domain

Because of the advance in VLSI technology, the continuing dec.ine in the cost of
microprocessors and the demand for reliable computing systems with high total
computing power, many research efforts have been made to design massively parallel
processors. One of these systems is the multicomputer system. A multicomputer
system consists of a set of computers interconnected by a network in which a typical
computer might consist of a main processor, a local memory and a communication
processor to control the communications with other computers in the system. As
the processing resources, control and data are distributed in these systems, they are
more reliable than the systems with a single processor.

Many problems that cannot be solved efficiently by sequential computers can be
divided into smaller tasks or subproblems that can be executed in parallel. Fach of
these tasks may be assigned to a processor. After a processor finished its task, the
result may be sent to other processors. Communication among processors in such a
network is achieved by a message passing protocol.

In the design of a massively parallel computers system, one of the important,
design decisions is the topology of the network interconnecting all computers in the
system. Some basic considerations concerning the interconnection network are as
follows. The number of processors must be large enough to meet the demand for high
total computing power. The number of communication links at each computer must
be small since the number of connection pins is limited. To maintain a low message

latency, the distance (minimum number of links) between any two computers must

be small.

In the design of computer networks, graphs are usually used to model the com-
puter networks, in which the vertices correspond to the computers in the networks,
and the edges correspond to the communication links. In graph theoretic terms, a
graph corresponding to a network having the above desirable properties is a graph
having large size (i.e., large number of vertices), small degree and small diameter.
However, these three parameters are mutually related. For example, given a degree
A and diameter 1), the size S of a graph that can be constructed is bounded. It is
so-called (A, D)-graph problem.

Moore provided an upper bound on the size of a graph with given degree and

diameter as follows.
S(A,D)=14+A+AA-1)+--+AA- l)D-l

Many research efforts have been made to construct graphs of size near the upper
bound. It has been proved that the complete graph (D = 1, any A), rings (any D,
A = 2), Petersen graph (D = 2, A = 3) as well as Hoffman and Singleton graph
(D =2, A =T) attain the upper bound. However, for D > 2 and A > 2, the Moore
bound is unattainable {2, 3].

In addition to the above desirable properties of interconnection networks, some
other issues on network performance are fault-tolerance, traffic congestion and ease
of routing. A network with redundant paths between pairs of nodes can tolerate
more faulty nodes or communication links. Therefore, the number of disjoint paths
between any two vertices should be as large as possible. However, the maximum
number of disjoint paths is bounded by the degree of a graph. A network that has
its links uniformly distributed can be expected to minimize the congestion problem.
The property of every vertex having the same number of incident edges (i.e., regular
graph) is thus desirable. A symmetric topology of a network allows the use of
identical prucessors at every node since every node plays an identical role in the
network. The same routing algorithm can thus be applied to each node. It enables
the design of low cost routing hardware.

Based on the above considerations, soine graphs have been proposed as good

candidates for interconnection networks su .h as hypercubes [4, 5, 6], de Bruijn

2

graphs [7, 8, 9] and star graphs [10, 11, 12]. De Bruijn graphs and their variations
are well known large graphs of a given degree and diameter. Recently. a new class of
graphs, called (multidimensional) linear congruential graphs, has been proposed [13,
1]. A two-dimensional linear congruential graph G{{fi, f2.:**, fx}, (81,82)) of size
s1 X s and degree 2k is a graph in which the set of vertices is the set of pairs
of integers {(z,y) | 0 < z < 5;,0 < y < s} and there is an edge from (r,y) to
fi(z,v) mod (s,,s2) for any (z,y) and any function in the set {f1, f2,+--, fi} of two-
dimensional linear functions. It provides a uniform method to construct very large
graphs for any fixed degree and size.

It has been shown that with a proper choice of functions, a two-dimensional
linear congruential graph is larger than the de Bruijn graph of the same degree and
diameter, and it is regular and maximally connected (i.e., the number of disjoint
paths between any pair of vertices of a graph is cqual to the degree of the graph).
Moreover, we have proved that they have some symmetric properties. In other
words, two-dimensional linear congruential graphs have the desirable properties of
interconnection networks. Motivated by these properties, the aim of our research is
to investigate the routing and broadcasting in two-dimensional linear congruential
graphs, in particular, of degree four.

An efficient message routing scheme is one of the most important components
of a multicomputer system. To decrease the message latency, sending messages
along the shortest path between given source and destination nodes is expected.
In general, there are two types of routing schemes, global routing and distributed
routing, for sending a message from a source node to a destination node.

In a global routing scheme, the decision of a route for sending a message is made
at the source node. There are two ways to decide a route. One way is to construct
a table at each node. The table contains the shortest paths from the node to each
other nodes. Whenever a node wants to send a message, the node simply checks the
table to decide a route. This way is usually used when the calculation of a route is
time-consuming, Another way is to re-calculate a route at a source node whenever
a message will be sent by the source node.

In distributed routing scheme, a route for sending a message is not completely

decided by the source node, but by each intermediate node traversed by the message.

3

Each intermediate node chooses a link that probably leads to a shortest path to the
destination of the message to forward the message.

Since a multicomputer system may consist of a large number of nodes and com-
munication links, it is possible that some nodes or links in the system fail. Therefore,
a fault-tolerant routing scheme is required especially when a multicomputer system
is used in a mission-critical application. It should be able to send messages as long
as the source and destination nodes are connected. In global routing scheme, each
node must have the knowledge of all faulty components (i.e., faulty nodes and links)
since a route is completely decided at a source node. It is costly to maintain the
knowledge. On the contrary, in distributed routing scheme, each node may only
have to know the conditions of its incident links and adjacent nodes since the rout-
ing decisions are made at each intermediate node. However, due to the lack of global
knowledge of faults, a path determined by this scheme may not be the shortest.

As we mentioned, the existence of multiple disjoint paths between pairs of nodes
implies that a network can tolerate more faults. In addition, message congestion
can be minimized since messages between the same pair of nodes can be sent along
disjoint paths.

Broadcasting generalizes the routing process. It is a process of sending a message
from a node to all other nodes in the network in which any node that already received
the message can send a message to at most one of its neighbors in onc time unit.
Broadcasting is an important part of many parallel algorithms. Loading the same
program code from a front end to all the processors in a multicomputer system is a

typical example of broadcasting [14].

1.2 Thesis Outline

In the next chapter, two major categories of parallel processing: multicomputer and
multiprocessor are introduced. Some basic notations of graph theory are reviewed.
The performance and cost issues in the design of a network topology are discussed.
Formal definitions of global routing, distributed routing, disjoint paths and broad-
casting are given. We then revicw the routing and broadcasting algorithms for some

well-known graphs: hypercubes, de Bruijn graphs and star graphs.

In Chapter 3, we review some definitions and properties of linear congruential
graphs. Some symmetric properties of one- and two-dimensional linear congruential
graphs of degree four are proved.

In Chapter 4, the problems of global routing, distributed routing, finding disjoint
paths and broadcasting in two-dimensional linear congruential graphs of degree four
are discussed.

A global routing algorithm using a breadth first search approach is proposed.
The number of path tables used by this algorithm for a graph is proportional to the
size of the graph. Therefore, a more efficient global routing algorithm is discussed.
It only uses a unique path table and a very small size-independent mapping table for
all vertices of a graph. Furthermore, the maximum length of any path determined
by this algorithm is very close to the diameter of the graph.

Two distributed routing algorithms are investigated. They both use a depth first
search approach and route messages along the shortest path in absence of faults in
the network. Empirical results for these two algorithms applying in various faulty
conditions are given.

An algorithm that can find the maximum number of disjoint paths for any pair
of vertices is proposed. The lengths of the disjoint paths are bounded.

We propose a broadcasting algorithm that provides an upper bound O(log,n)
on broadcast time of certain one-dimensional linear congruential graphs, where n
denotes the size of a graph. However, it does not generalize in a simple way to
two-dimensional linear congruential graphs. The empirical broadcast times of two-
dimensional linear congruential graphs are evaluated. The broadcasting in two-
dimensional linear congruential graphs can be done in time similar to the time re-
quired for de Bruijn graphs of the same degree and comparable size. Three strategics
to improve broadcast time are discussed.

Chapter 5 presents conclusions.

Chapter 2

Review of Current Network
Models

2.1 Overview

The multiprocessor and multicomputer are two major categories of paraliel proces-
sors. A multiprocessor system consists of a set of n identical processors and a global
memory. The memory can be considered as if it were split into n "banks”, and
shared among the n processors. Communication among the processors is via shared
memory. The primary advantage of multiprocessor systems is that the data access
is transparent to the user, i.e., the user may consider the data as being kept in
a large memory, which is accessible to any processor. The architecture makes the
programming of the machine easy. However, it may lead to memory contention and
thus degrade the performance of system.

A maulticomputer system consists of a set of processors, each of which has its
own local memory (hence each processor can be considered as a computer). There
is no shared memory and no global synchronization. Communication among the
processors is via message passing, and computation is data driven. The primary
advantage of such architecture is the simplicity of its design. The nodes are identical
or of a few different kinds. Thus the system can be constructed at relatively low
cost.

Whether a parallel processors system is implemented by a shared memory multi-
processor or a message passing multicomputer, an efficient interconnection network

to interconnect the communicating elements is important for the performance of the

system.
Before we discuss the performance of interconnection networks according to the

properties of their related graphs, some basic notations of graphs will be reviewed

below [15, 16, 17].

2.1.1 Basic Notations of Graph Theory

A graph G(V, E) consists of two sets: a finite set V of elements called vertices and a
finite set E of elements called edges. Each edge is identified with a pair of vertices.
If the edges of a graph G are identified with unordered pairs of vertices, then (7 is
called an undirected graph.

The vertices u and v associated with an edge e are called the end vertices of ¢.
The edge e is then denoted as e = (u,v). All edges having the same pair of end
vertices are called parallel edges. If e = (v,v), then the edge e is called a self-loop
at vertex v. A graph is called a simple graph if it has no parallel edges or self-loops.
We will focus our attention on undirected simple graphs.

If there is an edge e = (u,v), then we say that edge e is incident with vertex u
(or v), and vertices u and v are adjacent. If two edges €; and ¢; have a common end
vertex, edges e; and e; are said to be adjacent.

The size of a graph G(V, E) is the number of vertices in V and is equal to |V|.

The degree of a verlez is the number of edges incident with the vertex. The
degree of a graph G is the maximum degree among all vertices of G and is denoted
by A. A Graph in which all vertices have the same degree is called a regular graph.

A path of length n from the vertex u to the vertex v is a sequence ejez -+ ¢y,
of edges together with a sequence v1v; - - vn41 of vertices where e; = (v,,v;41) for
1 £1: < n, and vy = u, v,4y1 = v. We will usually denote the path as v; = v; —
e = Upyr

The distance between two vertices of a graph is the length of the shortest path
between them. The diameter of a graph G is the maximum distance among all pairs
of vertices of the graph and is denoted by D(G).

A path with a sequence v vy« vp4y of vertices is closed if vy = v,4,. If the
vertices vy, vy, -+, U, are all distinct, the closed path is called a cycle.

A path with a sequence vyv; -+ v, of vertices is called a Hamillonian path for a

7

graph G(V, E) if vy, v, -+, vn are all distinct and {v1,vy,---,v,} = V. A cycle
vjv2 - v vy is called a Hamiltonian cycle if vivy- - v, is a Hamiltonian path. A
graph that has a Hamiltonian cycle is called a Hamiltonian graph.

A graph G'(V', E’) is a subgraph of a graph G(V, E) if V' and E’ are subsets of
V and E, respectively, such that an edge (u,v) is in E’ only if u and v are in V".

A graph is called connected if every pair of distinct vertices is joined by a path.
The removal of a vertex v from a graph G induces a subgraph of G that contains all
vertices except v and the edges not incident with v. The connectivity of a graph is
the minimum number of vertices that need to be removed to disconnect the graph.

A family of graphs {G,,G3,-:+,G,, -} is said to be recursive if G; can be
obtained from a number of copies of GG;_; by come simple operations, and G;_, is a
subgraph of G;.

An isomorphism of a graph G;(W, E,) onto a graph G3(V3, E,) is a one-to-one
correspondence o : V; — V; such that (u,v) is in E) if and only if (a(u), a(v))
is in E;. Two graphs G, and G, are isomorphic, written G, ~ G,, if there is an
isomorphism a of one onto the other. An isomorphism of a graph onto itself is called
an automorphism of the graph. A graph is vertez-transitive if and only if for every
pair of vertices v; and v, there is an automorphism of the graph that maps v, into
v2. A graph is edge-transitive if and only if for every pair of edges €; and e, there

is an automorphism of the graph that maps e; into e;.

2.1.2 Network Topology, Routing and Broadcasting Algo-
rithms

The interconnection topology and related routing algorithm are two major issues in
the design of an interconnection network. In choosing a topology, two factors: the
cost and performance should be carefully considered [18]. Since we use graphs to
model interconnection networks, we will analyze the performance and cost issues in
graph theoretic terms.

In order to achieve high performance within an interconnection network, the

following properties of the corresponding graph are desirable.

e Small diameter: messages in a network may pass through a number of inter-

mediate nodes before reaching their destinations. At each intermediate node,

8

both the message processing overhead and queuing delay result in the com-
munication latency experienced by a message. Small diameter of the graph
means that few number of intermediate nodes are visited by every message.

Thus the communication time is kept relatively short.

o Regular graph: If some of nodes in the network have less links than the others,
it is likely for the network to have bottlenecks at these nodes. A regular graph
has all of its edges uniformly distributed, therefore reducing the probability of

the occurrence of bottlenecks.

o Large connectivity: If there are many possible paths between each pair of
nodes in a network, in the presence of faults, the communication between non-
faulty nodes may continue to work in a higher probability. High degree of
connectivity prevents the non-faulty nodes from disconnected. (A graph with

connectivity n can tolerate at least n — 1 faulty nodes.)

When considering the cost of a network, two important properties of the corre-

sponding graph should be listed:

o Small degree: The number of connection pins is limited, and each physical
connection costs money. For each vertex of 2 graph, if the number of edges
incident with the vertex is small, i.e., the number of wires in the corresponding

network is small, then the cost is likely to be low.

o Regular graph: If each node in a network has the same number of links, onc

router design can be used for all nodes.

Obviously, some of the above properties are conflicting. For example, a graph
with small degree cannot have large connectivity. Thus any decision made in choos-
ing a topology will experience a tradeoff between cost and performance.

In addition to choosing a topology for a network, we must also select an algo-
rithm for transmitting messages through the network. This algorithm is called a
routing algorithm. A routing algorithm is a set of rules that specifies, for each mes-
sage, through which path to route the message and the data required to make such
decision. We will focus our study on four algorithms: global routing, distributed

routing, finding disjoint paths and broadcasting.
9

In global routing, a path for sending a message from a source node to a destination
node in a network is decided at the source node. Each intermediate node traversed
by the message just follows the path to forward the message. There may be more
than one path between these two nodes. We usually choose one of the shortest paths
to route messages. In the presence of faults, each node requires global knowledge of
faults existing in the network to ensure that the chosen path is valid.

Obviously, if each node is equipped with the information on all faulty component:
(nodes or links), a source node can always determine a fault-free path for every
message to its destination as long as these two nodes are connected. However, it is
too costly in space and time for each node to maintain the information especially
when the size of the network is large, or when this information keeps changing.

In distributed routing, each node is allowed to keep only the failure information
essential for making correct routing decision. The information kept in each node may
be only the conditions of its adjacent components, or some times, more information
other than just the adjacent components. Here, we only consider the former case.

Under this scheme, when a node wants to send a message, it is responsible only to
choosc one of its non-faulty links to send the message according to some pre-defined
rules. When an intermediate node receives the message, it chooses a link t¢. forward
the massage or returns the message to the sending node if necessary. Because each
node does not keep the information on all faulty components in the network, the
chosen paths may not be the shortest possible ones.

In a set of disjoint paths between two nodes u and v, any two paths do not
traverse a common node except nodes © and v. The existence of disjoint paths
between two nodes may speed up transferring large amount of data between these
two nodes. It also provides a way to select alternative routes in case a given node
in a path is faulty. The maximum number of disjoint paths between any two nodes
depends on the connectivity of the graph used to model the network.

Broadcasting is an information dissemination process in which a single originator
sends a message to all other nodes in a network as quickly as possible. There are

several models of broadcasting. The most common are as follows.

1. If, for each node in a network, all its links share the same transmitter, then

10

each node can send a message through at most one of its links during each

time unit.

2. If, for each node in a network, each link of the node has a dedicated transmitter,

then each node can send messages through all its links simultancously.

Here, we only discuss the former, i.e., a node that already received a message can
only send the message to one of its adjacent nodes during each time unit. Many fast
and efficient parallel algorithms require the use of broadcasting scheme as a basic
step.

In the following sections, we will review three kinds of graphs: hypercubes, de

Bruijn graphs, star graphs as well as the results of their related routing algorithms.

2.2 The Hypercube Graph

The hypercube is also known as cosmic cube, n-cube, binary n-cube and boolean n-
cube. Due to its structural regularity for easy construction and high potential for the
parallel execution of various algorithms [19], several multicomputer configurations

have been designed based on its topology [18, 4, 20].

2.2.1 Definitions and Properties

DEFINITION 2.2.1 [19] r-Dimensional Hypercube

In an r-dimensional hypercube, each vertez corresponds to an r-bil binary string,
and two vertices are linked with an edge if and only if their binary strings differ in
precisely one bit. Thus an r-dimensional hypercube has N = 2" vertices and r2r-1

edges.

The edges of a hypercube are partitioned according to the dimensions that they
traverse. An edge is called a dimension k edge if it links two vertices that differ in
the kth bit position.

Hypercubes are regular graphs since each vertex of an r-dimensional hypercube
is adjacent to r = log, N other vertices, one for each bit position. Its degree is thus

r, i.e., the degree increases logarithmically with its size.

11

It is proved in [19] that hypercubes have diameter r = log, N and are vertex-
and edge-transitive.

The connectivity of an r-dimensional hypercube is r, since there are r disjoint
paths between each two vertices [5]. We will discuss the scheme of finding disjoint
paths later.

An r-dimensional hypercube can be constructed from two copies of the (r — 1)-
dimensional hypercube [19]. Thus hypercubes are recursive.

From the viewpoint of network performance, hypercubes have the following desir-
able properties: diameter r = log, N, regular graph and large connectivity. However,

when building a large hypercube, its large degree will increase the cost.

2.2.2 Routing and Broadcasting Algorithms

Global Routing

Given two vertices vy and v, of an r-dimensional hypercube (of size N = 27), one of
the ways to find the shortest paths from v; to v, is to modify the bits of v; one at
a time in order to transform the binary representation of v; into v, Each time one
bit is changed, one edge will be crossed.

If the binary representations of v; and v; differ in & bits, 1 < k < r, then the
length of the shortest paths is k. Since the k different bits can be changed in any

order, there are k! shortest paths.

Distributed Routing

In a fault-free network modeled by a hypercube, each intermediate vertex can de-
termine the next hop of a message by examining the destination of the message and
choosing, from all its adjacent vertices, one that is closest to the destination. One
possible method is to align the binary representation of the source vertex with that
of the destination vertex from right to left bit-by-bit. However, this scheme becomes
invalid in the presence of faulty components (faulty vertices or faulty edges) in the
network. Thus a fault-tolerant distributed routing scheme is required.

In recent years, researchers have proposed several schemes on this subject. Some

require each vertex to keep more informations on faults rather than just the con-

12

ditions of its incident edges and adjacent vertices {21, 22]. We will here, however,
narrow our discussion to the case in which each vertex keeps only the information
on its incident edges and adjacent vertices.

A simple algorithm under this constraint was proposed in [21]. This algorithm
can route messages between any pair of non-faulty vertices of an r-dimensional
hypercube as long as the total number of faulty components is less than r.

The evaluation of the algorithm running on an r-dimensional hypercube is briefly
summarized as follows.

Let f be the number of faulty edges, g be the number of faulty vertices, and len(u,v)

be the distance between two given vertices u and v.

o If f+g <r,and u,v are not faulty, then it requires at most len(w, v)+2(f+g)

hops to send a message from u to v.

o If there are (r —1) faulty edges, i.e., f = r—1, then it will routc a message from

a vertex u to another vertex v via one of the shortest paths between u and v

with probability greater than (1 — %—"J‘—)) where 7y = 2=t and { = len(u, v).

For example, if there are 4 faulty edges in a 5-dimensional hypercube, and
len(u,v) = 5, then the probability of routing via the shortest path is greater
than 0.948.

o If there are (r — 1) faulty vertices, i.e., g = r — 1, then it will route a message

from a vertex u to another vertex v via one of the shortest paths between u

1-1 .
and v with probability greater than (1 — (—r(’iéf_—?)((l—l-‘_—?;)—)) where ry = =2, and

[= len(u,v). For example, if there are 4 faulty vertices in a 5-dimensional
hypercube, and len(u,v) = 5, then the probability of routing via the shortest
path is greater than 0.985.

If g or f is equal to r — 1, the above two probabilities of routing via the shortest
path increase with r. However, it does not guarantee that a message can be routed
between any two non-faulty vertices if the number of faulty components (f + g) is
greater than or equal to r. Thus we now discuss another routing algorithm using a
depth-first search approach [23].

Under the depth-first search routing scheme, each message contains a stack that

keeps track of the vertices traversed by the message, and tries to avoid visiting a

13

vertex more than once except when backtracking is forced (i.e., when there is no

alternative path available). Thus the algorithm will always route a message to its

destination successfully as long as the source and destination are connected.
Similarly to the previous routing scheme, we list some important results as fol-

Jows.

o In the worst case, the algorithm uses len(u,v) + 2(2" — len(u,v) — 1) hops to
send a message from a vertex u to a vertex v of an r-dimensional hypercube

if u and v are connected.

o In an r-dimensional hypercube, it will route a message from a vertex u to
another vertex v, len{u,v) = r, via one of the shortest paths between u and v
with probability Pl greater than or equal to

r2" "=

(1 - Z;-":l'(r'” fé—g,—_j—) if there are only f faulty edges, or

C2 -2~

(1- Z";"-S"'”’ ~Z3#=-) if there are only g faulty vertices.
g

For example, if » = 5, and f = 4, then the probability of routing via the
shortest path is P > 0.948.

If =35, and g = 4, then the probability of routing via the shortest path is
P > 0.985.

Actually, the probabilities of routing via the shortest path in the above two
algorithms are very similar. However, the expected length len(u,v)+2(f +g) of a
path obtained by the first algorithm is closer to the length of the shortest paths if
f+g<r.

Finding Disjoint Paths

It has been proved in [5] that for each two vertices v and v of an r-dimensional
hypercube, if the distance between u and v is ! (i.e., the binary representations of u
and v differ in { bits), then we can always find r disjoint paths between u and », in
which [paths are of length I, and (r — [) paths are of length (I + 2). For example,
let r = 5, © = 00000, and v = 11100. Then the five disjoint paths are

00000 — 10000 — 11000 — 11100,

00000 — 01000 — 01100 — 11100,

14

00000 — 00100 — 10100 — 11100,

00000 — 00010 — 10010 — 11010 — 11110 — 11100,

00000 — 00001 — 10001 — 11001 — 11101 — 11100.

Each path starts changing a bit in different position (i.e., crossing an edge in different
dimension), and then changes the bits that are different from the corresponding bit of
the destination one by one in the cyclically left (or right) order until the destination

is reached.

Broadcasting

An r-dimensional hypercube can be constructed from two (r — 1)-dimensional hy-
percubes by simply connecting the ith vertex of one (r — 1)-dimensional hypercube
to the ith vertex of another for 0 < i < —}2\1 where N = 27. The edges that con-
nect the two copies are dimension r edges. We can simply prove by induction that
broadcasting from any vertex of an r-dimensional hypercube can be done in 7 steps.

We first consider a one-dimensional hypercube. Since there are only two vertices
connected by a dimension one edge, one vertex can inform another in one step.
Assume that broadcasting from any vertex of a (k — [)-dimensional hypercube can
be done in k—1 steps. Thusin a k-dimensional hypercube, any vertex » can inform
all the vertices that belong to the same copy of the (k — 1)-dimensional hypercube
containingvin k—1steps. Instep k, each vertex that has been informed can send the
message along its dimension k edge, and therefore every vertex of the k-dimensional

hypercube can be informed in k steps.

2.3 The de Bruijn Graph
2.3.1 Definitions and Properties

Similarly to a hypercube, the vertices of a de Bruijn graph are strings of characters,
and the diameter of a de Bruijn graph grows logarithmically with its size. A de

Bruijn digraph is defined as follows.

DEFINITION 2.3.1 (24] de Bruijn Digraph B(d, D)
Each vertex of a de Bruijn digraph B(d, D) corresponds to a string of length D
on an alphabet A of size d where we usually denote A ={0,1,2,---,d—1}. Thereis

15

an arc (a directed edge) from each verter uyuz - --up to vertices ugus - - -upa where

a is any letter of A. Therefore, B(d, D) has d® vertices and dP+* directed edges.

According to the above definition, in addition to having outdegree d, each vertex
of the de Bruijn digraph B(d, D) also has indegree d. Thus B(d, D) is a regular
digraph.

When d = 2, the labels of vertices of the de Bruijn digraph B(d, D) are the same
as those of the D-dimensional hypercube, and B(2, D) is called a D-dimensional
binary de Bruijn graph. Although the structure of B(2, D) has little in common
with the D-dimensional hypercube, many D-dimensional hypercube computations
can be efficiently simulated on B(2, D) [19].

Since we only consider undirected graphs, we present the definition of the undi-

rected de Bruijn graph UB(d, D) as follows.

DEFINITION 2.3.2 [7] Undirected de Bruijn Graph UB(d, D)

An undirected de Bruijn graph U B(d, D) is the undirected graph obtained from
the de Bruijn digraph B(d, D) by omitting the orientations of the edges, removing
the s-lf-loops, and replacing each double edge by a single edge. The edges of a vertex
can be classified into two sets, left-shift edges and right-shift edges such that the
verter ujuy - - - up is connected to all vertices ugus---upa by its left-shift edges and

auyuy - up-y by its right-shift edges where a is any letter of the alphabet A.

Clearly, the diameter of the undirected de Bruijn graph UB(d, D) is at most D
since given a source vertex u = u,uz--- up and a destination vertex v = v vy ---vp,
we can change the label of the source vertex to be that of the destination vertex
by continuously shifting the label of the source vertex either left or right, and we
have to change at most D letters. Actually, the diameter of UB(d, D) is exactly D
since it requires D shifts to change the label 00---0 to the label 11:.-1 A shifting
operation corresponds to an edge traversed. Thus a path from u to v can be given by
either v = wyuy---up — uguz++-upv; — U3+ UPVIVy — +++ — VU3 VD = U OF
U= WUy - UD — VDUUg*** UD—1 — VD UDU "~ UD—g — **+ = VU -+ Vp = V.
The above routing scheme is very easy, but the resulting paths may not be the
shortest. We will discuss an algorithm that determines the shortest paths for any

two vertices of UB(d, D) in the later subsection.

16

An undirected de Bruijn graph UB(d, D) contains d° — d? vertices of degree 2d,
d vertices of degree 2d — 2 and d? — d vertices of degree 2d — 1 [25]. Thus UB(d, D)
is of degree 2d, but it is not a regular graph.

The connectivity of UB(d, D) is 2d ~ 2 [26]. U B(d, D) is maximally connected
since the minimum degree of any vertex of U B(d, D) is also 2d — 2.

There are two methods to construct a B(d, D) from a smaller de Bruijn graph.
Both are more complex than that of hypercubes. The first method is to maintain the
degree of the original graph constant and to increase its diameter by 1, i.e., B(d, D)
can be constructed from B(d, D—1) by line graph operation [7]. The second method
is to maintain the diameter of the original graph constant and to increase its degree
by 2, i.e., B(d, D) can be constructed from d copies of B(d—1, D) [8]. The advantages
of the second method are that B(d — 1, D) is a subgraph of B(d, D), and that the
method can also be used for undirected de Bruijn graphs.

Besides the low diameter log; N (where N = dP is the size of U B(d, D)) and
maximum connectivity, the undirected de Bruijn graphs have the following advan-

tages over the hypercubes.

e The degree and diameter of the undirected de Bruijn graphs are not related.
For a given size d” of graph, we can choose either a small degree or a small
diameter depending on the requirement of the design. However, a hypercube

always has its degree equal to its diameter.

e For a given degrec A = 2d and a given diameter D, the size of UB(d, D) is
dP. Comparing with the D-dimensional hypercube (of size 27, degree and
diameter D), if we let A = D, then the size of UB(%—,D) is (%)D, which is
much greater than 2P when A > 4.

e We can construct a de Bruijn graph UB(d, D) of any size d®. However, the

size of a hypercube must be a power of 2.
On the contrary, undirected de Bruijn graphs have the following disadvantages.

e Undirected de Bruijn graphs are defined only for even degree. However, a

similar graph has been defined for any odd degree [7].

e Undirected de Bruijn graphs are not regular.

17

2.3.2 Routing and Broadcasting Algorithms

Global Routing

The algorithm described in the previous subsection generates two paths of length
D between any two vertices u and v of UB(d, D). These two paths may not be
the shortest. For example, let u = wjuz++-up, v = vjvg+--vp, and ;- -up =
vy -+ Up-i41 Where 1 < i < D. Then the path u = wyug---u;---up — uguz-- -y,
< UDUD-ip2 = U3 Ui UDVD-i42UD-i43 —F *** — Uilliy1 ** UDVUD-i42 ** " VUD —
vvy---vp = v is of length i —1 < D.

However, this scheme is still not suitable for some pairs of vertices in finding
the shortest paths since the edges traversed by the paths are all left-shift edges (or
all right-shift edges). For example, let D = 10, u = ujug---uy0, v = V102 -+ V1o.
If uy:--ug = vs - vg are the only consecutively identical strings in u and v, and
uy # Vo, Ugo # v then the paths found by the above scheme are of length D = 10.

An algorithm proposed in [27] is always able to find the shortest paths between
any two vertices u and v of UB(d, D), in which a path may contain both left-
and right-shift edges. According to the algorithm, the shortest paths in the above
case are given as follows. u = ujug---ujg — UgUz: - UEW; — V4UgU3 ‘- - Uyp —
VaUqlly + * * Ug — VaUzUqlin -+ - Ug —> Uy * *+ Vglig *+ + Uy —> Wl *+* Vglig - * * Ug —* Uy * * * Vgllp
-+ ugtyo = v where w; and w; are any letters in A.

We can observe that it is able to find more than one shortest path of length 7 < D
between u and v, since w; and w, are any letters in A. Thus the communications

could be more or less balanced.

Finding Disjoint Paths

The connectivity of U B(d, D) is 2d— 2, consequently, there are at least 2d—2 disjoint
paths between any two vertices of UB(d, D).

For any two vertices u = ujuz---up and v = vyv;---vp of UB(d, D), we can
easily find d disjoint paths between them of length at most 2D as follows [26].
P ={p|u=wug -up — ugz---uUpi — Ualg-- Upil — -+« — -0 —
Upti- 1 — Up_UpIic i — oo — VU3 UpL = V¥ -VUp =0, for 0 < i < d—1}.

If any two vertices in a path p; are identical, i.e., there is a cycle in the path, then

18

we can remove the cycle from the path to get a shorter path.

One of the disadvantages of the scheme is that, for each pair of vertices, the set
of disjoint paths between them always traverses the vertices 00+-+0, 11---1, +--,
(d—1)(d—1)---(d —1). It may lead to traffic congestion at these vertices.

Another algorithm can find d - 1 disjoint paths of length at most D + 1 between
any two vertices u and v [7]. The set of pathsis P = {p; | u = wyup---up —
UgUz:*UDE — Uglg':*UDIV] — UglUs - UDIVILg — +++ — {U;-* VUp_gUp_y —
v+ Up-1vp =, for 0 <7 < d—1}. There are d paths in P, but two of them may
conflict. For example, let u = 0000 and v = 1111 be two vertices of UB(d, 4). Then
both po and p; contain vertex 0001. Similarly, any path in P that contains cycles
can become a shorter path. Therefore, there are d — 1 disjoint paths of length at

most D + 1.

Broadcasting

Broadcasting algorithms for de Bruijn graphs have been proposed in [28]). They
provide upper bounds on the broadcast time of both directed and undirected de
Bruijn graphs as follows. For de Bruijn digraphs, the broadcast time b(B(d, D)) <
5‘—‘;‘—1D + g—, and for undirected de Bruijn graph, the broadcast time (U B(d, D)) <
i‘{-lD + 42ﬂ. These two upper bounds are very similar.

Two important properties have been proved in {29] as follows.

e For any p < d, there is a spanning directed p-ary tree of depth at most
Dflog, d] in a de Bruijn digraph B(d, D). Thus b(B(d, D)) < pD[log, d].

o The broadcast time b(B(pq, D)) can be established in terms of 5(B(p, D)) and
b(B(q, D)).

According to the above properties, the upper bounds on broadcast time of de
Bruijn digraphs are improved for d > 15. Since the undirected de Bruijn graph
can be obtained from the de Bruijn digraph by removing the restriction of the
orientations of the edges, an upper bound on b(B(d, D)) can also be considered
as the upper bound on §(UB(d, D)). Since the upper bounds on 6(B(d, D)) and
b(UB(d, D)) proposed in [28] are very similar, the results in [29] also improve the
upper bound on b(U B(d, D)) for some d.

19

2.4 The Star Graph

Like the hypercube, the star graph possesses rich structure, symmetric properties,
and fault-tolerant capabilities. However, it has a smaller diameter and degree than

the hypercube of similar size.

2.4.1 Definitions and Properties

The star graph is a member of a class of graphs called Cayley graphs. This class
of graphs uses a group-theoretic approach as a basis for defining graphs. Actually,
some properties of the star graph are generic properties of the Cayley graph (e.g.,
every Cayley graph is vertex-transitive [10]). Thus, before reviewing the definition

of the star graph, we first review the definition of the Cayley graph below.

DEFINITION 2.4.1 [10] Cayley Graph

Let G be a finite group consisting of the set of finite permutations generated by
a sel of generalors g = {g1,92, ++,9n}- A Cayley graph is a graph in which the
verlices correspond to the elements of the group G, and the edges correspond to the
action of the generators on vertices. That is, there 1s an edge from a vertez u to a

verlex v if and only if there is a generator g; € g such that ug; = v in the group G.

Here, the set g of generators must be closed under inverse so that the resulting
graph can be viewed as being undirected.

The star graph and pancake graph are well known examples of Cayley graphs. In
addition, hypercubes and cube-connected cycles can be defined as Cayley graphs [10].
In this thesis, we focus our attention only on the star graph. The definition of the

star graph can be given as follows.

DEFINITION 2.4.2 [30] n-Star Graph S,

An n-star graph denoted by S, is the Cayley graph specified by a set g of gen-
erators on a group G of all permutations on n symbols, and g is defined as foliows.
The set g consists of n ~ 1 transpositions g;,93,"+,gn where g; € g is the trans-
position that interchanges the symbol in the ith position of a vertex with the symbol

in tls first position, and leaves the remaining symbols in the same position. That

20

is, g consists of the following generators: g, = (2134:--n), g3 = (3214---n), .-
gn =(n234--- (n—1)1).

*

Since there are n! permutations on n symbols, the n-star graph S, consists of n!
vertices. There are n — 1 generators applied on every vertex, and there is no self-loop
at any vertex. Therefore, S, is of degree n — 1, and it is a regular graph.

The connectivity of S, is n — 1 [31]. Since its degree is also n — 1, the star graph
is maximally connected. The diameter D(S,) is |2(n — 1)] [10]. Further discussion
about the connectivity and diameter will be given in the following subsection.

It is proved in [10], due to the inherent properties of Cayley graphs, that the star
graph is vertex- and edge-transitive as well as hierarchical. The hierarchical property
is especially essential to the algorithm for finding disjoint paths and broadcasting,
which will be introduced later.

From here on, we will use {A, B,C,- -+, Z} to denote the n symbols,and ABC ... Z
to denote the identity permutation I on n symbols. Z is not necessary the 26th sym-
bol, but rather the nth symbol.

An n-star graph S, on a group G can be decomposed in two ways [11]. An
example is given in Figure 2.1.

The vertices of 5,, can be decomposed into n subgroups of G based on the symbol
in the last position. Each of the n subgroups (subgraphs) contains (n — 1)! permu-
tations (vertices) and is isomorphic to S,,_;. These subgraphs are interconnected
by edges corresponding to interchanging the symbol in the first position with the
symbol in the last position. That is, any two subgraphs are directly connected by
1’:—5_112 = (n — 2)! edges.

We will use X; to denote the subgraph consisting of the vertices that contain
the symbol X in the ith position. S, can thus be decomposed into n subgraphs
An,Bn,-:+,Z,. In addition, S, can also be decomposed into n subgraphs, each iso-
morphic to S,,_1, along any one of its dimensions. For example, S; can be partitioned
into four interconnected copies of Ss, denoted by A4, By, Cy, Dy, or Az, B3, Cs, D3,
or Az, B;,C,, D,.

In addition to the above decomposition strategy, an n-star graph S, can also be

orthogonally decomposed into A;, A,,- -+, A,. Similarly, the subgraphs A;, As,---, A,

21

-
e
.’ 3

‘ \ m P K .~

~

e aa, 1Y ‘
’ ” SARIC +" ACBD .

‘ »

“®-=n

A g€t

Figure 2.1: Two ways of decomposing a 4-star graph

22

are each isomorphic to S,.;. However, A, is a collection of (n — 1)! isolated vertices.
Every vertex in A; is connected to a vertex in each of the subgraphs Az, A3, .-, A,.
There is no edge between any two subgraphs A; and A, where? # j,and 2 < i,j < n.
Similarly, this orthogonal decomposition can be carried out using any symbol. For
example, S4 can be partitioned into A, A, A3, A4, or By, B,, B, By, and so on.

Both the star graph and the hypercube are vertex- and edge-transitive, hierar-
chical, and maximally fault-tolerant. However, a star graph has smaller degree and
diameter than the hypercube of comparable size. A table of comparison between
their degrees and diameters can be found in [11].

We now discuss the routing and broadcasting algorithms on the star graph based

on its symmetric and hierarchical properties.

2.4.2 Routing and Broadcasting Algorithms

Since the star graph is vertex-transitive, finding a path between two vertices is
equivalent to finding a path between a specific vertex and the identity vertex.

Let ¢1,82,°" -, 9y be a path from a vertex u to a vertex v of an n-star graph
where g; € g. Since ugy,g2,-+*,9p = v, V" ug1, g2, +,9, = v™'v = I. Therefore,
91,02, »gp is also a path from the vertex v~'u to the identity vertex /. Conse-
quently, the problem of routing becomes that of sorting. For example, if u = BCAD,

and v = CADB, then the sequence g4g3g. is a path from u to v, and it is also a

path from v~'u = (BDAC)(BCAD) = DABC to I = ABCD.

Global Routing

A simple rule for finding the shortest path from a vertex v # I to the identity vertex
I=ABC---Z of S, can be introduced as follows [11].

Starting from v, repeat the following steps until I is reached.

1. If A isin the first position, move it to any position not occupied by the correct

symbol.

2. Otherwise, (i.e., X, any symbol other than A, is in the first position) move X

to the its correct position.

23

Actually, any vertex (permutation) v can be viewed as a set of cycles, i.e.,
cyclically order sets of symbols with the property that each symbol’s desired po-
sition is that occupied by the next symbol in the same cycle. For example, if
v=BDIAGFEHC, the set of cycles is then (BDA)(IC)(GE)(F)(H). The cycles
of length at least two are called p-cycles (e.g., (BDA), (IC), (GE)). The cycles of
length one are called i-cycles (e.g., (F), (H)).

For each p-cycle, we must move the first symbuol of the cycle to the first position
of the vertex notation (i.e., interchange with A), and thus take one step.

We then consider the first p-cycle. If A is not in the first position of v, the above
step is saved, and A must be the last symbol of the first p-cycle. Let the length
of the first p-cycle be {. After { — 1 transpositions, A is in the first position. Thus
another step is saved.

Consequently, the minimum distance d(v) between v and I will be as follows.

0 if A is the first symbol of v
2 otherwise

d(v)=c+m——{

where ¢ is the number of p-cycles, and m is the total number of symbols in p-cycles.
Therefore, in an n-star graph S,,, the maximum distance between any vertex and
! is |2(n — 1)}, the diameter is then also |3(n —1)]. The proof for the diameter of

S, can be found in [10]. For example,

I. when n isodd, if v = ACBED:--2Y, d(v) =c+m =2 +(n—-1) =

[3(n - 1)].

{

2. when niseven,ifv=BADC - ZY, d(v) = ctm-2=3+n—~2= 13(n-1)].
fv=ADBCFEHG - 2Y,d(v) =c+m= 2ii(n-1)=[3(n-1)).

Distributed Routing

We now introduce a distributed routing algorithm presented in [32]. This routing
algorithm is based on the greedy routing algorithm and uses the depth first search
approach combined with a backtracking technique. The routing decision for a mes-

sage is made at each intermediate vertex v according to the following information:

e the p-cycles and i-cycles of v,

24

o the state of its incident edges,

e the vertices that have been visited by the message and the path followed, which

are carried by the message.

The routing algerithm running on an n-star graph S, will route messages along
one of the shortest paths from the source vertex u to the destination vertex v if no
faults are encountered. In the presence of faults, it will always find a path from u
to v with a bounded number 2(n! —1) — ! of message hops if u and v are connected
where [is the distance between u and v. Otherwise it will return the message to u
after at most 2(n! -- 2) message hops.

At an intermediate vertex w, if all its edges that may lead to the shortest path
from w to the destination vertex are invalid, and if vertex w can still forward the
message along a valid edge, the number of extra added message hops due to this
detour does not exceed four. A walid edge is defined as a non faulty edge that sends

a message to a non visited vertex.

Finding Disjoint Paths

Since the connectivity of an n-star graph S, is n — 1, there are n — | disjoint paths
between any pair of vertices of S,. We now discuss an algorithm for finding a set of
n — 1 disjoint paths between any two vertices of S, using the orthogonal decompo-
sition property of the star graph (i.e., S, is decomposed into A;, A,,--+, A,). Kach
of the disjoint paths is of length at most D(S,)+ 2 if n is odd, or D(S,) +3 if n is
even (D(S,) is the diameter of S,).

Since S, is vertex-transitive, finding a set of disjoint paths between any two
vertices of S, is equivalent to finding a set of disjoint paths between I € A; and a
specific vertex v. We then can partition this problem into two cases as follows based
on the subgraph where v is. (refer to Figure 2.2)

Letu =1, g = {g2,93, -, gn} be the set of generators, u; be the vertex adjacent
to u via the edge g, (i.e., ug; = v,), and v; be the vertex adjacent to v via the edge
gi le,vg,=v;),2<i<n.

Recall that every vertex in A; is connected to a vertex in each of the n — 1

substars Az, A3, -+, A,. Ifvis in A; (i.e., both u and v are in A,), both u; and w;

25

Case 1: visinAl PN

Figure 2.2: . — 1 disjoint paths between two vertices of S,

26

are in A;. Obviously, there are n — | disjoint paths p;,p2,:--,pn between u and v
where p; is the path (u, u;, p}, v;, v), and p! is the shortest path from u; to v, through
A;.

Since A; is isomorphic to S,-;, the distance between u; and v; in A; is at most
D(Sn-1). Thus, the length of any path p; in the set of disjoint paths is at most
14 D(Sp-1) 4+ 1 =D(S,1) + 2.

We now consider the cases that v is in A;, 7 # 1. That is, the vertex v; is in A,
if i # j, and v; is in A;.

If v; = u, u and v are adjacent via the edge g;, There is a path of length
1. Recall that any two vertices in the same substar A;, j # I, are connected to
different vertices in A;. Let v;; = vig;. Thus, v;; is in Ay if ¢ # j. Since each vertex
ug is in different substar Ax (2 < k& < n), we can choose a one-to-one mapping
between the set of v;;’s and the set of Ay’s where i # j, k # 7,2 < ¢,k < n. Thus,

the remaining n — 2 disjoint paths are of the form
(u,uk € Ak, -+, vijk € Apyviy € Ayyv, € Ajy0).

Each path is of length at most D(S,-1) + 4.
If v, # u, v and u are not adjacent. Since u, is in A;, we can choose a vertex v
from v;’s such that one of the shortest paths between v and u; traverses through v;.

Thus, there is a path of the form
(u,uj € Ajy- -+, 0 € AJ,v).

Its length is at most D(Sy,-1) + 1. Another one of the disjoint paths can be of the
form

(u,um € Am,"'avjm € Amavj € Al’”)’

where m # j. Its length is at most D(S,-;) + 3. We then choose a one-to-one
mapping between the set of v;;’s and the set of Ai’s where i # j, i # I, k # j,

k # m, 2 < i,k < n. Similarly, the remaining n - 3 disjoint paths are of the form
(u,ux € Ag, -+, Vijk € Ak, vij € A1, v € A),v)
Each path is of length at most D(S,-1) + 4.

27

e

If n is even, D(S,) = D(Sn-1) + 1, else D(S,) = D(Sn-1) + 2. Therefore, for
any two vertices of S, there are n — 1 disjoint paths, each of which is of length at
most D(S,_1)+4 = D(S,)+3if n is even, or D(S,-1)+4 = D(S,)+2 if n is odd.

Broadcasting

We now introduce a broadcasting scheme on star graphs, which was presented
in [30). Like the broadcasting scheme on hypercubes, this broadcasting scheme
on star graphs employs the hierarchical structure of the star graphs. However, they
start broadcasting a message in different order.

The broadcasting algorithm on an r-dimensional hypercube first broadcasts the
message to vertices of the one-dimensional hypercube (subgraph) to which the orig-
inating vertex belongs, and then to all vertices of its two-dimensional hypercube
(subgraph), and so on.

On the contrary, the broadcasting algorithm on an n-star S, first sends the
message to at least one vertex of each subgraph S,,_;, and then each subgraph S,_,
sends the message to at least one vertex of each its subgraph S,.2, and so on.
Consequently, the broadcasting problem on an n-star graph is reduced to n parallel
broadcasting problem on (n — 1)-star graphs.

Since an n-star graph S, is vertex-transitive, we can assume that the originating
vertex is the identity vertex ABC --- Z, which is in the substar Z, isomorphic to
Sn-1-

The algorithm of broadcasting a message to the other n — 1 substars A,, B,,

-+, Y, (each isomorphic to S,_;) consists of two phases. It first routes the mes-
sage to n — 1 vertices of Z, in [log, n] steps such that each of the (n — 1)-stars
Ay By, -+, Y, is connected to one of the vertices. In the second phase, by applying
gn simultaneously, each of the n — 1 vertices of Z, that have received the message
will route the message to a unique substar in one step.

For example, when the identity vertex ABC DEFGH of Sg broadcasts a message,

the message is routed as follows.

e In phase 1,

at step 1, ABCDEFGH 5 BACDEFGH.
28

at step 2, ABCDEFGH & CBADEFGH,
BACDEFGH 2 DACBEFGH.
at step 3, ABCDEFGH & EBCDAFGH,
BACDEFGH % FACDEBGH,
CBADEFGH % GBADEFCH.

o In phase 2, these seven vertices of the substar Hg route the message simul-

taneously to the other seven substars As, Bg, - --,G5 along its gg edge.

Then each of the n substars A,, By, -+, Z, broadcasts the message in a sim-
ilar way until 1-stars (consisting of only one vertex) are reached. Therefore, the
broadcast time b(S,) is Y 1,([logyn] + 1). Since the size of S, is N = n! < 2",
and b(S,) = ¥ ,([log, n] + 1) = O(nlog, n) = O(log, N), this algorithm is a near

optimal broadcasting algorithm.

29

Chapter 3

Symmetries in Two-Dimensional
Linear Congruential Graphs

In this chapter, we first review the definitions and some properties of DCC linear con-
gruential graphs and two-dimensional linear congruential graphs. We then prove the

symmetric properties of two-dimensional linear congruential graphs G(F, (2', s;)).

3.1 Definitions

We will use N to denote the set of nonnegative integers and Z, to denote the integer
set {0,1,...,p— 1}. In this thesis, all elements of any vector or matrix are in V.

We will first introduce the definition of linear function of dimension d.

DEFINITION 3.1.1 Linear Function of Dimension d
Let d € N. We say f is a linear function of dimension d if f(Z) = TA+ b where
A is a d by d constant matriz, b is a constant vector of length d, and & is a variable

vector of length d.

For example, f(Z) = TA + b is a two-dimensional linear function where 4 =
(z

(5 0) B=(3,1),and 7 =

01) ,y) is a variable vector.

DEFINITION 3.1.2 d-Dimensional Linear Function of Simple Form and

Function of Complex Form

30

Let f() = £A+b be a d-dimensional linear function where

ayy a1z - Qyy

azy Qa2 -+ Qg
A= C.

ann aqd2 -+ ay

We say the function f is of simple form ifa;, = 0 for i # j,1 < i,j < d. The
function f is of complex form if a;; #0, i # j for some i,j,1<1,j <d.

DEFINITION 3.1.3 Multidimensional Linear Congruential Graph

Let = (sy, s2,...,84),8 € N—{0} be a constant vector of length d for1 < i< d,
and F = {fi(Z) | fi(T) = §Ai + b; where 1 < i < k for some k} be a set of d-
dimensional linear functions. We define a d-dimensional linear congruential graph
G(F,3) as a graph on the vertex set V = Z, x Z,, x - Z,,, in which any verfer
T €V is adjacent to the vertices f,(f) mod 5,1 < i < k.

For a subset Vi of V and a d-dimensional linear function ¢, we define a d-
dimensional linear congruential graph G(F,3,g,V}) as a graph on the vertex set V,
in which any vertez ¥ € V is adjacent to the vertices fi(¥) mod &, 1 < i < k, and

any verter & € V) is also adjacent to the verter g(7) mod .

We use G(F, 5) to generate graphs of even degree, and G(F, 3, g, V}) to gencrate
graphs of odd degree. The size of the graph is given by 5 and is equal to s; x 8, x
+++ X 8q. The linear functions in F' and I"' U {g} are called the generators of G(I', 5
and G(F,3, g, V1), respectively.

The edges could be considered to be directed from a vertex £ € V to the vertex
fi(¥) mod 8, 1 <i <k, but in this thesis, we will only consider the undirected case.

For example, G(F,) is a two-dimensional linear congruential graph on the vertex

set V = Z, x Z,, where F = {fi, 2}, fi(3) = 5(3 (1))+ (3,1) and fy(7) =

Z ? (l) + (2,4) are two-dimensional linear functions, and 3 = (32,9).

If d =1, then the above definition corresponds to the linear congruential graph

from [13]. In this case, all generators are ordinary linear functions.

DEFINITION 3.1.4 d-Dimensional Linear Congruential Graph of Simple

Form and Graph of Complex Form

31

Let G(F,3) be a d-dimensional linear congruential graph where F = {fi(Z) |
fi&) = TAi+ b, 1 < i < k for some k}. We say the graph G(F,3) is of simple
form if every d-dimensional linear functions f; in F is of simple form. The graph
G(F,3) is of complex form if at least one of the d-dimensional linear funclions f; in

F is of complez form.

3.2 Review of Properties of Linear Congruential
Graphs

In order to p.nve some symmetric properties of two-dimensional iinear congruential
graphs G({f1,1.},(2},52)) of degree 4, we will describe some important properties
of linear congruemial graphs of dimension one and two, which are taken from the

papers [13] and [1]. These papers contain detailed proofs of these Lemmas.

LEMMA 3.2.1 [13] Linear Congruential Sequences with Maximum Pe-
riod

Let f(z) = ax +c be a linear function, n be a positive integer, and z € {0,1,...,
n — 1}. The linear congruential sequence zg,21,...,,, defined by =, = (az,-; +

c)mod n for j > 1, has a period of length n if and only if
1. ged(eyn) = 1,

2. a—1 1s a multiple of p for every prime p that dividesn; a—1 is also a multiple

of 4 if n is a multiple of 4.

LEMMA 3.2.2 [13] Disjoint Cycles of Equal Lengths

Let n be a positive integer such that n = k'm for some integer k > 1, 1 > 2
and m. Let c be an integer such that ged(c,n) = 1, and b be the product of all
prime factors of n; b also has 4 as a factor if n is divisible by 4 . Let fi(z) =
(Kb + 1)z + kic. For every j, 1 < j < i, the function f; generates ki vertez-
disjoint cycles of length & on the set {0,1,...,n —1}. The vertez sets of these
cycles are Ay j = {0,k7,....n— Kk}, Apj={Lk +1,....n -k +1}, -+, Apj =
{M-1,200-1,...,n— 1}. Furthermore, there is an edge belween x; and z, in the

graph generated by f; only if | xo — z, | is divisible by kJ but not by ki+!.

32

LEMMA 3.2.3 [1] Hamiltonian Cycle in a Two-dimensional Graph
G({f},(2,4k + 1))

Let f(£) = £A+b be a generator of a two-dimensional linear congruential graph
G(F,(2',4k + 1)) where k is an integer, A = Z;: (1)), and b = (by,bs). If
aynz + by generates a Hamiltonian cycle in {0,1,...,2' - 1}, ie., a1 and b, satisfy
Lemma 3.2.1, and gcd(b2,4k +1) = 1, then f(Z) also generates a Hamiltonian cycle
in G.

DEFINITION 3.2.1 [13, 1] Extension of a Graph
The extension of a linear congruential graph G(F,2') is defined to be the graph

G(F,2*"). The extension of a two-dimensional linear congruential graph G(F, (2, s3))
is defined to be the graph G(F,(2'}, s,)).

LEMMA 3.2.4 [1] Regular Cycle Structure in G({f}, (2,4k + 1))

Let Gy = G({f},(2',4k + 1)) be a two-dimensional linear congruential graph
where k is an integer, and f(Z) = TA + b, and let G, be ihe extension of G,.
Let A = (Z;: (1)), b= (b1,02). If apyx + by generates a Hamiltonian cycle in

{0,1,...,2* =1}, i.e., ay; and b, satisfy Lemma 3.2.1, and ged(by, 4k +1) = 1, then

f(&) will generate the same cycle structure in both G, and G,.

The function f described as above is a regular generator and generates a Hamil-

tonian cycle in a two-dimensional graph G({f}, (2, 4k + 1)).

DEFINITION 3.2.2 [13, 1] Edge-Change of a Graph

Let G({f},2') be a linear congruential graph. We say that a vertez z of G has
an edge-change when G is extended if f(z) mod 2' # f(z) mod 2+1.

Let G({f},(2', s2)) be a two-dimensional linear congruential graph. We say that

a vertez T of G has an edge-change when G is extended if f(7) mod (2, s;) #
f(Z) mod (21, s,).

LEMMA 3.2.5 [13] Symmetry of Extension in G({f},2')
Let Gy = G({f},2') be a linear congruential graph where f(z) = az +b, and le!
G be the extension of Gy. If a is odd, then for every edge (z1,2;) € E(G)),

33

1. if ; is a vertez not having an edge-change, then (z; + 2¢,z,+ 2') is an edge

in E(G,).
2. if) is a vertex having an edge-change, then (z, +2', ;) is an edge in E(G,).

LEMMA 3.2.6 [1] Symmetry of Extension in G({f}, (2}, s:))

Let Gy = G({f},(2,s2)) be a two-dimensional linear congruential graph where
f(Z)=TA+ i;, A= (Z:: 0 , and b= (b1,b2), and let G, be the extension of
Gy. If ayy is odd, then for all edges ((x1,¥1), (22, ¥2)) € E(Gy),

1. if (r1,3) is a verter not having an edge-change, then ((z1+2',11), (T2+2¢, ¥2))

is an edge in E(G,).

2. if (z1,11) is a verlez having an edge-change, then ((z1 + 2',11),(z2,¥2)) is an

edge in E(G2).

3.3 Symmetric Properties of Two-Dimensional
Linear Congruential Graphs G({ fi, 2}, (2, 4k+

1))

In this section, we will discuss the symmetric properties of two-dimensional graphs

: - - 0 - -
Gl Jah (250)) o degree 4 where /(8) = 7 (0)) + (ube), £i(3) = 2
2: (1) + (dy,d2), ayy and b, satisfy lemma 3.2.1, ¢1; and d; satisfy lemma 3.2.2,

sz = 4k + 1 for some integer k, ged(bz, s2) = 1, ged(dz, s2) = 1, and we will focus on
a;; =5 and ¢;; = 9.

Since G({ f1, f2}, (2,s2)) is a two-dimensional graph, we can express the variable
vector Z as (z,y) where z and y are variables, and 0 <z < 2,0 <y < s,.

When a2, = 0 and ¢ = 0, both of the generators are of simple form. Therefore,
the graph is of simple form. When a3; # 0 or ¢;; # 0, at least one of the generators
is of complex form, and the graph is of complex form. We will discuss these two

cases, separately, in the following sections.

34

3.3.1 Graphs of Simple Form

In a graph G({f1, 2}, (2', 52)) of simple form where f,(z,y) = (m,y>(o ‘1’) +
0

(b1,b2), and fo(z,y) = (a:,y)(c(‘)‘ X) + (dy,d2), each of the generators f, and
f2 can be rewritten as two linear functions in which each one contains exactly one
variable. For example, we can define fi,(z) = aenz + b, fi,(y) = y + b, and
f(z,y) = (fiu(2), f1,(9)-

Thus the graph G({fi, f2},(2',52)) can be obtained by the product of graphs
G: = G({fi., f2.},2) and Gy = G({ f1,, f2,}, 52). The product of G oG, is defined
as a graph with vertex set V = V(G,) xV(G,) and edge set E = {((u,,), (vs,vy)) |
(uzyv:) € E(Gz), (uy,vy) € E(Gy), and vz = fj,(uz) mod 2', vy, = fi,(uy,) mod s,
forj=4k1<j,k<2}.

In order to describe the symmetric properties of graphs, we will first review the
definition of vertex transitivity.

An automorphism a : V(G) = V(G) of a graph G is a one-to-one mapping such
that (u,v) € E(G) if and only if (a(u), a(v)) € E(G).

DEFINITION 3.3.1 Vertex Transitivity
A graph G is vertex-transitive, if for any two vertices u,v € V(G), there is an

automorphism a of G such that a(u) = v.

The linear congruential graphs are not vertex-transitive in general, However, we
will show that they have a restrictive type of symnmetry with respect to a partition.
Now, we will review the relationship among equivalence relations, equivalence classes
and partitions. The proofs can be found in [15].

A relation R on a set S is called an equivalence relation if it is reflexive, symmetric
and transitive. For example, the relation congruence modulo m = {(a,b) | « mod
m = bmod m, a,b € N}, m € N, is an equivalence relation on N.

The set of all elements that are related to an element a by an equivalence relation
R is called the equivalence class of a with respect to R and is denoted by [a]n. The
equivalence classes of the relation congruence modulo m are called the congruence
classes modulo m. The congruence class of an integer a modulo m is denoted by

[a]m and is equal to {b] (b — a) mod m = 0}.

35

A partition of S is a collection of disjoint nonempty subsets of S that have
S as their union. The equivalence classes of an equivalence relation R are either
equal or disjoint, and the union of these classes is all of S. Thus the equivalence
classes form a partition of S. For example, the congruence classes modulo m on N :
0 = {0,m,2m,---},)n ={l,m+1,2m+1,---},--- | [m~1]m ={m ~1,2m —
1,3m — 1,- -} form a partition of N.

With the above-mentioned introduction on vertex transitivity and partition, we
will now define a restrictive type of vertex transitivity, and we call it vertez transi-

tivity with respect to a partition.

DEFINITION 3.3.2 Vertex Transitivity with respect to a Partition P
A graph G is vertex-transitive with respect to a partition P, if for any two
vertices u, v in the same set in partition P of V(QG), there is an automorphism o of

G such that a(u) = v.

Let G({fi, f2},2') be a one-dimensional linear congruential graph where f(z) =
5z + by, fo(z) = 92 + dy, b; satisfies Lemma 3.2.1, i.e., ged(y;,2') = 1, d; satisfies
Lemma 3.2.2, i.e., d, = 2, and gecd(B,2') = 1. We will prove that G({fi, f2},2')
is vertex-transitive with respect to a partition P of V(G) where P consists of the
congruence classes modulo 2= on V(G) : [0]ai-4, [1]gs-4, - -, [2"% — 1]p14, i€, there

are 2”1 congruence classes, and each of them consists of exactly 16 vertices.

THEOREM 3.3.1 Vertex Transitivity of a One-dimensional Graph G
Let G({ f1, f2},8) be a one-dimensional linear congruential graph where fi(y) =
y+b2, fo(y) = y+da, ged(by,8) =1, and ged(da, s) = 1. Then G is vertez-transitive.

Proof:

Since gecd(bs,3) = 1, f; generates a Hamiltonian cycle. Let yp be a vertex in

V(G), and let n be an integer such that fo(yo) mod s = f}}(yo) mod s. Thus

fa(yo) mods = (yo+dz) mod s
fMyo) mods = (yo+n x by) mods

= (n x by) mod s = d; mod s

36

For every vertex y € V(G),0 <y < s~ 1, y # yo,

fi(y)mods = (y+n xb)mods
= (y+d;) mod s
= fa(y) mod s

Thus there exists an integern, 1 < n < s—1, such that for every vertex y € V(G),
f2(y) mod s = fP(y) mod s.

Let u, v be any two vertices in V(G). Since gcd(by,s) = 1, fi generates a
Hamiltonian cycle. There is an integer m, 1 < m < s, such that f*(u) mod s = v.

Define a(y) = fi*(y) mod s. Clearly, a(y) is a one-to-one mapping of V(G) to
V(G), and a(u) = f{*(u) mod s = v.
Assume (yo, 1) is an edge in IE(G), then

Case 1: y; = fi(yo) mod s

a(yo) = fi"(yo) mod s
o(y1) = oa(fi(y) mod s) = fI*(f1(yo) mod s) mod s
= fi(f{*(yo) mod s) mod s = fi(a(yo)) mod s

So (a(yo), @(y1)) is also an edge in E(G).

Case 2: y; = f2(yo) mod s

a(ye) = fi(yo) mod s
a(y1) = o(fo(yo) mod s) = f1"(f2(yo) mod s) mod s

= fI"(f1(y0) mod s) mod s = fT'(f{" (y0) mod s) mod s
[T (a(yo)) mod s = fa(a(yo)) mod s

So (a(yo), a(y1)) is also an edge in E(G).
Thus « is an automorphism of G, i.e., for any two vertices u, v in V((), there

is an automorphism such that a(u) = v. G is vertex-transitive.

37

THEOREM 3.3.2 Vertex Transitivity of a One-dirnensional Graph G({fi,
f}, 16)

Let G({f1, f2},16) be a one-dimensional linear congruential graph where

(1) ... fi(s) =53 + by,

(2) ... f2(x) =9z + dy,

(3) ...b satisfies Lemma 3.2.1, i.e., ged(by,16) =1,

(4) ...d satisfies Lemma 3.2.2, i.e., d; = 28, and gcd(f,16) = 1.

There ezists an inleger n such that for every vertez z € V(G) = {0,1,...,15},

f2(z) med 16 = f}(x) mod 16. Furthermore, G is vertez-transitive.
Proof:

Assume zg, Z1,..., Tn,Tns1,... 1S a linear congruential sequence created by f;.

If f2(x) mod 16 = f}(z) mod 16, then

Top1 = fa(z1) mod 16 = fo(fi(z0)) mod 16
= fa(5z0 + b;) mod 16 = (9 * (5z¢ + b;) + dy) mod 16
= (4529 + 9b; + d;) mod 16

Tapr = fi(za) mod 16 = fi(f2(z0)) mod 16
= fl((91‘0+d1)) mod 16 = (5*(91‘0+d1)+b1) mod 16
= (45z¢ + by + 5d;) mod 16

According to the above two equations.
(95, + d1) mod 16 = (b, + 5d;) mod 16

(8b)) mod 16 = (4d;) mod 16
8 * (b mod 2) = 4 * (d; mod 4)
2% (b; mod 2) = d; mod 4
Because gcd(by,16) = 1, b = 2a + 1 where @ € N. Thus

2% (bymod2)=2%((2a+1)mod 2) =21 =2,

38

Because d; = 20, and gcd(3,16) = 1, d; = 2(2m + 1) where m € N. Thus
dimod 4=2(2m+1) mod4 = (4m + 2) mod 4 = 2.

Therefore, for all b; and d;, 2 (by mod 2) = d; mod 4. That is, for every vertex
z € V(G), there exists an integer n such that f3(z) mod 16 = f{(x) mod 16.
Since f, generates a Hamiltonian cycle, we can use a similar way to prove that

G is vertex-transitive.
O

THEOREM 3.3.3 Let G({f1,f:},16) be a one-dimensional linear congruential
graph where fi and f; satisfy the conditions (1), (2), (3) and (4) in Theorem 8.3.2.
There exists an integer n = 2 + 4k, k € N, such that for every vertex x € V((i),
fo(z) mod 2 = fP(z) mod 2'.

Proof:

Let n be the integer from Theorem 3.3.2. For every z € V(G),

filz) = (524 b;) mod 16
fAz) = (5(5z + by)+by) mod 16 = (5% + (5 + 1)b;) mod 16

fMz) = B"z+(B""+5"2+..-4+541)) mod 16
fa(x) = (924 dy) mod 16

For every z € V(G), fi(r) mod 16 = f,(z) mod 16, so (5" mod 16 = 9) must hold.

By observing the sequence of consecutive powers of 5 modulo 16:

(5%,5, 52,5°% 6%, 5° 5%, 57,58,...) mod 16 = (1,5,9,13,1,5,9,13,1,...),
we sec that we obtain value 9 only when n =2,6,...,2 + 4k. Thus

5" mod 16 = 52t mod 16 = ((5*)* * 5?) mod 16 = 5% = 9.

39

THEOREM 3.3.4 Let G({f, f2}, 2') be a one-dimcnsional linear congruential
graph where f, and f, salisfy the conditions (1), (2), (3) and (4) in Theorem 3.3.2,
and i > 4. For each z € V(G), there ezists an integer n, = 2 + 4k; + 16k, where
0<k <3,k €N, such that f(z) mod 2 = f}*(z) mod 2'.

Proof:

To simplify the notation, we use n to denote .

According to Theorem 3.3.2 and 3.3.3, G({ fi, f2}, 16) is vertex-transitive, and
for every vertex « of the graph, there exists an integer n = 24 4k;, 0 < k; < 3, such
that f2(z) mod 16 = f}}(z) mod 16.

Let G({f1, f2}, 32) be the extension of G({ f1, f2}, 16). According to Lemma3.2.5,
if (u,v) is an edge of G({fi, f2},16), then either (u,v) or (u,v + 16) is an edge of

G({f, f2},32).
Let (u,v) be an edge constructed by f, in G({f1, f=},16). If

1. (u,v) is an edge constructed by f2 in G({fi, f2},32), i.e., there is no edge-

change, and

(a) if the number of edge-changes formed by f, between u and v is even, then
v = fo(u) mod 32 = f}(u) mod 32

(b) if the number of edge-changes formed by f; between u and v is odd, then
v = fo(u) mod 32 = f7*'%(y) mod 32

2. (u,v + 16) is an edge constructed by f, in G({f1,f2},32), i.e., there is an

edge-change, and
(a) if the number of edge-changes formed by f; between u and v is even, then
v+ 16 = f(u) mod 32 = f7+'%(u) mod 32
(b) if the number of edge-changes formed by f; between u and v is odd, then

v+ 16 = f,(u) mod 32 = f}}(u) mod 32

Similarly, let G({f1,f2},64) be the extension of G({fi, f2},32), we can derive

that f,(u) must be equal to one of following:

£ (u), f7410(u), 742 (w), f7448(u).
40

In a similar way, we can prove that for each vertex z of G({fi, f2},2'), there
exists an integer np = n + 16k; = 2 + 4k; + 16k, where 0 < k; < 3, and k; € N,
such that f(z) mod 2 = f72(x) mod 2'.

a

THEOREM 3.3.5 Let G({fi, f2}, 2°) be a one-dimensional linear congruential
graph where fy and f; satisfy the conditions (1), (2), (8) and (§) in Theorem 9.3.2,
and ¢ > 4. Let z be a vertex in V(G), and let [c]y-+ be the congruence class modulo
2'=4 such that z is in [c]p-1, ie.,, 2 =m2V 4+ ¢, 0 < m < 16, and 0 < ¢ < 271,
Then ' = f¥™(z)mod 2' is also in the class [c|p-« where 0 < k < 16, i.e.,

2'=m'24¢0< m<16.
Proof:

Assume zg, Ty,. . ., L3-4,. .. is a linear congruential sequence created by f, in G,

and let o = m2~* 4 ¢. Thus

zy = fi{zo) mod 2’ = (5(m2~ + ¢) + &) mod 2'
= (5m2"* 4 5¢ 4+ b,) mod 2

z2 = fi{r1) mod 2 = (5(5m2=* 4 5¢ + by) + b;) mod 2
= (5'm2~1 4+ 5%+ (54 1)b;) mod 2°

Tyt = fi(T-1_,) mod 2

= (5" 'm2 1+ 5 e+ (5T 4547 2 . £ 54 1)by) mod 2

To simplify the equation, we let n = 2'~4. Thus

5"mn +5"c+ (5" 4+ 5" 2 4+ - +5 4 1)b;) mod 2*

Tn

(

zomod 274 = (5"mn+5"%c+ (5" +5" 24 -- 45+ 1)b;) mod 2~
(5"mn + 5%+ (5" + 5" 2+ ...+ 5+ 1)b;) mod n
(

5%+ (5" +5"*+..- +5+ 1)) mod n

Now, we will complete the proof by induction.

41

Basis:

Leti=4. Thenn=2"1=20=1.

fHze)=zymodl=zomod1=0=c
Let i =5. Thenn=2"1=2!=2,
f*(z0) = 22 mod 2 = (5%¢ + (5 + 1)b;) mod 2 = (25¢ + 6b,) mod 2 = ¢

Induction Step:

Assume when i = ¢, (i.e.,,n =217%), z, mod n = ¢. Thus

(5"c+ (5" +5"2 4. +5+ 1)) mod n = c.

5"modn = 1,and (5" ' +5"2+4+...4+5+1) mad n = 0.
5" =an+1,and (5" + 5" +... 454 1) = Bn.

When i = i; + 1, then n/ = 2i~4 = 211+1=4 = 9 4 911-4 — 9y,
(5" ¢+ (5"~ + 524 ... 4+ 5+ 1)b;) mod n'
= (5%"c + (521 +52~2 4 ... + 54 1)b;) mod 2n
= (5%c+ (51 + 524 ... 45"+ 5" ... + 5+ 1)b;) mod 2n
= ((an+1)2c+ (5"(5™" ' +--- +5+1) + (5™ +--- + 5+ 1))b;) mod 2n
((a*n? 4+ 2an + e+ (5" 4+ 1)(5" ! +--- +5+ 1)b;) mod 2n
= (c+
[+

+ (5" + 1)Bnb) mod 2n

(because 5" + 1 is even)
We already proved that zq and z25-« = ff"‘ (zo) mod 2 are in the same congru-

ence class modulo 2¢-4.

227 (20) mod 2 = 27" (f2™ (z0)) mod 2

= fI ‘(mgn-l) mod 2

To.1-4

Zp-+ and Zy.q-4 are in the same class. Thus 2o and x,.4i-4 are in the same class.

42

Assume g and z.qi-¢« are in the same class.

T(k+1)2~4 = fl(k+l)'2'—‘(:to) mod 2'. = ;2.-‘ lk-?"‘ (:l‘o)) mod 2'

= f2 " (zp2-+) mod 2

Tgp-+ and T(ky1).2-¢ are in the same class. Thus o and z(k41).2-+ are in the same

class.
0

The vertices To, Tgi-t, To.91-4, L3.20=1,..., T15.-¢ are in the same congruence class
modulo 21~* where zxp-+ = f5¥¥7*(2o) mod 2'. In other words, if u,v € V(G) are in
the same congruence class modulo 2!~ then there exists an integer k, 0 < k < 16,

such that v = 57" (u) mod 2'.

LEMMA 3.3.1 Let G({f1, f2},2') be a one-dimensional linear congruential graph
where f, and f, satisfy the conditions (1), (2), (3) and (4)in Theorem 3.3.%, and i 2
4. Ifu,v € V(G) are in the same congruence class modulo 21, i.c., u mod 2'~1 =

v mod 24, then
f2(u) mod 2 = f(u) mod 2 &= f5(v) mod 2' = f7*(v) mod 2,

and therefore G is vertex-transitive with respect to a parlition P of V(G) where P
consists of the congruence classes modulo 2°=* on V(G): [0)21-4,[l]a=¢, -+,

[2"-4 - 1]2:-—-4.
Proof:

Let v=u+m2"%, m € N, and assume (u,u;,uz,...,Un) and (v,vy,v3,...,0,)
are part of the linear congruential sequence created by f; in G. Thus
uwy = fi(u) mod 2 = (5u + b)) mod 2
up = fi(u)mod2 = (5u; +b) mod 2

U, = fi(up-1) mod 2 = (5tp-1 + b;) mod 2'
= f2(u) mod 2 = (9u + d,) mod 2
43

v = fi(v) mod2 = (50 + b;) mod 2
= (5(u +m2~*) +) mod 2 = ((5u + b;) + 5m2'~*) mod 2*
= (u; + 5m2~*) mod 2'

v2 = fi(va) mod 2 = (5(u; + 5m2~*) + b)) mod 2°
= (uz + 5'm2~*) mod 2'

va = (up+5"m2*) mod 2 = (9u + dy + 5"m2"~*) mod 2*

According to Theorem 3.3.4, n = 2 + 4k, + 16k, where 0 < ky < 3, and k; € N.
Thus 5" mod 16 = (52 * 53k1+4%2)) mod 16 = (52 * 1) mod 16 = 9, because 5 mod
16 = 1.

Let 5" = 16a +9 where a € N,

vn = fM(v) mod2 = (9u+dy +5"m2!) mod 2°
= (9u+d, + (16a + 9)m2-*) mod 2 = (9u + d; + am?2' + 9Im2"*) mod 2'
= (9(u+ m2~*) +d;) mod 2 = (9v + d;) mod 2°
= fo(v) mod 2°

Now, we will prove that G is vertex-transitive with respect to the partition P.
Assume vertices u,v € V(G) are in the same congruence class modulo 2'-%. Ac-
cording to Theorem 3.3.5, there exists an integer k, 0 < k < 16, such that v =
577" (u) mod 2.

Let a(z) = f¥?7*(z) mod 2 be a one-to-one mapping of V(G) to V(G). Thus

i—4
N

a(u) = u) mod 2' = v.

Assume (29, z1) is an edge in E(G), then

Case 1: z; = fi(xo) mod 2!

a(zo0) = ff*™ (o) mod 2
o(z1) = affi(zo) mod 2°) = fF*™(fi(zo) mod 2°) mod 2'
= fi(f** 7 (20) mod 2) mod 2 = f;(a(zo)) mod 2
So (a(zo), a(z,)) is also an edge in E(G).
44

Case 2: 1, = fy(2x0) mod 2

a(zo) = 27" (x0) mod 2. Thus according to Theorem 3.3.5, zo and a(o) are
in the same congruence class modulo 2=, Assume fy(xo) mod 2' = f' (o) mod 2,

then fa(a(xo)) mod 2 = f'(a(zo)) mod 2.

a(z;) = offa(ze) mod 2) = f'z'-‘(fz(:ro) mod 2°) mod 2'
= 1"'2'-‘(1'1’(3‘0) mod 2') mod 2' = {"(f’z'_‘(mo) mod 2') mod 2

= f(a(zo)) mod 2' = fr(a(zo)) mod 2

So (a(xo),az,)) is also an edge in E(G).
Thus a is an automorphism of G, i.e., for any two vertices «, v in the same
congruence class modulo 2°~4, there is an automorphism « such that a(u) = v. G

is vertex-transitive with respect to the partition P.

3.3.2 Graphs of Complex Form

Let G({f},(2', 52)) be a two-dimensional linear congruential graph of complex form

0
where f(f'%y) = (z,y) Z: 1) + (bhbz), and ayy,az # 0. If (£1,11), (22,12) €

V(G), and (z1, 1) is adjacent to (z2,y2) via the generator f, then

(T2,92) = f(z1,31) mod (2',3,)
n 0

= (a:l,yl)(1) + (by, bz) mod (2, 3,).
Therefore, £, = (a1121+ a211 +b1) mod 2, y, = (1, + b;) mod s;. Thus, y, depends
only on y;, but z; depends on both z; and y,. For this reason, we cannot consider
the graph G as a product of two one-dimensional graphs.

Although the graphs of complex form do not have the symmetric properties like
the graphs of simple form described in previous subsection, they still have another
symmetric property. We call it quarter-symmetry.

The reason why we call the property quarter symmetry is the following: if we
consider the Hamiltonian cycle constructed by fj as a vircle, the vertices (z,y), ((z+
2-?) mod 2, y), ((z +2+2"~?) mod 2',y) and ((z+3%2-?) mod 2/, y) will divide the

45

circle into four quarters, and for these four vertices, to apply f2 to them is equivalent

to apply fi ny times.

DEFINITION 3.3.3 Quarter-Symmetry
Let G({fi,f2},(2',32)) be a two-dimensional linear congruential graph in which
fi generates a Hamillonian cycle. We say the graph G is quarter-symmetric if it

has the following properties:

o For each vertex (z,y) € V(G), let (z/,y’) = f(z'—z"’)(m,y) mod (2', s3) where
1 < k<3. Then 2’ mod 2% = z mod 22, and y' = y.

o For each vertez (z,y) € V(G), there ezists an ngy, 1 < ngy < (2! % 83), such
that fa(z,y) mod (2, s5) = f1*¥(z,y) mod (2%, s2), furthermore,
f2((z+k272) mod 2/, y) mod (2¢, 85) = f1*((z+k2"-2) mod 2, y) mod (2¢, s;)
where 1 < k < 3.

We illustrate the properties in Figure 3.1.

THEOREM 3.3.6 Let G({f},(2,s2)) be a two-dimensional linear congruential
graph where [(z,y) = (z,y) 5 (1)) + (b1, b2), by satisfies Lemma 3.2.1 (i.e.,
ged(5,2) = 1), ged(ba,82) =1, and s; = 4k + 1, k € N. Then, for every vertex
(z,y) € V(J), f2(z,y) mod (2,s2) = ((z + 1) mod 2,y).

Proof:

Since y does not depend on z, we let f,(y) = y + b2. Because gcd(ba,s2) =1, the
linear congruential sequence yo, y1, . . . , ¥s,-1 defined by y; = fy(y;-1) mod s3, for j >
1, has a period of length s;. Thus, for each y € {0,1,...,5—1}, f;*(y) mod s; = y.

Assume (z,y) € V(G), and f* (z,y) mod (2,s;) = (2',y). According to Lemma
3.2.3, f generates a Hamiltonian cycle of length 2xs; in G, i.e., (z,y) = f*(z,y) mod
(2, 32) only if n = m(2 * s;) where m € N. Because s; # m(2*s;), ' # . In
addition, since 0 < z,2' < 1,2’ = (z 4+ 1) mod 2.

Thus, f*2(z,y) mod (2, sp) = ((z + 1) mod 2,y).

46

- EN
A i,

S Wl

Va

Figure 3.1: Two-dimensional Linear Congruential graph G({fi, f2},(2',s2)) of

complex form:

- - '1'2'32 — : - 22.52 -
If o = (z0,90), v = fi7 % (vo) mod (2',82), v2 = fi (o) mod
(2,3), and 3 = f1° *(v) mod (2, s,), then

. (mo+ -;—2") mod 2':,3/0) ...casc A
~ | ((zo+ 22') mod 2',y0) ...case B

- 2, i

2 = ((zo+ Z2) mod 2, yo)

5 = ((zo + %2‘) mod 2‘:,y0) ...case A
° 7 1 ((wo+ 52') mod 2',y0) ...case B

and if up = fo(v0) mod (2',82) = fP(v0) mod (2, s5), 4y = fo(6i) mod
(2, 83), 1y = f2(v3) mod (2, s7), and 43 = f5(v3) mod (2', s2), then

41 = f}(vi) mod (2,37)
ay = f'(v3) mod (2', s2)
iz = fi(v3) mod (2',s;)

47

THEOREM 3.3.7 Let G({f},(2',s2)) be a two-dimensional linear congruential
graph where f(z,y) = (z,y)(a51 (l)) + (b1, 82), by satisfies Lemma 3.2.1 f(i.e.,
ged(8,,2') = 1), ged(bz,82) = 1, 33 = 4k +1, k € N. For each verter (x,y) €
V(G), if fM(z,y) mod (2',3;) = (z',¥'), then f*(z,y) mod (2!, s;) is equal to ei-
ther (z',y') or (z' + 2, y).

Proof:

Let (zo,%0), (1,91)s (Z2,92)5 - - + 5 (Tn=1y Yn=1)5 (T, Yn), . - - be a linear congruential
sequence created by f in the graph G, i.e., (z;,¥;) = [*(z0, %) mod (2%, s2) where
0 < j < n. Assume there are m edge-changes between (o, yo) and (s, ¥n) ((Zn,yn)

is excluded), when G is extended. According to Lemma 3.2.6, if
1. m is even, then f(zo,y0) mod (2+!, s3) = (z5,Yn)-
2. m is odd, then f™(zq,y0) mod (21, 53) = (zn + 2%, yn).

a

THEOREM 3.3.8 Let G({f},(2',s2)) be a two-dimensional linear congruential
graph as described in Theorem 3.3.7. If (z,y) is a vertex of G, then f***(z,y) mod
(2i+,732) = (:B + 2iay)'

Proof:

Let G2 = G({f},(2't,s2)) be the extension of Gy = G({f},(2),s2)). Since
f generates a Hamiltonian cycle of period length 2' * s, in Gy, for every vertex
(z,9) € V(G1), f*(z,y) mod (2, s2) = (z,).

According to Theorem 3.3.7, f¥*2(z,y) mod (2'+!,s;) is equal to either (z,y) or
(r+2%,y). Because f also generates a Hamiltonian cycle of period length 24! % s; in
Ga, f*2(z,y) mod (271,5,) # (z,9). Thus, 2% (z,) mod 2+, 85) = (z+2),y).

(W]

THEOREM 3.3.9 Let G({f},(2',32)) be a two-dimensional linear congruential
graph as described in Theorem 8.3.7, and i 2 2. For each vertez (z,y) € V(G),

48

L(2'ns2) ; _ [(= +32) mod 2',y) ...case A
f (z,y) mod (2, 52) { ((x + é?.') mod 2',y) ...case B

F@=)z y)mod (2',85) = ((z+ -3—2") mod 2',y)

3(2nsy) ; _ [(& +32) mod 2',y) ...case A
fEE (2, y) mod (2, 5) { ((a:+§2‘)mod 2',y) ...case B

Proof:

We prove the theorem by induction.
Basis: i =2

Let G2 = G({f},(4,s2)) be the extension of Gy = G({f},(2,s2)).
For every vertex (z,y) € V(G1), f**(z,y) mod (2,s2) = ((z + 1) mod 2,y) ('The-
orem 3.3.6), and thus f*(z,y) mod (4, s2) is equal to either ((z + 1) mod 4, y) or
({(z + 3) mod 4, y) (Theorem 3.3.7).

According to Theorem 3.3.8, for every vertex (z,y) € V(G,), f2*(x,y) mod
(4,s2) = ((z +2) mod 4,y), and if

1. f*2(z,y) mod (4,s2) = ((zx + 1) mod 4, y), then
f*2(z,y) mod (4, 52) = ((x + 3) mod 4,y).

2. f*2(z,y) mod (4,2) = ((x + 3) mod 4, y), then

f32(z,y) mod (4, s2) = ((= + 1) mod 4,).
Induction Step:

Let G2 = G({f},(2*, s;)) be the extension of Gy = G({f}, (2, s2)). According
to Theorem 3.3.8, for every vertex (z,y) € V(G),

FHE) (2, y) mod (%,2) = (= + 52) mod 2,).
We now consider the graph G;. According to Theorem 3.3.7,

f%(z"”)(x,y) mod (25+1,82) = f%(zm.;z)(m,y) mod (2i+l, 83)

49

((z 4 12t) mod 2't',y) ...case A
((z 4+ 22*')mod 2*',y) ...case B

[(i mod 2,y
Tl ((z+32° 4 %2““) mod 2+!, y)

According to Theorem 3.3.8, in case A,

f%(zﬂ-l.31).',%(21-#1.32)(3:, y) mOd (2f+l’82) — f%(2l+1.32)(m’y) mod (2‘.+1,32)

%2!’4-1 + %2i+l) mod 2l'+1’ y)
= ((z+ g—2‘+‘) mod 2t y)

= (+

and in case B,

f%(2l+ltsg)+-;-(2l+lnag)(x’ y) mod (2i+1,32) - f%(z'“"’?)(x, y) mod (2i+1’ 32)
3. 1. .
= ((z+ ;1-2‘“ + -2~2'+1) mod 2'*!y)
= ((z+ :11-2”1) mod 2+,)

Because (z,y) € V(Ga),
f%(z'“'”)(m,y) mod (2*1,s5) = ((z+ —;—2‘“) mod 2+, y)
= ((z+ %2‘“) mod 21, ¢).
a

LEMMA 3.3.2 Let G({fi, f2},(2',52)) be a two-dimensional linear congruential
graph where

(1) ... hiesy) = (x,y)(o]) + (burba),
9 0

@ o) = @) 3]) +),
(3) ... by satisfies Lemma 38.2.1, i.c., ged(by,2') = 1,
(4) ... dy satisfies Lemma 3.2.2, i.e., dy = 20, and ged(8,2') = 1,
(5) ... ged(by, 82) =1, ged(da,82) =1, and s, =4k +1, k€ N.
For each vertez (z,y) € V(G), if there ezists an n,, such that fo(z,y) mod (2, s3) =
fi** (z,y) mod (2',s;), then
fal(z + -?2‘) mod 2, y) mod (2',3,) = fi™((z + !—Z-Zi) mod 2,y) mod (2', s)
where] <m < 3.

50

Proof:

To simplify the notation, we use n to denote ny.

Let (zo, yo) be a vertex of G. Since f; generates a Hamiltonian cycle in G, there

exists an integer n such that
f2(20,90) mod (2, 83) = [} (0, 30) mod (2, 52).

Assume (zg,¥0), (1, 1)y « + -y (Tn=1,Yn=1), (Tn, yn) is a sub-sequence of the Hamil-
tonian cycle constructed by f;. That is, (z;,y;) = fi(z;-1,¥,~1) mod (2*, s;) where

0<j<n.

T = (53}0 + a1y + bl) mod 2i y = (y() + bg) mod 82
2y = (521 + any + b)) mod 2° | 3= (31 + by) mod s,

Tn = (5Tpoy + €21Yn-1 + 1) mod 2 | yo = (yn-1 + by) mod s,
Because (z,.,9:) = f2(zo,y0) mod (24, s;),
2, = (920 + 2190 + d1) mod 2°, ¥, = (yo + d3) mod s,

Thus, £, = (52z-1 + a21¥n—1 + b)) mod 2* = (924 + c2190 + di) mod 2, and
Yn = (Yn—1 + b)) mod 83 = (yo + d2) mod s,.

Assume (z5,45), (21, ¥1)s - - s (Th_1y¥n_1)s (24, ys) is also a sub-sequence of the
Hamiltonian cycle constructed by fi. That is, (z},4}) = fi(z)_,,¥)_,) mod (2',32),
0 <j <n. Let zg = (zo+ 22') mod 2/, 1 < m < 3, and y} = yo.

y;- = ((y;_l + b;) mod s) does not depend on z’_y, and y; = (yj-1 + b2) mod sz, so

y; =yj, for each 3,0 < j < n.

zy = (5zh + anyp + by) mod 2 = (5(zxp + %2‘) + anyo + b)) mod 2

= (gm2i + (520 + anyo + b)) mod 2 = (%2‘ +z;) mod 2°

2 = (52} +any] +b) mod ¥ = (8(z1 + %) + aaps + b) mod 2

I

(iimz" + (521 +any +b) mod 2 = (T2 + 25) mod 2

Induction Step:
51

Assume z = (22' 4 7;) mod 2¢, then

m

x;“H = (5.1,';! + agly;c + b]) mod 2" = (5(4 2‘ + .'l'k) + a211Yk -+ bl) mod Zi
= (%‘-2" + (5% + azyk + b)) mod 2 = (-’;—’2‘ + Z41) mod 2

Thus, f7((zo + -'32‘) mod 2, y0) mod (2, s2) = (z1,3") = ((zn + 22') mod 2. yn)

Si((@o + 52) mod 2, yo) mod (2, 5)

= ((9(zo + 1}:-2") + enyo + di) mod 2, (yo + d2) mod s)
O . .

= ((%n‘zl + (920 + cayo + d1)) mod 2',y,,)

== ((—?2' + (9.7‘0 -} C21Y0 + d;)) mod 2i,yn)

= ((77;—1-2" + ,) mod 2',y,)

So f'({zo + 22') mod 2/, yo) mod (2%, 52) = fo((zo + %2') mod 2/, yo) mod (27, s,).

52

Chapter 4

Routing Algorithms of
Two-Dimensional Linear
Congruvential Graphs

We will study the algorithms of global routing, distributed routing, finding dis-
joint paths and broadcasting for two-dimensional linear congruential graphs. The
algorithms that we will present are based on the symmetric properties of graphs
discussed in the previous chapter.

In the description of the algorithms, for a vertex @ of G({fi, f2}, (2', 82)), we will
denote an edge e from @ to ¥ as 0 if e is generated by [, on i, 1 if e is generated
by f2 on #, 2 if e is generated by fi on 7, or 3 if e is generated by f; on 4. A path
from a source vertex @ can be represented by a string on an alphabet {0,1,2,3} of
four letters, and it is considered as a sequence of generators applied sequentially on
the vertices that the path traverses along, rather than the sequence of vertices.

For example, a path @ — f;(@) mod (2',s;) = fo(fi(@)) mod (27, 55) —

[(@) mod (252) = f7 (7 (ol (i) mod (2,55) can be represented
by the string "0123". We can use two bits to represent an edge, and thus this path
is represented by eight bits. For a graph of diameter less than 16, the shortest paths

between any two vertices can therefore be represented by four bytes.

4.1 Global Routing

To determine the shortest paths between two vertices of a hypercube and a de Bruijn

graph is very straightforward. For a hypercube, it can be done by a series of changing

53

e

one bit of a string. For a de Bruijn graph, it can be done by a series of right- or left-
shifts of a string. The definition of adjacencies in linear congruential graphs is more
complex than those in hypercubes and de Bruijn graphs. Thus we do not have yet
a simple and fast mathematical transformations on the coordii.ates of the vertices
to determine the shortest path between two vertices of a linear congruential graph.
Our global routing algorithm is a method of searching the destination vertex along
all the possible edges in a recursive way. The algorithm is similar to the Dijkstra’s
algorithm, and it can be introduced as follows.

Given a source vertex ¢ and a destination vertex ¢ of a two-dimensional linear
congruential graph of degree 4, if @ is not equal to 7, in step 1, we search & along
all of the four edges incident with @. If one of the neighbors of @ is ¥, the shortest
path is the edge incident with both & and ¢. Otherwise the searching process has
to continue and goes to step 2.

These four edges incident with @ are called the searching paths p, of length one
where 1 < j <4, and they may be the head of the shortest paths. The destinations
i@, of the scarching paths p, are marked " visited”. The edges that are incident with
ii, but not the last edge of p, are called the outgoing edges of @,.

In step 2, each searching path p, is extended along three outgoing edges of 4,
scparately. If a vertex i, adjacent to @, via an outgoing edge of i; is not marked
"visited”, a new searching path p,i of length 2 is created by appending the outgoing
edge to p), and @@ is marked "visited”. If @i is equal to ¥, pj; is the shortest path
from i to v.

After step 2, if none of the searching paths p;x of length 2 is a shortest path from
i to ¥, searching has to continue in a similar way until the destination vertex v is
found.

The searching process is quite time-consuming. It is not eflicient to execute the
process whenever a vertex @ needs to send a message to a given vertex ¢. Instead,
we can execute it only once by creating a table that consists of the shortest paths
from 1 to each of other vertices of the graph. We will call the table shortest-path
table for the vertex . For a vertex of G({fi, f2},(2,52)), the shortest-path table
contains 2' x s, entries, and each entry may contain more than one shortest path.

There are 2' x s, vertices, therefore the graph needs 2' x s, shortest-path tables for

54

global routing. The number of shortest-path tables required increases with the size
of the graph.

In the following subsections, we will introduce the algorithm for constructing the
shortest-path tables and then discuss how to reduce the number of tables based on

the symmetric properties of graphs.

4.1.1 Global Routing in Graphs of Simple Form

Before describing the algorithm for constructing the shortest-path tables for a graph
G({f1,f2}, (2}, 52)), we first introduce the data structures that are used in the algo-
rithm.

In a two-dimensional linear congruential graph G({fi, f2},(2',32)) of simple
form, G = G({fi., f2.},2") 0 G({f1,, fa,}, 82), since the value of the coordinate
z is independent of the value of the coordinate y, we can construct two tables: -
edge table and y-edge table. The z-edge table has 2' rows indexed from 0 to 2' — |
and 4 columns indexed from 0 to 3. An entry in row u; and column e represents
the vertex v, of G({fi,, f2,},2') that is adjacent to the vertex u; via the edge e.
That is, if e = 0, v, = fi (u;)mod 2'. If e = 1, v; = fo,(u;) mod 2'. If ¢ = 2,
u, = fi,(vz:) mod 2'. If e =3, u; = fo,(v:) mod 2.

Similarly, the y-edge table has s; rows indexed from 0 to s, — 1 and 4 columns
indexed from 0 to 3. An entry in row u; and column e represents the vertex v, of
G({f1,1 f2,},32) that is adjacent to the vertex u, via the edge e. That is, il ¢ = 0,
vy = f+,(uy) mod s3. If e =1, vy = fo,(uy) mod s2. If € =2, uy = fi,(v,) mod s,.
Ife =3, u, = fo,(vy) mod s,.

A searching-path table for a given source vertex (3, 3,) has s; rows indexed from
0 to s; — 1 and D columns indexed from 1 to D where D is the diameter of the
graph G. Each entry is a pointer to a list of searching path record. A searching path
record consists of a searching path p, the coordinate x, d, of the destination of the
searching path p, and a pointer "nezt” to the next searching path record.

In the searching-path table for a source vertex (3z, sy), a searching path record
(p, dz,next) in the list pointed by the entry in row dy and column [means that the
searching path p is a (shortest) path of length ! from (s, 3,) to (dz,d,).

A shortest-path table for a given source vertex (s;, 3,) has 2' rows indexed from 0

59

Len

Searching-Path Table

len

&

C,_...

S2-1

jﬁ

<"pm——-{ path | _dx_|nest F—»

[

Shortest-Path Table

Dx

len

>
C

path] next :l——»l path I next —l——-—»

Figure 4.1: Data structure of global routing

56

to 2' — 1 and s; columns indexed form 0 to s; — 1. Each entry is a record consisting
of the length [of the shortest paths and a pointer pathpt to a list of shortest path
records. A shortest path record consists of a path p and a pointer "nezt” to the next
shortest path record. Figure 4.1 illustrates the searching-path and shortest-path
tables.

In the shortest-path table for a source vertex (s.,s,), a shortest path record
(p,next) in the list pointed by the entry (I, pathpt) in row dy, and column d. means
that p is one of the shortest paths from (s.,s,) to (d:,d,) and its length is l.

Our algorithm can be described in pseudo-code as follows.
Algorithm: construction of shortest-path table;
e input :

f1, f2: the generators of a two-dimensional linear congruential graph (' of
simple form.
(2%, 52): the size of the graph G.

(8z,8y): a source vertex of G.
e output : the shortest-path table for (s.,s8y).

begin
construct the x_edge table;
construct the y_edge table;

len := 1;

for e := 0 to 3 do {* for each edge incident with }

begin { (sx, sy) *}
dx := x_edge_tablelsx, e];

dy := y_edge_tablel[sy, e];
new(searching_path_rec); {* create a searching path record *}
searching_path_rec”.dx := dx;
searching_path_rec”.path := e;

{* put it in searching_path table *}
searching_path_rec”.next := searching_path_table[dy, len];
searching_path_table[dy, len] := searching_path_rec;

new(shortest_path_rec); {* create a shortest path record #*}
shortest_path_rec”.path := e;

{* put it in shortest_path table *}
shortest_path_rec”.next := nil;
shortest_path_table[dx, dy].len := len;

57

shortest_path_table[dx, dy] .pathpt := shortest_path_rec;
end; {of the for loop}

all_found := false;
vhile not all_found do
for y := 0 to 82 ~ 1 do {* for each entry of length "len" }
| begin { in the searching_path table *}

current := searching_path_table(y, len];
while current <> nil do {* for each searching path record *}

begin
for e := 0 to 3 do {* for each edge incident with the }
begin { destination of the searching }
{ path *}
if e <> inverse(current”.path mod 4) then
begin {* if e is an outgoing edge x}

dx := x_edge_table[current”.dx, e];

dy := y_edge_table(y, el;

if (shortest_path_tablel[dx, dy].len
(shortest_path_table[dx, dy].len

0) or
len + 1) then

begin {* no shortest path has been found,}
{ or this path is one of the }
{ shortest paths *}

new{searching_path_rec};

{* create a searching path record }

{ of length (len + 1) *}
searching_path_rec”.path := current”.path * 4 + e;
searching_path_rec”.dx := dx;

{* put it in searching_path table *}
searching_path_rec”.next :=

searching_path_table[dy, len+1];

searching_path_table[dy, len+1] := searching_path_rec;

new{shortest_path_rec};

{* create a shortest path record *}
shortest_path_rec”.path := current”.path * 4 + e;
shortest_path_rec”.next :=

shortest_path_table[dx, dy].pathpt;

{* put it in shortest_path table *}

shortest_path_table[dx, dy].len := len + 1;

58

shortest_path_tableldx, dy].pathpt:=searching_path_rec;
end; {of if}
end; {if e <> inv..}
end; {of for e}
current := current”.next;

{* process the next searching path#}
end; {of while current}
end; {of for y}

if every entry (except (sx, sy)) of the shortest_path table has
at least one shortest path
then
all_found := true;
end; {of while not all_found}
end.

As we mentioned, for a two-dimensional linear congruential graph G({fi, f2},

(2,52)) of simple form where fi(z,y) = (z,y) (-) + (broba), falz,y) = (7,9)

8 (l) + (dhd2)1 ng(th) = ls dl = 2ﬂ7 ng(BaQI) = ls ng(b'sz‘l) = ls

ged(dy, s2) = 1, and s; = 4k + 1, the number of distinct shortest-path tables can bhe
reduced to 2¢~1.

Let G, = G({f,, f2.},2'), and G, = G({f1,+ f2,},82) where fi,(z) = b + by,
fo(z) =9z + dy, f1,(y) =y + b2, f2,(y) =y +da. Then G =G, 0G,. Since G, is
vertex-transitive with respect to a partition P where P consists of the congruence
classes modulo 274, and G, is vertex-transitive, for a given vertex (s, s,) of G, there
exists an automorphism a = (a;, a,) such that a,(s;) = s, where s, = s, mod 21,
ay(sy) = s, =0.

If we consider a path as a sequence of generators applied sequentially on the
vertices that the path traverses along, rather than the sequence of vertices, then
given a path p = (ej,€2,...,6), 0 < e; <3, from (sz,3,) to (d-,d,), p is also a path
from (s, s,) to (d;,d;) where d;, = a.(d;}), d; = ay(d,). Consequently, we only have
to construct 2'~4 shortest-path tables for source vertices (0,0),(1,0),...,(2"~*~1,0).

Let (s;,8,) be a source vertex and (d;,d,) be a destination vertex. One of
the methods to find the shortest paths between (s;,s;) and (d;,d,) is to find the
corresponding automorphism a = (az, a,) such that a;(s;) = s; mod 24, ay(s;) =

0, and then to get the paths from the corresponding entry of (a.(d:), ay(d,)) in the

59

shortest-path table for the source vertex (s, mod 2:~4,0).
The simplest way to determine a; and ay is to assume ax(z) = fi'*(z), oy (y) =
,"v"(y) such that f'*(s;) = s; mod 2'™*, f*(s,) = 0. The average times of iterative
calculation to find n; and n, is 2! and %2, respectively. This methed is time-
consuming, and thus another table-checking method is proposed as follows.

This method is based on the structure of the Hamiltonian cycles generated by
i, and fi,. We first create an 2-Hamiltonian array and a y-Hamiltonian array. The
z-Hamiltonian array has 2¢ entries indexed from 0 to 2' — 1. The content of the first
entry is (vertex) 0, and the content of the jth entry is fl’z(O) mod 2'. Similarly, the
y-Hamiltonian array has s, en‘ries indexed from 0 to s; — 1. The content of the first
entry is (vertex) 0, and the content of the jth entry is fi (0) mod s,.

We then create an z-position array and a y-position array according to the z-
Hamiltonian array and y-Hamiltonian array. The z-position array has 2' entries
indexed from 0 to 2/ — 1. The content of the firs entry is 0, and the content of the
xth entry is j where f{_(0) mod 2' = z. That is, the vertex z is in the position j
on the Hamiltonian cycle generated by f;,. Similarly, the y-position array has s,
entries indexed from 0 to s, — 1. The content of the first entry is 0, and the content
of the yth entry is j where f,jy(O) mod s; = y. That is, the vertex y is in the position
J on the Hamiltonian cycle generated by f,.

Thus, whenever we want to find the shortest paths from a vertex (s:,s,) to a

vertex (dy,dy), we just use the following formulas to get (s7, s;) and (d;,d,),

y
s’ = s, mod 2
s, = 0
d, = z.Hamiltonian|(zposition[s,] + x_position|d;] — z_position[s;]) mod 2]

d, = y-Hamiltonian|(yposition|d,] — y_position(s,]) mod s,]
and then check the corresponding entry in the shortest-path table for source vertex
(s%,0) to find the paths from (sz, sy) to (dz,d,).
4.1.2 Global Routing in Graphs of Complex Form

The algorithms for constructing the shortest-path tables in a two-dimensional linear

congruential graph of complex form is similar to what we described in the previous

60

subsection, but the z-edge table here is generated with a different structure.

In a two-dimensional linear congruential graph G({f}, f2},(2',8;)) of complex
form, if a vertex (z,y) is adjacent to a vertex (z’,y'), 2’ is dependent on both r and
y. Therefore, the z-edge table should be modified to have 2' x s; rows. The jth
row corresponds to the vertex (zr,y) = (j div 32, j mod s;), and the content of the
entry in jth row and eth column is 2’ where (z',y') = fi(z,y) mod (2',s,) if e = 0,
(z'yy") = fa(z,y) mod (2, s;) if e = 1, (z,y) = fi(a',y') mod (2,s,) if € = 2, and
(z,y) = fo(2',y') mod (2, s;) if e = 3.

In addition, for a two-dimensional linear congruential graph G({fi, f»}, (2", s2))

of complex form where fi(z,y) = (z,y) (a{:l (1)) + (b1, b2), fol7,y) = (x,y)

(Ci ‘1)) + (d1,d2), ged(bi,2) = 1, dy = 28, ged(8,2) = 1, ged(by,5) = |,
ged(dy,82) = 1, and s, = 4k + 1, k € N, since the graph G is quarter-symmetric,
the number of distinct shortest-path tables required is 22 x s,.

To find the shortest paths from (sz, s,) to (dz,d,), we first create a Hamiltonian
array and a position table in the similar way described in the previous subsection.

Each entry of the Hamiltonian array is a record (z,y). Then we use the following

formulas to get (s, s}), (4, d}),

(A i—2
s, = sy mod 2'

Sy = 8y
d;, = Hamiltonian|(position[s, s}]+ position|d, d,]— position[s:, 3,]) mod 2' x s,].x

d =d,

y

and check the corresponding entry in the shortest-path table for (s, s;) to find the
paths from (sz, sy) to (d:,d,).

4.1.3 Comparison of the Global Routing in Graphs of Sim-
ple Form and Complex Form

The structure of graphs belonging to the family of graphs of complex form (G.) is
more complex than the structure of graphs belonging to the family of graphs of
simple form (G,). However, the diameters of graphs in G, are smaller than those of

graphs in G, in general. For example, let G, = G({f1, f2},(2!3,9)) be a graph in

61

y 0 1 2 3 4 [6 7 8
x
3 n m 0000 un 100 0 1
m m 010 030
° 21 m 001 00
33 122 022 000 o 10 » 11 2
13 nn m2 1011 o1 03 121
) 32 21 757) 1ol ul
2 3 1110
30000,03000, | 0011 0 m 1 3 i) 2 22
00300, 00030, | 1001 nn
2 (0000312222, ot 23
2222,22122,{ 1010 E5P))
m2,22221,) ono 3%
1100 1R
110 0 033 2 2 2333 m 1000 3000
ot 303 1 n 13 010 0300
3 101 130 E17E] 0010 0030
30 0001 0003

Table 4.1: The shortest-path table for vertex (0,0) of G,
5 0 9 ¢ -
G, where fi(z,y) = (af,y)(0 1) +(3,1), fa(z,y) = (w,y)(0 1) +(2,4), and

G = GU{1,1),(2°,9) be & graph i G where fiz,3) = (20)] 5 §) +(3.1),

2 .

[z, y) = (a, y)(J O) + (2,4). The maximum distance from vertex (0, 0) to any
vertex is 14 for G, an

12 for G.. Table 4.1 and 4.2 give examples of shortest-
path table for a vertex of a graph of simple form and for a vertex of a graph of
complex form, respectively. The shortest-path tables are created for vertex (0,0) of
Gs = G({f1, f:},(4,9)) and G = G({f{, f3},(4,9)).

Assume the process of constructing a shortest-path table for a graph G({fi, f2},
(2%, s2)) will take ¢ units of time. If the graph G is of simple form, 2°~* distinct
shortest-path tables are required, and thus it takes 2= x ¢ units of time to construct
these tables. If the graph G is of complex form, 2'~2 x s, distinct shortest-path tables
are required, and thus it takes 2"~ x s, x t units of time to construct these tables.

In the next section, we will introduce another global routing algorithm for the

graphs of simple form. It only needs to create a unique shortest-path table.

62

y 0 1 2 3 4 5 6 7 s
x
k3] 00 23 012 3 010 n n
kv7] 210
0
101 103 330 12 k] 10 30 121 2
233 03
1 332
1230 0101, 2303, 122 111 1 230 100 1232 1210, 101,
3210 3032, 0332, 232 001 nn 0121, 3223,
2 2301 3230, 0110 333 un 223, ",
2103 1100 i 2332, 1012
0123 1223
1032
110 0 033 21 23 o1 2300 n 2
o1l 303 3301 m [PA]
3 323 1033

Table 4.2: The shortest-path table for vertex (0,0) of G.

4.2 Global Routing in Graphs of Simple Form
with a Unique Path Table

As described in the previous section, the number of distinct shortest-path tab’es
required for the global routing algorithm increases with the size of the graph. 'To
generate these tables for a graph is time consuming especially when the size of the
graph is large. In order to speed up the global routing, the research in this section
focus=s on reducing the number of distinct shortest-path tables required. An efficient
algorithrn is proposed for graphs of simple form. This algorithm needs to generate
only one modified shortest-path table along with a size-indepeadent mapping table.

Let G({f1, f2}, (16, s2)) be a two-dimensional linear congruential graph of simple

(1)) + (blab2)1 f2($)y) = (13,!/)(g (1)) + (dl)d2)’

ged(by,16) = 1, dy = 28, ged(B,16) = 1, ged(by, 82) = 1, ged(dz,s2) = 1, and
s = 4k + 1. Then G = G, o Gy, and G;, G, are vertex-transitive.
Let (sz,sy) and (d,d,) be two vertices of G. If p is a path from (s;,s,) to

form where f(z,y) = (z,y) g

(d:,d,), then p is also a path from (0,0) to (a.(d:), a,(dy)) where a = (az,a,) is

63

an automorphism on V(G) such that a(s;) = 0, and a,(s,) = 0. If there is a
shortest-path table for the source vertex (0, 0), then given any two vertices of G, we
can find the shortest paths between them by checking this table.

Let G' = G({ i, f2}, (32, 52)) be the extension of G({ f1, f2},(16, s2)), and (s, s,),
{d;,d,) be two vertices of G'. If p is a path from (s, s,) to (d:, dy), then accord-
ing to Lemma 3.2.6 (symmetry of extension), p is also a path either from (0,U)
to (az(d; mod 16),a,(dy)) or from (0,0) to (az(d; mod 16) + 16,a,(d,)) where
a = (az,a,) is an automorphism on V(G) such that a(s; mod 16) = 0, and
ay(sy) = 0.

On the contrary, if p; and p; are paths from (0, 0) to (a;(d; mod 16), ay(d,)) and

to (az(d; mod 16) + 16, ay(dy)), respectively, one of the following cases may occur.
1. Both p, and p, are paths from (s, s,) to (dz,dy).

2. One of them is a path from (s;,s,) to (d.,d,), and another is a path from
(32,8,) to ((d; + 16) mod 32,d,).

3. Both p; and p, are paths from (s, s,) to ({(d: + 16) mod 32,4d,).

Liven though there is a shortest-path table for the source vertex (0,0), we prob-
ably cannot find a path from (s, sy) to (dz, dy) by checking these two entries corre-
sponding to (a.(d. mod 16),a,(d,)) and (a.(d. mod 16) + 16,a,(d,)) in the table.

It is also likely that some of the shortest paths in an entry are paths from
($ry8y) to (d;,dy), and the others in the same entry are paths from (s;,s,) to ((d;+
16) mod 32,dy). Thus, every path in the corresponding entries has to be checked
whether or not it is a path from (s;,s,) to (dz,d;). The number of corresponding
entries (2-1) increases with the size 2' x s, of the graph. The checking procedure
is time consuming especially when the size of the graph is large.

To overcome the above disadvantages, the shortest-path table is modified such
that given any two paths in the table, when they are applied on the same source

vertex,
1. their destinations are the same, if they are in the same entry.
2. their destinations are different, if they are in different entries.

64

We will call this modified table a one-to-one mapping path table. The algorithm for
constructing the modified table is introduced in the following subsection, and the

related proofs are also given.

4.2.1 Construction of the One-to-one Mapping Path Table

Let G({f1, f2}.(2',52)) be a two-dimensional lincar congruential graph of simple
form where fi(z,9) = (z, y)(o0) + (b ba), and fo(e,y) = (x,y)(a0

)

(d,d3), Let fi.(z) = anz + by, fl,,(J) =y + by f2,(z) = enx + dy, and fp (y) =
y + dy. Let @y, by, b2, €11, di and d; be constants such that fl:l(.t) = anx + by,
fl‘yl(y) =y + by, f3.(z) = enz + dy, and By =y+ d,. Let p be a path in (¢
from (s, sy) to (dz,d,), and ny, nz, n3, ny be the numbers of generators fy, fo, fi7',

f51in p, respectively. Then

d: = ((a7} - cf-a}} - &}f) x s: + R:(p)) mod 9
dy = (sy+ Ry(p)) mod s,
where R, consists of the items that do not contain s;, and R, consists of the items

that do not contain s,. If we define A(p) to be (a}} - i} - ajf - ¢1}), then d, =

A(p) x sz + Rz(p).
THEOREM 4.2.1 Let G({f1, f2},(2!,s2)) be a two-dimensional lincar congruen-
tial qraph of simple form where fi(z,y) = (:z:,y)(0(1)1 (1)) + (b, b2), and fo(x,y) =

(z,y)(‘u) + (dy,d3). Let py be a path in G from (0,0) to (dzo,dy) and also a
path from (sx,sy) to (dz,dy). Let p; be a path in G from (0,0) to (dy,d},) and also
a path from (sz,s,) to (d;,d,), and A(p,) = A(p2). If doo = dyg, then d; = d,, elsc
d. # d,. If dyo = d\y, then d, = d,, else d, # d,.

Proof:

A(p1) x 0+ R.(p;)) mod 2'. Thus R:(p1) mod 2' = dy.

A(pz) % 0+ R.(p2)) mod 2'. Thus R.(p;) mod 2 = dl.

()

d; = (A(p1) X 8z + Rz(p1)) mod 2' = (A(p1) % 8z + dzo) mod 2'
()
(A(pz) X 8z + Raz(p2)) mod 2' = (A(pz) x 5z + dyg) mod 2!

R
Il

65

Since A(p1) = A(pz), if dzo = dig, then d; = d.,, else d; # d.,.

dyw = (0+ Ry(p1)) mod sz2. Thus Ry(p1) mod s; = dy.
d, = (sy+ Ry(p,)) mod s; = (sy + dyo) mod s;
dyp = (04 Ry(p2)) mod s;. Thus Ry(p2) mod s, = d,.
d, = (sy+ Ry(p2)) mod s; = (sy + d.y) mod s,

If dyo = d}, then d, = d,, else d, # d,.
O

Let G({f1. f2},(2,s2)) be a two-dimensional linear congruential graph of simple

form where fi(z,y) = (x,w(o) F(bub), folay) = (x,y>(o) + (dr,da),

ged(64,2°) = 1, di = 28, ged(B,2)) = 1, ged(ba,s2) = 1, ged(da,s5) = 1, and
s9 = 4k+1, k € N. According to the vertex transitivity of G’ = G({ f1, f2}, (16, s2))
and the property of edge-change in the graph G, a path in G from a vertex (s, s,) to
avertex in {(d,,d,), (d:+16,d,), ..., (dz+16x(2""*—1),d,)} could be found only in
the entries corresponding to the vertices in {(az{d;), ay(d,)), (az(d;) + 16, a,(d,)),
von (az(ds)+ 16 X (2771 = 1), 04(d,))} of the shortest-path table for the source vertex
(0,0) of G where 0 < d; <15, and a = (ay,ay) is an automorphism on V(G’) such
that a.(s: mod 16) = 0, a,(s,) = 0. Thus if all paths in these entries have the
same A(p), according to the above theorem, there is a one-to-one mapping between
{(d:+16xj,d,) | 0 < j <27*—1} and {(a.(d:)+16xk,ay(d,)) | 0 < k < 2°-4—1}.

Let R = {(z1,1),(22,92) | 21 mod 16 = z, mod 16, and y; = y.} be a relation
on V(G). Thus R is a equivalence relation. There are 16 x s, equivalence classes.
Each of them consists of 24 vertices. In the shortest-path table for (0,0) of G, if all
paths in the entries corresponding to the vertices that are in the same equivalence
class have the same A(p), the table is called a one-to-one mapping path table.

The following is an algorithm for constructing a one-to-one mapping path table.
In the algorithm, we use Ap to denote A(p), and there are two data structures Ap_list
and Ap_counter. Ap_list is a pointer to a list of records that consist of the fields Ap

and Next (pointer to next record). Ap_list is used for each entry in the shortest-path

66

table to record the distinct Ap’s of the paths in the entry. Ap_counter is a pointer
to a list of records that consist of the fields Ap, Counter and Next. Ap_counter is
used for each equivalence class to count the number of entries in which at least one

of the paths’ A(p) is equal to Ap.

Algorithm: construction of the one-to-one mapping path table;
¢ input :

fi1, fa: the generators of a two-dimensional linear congruential graph G of
simple form.

(27, s3): the size of the graph G.
e output : the one-to-one mapping path table for G.

begin
construct the shortest_path table for (0, 0);
for x0 := 0 to 15 do

for y :=0 to s2 - 1 do {* for each equivalence class *}
begin

Ap_counter := nil;

for j := O to power(2, i-4) - 1 do

begin {* for each vertex in the class »}

x :=x0 + 16 * j;
Ap_list := nil;
current_p := shortest_path_table[x,y].pathpt;
while current_p <> nil do {* for each path in the entry *}
begin

Ap := get_Ap(current_p~.path);

{* record the distinct Ap *}
if Ap is not in the Ap_list then
append a record (Ap) to Ap_list;

end; {of while current_p}

current _Ap := Ap_list; {* for each record in Ap_list *}
while current_Ap <> nil do
begin

if current_Ap~.Ap is not in Ap_counter then
append a record (current_Ap~.Ap, 1) to Ap_counter;
{* set counter to be 1 *}
else
increase the counter of the corresponding record by 1;
end; {of vhile current_Ap}

67

end; {of for j}

Ap_best := 0; {* find the Ap with max. counter }
max_ct := 0; { and assign to Ap_best *}
current_Ap._ct := Ap_counter;

wvhile current_Ap_ct <> nil do
if current_Ap_ct”.Counter > max_ct then
Ap_best := current_Ap_ct”.Ap;

min_len := 0;
found := true;
for j := 0 to power(2, i-4) -1 do
{* for each vertex in the class *}
begin
x :=x0 + 16 * j; {* remove paths whose Ap<>Ap_best#}
for each path p in shortest_path_table[x,y]
if get_Ap(p) <> Ap_best then
remove the path from the entry;

if shortest_path_table[x,y].pathpt = nil then
begin {* if all paths are removed *}
found := false;

if (min_len = 0) or
(min_len > shortest_path_table[x,y].len) then
min_len := shortest_path_table[x,y].len;
{* record the minimum length of }
end; {of if} { any path that is removed *}
end; {of for j}
{* in the class, there are some }
if not found then { vertices whose paths are all }
{ removed *}
search_new_paths(x0, y, Ap_best, min_len)

end; {of for x0, y}

Let P be the set of the shortest paths (of length) from the vertex (0,0) to a

vertex (z,y). If every A(p), p € P, is not equal to Ap_best, we have to search a new

path p' (of length greater than [) such that A(p’) is equal to Ap_best.

One of the ways is to search paths from (i, y) along its four edges and to check

the original shortest-path table. If we cannot find any path whose A(p) is equal to

68

Ap_best, the searching procedure proceeds along its four neighbors’ outgoing edges.
If no path is found, similarly, the searching procedure proceeds recursively until at
least one path is found

This method has the following disadvantages. First, the searching procedure has
to be executed once for each vertex that requires a new path. In addition, the new
path founded in the way may not be as shorter as possible because the longer paths
may appear earlier than the shorter ones in the searching procedure.

We propose another method that can prevent from the above disadvantages. Let
(dz,dy) be a vertex of G, 0 < d; <15, S = {(z,y) | * mod 16 = d,,y = d,} be
the equivalence class that contains (d,d,), and S, = {(r,y) | (z,y) € S, and all
paths in the entry corresponding to (z,y) of the shortest-path table for (0,0) of ¢
are removed }. If S. is not empty, for each vertex (z,y) € S.. we have to find the
shortest new path p whose A(p) is equal to Ap_best. The length of the new path
is greater than min.len. Ap_best and min.len arc defined as those in the above
algorithm.

Let ny, ny, n3, ng be the numbers of generators fi, f2, £, £} inp, respectively.
The following steps are taken to find the new paths for all vertices in S,. We start,

the procedure with searching new paths of length len = min_len + 1.

step 1: Find the possible combinations of (ny,n2, ng,n4) such that ny+ny4nay+n, =

len, and 5™ -9™2 - a7} - €11 = Ap.best.

step 2: Remove impossible combinations:
Since G, = G({ f1,,f2.},16) and Gy = G({f\,, f2, },$2) are vertex-transitive,
there exist integers n; and n, such that for every vertex z € V(G.), f2,(z) mod
16 = fi7(z), and for every vertex y € V(G,), f2,(y) mod s, = fi¥(y). Ac-
cording to the property of edge-change, p is a path in G({fi, f2},(2', s2)) from
(0,0) to (z,y), only if p is a path in G’ = G({f1, f2},(16, 32)) from (0,0) to
(z mod 16,y). We can create z- and y-position tables for G’ and check each

combination. Let (d;,d,) = (x mod 16,y). If
{(ny — n3) + (ny — ng) * n;) mod 16 # = _position[d,], or

((n1 — n3) + (nz — ng) * n,) mod 3, # y-position[d,),
69

then the combination (ny,n2,n3,n4) is not a solution.

step 3: Crcate possible paths for each combination (n;, nz, na, n4), and apply these
paths on the vertex (0,0) of G. For each path p, if the destination of p is equal
to any (z,y) € S., then p is one of the shortest paths, that their A(p)’s are
equal to Ap_best, from (0,0) to (z,y) of G.

step 4: For each (z,y) € S., if any new path is found, remove (z,y) from S,.

step 5: If S, is not empty, increase len by 1, and repeat the steps 1 to 5.

4.2.2 Construction of the Mapping Table

We now have a one-to-one mapping path table. Although the paths in the table
may not be the shortest, any source vertex can check the table to find the paths to
a given destination vertex.

Let G({ 1, f2},(2',s2)) be a two-dimensional linear congruential graph of simple

orm where (z,9) = (2,9)(g §)+ (b, le) = e §]) + (i

ged(01,2') = 1, di = 28, ged(4,2') = 1, ged(by,s2) = 1, ged(da,s2) = 1, and
s =4k + 1, k € N. Let G' = G({h, f2},(16,32)). As we mentioned, the paths
from (s;,sy) to (d;,dy) of G are in exactly one of the entries corresponding to
{(az(d: mod 16), ay(dy)), (az(d; mod 16) + 16, ay(dy)), ..., (az(dz mod 16) + 16 x
(2" — 1), ay(dy))} where a = (a;,a,) is an automorphism on V(G') such that
a;(s- mod 16) = 0, and a,(s,) = 0. Thus we have to check at most 2/~* entries to
find the paths.

A faster way to find the corresponding entry is to create a mapping table. Let p
be a path from (0, 0) to (dz0,dy0) € V(G), and p is also a path from (s, s,) € V(G)
to (d;,dy) € V(G). We create a mapping table, namely do-table, for each source
vertex except for (0,0). The d.o-table has 2! rows and s, columns. If the content of
an entry in d;th row and dyth column is dzo, it means that the paths from (s, s,)
to (d:,dy) can be found only in the entry corresponding to (dzo, a;(d,)) of the one-
to-one mapping path table for (0,0).

The disadvantage of this way is that there are 2' x s; — 1 tables, and each table

has 2' x s, entries. We will use the following theorems to overcome this disadvantage

70

and create a unique size-independent mapping table.

THEOREM 4.2.2 Let Gy = G({f1,, f2,},92) be a linear congruentsal graph where
fi,(v) = y+ by fo,(y) = y+da. If pis a path from the verter 0 to a verter
dyo € V(G,), and p is also a path from a verter s, € V(G,) to a vertex d, € V(G,),
then dy = (d, — sy) mod s2. (refer to Figure 4.2)

Proof:

For any y € V(Gy), fi,(fi;'(¥)) = v, and fo,(J3'(¥)) = .
Thus f,'yl(y) = (y + (82 — b2)) mod s3, and fi;' (¥) = (v + (32 — d3)) mod s,.
Since p is a path from 0 to dyo, dyo = 0 + Ry(p) mod s3.
Since p is a path from s, to d,, d, = (s, + Ry(p)) mod s3 = (sy + dyo) mod s,.

Therefore, dy = (d, — s,) mod s,.
O

THEOREM 4.2.3 Let G, = G({fi., f2.},2) be a linear congruential graph. Let
p be a path in G, from the vertez 0 to a vertez dyg, also a path from the verlex 1 to
a verter d;; and also a path from a vertez s, to a vertex d;. Let p' be a path in (7,

from the vertez 0 to a vertex d'y and also a path from the vertex ! to a verler d

rl!
and A(p') = A(p). Then dyo = (d: — (dl; — d'yp) x 5;) mod 2°.

Proof:

I

d, (A(p') x 0+ Rz(p')) mod 2 = R;(p') mod 2
% = (A(p)) x 14 Re(p')) mod 2° = (A(p') + d;0) mod 2°

I

Thus A(p') = (d,, — d.y) mod 2

do = (A(p) x 0+ R.(p)) mod 2 = R,(p) mod 2'
d; = (A(p) x 1 + R.(p)) mod 2 = (A(p) + dz0) mod 2
d: = (A(p) x sz + R:(p)) mod 2" = (A(p) X s; + dz0) mod 2

Since A(p) = A(p') = (%, — d’y) mod 2,
dzo0 = (dz — A(p) x s;) mod 2' = (d, — (d; — d.g) x 8z) mod 2*

71

Figure 4.2: Paths with the same value of A(p)

O

Let dy = d;; mod 16, d_,; mod 16 = d;o mod 16 (refer to Figure 4.2). According
to the property of edge-change and the vertex transitivity of G = G({fi,, f2.},16),
since d;; mod 16 = d.,,, p is also a path in G/, from the vertex 1 to the vertex d.,.

We can determine d’,, by checking z-position table and z-Hamiltonian table of G.,.

d,, = z_Hamiltonian|(z position[l] + z.position|d, mod 16]
—x -position[s, mod 16]) mod 16] (4.1)

Thus we only need a djo-table for the source vertex (1,0) of G. This table
only has 16 rows and s; columns. d., can be determined by checking the entry
corresponding to (d.,,dy) of the d.;-table where dyp = (d, — s,) mod s;. Then
dxo = (d: — (d},y — dlg) x s;) mod 2' is determined. The paths from (s;,s,) to
(d:ydy) are in the entry corresponding to (dzo, dyo) of the one-to-one mapping path
table.

Table 4.3 shows the d o-table of the graph G({fi, f2},(64,9)) where fi(z,y) =

-
(a‘,y)(g (1)) + (3,1), and fy(=z,y) = (m,y)(g (1) + (2,4). For example, to

72

determine a path from the vertex (s:,sy) = (2,3) to the vertex (dr,dy,) = (8,5)
of G, we first find d.,; = z_Hamiltonian|7 + 8 — 2] = z_Hamiltonian[13] = 15 by
Equation 4.1 and dyp = (dy — sy) = 2. We then check the entry corresponding to
(d%y,dyo) = (15,2) of the dyo-table to find diy = 22. Finally, dyo = (d: — (d’,, -
dy) x sz) mod 2 = (8 — (15 — 22) « 2) mod 64 = 22.

4.2.3 Evaluation

This global roi.ting algorithm needs only one path table and a size-independent
do-table (of size 16 x s;). However, it does not always provide the shortest paths.

We have tested some cases of size from 32 x 9 to 2048 x 9. The lengths of the
paths in all tested cases exceed the diameter at most by one. In the cases of size
2048 x 9, the number of entries that have to find new paths is about 1000, and the
length of any new path between two vertices exceeds the distance between these two
vertices at most by 4 or 5.

An example in Table 4.4 illustrates their comparison.

4.3 Distributed Routing

We will present two distributed routing algorithms ior two-dimensional lincar con-
gruential graphs. The algorithms will use a length table at each vertex to decide
which edge of the vertex is to be used to route messages. The length table for a
vertex @ € V(G) consists of 2' x s ¥ 4 entries since there are 2' x 33 vertices, and
there are 4 edges incident with 4. An entry corresponding to a vertex ¢ and an edge
e incident with @ represents the length of the shortest path from 4 to ¥ via e.

In order to route messages in a graph in the presence of fauity links, these two
algorithms also use a backtracking technique similar to the algorithm in star graphs
proposed by [32]. They do not require global knowledge of faults. In fact, the only
knowledge required at a vertex is the state of its incident edges and the information
in the length table. The routed message carries information about the path followed
and the vertices that have been visited.

Both of the algorithms will route messages along one of the shortest paths if no

faults are encountered. In the presence of faults, the first aigorithm will always find

73

Hamiltonian Cycles

Gy
Gx of size 16
Dx0-table
~ -
0 1 2 3 4 5 6 7 8
Dxl’

0 11 43 43 27 59 43 11 59 27
1 32 16 16 32 3 48 43 32
2 5 37 21 53 37 5 53 53 21
3 10 58 26 10 10 42 26 58 42
4 63 15 15 47 31 63 47 15 63
5 36 4 4 52 20 4 36 20 52
6 25 9 9 25 25 41 41 9 57
7 46 46 62 62 30 14 46 30 62
8 35 3 51 19 51 35 35 19 51
9 56 56 40 8 56 2. 8 40 24
10 61 61 45 13 61 29 13 45 45
11 34 18 50 34 2 50 18 18 34
12 55 39 7 7 23 23 7 39 23
13 4 28 60 4 12 60 28 12 12
14 49 33 1 49 17 1 33 17 17
15 6 38 22 54 38 6 6 54 2

Let p be a nath in one-to-one mapping path table. If p is a path from (1,0) to (dx1°, dy0),
then p is also a path from (0, 0) to (dx0’, dy0).

Table 4.3: An example of the d.o-table

74

Size of Graph ::":::12‘::: Diameterof G | T mum length :: ::';'a;:r&r::e

of any new path any new and

new paths original paths
32x9 2 10 10 1
64x9 2 10 10 i
128x9 2 10 10 1
256 x9 18 10 10 3
512x9 107 1 12 3
1024x9 305 1 12 4
2048 x 9 992 12 12 4

Table 4.4: Comparison of two global routing algorithms in graphs
G({f1, f2},(2, s2)) of Simple Form, where

fe=tea)(5)) +ED

f2(m’y) = (x,y)((9) ?) +(214)

a path between two vertices as long as the two vertices are connected. Let @ be a
vertex that receives a forward message from e, one of its edges. The first algorithm
allows the message to backtrack through 4, if all the other edges of @ arc ecither
faulty or leading to a cycle.

The second algorithm may find a shorter path than the first one does under some
fault conditions. However, finding of a path between two vertices is not guaranteed,
even if the two vertices are connected. It allows backtracking if backtracking may
lead to a shorter path.

Both algorithms will return the messages to the originating vertex if they cannot
route the message. We will call the first one conservative distributed rouling algo-
rithm, and the second one progressive distributed routing algorithm. The evaluation
of these two algorithms under different faulty conditions will be presented in the

following subsection.

75

4.3.1 Construction of Length Tables

To construct a length table for a vertex @ of a two-dimensional linear congruential
graph G({fi, f2},(2%, 52)), the following data structures will be used.

For a given vertex @ € V(G), let P = {p | p is the shortest path from the vertex
via an edge e to a vertex ¥, p contains no cycles, ¥ € V(G), and ¢ is an edge
incident with @}, L = {I| ! is the length of p, p € P}, and len be the maximum of
L.

A path table for a vertex (zo,yo) has s; rows indexed from 0 to (s; — 1) and
len columns. Each entry is a pointer to a list of records. A record (z, start_edge,
last_edge, next) in a list pointed by an entry in the yth row and the lth column
means that there is a path of length [from (zq,y0) to (z,y) in which the first edge
is starl_edge, and the last edge is last_edge. The path contains no cycles.

As we mentioned, the length table for a vertex (zo,y0) € V(G) has 2' x s, rows
indexed from 0 to (2' x s — 1) and 4 columns indexed from 0 to 3. Each row
corresponds to a vertex of G, and each column corresponds to an edge incident
with (o, y0). For a vertex, we will use 0, 1, 2 and 3 to denote its incident edges
corresponding to fi, f2, fi! and f;!, respectively. If the content of an entry cor-
responding to a vertex (2.y) and an edge e is I, then the minimum length of any
path from (zo,y0) via e to (z,y) is I. In constructing the table, the four entries

corresponding to (zg, yo) are initially set to be -1, and the others are set to be 0.
Algorithm: construction of a length table;
e input:

fi, f2¢ the generators of a two-dimensional linear congruential graph G
(27, 52): the size of G.

(zo, yo): a vertex of G.

e output: the length_table for (zo, yo).

begin
initialize the length_table;
for e:=0 to 3 do {* for each edge incident with (x0, y0) *}
begin

find (x, y) which is adjacent to (x0, y0) via e;

76

new(new_path);

new_path”.x := x;

new_path”.start_edge := e;

new_path”.last_edge := e;

new_path”.next := nil;

append the record (new_path) to the list pointed
by path_tablely, 1];

length_tadblelx, y, e] := 1;
end; {of for}

len := 1; .

repeat
for y:=0 to s2 - 1 do {* for each row (y) of path_table
begin

current := path_tablely, len];
while current <> nil do {* for each path in the entry
begin

for e:=0 to 3 do {* for each edge incident with the
begin { destination of the path

if e is not the last edge of the path then

begin

find (nx, ny) which is adjacent to (current”.x, y) via

if (length_tablelnx, ny, current”.start_edge] =0) then
begin {* so far, no any other path leaving
{ from (x0, y0) along the same edge

e,

3
}

{ has arrived (nx, ny) with a shorter}

{ or equal length

nev(new_path); {* extend the path

new_path”.x := nx;

new_path”.start_edge := current”.start_edge;

nev_path”.last_edge := e;

append the record (new_path) to the list pointed by
path_tablefny, len + 1];

*}

*}

length_table[nx, ny, current”.start_edge] := len + 1;

end; {of if length_table}
end; {of if e}
end; {of for e}

17

current := current”.next;
end; {of while current}
end; {for y}
len := len +{;

until all entries in length_table are not zero;
end. *

Similarly to the global routing algorithm described in section 4.1, the number
of distinct length tables that we have to create is (2°-*) for a graph of simple form,
and (2'-? x s;) for a graph of complex form according to the symmetric property of

the graph.

4.3.2 Conservative Algorithm

Before presenting the conservative distributed routing algorithm, we first introduce
the data structure of messages routed by the algorithm.

As we mentioned, a routed message carries information about the path followed
and the vertices that have been visited so far. In the description of the algorithm, we
will use the following convention to denote the complete message being transmitted:

(m,d, f/w, VisitedList, Linklist).
m: The actual message.
d: The destination vertex.

f/w: A bit that is set for a forward transmission message and reset for a return

message.

VisitedList: A list representing the vertices. Once a vertex receives a forward mes-
sage, the vertex is appended to the . -t. Even though the message backtracks
through the vertex, it will still stay in the list. Thus we can prevent from cycles

in the path and ensure that any vertex will not be tried more than once.

LinkList: A list representing the edges being traversed by the message. An edge
is appended to the list once the forward message traverses the edge and is

deleted once the message backtracks through it.

78

The following is a skeleton of the algorithm in which a valid edge is defined as a
non faulty edge that sends the message to a non visited vertex. Each vertex checks
its length table to decide the priority of its edges once it received a message. An

edge with a smaller value of the corresponding entry has a higher priority.

Skeleton of Conservative Algorithm:

1. At each vertex that receives a message (m,d, f/w,VisitedList, LinkList), if
it is the destination of the message, pick the actual message m and stop,
else if the message is forward (f/w = 1), append the vertex visited to the
VisitedList, and append the edge just traversed to the LinkList, otherwise

(it is a return message) delete the edge from the LinkList.

2. Select the edge that has the highest priority among its valid edges. If there
is an edge that matches the conditions, send a message (m, d, 1, VisitedlList,
LinkList) forward along the edge and go to step 1, else (there is not any valid

edge) go to the next step.

3. If this vertex is not the source, send a return message (m, d, 0, VisitedList,
LinkList) along the last edge of the LinkList and go to step 1, else (this

vertex is the source) go to the next step.

4. Halt, since there is no way to forward the message.

The algorithm allows a message to backtrack through a vertex, provided that all
edges incident with the vertex are invalid. In other words, except for the edge that
the forward message came from, all edges are either faulty or leading to a cycle.
As we defined, a valid edge is a non faulty edge that sends the message to a non
visited vertex. Thus the edge that the forward message came from is invalid, since
the vertex connected by the edge is visited.

The advantage of this algorithm is that it will always find a path between two
vertices as long as the two vertices are connected, since in the worst case, it executes

a complete search. On the contrary, it is not flexible to route messages, even if earlier

79

backtracking can lead to a shorter path than sending the message to the other valid
edges.

For example, let i, 7 be two vertices connected by an edge eg, and let e, €3, €3
be the other edges incident with v where e, i¢ faulty. Assume that the lengths of
the shortest paths from ' to a vertex o via eq, €1, €3, €3 are 5, 2, 8, 9, respectively.
When ¥ reccives a message from @, and the destination of the message is o, if
the conservative algorithm is applied on the network, & will choose e, to send the
message. Thus eight message hops are required to forward the message from ¥ to w
if no more faults are encountered by the message.

Since the lengths of the shortest paths from o to @ via e is 5, there is an edge
¢/ incident with @ such that the length of the shortest path from #@ to w via €’ must
be 4. If ¥ are allowed to return the messa,e to @ via eg, and e’ js valid, then the
vertex @ will choose €' to forward the message to @. Thus only five message hops
are required to send the message from ¥ to @ if no more faults are encountered by
the message.

We will call this routing scheme progressive distributed routing algorithm. It can
overcome the above disadvantage of the conservative routing algorithm. However,

it may not find a path between two vertices, even if the two vertices are connected.

4.3.3 Progressive Algorithm

The formats of messages and length tables in the progressive algorithm are the same
as those described in the conservative algorithm, but additional informations, tried
flags, are required.

When a vertex receives a message, it creates four one-bit flags, namely tried, for
the message. A flag is set if the corresponding edge has been tried, and thus the
message should not be forwarded along this edge again. The flag is reset if a return

message may have to backtrack through it.
Skeleton of Progressive Algorithm:

1. At each vertex that receives a message (m, d, f/w, VisitedList, LinkList), if
it is the destination of the message, pick the actual message m and stop, else

reset all edges "untried”, and set the edge just traversed "tried”.

80

If the message is forward (f/w = 1), append the vertex visited to VisitedList,
and append the edge just traversed to LinkList, otherwise (it is a return

message) delete the edge from LinkList and go to step 4.

2. If the message is forward, select the edge that has the highest priority among
those edges that are not marked "tried”, and if the edge is valid, send the
message (m, d, 1, VisitedList, LinkList) forward along the edge and go to
step 1, else set the edge "tried”, reset the edge just traversed "untried” and

go to the next step.

3. Select the edge that has the highest priority among those edges that are not
marked "tried”. The edge just traversed is one of the candidates.
If the edge just traversed is selected, send a return message (m, d, 0, VisitedList,
LinkList) along the edge and go to step 1, else (not the edge just traversed)
if the edge is valid, send the message (m, d, 1, VisitedList, Link List) forward
along the edge and go to step 1, else (the edge is not valid) set the edge "tried”

and repeat step 3 again.

4. If the massage is a return message (f/w = 0), select the edge that has the
highest priority among those edges that are not marked "tried”.
If the edge selected is the last entry of LinkList, send a return message (m, d,
0, VisitedList, LinkList) along the edge, else (not backtracking) if the edge
is valid, send the message (m, d, 1, VisitedList, Link List) forward along the
edge and go to step 1, else (the edge is not valid) set the edge "tried” and

repeat step 4 again.

The progressive distributed routing algorithm allows a message to backtrack
through a vertex, even when some edges incident with the vertex are still valid. If
no faults are encountered, the algorithm routes messages along one of the shortest
paths between two vertices. If one of the edges incident with a vertex v in the
shortest path is faulty, routing the message along the remaining two edges incident
with ¥ probably leads to longer paths than sending a return message to previous

vertex in LinkList and routing the message again.

81

However, the vertex ¢ through which the message backtracks cannot be visited
again by the message. Under a specific faulty situation such that the message must
go through ¥ to arrive the destination, the progressive algorithm cannot find a path
for the message. Another problem is that after backtracking, the message may
encounter another fault, and therefore the number of message hops is larger than
what expected.

According to our tests, which will be introduced in the next subsection, the
number of cases where the above problems occur increases with the number of faulty

edges.

4.3.4 Evaluation

To evaluate the algorithms introduced in the previous subsections, we provide an em-

pirical evaluation for two-dimensional linear congruential graphs G({ fi, f2}, (2',9))

of simple form where fi(z,y) = (fb‘ay)(3 (1)) +(3,1), fo(z,y) = (z,9) g (1)) +

(2,4), and 5 < 7 < 9. In these cases, a column z¢ is defined as a set of ver-
tices {(z,y) | £ = 20, (z,y) € V(G)}, and a row yo is defined as a set of vertices
{(z,9) | vy = yo,(z,y) € V(G)}, therefore V(G) can be partitioned into 2 columns
or 9 rows.

Since the graph G is of simple form, G = G, o G, and therefore the value of =
does not depend on the value of y. If a vertex (x1,y,) is adjacent to a vertex (z2,33),
then every vertex in the column 7- is adjacent to a vertex in the column x5, and
every vertex in the row y,; is adjacent to a vertex in the row y,. Thus we say that
column x, is adjacent to column x2, and row y, is adjacent to row u,.

In the graphs G; and G, any two edges incident with the same vertex are
disjoint. If the graph G = G; o G, has n faulty columns (or rows) for 1 < n < 4,
a vertex not in the faulty columns (or rows) has at most n faulty edges, and any
two vertices in the same column (or row) have the same number of faulty edges.
Similarly, if G has n faulty columns and n faulty rows for 1 < n < 2, a vertex not
in the faulty columns and faulty rows has at inost 2n faulty edges.

According to the maximum number of faulty edges of any vertex that is not

isolated, we designed the cases as follows.

82

10.

11.

12.

. There is no fault.
. There is a faulty vertex. The number of cases is 2! x 9.
. There is a faulty column. The number of cases is 2.

. There are two faulty columns. If these two faulty columns are arbitrarily

' 2x(2'-1 ‘s
chosen, there are C2 = _X_(i__l combinations. To reduce the number of
cases, we choose two columns that are adjacent to the same column. Thus the

number of cases is 2 x Cj = 2! x 6.

There are three faulty columns. To reduce the number of cases, we choose
three columns that are adjacent to the same column. Thus the number of

cases is 2' x Cd = 2! x 4.

. There are four faulty columns. Similarly, we choose tour columns that are

adjacent to the samc column. Thus the number of cases is 2' x C} = 2. In
fact, since a columnn is isolated by the four faulty columns, the isolated column

is also faulty.

. There is a faulty row. The number of cases is 9.

. There are two faulty rows. These two rows arc arbitrarily chosen, thercfore

the number of cases is Cj = 36.

There are three faulty rows. To reduce the number of cases, we choose three

rows that are adjacent to the same row. Thus the nuinber of cases is 9 x C§ =

36.

There are four faulty rows. Similarly, we choose four rows that are adjacent
to the same row. Thus the number of cases is 9 x C§ = 9. In fact, since a row

is isolated by the four faulty rows, the isolated row is also faulty.

There are a faulty column and a faulty row. The column and row are arbitrarily

chosen, therefore the number of cases is 2' x 9.

There are two faulty columns and two faulty rows. If they are arbitrarily

chosen, the number of combinations will be CZ' x C§ = ZXZ=l) 9xB ¢

83

(z,y) be a vertex of G, and its four neighbors be (z1,31), (22, ¥2), (z3,y3) and
(z4,y4). For each neighbor of (z,y), we choose a column or a row to which it
belongs. Thus there are C3 = 6 combinations {z1,z2,¥3,¥4}, {T1, 23, 2,94},
{z1,24,y2,¥3}, {Z2, T3, 91,94}, {T2,T4,¥1,¥3} and {z3,T4,91,%2}. There are

2¢ x 9 vertices, so the number of cases is 2* x 9 x 6.

As proved in subsection 3.3.1, the linear congruential graph G; = G({ fiz, faz},2")
is vertex transitive with respect to a partition P where P is as described in sub-
section 3.3.1, and G, = G({fiy, f2y},9) is vertex transitive. For each test case, we
have to test 2'~* source vertices. For each source vertex, we have to test 2 x 9 — 1
destination vertices.

As the result of test case 1, given a source vertex and a destination vertex, the
path decided by the progressive algorithm is always the same as the path decided
by the conservative algorithm when there is no fault. The path is a shortest path
between these two vertices.

The other results are shown in Tables 4.5 and 4.6, in which the percentage of
Jaults is defined as the number of faulty vertices divided by the size of the graph.
We observe that the progressive algorithm usually routes messages with less message
hops than the conservative algorithm does when percentage of faults is lower. How-
ever, even though two vertices are connected, the number of messages that cannot
be routed by the progressive algorithm increases with the percentage of faults. On
the contrary, the conservative algorithm always find a path between two vertices as

long as these two vertices are connected.

4.4 Finding Disjoint Paths

In this section, we will investigate the connectivity of the two-dimensional linear
congruential graph G({ 1, f2},(2',52)) as described in section 3.3. Since the degrees
of G is 4, the connectivity of G is at most 4. We will thus propose an algorithm of

finding disjoint paths for graphs of connectivity 4.

84

Algorithm A: Progressive distributed routing algorithm
Algorithm B: Conservative distributed routing algorithm

Size:32x 9
% Pl 0] s |cotumn |conuns | comps [cotns | row | rows | ows | rows | Arow & Sroms
Faults (Isolated) 0.35 13| 625 938 15.63} 1L.11 22221 3333 5556 1388) 2743
Both cannot forward 035 313 625 938| 1563| 11.11)] 22221 33 “5 5556| 1388 274
Only B can forward 0.00 000| 0.1 036 000 000 8291 2989 2369 002 1130
B 1s faster 000 001 076 144 076 000 337 259 065 104 S8
A is faster 000 005 0.88 146 0.59 046 548 688 091 189 837
A =B =Optmal 9870| 8855| 78.16] 6937| 6540; 6028 | 3145| 1491 1320| S268] 2324
A=B >Optimal 095 826 1395 1799 1762| 281S| 2919 1240 S9T) 3049 | 243
Size: 64x 9
% Faully cases verltex eolulmn coluznns coll?mns _cx_)l_u‘:mu rulw ro:l m\:n m:l ,& | .mw ’&‘2 ;OWI
Faults (Isolated) 0.174 156 3.3 469 781 1011 2222f 3333 S$5S6) 12501 24m9
Both cannot forward 0.174 156 313 469 781 1110} 22221 3333| 3556] 1250 248y
Only B can forward 0000 000 000 008 000 0.02 874| 3062} 23.77| 003 | 1132
B s faster 0000 015 039 049 037 5841 1022 4.80 246f 653 | 10n
A 1 faster 0002 0.02 030 045 011 108 1135 944 463 2031 1187
A =B = Optunal 99220| 9309| 87.10| 8206f 7938| S5487| 25571 1084 802| 5073 2154
A=B >Opumal 0604 518 908 | 1223 1233| 2708) 2191 1097 $S7| 2819) 1976
Size: 128 x 9
i aulty cases va|1ex colu_}_nn coluzm_ns_ _&lujm_n_s colu:nm rolw ro:- m3u m:n L‘f’m" }‘c; Irl::\?l“
Faults (Isolated) 0.087 078 156 234 391 b1 | 2222 3333] 5556 1181 | 2383
Both cannot forward 0.087 0.78 1.56 2.34 391 1111 2222 3333| Sss6| 1181] 2353
Only B cun forward 0000 0001 000 0.02 0.00 000 858| 3218 2440| 001 | 1140
B 1s faster 0.000 0.03 0.10 027 0.09 949 1912 855 325 992 1792
Adis faster 0005 0.05 031 0.34 o 209 1123 921 59 257] 118
A =B aOpumal 99.549{ 9598 9249| 38951 87.70f 4919 201 854 326 4111] 1904
A =B >Optumal 0359 3.16 5.54 152 8.16] 2812| 1784 818 $54| 28 58] 163)

Table 4.5: Comparison of two distributed routing algorithms

85

Algorithm A: Progressive distributed routing algorithm
Algorithm B: Conservative distributed routing algorithm

Size: 256 x 9
%\w valt 1 2 3 4 1 2 3 4 1 column|2 columns
tex | column | columns | columns | columns TOW Tows ows rows | & 1 row [& 2rows
Faults (Isolated) R 0.043 039 078 L1 195 1.1 2222| 3333) 5536 1146| 2287
Both cannot forward 0043 0.39 0.78 1172 1951 11111 2222 3333| 5s5.56| 1146| 2287
Only B can forward 0000 0.00 000 | 0005 0001 0005 889 33.64| 2585 001} 1162
B is faster 0.000 001 04| 0061 00| 5618 2004 906 597 606] 1931
A s faster 000s! o0o04| 021 oi62| 013] 1818] 1254 949 614] 219 1298
A =B =Optimal 49.748 97.74| 9577 94079| 93.01 | 44651 17.34 643 345] 4366 1645
A =B >07umal 0.204 1.81 328 | 4522 486 36.757 1897 8.05 304] 3662 1680
Size: 512 x 9
% Faulty cases 1 1 2 3 4 1 2 3 4 1 column}i columns
vertex] column | columns § columns | colurnns TOW rows fows rows | & Irow [& 2rows
Faults (Isolated) 0.020 0.20 0.39 0.59 098 1111 2222] 3333 55560 1128| 2258
Both cannot forward 0020 0.195 0.39 0.59 098 1111 2222 3333| 5556 1128} 22.55
Only B can forward 0.000 0000 0.00 0.00 0.00 001 621} 3571 282 001 11.82
B is faster 0000 0.004 0.02 005 0.02 6.68 1425} 10.06 6.25 696 2038
A is faste; 0.006 0.05! 0.13 0.15 013 411 1089 1079 562 435] 1627
A =L =Opumal 99.800 | 98.744] 97.66 9673 96.13| 4065 3551 483 2| 4012 1402
A =B >Optimal 0113 1007 1.81 249 2741 3143 1092 5.28 1991 3728| 1496

Table 4.6: Comparison of two distributed routing algorithms (continue)

86

4.4.1 Connectivity of a graph

Before investigating the connectivity of a graph G({f1, f2}, (2', s2)) of simple form,

we first review the following theorem.

THEOREM 4.4.1 [13] Connectivity of a Linear Congruential Graph
Let t < i be an integer, and F = {fi | 1 < k < t, f, satisfies Lemma 3.2.1,
and fy satisfies Lemma 3.2.2 if k > 1}. Then the graph G(F,2') of degree 2t is

2{-connected.

Let G({ f1, f2}, (2}, s2)) be a two-dimensional linear congruential graph of simple

5 0" 9 0
form where fi(z,y) = (z,y) 01 } + (b1, b2), fa(z,¥) = (z,¥) 01/ (dy,d),

ged(b,2) = 1, dy = 28, ged(B,2') = 1, ged(by,s2) = 1, ged(dz,s;) = 1, and
sy =4k+1, k € N. Let G, = G({ fiz, f2z},2), and G, = G({f1y foy},s2) such
that G = G, o G,. The generators f;, and fa, always generate Hamiltonian cycles
in Gy. The cycle structure of G is thus determined by G, i.e., G has the same cycle
structure as G,. Because fy; and f,, satisfy Lemma 3.2.1 and 3.2.2, respectively,
according to the above theorem, the connectivity of G is 4. Then the connectivity
of G is also 4.

For a two-dimensional linear congruential graph G({fi, f2}, (2, s2)) of complex

5 0 9 0
form where fi(z,y) = (x,y)(ay 1) + (b1, b2), fa(z,y) = (z,9) | +

(dl’dQ)’ ng(bl,Zi) = 1’ dl = Qﬂa ng(ﬂ92t) = 11 ng(b2132) = 1’ ng(d2’82) =]’
and s; = 4k + 1, k € N, its cycle structure may be more complex than that of
simple form, but the following theorem provides a sufficient condition such that a

two-dimensional linear congruential graph has connectivity 2t.

THEOREM 4.4.2 [1] Connectivity of a Two-Dimensional Linear Con-
gruential Graph

Let G(F,(2',s2)) be a two-dimensional linear congruential graph where F = {f; |
1 <j<t te N}, and i be any vertex of G. If the set of generators has following

properties:
1. fy generates a Hamiltonian cycle.

2. f,(i) mod (2, s,) # f; (&) mod (2',3).
87

3. The generators can be arranged in a way that

o f,41 partitions every cycle generated by f, into two disjoint sets,

® any two consecutive vertices i and f,(ii) on the cycle generated by f, are

on the different cycles generated by f,11, and

o fi(fi(#)) und @ are on the same cycle generated by f,4..
then the graph G(F,(2},s;)) of even degree has connectivity 21.

Therefore, if we properly choose the generators f; and f, according to Theo-

rem 4.4.2, we will have a graph of connectivity 4.

4.4.2 Algorithm of Finding Disjoint Paths

As proved in [13] and [1], for a two-dimensional linear congruential graph G({/, f.},
(2, 82)) of simple form or graph of complex form that satisfies Theorem 4.1.2, we
can find four disjoint paths for each pair of vertices 9y, 4, € V(G).

Let Cy, C2 be two cycles generated by f,. If both #; and @5 are on the same
cycle Cy, then there is a set of disjoint paths:

path 1: 4y, fi(%)), part of C2 to fi(%,) not containing f;!(%;), ¥%;
path 2: 7,, ff'(f)‘l), part of Cy to fi (%), vUa;

path 3,4: the two parts of C,.

If ¥y € Cy and 0, € Cy, then there is a set of disjoint paths:

path 1:), fi(#,), part of Cz to ¥ not containing fi!(,);

path 2: %), f{(#), part of C; to ¥, not containing f,(;);

path 3: 7y, part of C; to f1(%2) not containing f; (%), 72

path 4:), part of C, to f{’(f)’g), Us.

In this way, the disjoint paths are easily decided. However, they obviously may
be much longer than the shortest path, and one path may he much longer than
some other paths. Since there is not only one set of disjoint paths, there exist two

strategies to choose a set of disjoint paths.

88

1. We keep at least one of the shortest paths, even if the remaining disjoint paths

are much longer than the chosen one.

2. We may not keep a shortest path, but each of them is not longer than an upper
bound, and therefore the difference of lengths between any two disjoint paths

is restricted.

We prefer the second strategy since it can find an upper bound for each path in the
set of disjoint paths, and we conjecture that it will be faster than the first strategy.
Thus we propose an algorithm for the second strategy.

In our algorithm, there is a recursive procedure Eztensive_Search. It is called
for four given pairs of vertices if a set of disjoint paths cannot be found by merely
checking their shortest paths. We will see it in detail later.

The algorithm will find a set of disjoint paths between two vertices % and ¢ in
which each path is not longer than (mén_len + 4 + 2 x maz_level) where min_len
is the distance between @ and ¥, and maz_level is the maximum level of recursive
calls for Ertensive.Search.

When more than one set of disjoint paths are found, the shortest one among
them is chosen. Let P = {m, p2, p3, pa} and P’ = {p}, p%, ps, Py} be two set of
disjoint. paths between two vertices. The lengths of paths in P and P’ are sorted
to be ({y, 83,13, 1) and ({},8,1;,1;) in the ascendant order. Whether or not set P is
shorter than set P' is defined as follows.

Starting from j = 1, if [; < I}, then P is shorter than P, else if I; > I}, then P'is
shorter than P, otherwise j is increased by 1, and the next pair of ([}, %) is compared
until j > 4. For example, if (I1,12,13,1;) = (3,4,7,8) and (#,8,4,1,) = (3,5,6,7),
then P is shorter than P’ since 4 < 5.

Our algorithm can be described in pseudo-code as follows. (refer to Figure 4.3).
Algorithm: Finding Disjoint Paths
e input :

N, fa: the generators of a two-dimensional linear congruential graph G of

connectivity 4.
(2,52): the size of G.
89

=)

Figure 4.3: Disjoint paths

90

i, ¥: two vertices of G.

e output : the shortest set P = {p;, p2, p3,p4} of disjoint paths between @ and
7 where length(p;) < (minlen + 44 2 x maz_level),0 < j < 3.

hegin
create the shortest_path tables;
find the set S = {{(io, Vo), (&1, V1), (¥2, U2), (ta,T3) } |
o, iy B € {f1(@), fal@), F72 (@), S (@),
9o, 1, 2, T € {f2(5), f2(), 7 (8), 7 (D)},
g # U # Uy # Ua, and g # Ty # U2 # U3. };
{* maz(|S]) = 24 *}
found := false;
maz_ level := 0;
while not found do
begin
for cach element S, € S
begin
call find_disjoint_paths(S,, max level, found', py, p}, ph, Ds);
{* For 0 < j <3, p) is a path from @; to ;.

If a set of disjoint paths {pp, p},ph,p5} are
found, then found’ is assigned to be true,

else false. * }
if found' then

begin
for j:=1to 3 do
pi i=€jp, e
{* We use ”-” to denote concatenation.

e; is the edge incident with @ and ;. ¢} is
the edge incident with ¥ and ;.

{Po,p1,p2,p3} is a set of disjoint paths be-

tween @ and ¥. * }
found := true;

end; { of if }
end; { of for }
if found then

91

choose the shortest set {po, p1, p2,p3} fromall S,,’s;
else
mazx_level := mar_level + 1;
end; { of while }

end.

Procedure: Find_Disjoint _Paths(S,, maz_level, found', py, P}, ¥y, Ph);
e input :

Sn: an element of S.

maz_level: the maximum level that the recursive procedure

Eztensive_search is allowed to be called.
e output :

P1yPa, P3, Pyt a set of disjoint paths where pj is a path from ; to v,

0<j<3.

found’: whether the set {p},p}, s, p}} is found or not.

begin
find the set P' = {{pj,p}, P2, P3} | P} is a shortest path from @, to 9}, 0 < j < 3,
and pg, p}, ph, Py are disjoint. };
if P' # ¢ then
begin
found' := true;
choose any element {p}, p},ph, P53} € P';
{* Each element has the same length. * }
end { of if }
else if max_level = 0 then
found' ;= false
else
begin
visitedlist := ¢;

92

{* visited list will be used to record the ver-
tices that have been visited by any one of the
leading puth. Now, e; is a leading path where
0<;<3 %}

cur_level := 1;

call extensive_search (S,, mazldevel, cur_level, visitedlist, found’,
Pl o,
Pos> P11 P2y P3);

found' := found”,

end; { of if maz_level # 0 }

end.

Procedure: Extensive Search(S,, maz_level, cur_level, visited_ list, found",
Pos Py Py P3);

input : S,, maz.level, cur_level, visited lisl.
output : found”, py, p}, p, Pj-

begin
vistleddist := visited list U {ilp, U, Uz, Uz };
{* Note: Sn = {(‘l-l‘o,‘l—)‘o), (171,171), (172,1-)‘2),
| (3, 5)} * })

find the set P" = {{pG, p{,p7, P53} | P} is a shortest path from ;i to @,
where @, is a vertex adjacent to #,, but i # &,
0<j<3,0<k<2,
P} does not visit any vertex in visited list, and

s " 17 /4 b4 .
Po:Py» P2, Py are disjoint. },

if P £ ¢ then
begin
Jound” := true;
choose the shortest set {py, pY,ps, P4} from P";
forj:=1to3do
p; = ejk, * plf;
{* pj originates from i;;, where 0 < j < 3,
0< k<2
ejk*is the edge from ; to i, where 0 < k <
end { of if P") 2"

93

else if max level > cur_level then
begin
find the set S' = {{(iokos To), (T1ky> V1), (2ky s U2), (F3ky, U3) } |
0 < ko, ky, kay k3, j, 1 < 3,)i, does not belong to visited list,
and @, # 0 if L # k. };
{* maz(|5')) =3 *}

for each element S, € S’

begin

cur_level := cur.level + 1;

call extensivesearch (S}, mazx_level, curlevel, visitedlist, found"
1! U (4 UAP
I’o»l’npzvl’a)a

]

if found” then
begin
forj:=1to3 do
Py = €jk, * Pl
found" := true;
end; { of if found” }
end; { of for }
if found” then
choose the shortest set {pg, p, ph, P4} from all S!’s;
end; { of if maz_level }

end;

As we mentioned, if the length of the shortest paths between 4 and ¥ is min_len,
and a set P of disjoint paths between them is found after maz_levellevels of recursive
calls, then the length of each path in the set is less than or equal to (min_len +4 +
2 x mazdevel). In the following proof, we will use len(p) to denote the length of a

path p. Figure 4.4 illustrates the proof.

Proof:

o Let mazdevel =0, i.e., the procedure Extensive_search is not called.

94

Pmin! = min_len
- =
’
ejo ‘/’_/—\/%jo
s |pj0 | <= min_len + 2 >
Jo Jo
|p it = min_len
S >
u v

lpjo | <= min_len + 2

iod, |pj°j,| <= ijol + 1 <= min_len +3
Figure 4.4: Upper bound on lengths of disjoint paths

Let p,, be a shortest path from i, to ¥, where i}, is a vertex adjacent to #,
U, is a vertex adjacent to ¥, and 0 < jo £ 3. Then len(p;,) < min.len + 2.
If p = e, pj, - €, is a path in the set P where e;, is the edge from @ to i;,, and

e}, is the edge from @, to ¥, then len(p) < 14 (minden+2)+1 = minlen+4.

Let mazlevel = 1.

Let Pj;, be a shortest path from &;,j, to v;, where @,,;, is a vertex adjacent
to i,y, i, # 4, and 0 < j; < 2. Then len(p;,;,) < len(pj,) + 1 < (min_len+
2) + 1.

If p = ej, - €jyj, * Pipja * € is a path in the set P where e;,; is the edge from
ij, to i, then len(p) < 1+ 14 len(pjp;,) +1 < (minden+3) +3 =

min_len + 4 + 2 x mazdevel.

Induction Step:

. - -
When maz_level = n, assume pj,;,..;, is a shortest path from @} ;, . ;, to ¥, where

. . - . . - - -
0 <Ji,.. 300 £ 2, tyj,..5 is a vertex adjacent to Ujoredi=19 Ujoir..dn # Ujoj1 . dk—29

0 <k < n, and assume len(pjy;,..;.) < (minlen + 2) +n.

95

Max. Level of
Recursive Calls 1 2
Size
%9 OK
64x9 OK
128x9 X oK
256x9 X oK
512x9 X OK

X : It cannot find a set of four disjoint paths for some pairs of vertices.

OK : It finds a set of four disjoint paths for any pair of vertices,

Table 4.7: Test results of finding disjoint paths

When maz level = n + 1, len(pyg;;...ining1) < l€n(pygy.50) +1 < (minden +2 +
n)+ 1 Ifp =€ €njr " Cpiiings * Piojtwinings * €y 1S @ Path in the set P, then

len(p) < (n+3) + (minden+n+3) = (minden+4) +2 x (n+1).

4.4.3 Evaluation

Table 4.7 shows the maximum level of recursive calls required for any two vertices of

G({f1, f2},(2%, s2)) to find a set of four disjoint paths between them where f,(z,y) =

(m,y)g:g (1)) +(3,1), foz,y) = (w,y)(g (1)) +(2,4), 5 <t <9. For example,

when G is of size 512 x9, the maximum level of recursive calls is 2. Let min_len be the
distance between two vertices @ and ¥ of G. Then the length of each path in the set of
disjoint paths between # and ¥ does not exceed (min_len+442x2) = (minlen+8).
In other words, the difference of lengths between any two disjoint paths is at most

8.

96

4.5 Broadcasting
4.5.1 Introduction and Definition

Broadcasting in a network is an information dissemination process in which a single
node, an originator, sends a given message to all other nodes of the network by
placing calls over the communication links. The process is expected to be completed

as quickly as possible under the following constraints:
e each call invclves only two nodes,
e each call requires one unit of time,

e in one unit of time, a node can place a call along one of its links and, in the
meantime, accept calls coming along the other links (this constraint is used to

simulate a full duplex network system),

e a node can only call the nodes that are directly connected to it by a commu-

nication link.

We will study the broadcasting in networks based on two-dimensional linear con-
gruential graphs. The nodes of the network will correspond to the vertices, and the

communication links correspond to the edges of the graph.

DEFINITION 4.5.1 [28] Broadcast Time of a Vertex and Broadcast
Time of a Graph

Given a connected graph G and a message originator, verter u, the broadcast
time b(u) of the vertex u is defined to be the minimum number of time units required
to complele broadcasting from vertez u, and the broadcast time b(G) of the graph G

is defined to be the mazimum broadcast time of any vertez u of G.

Let a vertex u be an originator in a graph G of size n. Since during each time unit
the number of vertices that received the message can at most double, b(u) > [log, n},
and thus 8(G) > [log, n}.

A complete graph K, has b(K,) = [log,n], but its degree is n — 1. Actually,
after removing some edges of I,,, we can still have a graph with n vertices and b(G)

equal to [log, n] [28]. For example, if n = 27, and r € N, we can remove edges

97

from K, to have the resulting subgraph G of K, isomorphic to an r-dimensional
hypercube. Therefore, 5(G) = r = log,n. An r-dimensional hypercube is of size
n = 2" and degree r, and its broadcast time is r = log,n [28). A graph with 2
vertices and broadcast time r must be of degree at least r since the originator must
place r calls. Thus an r-dimensional hypercube has minimum number of edges for

broadcasting,.

DEFINITION 4.5.2 [28] a Minimum Broadcast Graph
A graph G of size n having the minimum number of edges and b(G) = [log, n]

is called a minimum broadcast graph.

An r-dimensional hypercube is a minimum broadcast graph. However, its degree
r depends on its size 2". Since we focus our research on the g aphs of degree 4, we
will review the upper bound on broadcast time for some well known graphs of degree
4.

Let b(n,A) be the minimum of b(G) over all graphs G with n vertices and
maximum degree A. It is shown in [33] that b(n,4) > 1.1374log, n, and if n is a
power of 4, b(n,4) < 1.625log, n + 2.25.

It is proved in [28] that an undirected de Bruijn graph U/ B(d, DD) of degree 2d,
diameter D (size n = d°) has the broadcast time b(U B(d, D)) = ‘i,—*ziD + %, and an
undirected Kautz graph UK (d, D) of degree 2d, diameter D (size n = (d+1)(d”~1))
has the broadcast time b(UK(d,D)) = '%'-D + “T"'. If d =2 (i.c., degree 4),
then (UB(d,D)) = 1.5D + 1 = 1.5log,n + 1, and b(UK(d, D)) = 1.5D + 1.5 <
1.5log, n + 1.

A k-star graph has k! vertices and degree k — 1. It is shown in [30] that the
broadcast time b(k-star) = 35 ,([log, ¢] +1). A 5-star graph is of degree 4, and its
broadcast time b(5-star) = 12.

We will now describe a broadcasting algorithm for two-dimensional linear con-
gruential graphs of degree 4. The broadcast times of graphs with typical generators
of simple or complex form will be investigated, and they will be evaluated based on
the symmetric properties of graphs. Finally, they will be compared with those of de
Bruijn graphs, Kautz graphs and the 5-star graph.

98

4.5.2 Broadcasting Algorithm
Algorithm

Since the generator f; of a two-dimensional linear congruential graph G({f1, f2},
(2%, s2)) as described in Section 3.3 generates a Hamiltonian cycle, we may consider
the cycle to be a union of sections where each section consists of 2r 4 1 contiguous
vertices on the Hamiltonian cycle for some integer r > 1, and any two sections have
at most an ead point in common. The vertices of a section are connected by the
edges generated by f;. We will say that r is the radius of the section. There are
[£X2] sections.

In the algorithm, when an originator @ € V(G) broadcasts a message, the vertex
% is considered to be at the center of a corresponding section, i.e., the section
consists of vertices @, fi(#&) and f,—j(fi) for 1 < j < r. We will call the vertices
fi(#@) and f7(&) the end points of the section. The message is sent to every vertex
of the section along the f and f;! edges. After a vertex of the section received the
message, it also sends the message along its f; and f;' edges. If a vertex for the
first time receives the message, and the message is received along its f; or f;! edge,
then the vertex is considered to be at the center of a corresponding section, and the
message is broadcasted in a similar way.

If the intersection of any two adjacent sections is their end point, then the broad-
cast time of the vertex @ is t; + t, where t; is the number of time units required
to broadcast the message from @ to all centers of 2 sections (n = 2' x s;), and ¢,
is the number of time units required to brvuadcast the message from the center of a
section to all vertices of the section.

A message broadcasted by the algorithm contains a counter which is used to
distinguish whether the message is sent to the end points of a section.

The following is the skeleton of the algorithm. An illustration can be found in

Figure 4.5.

1. When an originator, vertex i, wants to broadcast a message, the counter is
assigned to be r and is appended to the message. The vertex @ sends the
message to its adjacent vertices in the following order: f,(#@), fi(%), f2(%),
f3(@).

99

el

Originator:

fl.l cep fl

/
/

¢ acl
O— -t
3, 1
L /o 5
¢'ar [T ¢
Casel: 4 Case2:
Hc>0 i ¢ /i cact Hec>0
Ifc=0 lfe=0
Case3: Case4:
1
Y 3} fl et f| e'=cd
2 3 1 0
1 AN
I /s ‘\fz
[}
¢ nr
Example: r=8
]
h A
9 8 7 6 5 4 3 i 2 3 4 8 6 7 [}
11 1011 1010 99 98 77 66 55 4] 34 35 46 357 68 79 3109 109
f
!)
{ L N

Figure 4.5: Broadcasting Algorithm

100

2. When a vertex 7 receives a message, if the message has been received before,
it discards the message, otherwise it sends the message based on the adjacent

vertex from which the message is received.

(a) If the message is received from f7! (%),
the counter of the message is decreased by 1, and if counter > 0, the
vertex ¥ sends the message to its adjacent vertices in the following order:
Hi(D), fa(®), f3(T), otherwise (i.e., counter = 0) it sends the message to

f2(%) and then to f7(7).

(b) If the message is received from f,(%),
the counter of the message is decreased by 1, and if counter > 0, the
vertex ¥ sends the message to its adjacent vertices in the following order:
fiU®), fo(®), f71(9), otherwise (i.e., counter = 0) it sends the message
to f>(7) and then to f;(%).

(c) If the message is received from f;!(?),
the counter nf the message is assigned to be r, and the vertex ¢ sends

ay
9

the message to its adjacent vertices in the following order: fi(%), fi ()
fa(9).

(d) If the message is received from fy(7),
the counter of the message is assigned to be r, and the vertex ¥ sends

ot
v

the message to its adjacent vertices in the following order: f(7), fi1(7)

)7 (#).

The reason why a vertex ¥ always first sends the message to f,(9) or f;!(¥) and
then to fo(¥) or f7(¥) is because all vertices of a section can complete their calls in
(r +3) time units after the center of the section received the message. If the reverse
order is used, i.e., a vertex ¥ always first sends the message to f2(¥) or f;1(#) and
then to f1(¥) or fi}(#), it requires (3r +2) time units for all vertices of a section to

complete their calls after the center of the section received the message.

101

G(lffy)m) 0
fix)=x+1 o
fz(x) =ax +¢

Figure 4.6: Broadcasting in a one-dimensional graph containing fi(z) =z + 1

Upper bound on 5(G) of a one-dimensional graph G containing f,(z) = 2+1

Before examining the broadcast time of a two-dimensional linear congruential graph
obtained by the algorithm, we first study the broadcast time of a one-dimensional
linear congruential graph G({ f1, f2},n) where fi(z) = z + 1, f2(z) = az + b, and
a,b € N. The following theorem will prove that the broadcasting in the above

one-dimensional graph G can be done in time O(log, n) (refer to Figure 4.6).

THEOREM 4.5.1 Upper Bound on Broadcast Time of a One-dimensional
Graph Containing fi(z) =z +1

Let G({f, f},n) be a one-dimensional linear congruential graph where fi(z) =
z+1 (generating a Hamiltonian cycle), fo(z) = az+b, and let b(G) be the broadcast
time of the graph G obtained by the above algorithm. Then b(G) < [M]($+2) =

logy a

102

O(log, n).
Proof:

For every vertex = of G, fi(fi(z)) =a(r + 1)+ b=az + a+ b= fi(fo(x)). Let
r be the radius of a section. A section of (2r + 1) contiguous vertices on f; cycle
will broadcast a message along their f, edges to 2r +1 vertices, which are uniformly
distributed around the f; cycle with the interval of a.

Let r = |%]. When a iseven, r = §. According to the algorithm, an originator
will broadcast a message to a section of 2r + 1 contiguous vertices on f; cycle inr+1
time units. Then at time unit (r + 1) + (r +2), a section of (2r +1)(2r +1) —2r =
(2r)2 4 2r + 1 contiguous vertices on fy cycle will be informed. Thus, at time unit
(r+1)+(m—1)(r+2), a section of (2r)™ +(2r)™~1+..-42r+1 > (2r)™ contiguous
vertices on f) cycle will be informed.

Let m be the least integer such that (2r)™ > n, i.e., m = [log,, n].

BG) = (r+1)+(m—1)r+2) <m(r +2) = [logy, n](r +2)

= floganl(5+2) = 221G +2)

When a is odd, r = 2, Similarly, an originator will broadcast a message to a
section of 2r 4+ 1 contiguous vertices on fi cycle in r 4+ 1 time units. Then at time
unit (r + 1) 4+ (r + 2), a section of (2r + 1)(2r + 1) contiguous vertices on f; cycle
will be informed. Thus, at time unit (r + 1) + (m — 1)(r + 2), a section of (2r +1)™
contiguous vertices on f; cycle will be informed.

Let m be the least integer such that (2r +1)™ > n, i.e., m = [logy,,, n].

HG) = (r+ 1)+ (m—1)(r+2) <m(r+2) = [logs.4, n](r +2)

= Nogu (55 +2) = r‘°g2 "1 +15)
< r';i:;‘u; 2)

Therefore, b(G) < [282](2 + 2) = O(log, n).

logza

103

The above theorem provides an upper bound equal to O(log,n) on b(G) for
one-dimensional graphs G containing fi(z) = ¢ + 1. The broadcasting in G is thus
asymptotically optimal. However, the upper bound does not gencralize in a simple

way to other graphs not containing fi(z) =z + 1.

Broadcasting in unrestricted one-dimensional graphs

We now discuss the broadcasting in another one-dimensional linear congruential
congruential graph G({f1, f2},2') where fi(z) = 5z + 3 generates a Hamiltonian
cycle, and fao(z) = 97+ 2 generates two disjoint cycles of equal length. The following
theorem will prove that a section of 2'~* contiguous vertices on f; cycle will forward
a message along their f, edges to 2~* vertices, which are uniformly distributed
around the Hamiltonian cycle with the interval about 16. We thus conjecture that
the broadcasting in this graph can be done faster than the previous case.

In this section, we will use d(z) to denote the distance between vertices fo(x)

and f,(fi(z)) along the f, cycle, i.e., fa(fi(z)) = [P (fu(z)).

THEOREM 4.5.2 Let G({fi, f2}, 2) be a one-dimensional linear congruential
graph where fi(z) = 5z + 3, fo(x) =92 + 2, and ¢ 2 6. Let P be a parlition on
V(G) that consists of the congruence classes modulo 2%, For each class [c]y-s,
there is a unique k, 0 < k < 25, such that for every vertez z in the class, d(z) =
(4k +1) x 16 + 1. If zy, 22 € V(G) are in different classes, then d(z) # d(zz).
That is, there is a one-to-one mapping between the congruence classes modulo 2-9,

and the set K = {k|0 < k < 276},
Proof:

The proof will be done by induction.
Basis: i =6

Since 0 < k < 2% = 1, we have to show that the theorem is valid for k = 0.
That is, for every vertex z of G({fi, f2},64), d(z) = (4k + 1) x 16 + 1 = 17.
fo(fi(z)) = 9(5z + 3) + 2 = 45z + 29 mod 64
17(fa(2)) = f1%(fi(f2(2))) = fi°(45z + 13) mod 64

104

16(z) = 518z 4 3(5'° 4 5" + .-+ + 1) = 518z + 3(£5L)
Since 5' mod 64 = |, and 3(5—1%) mod 64 = 16, f}¢(z) mod 64 = z + 16 mod 64.
17(fa(2)) = f{°(45z + 13) = 45z + 29 mod 64 = fa(fi(z))

‘Therefore, the theorem is valid for ¢ = 6.
Induction step:

Assume that there is a unique k, 0 < k < 2~ for each class [c]z~s in V(G({fi,
f2}, 2%)) such that for every vertex z in [c]a-s, fo(fi(z)) = f{i(z)(fg(m)) where
d(z) =16 - (4k + 1) + 1.

Let z =a-27%+c, and k' =16 - (4k + 1) for simplicity.

k! K k=1 gk'=2 K 5 -1 i
t(2)=5"2z+3(5" " +5 *+---4+1)=5 w+3(——4——-)mod2
Since 5'¢ = 648 + 1, and B is odd, 5* = 5'¢(4k+1) = 564k . 516 — 64y |] where 7 is

odd.

9 fa2) = F*fulfal2) = FF (Filfa(2)))

Ko
= f,’(45m+13)=5"’(45m+13)+3(5 7 1)
5 —1

= 45-5¥ .2 41355 4 3(

)

. I kl—-—
= 45.5¥ . (a2 +¢) +13-5* +3(5 !

)

W oic " o, a5 =1
= 45.5° . 2% . a 4+45.5% .c+13-5* + 3(y)
5K —1
)
58 — 1

= 45-(64y+1)-2% . a+45-5" . c+13 .55 4+ 3(

= 45-4-2.a+45.27%. 0 4+45.55 .c+13.5¥ + 3()

5 —1
i)

= 45-7-2 - a+45-2% .04+ 45.-55 . c+13. 5" + 3(

oy

Assume 45 5% . c+ 13- 5% + 3(2=1) =y - 242, 0< t < 2.
&) fy(z)) =45-7-2 - a+45-27C . atw -2 +1¢

where w;, depends on c.

105

Since fo(fi(z)) mod 2 = fi(fy(z)) mod 2!,

f?(fl(x)) = 45-E+29=45(a.2“5+c)+29
= 45-27°-a+45c+29
ek s
= 45-27% atw; -2 4t
e e’

where w; depends on c.

We now consider the extension graph G({ /), f2},2*") of the graph G({ fi, f2},2").

If a« = 20/ (i.e.,, ¢ iseven), thenz = -2 8+ ¢ = 2a' - 26 4-¢, i.e., T € [c)y0141)-n.

[(fa(z)) mod 2! = 45-7-2 - a+45-27F o tw, -2 4

i

4542 . 2 +45-27%.2a' 4w, - 2 + ¢
= 45-276.20 4wy 2 4t (mod 2°F)

f2(f1($)) mod 2i+1 = 45. 9i-6 Fwp 2+t
45276 .20’ + wy - 2° + ¢ (mod 271)

Ifa=2+1(i.e,aisodd), then z = - 2%+ ¢ = (2 +1)- 2% + ¢, i.c,,
T € [C + 2i_6]2(.+1)_s.

A2 (fo(z)) mod 24! = 45.4.2 - a+45.-2C atw - 241
= 45.-9-2- (20’ +1)+45-27% . (2d + 1) +w; - 2" + !
= 45.4-2% .o/ +45.7.2" +45.2%. 2o’ 4+ 45.2'°
+w1-2i+t
= 2°445.27%.2d/ +45.2% £ w, - 2' + t (mod 2°1!)

since v is odd.

F(fi(z)) mod 2 = 45.27% . a 4w, 2"+t
= 45-27%. (2 + 1) 4wy 2" + ¢
= 45-2%.20' +45- 2% 4+ w, - 2' +t (mod 2*")

We now consider the following cases based on w, and w;, which depend on c.

106

1. If wy and w; are of the same parity, i.e., they are both even or both odd, then

(a) when a is even, i.e., T € [c]y+1-s,

fal () mod 2% = %) (fi(x)) mod 2

(b) when « is odd, i.e., z € [c+ 2] 5416,
fafi(z)) mod 24! = f{O)(f,(2))+2' mod 24! = i+ (fy(x)) mod 24!
2. If w, and w; are of different parities, then
(a) when a is even, i.e., z € [¢Jp1-e,
fo(fi(x)) mod 24! = f{9)(fy(2))+2' mod 24! = f{1*T(f,(z)) mod 2+

(b) when a is odd, i.e., € [c + 2°"%]41-s,
f2(fi(z)) mod 2+ = f{¥)(fy(z)) mod 2!

Thus each class [c]ai-s in V(G({fi, f2}.2'*!)) can be partitioned into two classes
[c]p+1-6 and [c+2-]5+1-6. Each of the two classes has a unique d(z) equal to either
16(4k + 1)+ 1 or 16(4k + 1)+ 142 = 16(4(2°6 + k) + 1) + 1 where 0 < k < 26,
Therefore, there is a one-to-one mapping between the congruence classes modulo

2+1-6 and the set K = {k|0 < k < 2+1-6},

O

For every vertex = of the above graph G({f1, f2},2), i > 6, the contiguous
vertices z, fi(x), -+, f2"}(x) are each in a unique class [c]2-5, and the vertices
fi(z), f,j”'-o(a:) are in the same class since f;(z) = 5+ 3 mod 2~ also generates a
Hamiltonian cycle. Thus, for each vertex v = fJ (z), 0 < j < 28, there is a unique

integer kj, 0 < k; < 28 such that
d(v) = d(fi(z)) = 16(4k; + 1) + 1 = 16m; + 1.

Therefore, for each vertex z, there is a sequence of integers mq, m;, + -+, ma-e_;
such that 4k; + 1 = m;. We will use M, to denote the sequence mg, my, - -+, mgi-6_4

with respect to z. Actually, every vertex in the same class has the same M;.

107

Let the relative positions of the vertices fa(z), fo(fi(z)), +++ flfi(z)), -+,
f2(fl'_‘(m)) on the f; cycle be po, pr, **+y P)y *++, Pp-+. Then

Py = P +d(f7 (@) = po+ d(x) + d(filx)) + - +d(fI7(2))
= po+ (16mo+ 1)+ (16my +1) + -« + (16m,_1moaz-e + 1)
= po+16(mo+my+ -+ Mj_1meazr-s) + j mod 2

Because f7(z) and fi**™°(z) are in the same class, d(f](z)) = d(0 g)) =
16m,+1,0 <r <28,
Let zo = 0,z;,---, 25—+ be a sequence of integers generated by M, in the way

that
x; = (£j-1 4+ M(j=1modz-¢)) mod A
Thus z; = 0+mo+mi+: + - +m,_1medzr-s Mod 2i—4, Consequently, p; = po+16a,+j.
If zo,21, -+, Zq-¢ is a Hamiltonian cycle, then the vertices fa(z), fa(fi(x)), -+,
f2(fi M—l(a:)) are almost uniformly distributed.
The following theorem will prove that for every vertex z of G, the sequence of

integers zo, 1, -+, To-1 generated by M, is a Hamiltonian cycle.

THEOREM 4.5.3 Let G({f1, f2}, 2') be a one-dimensional linear congruential
graph where fi(z) =5z + 3, fa(z) =9z + 2, and i 2> 6. For every verlez = of G, if
20 =0, 23, -+, Ty s the sequence of inlegers defined by the sequence M, = my,
my, -+, My-s_y in the way that z; = (Tj—y + M(;-1medz+-s)) mod 2=, then zo, 7y,

«++, Ty~ 15 @ Hamiltonian cycle.
Proof:

The proof will be done by induction.
Basis:

o Let i = 6, i.e., the size of G is 26 = 64.

For every vertex z of G, fo(fi(z)) = f17(f2(z)). d(z) =17 = 16mo + 1. Thus
mo = 1. The sequence xo, 21, 2, £3, 24 (mod 4) = 0,1,2,3,0 is a Hamiltonian

cycle.

108

o Leti= 7, i.e., thesize of G is 27 = 128.

If z mod 2 =0, f2(fi(x)) = fI7(fa(z)). d(z) =17 =161+ 1.

If zmod 2 = 1, fo(fi(z)) = [B(fo(z)). d(z) =81 =16 -5+ 1.

For cvery vertex = € [0);, mo = 1, m; = 5, the sequence z¢,Z1,22,*,Zs
(mod 8) =0,1,6,7,4,5,2,3,0 is a Hamiltonian cycle.

For every vertex € [l]y, mo = 5, m; = 1, the sequence x¢,21,Z2,***,Zg
(mod 8) =0,5,6,3,4,1,2,7,0 is a Hamiltonian cycle.

Induction step:

Let z be a vertex of G({fi, f2},2), and My = mg, my, ++-, Ta-s_). Assume

that M, generates a Hamiltonian cycle 2o = 0 , xy, T2, ++*, T3i-4+ = xo. That is,
z, #z,ifr# s.
Tp-6 = 0 + mg + m, + vee Mos-6_1q mOd 2"_4
= (4k0 + 1) + (4&'] + 1) + cr + (4k2|—6_1 + 1)
= dMhko+hk 4+ hpe_y)+27C=404+1+24-. 4 (26 -1)) 426
(since 0 < k;j < 2% and k, # k, if 7 # 5.)
= 4(%(21'—6)(21'-6 _])) + 2:'—6 = 2(2i—6)(2i—6 _ 1)) + 2:'—6
= 2(21'—6)(2:'—6) _ 2i—6 = (25—4)(2:’—7) + (2:'-4 _ 23'—6) mod 2i—4
3 oi-a
= 7(27)
Thus ;458 = 24+ 328, 2,000 = 2, + 2+ 28, 2,306 = 2+ 275, and
z; mod 2% = Tj4p-s mod 21-6 = T;42.2-¢ Mod 2i~6 = T;43.2-¢ mod 26,

Therefore, the sequence z¢, 21,3, *+,Ta-s (mod 2°-¢) is also a Hamiltonian cycle.
Let G' = G({fi, f2},2'+!) be the extension graph of G, and 2’ = z or z + 2' be
a vertex of G'.
According to the theorem of edge-change, fi(z') mod 2"+! is equal to either
fi(z) mod 2 or (fi(z) mod 2°) + 2. That is, if (fi(z) mod 2') is in a class [c]gi-e,
then (f}(2") mod 2+1) is also in the class [cJp~s. In addition, since both fi(z) =

5z + 3 mod 2% and f,(z) = 5z + 3 mod 2~° generate a Hamiltonian cycle,
fi(z') mod 278 = fi**™* (') mod 2-®

109

fi(z") mod 215 # f{“'"e(x') mod 2%
Thus one of the following cases must hold.
fi(z') € [¢Jpr-s, and {+2'—°(m') € [c4 27 %p-s...Case 1.
fi(z’) € [e + 25, and 1?7 (1) € [(Jr-s . .. Case 2.
Therefore, according to Theorem 4.5.2, one of the following cases must hold.
m} =m,, and m) 5 =m, + 2., Case a.
m), = m; + 27, and m/ 56 = m;...Case b.
Typp-e = 0+motmi+-+mye,
+mMbucs + Miyumsyy + + -+ + My.ps_y mod 2741~

= 9i~6 9gi-4 + 2(m0 +my+---+ mz--—s..)) mod 2¢-3
— 2i—-7 . 2i—3 + 2. % . 2i—4 mOd 2|+3

Z— 2% mod 273 = 3. 25

That is, 2 ps = 2, +3 - 2i-5 mod 2¢-3. Therefore,

! ’ ! !
mJ # $j+2|-5 # :Ej+2,2.-5 # $j+3,2.-5, and
z mod 2% =2/, 5-s mod 27° =2}, 5 mod 27° = 2, 5 mod 277

If zf,z}, - ,zh-s (mod 2'~%) is a Hamiltonian cycle, then z§,z,:- -, 2} s (nod
2-3) is also a Hamiltonian cycle.

For 1 < j < 2%, 2, mod 2% = 0+ m§ + m}| + -+ + m)_; mod 25, Because
m!, is equal to either m, or m, + 2%, z{ mod 2% = (a - 2""4) + (mo + my + -- - +
m;-1) mod 2'-%. Because z; mod 2% = mo+m; 4+ - -+m;_; mod 2~¢, 2/, mod 2'~*

is equal to either z; mod 2°~% or z; + 2-® mod 25,

Thyg-s mod 2% = &+ mj +miyy + -+ Mgy mod 2°7°
= :E; + (ﬂ ' 2"—4) + (mO +my 4+ mgu-e_,) mod 2i—5
= 2f+ (827 + (270 270+ 270 — 2%) mod 2°°

i + 2-6 mod 2°~5

110

GWntih 2)
Hix)=5x+3
fix)=9x+2
r=4

Figure 4.7: Broadcasting in a one-dimensional graph

Because g, 1, -+, Tz2-¢ (mod 2'¢) is a Hamiltonian cycle, and because one of

the following cases holds,
) = z; (mod 2-%), and &, 56 = z; + 2~ (mod 2%)... Case 1

z} = z; + 2% (mod 2°-°), and 56 = x; (mod 2%)... Case 2

Ty TYy +*y Th-s (mod 2'~5) is also a Hamiltonian cycle. Consequently, =}, =i, -,

2he41-e (mod 2°+1~4) is a Hamiltonian cycle.

For example, the sequence of d(z)’s is

111

e 17ifi=6.

o 17,81 if i = 7. (refer to Figure 4.7)

o 145, 81, 17, 209 if : = 8..

o 401, 81, 17, 209, 145, 337, 273, 465 if i = 9.

We observe that not only the graph G({fi, f2},2') containing fi(z) = 5r + 3
and fy(z) = 9z + 2 has the above properties, but also a graph G’ = G({f{, f},2%)
has the similar properties if f)(x) = 5z + b, ged(b,2) = 1, fiy(r) = 9r + d, d = 20,
ged(a,2) =1, and d # 2b. (If d = 2b, G' is vertex-transitive.)

For example, in G({f1, f2},2') where fi(z) = 5z + 1, fo(x) = 9r + 10, the

sequence of d(x)’s is
e 33if: =6.
o 3ifi=T.
e 161,33if i =8.

o 161, 33, 417, 289 if i = 9.

Broadcasting in two-dimensional graphs of simple form

Since a two-dimensional linear congruential graph G({f1, f2},(2',9)) of simple form

isequal to G.({ fiz, f22},2')0Gy ({ f1y, fay}, 9), the graph G also has similar propertics

if fl(x’y) = (w,y)(3 (l)) + (blab2)’ ng(bhz) = lv ng(b219) = l’ f2(m’y) =

(:c,y)(?) (1)) +(dy, dz), di = 2a, ged(a, 2) =1, ged(dz,9) = 1, and d; # 2b,. That
is, fi generates a Hamiltonian cycle, and f, generates two disjoint cycles of equal

length.

For examplea in G({f17f2}a(2i,9)) where fl(x)y) = (z’y)(g (])) + (3a1)a

folz,y) = (m,y)(g (1)) + (2,4), the sequence of d(7)’s is
o 145if : = 6.
o 145, 721 if i = 7. (refer to Figure 4.8)

112

St fi) 2, 9)

tx) =y [JH 3 1)

)=y (92 4

(32,0)

Figure 4.8: Broadcasting in a two-dimensional graph of simple form

113

o 145, 1873, 1297, 721 if i = 8.
e 2449, 4177, 3601, 721, 145, 1873, 1297, 3025 if s = 9.

That is, d(7) = (4k +1) x 16 x 9+ 1,0 < k < 278,

In the above two-dimensional graphs, a section of 2°~* contiguous vertices on f,
cycle will forward a message along their f; edges to 2:~4 vertices, which are uniformly
distributed around the Hamiltonian cycle with the interval about 16 x 9, but not
16.

We have investigated the actual run-time of broadcasting in two-dimensional
linear congruential graphs. Table 4.8 shows the empirical broadcast time, denoted
by ¥(G), of graphs G({fi, f2},(2,9)) where fi(z,y) = (x,y)(>0) +(3,0),

01
9 0 . .
fa(z,y) = (z,y) 0o 1)7% (2,4), and 2 < i £ 13. We observe that the empirical

broadcast time §'(G) of the two-dimensional graph G({ f1, f2}, (2',9)) is much smaller
than the upper bound H%g—} (3 +2) on broadcast time b(G)) of the one-dimensional
graph Gi = G({f}, f3},n) of the same size where fi(z) =z +1, f}(z) = az +b, and
n=2x9,

For example, if n = 8192 x 9, the smallest upper bound on b(G,) is 32, which
is obtained when a = 5. However, the empirical broadcast time ¥/(G) is about 25

when r > 2. Actually, the algorithm with minor modification can result in a ¥'((7)

less than 25. We will introduce three strategies to speed up the broadcasting later.

Selecting a radius r

How to decide the radius, r, of a section is another issue. Table 4.9 shows the
expected broadcast time (¢, + t;) where t, is the minimum number of time units
required to broadcast a message from an originator to all centers of - sections, and
t, is the number of time units required to broadcast the message from the center
of a section to all vertices of the section. ¢, is obtained under the assumption that,
any two sections have at most an end point in common. As illustrated in the table,
when r is small, the minimum number of sections of the Hamiltonian cycle is larger.
Thus t, is larger. When r is large, although ¢; is thus small, t; = r + 1 results in a

large expected broadcast time t; + t,.

114

The empirical broadcast time b’(G)

r 1 2 4 g8 * 16 32
Size
4x9 10 9 9 7
8x9 16 14 13 13 13
16x9 20 18 19 20 20 20
2x9 24 19 19 19 19 19
64x9 24 19 19 20 20 20
128x 9 23 19 20 20 20 20
256x 9 23 19 21 20 20 20
512x9 24 21 2] 21 21 21
1024x 9 26 23 22 21 21 21
2048%x 9 27 23 23 22 22 22
4096x 9 28 25 24 23 23 23
8192x 9 29 26 24 25 24 24
Table 4.8: The actual run-time of broadcasting
The expected broadcast time (t1 + (2)
............. o 1 2 4 8+ 16 32
- - At T b 2 b et e
e |00 L2 o3l s ls el o ls]l s ln
+) 12 12 13 15 22 37
saxe |12 ol [o ls | lol e[| s |3,
13 13 14 17 23 ki
msae 020 2 [w3 [o s | oo s fm] s 3
14 14 15 18 25 39
sene | B2]3| nls Twlsls nls |3
15 15 16 19 26 41
suxe L2zl]nels nlolwluw] s ls,
17 16 17 20 27 42
waxe |6 b2 [a3 [(s |l olnulnmlw]ss
18 17 18 21 28 43
wgre |7 12 el 3 [wls | lolnrlv]ulss
19 19 19 22 29 44
soexo |8 L2 [v {3 el s [wls |nln]|nr]|:sn
20 20 21 23 30 45
goaxe | 2002 [w3 | wls {169]w{m|B]|33
22 21 22 25 31 46
t1 : minimum number of time units required to broadcast a message to all centers of
(n/ 2r) sections.

12 = (r+1): number of time units required to broadcast a message from the center of a section
to all vertices of the section.

Table 4.9: The expected broadcast time

115

By comparing with the empirical broadcast time ¥'(G) in Table 4.8, the results

are summarized as follows.

1. If r =1, 2 or 4, the empirical broadcast time '(G) of the graph G is greater
than what we expect, (¢; + t2).

2. If r =16 or 32, b'(G) is less than (ty + t5).
3. If r =8, V'(G) is close to (¢ + t2).

The reason is because the sections are not regularly distributed as we have ex-
pected. After an originator broadcasted a message for a period of time, if r is small,
there may be some small sections of contiguous vertices on the Hamiltonian cycle
that have not been informed yet. To inform the contiguous vertices, at least one of
them must receive the message along its f; or f; ! edge. Thus ¢, wili be greater than
what we expected. On the contrary, if r is large, several vertices of a section may
have already received the message along their f2 or f;! edge. The other vertices
of the section may in fact be informed earlier than we expected. Thus t; will be
smaller.

Based on the algorithm, we will now introduce three heuristic strategies to im-

prove the broadcast times of graphs.

Strategy 1

Assume that a vertex is able to receive a message along an edge while it is sending the
message along another edge. When a vertex ¥ for the first time receives a message,
in the next several time units, it will send the message along some edges according
to the algorithm. If & received the message again along an edge e before ¥ sends the
message along the edge e, then ¥ does not have to send the message along e but will
immediately send the message along the next edge.

For example, let e;, €2, €3 and e; be the edges incident with ¥. Suppose that
¥ for the first time receives a message along e;, and it should send the message
sequentially along e;, es, e4. If ¥ receives the message again along e; while it is

sending the message along e;. At the next time unit, it sends the message along e,

116

The empirical broadcast time b’(G)

r 1 2 4 8 * 16 32
Size
4x9 9 8 8 7
8x9 16 13 12 12 12
16x9 20 17 17 17 17 17
32x9 22 17 18 18 18 18
64x9 22 18 18 18 18 18
128x9 22 18 18 18 18 18
256x9 23 19 19 19 19 19
512x9 24 21 20 20 20 20
1024x9 27 22 2] 20 20 20
2048x 9 27 22 22 21 21 21
4096 %9 27 24 22 22 22 22
8192x 9 29 25 23 23 23 23

Table 4.10: The test results of Strategy 1

but not ej3, since the vertex adjacent to ¥ via e3 was already informed. Therefore,
the vertex adjacent to ¥ via e4 can be informed earlier.

We evaluate the strategy by comparing the empirical broadcast time obtained
by the strategy with that obtained by the original algorithm. Table 4.10 shows the
empirical broadcast time ¥'(G) obtained by applying the strategy on the graph G.
G is the same as that described in Table 4.8. The new b'(G) is less than the original
b'(G') shown in Table 4.8 in general. For example, when r = 8, and the size of G is

8192 x 9, the new b'(G) = 23 is 2 less than the original ¥'(G).

Strategy 2

Let G, = G(F,(2',s;)) be a two-dimensional linear congruential graph, G, =
G(F, (2%, s,)) be the extension of Gy, by = b((z0,y0)) be the broadcast time of
a vertex (zo,y0) of Gy, and b, = b((zo,y0)) be the broadcast time of the vertex
(0, ¥o) of G2. When (zo,yo) broadcasts a message in G, according to the property
of edge change, for every vertex (z,y) of G, either (z,y) or (z + 2',y) or both of
them will receive the message after b time units. It seems that the message has
been evenly distributed at time unit b,.

After time unit b, if every informed vertex sends the message along its incident

117

The empirical broadcast time b’(G)

2 4 8 16 32
Size (tsY B@G)] (ts) G | (1 BW@G | (1) WG | (t5) bYG)
4x9
8x9 %) B} 8) 12 (8) 12) 12)] 12
16x 9 (16) 18 (13) 16 (12) 17 (12) 17 (12) 17
32x9 20) 21
64x9
128x 9
256x 9
512x9 (19) 20
1024x 9 24) 25
2048x 9
4096 x 9 (22) yx)
8192x 9 27 28

Note : Strategy 2 is executed after time stamp ts.

Table 4.11: The test results of Strategy 2

edges that the message has not traversed along, b, is hopefuily onc greater than b,.

In the strategy, a time stamp and a clock will be appended to a message. The
time stamp is initialized to be zero by the originator. Whenever a vertex wants
to send the message, it increases the time stamp by one. The clock is used to tell
vertices when the strategy should be executed.

For each case in Table 4.10, if §/'(G2) > b/(Gy) + 1, we apply Strategy 2 on the
graph G, after time §'(G,). Table 4.11 shows the results. If the graph G is of size
8 x 9 or 16 x 9, ¥'(G,) is still much greater than ¥'(G,), else ¥'(G;) = b'(G,) + 1.

The reason why b'(G;) is much greater than ¥/(G,) for the graph G of size
8 x 9 or 16 x 9 is because (7, is vertex-transitive. That is, there exists an integer n
such that fa(z,y) = fi(z,y) for every vertex of G;. Any two adjacent vertices on
the Hamiltonian cycle send a message along their f; edges always to two adjacent

vertices. Thus the message cannot be rapidly broadcasted.

Strategy 3

In the original algorithm, when the center of a section receives a message, the mes-

sage can be sent to a vertex of other section by some vertices of the scction three

118

L/t N
[4 [Y 4
Case3: Cased
. t .
e ec! fl| car fl ¢=cl cecl f' c=r fl e =
3 7 o 3 E ©
VAR VAN
g 2}
Example: r= 8
A £

13 1213123211109 9 8 8 77 66 S5) 15 46 57 68 79 810 911011 10

]
! -1
j AN

Figure 4.9: Modified broadcasting algorithm for Strategy 3

units of time later, and then at least two vertices will send the message to the vertices
of other sections per unit of time.

Since the graph of simple form of size 4 x 9, 8 x 9 or 16 x 9 are vertex-transitive,
any two adjacent vertices on the Hamiltonian cycle send message along their f; or
{77! edges always to two adjacent vertices. The result is similar to when only one
of them sends the message along its f; or f;! edge. Thus we only have to consider
how early the first vertex of a section will send the message along its f; or f;! edge.
In other words, if the center sends the message along its f; or f;! edge as soon as
possible, ¢t; can be smaller.

Figure 4.9 illustrates the modified algoritk. m. Only the order of sending message
is changed at the originator and the vertices that receives message along its f, or
f7! edge (i.e., the center of a section). For each section, the center sends message to
another section immediately after it received the message, and t; is only 1 greater

than that of the original algorithm.
119

Comparison of empirical broadcast times

Size b*(G) b"(G)
4x9 7 7
8x9 12 t1

16x9 17 12
32x9 18 14
64x9 18 15
128x 9 18 15
256x9 19 16
512x9 20 18

1024x 9 20 19

2048x 9 21 20

4096x 9 22 22

8192x9 23 23

Table 4.12: Evaluation of Strategy 3

Table 4.12 shows the empirical broadcast time of the graph G({fi, f2},(2,9))

shere ie) = @) § 5)+ G0, bl = 2§])+ 24), e

2 < ¢ <13 with radius r = 8. We use ¥(G) to denote the empirical broadcast time
obtained by applying Strategy 1, and b”(G) to denote the empirical broadcast time
obtained by applying both Strategy 1 and Strategy 3. As shown in Table 4.12, 0"(()
is less than o'(G) for 4 <: < 12.

4.5.3 Evaluation

As shown in Table 4.8 and 4.9, when the radius r = 8, the empirical broad-
cast time b'(G) is close to the expected broadcast time ¢; + ¢;. Thus the broad-
casting algorithm is evaluated with r = 8, and the Strategy 1 is used to obtain

smaller b'(G). We investigaie the empirical broadcast time of two-dimensional linear

congruential grapts ({1 o}, (249) where ilers) = (zo)(2§) + ()
0

folz,y) = (=, y)(cgl]) + (dy,d3), by satisfies lemma 3.2.1 (f; generates a Hamil-
tonian cycle), d; satisfies lemma 3.2.2, gcd(d2,9) = 1,and 2 < < 13.

For graphs of simple form (a3 = ¢z = 0), we choose b, € {1,3,5,7,9,11, 13,15},
dy € {2,6,10,14}, and d, € {4,5,7,8}. Thus f; generates two disjoint cycles of equal

120

length. Some graphs with generators described as above have large diameter. For
example, if b = 1, d; = 14, d3 = 4, and i = 4, the diameter of G is greater than 15.
We only choose the graphs whose diameters are about 12 when ¢ = 10. The graphs

with following parameters satisfy the condition.

l. dy =4o0r7, and (bladl) € {(l’ﬁ)a (372)’ ('5a 14)1 (73 10)’ (9v6)1 (1192)$ (13’ 14),
(15,10)}.

2. d; = 5or 8,and (b,d;) € {(1,14), (3,10), (5,6), (7,2), (9,14), (11, 10), (13, 6),
(15,2)}.

We can partition the above graphs into four sets of graphs according to d,
because we observed that any two graphs in the same set have similar broadcast
times. In the set of graphs with d; = 7, every graph G of size 4 x 9 = 36 has
V(G) = 18, because fo(r,y) = fi*(z,y) for every vertex (z,y) of G. Thus, in the
following comparison with de Bruijn graphs, Kautz graphs and 5-star graph, this
set of graphs is not considered.

For graphs of complex form, we choose a3 € {2,3}, ¢ € {2,3,4,6,7,8}, and
(di,dy) € {(6,4),(14,5),(6,7),(14,8)}. The graphs with the above parameters are
of diatneter 10 or 11 when ¢ = 10.

Table 4.13 lists the maximum ¥(G) and minimum ¥(G) over the above graphs
of simple form and complex form. We will use G, to denote a graph of simple form,
and G, to denote a graph of complex form. As a result of the investigation, the
empirical broadcast time §'(G,) is greater than ¥'(G.) if G, and G, are of the same
size. The reason is because G, is more symmetric than G..

The table also shows the upper bound on broadcast time 4—%—‘-0-{- g of undirected
de Bruijn graph UB(d, D) of size d° where d = 2,5 < D < 16, and the upper
bound on broadcast time d%‘D + ng“- of undirected Kautz graph U K(d, D) of size
(d+1)(dP~!) whered = 2,4 < D < 15.

For graphs of similar sizes and of the same degree, their broadcast times are
compared. If d =2 and D = i + 3, the size of G(F,(2',9)) is greater than the size
of UB(d, D), if d = 2 and D =i+ 2, the size of G(F,(2',9)) is greater than the size
of UK(d, D), and if ¢ = 4, the size of G(F,(2",9)) is greater than the size of 5-star.

We summarize the comparison as follows:

121

UB(2,D) UK(2,D) a(in,), @', 9)
Size= 2° Size= 3¢ 27" Size= 2'*9
Simple Form Complex Form

p |bws(2,0))| b |[b(UK(2,0))| 1 |Mtn(p {G-))Illnx(b'{al))pnln(b' (ac) ax (b* (aes)|
5 9 4 7 2 7 9 7 10
6 10 5 9 3 1 15 8 12
7 12 6 1 4 15 18 10 12
8 13 7 12 5 16 18 1 13
9 15 8 14 6 16 18 13 14
10 16 9 15 7 17 19 14 15
1 18 10 17 8 18 20 15 16
12 19 1 18 9 19 20 17 18
13 21 12 20 10 19 2 13 19
14 22 13 21 n 21 p?) 19 21
15 24 14 22 12 2 23 20 2
16 25 15 24 13 2 24 22 2

Table 4.13: Evaluation of empirical broadcast time

122

e For graphs G. = G({f1, f2},(2',9)) of complex form,
1. if 2 <4 <13, min(b'(G.)) < B(UB(2,i + 3)), and
min(¥(G.)) < (UK(2,i +2)):
2. if 4 < i < 13, max(V(G.)) < BUB(2,i +3));
3. i 6 <1 < 13, max(¥(C.)) < (UK(2,i +2));
4. if i = 4, ¥(G.) < b(5-star) = 12.

e For graphs G, = G({ f1, f2},(2,9)) of simple form,

1. if 8 <7 <13, min(¥(G,)) < H(UB(2,i+3));
2. if 10 < 7 < 13, min(¥(Gs)) < YUK (2,i + 2));
3. if 10 < ¢ <13, max(V'(G,)) < H{(UB(2,i + 3));
4. if i = 13, max(V'(G,)) = b(UK (2,7 + 2));

5. if i = 4, b'(G,) > b(5-star).

In general, ¥'(G.) and b'(G,) are similar to d(UB(2,i + 3)) and J(U K (2,1 + 2))
with the exception of ¥'(G,) for 3 < ¢ < 8, which is greater than d(UB(2, + 3)) and
b(UK(2,7 + 2)). However, we can use Strategy 3 to reduce ¥'(G,). We conjecture
that the new ¥'(G,) will be close to b"(G) shown in Table 4.12, which is similar to
b(UB(2,: + 3)) and (UK(2,i +2)).

Therefore, we conclude that broadcasting in a two-dimensional linear congruen-

tial graph can be done in time, which is very similar to the time for broadcasting in

de Bruijn and Kautz graphs of similar sizes.

123

Chapter 5

Conclusion

5.1 Research Results

The multicomputers and distributed systems are designed to improve performance,
resource utilization, and to provide users with a more convenient and reliable envi-
ronment. In the design of these systems, the network topology as well as suting
and broadcasting algorithms are veiy important issucs. The two-dimensional linear
congruential graphs have been previously shown to have many desirable properties
of interconnection networks such as large size, small degree, small diameter, regular-
ity and maximal connectivity. We were interested in the problems for routing and
broadcasting in two-dimensional linear congruential graphs. Our rescarch was fo-
cused on the graphs G({fi, f2},(2', s2)) of degree 4 where f, generates a Hamiltonian
cycle, and f; generates a small number of disjoint cycles.

In general, two-dimensional linear congruential graphs are not vertex-transitive.
However, they have specific symmetric properties. Depending on the gencrators,
two-dimensional linear congruential graphs can be partitioned into two classes:
graphs of simple form and graphs of complex form. We have provided sufficient
conditions for a graph of simple form to be vertex-transitive with respect to a parti-
tion. The partition on the values of z coordinate of all vertices consists of congruence
classes modulo 2'~*. We have also provided sufficient conditions for a graph of com-
plex form to be quarter symmetric. Based on their symmetric properties, routing
and broadcasting algorithms were proposed.

The global routing algorithm uses a breadth first search approach. For a graph

of size 2' x 9, the number of path tables required is 2'~4 if the graph is of simple

124

form, or 2=2 x 9 if the graph is of complex form. As the size of graph increases, the
number of path tables is very large.

A more efficient global routing algorithm for graphs of simple form was thus pro-
posed. In the scheme, only a one-to-one mapping path table and a size-independent
(16 x 9 memory entries) mapping table are required. The paths determined by this
scheme may not be the shortest. However, the maximum length of any path is very
close to the diameter.

We proposed two distributed routing algorithms suitable for different faulty con-
ditions. They both use a depth first search approach and can route messages along
the shortest path if no faults are encountered. The two algorithms have been eval-
uated under various faulty con-itions. The empirical results reveal that in presence
of faults, the progressive algorithm may roui. messages along a shorter path than
that routed by the conservative algorithm if the number of faults is small. However,
the progressive algorithm does not guarantee a path for two connected vertices in
specific cases of faults.

The algorithm of finding disjoint paths for a pair of vertices recursively executes
a procedure until four disjoint paths between them are found. The set of disjoint
paths may not contain the shortest paths. However, their lengths are bounded by
the level n of recursive calls to the procedure, i.e., len(p) < min_len 44 + 2n where
min_len is the distance between the pair of vertices. In other words, the difference
between lengths of any two disjoint paths in the set is at most 4 + 2n. We observed
that the maximum n for any two vertices of a graph is small.

The broadcasting algorithm provides an upper bound O(log, n) on broadcast
time of any one-dimensional linear congruential graph containing generator f,(z) =
z+1. The broadcast time is asymptotically optimal. However, it does not generalize
in a simple way to two-dimensional graphs. We observed that, with a proper choice
of generators, the broadcast time of a two-dimensional graph is smaller than the
upper bound and is similar to the time required for broadcasting in the de Bruijn

graph of the same degree and comparable size.

125

5.2 Future Considerations
Some problems are worth of further study and we mention some of them below.

o Because the structure of a graph of complex form is more sophisticated than
that of simple form, the global routing algorithm with a unique path table
cannot be applied on a graph of complex form. Thus the global routing in a

graph of complex form still has to create large number of tables.

o In the problem of distributed routing, the maximum number of message hops

required for a detour due to a faulty link is not known yet.

o The broadcasting in two-dimensional linear congruential graphs can be done
in time similar to the time required for de Bruijn graphs. However, no good

upper bound on the broadcast time of a two-dimensional linear congruential

graph has been found yet.

126

Bibliography

[1] C. C. Koung. Multidimensional Linear Congruential Graphs: A New Model
for Large-Scale Interconnection Networks. Master’s thesis, Dept. of Comp. Sci.

Concordia University, Montreal, Quebec, Canada, 1993.

[2] F.R.K. Chung. Diameters of Graphs: Old Problems and New Results. In Pro-
ceedings of the 18th Southeastern Conference on Combinatorics, Graph Theory
and Computing Congr. Numer., pages 295-317, 1987.

[3] J. C. Bermond and C. Delorme. Strategies for Interconnection Networks: Some
Methos from Graph Theory. Journal of Parallel and Distributed Computing,
3:433-449, 1986.

[4] C. L. Seitz. The Cosmic Cube. Commun. ACM, 28(1):22-33, Jan. 1985.

[5] Y. Saad and M. H. Schultz. Topological Properties of Hypercubes. IEEE
Transactions on Computers, 37(7):867-872, Jul. 1988.

[6] B. Becker and 1. U. Simon. How Robust is the n-Cube? In IEEE Annual
Symposium on Fundations of Computer Science, pages 283-291, 1986.

[7] J. C. Bermond and C. Peyrat. de Bruijn and Kautz network: a competitor for
the hypercube ? In F. Andre and J.P. Verjus, editors, Proceedings of the first
European Workshop on Hypercubes and Distributed Computers, pages 279-293,
(North-Holland), 1989. Elsevier Science Publishers B.V.

[8] M. R. Samatham and D. K. Pradhan. The De Bruijn Multiprocessor Network:
A Versatile Parallel Processing and Sorting Network for VLSI. IEEE Transac-
tions on Computers, 38(4):567-581, Apr. 1989.

127

[9] M. R. Samatham and D. K. Pradhan. Correction to The De Bruijn Multipro-
cessor Network: A Versatile Parallel Processing and Sorting Network for VLSI.
IEEE Transactions on Computers, 40(1):122, 1991.

[10] S. B. Akers and B. Krishnamurthy. A Group-Theoretic Model for Symmetric
Interconnection Networks. IEEE Transactions on Computers, 38(4):555-566,
Apr. 1986.

(11} S. B. Akers, D. Harei, and B. Krishnamurthy. The Star Graph: An Attractive
Alternative to the n-cube. In Internctional Conferencc on Parallel Processing,
pages 393--400, 1987.

[12] S. B. Akers and B. Krishnamurthy. The Fault Tolerance of Star Graphs. In
Proceedings of the 2nd International Conference on Supercomputing, pages 270 -
279, 1987.

[13] J. Opatrny, D. Sotteau, N. Srinivasan, and K. Thulasiraman. DCC Lincar Con-
gruential Graphs: A New Class of Interconnection Network. IEELE Transactions

on Computers.

[14] P. Fraigniaud. Asymptotically Optimal Broadcasting and Gossiping in Faulty
Hypercube Multicomputers. IEEE Transactions on Compulers, 41(11):1410-
1419, Nov. 1992.

[15] K. H. Rosen. Discrete Mathematics and its Applications. Random House, 1988.

[16) M. N. S. Swamy and K. Thulasiraman. Graphs, Networks, and Algorithms.
John Wiley and Sons, Inc., 1981.

[17) K. A. Ross and C. R. B. Wright. Discrete Mathematics. Prentice-Hall, Inc.,
second edition, 1988.

(18] W. D. Hillis. The Connection Machine. The MIT Press, 1985. An ACM

Distinguished Dissertation.

[19] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann Publishers, Inc., 1992.

128

[20] J. P. Hayes, T. N. Mudge, and Q. F. Stout. Architecture of a Hypercube Super-

computer. In Proceedings of International Conference on Parallel Processing,

pages 653-660, Aug. 1986.

[21] M. S. Chen and K. G. Shin. Adaptive Fault-Tolerant Routing in Hypercube
Multicomputers. IEEE Transactions on Computers, 39(12):1406-1416, Dec.
1990.

[22] T. C. Lee and J. P. Hayes. A Fault-Tolerant Communication Scheme for Hy-
percube Computers. IEEE Transactions on Computers, 41(10):1242-1256, Oct.
1992.

[23] M. S. Chen and K. G. Shin. Depth-First Search Approach for Fault-Tolerant
Routing in Hypercube Computers. IEEE Transactions on Parallel Distributed
System, 1(2):152-159, Apr. 1990.

{24] N. G. de Bruijn. A Combinatorial Problem. Koninklje Nedderlandse Academie
van Wetenshappen Proc., A 49:758-764, 1946.

[25] D. K. Pradhan and S. M. Reddy. A Fault-Tolerant Communication Architec-
ture for Distributed Systems. IEEE Transactions on Computers, c-31(9):863-
870, Sep. 1982.

[26] A. H. Esfahanian and S. L. Hakimi. Fault-Tolerant Routing in DeBruijn Com-
munication Network. IEEE Transactions on Computers, c-34(9):152-159, Sep.
1985.

[27] Z. Liu. Optimal Routing in the De Bruijn Networks. In Proceedings of the
Tenth International Conference on Distributed Computing System, pages 537-
544. IEEE Comput. Soc. Press, 1990.

{28] J. C. Bermond and C. Peyrat. Broadcasting in de Bruijn Networks. In Pro-
ceedings of the 19th Southeastern Conference on Combinatorics, Graph Theory
and Computing Congr. Numer. 66, pages 292-283, 1988.

129

]

[29] M. C. Heydemann, J. Opatrny, and D. Sotteau. Broadcasting and span-
ning trees in de Bruijn and Kautz networks. Discrete Applied Mathematics,
37/38:297-317, 1992.

[30] V. E. Mendia and D. Sarkar. Optimal Broadcasting on the Star Graph. IELE
Transactions on Parallel and Distributed System, 3(4), Jul. 1992.

[31] S. B. Akers and B. Krishnamurthy. Group Graph as International Network.
In Proceedings of 14th International Conference on Fault Tolerant Computing,
pages 422-427, 1984.

[32] N. Bagherzadeh, N. Nassif, and S. Latifi. A Routing and Broadcasting Scheme
on Faulty Star Graph. Department of Electrical and Computer Engineering,

University of California, Irvine, e-mail: nader@balboa.eng.uci.edu.

[33] A. L. Liestman and J. G. Peters. Broadcast Network of Bounded Degree. Siam
J. of Disc. Math., 1:531-540, 1988,

130

