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ABSTRACT

Sampling Distribution of Econometric

Estimators in Simultaneous Equatlions Models

¥.B. Eouanzoul

As fileld of applications of simultaneous equations, a complete
section is devoted to survey of macroeconometric models mainly applied
to the U.S. intra and post world wars economy. Then a comprehensive
study of the simultaneous equations model is carried out. A survey of
the methods of estimation is also included for ready reference.

A discussion of reduced form and variance covariance matrix is
also considered. This is followed by a survey of the developments on
the distributions of the econometric estimators in large simultaneous

equations model during these last fifteen years.
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Chapter 1

INTRODUCTION

1.1 SIMULTANEOUS EQUATIONS

Simultanecus-equations result from the interdependence of economic
phenomena. The concept was first introduced by Tinbergen while he was
working for the League of Natlions. A simultaneous-~ equations model
consists of several stochastic and deterministic equations.
Traditionally we classify these equations into the following four
categories:

i)behavioral equations: represent the behavior of some group of
economic subjects like the demand and supply equations, the aggregate
consumption and investment equations, the price and wage functlions,
ete...
ii)technological or technical relations: arise due to the given
technology of a certain firm or an industry like the production
function relating output and inputs.
iii)institutional relations: arise due to various governmental
regulations like tax functions, and
iv)definitional relations or identities: arise due to specific
definitions of economic variables for example, the total wage bill 1is
equal to the wage rate multiplied by the total number of people
employed. Generally speaking, relations in 1), 11) and 1i1) will be

stochastic whereas iv) will be deterministic.




Since the equations of a simultaneous-equations model are
supposed to describe the structure of an economy, they are called
structural equations, and the parameters of the equations system are
called structural parameters. Accordingly, the disturbances in these
equations are called structural disturbances.

We have two sets of varlables in the structural equations system,
viz., endogenous and exogenous variables. The endogenous variables are
those which are "to be explained" by the equations system and exogenous
variables are supposed to be determined from outside the system.
However, these variables are measured at different points of time, and,
therefore, for statistical purposes, we distinguish between jointly
dependent and predetermined variables. The current endogenous varlables
are called Jointly dependent and the lagged endogenous variables along
with current and lagged exogenous variables are grouped together in the
category of predetermined variables.

The earliest and still one the most important application of
simultaneous-equations techniques is to macroeconometric models ([61].
The latest are reputed to involve more equations and variables by
including certain factors not treated explicitly in prototype model,
which focuses on national income variables like prices, wages, interest
rates, employment, and unemployment.

The first macroeconometric model was the Tinbergen model of U.S.
business cycles in the periode 1919-1932 [87]. This model was quite
influential in three respects. First, it influenced futur research by
developing a quantitative approach to the subject of business-cycle
analysis. Second, it frostered the further development and use of

econometrics. Third, it was partly responsible for the later work on



problems of estimation of a simultaneous-equations system.
The major macroeconometric models are:

a)The Brookings model (1960) [29] & [39]: the largest and most
ambitious macroeconometric model of the U.S. economy. More than thirty
economists at various universities and research organizations
collaborated in the development of the model, with individual
speciallists working in particular sectors. Brooking model is a bighly
disaggregated quaterly model, involving, in the "standard” version, 176
endogenous and 89 exogenous variables. It has been used both for
structural analysis of cycles and for growth and policy evaluation. The
model was divided into various interacting blocks, and two-stage least
squares was then used to make consistent estimates of the individual
equations within each major block of equations. The entire model was
then reestimated to take account of the interactions among the blocks,
and the resulting estimated model was the one used for policy
simulation experiments. Interconnections among the blocks of the

Brookings model are:

[[A ]Fixed Business Investment and Exports

[ C ]Other Final Demand

[ D || E|[ F |Sector Outputs

(G| |[H]|| 1 |Employment and Hours
[ It J1{ LK ]{L |Labor Supply, Unemployment
(Il _I[MI{N]|lO][ P]wages, Prices, and Profits

(QI[RI[_ 1L 101 S1[ T ]interest, Money, and

Other Factor shares




The most important outcome of Brookings model was, without doubt, its
role in integrating various sectors of the economy, methodologies, and
data into a single unified framework and its influence in these
respects on later models, estimation approaches, and data banks.

b)The Chase Econometrics model [35]: a large-scale quaterly model used
for short term forecasting. The model was used to estimate new
passenger car sales. The variables are: new passenger car sales,
personal disposable income, transfer payments, ratio of nonwage
personal income to wages and salaries, credit-rationirng variable, ratio
of the average monthly payment for new cars to the consumer price
index, unemployment rate, dummy variable for auto strikes, and the
stock of new cars. One of the important features of the model is the
explicit inclusion of credit rationing and capacity utilization.

c)The D R I model [32): developed by Data Ressources, Inc. 1is one of
the largest models of the U.S economy. It is a highly disaggregated
model that was influenced by the brookings model, the Wharton model,
and other earlier models. The 1976 DRI model includes 718 endogenous
variables and 170 exogenous varlables.

d)The Duesenberry-Eckstein-Fromm model [28]: a quaterly model of the
U.S.A economy in recession, emphasizing tax and transfer payments. It
is not a direct descendant of the Klein-Goldberger model; however it
was influenced by the latter.

e)The Fair model [36]: a small short-run quaterly forecasting
econometric model consisting of 14 stochastic equations and 5
identitles. The model explicitly allows for disequilibrium in the
housing sector and makes use of the concept of "excess labor" to

explain employment.



f)The M P S model [75]: is the public version of an econometric model
of the U.S. economy developed by the Federal Reserve Board, M I T, and
the University of Pennsylvania (FMP). While the FMP model is used for
forecasting and policy evaluation by the Federal Reserve System, the
MPS model (M I T, Pensylvania, and the Social Science Research Council)
is a large-scale quaterly econometric model involving over 100
equations. Its main focus is in estimating the impacts of alternative
monetary policies. The model includes six major blocks of equations.

Listing of the version 4.1 of FMP model, dated April 15, 1969. is

Stochastic Nonstochastic Total

equations equations equations

final demand 24 20 44
distribution of income 5 21 26
tax and transfert 12 9 21
labor market 3 10 13
prices 10 22 32
financial sector 21 14 35

Total 75 96 171

g) The Klein-Goldberger model [44): is a “medium-size" econoretric
model of the U.S. economy for the period 1929-1952, excluding the war
years 1942-1945, It consists of twenty equations, of which 15 are
stochastic and 5 are identities. It contains 34 variables, of which 20

are endogenous and 14 are exogenous.



20 endogenous variables 14 exogenous varlables

S income government expenditure

consumption

gross private unvestment
depreciation

imports

corporate saving

corporate surplus

direct taxes

indirect tax

population & labor force
hours worked

excess reserves

import price

capital stock
2 liquid assets
3 prices

2 interest rates

The Klein-Goldberger model has extremely influenced the construction of
most of the later models.

h)The Klein Interwar Model (or Klein Model I) [43]: a "small" model of
less than ten stochastic equations developed by Lawrence R. Klein to
analyze the U.S. economy during the period between world wars I and II,
1921-1941. It has been used to study policy pursued during the

depression year. Variables of the Klein model I are:



6 endogenous varlables 4 exogenous variables

Y = output G = governm. nonwage expend.
C = consumption "c- public wages

I = lnvestment T = taxes

H;- private wages t = time

T = profits

K = capital stock (at year end)

The model:

.aggregate consumption in year t.

(1) Ct = aO * ul(wpt. * th.) * a2“t * u3nt-1 * ult

where uu is structural disturbance.

. Investment function:

(2) I, =B+ BT + B +BK  * Uy
.private wages:
B W =9, +y (Y +T- W), + o, (Y + T =W o+ 7, (£-1931) + u(t).

.national income identity:

(4) Yt.=ct.+1t+Gt




.total profits of the private sector

(5) TIt - Yt - wpt + Tt

.net investment

(6) K, =K _ + I

The Klein interwar model is said to be complete.

1)The Liu model [47)}: an exploratory model of effective demand in the
postwar economy, starting with the first quarter of 1947. It has a
monetary sector, involving five liquid assets, and five interest rates.
Exogenous varlables are excess reserves relative to required reserves
and the discount rate.

J)The Liu-Hwa model [48]: first major monthly econometric model; it was
influenced by the Liu model and intended to analyze forecast and
policy. It 1includes 12 policy Iinstruments, the values of which,
together with lagged endogenous and exogenous varliables, generate
monthly forecasts of GNP and its components.

k)The Michigan Quaterly Econometric Model (MQEM) [42): direct
descendant of a small quarterly model developed in the late 1960’s at
the Council of Economic Advisers for use in forecasting. It was
influenced by the Sults model. MQEM is a medium-size nonlinear model
designed for short-term prediction. Its varliables are: wages and
prices, productivity and employment, expenditures, income flows,
interest rates, and output composition.

1)The Morishima-Saito model [60]: is a model of long-term growth. It
has been used for structural analysis and for policy evaluation,

particularly for the study of the relative effectiveness of monetary



and fiscal policy. Variables of the Morishima-Saito model of U.S.

economy over the period 1902-1952 (excluding 1941-1945) are:

9 endogenous varlables

6 exogenous variables

Y = net national output I = investment (gross)
(national income)
C = consumption B = trade balance
D = capital consumption allowances M = cash balance
K = capital stock (at year end) N = population 15 and qver
L = employment t = time
p = price level (1929:1) u = dummy variable
(0 before 1941, 1 after 1946)
w = wage rate
r = corporate bond yleld
h = hours worked per person per Y.
The model:

.consumption function:

(1) Log(C/N)t = alLog(Y/N)t + aaLog(M/pN)t + ccaLog(C/N)t_1 to+ e(t)

.liquidity preference function:

(2) Log(M/p)t = Bo + 31(32L°8Yg + BaLog(Mt_llp)) + 34) + BsLogrt + 86u

+ e(t).

.production function:

(3) Loth =7, + 71Log(hL)t + 72LogKt_1 + 3'3t +yu 4 e(t).



.relative-share equation:
(4) (wL/pY)t =a or Log(wL/pY)t =a + e(t).
.wage—-determination equation:

1/5
(5) l..og(w/h)t - bo + b1"‘°8("/h)t.-1 + ba(l..og(p/pt_1) +

4/5
)

Log(p/pt_2 ) + baLog(L/. 57N) + e(t).

.hours-worked equation:

(6) Loght = CO + C1L°8("t-1/pt.-1ht-1) + CzLog(Lt/.57Nt) + e(t).

.depreclation equation:

(7) Loth = do + dil..ogl(t_1 + e(t).

identities:
(8) Y =C, +1I -D +B,

(9) K, =K _ +1I -D

m)The OBE/BEA model [46]: quaterly model influenced by the Wharton
model and developed by the Bureau of Economic Analysis (formely the

Office of Business Economics) in the U.S. Department of Commerce. It

includes three sectors: the output market for components of GNP; the

labor market, for hours, wages rate, labor force, and labor income; and

10



prices, for price deflators for GNP components and the wage rate. The
model 1s used for short-term forecasting and policy evaluation in the
Department of Commerce and other government agencies, including the
Councll of Economic Advisers.

n)The suits model [84]: an expanded version of Klein-Goldberger model
where variables of the model are replaced by first differences. It
influenced the MQEM model.

o)The Tinberger model [87]: the first macroeconometric model of U.S
business cycles in the period 1919-1932. It includes 50 equations of
which 32 are stochastic and contains S50 endogenous and 14 exogenous
variables.

p)The Wharton model [34]: is z "medium-size" macroeconometric model of
the U.S. economy. It is quaterly model, involving variables and data
defined over a three-month period, particularly useful for analyzing
and forecasting short-~term macroeconomic phenomena -especially the
national income components and unemployment-, involves a greater degree
of disaggregation, a better treatment of accounting identities, and a
better integration of the monetary sector than the previous models. The
original version of the model contains 118 variables, of which 76 are
endogenous and 42 are exogenous. It consists of 76 equations, of which

47 are stochastic and 29 are identitles.
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76

endogenous variables

42

exogenous variables

5 output 2 output
2 sales income
4 income consumption anticipat.
5 consumption farm inventories
S fixed investment 2 investment anticipation
4 depreciation depreciation
exports 2 government purchases
3 imports Interest payments

2 corporate profits

dividends

retained earnings

soclal security contrib.
housing starts

population

cash flow 5 labor force
inventory valuation adjustment 2 wage bill
rent and interest payments 7 prices

3 taxes discount rate
transfert payments net free reserves
labor force time
hours worked 6 dummy varlables
wage bill productivity trend
unemployment rate index of world rate
caplital stocks statistical discrepancy
inventories
unfilled orde-s
index of capacity utilization

10 prices

2 wage rates

2 interest rates

q)The Wharton Annual and Industry Forecasting model [73]): a variant of
the Wharton model which provides annual long-term forecasts of up to
ten years on an industry basis. It utilizes input-output information,

12



and explicitly accounts for final demand, input-output, labor
requirements, sector wage, sector price, final demand price, income
payments, and financial factors.
r)The Wharton Mark III model [56]: first variant of Wharton model. This
model contains 201 endogenous and 104 exogenous variables in 67
stochastic equations and 134 identities. It makes extensive use of
distributed lag analysis investment and other areas involving 25 policy
instruments with considerably more detailed treatment of both monetary
varlables and fiscal policy variables, particularly tax rates.

The connections between different macroeconometric models of the

U.S, and other countries 1s lllustrated by the following "family tree".

Tinberger (1939)

Klein Interwar (1950)

Liu (1963)¢ Klein-Go‘lfdberger (1955) uits (1962)
¥
Liu-Hwa (1967) Wharton (1967) Michigan Quaterly
MQEM (1970)
Duesenberry,Eckstein, Fair (1971)
Fromm (1960)
Wharton Mark III
(1972)
Brookings(1965-1975) ——7M Office of Business

Economic; Bureau of
Economic Analysis
OBE/BEA (1966)

Wharton Annu;1 and Industry

(1972) |
I-'RB-:HI'I‘ >Data Resources, Incorporated Chase Econometrics
FMP-MPS DRI (1974) (1971)

(1968)

13




1.2 THE SIMULTANEOUS EQUATION MODEL

The structural equations may be linear or nonlinear. Here we
consider only 1linear equations. However, the theoretical analysis of
nonlinear equations is not straight forward.

In general, a system of M linear structural equations in M jointly
dependent and K predetermined variables may be expressed in algebraic

form as follows:

7., oty y (B) 4 B X, (t) +... + B x (t) =u (t)
.................................. (1.1)
71ny1(t) + ...+ ar“yn(t) + B“‘xi(t) ..+ B“xx(t) = uu(t)

for t =1,....,T. Here y’s are jointly dependent variables and x’s are

predetermined. We have assumed that T observations are available on
each of these variables. The structural disturbances in successive
equations are represented by “1(“"""“)1(“’ and ¥’s and B's are the
structural coefficients.

The system (1.1) is sald to be complete system if there are as
many equations as the number of Jjointly dependent variables to be

explained. In matrix notation (1.1) may be written as:

Y“I‘ +XB=1U (1.2)
where
yl(l) ..... yn(l)
YH -1 : (1.3)
y;(T).....y;‘(T)
and

14




xl(l)... . .x‘(l)
X . . (1.4}
x'l('l‘) ..... x'K(T)

are the matrices of observations on the jointly dependent and

predetermined variables, respectively;

[ \
LEYRRRRRE AT

= | . . (1.5)
W“ Ty

and

( )
Bn """ Bm

B = . . (1.6)
Byye e Bryd

U= |{ . . (1.7)

is the matrix of structural disturbances.

1.3 THE REDUCED FORM

We may solve the structural equations for jointly dependent

variables in terms of predetermined variables and write

v, (t)=1t“xl(t)+. . .+1rmxx(t)+v1 (t)
....... (1.8)

y"(t)=1tmx1 (t)+... +1r“xx(t)+vx(t)

15



for t = 1,....,T. This 1s the reduced form of the structural equations
system. The coefficlents n’'s are called the reduced form coefficlients
and disturbances \_r‘(t)'s. are the reduced form disturbances.

The reduced form can be derived conveniently, in matrix form, by
post multiplying both sides of (1.2) by l'"l, provided T is a

non-singular matrix. In that case we write the reduced form as:

Y=XI+V (1.9)
where
LARRERp LI .
Il“ = | . = =Bl (1.10)
™

(1.11)

is the matrix of reduced form disturbances.
ASSUMPTIONS
We assume that
i) the elements of X are nonstochastic and fixed in repeated
samples.
i1) rank of X, p(X), = K< T
111)1,}_1,{3 %X’X = Zx'x is a positive definite matrix.
Finally, we make following assumptions about the structural
disturbances:
iv) the M-dimensional row vectors of U are independently and

identically distributed so that

16



E(ul(t)) =0 forall 1 =1,.....,Mandall t=1,....,T and
E(ul(t)uj(t')) -0, iIf t =t/
=0 iIf t = t/

or, alternatively,

iv)’the T rows of U are independently distributed according to an
M-dimensional normal law with means, variances and covariances as
defined in iv).
Remarks: 1) iv)’ is required for the maximum likelihood estimation of
structural equations and for finite sample analysis of the estimators.
2) 1iv) 1is enough for the least squares estimation and for asymptotic

analysis of the estimators. In matrix notation we have

E(U) = 0 and 1E(U'U) = & (o)) (1.12)
where 0 is a TxM zero matrix and £ is MxM positive definite covariance
matrix of contemporaneous structural disturbances. If iv)’ holds, then
the T rows of \_Iw are also independently and identically normally
distributed; and for both iv) and iv)’ we have

= 1 ’ s ~lap~1
EVH = 0 and TE(V Vw) = Q= "Il (1.13)

vwhere Q0 is the varlance-covariance matrix of the contemporaneous

reduced form disturbances, berause Vw - UI"'1 as defined in (1.11)

1.4 A PRIORI RESTRICTIONS ON STRUCTURAL PARAMETERS

Before attempting to estimate any structural equation, we must

17



ensure that the equation is identifiable. That means, we must be able
to distinguish between the structural equations. If both the demand and
the supply equations, for example, are linear (or have the same
functional form) and the same variables have been included in both, one
cannot distinguish between them. In fact, in that case several linear
combinations of the two will have the same form and variables, as the
originally postulated demand and supply equations. If we are not able
to distinguish between them there 1s no question of any statistical
estimation of the coefficlients of these equations. As we have noted in
the previous section, each structural equation represents a certain
economic hypothesis. Then it is natural that not all variables will be
included in every equation. Let us illustrate this point with the help
of Klein's six-equation model for the U.S economy, 1921-1941. The model

consists of a consumption function
C, =oa, + al(wpt + “ce) toll +all —+ “1(“ (1.14)

which relates the aggregate consumption in year t, Ct, with the
aggregate profits in year ¢, Ht, the aggregate profits in year t-1,
nt_i, the total wages paid by the private sector in year t, wpt, the

total wages pald by the private sector in year t-1, W and the

p(t-1)’

structural disturbance ul(t). The second equation of the model is an

investment function

I =8, + B +BI_, *BXK+ Yy (1.15)

which relates net investment (It) with TIt and ITt_1 as defined above,

1R



the capital stock in year t-1, K and the structural disturbance

t-1’

tern, u,,- Next, there is a demand for labor equation

wpt =7t (Y + T - W) (Y + T - Wiy + ¥,(t-1931) +

ua(t) (1.16)

relating Wpt (aggregate wages paid by the private sector in year t)
with (Y + T - HG)t its lagged value and the trend variable 73(t-1931),
where Y; is the national income in year t, and Tt is "total taxes p=id
in year t".

Finally, the three identities of the model are

\1t = ct + 1t + (;t (1.17)
11t = Yt - wpt + Tt (1.18)
1(t - KM + 1t (1.19)

where Gt is the aggregate government expenditure.

In this model C, M, W , I, Y, and K are current endogenous
t t' Tpt ' e t

or Jjointly dependent wvariables, and IK-1’ Kt-l' Yt_1 are lagged

endogenous. Further, W

ot Tt, Gt and t are current exogenous and

"c(t-lV Tt_l, are lagged exogenous. There 1s also a dummy variable
(assoclated with the intercept term in each equation) which assumes the
value "1" always. Accordingly, M = 6 and K = 10. Since the number of

structural equations in the model is the same as the number of jointly

dependent variables, Klein model I is said to be a complete system. We

19




note that according to the specification of the consumption function,

n, n ., W

e Mg Yo and “ce. are directly related with Ct vhile It. I‘t, and

Gt do not affect Ct directly. Structural equation being an economic
hypothesis, we impose zero restrictions on coefficients of several

variables which are not of any direct relevance in that equation.
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Chapter 2

METHODS OF ESTIMATION

2.1 INTRODUCTION

There are mainly three alternative approaches to estimating the
simultaneous-equations systems. They are: the naive approach, the
linited-information approach, and the full-information approach. These
approaches differ in the amount of information u ilized in the
estimation * rocess.

The naive approach to estimating parameters of a system of
simultai.eous equations is that of ordinary least squares. This approach
applies least squares to each equation of the model separately,
ignoring the distinctlion between explanatory exogenous and included
endogenous variables. It also ignores all information available
concerning variables not included in the equation. In general, naive
approach leads to blased and inconsistent estimators.

The limited information approach estimates one equation at a time.
Unlike ordinary least squares, it utilizes all identifying restrictions
pertalning to the equation. The information required 1is 1limited,
however, to the varlables included in or excluded from the equation
being estimated. The limited information approach includes several
specific estimators, such as indirect least squares (ILS) and the

two-stage least squares (2SLS) and k-class estimators.
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The full information approach estimates the structural equations
simultaneously in "one fell swoop", utilizing prior restrictions on
parameters of the entire equation system. This approach includes two
specific estimators, of which three-stage least squares (3SLS) and full
information maximum likelihood (FIML).

It is hard to say immediately that one approach will be invariably
better than the other in all cases. The full information method
provides more efficlent estimates. However, these estimates are
sensitive to errors of specification; while 1limited information
estimator iIs computationally and analytically more convenient.

A new direction to estimating structural parameters in
simul taneous-equations econometric models was proposed by Herman O.Wold
(1965 and 1969) and Ernest J. Mosback and Herman 0. Wold (1970).-See
[17] and references within-. They introduced the "fixed point" (FP)
method of estimation. One of the difficulties with the FP method ls
that the fixed point estimator does not always exist and it may not be

unique. The FP method is not considered in this work.

2.2 SINGLE EQUATION OF THE COMPLETE STRUCTURAL SYSTEM

Suppose m + 1 < M Jointly dependent and k1 < K predetermined
variables enter the equation with non-zero coefficients; and further,
the structural coefficients have been normalized by dividing the entire
equation by the coefficient of one of the dependent variables. Then,
using a priorl restrictions, the structural equation, In terms of

normalized coefficlents, may be expressed as
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ky

n
y(t) = v, y,(t) + ZﬁJxJ(t) +u(t) (2.1)
1=1 J=1

where the jointly dependent variable with "unit" coefficient is put on
the left-hand side and all other jointly dependent and predetermined
variables are transferred to the right. The coefficients 7"5 and B,.S

are ratlos of the original structural coefficients. In matrix notation,

(2.1) may be written as :

y =Yy + x13+U (2.2)
X1 Tx1 K X1 TX1

where y is the column vector of Jointly dependent variables with "unit"
coefficlent, and Y and )(1 are matrices of all other jointly dependent
and predetermined variables included in the right hand side of the
equation. ¥ and B are the coefficient vectors; and U is the vector of
structural disturbances.

Now consider one just identified equation. The Y matrix can be

partitioned into

Py ) (2.3)

Yu= (v | Yl 2

corresponding to the one dependent endogenous variable y, the m
explanatory endogenous variables Y1 and the M-m-1 excluded Jjointly

dependent varliables Yz' The X matrix can be similarly partitioned into

X = (X | X) (2.4)

corresponding to the l(1 Included exogenous variables }(1 and the

K-Klexcluded predetermined variables Xz. The reduced form
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Yw-xn"+v (2.5)

. ) ) 1(.5 H.§ ﬂz _____
(y : YI; Yz) - ()(1 i Xz) ----5----45---- + (v i V1§ Vz) (2.6)
L S | BN |
2
where
Kz =K - K1 (2.7)

and the stochastic disturbance terms have been partitionned in the same
way as Y", corresponding to the dependent, explanatory, and excluded
endogenous variables. The matrix of reduced-form coefficlents Hw has
been partitioned here into six submatrices in order to carry out the
matrix multiplication.

Suppose that (2.2) happens to be the first equation of the
complete structural equation system. Then, only the first columns of T
and B are involved. Using the normalization, zero restrictions, and the

partitioned matrix, M, in (2.6) we have

M M) (1 -8
' -y - - (2.8)
LA “2 0!(--1 OK

where

are first columns of T and B respectively. Ctu_m_1 and 0k are columns
2

vectors of M-m-1 and K2 ( = K-K1) "zero" elements, respectively.

Writing out the resulting two sets of equation, we obtain
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r-My=8 (2.9)

n-Ny =0 (2.10)
K
2
and it follows that
v- Vy = u (2.11)
Hence
- - - - 2
- 4 - ’ -
1E(v-Vy)’ (v-Vy) ~ 1E(u u) = ¢ (say) (2.12)
T T
Now, 7 can be determined uniquely from (2.10) iff
p(ll) =m (2.13)
condition which implies
l(2 zn (order condition) (2.14)

Definition 1: equationy = Yy + Xxﬁ +u Iis sald to be just identified

or exactly identified if p(Tl) =m = Ka’

Definition 2: equation y = Yy + Xlﬁ + u 1is said to be over identified

if K> m

2
Thus, in the case of Just-identification, N 1s a nonsingular square
matrix; such that

My=mn or = H-in (2.15)

2.3 ORDINARY LEAST SQUARES AND LEAST SQUARES BIAS

The nalve approach to estimating the parameters of a system of
simultaneous equations is that of ordinary least squares (OLS). The
equation to be estimated, the first of the complete structural equation

system, can be written

y=Y7+X13+u—(Y§x1)[;] +u=28 +u (2.16)
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Here Z lumps together data on all (m+l(1) Included explanatory variables

endogenous or exogenous.

Z=(Y}X) (2.17)

and & 1s a vector summarizing all coefficlents to be estimated in the

equation:

5= (7] » (2.18)
B K,

Applying B= (X’X)-IX'y to (2.16) yields the estimator.
8- (zz2)tzy (2.19)

where the inverse exists if Z has rank m+K1. In terms of the original

notation, the OLS estimators can be written

A (YY YR )Ty
4 e e y (2.20)
B XY XX, X,

In the case that (2.2) is the first equation of the system we have
8= (2'2)7'2 (26 + u) = § + (2'2) '2'u (2.21)

then, E(s) = 8 + E[(2'2)"'2'u]. Since Z includes endogenous variables,
Y, which are stochastic and not independent of the stochastic
disturbance term, E[(Z’Z)-lz'u] does not vanish. Thus, the OLS

estimators are biased: E(s) # 8. The blas 1s given by

ol B e
Blos [IB] B XY XX X,

2



and this blas does not vanish, even asymptotically; that is the OLS

estimators are also asymptotically biased.
plin(8) = & + plin(z 2'2) " (Az'u) = & (2.23)

So, the OLS estimators are inconsistent.See [38] and {39].

2.4 INDIRECT LEAST SQUARES (ILS) ESTIMATOR OF PARAMETERS OF A JUST-

IDENTIFIED STRUCTURAL EQUATION

Indirect least squares (ILS) is a limited-information technique
that can be used to obtain consistent estimators of a just-identified
equation. In the Just-identified case, the structural parameters are
uniquely determined from the reduced-form parameters, so the estimated
reduced-form parameters can be used to infer estimated structural
parameters indirectly, leading to the name "indirect least squares".

This approach involves two steps. The first is the estimation of
the reduced-form parameters ﬁw using least squares technique. Second
step 1is possible iff the equation is just-identified and consists in
the estimation of structural-form parameters f and 8 using the
relationships between these parameters and the reduced-form parameters

and the conditions of identifiability. (2.6) can be rewritten

™ -

y = Xln + qu + v (2.24)
. -

Y1 = X1H + leT +V (2.25)
. -

Y2-= Xiﬂz + erlz"' V2 (2.26)
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So that applying least squares to (2.24) and (2.25) we get

|

respectively. Here, X = (Xii Xa) such that

-

] - (XX ) X'y  and [ﬁ] - (X'X )"x'\{1 (2.27)

> ®>

A

L

2 ‘ . 4 (% . -1y
NE [(x1E X)) (x| xz)] ® %)y _ [1] x| xz)] [ ’1]y _

XX i XX
Now, the matrix -3—-1-7--%--2 can be partlitioned as follows:
XX XX
21 22
’ L ’ . . , -1,.0
[xix1 ; 1xa] [xix1 : 0 ][ I XX (XX)
7 To7 =177 T =T e T
H ovry _(yw? ’ 1y, :
xz 1 xzxz sz1 xzxz (X2x1)(xlx1) xtxz 0 !
such that
’ ’ ’
5 -1 5 ’ -1 -1
[ x1x1 : 1x2 ] [ I (x1x1) (xixz)]
7 7 =
XZX1 sza o i I
4
-1
) [ XX i 0 }
! H ' et ’ -1y,
sz1 i )(2)(2 (xzxi)(xlxl) XI)(2
Therefore

0



Ly -1 oty -1,/ :
[’fz’f&._i_’fz)fz] - [ L) (xle]x[Aé ° ]
XX ! XX 0 I PIXX (XX ) (KIX ) TIRIK ]

’ -1 I -1 ’ ’ -1 7 ] ’ -1 H
x[f’fz’fﬁ_-ff’fz’f:f--f’fa’feff’fe’f&’.‘ef_.’.‘e’_‘zf’fz’fﬁ__-- . I
(¥’ -1y, ’ -1 .
(Xlexz) xle(x1x1)
where
, -1
. (xlxi)
-’ =Y/ ’ -1 . -1y, ’ -1
[szz )(2)(1 (xixi) (xlxz)l sz1 (xlxl)
- ’ -1 7 ’ -1
B = (x1x1) (xzxz)(xznxxa)
’ -1
(xaulxz)
and
’ ’ -1 ’
Ml =1 - xi(xlxl) X1
Therefore
XX XXX ®x)? ol X)X X)
[11‘12][1 {[11 ] [11 12]
R it St i =-=7ly = + X
x2x1 ' XZX2 X2 0 0 I

- X
’ ¢ -1.7 ¢ ’ -1 1
[XZ(I - xi(xixl) Xi)Xa] X [ -(xle)(xixi) I]}[ ,]y

2

’ -1 ’ -1 ’ ’ 1.y, ’ -1
{[(X1X1) +(X1X1) (xlxz)(xaulxz) (xle)(xixl)

- ’ -1, ’ -1
(X2M1X2) (xaxl)(xlxi)

’ -1 ’ ’ -1
- (X1x1) (XIXZ)(XZMIXZ) ]}[x;]
y

’ -1 X’
(xzulxz) 2
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’ -1y, ] -1 ’ ’ -1 . ’ -1,
(XIXI) X1+(X1X1) (Xlxz)(Xlexz) (xle)(xlxi) Xt

AT -1 ’ ’ 1y,
(X2M1Xé) (xle)(xlxl) x1 +

21

’ -1 [ ’ -1,
- xlxl) (xlxz)(x M Xa) X2
y (2.28)

’ =1y,
qulxz) x2
The ILS estimators are generally blased estimators, as are the OLS
estimators, but wunlike the OLS estimators, ILS estimators are

consistent, i.e:

A
plim [g] - [;] (2.29)
ILS

The consistency of the ILS estimators follows from the fact that
continuous functions of consistent estimators are also consistent
estimators. The ILS estimators are obtained as continuous functions of
the reduced-form estimators ﬁw and the reduced-form estimators

themselves are consistent from the least squares consistency theorem.

2.5 THE TWO - STAGE LEAST-SQUARES (2SLS) ESTIMATOR OF PARAMETERS IN A

STRUCTURAL EQUATION

The technique of 2SLS, due to Theil [84), is a limited information
technique that can be used to estimate either an overidentified or
identified equation from a system of simultaneous equations. The
difficulty in applying least squares directly to estimate (2.2) is, as
mentioned, the presence of endogenous variables, Y, in the right hand

side of (2.2), which are correlated with the structural disturbances,
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u, even in the probability limit. The method of 2SLS overcomes this
difficulty by using the estimated reduced form to replace Y by 9. The
least squares estimator of resulting equation 1is the two-stage
least-squares (2SLS) estimator. The reduced form, for the sake of

simplicity, ls:
Y=xt+V (2.30)

where T = [g] and X is as defined in (2.4). The least-squares

A A
estimators of the reduced-form coefficient M are given by T =
A
(X’X)'l)(’Y as defined before. The estimates N of the endogenous

A
variables ¢ are obtained from the estimated T and data on all exogenous

varlables of the model as
A ' oeqt
¢ =T = XXX Y (2.31)
Replacing Y by Qn (2.2) we get
y=% +xg+u (2.32)
which can be written as

y = (Q;xl)[;] +u (2.33)

The 2SLS estimator is the least-squares estimator of (2.32) and given

7 ¢ =4 ¢ ex) ey
= |1 .]® X)] [,]y-[, ,‘] [] (2.34)
[ﬁ] 2sLS [[x 1} ! )(l XIQ Xlx1 ﬁly

using (2.31) we have

by

¢ = v TIRY = VXXX IR (2.35)
and
; ‘ ¢ eyt ’
x19 ~ XXX X)X Y =X Y (2. 36)

Therefore, we can express the 2SLS estimator as
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’ ’ g ! ’ - ’ P
2 Y X(X X)X Y Y X Yy xx X)X y
2SLS

’ ' ri
A X,Y X X, Xy

If we want to solve for ? and 9

25LS let us write (2.37) as

2sLs’
’ ’ -1 ’ ’ A ’ ’ -1 ’
YX(XX) XY YX1 7 YX(XX) Xy
’ ’ a - ’

XiY xixi 2SLS le

7 ’ 1,4 ’ ’ ’, -1y,
Y'X(X’X) X 725Ls+ Y xxﬁzsl.sa Y'X(X'X) X'y

or

’ 4

’
XY Yoqs x1x13251.s = X'y

From (2.40) we obtain
’ -1 ’ 1] ’ -1.° A
ﬁ LS-(xlxl) (Xiy X1Y925Ls)-(x1x1) X1 (y-Y wzst.s)

28|

and substituting this in (2.39) we get

>

’ =1,
Vogrs = (Y’NY) "Y’'Ny

where
N ‘9!
N=X(XX) X - xx(xx)() X1
is an idempotent symmetric matrix ;
P(N) = trN = K-Kl- l(2
The OLS estimator of V in (2.30) is

A .o
V=Y -XT=Y-X(XX)'XY
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(2.42)
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and therefore,

VXXX IXY - VY-V Y (2. 46)

Hence, we may express the 2SLS estimator given in (2.37) as

2 Y'Y -V oYX (Y -V
- y (2.47)
91 25LS Xty X:X X

There is a more elegant way, du to Basmann [11], [12], and [13]
to derive the 2SLS estimator. Premultiplying the structural equation

(2.2) by X’ leads to

’ ? !’ '
Xy=XYy +X XiB +Xu (2.48)
? ' ’ 7 ']
Xy=(XY X xl)[B] +Xu (2.49)

Then applying GLS (General Least-Squares) to (2.49) we get

A Y X , v, L TTMY X ot Y1
LA | I {o'zXX}(XY X X,) ' {chX}Xy
A)oLs X X ! XX

’ ’ ’ H ’ ¢ 9 ! - ’ ' - ¢
[ YXXXTIKY | ¥ XX X)X xl] ‘[v X(X X)7'x y]

’ 1 ’ H ¢ ’ ’ ’ ’ (2.50)
-1 : -1 -1
xlx(x X) Xy i XIX(X X) X X1 XIX(X X) Xy
where
o2X’'X = X’E(uu’ )X (2.51)
Further, if we write
: _l_ = _..I... MA
XI— (X1 : Xz)[ 0 ] X[ 0 ] (2.5%)

where I is a le Klunit matrix and 0 is sz Klzero matrix, then the GLS
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estimator irn (2.50) can be expressed as

% YX(XX) XY ¥ X Ty xx X)Xy
= r ’ ¥ (2- 53)
BlcLs X ¥ X X X,y

which 1s identical with the 2SLS estimator defined previously. In the
case that (2.2) is just identified and we have
K - K1- Kz - (2.54)

the matrix X YX X1 i1s a square matrix; and it follows that

[:] -[z] [x'v x'x]-la-x' [ ] [ ]0)(' 1x'y

-1
- [x'vzx'xl] X'y (2.55)

writing X = (X1 Xz) in (2.55) and premultiplying both sides of that

’ ’
equation by (XY X X1) we get

el ()

' ' - ’
{ 1%‘ + X1X1Q Xty (2.57)

or

7 ’ - ’
x2y9 + x2x19 X!y (2.58)
From (2.57) one obtains
' ’ ' 1 ’
A s=(x>()‘(xy-xy9 )= X X)X (y-Y% _ ) (2.59)

2sL 11 1 1 25LS 11 1 25LS

Substituting this in (2.58) we get

A



’ A [ ! -1 ! - A - !/
XZY Tosrs ¥ szl (xixl) x1 (y-Y 125[_5) Xy (2.60)
Which glves
, A - ’
X2M1Y TasLs xzniy (2.61)
where
’
-1
M1 = ] X1 (XIXI) X1 (2.63)

This shows that the 2SLS estimator reduces to the ILS estimator in the
Just-identified case.

It should be noted that the 2SLS estlimator is asymptotically
efficient within the class of all estimators that use the same a priori
restrictions for a single equation, but it 1s not asymptotically
efficient relative to the full-information technique of three-stage

least squares.

2.6 THREE~ STAGE LEAST SQUARES

The technique of three-stage least-squares (3SLS) 1is a
full-information estimation technique which estimates all parameters of
the structural equations simultaneously. The 3SLS estimator was
developed by Zellner and Theil (1962) [88]. It is an extension of 2SLS
and, consequently, an extension of the Basmann’s GLS approach. The
first stage of 3SLS consists in estimating all reduced-form
coefficlents using the least squares estimator. The second stage is the
estimation of all structural coefficlients by applying 2SLS to each of
the structural equations. Finally the third s.age generalizes
least-squares estimation of all of the structural coefficlents of the

system, using a covariance matrix for the structural disturbances of
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the equations that 1s estimated from the second-stage residuals. This

use of covariance matrix makes 3SLS asymptotically more efficient than

2SLS. 3SLS technique is consistent.

The formulation of 3SLS requires the star notation. The J-th

equation of the system can be written as

- + + H -1..o-yM 2'63
yy= Y7, + X B +u, J (2.63)

or

Yy

Yy

= (Y | X ——ta] 4 2.64

v, | X)) [B ] u, (2.64)
J

Let aj summarizes all the coefficients to be estimated 1in the

equation. Thus (2.64) becomes

y =28 + u ;j=1,...,M (2.65)

where

z = (v, | X) (2.66)

J

Assume all 1dentities are eliminated and all equations are either

Just-identifled or overidentified. Using star notation, we have

u
1

yl

. .

y = y2 u = % (2.67)

NTX1 . MTX1 .
yH uH

Similarly, the M vectors of coefficients are stacked to give column

vector of K. coefficlents:

(2.68)
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N
where K =Y (MJ-1+KJ) is the total number of coefficients to be
3=1

estimated. Therefore, In star notation, all M equations of the system

can be written

* L ] [ ] [ ]
y =2, +u (2.69)
MTx1 MTxK K x1 MTx1
where
glei...io Xiixl 9 0
z-l0izi..i0|=[-2 YoriKpfreer 0 (2.70)
5717670 Z 0 0 Yy i Xy

The data on explanatory variables in one equation is contained by
a

matrix along the principal diagonal. It follows from iv) that

E(u') =0 (2.71)
. o'nI 0‘121 ....... -
Eluu ) = o, 0 o T o, I| = I8l (2.72)
o'mI 0‘“21 ...... K

where }®I is the Kronecker product of these matrices.
The 3SLS estimator is a GLS estimator of (2.69) that considers the

covariance matrix in (2.72). Let

X 0....0

’ ’

X - X0 (2.73)
00 X

Premuliiplying (2.69) by X yields
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L ¢/ o @ e/
Xy =X 28 +X u (2.74)
’ ’ ’ -1 . ¢
8 - {z'x'[cov(x'u')l"x'z'} 2'X" [cov(x"u") 17"y’ (2.75)

35LS

It follows from (2.72) that

cov(x” u') = X" coviu”)x’= X" (T & DX (2.76)

Thus the 3SLS estimator can be written

’ ’ 7 ’ -1 P ’ ’ ’
8 sis™ {z'x' %" (g'e)x’ 1"X'2'} X" eIy 2

From (2.77), the 3SLS estimator can be interpreted as taking all the

2SLS results and "correcting" them for the covariance matrix ¥.

2.7 LIMITED INFORMATION MAXIMUM LIKELIHOOD

The Limited-Information Maximum-Likelihood (LIML) estimator ls
obtained by maximizing the likelihood function for an individual
equation subject only to the a priorl restrictions imposed on the
equation, without requiring information as to the specification of
other equations of the system. The LIML technique can be used to
estimate any Just identified or over-identified equation, and, as in
the case of 2SLS, 1t reduces to ILS in the just-identified case. The
LIML is the only member of the k-class estimators which is invariant to
the choice of which included endogenous variable is to be dependent
variable,

The LIML estimator is asymptotically normally distributed and has

the same limiting distribution as 2SLS in the case where the stochastic

el




-x

terms are assumed to be normally distributed. Also the LIML has the

asymptotically efficlent property of minimum variance in the class of
all estimators with the same a prioril information.

The LIML technique is of historical importance. It has been used
to estimate several major econometric models in the 1950’s, but it has
been forsaken in recent work because the findings 1in Monte Carlo
studies show that the LIML as an estimator exhibits erratic and highly
unstable behavior (see Theil ([85]).

Consider the reduced form for all M jJjolntly dependentvariables

given by equation (1.9). Explicitly we have,
-1
[yl(t). ....yH(t)] = [xi(t), .. .,xK(t)]Hw + [ul(t), . ..,u“(t)]l‘
t=1,...,T (2.78)

Assuming that the disturbance distribution is M-variate normal, means
the conditional distribution of the row of yl(t),...,yu(t) given

xl(t),...,x“(t) is also M-variate normal with mean equals to the row

lxi(t). . .xx(t)ll'l" and covariance matrix
rlyrii-q (say) (2.79)

Let us assume that § , and consequently Q, is non singular. The

density function of the row [yl(t), cee ,yu(t)] is then equal to

1
(2n) valﬂ}'ixexp[-%{[[yi(t),...,y"(t)]-[xl(t)...xx(t)]H" Q!
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x| 1. (2.80)
Yl(t) x (t)
1 A (t) X (t)
- -Lerg - [[y (t), . .y"(t)]-[xi(t)..xx(t)lnw] (2.81)
y"(t) x (t)

Given that the rows of the matrix of structural disturbances are
independent, the likelihood function for all observations is T times

the density function given in (2.81). Hence the logarithmic likelihood
is:

. . y, (t) x, (t)
~3MTlog2n - 5Tlog|q| - -tf“ 2
v, (t) X ()

x[[yl(t)n . |yn(t)]—[x1(t)o .xK(t)]H"]

1 1 1, -1 v
= - SMTlogem - iTloglﬂl - 5tr@ (Y - X0 ) (Y - XI ) (2.82)

Then the maximum-likelihood estimator of M is obtained by minimizing

- ’
trQ (Y -Xm ) (Y -XT ). Consider an estimator
w W W w
’ g !
(X X)X Y" + A (2.83)
where A ls some KxM matrix. Then,
-1 ’ -1t ’ r !
trQ [Y-X(X X) "X Y-XA] [Y-X(X X) X Y-XA]
= tr YOI - XOXX)TIXY) 4+ trRTTATXYK A (2.84)

Now trfd "A’X’'XA = tr(XA)Q '(XA)’ such that (2.93) is minimized for A
= 0; that 1s the maximum-likelihood estimator of T is (X'X)-IX'Y.

Conslider the jth structural equation for all observations:
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¥
: J
=238 + - i + .
Y28 +u, [YJ,XJI[B’] u, (2.85)

where [yJ YJ] is a submatrix of Y' and we may conclude that the
distribution of each row of this submatrix is determined by the
corresponding row of the right-hand side of
. . 'j nJ -
[yj Yj] - [XJ i XJ][ e otV (2.86)

f
x W

where X: is the Tx(K-Kj) matrix of the values taken by the 1(-](J
predetermined variables that are postulated to occur in the system but
not in the jth equation. The column vectors nj and n; contain KJ and K
- KJ elements, respectively, le is of order KJxMJ and l'l; of order
(K—KJ)XMJ ; they are all submatrices of the reduced-form parameters
matrix -Br .,

Replacing in (2.82) M by MJ + 1, Q by its principal matrix QJ of
order (Mj+ 1)x(Mj+ 1) corresponding to [yj le Y" by [yJ Yj]. and Il"

by the partitioned matrix in (2.86) leads to

1 1 1, -1
5(M, + 1)Tlog2n 2'I'lc:g|$'lj| 5tr@" D D, (2.87)
where
LS
D =ly vI1-x[1 ] (2.88)
J J ) x T
J

and follows that maximum-likelihood estimators of HJ, H;, nj. and n;

are submatrices of (X X) !X VY. Now, we know that
1 L L] 1
Ix, "J]['?f,] B, and I HJ]["'JJ] (2.89)

which gives

*
= 11 2.90
uj J‘lj ( )
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Therefore, 1xi the undetermined case no estimation is possible; and the

Just-identified case leads to the 2SLS estimator. When the equation is
overidentified, (2.87) must be maximized subject to the constraint u; -

H;z'J using the Lagrange method. Lagrangian expression is then

1 1, -1/ ‘L . .
=T1 QQ + =trQ D -A -1 2.91
5 og| J| Ztra, DJ ) (1tJ j'yj) ( )

where A is a (K-KJ) element vector of lagrangian multipliers, and DJ

the reduced-form disturbance matrix .

1, -1/
8 =trQ 2.92
str LDJDJ) e ( )
ab 3
J
1 -1/
a (Etrn DD) R (2.93)
J -1
- =-X DR
[nj HJJ 3
a ] L g
n I
J )
P - 32 .
a(A n Aﬂj'a'j) o o ( )
= ,2 2.94
"j nj A -MJ
8'!. H.
J J
8(2.91) . 0O 0
’ - —_
. - XDJQJ + A "7\7'2 =0 (2.95)
J J
a ¢ ]
d (2.91) (2.96)
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8 (2.91) (2.97)

5
7

'l

=T A=0
J

Let us suppose that the equation considered is the first of the systen,

that 1s J = 1. Introducing

m n I
0 1 1 -1
Y = Y - d gy = .98
A 1][1[, [!: ":] and 7, [71] (2.98)

the equation under consideration becones
Y= Y171+ X181+ Y (2.99)

which takes the form

Yovo + X1B1 + u = 0 (2.100)

Note that (2.100) is symetric in all M1+ 1 Jjointly depend variables of
the equation (2.99).

We need the following theorem due to Anderson and Rubin
(1949-1950) [61].
Theorem (LIML). The estimator of the vector 8J of equation (2.85)
which maximizes the logarithmic likelihood function (2.87) subject to

the constraints (2.89) is

’

YU YXTMY-w

-4 Y - u

AT B IR (2.101)
XY X X X )

J ) ) J

where u 1s the smallest root of the determinantal equation

Y) Yy
Y; "',[y, Y,] --uY3 mj[yJ Y,] =0 (2.102)

where
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s -1 ’ ’ -1 ’ v
- I - x - - ol 3
n XX X)X and m 1 XJ(XJXJ) Xj {2.103)
which is real and larger than or equal to one. The vector (2.101)

exists 1ff the equation (2.85) satisfles the rank condition for
identification.

Returning to our problem, we realize that the determinantal

equation 1s now reduced to

! ’
|Y°m1Y° - p.YomYol =0 (2.104)
D 1is now
J [ B
D1 - Yo - Xi“o - xlno (2.105)
»
where X1 is the observation matrix of the K - l(1 predetermined

variables which are excluded form the first equation. Postmultiplying

both sides of (2.95) (for § = 1) by Q we get

, 0 0
XD, + [A _M,]q =0 (2. 106)
4 - s, - s LI 0 0 -
XY - XX T - XX+ [A _M,]n1 =0 (2.107)
X=[X X] (2.108)
.= 1 1 .
X Y X X1 XX 0 0 0
[ }- ° - [ }.1 °f - [ }‘1‘0' + [ , ] = [] (2.109)
X,"Y X XM X, "X R -ara, 0
’ Y 4 ’ PSR |
XY - X XXX =0 (2.110)
Y o xS -ar =0 (2.111)
1 0 y B IR XM= Ay R= :

Also



’ L) . L
A (r-T ) is reduced to ~ A M 7 (2.112)
J 3] 0o

Therefore (2.96) and (2.97) become
n 0 (2.113)
o0 ™ :

M7A =0 (2.114)
Replacing M’s by P’s and ¥ o by Co we obtain

Poco = 0 (2.115)
and

»
PO'A =0 (2.116)
Considering equation (2.110) we can get P0 as function of P0
’ -1, ’ o @ ’ -1..7 . »
Po = (xixi) (X1Y° - X1X1P°) - (XIXI) X1 (Yo X1P0) (2.117)
Taking (2.117) into (2.111) leads to
X -xP) - XX - @ =0
1 0 10 1 710 oy =
.’/ . » .’ ’ -1’/ L ’
X1 (Yo - XIPO) - X1 xl(xlxi) Xl(Yo - X1Po) ACQQ1 =0

or

’

* [1x &'x 1% vy x"[1x x'x )y% |x*P*-aca. = 0 (2.118)
1[111 101[-111 1]10 01" '
which is equivalent to

o’ o’ .. ’
x1 mIYO - X1 mlxiPo - ACOQI =0 (2.119)

AS



and follows that
U (L . -1, 8 4
Po - (X1 mixi) (X1 nlYo-Aconl)

Returning to (2.91), we have

lriog|n | + 2traDD - ACQ = 0
2 1 2711 01

1 1 -1
a5 Tlog|ﬂl|)*8(§ trQ "D D,) 11

a(2. 121)_
-1 -1 -1 2
anl 691 anl

2

therefore, the maximum likelihood estimator of nlis given by:

ﬂ1 = %‘6161

where

B -y -XxP-XP =v-xxXx) % (v-x"P)-x"p
170 Mo toT To M™% MY Mo 10

1 _1 ’ ! _1 1° s ®» » -
--[1-x1 (X.X.) xl]vo-[x-xl (XX,) XJ":"O ~n (Y _X)P:

,
- --—TQ1+-DiD A

(2.120)

(2.121)

(2.122)

(2.123)

(2.124)

Postmultiplying both sides of (2.120) by Co and using (2.115) and

(2.116) we get :

A 1 x*'myc
=C'ﬁclmloo
010

Taking this back into (2.120) leads to

. .’/ . -1 8 1 /
PO = (Xl mlxl) (Xl miyo)(l - T COCOQI)
CO 1C0

then (2.124) becomes:

A6

(2.125)

(2.126)



-

. o' o _q 1 LI 3 -1..8' ’
ﬁ1 - [m1 mlxltximlxl) let]Yoi?——-nix (XmX) X:"'1Yococoﬁ1 (2.127)

1 111
oﬁzco

Now the matices m, m, and m-n have interesting properties; especially
2 2 2 2
m=m m= m, (m1 m)= m- andn(n1 m) = m1(m1 m) (m1 m)'= m,

m-(ml— m)= 0. Hence, the expression for f reduces to

CY (m-mYC

8 - lymy +00 1 00acc'A (2.128)
1 To o© ! 2 1700 1 )
T(coﬁlco)
which gives
'] [
’ CY (m 'l'l'l)YC R
ﬁlco=%vmvc + 00t 9%ccfic

0O 00 ! 2 10010
T(coﬁlco)

, cCY (mi’-m)YoC0
==YmYC + 4 C {2.129)
To o0 T(Co,/hi%) 10

and we see that Qxcois of the form :

1 1
f.c, = mrmay Yo¥oCo (2.130)
with
CY (m-mYC
a=-29 1 09,9 (2.131)
T(cf c)

010

Now if we pre and post multiply (2.128) by C0 and C respectively, wve

would obtain

2 A
CCY (m -m)YC
‘ 1.y 000 1 070 1
Coﬁico = Yo% * Ichc ﬁ1Co = T oo™l (2:132)
0"1-0

Therefore,
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’ '
CYmYC

a=1--29 00 (2.133)
CYmYC

00100
Then (2.133) and (2.131) ensure that:
0 aa = 1 (2.131)

Combining (2.128) and (2.130), one obtains:

’ C Y (m 'm)Y C F) ’
Bulypy + 201 Acch = lYmY + % fcch
1 To o T(Cﬁc) "o 01 To cﬁc 1001
010 010
’ Y'aY C (YmY'C )
Wy +Tele-l) pccg o YmY sq0 00 0 0pO (2.135)
"To o yyg 1001 0 T(1-2)C’Y’mY_C
00 00 00 0O

’
Now it should be remembered that P; A = 0. Applying (2.125) and (2.126)

we get
[1 - - 6 - ﬁlcocolvomixi(xlmlxl) ’x m Y C, =0 (2.136)
010
but we have
't ' -1’ Y o 1.0
m-m=XX XX =X KX)K =nX (X nX)TK m (2.137)

Applying (2.137) to (2.136) leads to

ﬁc C ]vo(m1 - mY,C =0 (2.138)

[I-cﬁc °

using (2.130) and (2.132) we obtain

ﬁc - yurc (2.139)

0 00
coﬁlc0 C,Y Y C,

AQ



which Is substituted into (2.138) to produce

& &
c,Y,(m - mIYC
’
Y(m-mnYC--"22 °%yimyc =0 (2. 140)
01 00 e oo
C'YnY C
00 060

which can be written

‘ C Y miYOCO CoYom YOCO
Ya(lll1 - m)YOCO Y mY C°+ 5 Y'(l’an =0
!
COY omY oCo CoYomYOC o
or
CY mYC
Yomtyocc -_00 100 Y'(,’ny €,=0
C’'Y'mY C
00 070
’
Yom1YoCo -(—)-1 — YomY oCo =0
or
[Y°m1Y0 '(T'&TY mY }Co =0 (2.141)

thus the matrix in parentheses must be singular and ﬁ corresponds

to u of the determinantal equation (2.104). Hence,

CY mnYC
p=-20 100 (2.177)

C’Y'my C
00 00

Then the determinantal equation

lY,m Y- (1-)7'Ym ¥ | =0 (2. 143)
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has M +1 roots and the function to be minimized fis: %Tlog]ﬂil + %
- 4
trﬂliDlDi. It follows from (2.123) that, for each of Ml + 1 roots,

1

-1 _° T 1 1
-é-trﬂ1 D1D1 - — (M1 + 1). That is, in order to minimize §1°g|“1| +

2

- ’
tr911D1D1, we must minimize the determinant of (2.135) in which Co is

determined only up to a multiplicative scalar. This provides a freedom

,

oYomYOCO- 1. Let p.a,...,u"1+1 be other roots

to normalize Co so that C
of the determinantal equation and assume they are all distinct. Define
g = C_, Byreees 8y 11 for corresponding characteristic vectors, all

1 0

¢ L
normalized so that ;y,l\{em\!ogi = 1. We have giYomYogk = 0 for i%#k.

Follows that
I 2
G YomYOG T | (2.144)

where G is a square matrix of order M1+1 whose ith column 1is g,
Considering the normalisation and the fact that p = (1-a)7?

equation(2.135) for the kth root (uk) is :
1 [ I r's
Tﬁ1 =YY, + (- 1Y mY g (Y nmY g)
’ '
= TG ﬁ1G =1+ (-1 1 (2.145)

vwhere 1k is the unit matrix of order M1 + 1. The right-hand of matrix

(2.145) 1is equal to a unit matrix except that the kth dliagonal element
[

is u_ rather than 1. That is |I + (u-1)1 1 | = u; follows that |T |-

- [
B |G| ™. Now, G Y m¥G = I such that

f4al



|GI*| Y mY | =1 (2.146)

therefore, in order to minimize %TLogIQJ + %"’“1”1”1' we should

consider the smallest root of the determinantal equation.

2.8 FULL-INFORMATION MAXIMUM LIKELIHOOD

This approach maximizes the 1likelihood function for the entire
system by cholce of all structural parameters, subject to all a priori
jdentifiabllity conditions ([81], [85]1). Obtained estimators are
consistent and asymptotically efficient. See (78]. The technique of
full-information maximum likelihood (FIML) allows the use of a wide
range of a priori information, pertaining not only to each individual
equation but also to several equations simultaneously. However, the
main disavantage of this technique resides in the difficulty and the
cost of computation.

It is convenient to use the star notation in developing the FIML
estimator. We have

]

» L L
y =2 , 8 +u (2.147)
MTX1 MTXK K X1 MTX1

Then we assume that

E(u’) = 0 (2.148)
cov(u’) = JeI (2.149)
u’_ N(O ,TeI) (2.150)

The logarithm of the likelihood function is given by
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InL(u") = -3'-'; 1n2x- %mu):m- % (y'-2°8") g len(y'- 2°8")  (2.151)

Letting L(y ) denote the likelihood function fer y , we have

]

InL(y") =1nL(u") + 1n12Y,| (2.152)
8y
where |—.| is the determinant of the Jacobian matrix of all

ay
first-order partial derivatives of elements of u' with respect to

elements of y'. According to star notatlon,

. |(riel..i..io0
ELER] i v PR T | T (2.153)
ay ¥
1 T
We can replace -5 In |Tellby 3 In|Z|since
1 1 T T
-z 1n Ifel] = - 7 In|Z|" = =3 In|Z| (2.154)

Turns out that

In L(y") = -Tinze ~Z1n|&| +Tin|r|- 2¢y"-2"8") (Flen)(y*-2"8") (2.155)

And we note that

M |
1, = s ¢/ s _s o 1 11/ R _
-5y -28) (Fel)ly -2 &)= -23;“;:1 (y,-28)(y,-2,,8,) (2.156)

where ,

Yy = (0‘“’) and ):'1= (') (2.157)

Now,

-
._.__._..alnL'(y ) - T 1y’ = 12 (Yl - zlal)'(yii = zllail) = 0 (2.158)
1
do

which leads to the FIML estimator of the elements of the covariance
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matrix :

A
2-(011' )
where
A 1
&, =gly, -28)y, -2.8,)
(4
1.1 = 1,2..00“
Therefore

A A A, ,
EQI - %(y' - 2.6.) (y. - 2‘8‘)
Taking (2.160) in (2.155) we get

A
1nL(y") = - Zin 2n - 7 1n |F| + Tin|r|-3

and in the unrestricted case,

A
dlnLy) _ _Toln |§| , p 8 |F| _
88" 2 88 a8

(2.159)

(2.160)

(2.161)

(2.162)

Since |F| is a function of the coefficient of endogenous variables in

all equations, the system of nonlinear equations in unknown coefflients

is particularly awkward to solve. However, the difficulties of solving

for FIML estimators vanish in the recursive case where I' 1s triangular

and ¥ is diagonal. Thus in this case 8" is estimated from

dln |2:| -0

L
aé
It follows from the fact that Y} is diagonal that

A H A
In |[f|]= % Inco , =
1=1 oo

A A

1 1
1 lnf(yl - 2181) (yl - 2181)

™M=
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’ A, A, A

|
1
= g ln'l'(ylyl - 28 Z Jy 61212161 ) (2.164)

and

I '
31 - (2!21)"z!yl 1=1,2,...M

It should be realized that in the recursive case, the OLS estimators
are also the FIML estimators and hence they are consistent and

asymptotically efficient.

2.9 INSTRUMENTAL VARIABLE (1V) ESTIMATOR

The technique of instrumental variables (IV) is a general approach
to estimating a single equation in a system of M linear structural
equations. The IV estimator is extremely useful because it represents a
whole class of estimators, each defined by F, the matrix of data on the
instumental variables. See Sargan (1958) ([79], Brundy and Jorgenson
(1971, 1973, 1974) [18], and Madansky (1976) [49].

Consider the equation

y =Yy + Xiﬂ +u (2.165)

can be expressed

y=25+u (2. 166)

where
z-(Ygxi)

Y
()
Premultiplying equation (2.166) by the transpose of a Tx(m+K1)

transformation matrix F, ylelds

’ r ’
Fy=FZ&+Fu (2.167)

QA



Suppose that
1) p(F)-‘+K1<T

¥}
11) plim %Fu-o
T2 ®

111) plim %F F = ¥ exists
T)® FF

then
A /'; A S S S ‘ot
5 [ﬁ] (FZFD W2 Fy=(F2)Fy
IV

¥
]. Let us choose

is the IV of 8 = [B

F = (Y-V § Xl)
where
g !
V=Y =-X(XX) XY

Equation (2.167) becomes

) ' ’ ’ ‘ ’
Y-V [Y -V Y-V
s y= l ’ 23 + ’ u
xl xl xl

¢ p 1,00 ¢
A Y-V Y-V
8= ’ Z ’ y
X X
1 1

It 1s instructive to note that

Then

YV=Y[Y-X(XX)XY] =Y Y-Y X(XX)X Y
and

’ ’ ’ ’ 1.0 ’ ‘
VX=YX-YX(XX) XX=YX-YX=0
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It follows from (2.177) that

'
v X1 =0 (2.178)
Hence,

0 =

’

X,

’

¢ ¢ ’ -, ’ ’ ’ -1’ ’ -1, ’ -1
A [YY—VV YXI] [Y-V] [Y X(X X) XY Yxi] [Y X(X X) XY]
y= ’
X1Y XlX1

’ [ ’
X1Y xle xiy
(2.179)
is the same as the 2SLS estimator of ., B) as given by (2.49). Thus,
for thils particular cholce of F it - . d that the 2SLS estimator of
(¥ B)’ can be interpreted as an IV esti.. .ior. It should be noted that

IV estimators depend on the choice of instruments and the data on these

instruments.

2.10 FAMILIES OF GENERAL k-CLASS, h-CLASS AND DOUBLE k-CLASS ESTIMATORS

The method is due to Henri Theil. Consider the OLS estimator in

(2.20) and compare this with the 2SLS estimator in (2.47). Let define

VeY-XXRy (2.180)
5 Y Y-V'VY X oy -y
=\, , y (2.181)
Q 2sLs | XY X X X’
1 11 1

Turns out that the two estimators differ only in the leading matrices.

Then,

And equation (2.178) is the OLS estimator of V in (2.30). So,
alternatively, one can subtract only a part of V'V and a part of V’

from Y'Y and Y respectively, Therefore for arbitrary scalar k
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(deterministe or stochastic) we have

A ! ‘' -1 4
[1] [Y Y-kV'V Y xll [Y - kV’ ]
= |, ’ R y (2.182)
Al Ixvy X X X
1 11 1

as an estimator of [;] By specifying different values for k one
obtains different estimators. In particular for k = 0, (2.182) provides
the OLS and for k = 1 we have the 2SLS estimator. This is expressed by
saying that (2.182) provides the family of general k-class estimators
of the structural parameters.

Observing that the 2SLS estimator was obtained by applying OLS to

the structural equation after substituting ? for Y where
=y -va=xxxxy (2.183)

instead replacing Y by Y - V we can consider Y - hV, where h is an

arbitrary either determinist or stochastic scalar. Then
y = (Y - hV)y + XB +u (2.184)

is the new form of the structural equation. Applying OLS to (2.184) we

2 Y - hv! “ty' - hy
- (Y -hv  X) .y (2.185)
ﬁ h X; X1

and this is known as the family of h-class estimators and was also

get

proposed by Henri Theil. For h = 0 we have the OLS and for h = 1 we
obtain the 2SLS. Thus the OLS and the 2SLS estimators are said to
belong to the family of h-class. The two familles of general k-class

and h-class can be merged into one family by defining the double
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k-class estimator as follows:

7
s

Y-k V'V YK Ty - k,V’
- . y (2.186)
’ ’
klkz XIY X’'X X

11 1

where k1 and kz are elther stochastic or non-stochastic arbitrary
scalars. This was originally proposed by A.L. Nagar [60]. Again, for k1
= k2 0 we have OLS estimators while (2.186) provides 2SLS estimators
for k1 = k2 = 1. Thus the OLS and 2SLS estimators are members of the
family of double k-class estimators. If k1 = k2 = k we have the family
of general k-class estimators and k1 = 2h - h2 and k2 = h provides the
family of h-class estimators.

01 (1969) [62] had proved a mathematical identity between the
k-class and 2SLS estimators. To this end he derived the k-class
estimator by applying OLS to a structural equation after its Jointly
dependent variables have been transformed iIn a sultable manner. Also,

01 showed that the k-class estimator is a weighted average of the OLS

and the 2SLS estimator. Following the method of 01, Dhrymes (1969) [22]
derived a similar relationship between the double k-class and the 2SLS
estimator. However, what Dhrymes called the double k-class is only a
subset of the entire family of double k-class. And 1its result 1is
comparable with one obtained by Srivastava and Tiwari. (See [28] for
reference).

Finally, let us mention that there 1s an other estimation process
called Least Variance Ratio (LVR) method which provides estimators

identical to the Limited Information Maximum Likelihood estimators.
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Chapter 3

SURVEY OF SOME RECENT DEVELOPMENTS (1973-1988)
ON THE DISTRIBUTION OF ECONOMETRIC ESTIMATORS

3.1 INTRODUCTION

We have seen earller that the estimators satisfy only the
consistency property. In order to make any meaningful inference about
the parameters we need to know the sampling distribution of the
estimators. The presence of endogenous varlables makes it quite
complicated. Several authors, 1in the past decade, have tried to find
the distribution of the estimators. In this chapter we present a survey
of the results avallable to date in thls area for ready reference for
some further work. It must also be mentioned that a lot of simulation
work in this area 1is equally available; however, we have only
concentrated on theoritical results. The exact distributions are also
complicated; some times it is very hard to find the percentage points.
In any case, the presentation in this chapter throws a light on the
distributional aspects of the estimators.

Given that the expression derived for the distribution is quite
complicated it is suggested that some approximations may be evolved
which may prove to be useful for the inferential purposes. One such
approximation is obtained by Mariano ([51) for the exact distribution

obtained by Sawa [83], and Richardson [75]. We will first describe the

59



exact distribution of estimators as avalilable in the literature and
then talk about their approximations so that they can be used in making

inference on the coefficients of structural equations.

3.2 DEVELOPMENTS ON THE EXACT DISTRIBUTION THEORY

Richardson [75] found the exact distribution when only one
endogenous varlable was present on the right hand side of the

equation. He consldered the following equation:

y, ® YZB + 2111 + 2212 +e (3.1)

where Y, and y, are Nx1 vectors of endogenous variables and 21 and Z2
are, respectively, le(1 and Nsz matrices of exogenous varlables where
K2 z 2. Also e, is a Nx1 vector of disturbances independently
identically distributed (iid). The reduced form equations for A and Y,

are

= ZITIu + ZZH12 A (3.2)

y, = 211121 + zznza +, (3.3)

where "11’ |

1 and ﬂ21, 1122 are column vectors of dimension K1 and Kz

respectively. n, and m, are Nx1 column vectors of random disturbance
terms whose ith components are independent of other components and

distributed as bivariate normal with mean zero and covariance matrix

o
e (% "
12 ¢

22
Using 2SLS method; an estimator for B is derlived, say vi, then the

probability density function (pdf) of Voo f(vi), is

AN



2
2 2 n+l X"}
1 e-(u /2)(1031) o (5= ] (z )

n-1 n

f(VI) = B(l 5 Z (nu)/zj’o (E) " 1F1(—2—. J*a;ZZ) (3.5)
2’2" (1 + vl) 2%}
where:
2 2
p(l+Bv)
G W (3.6)
1+ v1
N
22 = —— (3.7)
2 _., _ S
g o= sz 57_“22 (3.8)
22
- P - P! ’ -1,
S = ZZZ2 2221(2121) le2 (3.9)

The parameter uz is called the concentration parameter, B(a,b) is the
Beta function, and 1Fl(a; b; x) 1s the confluent hypergeonetric
function.

Sawa [83] considered the case with two endogenous variables in a
complete system of stochastic equation and worked out the exact
sampling distribution of ordinary and two stages least squares

estimators of a structural parameter from the equation:

y. = o+ Byit +u t=1,...,N (3.10)

2t t i

where Yie and y,, are both endogenous variables. The number of
exogenous variables in this system is finite and they are th,

2 ,2. (t =1,2,...N). The system is assumed to include no lagged

2t’ " TR

variables. The reduced form equations of Yie and y,, are gliven by:

K

Yie = %o +J)_::onuzjt *V., (3.11)
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Yy, = Z 23 it tv,, (3.12)

where n”'s are unknown constants and the disturbance terms (v_, v2t)
are supposed to be mutually iid according to the bivariate normal

distribution with mean zero and non singular variance-covariance matrix

L= lo, = NECv, v I (3.13)

It is assumed that the sample size N ( >2) is greater than the number
of exogenous variables. Also, this system is more general than one by
Basmann (see [83] for reference). Assuming the orthonormality of
exogenous variables the sampling distribution of OLS estimator of the

structural parameter B is as follows:

when B # p
2
N-1_-1°/20%0 1‘(-— + )) 2 2
_o€ e {3
dF = = ): 'I‘i(n -1)/2)+) ){ o(B-p) + O‘Z(B‘P)}
(u/z)u
(B-p)2+¢
when B8 =
2,2 N
- ve T /20'%0 F(S + §) 2} g2 (N/a)ﬂﬂa
VT E 4=0 T ((N=-1)72)+)) 202 2(9*8)2 + g2
osfso (3.15)
where
2
2 T12
E = o - E—— (3. 16)
11
o® =0 (3.17)
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12
p = 12 (3. 18)
cll
2 2
o = 1-‘-’3—;2’— (3.19)
2€

and 1F1("’) is the confluent hyper-gecmetric function. The 2SLS
estimator § of the coefficient B may be obtained by applying the OLS

method directly to the equation

. . o
yzj = Byl] + uj v J=1,...,K (3.20)

where

* e lvz 2y =wWr o+ Lz -z (3.21)
yu-_t)_:f ey T Ty —'Ei 51t % Vi ’

t=1,2 and J=1,...,K

Therefore the distribution of the 2SLS estimator given by

is essentlally the same as that of the OLS where N is replaced by K +
1.
For the matrix representation (3.23a-b) of a class of structural

stochastic economic hypotheses:

B'y +F’Z; +e; =0 (3.23a)

4
t.
fle, ) = (2m™%iQ| Zexp(-le 076! } (3.23b)

where all matrices and vectors are real. B is square and nonsingular
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with G rows; I' has dimension KxG, Q has G rows and 1s symmetric
positive definite. The row vectors Yy » Zt' and e, have G, K, and G
components respectively. The vectors et. are iid for all t = 0, #1, %2,

Basmann et al. [16]) supposed that the first equation of (3.23a)

is:

Yu * Blyta * Bzyta * 732t3 oot 7xzt.x Yey T 0 (3.24)

and presented the exact finite Jjoint sample density function of GCL
estimators and its derivation. Under the standardizing transformation,

(3.23a) becomes:

e ™ ’ =
B Y, * r Zt. te = 0 (3.25)
The corresponding reduced form is:
= (T8 (3.26)
z = 13 (3.27)
" — —
¢)=:1 UZt'k = ij J,k=1,2 (3.28)

where ij is Kronecker’'s delta. Furthermore, the first equation of

(3.25) 1is
-yl * Bxytz * Bzyta * 732t.3 oot 7xzu: * a = 0 (3.29)
It follows from (3.26) and (3.29) that
LA I311t2,l + Bzrt:,l (3.30)
LI B1"zz + Bart:,2 (3.31)
and
M =m oW (3.32)

21 32 31 22

oA




By letting v and v, designate the 25LS estimators of Ex' B'z

respectively in (3.29). The joint probability density function of v,

and v, is given by

Az/z
f(va'vz) = 2e3/z 2,372
21!(1+v1) (1+v2)
© 2y (1/2) (1) (3/2) . (3/2) 22
T T J n n¢+ J+k nq:.
n=0,k=0,8=0, }=0,p=0 G)Zn(l)2n+21-p4nk(3/2)nojk°m!
(ﬁ:/z)“(ﬁ:/z)‘(5253/2)2“’2""(-)"(vlva)"(cosa')“‘"(sm&)z“
X
(23 - p)tpt(1 + vf)"”“‘u + 2y
w<v < 1i=1,2 (3.33)
vhere
2 _ =2, 2 =2, 2 =
A" = (1 + Bl)uz + (1+Bz)u3 + 23182u2u3cosa (3.34)
B = [(14B.v )T +Bvr 1241148 )7 _+Bv 7 12 (3.35)
2 117721 "2'1' 31 1122 21 32 )
= [(14Bvn. +Bvr 12+[(1+8%v )n_+Bvm 12 (3.36)
3 2231 1221 2232 "1 22 )

ﬁauscosa = [(1+§1v1)i21 + Bva Ix[(1+B v )T + Exva"zz

] +
213 22 3

+ Bzv1usz]x“1+3 v.m o+ Bivznzz] (3.37)

[(1*‘31\11)1!2 22 32

2

Then the Jjoint and marginal density functions of ﬁl and ﬁz the 2SGCL
estimators of 31 and Bz in (3.24) can be recovered with help of the
inverse standardizing transformation.

Under the assumptions: that the equation being estimated contains
two endogenous variables and an arbitrary number of exogenous

variables; that the system contains no lagged endogenous variables, and
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that the number of exogenous variables excluded from the equation as
well as the number of equations in the system are arbitrary, Mariano
and Sawa (1972) [54] derived the exact probability density function of
the LIML estimator and then drew the important conclusion that for
arbitrary values of the parameters in the model, the LIML estimator
does not possess moments of order greater than or equal to one. They

considered the structural equation
V,=Y,B+Z7 +Z7y, +u (3.38)

where Y, and y, are Nx1 vectors of independent observations on the two
included endogenous variables; Zl is an le(1 matrix of observations on
l(1 exogenous varlables; Z2 is an N:v(l(2 matrix of N observations on Kz (=
K - Kl) exogenous varlables; B, 71, and 72 are unknown structural
parameters with B a scalar, (A a lel vector and v, szl vector; and
u is an Nx1 vector of disturbance terms. The associated reduced form

is:
Y= le'll + 22112 +V (3.39)

(n

where Y = (yl. ya); "1 11’

"12) and ﬂz = (1:2, nza) are,

1
respectively, K1x2 and szz matrices of unknown coefficients; V is an
Nx2 matrix of random disturbance terms whose rows are assumed to be iid

normal with mean vector 0 and 2x2 positive definite covariance matrix

1 a
Q= [:‘ ‘2] (3.40)
[+

The exact distribution of the LIML estimator is gliven by the following
theorem whose proof can be found in (54].

Theorem 1: For the case where the structural equation being estimated
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contains two endogenous variables and K1 exogenous varliables such that
N-l(1 is an even number greater than one, the probability density

function of the LIML estimator ﬁ is

1
~(N-K_=1)-h
1.2 1 2 .2 1
- SN -2) @ (e, o -0¢")
e 2« 22 Z a( .J.h)EZ(“” 11 22 12
h=0 i, =0 -ZBcr +§0‘ JN-R Je-1
1(N-K )-h-1
11 12 22
X - (3.41)
2, =(N-K_)+1
(o-“ Zo-mﬁ + o‘zzﬁ )2 1
for w<B<w;
where
2 u2(¢11 ~2Bo, t Bz’za)
E = (3.42)
2
c.6_~-0C
11 22 12
2 = . [] - ’ -15,
W 1:2222(1N 21(2121) Zl)zzn22 (3.43)
N-K_-i-) N-K -2 r‘(h+1/2)l‘[((n-x1)/z)+1]
51 3m) = 2 Cx[ ]w(i,J)x
2h F(1+1)0(3+1)

TL( (n—xl-n/a)q-h]
x (3.44)
r( (K2/2)+l+_) )

with
B(2p+3, j+q+1)
wis, ) = x_F_(p+1, 2p+3, -i-q; 2p+j+q+d,p+3;1) (3.45)
(pr1) (po2) 2

and
= E(N K=-3)and q = Z(Kz 3) (3.46)

Considering the model:

YB + Zif‘1 + 221"2 +E=0 (3.47)

A7




r

where ' = | }| and 2 = [Z1 22] are defined in (3.23a-b), Basmann and
r

Richardson (1973) [15], briefly, examined the exact finite sample
properties of an asymptotically unbiased but nonconsistent estimator of
a structural varlance, ;11' defined by

6,8 ) -G8 )

= (3.48)
| 4

W
11

where the quadratic forms Gx(B 1) and Gz(B 1) are given by

= R!' Y/ - ‘ -1,
G(B ) =g YII -2(2:2)72/]1¥8 (3.49)
= ’ [ - ’ -1,
G,(8 ) =g YII ~-2(2'272"1¥8 | (3.50)
and
v=k -6V +1 zo0 (3.51)

2

the GCL estimator ﬁ . in (3.48) is defined by

a8 -
—6'8—1[61(3.1) - GZ(B.l)] =0 (3.52)
B = -1 (3.53)
B.=0 (1 = ¢V . 1, ¢V . 2,...,G) (3.54)

11

Since 91 minimizes Q(B 1). for every B . that satisfies (3.47) and

(3.54) it is shown that

Wy, 6B D -6B ) GE,) -6 6 )

- s (3.55)
11 wu N11
Let
m, = -rzB" (3.56)
T = (B) '8! (3.57)
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The K2x2 matrix Ilz' is formed by the first two columns of Ilz.
Furthermore TI22 is the second column of 1 20" nzz #¢ 0. The concentration

parameter assoclated with the first equation in the system (3.47) is

0 - ’ -1,
2 ) 112222[1 21(2121) 211221122

m (3.58)
°‘22
B, V., V, V, are defined by
2 .1/2
¢ (c. o0 -0)
B = 12 + 11 22 12 B— (3.59)
22 [+ [+ 1
22 22
¢ (0 . _ 02 )1/2
Q - 12 + 11 22 12 v (3. 60)
21 [ [+ 1
22 22
[ 2 - 0‘2
_ 11 22 12
6B -6 B =B T (3.61)
22
and
[ 2 - 0‘2
G(f )=-1122 1% (3.62)
2 .1 o 3

22

As the transformation of variables (3.60)-(3.62) 1is one-to-one,
expressions for the joint and marginal distribution functions of 912,
G1(ﬁ.1) - Gz(ﬁ'z). and GZ(Q.I) may be recovered by mean of
(3.59)-(3.62) as needed. The joint density of V1 and V2 is

-2 =(V _s2)
- - v/s2)-1
e P72 - 2Z rryayzle 2 x[vz] (r2)

x pu—
1/1?(1+Vf) (V42)/2 1 a1y 721 2T (v72)

g(Vi, V2) =

[ ]
x L
=0 [(v+1)/2]JJ! (1+v

=2 o3 714,53 v 12)
[(v+2)/2]J(u /2) (1+81V1) e
2)2.’ 0 1 ’ 2 J' 2 ’

AQ



--m<V1<oo, v2>o w=1, 2, ...) (3.63)

The marginal density function of V2 is defined by

— -(v_r2) (v72)-1 _ 3
fW)=Jﬁ””°2—%n) yfm
2 2 2l (vr2) 3
J=0
1 x
®© (i""J )k (22) et

:goll(v+1)727+ T KT x F (mi——1w;2zvs2) for V,>0 (3. 64a)
=0 otherwise (3.64b)

For El = 0 the density function f,(V ) 1s that of a +° variable with v
degrees of freedom. In concluding their paper, Basmann and Richardson

showed that the distribution function Fz(U) of the statistic

VZ
u= 2 (3.65)
1482
vﬁu
e (3.66)
W

11

converges to the distribution of xa with v degrees of freedom as ﬁz——>
w, sample size N being fixed for this convergence.

In a thick survey and appraisal, Basmmann (1974) [20] presented in
a chronological order the developments of exact distributions of
estimators since Haavelmo’s 1947 article. Haavelmo in his paper did not
present exact distribution function of any estimators; however the
exact marginal distribution functions of maximum likelihood estimators
for two of the structural constants in his first model can be
determined by inspection and derivation of the marginal distribution

function of the maximum likelihood estimator of the marginal propensity
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to consume is quite straightforward. Basmann divided his review of 25
years in three periods corresponding to a classification of
developments.

Carter (1976) [21] derived the exact distribution of the IV
estimator when the instruments are non-stochastic. It is assumed that
the equation of interest contains only two endogenous variables and is

of the form:

Y, = YZB + x171 tu (3.67)

vhere Y, and y, are Txl vectors of endogenous variables and X1 'l‘xl(1
matrix of exogenous variables, B is an unknown scalar parameter, ¥, is
K1x1 vector of unknown parameters and u, is a Tx1 vector of

disturbances. Assume that two of the reduced form equations are
y, = an + v, (3.68)

= an + v (3.69)

Y2 2

where X = I)(1 X2] with X2 a Txl(2 matrix of observations on K2 exogenous

variables which have been excluded, a priori, from (3.67). L and n,

are Kx1 vectors of parameters, vl and v2 are Tx1 vectors of
disturbances, and (3.67) is identified i.e., l(2 z 1. Furthermore the

observations on v, and v, (v1 © and v, (t)) are Iindependent and

distributed according to normal distribution N(0,Q) where
W
1

W
1

contemporaneous covariance matrix Q = [ 2] is positive definite
W W

21 22

and constant over all t. Consider the set of non-stochastic instruments
w and X1 where w is a Tx1 vector which is a non-stochastic 1linear

combination of the columns of X; w = Xp with p a non-stochastic Kxi
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vector. The IV estimator of B is then given by

w'My z
g.__n._zz (3. 70)
w Mly2 2

- - ry 31
where Ml = IT x1(x1x1) xl. Follows that

o2 2
> 2pp M _
f(ﬁ) - —{o- o Vi-p exp[Z (‘r —o—'!?g + —12} + 2 exp{-%i]
(1- p) 12 o va

b

J‘ o Va(l-pz)
X

2
exp[—ltz]dt} (3.71°
2
0
where
2 _ ,
o= WV le (3.72)
2 _
A g ~ (3.73)
= [
O, = W ¥ le (3.74)
[
p = E—“’;Z (3.75)
12
2 22
a =0 2@012 + ﬁcz (3.76)
_ _ 2 _ 2
= (ulu-12 uza-l) + (uzc:v'12 ulo‘z)ﬁ (3.77)
“1 - FZQ

K & c————e— (3.78)

e do



2
az, - pop, + (po, - ‘raﬂi)B - “z‘zﬁ
ova(l - pZ)

Given that (3.71) has no moments of any order, the author applied, in
7]

t o= (3.79)

the case where ;2- > 3, Geary’s (see [21] for reference) approximation
2
-b -+«
£(B) = exp[ > ] (3.80)
3
2na

Turns out that one can approximate the distribution of -k by

2
£y = —1 exp[' (;k) ] (3.81)
2n

d(-k) _ -b
dﬁ - aalz’

Phillips (1980a) [64] generalized the presently known results for

considering the fact that

single equation instrumental wvariable estimators in the simultaneous
equations settings. His main result is the derivation of the exact pdf
of instrumental variable estimators of the coefficlent vector of the
endogenous variables in a structural equation containing n + 1
endogenous variables and N degrees of overidentification. Consider a

structural equation
y, =YB+Z7 +u (3.82)

where yl(Txl) and Ya(Txn) are an observation vector and observation
matrix, respectively, of n+1 included endogenous variables, Z1 is a
'I‘xl(1 matrix of included exogenous varlables, and u is a normally
distributed disturbance with zero mean and covarlance 0'21.

Corresponding reduced form is given by
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2 It

[fY]=[zlen"“12+[viv1-zn+v (3.83)
yI‘z 1‘ '[21 2 132 = .

The rows of the reduced form disturbance matrix V are assumed to be
1id, normal random vectors. It is also assumed that Kz Z n and the
matrix sz (l(zxn) in (3.83) has full rank so that (3.82) is identified.
The parameter N = Kz - n measures the degree of overidentification. Let
H = [21223], vhere Zs(Txl(a) is a submatrix of zZ, and K3 zn be a
matrix of instrumental variables to be used in the estimation of
(3.82). Define
’
[a 1j yizazs 1 y12323Y2] (3. 84)
’ [4 4 ? .
YZZ 323 Y22323Y

and then BIV = 4!\;;a21 (Brv denotes the instrumental variable estimator

of the parameter vector B). After use of the Iinverse transform
representation of 01“1 function and completion of required integration,
the obtained joint pdf of va is given by

’ ’ L+n+l
etr{-—(I+BB L S G T é_)

J
n L+n+1 jZOJ!rn( { (L+n)/2)+))

nzldet(Iﬂ‘r' )] 2

pdf (r) =

T., = 8 v ) (L-1)7(2+))
x[(zﬁ i (adsS)T_g) x(det (1))

Lin#l Ltn T = o1 )
X1F1( 5 .—2—+J.zmumzzmﬁr')(nrr) (I+rB’)ﬂ22)]H=o (3.85)

vhere r = A a L=K -n, TU__ is an nxn nonsingular matrix and w =
22 21’ 3 22

a, -r Azzr' If we set L = N so that 23 = Zz. Bw is the 2SLS

estimator and the matrix W is a scalar; therefore the pdf 1s given by

(3.86). When L = 0 in (3.85), we have




T P n+i
etr(-—z-(I+BB )sznaz}l‘n (-2—)

pdf (r) =

B m
nz[det(hrr’ )] ¢p (-"]

nl2)

n+l n
x — —
1F1( 2 ’

% Elifz'z(nﬁr')unr')"uwﬁ')ﬂ;a) (3.86)

That is, a single term involving argument hypergeometric functlon as
obtained by Sargan (see [64] for reference). This, also, generalizes
the formula derived by Richardson [75].

As pointed out by Basmann (1974), detailed information on the
small sample distribution of estimators can be used to help determine
how accurate our data needs to be before we can confidently express a
preference for one estimator or another in a given situation. This
argument underlines our need for useful knowledge about the finite
sample effets of misspecification; in this context, measurement error
misspecification. Phillips (1980b) [65] discussed some of the results
that have so far been obtained and the work that is under way in the
area of mathematical study of the effets of specification error on
sampling distributions in econometrics. He proposed to extend the range
of realistic models to which comparative studies of econometric
estimators refer and to develop techniques and associated computer
software to enable an empirical researcher to extract information about
the small sample behavior of various estimators and statistics he may
be considering for use and to do so explicitly in the context of the
sample size, the particular model specification and the exogenous
series with which he may be working. In a stimulating quasi general

survey he provided some background on the nature of the Edgeworth
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approximation and associated expansions and an application of the
theory to the distribution of OLS and 2SLS estimators of the
coefficlents in a simple consumption function that involves lagged
consumption in the set of regressors. The paper 1s concentrated on the
small sample distributions of the OLS and 2SLS of the coefficients of

the kernel of many macroeconometric models:

C=aYt+BC +u (t

ey Y ey 1,0,1,2,...) (3.87)

Yt=ct+1t (t

...,=-1,0,1,2,...) (3.88)

where the varlables Ct, Yt, and It represent consumption, 1income and
investment, respectively. It 1is assumed that the distribances u are
serially independent and identically distributed as N(O, of). and It is
taken to be a non-random exogenous variable whose sample second moment
converges tc a finite positive constant as the sample size tends to
infinity. Writing & = 8/(1 - @) and under the stability condition |8| <

1 Phillips (1980b) derived from (3.87) and (3.88) the final fornm

equations
o = 8 1 e 8
C, = [lTa] za Leet ['i-—a] zaut-f M + Wy Say, (3. 89)
8=0 s=0
and

’ = 4 3
Define Tx1 observation vectors c’ = (Cl, Ca’ co C_r). c, (Co. Ci,
' =
C2 e ens CT—l)' y' = (Yi’ Yz' "'Y'r) and d (Il, Iz’ cees I'r) so that

the OLS estimators o« and B‘ of o and B in (3.87) are defined by

(0-10-1)(0 ¢c +d’c) - (¢ c_1 +d °-1)(C-1C)

el Py 7 7 7 p—— Y] 7 2
(c'c +2d'c +dd)(c_1c_1) (c c_1+dc_1)

L
o

(3.90)




and

. (c'c_l)(c’c+2d’c + d’d)--(c’c_1 + d’c_l)(c’c +d’c)

B (3.91)

(c’c + 2d’c+d’d)(c:1c_1)-(c’c_ + cl’c.i)2

1

. [
Next, « and B are written in terms of standardized sample moments.

Let X' = (Co. c, C ..., CT) and define (T+1)x(T+!) matrices

1" 2
0..0 0 0 3 0] 0 0..0
0 0 0 5 0..00 01..00
A - d.a =12 .00 |, anda =
1 2 1 3
0 10 o0 o 1 00 10
lo 0 o o 20 o 0 o0 1

and introduce the variables q, = {x’Aix - E(x'Aix)}/T, (1=1,2,3) and
q= {b;x - E(b'lx)}/T, (1=4,5) where b; = (d' 0) and b; = (0 d’). Note

that ¢’ c, = x’Aix, c’c , = x’Aax, c'c = x'Asx, d'c = b;x and d'c =

1 1

b;x. Then a' and B' become:

o = {lq +pllarqrpqsp) - (qFrqrpr pilgrp)l
2
+ (q3+ 2q5+ p "3+ 2"5)(q1+ “1) - (q2+ q4+ “2+ “4) } (3.92)
*
B = {(qzmz)(q3+2q5+u+u3+2u5) - (q2+q4+n2+u‘)(q3+qs+u3+us)}

+{(q3+ 2q5+ p+ M+ 2y5)(q1+ pl) - (q2+q4+pz+p‘)2} (3.93)

where p = T'd'd, mo = T"E(x'Aix). (1=1,2,3) and n = T"E(b;x),
(p = 4,5). Similarly, the representations of the 2SLS estimators Q and

ﬁ of a and B are given by

Ao (q +u ) (qg + u) - (g, +p)(qem) (3.94)
(q +u )a_+u +p)=(q +u ) (q+q, +p+p ) '
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and

B = (q,+1,) (ag )= (q ) (g 4q Hu )
(q,+u ) (g +u +u)-(q +u ) (q +q +u +n )

(3.95)
follows that estimators a., Q. B' and Q are sultable for the
application of the algorithm proposed by Sargan to derive the
Edgeworth approximation. Phillips pointed out that to calculate the
Edgeworth approximation to the OLS and 2SLS estimators of « and B in
(3.87) one needs first to specify a series for It. Once the process
generating the serles It is specified the limits in probability of the
OLS estimators of « and B can be readily computed. Numerical
computations of the Edgeworth approximation to the small-sample
distributlons of the OLS and 2SLS estimators of « and B in (3.87) are
possible once we have specified values of the underlying parameters «,
B, and oi in the model (3.87)-(3.88) as well as a series for the
exogenous varlables, It over the relevant sample periode, and enough of
the past history of It to accurately compute the components m as in
(3.89). Consider the single structural equation (3.82). The reduce: form

equations are:

T n

H - : 11 12 :

[y15ya] = [21,22][,! "z] + [Va“’z] (3.96)
21 2

where Z? is a Tsz matrix of exogenous variables excluded from (3.82),

The rows of the reduced form disturbance matrix V are assumed to be

iid, normal random vectors. Assume standardizing transformations have

been carried out so that the covarliance matrix of rows of V is the
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jdentity matrix and T7'2'2 = 1 where K =K + K, and Z = [z,iz,).

Suppose l(2 z 1. The 2SLS estimator of B in (3.82) is given by
= [ ,
A YiRY, /YR, (3.97)

’ -1, = ’
where R 22(2222) Z2 2222 . The density of B is

1 M W2
Wif(r) = mjms(w)exp(—z—w(wndw (3.98)
-(K #2)/2
where B(w) = [K + ';-f—l-z%ﬁ—zl—](l +2w - W) 2 and Y(w) =

w1l + 82) + 2w(B - 1)

1 +2rw - w

with p = T"zz"za If Ka is even, the density of

ﬁ is reduced to

pdf(r) = residue [B(w)exp{ (12/2)y(w)}] (3.99)
1

while for Kz’ an odd number we have

1'% 1
pdf(r) = ﬁ—ijl:(w)dw = m‘[.f(w)dw (3.100)

where f(w) = B(w)exp{(uz/Z)w(w)} and 1. is the particular associated
contour. Dealing with an equation with n + 1 endogenous variables , we
have (3.82) and the reduced form of the endogenous varlables of this

equation 1is

m
1 12 '
ty,iv,] = (2] ?zl[nm “22] + v iV (3.101)

where nzz is a Kaxn matrix of rank n, (Kz z n).The rows of ['/1§V2] are
independent normal with mean vector zero and covariance matrix In. Let

’ = N T i
nza"zz szﬂzz where sz is an nxn nonsingular matrix.The Jjoint
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probability density function of the 2SLS is given by

etr{-Z(1+g8* ) _T_)r (22%) 3,
paf(r) = n N+n+1 TEO J! l‘n(((um)/z)ﬂ)

RZ[dEt(IﬂT' )] 2

T,,=, 4 = 3 (K+n) 72+ J-(n+1)
x[(iB naz(ad"?i'ﬁmaam x(det(I+W))

N+n+1 Né4n

’ ’ -1 Y 14
x F (—m ,——+j,-(1+w)l'l (hBr ) (I+rr’)  (I+rf )'ﬂaz)]"=o (3.102)

11 2

where etr(.) = exp{tr(.)}. When n = 1, the multivariate density reduces
to the univariate density function for the 2SLS estimator in the two

endogenous variables case, 1l.e.

oAfa-r) )

2 3
pe2
pdf (r) = L [ 4]
[ ](1 + 2y w212 _o J!
2 2y
X1F1[";2' n;1+ ;. lzi_“_I_B_QLJ (3.103)
1 +r

where p2 = T;Izz = Tn;z"za is the concentratlon parameter and N = Kz -1

in this case. The term involves the factor [det(l + rr’)]” ™™172 _

1+ r r)-(mnu)/z

which is similar in form to the principal factor of
a multivariate t-density when N > O and a multivariate Cauchy-density
when N = 0. Phillips, however, pointed out that virtually all the
results established so far in the probability literature apply only in
the case of standardized sums of independent random variables; this is

an immediate limitation to the application in econometrics of the large

deviation limit theory and its associated expansions. Using Sargan's
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theorem, he came to the conclusion that suitably adjusted, the theorem
applies to the important cases of econometric estimators whose finite
sample moments may exist only up to a certain order.

In an elegant survey paper, Mariano (1982) [53] dealt exclusively
with analytical finite-sample results in simultaneous-equations models
with fixed parameters. Most of the results for the
simultaneous-equations case are <confined to 1limited-information
instrumental variable estimators such as the k-class and the modified
two-stage least squares.

For the set up (3.82), Phillips (1983a) [66] obtained an
approximation to the marginal density of Iinstrumental variable
estimators in the general single equation by using the multivariate
version of the Laplace formula. Let H = [21523], where Zs(Tsz) is a
submatrix of 22 and Kz z n, be a matrix of IVs to be used in the
estimation of (3.82). The IV estimator of the parameter vector B in

(3.82) is then

- ’ -1
By = (VMY )T (Y My ) (3.104)

I

where

= rmy e o ’ -1,
M, = HH'H) "W -2 (212)) "2/ (3.105)

The exact Joint probability of va is given by (3.85). Using the

asymptotic representation of the 1F‘1 function, namely, as Tow and for a

nonsingular matrix R
F,(a,b;TR) = [rn(b)/rn(anetr(m)(detm)""n + 0(T™)) (3.106)

Phillips obtains the following asymptotic approximation of the Jjoint
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density of B

Tu/zetr%{M(r -~ B)(r - B)’}(detmvz

1+r'r
2nlzﬂn/i.’(1 + l_.,!_)(l. + n+ 2)2

L+1

(1 +B8'r)
(1 +28'r - g2

~

(3.107)

where M = ﬁ; ;ﬁzz' And then a direct application of the Laplace’'s method

permits to extract densities from (3.107). Let wus consider the

following partitions of the matrix M and vectors B and r.

M1 m;z B1 T

M= [ ], B = ( ] and r = [ } where m ., B, and r are scalars.

11’ "1 1
m_ M 8 r

21 22 2 2
Def ine
- _ _ eyl
mu mu m21M22m21
r.=r(r) =8 - (r, -8 )M m
2 2 1 2 1 1 22 21

2— -\, -
(ro-8)m, + (r, -1 )M, (r,-r,)

¢(r, r) =
1 2 2 ,
1+ r1 + r-zr'2
(1+ gslr1 + B;‘,ra)l'+1
g‘rr l-2) = 2, (L+n+2)/2 ' 1 nyL72
(1+rx+r2r2) (1+281r1+232r2-8 B)

The author obtained the following asymptotic approximation to the

marginal density

-1/2 ‘
pdf (r,) ~ (T/Zn)"z(detm”"’[detu(ri,r;(r,lx1

» T .
xg[r‘.rztri)lexp{-?[rl.. rz(ri)]} (3.108)

= 2 L
where H(ri,rz) a [(1/2)¢(r1,rz)]/arzar2 [at(rl.rz)l +
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¢:t2(rl.r2)r_‘_,(r2 ra) ]M22 ua(ri.rz)l m‘(ri,ra)rzr2

and the a are scalar functions given by

a(r, r)) =01+ rf + r';rz)'1

ofr, r)=-401+ rf + r;rz)'2
«(r, r)) = -0+ rf+r;rz)-2[(r1-81)zﬁu*'(rz-Fz)’Maz(rz-Fz)
a(r, r,) = (l+roerir ) U =B )% +(r - T )M (1 -T))

And exact densities in some leading cases are given in [66].

Anderson (1982) [S5] gave an excellent summary of some of works on
the two-stage least squares (2SLS) estimator and the limited
information maximum likelihood (LIML) estimator which have involved its
assoclates Takamitsu Sawa, Naoto Kunitomo, and Kimio Morimune. The
emphasis 1s on comparison of the 2SLS and LIML estimators based on
finite-sample distributions. However, he commented on the higher-order
efficiency of the LIML estimator and some improvements.

Phillips (1983b) [67], in a chapter devoted to acquaint the reader
with the main strands of thought in the literature leading up to
advancements, attempted to foster an awareness of the methods that have
been used or that are currently being developed to solve problems in
distribution theory and considered their suitability and scope 1in
transmitting results to empirical researchers. After having provide a
general framework for the distribution problem and detalls formulae
that are frequently useful in the derivation of sampling distributions

and moments, he dealt with the exact theory of single equation
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estimators, commencing with a general discussion of the standardizing
transformations, which provide research economy in the derivation of
exact distribution theory in this context and which simplify the
presentation of final results without 1loss of generality. Then he
outlined the essential features of a new approach to small sample
theory that seems promising for future research.

Richardson and Rohr (1983) [77] presented the results of an
experimental study of the exact finite-sample distribution functions of
two-stage least squares estimators in equations containing three

endogenous varlables. The system of simultaneous equations under

consideration is

T

YB+ Xr=E (3.109)

p——

where Y iIs an NxG matrix of observations on G endogenous variables; X
E is an NxK matrix of nonstochastic exogenous variables; and E is an NxG
matrix of unobservable disturbance terms. The rows of E are assumed to
be 1id according to the multivariate normal distribution with mean zero

3 and covariance matrix fI. Elements of B and I' are real constants, B is

non singular and the assoclated reduced form is

3
3 Y=XT+V (3.110)
1
where Il = -I‘B'l, V= EB". and the covariance matrix of the rows of V
1 is £ = (B') a8l Let
F
y, = Ylﬁn + lel + £, (3.111)

be the ith structural equation of (3.109) where y‘(Txl) is a vector of

i} observations on the normalized endogenous variables; Y‘(TxGi-l) is a




matrix of observations on the G‘-l nonnormalized endogenous variables
included 1n the equation; and Xl(TxKl) is a matrix of included

exogenous variables. Equation (3.110) can be partitioned as

LN
y, = X!n1 + X!uz v, (3.112)

Y =X + XM +V (3.113)
i e 12 21 )

where X = (X‘§X:). Richardson and Rohr have, particularly, investligated
how the distribution functions of the estimators and test statistics in

the Gl = 3 case are affected by values of the concentration matrix

H=z'nsn (3.114)
i 22 2 {2
where
* - L
S, = X [I - X(XX) ’xl]xl (3.115)

and 222 is the covarlance matrix of nonnormalized endogenous variables
included in the structural equation. For the standardized coefficient

estimators

- - 73y172
z = (ﬁ“ B,/ G H) (3.116)

where ﬁ:l is the Jjjth element of ﬁ:% it is found that it can be

approximated by the standard normal distribution for large values of

M.

i
Phillips (1984a) ([68] proved that the exact finite sample
distribution of the Limited Information Maximum Likelihood (LIML)

estimator in a general and leading single equation case is multivariate

Cauchy. A sequel paper, [70], gives results which characterize, in the
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Basmann’s notation, the complete class of distributions

©
M=U UM L (3.117)
n=1iL=1 ™

corresponding to a structural equation containing any number of
endogenous variables, even or odd degrees of freedom and an arbitrary
degree of overidentification. Phillips worked with the set up (3.82).
He considered the leading subcase of (3.82) and (3.83) in which nzz =
0. Then the IV estimator of B is deflned to be

- ’ ’ -1 ’ ’
BIv = [Y22323Y2] [Y22323y1] (3.118)

where 23(TXK3) is a submatrix of 23 forming instruments additional to

21 and where it is assumed that K3 z n. And the pdf of BIV is given by

K, + 11
r(25
pdf(r) = /2 K3 - n+ 1 (K + 1)/2
"er > ](1 +r'r)
r[L + : + 1)
= (L +n + 1)/72 (3.119)
n"/ZP[L ; 1](1 +r'r)
where L = l(3 - n i1s the number of surplus instruments used in the

estimation of B and va = r. In the overidentified case (K2 zn+ 1),

the LIML estimator, B

LI’ of B minimizes the ratlo BAWBA/BASBA where

™
D>~
1l

(1, -8'), W=X (Pz - Pzi)X. s =X(I - PZ)X and X = [y1§Y2] and

P A(A’A)'iA’. When the covariance matrix of the rows of X is known,

A

the corresponding estimator is called LIMLK and will be denoted by

BLIHLK . Setting BLIHLK = r, Phillips (1984a) found that the pdf of

or



Bu - takes the form

r.(n + 1]
pdf (r) = 2 (3.120)

/
n(n + 1)/2(1 + x_,r](n + 1)/72

that is, a multivariate Cauchy distribution. The paper [68] ended with

the distribution of LIML which is given by

+ 1 g/2
2(m+q)/2-1"(m - 172 [ -~ }r-(l \(1 +r'r)
Pdf(r) = (T ~ Kl)/z -1 . 1/2 x 1 (T - Kl)/a
2 " [ _ ](1 s rr)
(3.121)

Replacing g by its expression g = T - Ki_ m=T - K1 - n - 1 reduces
(3.121) to (3.120) and the distribution of BLIHL is therefore
multivariate Cauchy. In the sequel paper ([70] Phillips had used the
series representation of oF1 in zonal polynomials and the multinomial
expansion of a sum of matrices in terms of invariant polynomials of

several matrix arguments to obtain that the pdf of LIML is

/2 T T-%-n
" etr{ i(I + BRIT__T }I‘[———————]

22 22 2
pdf(r) =
I (v2)F (x s2)T (=51 4+ prp)in* V72
n m 2 m 2
lj lj
0 T - K
X w ( )r[ , J][ds;,Jz
fzo;“z/z; JZJ Ty vl 415
p €3,.3)

I"‘ ‘ ' RIT Tz ’ ey
x{4ﬂzzBD(r)8x8x D(r)'BT, (1 + Br/)(I + rr’)

_ xzlez T-Kl-n 1 xf
x(I + B8 )HZZ]e IFI[—_-Z——_’ '2-; 2—]] . (3.122)
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Ji21 Ji2]

where ev = C¢ (I.I)/Cw(I), ¢ represents the order of partition of

f = j1 + jz into at most n parts, J[2] = (Jz’ Jz) where J’ represents

an ordered partition of nonnegative integer _jl (1 = 1,2) into s n
- _ -
parts. II22 is an nxn matrix, BL!KL =r. D DzaDza according to the

1

unique decomposition D22 = HD'? where H is orthogonal. B = [Biln] and

D = D(r) means D depends on r. When ﬁzz = 0 (3.122) reduces to

T - K T - K n
n”""zr[ > 1]r‘ ( - LI 'é]“ (0,0) 1
pdf (r) = n n n o
X K, T - ] (n + 1)/2 (1 + r'r)("ﬂ)la
T REEET
(3.123)
let n =1. Then (3.123) becomes
2r(r-x)I‘(T; L - r&—% rd=F. .
pdf(r) = = =5 2 2
nr‘(T-x+1)F(T;:)(1+r2) n r(? . 1) r(?zj—‘) 1412
=1 - (3.124)
(1 + r°)

Hillier (1985) [37] provided an alternative derivation of
Phillips’ results on the Joint density of the IV estimator for the
endogenous coefficients, and derived an expression for the marginal
density of a linear combination of these coefficlents. He extended
Phillips’ approximation to the Jjoint density to o(T-z), and showed how
his result can be used to improve the approximation to the marginal

density. Consider a structural equation

vy =Y3 + 27+ u (3.125)

vhere (y, Y)(Tx(n+1)) contains observations on the included endogenous

QO



variables and Zl(TxKi) contains observations on the included exogenous

variables. The reduced form for (y,Y) is denoted by

n I.[1
(y, Y) = (Zl, 22)[ ] + (v, V) (3.126)
% nz
where Za(TxKZ) contains observations on the exogenous variables
excluded from (3.125) but appearing elsewhere in the system. Assume
that 2 = (21’ Zz)(TxK; K = l(1 + Kz) is fixed, and that the rows of
(v,V) are independent normal vectors with mean 2zero and common
covariance matrix

W W
Q= [ u 12]. The OLS, 2SLS, and IV estimators for B' are of the form

W, . W
2

21 2

b = (YPY) 'y'Py (3.127)

with, in each case, P an idempotent matrix of rank v (say) such that

PZ1 = 0. Let
= (al’2y, _ o172
r (922 b 922 wiz)/w (3.128)
2 _ IRPRP
where w™ = W, "'12“22“12' The conditional density of r given Y may be
reduced to the form
r/x ~ NOOXX) "%'M8, (X'X)7Y) (3.129)
where
_ (012" 172
B = (sz B nzz um)/w (3.130)
- _ -1/2
M=EX)=C 22112022 (3.131)

X = c'vn;_:_’ ?, and C(Txv) is such that P = CC’ and C’'C = I . The rows of
X are independent normal vectors with covariance matrix In' The joint

density of the elements of r may be obtalned by averaging the

QQ




conditional density (3.129) with respect to the density of X:

f(r) = If(r|x)g(x;n)dx (3.132)
X

with
=-{nV)/2 1
g(x;u) = (2n) etr{- z(x - M) (X - M)} (3.133)

After evaluation of required integrals ( and expansion of the involved
confluent hypergeometric function and the exponential function in terms

of zonal polynomials) Hillier obtains

r [-l-(vn)]etr{-TA(HBB’ )} 1 1
nl2 [E('M)a] LE(V'")]I:
f(rj = X

n/2 (vel) 2

T °(1+r'r) l"n(wa) o, [kl ¢ J'k! (v/2)¢
xe® e Bl (27 1), 18587 ) (3.134)
¢ ¢
where [k] denotes the partition (k, 0, ... ,0), C;’A(...) is the
invariant zonal polynomial (see [37] for reference), and e;’h =
o, A = Y-ty o lo-1-1720, ., -1/2
C¢ (I,I)/C¢(I), and A 2T M'M 2T 922 nzzzpzznznzz It should be

noticed that equation (3.134) 1is Phillips’ [63] equation B3. The

density of r in the leading case corresponding to B8 = 0 ls given by

F(vs2)etr{-TA(I+BB'}} w ((1)-2)/2)JW(J+v—1/2)k(-1)k

f(r)= L i TVl
1:(1+r'r)w+”/2 52 leyu,ve0 Jtklut v!

I"(k+u+v+%(v+1) ) (15’ 5)? " oy
(8'Atm) " 8) Y (LrTAG)) Y| TAwe) | (3.135)

I"(k+v+%(v-1 )IT( 3 +u+2v+2k+%v)
where

(8’Ar)3) = B’ (I + rr’)B/(1 + r'B)
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|TAtd| = |TA|(1 + r'B)%/(1 + r'r)

trTA(r) = tr{TA(I+68’)} - T(r - B)'A(r - B8)/(14r'r) (3.136)

Approximations based on inverse Laplace transform expression for the

Joint density are given by

exp{-T(r-8’ JA(r-B)/(1+r' r)}|TAtr) | /2

-1
f(r) = [1+0(T 7)1
un/2(1+r,r)(V+1)/2(1_6,A(r)-18) (v-n)/2
(3.137)
where
1+2r'g-B'B>0 (3.138)
Next, consider the following
(1 - &Ams) ™21 [i(vm]a
ni2 n
-(v+1)/72 1.-1 _
xIRe(m=H1>oetr(W)|w| [(1- 577 (v - n)
xtr{(Acr) - 88°)7'W} + %T”(v - n + Dtr{Arm 7 'WHawW (3.139)
-t
Now, the  integral l‘n(t.)anJ‘Rem)ﬂl)Oetr(W)|WI (trAW)dW is  the
coefficient of q in the expansion of Fn(t)anjne(")=wl>oetr{(1 + gAIW} x
|W|'tdw = |1 + qA|t'("m/2 and 1is therefore equal to (t -%(n +

(V—n)/2[

1)tr(A). Hence we have (1 - &'A(r) 18)" 1 - %T'l(v - n) x{lv -

ntr(Aw) - 6(’5’)"1 - (v - n + 1)trAm ). Therefore, f(r) = fl(r)ll
1.1 r 31
- =T (v = n)x{i(v - nltr(Aemy - &38') - v - n +

4

DtrAm™) + o(T79)) (3.140)




where fx(') denotes the o(T™}) approximation to the right in (3.137).
The density of a fixed linear combination @ = a’'r of the elements of r
is obtained by inverting the characteristic functlion ¢(t) =
Elexp{ita’ (X’X)7x'M8 - (t%a’ (X'X)"a)/2}]. Inverting  the

characteristic function leads to

etr(-TA)2 V2

(2m)

£ () ) etr (W) |W|-szetr(-%(l -

172 n R>»0 Re(H)=wo>O
TAYATAY2RY R| Y ek a1+ Tt a1V P w e X
1,~ P B S | sl
exp{-3(& - Te'W'8)%/a’R"a(1 + T5W'8) yaWdR (3.141)

Expanding the exponential term in the integrand of (3.141) and
integrating term by term over R > 0 using some results from complex

symmetric matrix ylelds the density in the form

etr(-TA)l"(%(v-mz))

~o ~V/2 |1 _mpy~11°V72
fla) = VIR I (vsza § o etr (W)W %[ I-TAW |
n I‘(-z—(v-nu)) 0
(1 + T8'W ) 1201 - Te'wlc) 12
~ oy~ lsy2 -(V-n+2)/2
x[1+ (« 'fc L)) 1 ] aw (3.142)
(1+T6°W "8) (1-Tc’W "¢)
which can be written in the form
f(a) = J’Remmg(mf(almdw (3.143)
with
-P/2
gW) = l'n(v/z)anetr(w -TA)|W - TA| (3.144)
and

Q2



;-(vm [(1+T8'W 1 8) (1-Tc * Wlc)l/?

flajW) = X
n"al‘(%(v-nn))

~ e ry~1g12 -(V-n+2)/2
[1+ (a-Tc’W8) ] (3. 145)

(1+T8'W 18) (1-Tc' W ic)

which is a (complex) t-distribution with mean ﬁ = Tc'w'laS and variance
@ = (1 + T8'W'8)(1 - Tc'W'c)/(v - n -1). If instead one considers

the transformation W W ~ T3’ it follows that

I‘[%(vu)]ll - TAVATIER 1R

%r (;:;(v-nm )(1+T3' W 5)™2

f(rl“) =

(3. 146)

y [1 . (r_.mvzwqa),(I_TA1/2W-1A1/2)-1 (r_TAl/Zw-la)}
1+T5'W s

which is a multivariate t-distribution with mean p = TAY%™'s and
covariance matrix § = (1 + T&'W'8)[I - TAYAW'AY?1/(v - n - 1). A
varlety of different expressions for the exact density may be obtained
from (3.142), depending on how the last term in the integrand is
treated.
For the model
B'y; + Tz +e =0 (3.147)

t t

whose first equation is

1
Yo ¥ BYs +k§07kztk te, (3.148)

Yu = B,
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Richardson (1986) [76]

gave a full statement of the standardizing

transformations and showed expllcitly how the standardized parameters

of the exact density function are related to the parameters of the

original model. Hence he derived the exact Joint density function of

the estimates of Bz and Ba' He also considered computations of the

Joint and marginal densities for the speclial case

in which the

estimators are exactly unbiased. The reduced form assoclated with

(3.147) is

where

’ = ' ' '
yt. n zt * "t
x = -B"
— _.p

n= etB
t = 0' il' iz.

(3.149)

The vectors nt are 1lid with mean zero and covariance matrix 2 =

(8’ ) '8!, The maximum likelihood estimate of m is

R =222y

where the sample matrices Y and Z are defined by

Y

The GCL (2SLS)

[}
r_—
<
s

[t}
—
=
[

i}
—
(]

estimate of B is
B = (prsp_)'p sP

22 22 22 21

Qan

(3.150)

(3.151)

(3.152)

(3.153)



where P denotes the submatrix of (2.9) which corresponds to

"
n, = [ “J] (3.154)
n,,

and partitioned conformably with the partition of m, gilven by (3.154).

- ! - P -1,
S = 22[1 zl(zle) 21122 (3.155)

Let yt denote the subvector of yt consisting of the first three
elements of Y, and let Z' denote the covariance matrix of y:. The

vector y: is transformed according to

LJ
y, = YR (3.156)

r
R = (3.157)

where R22 is lower triangular. We have Z' = 13. And the vector B is

transformed according to

= -
B = Rzz(Br11 + rl) (3.158)
Therefore (3.133) becomes

§u=§§ + B 2 +e (3.159)

where
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2
B = (czacas 0'23)3 2 (012033 013023) (3.160)
2 172 '
o3I
2 172 2,172
(0.0 -0") (0.0 ~0¢")
= _ _ 2233 23 _ 22 33 23
Ba 172 (03333 + d‘zaﬂz "'13)x /2 etf (3.161)

753l L] 5|

The reduced form coefficient matrices = '1and w,are transformed to

T = ’ ’ -1,
m, = A0, +(2/2)°2ZZn, IR (3.162)

n,, = A0 m R (3.163)

where O1 and 02 are orthogonal matrices such that

1724 = [

01212101 A1A1 (3.164)
ry\y? - ’

02V2V202 1\21\2 (3.165)

l\1 and I\2 being diagonal matrices whose diagonal elements are the

square roots of the characteristic roots of Z;Z and V2 = [I - 21

(Z;Zl)-IZ;]ZZ. Let P and S denote the maximum likelihood estimators of

n, and },, respectively, the 2SLS of B is

v
= 2l = (P P 15P
v [] (PZZPZZ) P22P21 (3.166)
3
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The standardized estimators va and \A are related to ﬁa

(3.153) by
2
o - - -c
v = ( 22 33 023)32 (0-12033 13 23)
2 1/2
0‘33|ZQ|
(0 Fa™ 223)1/2 8
v = + 0 -0 ]
3 1/2 (0‘3393 2372 %13’

%alLal

The Joint density function of v’ = (vz. v3) is

h(v) =

1 an’
etr{-z(l + BB )Tzz} w (v/2]( B'T_B)

™

n(l +v 'vsma)/zB[?—;—i.l)“

[v+2
Q
2

]

® ® k+q k
DR WON RS
+q +q

q
[%E' (I + vB)T(I + BV’ )B']
1

x[v+2

X
~y J] [" > 1] kiq! (1 + v'v)
2k +3q k+q

and 93 of

(3.167)

(3.168)

+3 1 1 .- P
o (V 5— +tk+ q]p[k +q- E]p(_l)p[i(l + B'v) |T22|]

XL
v +2 v +1 p
+ + ! + v/

p=0[ > J 2k+3q)2p{ 5 +k+q}pp (1 + v'v)

VvV + 3

+ k + gq+p; !
R’ ’ -

x1F1 5tr(l+vB)(I+vv)(I + Bv )'1'22

v + 2

3 + ) » 2k + 3q + 2p;

-0 <V < o

=R’ g V! =
where T22 Rzz"a 2v2v2u22R22. For 8 = 0, we have
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1
etr [ ETZZ]

uB[v ; ! 1](1 4+ viy) W2

n{v) =

+ _ 1 _ayP 1_._ P
.,, &3, (- 3§, v (Em. )
[ + 1 v +2 V 1P
ST
xlFi[v—:iop; 2%342;;; %tr(lwv’)-i'r], -0 < Vv <o (3.170)

Using the results obtained by Phillips (1980, 1983), Richardson

obtained the following approximation to the exact density (3. 170)

1 ' T v
exp[ Z1+v vjl |
h(v) = , @ < V<o (3.171)

The marginal density function of the standardized estimator v, for the

1
etr[-z—Taa]
2 2
vV +1 1 2 {v+3)/2
v +2) (_1) _,p[L P
m[ 2 ]p[ z_]p( 1) [4|Tzzl]
My ]
v +1) v +2 2.p
P=°[ > Jp[ 7 ]pr!(l +v2)
3} n
v +3 v+2 1 1
[ 7 ¢ p] [ 5 ¢ p] [Etzz] [-étzs]
n+j n

= J
n=0j=0 ["+2+2p] [V; 3+p (1 +v§) J'n!
n+j n

special case B = 0 is




v+3 v+e2 1 2k
co[ 2 +p+n+J]2k[ 2 +p*n]k(§]k(v2t23)

XL
v +2 v +3 2y
k=0( 57— *+ J+2p + n}ak{—-z— +p+ n}”(l + vz)k.

k + 1 v 3+ +n+ J+2k; 2
> g tpntleak;
szl =2 <v,<w (3.172)
vV +3 2
+p+n+2k;
= ! -
where v 1s the degree of freedom of xv(vl) with v, P21P21

v’ (ﬁ.’zzﬁaz)ﬂv is the nuserator of the identifiability test statistic in
standardized form. The marglnal density of A is of the same form as
(3.172) with t22 and t:33 and the series In J and n interchanged. It
should be noticed that the exact marginal density function (3.172) is
symmetric about the origine. Follows that the exact marginal density of
92(33) is symmetric about Bz (B3) when B = 0. The marginal marginal

density function is too complicated for numerical computation.

3.3 SURVEY OF DEVELOPMENTS ON THE APPROXIMATION TO THE

DISTRIBUTION OF ECONOMETRIC ESTIMATORS IN SIMULTANEOUS

EQUATIONS MODELS

Consider equation (3.38). Working directly with distribution
functions, Mariano (1973) ([S1], presented an approximation to the
distribution function of the 2SLS estimators up to terms whose order of
magnitude is 1/v¥T, where the sample size T is held fixed as the
noncentrality parameter Iincreases. It is assumed that all of the K
predetermined variables are exogenous, the equation to be estimated is

identified by zero-restrictions on the structural coefficlents in the

QQ



model, the sample size T 2 G + K (wherre G is the number of endogenous

’
variables), X is a full rank matrix of constants, —ETK tends to a

finite positive definite matrix as T —>» » , and the rows of V are

mutually independent and identically distributed as bivariate normal

random vectors with O mean and covariance matrix Z.

= YPy
é = Y7PY (3.173)
is then reduced to canonical form ﬁ =8 + —!—-ﬁ‘ with
P22
» .
Exlyl
] -
ﬁ = ‘;1 (3.174)
.2
Ly,
i=1
where
P = XXX - X (XX )X (3.175)
_ . o2 = _ 2
z = (0") W L 23051 + B L (3.176)
x’l =Vl - ple + Py, 1=1,2, .K2
[ ] {yl { = 1r21 9K2'1
y =
Y, *H t =K,

and (x:.y:) mutually independent normal vectors having common
1p

covariance matrix [ ]. For an arbitrary real number b, Mariano stated
p 1

and proved that in the case of two included endogenous variables in the

equation being estimated, the 2SLS distribution can be approximated by:

LW atal



bw P
Pr{(ﬁ -B) s — ¢(b)+ T¢(b)(bz-l(2+1)+ 0(u'2) as p—x here p =

o
H 22

1 2 2
Wo 9, = B0yl W =0, - 280, + B0, and

2 - L ’ - ’ -1, ¢ -
po= 022“‘2222[1 21(2121) 21122"22) o(T) (3.177)

Then follows the main result which stipulates that if the equation
belng estimated contains two endogenous varlables and is

Just-identified we have

bw
Pr{(R - ) s } = &(b€) + R. (3.178)
We
e 2 2bp . b
where |[R| s — e° , ad £° =1 - P 4 25 For fixed T Mariano
V2np n

found that in the case of two endogenous variables present in the

equation to be estimated if E is the OLS estimator of B then

bw P
Pr{(B -B) S — } = &(b) + T¢(b)(b2-N + K1+1) + O(u'z) as g > ®
PP
(3.179)
Keepin; the sample size T fixed and considering for the Gl + 1

endogenous variables included in (3.38) the reduced form equations

Y=2II' +V (3.180)

where Y = (y Yl) is the Nx(GIH) matrix of included endogenous

varlables, Z = (Z1 22) is the NxK matrix of predetermined varlables, V
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is the Nx(Gl-l-l) matrix of reduced form disturbance terms and N is the
(G1+1)xl( matrix of reduced form coefficients. Mariano [52] presented a
large u asymptotic approximation to the distribution function of the
k-class estimator summarized in the following theorem whose proof can
be found in [52].

Theorem 2: In the case of two included endogenous varlables in the
equation being estimated, when the sample size T 1s fixed an
approximation to the distribution function of the k-class estimator is

given by:

bw P
Pr{(ﬁm-ﬂ)s-—— -¢(b)+—7‘—¢(b)[bz-l(2+1+(1-k)(N-K)l+0(p.'2) asp o«

)
22

(3.181)
Using the results obtained by Mariano (1973), Anderson and Sawa
[7] considered the following partition:

T
(yiv) = (xlzxz)[u ) ] v (v iv) (3.182)

21 22
Assuming independent normal distribution of the rows of V = (vlivz),
full-column rank of the matrix of predetermined variables, and rank 1
for the matrix ("21 '22); they obtained two terms of the asymptotic
expansion of the distribution of the 2SLS estimate for increasing
sample size and noncentrality parameter and approximated the

cumulative distribution function of 2SLS estimate, ézst.s’ by:

VY Taatee ™ 22 zz P
P{ -B)sw }-Nw )-

g

A m
22 22.1 22
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2
. [u‘ -(Kz-l)]ﬂw') . 0[;"7\'1—‘;—] (3.183)
22 22.1 22
wu "12
where Q = [ ] is the covariance matrix of each row of V and
W w
21 22

/A X
——_22"22‘1 2 is the noncentrality parameter and
22

-1
Azz.1 = Azz A21A11A12 (3.184)
Once the problem is reduced to canonical form, attention is focused on

canonical representation of quadratic forms.

A - ’ 4 1 ’ =
p{a < r} = l—"{wzx2 + h“axa < r-(xzz-:2 + hxsxa)} P{Q(r) s 0}
where
Q(r) = 2[w'x_ + hw'x_ - rx'x_ - rhx;xsl (3.185)

22 33 22

and H is a TxT ortl ogonal matrix such that

(v )
[ ] w1

Hy (3.186)

]
o
n
L o

(3.187)

0
x
1t
L]

Ry

The authors assumed that there exists a finlte positive number y such

that

’

”n _ -1
T-'ﬂ‘*O(T )

(3.188)

wA
(where 7' = _ZZWﬁi_Zj and ¢ called the reduced noncentru.lity
22

parameter) which ensures that
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pind = - =«  (3.189)

Then,
P{J T (& - plima) = x} = P{%/(% s o}
(withr=a + ———5-—-). Let o(t) denotes the characteristic function of
v T

9/(;—) . The Taylor series of the logarithm of o(t) is

Loge(t) = -2ityx =-2t(1+a)y -~ -—{21ta¢xz + Stayx -~ 8itay
T(h+y)

[(1+2)y]}+ O(T™) (3.190)

Therefore, Q) has a limiting normal distribution with mean p = -2¢yx

T
and varlancc 4&2 where
£=0+ dw (3.191)

From here a variable W is dafined to be

- B
T _Q+2(0+ ¥)xvVT

W=

that has 1limiting distribution N(0, 1). Let v(t) denotes the

characteristic function of W.

2

t
"2
v(t)=exP[L089[§2—-]-%§]=e {1+;_—;[ 11t+u<2(—::—)(1t)2 + ns(it)s] + o1
(3.193)
where
p = & (3.194)
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(K, ) ek,

& gt (3.195)
2ay°
K, = — = 2a (3.196)
gy §
2
K, = —5"‘“’—_[- (1 + oyl = Z’il—*-s-‘l‘-)-“’— (3.197)
(0 + y) £

Then, combined used of the inversion theorem with the well-known

result:

1 (7 /2 -1t
H (We(w) = | (1t)%™ ““e™ ™t (3.198)

leads to an expansion of the cumulative distribution function of

pfusu’} = [ponaw + Ll T (ngnaw + X H (W)
{ w}—jzw W E_[K"J.le¢w W+ —= ochzw¢w W

00
+ xsjﬂs(w)¢(w)dw] + o(T™h (3.199)
“w

where ¢(w) 1is the density function of N(O, 1); Hm(w)'s are the

Tchebycheff-Hermite polynomials,

= (- 9=
Hm(w)¢(w) = ( dw) é(w) (3.200)

The approximate density of the k-class estimate is

3
fT(w.) = {1 + ‘/—;--[(oc3 + nz)]w' + (lc1 - sz - 3&3)w‘}¢(w’) (3.201)

while the corresponding approximate cumulative distribution is
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[ ] ‘2 »
FT(H') =¢(w) - ‘/TL[(K3 trJw o+ (k- k) ]elw) (3.202)

Follows that for the 2SLS (i.e., h = 0) estimate the approximate

density and cumulative distribution functions are respectively

. 3
£200) = {1 —2— " -, + 0] o) (3.203)
/Ty(1+¢%)
and
. . o o2 .
Fp(v') = $lu”) - [w - (x, - 1)]¢(w ) (3.204)
Ty (1+6%)

Letting the noncentrality parameter, %’m, increases permits to the
authors to obtain the asymptotic expansion of the distribution of 2SLS
estimate. Their findings are also that the expression of the
distribution of the 2SLS and OLS estimates can be obtained in terms of
a doubly-noncentral F distribution. They also provided several forms
for the expressions of the exact distribution.

Anderson (1974) [2] extended to the Limited Information Maximum
Likelihood (LIML) case, the framework used by Anderson and Sawa in 1973
(to derive the distribution of estimates of coefficients of a single
equation in a simultaneous system and their asymptotic expansions). He
developed an expansion of the distribution of the LIML estimate of the
coefficient of one endogenous variable in an equation with two
endogenous variables when the coefficient of the other endogenous
variable is prescribed to be unity . The expansion is carried out to

terms of the order of the three-halves power of the reciprocal of the
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noncentrality parameter when this parameter increases with the sample
size. The problem of finding the distribution of the estimate 1is

reduced to its canonical form. Considering

q 1 8
11 "2 1
Q= ] = _ _ _ (3.205)
C q ¢ B"zz Y2 Y1 3"12
21 22
via[ v[q]
such that
U’ =1 (3.206)
n' 0 0
e = %o, m, o = (3.207)
n 0 TvT
vhere
YW o°
T zz
= yp_(B 1O [ ] (3.208)
with
wT = uazAaz 11:22/Tw (3.209)
and letting b = (bl'bz)‘ be any (nontrivial) solution to
[(1/T)G - A f1b = 0 (3.210)

vhere Aiis the smallest root of

|/me - afl =

p.)

22

- [P
G = [ 21]A (p21

’ 22.1
p22

Sl (4] R N ) g

2 21 22

and
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Anderson obtalned that the LIML estimate of B is

bl ] . L]

9,.° * qzzbz 9, * qzz(bz/b1)

Bow =~ — 2 — =- — (3.211)
qlibl * qzibz 9, * qzx(bzlbl)

where b = Q’b . He then proposed

VW
22 - _ a2 1. -
Pr{—T—-—-(ﬁLn‘L - B) = H} = o(w) + { —u-w + ;“—2( (K2 1w + (2a

- 1w - aw] + —1—[3(1( - 1)w - (6 + 3K_ - 12)w + (762~ 3)u°- azws} +
6,.13 2 2
o™ (3.212)

as cumulative distribution whose approximate density is

{1 + —;‘—-(ws— 2w) + —12-[-(1(2 S 1)+ (K, -4+ 68w + (1 - Tad)wt +
2p

oAW1+ —"‘—3[6(1<2 - Dw - (280° + 15K, - 51)w° + (4802 + XK, - 0w -
6u

(1562 - 3)w' + azwgl}o(w) (3.213)

Sargan (1975) [82] published a seminal paper in which a very
general theorem on the valldity of Edgeworth expansions for sample
distributions is established. The approach consists to write the bias
of an estimator as a function of a more basic statistics comprising the
errors in the sample moments of the data.

Anderson (1976) [3] established an equivalence between the
estimation of the slope of a linear functional relationship and the

estimation of a coefficient in one equation of a simultaneous system of
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stochastic equations, as developed in econometrics. Therefore, one will
draw on theorems in the econometric literature to obtain results for
the functional relation. Mariano (1973), Anderson and Sawa (1973), and
Anderson (1974) have obtained, in the econometric context, asymptotic
expansions of the distribution of the 2SLS and the LIML estimates which
can be easily translated into terms of the linear functional relation.

Anderson (1977) [4] pursuing in the same order of the idea
underlying his paper with Sawa (1973), gave the expansions in the case
of the covariance matrix of the disturbances known and alternatively
the case of the sample size held fixed. (p21' pzz) has multivariate
normal distribution with mean ("21' 1:22) and and covariances

-1
- - ’ - -
8(p2l nm)(pzj nzj) "13A22.1 , 1,3 =1,2 (3.214)

pl
- 21
The matrix G [ ]Azz.x(pa pzz) has a noncentral Wishart

’
22

distribution with K2 degrees of freedom, covarlance matrix Q, and

noncentrality matrix

nl
21 ot B
[ , ]Azm(na1 w)=wa x (e 1 (3.215)

T
22

Define
C=YY-PAP =YY -Y2Z(Z'2) '2Y =Y [I - 2(2'2)'12']\(
Clearly, C has a Wishart distribution with T - K degrees of freedom and

covariance matrix Q. Now,

! A
_ Pa1Pe.1Pa
= 222 22

L A
BLS Parea.1Pa

A
B (3.216)

and the asymptotic expansion of its distribution is given by
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P'"aaAzz.iaz(A -B) = =0(w) - {2’ - (kK - 1)] + -
o Bars ~B) =W p=0lu e 2 Ty

[, - 1)%2 - (K, - 1w+ (1 - ZKa W+ aZl+ ——[(x DK, +
6u

19)e® + 3(1(2 - &K, +3)+ (11(1(:- 1)a? + 3(K, - )% + 3((K, + 1)1(2m2

- (21( + 1w+ (3 - 3(3K + 4)a® )W + o ]}¢(w) + O(u") (3.217)

where
2 02
= w’
H "zzAaz. 1"22'['5[ (3.218)
Bw_ . - W
@ 22 (3.219)

vIaT

Assuming that "zzAza. 11t22/T is bounded, Anderson obtained

mzaAzz 1 22 1
Pr{——;———(ﬁun - B) = w} o(w) - {—w + ;‘1—2[(1(2 - 1w + (1 -

202 ) + a*w°) + 13[--3(1(2 - 1w+ (60 + 31c2 -12)w' + (3 - 765w+
6u

zwsl}O(w) + o (3.220)

When the noncentrality parameter increases and the covariance matrix is
known, (1/T)C 1s replaced by c' = TQﬁQ' In the case of an increasing
noncentrality parameter and constant sample size, the elements of C are

modified to be as having the Wishart distribution. Follows that

p ”['22A22.1n22(é - g) s - o - {%2 ¢ Lix -1+
r ¢ LINL B wro = ¢lw Tl 2_;15 2



K2 -1 ’

———Jw + (1 - 280%° + AS1 e + o) (3.221)
T~-K-2
; Kot
where —H—:T:—zwﬂw) represents the effect of holding T fixed. The
2u

approximate density is

clb(w)1-5[2w-w3]+L[-(l(-1+--ic-:-.;:__-)+(l(—4+K:-1 +
m 20? 2 T-K~ 2 2 T-K-2
602 - (7o - 1)w* + a2w6]}¢(W) (3.222)
1 K: -1 2
from which the MSE is 1 + —IK, + 2 + y—5—— + 9«"] Turns out that

neither the distribution of QZSL

g hor its asymptotic expansion are

affected by substitution of the estimate of Q by Q (case of the
covarlance matrix of disturbances known). Also, when the noncentrality
parameter increases and the sample size is held fixed (case of sample
size fixed), the distribution of the 2SLS estimate is unaffected by the
conditions on C, of which estimate of Q is function. Anderson related
these cases to the approach of letting the disturbances decrease. The
method used is due to Kadane. Given a positive definite matrix ¥, he

def ined

Q= t¥ (3.223)

Then G/'l:2 has noncentral Wishart distribution with l(2 degrees of

freedom, covariance matrix ¥, and noncentrality matrix

’
"22A22. L (3.224)
2
T

B
WICRY
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A
Follows that the behavior of stx.s as 1:2——) 0 1is identical to 1its

¥} - - ’
behavior as LA 2A22.1u22—> w. Let b = (1 ﬁ) minimizes

b'Gb _ 1 (3.225)

Then, the behavior of ﬁl.nn. as t>—0 1s identical to its behavior as
";2A22.1"zz_” with T fixed.

Holly and Phillips (1979) [63]) proposed a new approximation based
on the saddlepoint method of approximating integrals. The method was
applied to derive the probability density of the k-class estimator in
the case of the equation with two endogenocus variables. The two tails
of the density are approximated by different functions, each of which
bears a close relationship with the exact density in the same region of

the distribution. Given the single structural equation:

Y, =By, +Z7 +u (3.226)

where Y, and y, are vectors of T observations on two endogenous
variables, Z1 is a T><K1 matrix of observatlions on K1 exogenous
variables, and u 1s a vector of random disturbances. The structural
coefficients are the scalar parameter B8 and the the parameter vector
v, The reduced form for the two endogenous variables in (3.226) is
given by

Y=2N+V (3.227)
where Y = [yliyal, z = [ziz) 1s a DK (K = K + K) matrix of
exogenous variables, and V = [v1§v2] Is a matrix of reduced form

disturbances. (3.227) can be written in the form



0

m
H = i 11 12 ]
[yisyzl [zl,zzl["l o ] + [":="z]

21 22

= leuugnlzl + 22[!21§II22] + [vlgvzl (3.228)

It is assumed: that each row of [viivzl is 1id as a normal vector with
zero mean and nonsingular covariance matrix
W W
Q= [ 11 12]

W21 w22

that equaton (3.226) 1is 1identified by =zero restrictions in the
structural coefficients; that the observation matrix is nonstochastic,
of rank K, and T > K; and that, for simpliclty, 2;22 = 0. The k-class

estimator ﬁk of B in equation (3.226) has the form

YAy
B = o (3.229)
yz kya
where
- - - ’ ' - ' ’ ’ ’
. (1 - k){I Zl(zz) z 22(2222) 2} Zz(zzzz) z (3.230)

and k 1s nonstochastic. Define

. / w22 le
B =V _-wsm_ (B- =) (3.231)

11
12 22 22

The k-class estimator of B' in the transformed system is given by

ﬁ / = /w (ﬁ - —) (3.232)

'K Ko



(for convenience, we will drop the asterisk on ﬁ:) Let L(wl.wz) denote

the Laplace transform of the Jjoint density of y;Akyl and y;Akyz. We

have

x_/2

_ _ 2y 2 _ _ 2.2,=(T-K)/2
L(wl,wz) = (1 2w1 wz) (1 2hw1 h“w’)
2,(1 + sz)2
e[ 4{——2-]]

1-2w1-w2

where
n (2’2 )n
W= 2222 adn=1-k (3.233)
22

Droping the subscript on W, we find that

Q'L“%"—'-!) e {xzu + 2hrw - B33 +h(T - K)(1 + 2rv - wo) + p2
22 -(K_+2)/2 2
(1+2hrw - hw );Bw hd 1)2} x (1 + 2rw - w) 2 xexp{%
(1 4+ 2rw-w")
w1 + Bz) + 2w(B - r)
> } (3.234)
1 +2rw - w
which can be written in the form
2
B(w)exp{%i//(w)} (3.235)
and then
c+io 2
£(r) = %[ B(u)exp{-"—z.p(w)}dw (3.236)
c-10

The essence of the saddlepoint method 1is to select the path of
integration in (3.237) in such a way that the major contribution to the

value of the integral comes from the value of the integrand in a region



of a saddlepoint on the real axis. Changing the variable of integration
in (3.236) fromw to y in w = W+ iy -w° being a suitable saddlepoint-

we have

+00
2
h(r) = 5%— I B’ + ly)exp{—%?w(wo + 1y)}dy (3.237)
-0

Since B(.) and ¢(.) are analytic on the path of integration, their

Taylor expansions exist and can be wutilized to reduce (3.237) to

2
B(wp)exp{—g—¢(w°)}
2 O s e R S et R
7 2u(y 7 (w°))12 w2 B(w® )y’ ¢ (w°) Ly
v W®) B (W) _ 5 (w(s)(wo))z} . o(uf‘)] (3.238)
W )28 2 w®))?
where
0 0
28(Br + 1)(w - w1)(w - wz)
W (w) = = (3.239)
(1 + 2rw - w°)
(with w‘: = (r - B)/(1 + Br) and w: = -1/8)
4
v D) = 2(Br : ”2 _ (3.240)
(1 + 28r - B°)(r" + 1)
and
0 28°
) = — (3.241)

B -28r -1

The first equation in (3.238) is the saddlepoint approximation and the
series 1is sometimes referred to as the saddlepoint expansion. To

specify the first factor of equation (3.238), the evaluation of B(w°)
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and W(wo) is needed. In the case of B > 0 the saddlepoint

2
approximation, when r < B 2; 1 s glven by
1 2 2 2 Ky, 2
h(r) = (Kz(B - 2h8r - h°) + h(T - K)(B" - 2B8r - 1)}xB (B° - 2Br
V2rp

-(K _ *1)/72 =(T=K+2)/2 2
-1) 2 (g% - 2ngr - h?) K2

2
and for r > B 2; 1, the saddlepoint approximation lis:
_ 1 2 2 2 ‘
h(r) = [Ka((Br + 1) + 2rh(r - 8)(Br +1) - h(r - B} + KL{T +
V2ru

K)(1 + 28r - B)(r2 + 1) + p®((Br + 1)% + 2rh(r - B)(Br + 1) - h%(r -

2 ) 2 - X [ mU/2
B)°H1 + 28Br - B8°) x (r® + 1) "1(Br + 1) (1 + 28r - §°%) (r

-K_s2

2 2, - (T-K+2}/2
)}( +2) %

+1) 2 x{(Br + N2 + 2rh(r - B)(Br + 1) - h%(r - B

exp{-p2(r - ®)%2(r2 + 1)}

Morimune and Kunitomo (1980) [58’] gave a sort of a fusion of the
papers by Morimune (1978) and Anderson (1976). They consider a

structural equation

Y, - BY, = 7, *Y,Z.tu, t=lo..T (3.242)

where u, is arandom variable with mean O and variance p. Corresponding

reduced-form equations are:

Yie Ty * Z"uzkt MY (3.243)

116



Yo = Xy * zlzuzu *V, k= 2,...,K (3. 244)

such that Vie and Vzt are normally distributed with mean 0 and

covariance matrix

W W
Q= 0'2[ 1 ‘2] (3. 245)
w21 w22
let L=K-K -1 (3.246)

be the degree of overidentification. Morimune and Kunitomo considered

the less blased estimate than Qum..and stx.s'

R=(w-nmb,  + awB (3. 247)

and proved that ﬁ improves uniformly ﬁum. in terms of AM.2 given L

A
large and Q (unknown).

Kunitomo (1980) ([43]; pursuing from the above result, derived the
asymptotic expansions of the distributions of the estimators in a
linear functional relationship and discussed some implications for
econometrics. Especially, he had pointed out that if the sample size T
is large enough, the asymptotic expansions obtained under assumption
that Q is known to within a proportionality constant may still be valid
since one may estimate the covariance matrix by wusing the residual
matrix of the regression estimators of the reduced form parameters n”.

Morimune (1981) [58] derived the asymptotic expansions of the
distribution of the improved limited information maximum 1likelihood
estimator proposed by the author in 1978. Consider (3.226) and assume

the rows of V are independently normally distributed with mean O and
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covariance matrix Q = llwl jIl 1, = 1,2, The improved estimator |is
defined to be a combination of LIML and k-class estimators. It is given

by
Q =L-1+(T-x)gﬁ . 1 (3.248)
com L+ (T-K)h "t L+IT-K5ﬁk '

where Bk is the fixed k-class estimator of 8 and h is (1-k). The
large-u asymptotic expansion of the distribution of Qc“ for T-K > 2
is given Ly

P8, 5 €} = 8(8) - (& - 1)9(8) + (2 - € + a®1 + 26" - &)

2u
)2

1[L(L+T-K)(m—1

2 2
n T=K<=2) + (L +h(T -K))(1 + 2¢°) +2L(m - 1)(1 -

h)1}¢(g) + o(p™3) (3. 249)

as p Increases while T - K stay fixed. m is L + (T - K)h

1/2
)

« = (Bw,, - w_)/(]|q (3. 250)

2 = 1 oyr - ’ -1y,
m (1 + a)nzzxz(l xi(xixl) Xl)thtzz/w22 (3.251)

and 8 = uﬂiz(ﬁ - B) is the standardized estimator. Let AMSE 2 be the
[+

asymptotic MSE based on the large-p expansion. Morimune obtained

A“SEpZ(éco..’ =1+ {(1+2%m®+L+(T- KI® + LIL + T- K)(m
2 22 A

-1)°/(T - K=-2) +2L(m - 1)(1 - h)}/(u"m°) = AMSEua(eLm) =1+ {3 +

9 + L(L + T - K)/(T - K - 2)}/? (3.252)

He, then, concluded that (3.219) is a convex combination of the two



estimators.

Fujikoshi, Morimune, Kunitomo, and Taniguchi (1982) [36] derived
asymptotic expansions for the density functions of the 2SLS and LIML
estimates of coefficients in a simultaneous equation model when the
sample slze as well as the effect of the ex‘ogenous variables increase.
Thelr results are somewhat a direct generalization of the results
obtained Anderson and Sawa (1973). Unlike the latters, the authors used
the perturbation method and applied the Fourrier inverse
transformation. Model (3.74) is considered and it is assumed that the
rows of (v1 vz) are independently and normally distributed, each row
having mean 0 and (non-singular) matrix

W w
Q= [ 1 ‘2] (3.253)

W Q
21 22

Furthermore, the authors assume the matrix (1t21 "22) is of rank Gi.

L also is of rank G1’ and A = 0(1). Define

L=K - G1 = degree of overidentification (3.254)
r 1 - R’ Yy .
q = —(,:-2-(‘«!12 B !2220 ) s 1><(G1 + Kl) (3.255)
- ¢
Cl = qq .(G1 + l(l)x(G1 + K1) (3.256)
1znzz 0
c =[0‘ -C :(G + K )x(G, +K) (3.257)
2 0 0 1 1 1 1 1

A

_in 12) _ 1 ' .

A= [A . ] ~5 (xlxz) (xixa) : (K1 + Kz)x(l(1 + Kz)
21 22

= ey lps P = -
PF—F(F F) °F and P =1 - P (3.258)
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and

Q
Q= [2“ ‘2] +(G, + K )x(G +K) (3.259)

21 022

where

- -1 . -1
Qi-(ﬂA m)’, Q -An(AuA)HQ

1 22 22.1 22 21 127 2°11
= a1 -1 - _ -1
Qaz Au * 021011012 and Aaz.x Azz AzxAnsz (3.260)

Then the 2SLS estimate of B is

= ’ - e B -
B = ly,(p, SRARACES A (3.261)

and the LIML estimate is the vector satisfying

[YY(P -P )Y -AYPYIL -PB) =0 (3.262)
w X x1 w Owxw
where Ao is the smallest root of

[Y’(p. -P )Y -YPY| =0 (3.263)
w X x1 w Ww XWw
The asymptotic expansions of the Joint density functions of 2SLS
estimator are derived for the statistic
R-g

e

- [ B8] -

as = [ ] = \/T[A ] as T—. (3.264)
e7 (St §

>

(Note: a single structural equation is written:

B + Z1 ¥+ u)

Tx1 TXG, G TXK K X TX
1 1X1 1 1 1 1

It is given by
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£ (6 = ¢02°(e){1 r L@oee e 1L - et

{I.n‘ztr(CzQ) —Laa-ztr(clo) - ECEIG+ K+ 2 + L -€ ("Q7E) +

5
-3 -

ECEIG+K + 1+L - & Q76>+ (G+K+1+2L -3¢ (crzo)"em}

~3/2

+ o(T ) (3.265)

For the LIML, we have

1 ~

H - g + T

= 1 (o
fu(E) -¢°,20(€) +{1 + }—-(q E)(G1 + K

2 ' R '
{~Le tr(CZQ) £ Cze(G1 + K1+ 2-L-¢€(Q) €)+ € cig [(G1 + K1 +1
- £ + 6 vk 41 - 3¢ (c‘zQ)'iéj]}} + 0(17%3) (3.266)
An integration of (3.265) with G1 = 1 and with respect to the last K1
A
e

B
identical to the result by Anderson and Sawa (1973) to term o(T™h). A

elements of £ gives the asymptotic expansion of the distribution of

comparison of ﬁ and ﬁ is made in terms of the mean square error

2s5LS LIML

and the concentration of probability around the true B for the general

case of Gl.If l s 6, the mean of /e\LIél’.I in terms of the asymptotic

expansions of the distribution éuél’J up to 0(T™') is at least equal to
A, A A, )

A A A,
that of €,€0e ( 1.e AMT(e“eLl z mr(easezs))' For a comparison of

the probabllity of concentration around the true value B, authors

defined fxil = max{lxil,..., IxG - |} and computed
11

P{u(azo)'“zé‘uu < w} - P{u(wzo)"’aé‘zsn < w}
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N opere s J(£ (&) - f__(§)) (3.267)
ll(a‘éQ)-iléﬁll <y U 2s

G +K
11
=—‘T‘—{¢(w) - o(-w)} wp(w)a'ztr(QCI)D + 0(T"¥%) (3.268)

where
o(w) = ¢(w)/[O(w) = &(-w)] (3.269)

D=1L ---2(](1 + Gl - 1)(1 - 2wp(w)) - 2{tr(QC1)} tt‘(QCa) -2w  (3.270)

and &(.) and ¢(.) are the standard normal distribution and density

functions. Let a and a be the smallest and the largest
min max

characteristic roots of Q . If (a sa J)(L + 2)(trC/trC + 1)"! =
11 max min 2 i

2,

p{u (0’Q) Y% g < w} = P{II (¢?Q) Y% 1 < w} + 0(T7%%)
LI 2S
2 1 -1
If w's > (1+4-2K -26) = (a_ sa )(trC/trC + 1)

P{II (ozo)"’aéuu < w} z P{II (o-zo)"""ézsu < w} + 0(T"¥2)

It follows that the small value of trCz/trC1 favors the LIML estimate,
and the large value of t:rCz/trC1 favors the 2SLS estimate. One can
write (1 + t;rCz/trci)'1 = E(u’vz)E(v;u)/E(u’u)tr{E(v;va) such that
high correlation between u and Y, favors LIML estimate.

Morimune and Tsukuda (1984) [59] derived asymptotic expansions of
three alternative classes of structural coefficients for two parameter
sequences: a sequence in which the non-centrality parameter increases
while the sample size stays fixed and that in which the number of

observations increases. The accuracy of approximations to small-sample



distribution are numerically examined with help of Monte Carlo studies.
The authors also studied properties of the sum of squared residuals of
an estimated structural equation.

Kunitomo (1986) (43‘] proved that the LIML estimator in the
simultaneous equation system 1s third-order asymptotically efficient
when the number of excluded exogenous variables in a particular
structural equation increases as the sample size increases. He argued
that in the large sample asymptotic theory in econometrics, the LIML
and 2S5LS estimators are best asymptotically normal (BAN) estimators.
Thus, these estimators can be modified in hope to improve BAN
estimators 1in some sense. Given that Kz’ in macroeconometric models, is
fairly large even if there are only two endogenous variables in a
particular structural equation, Kunitomo suggested the new large-Ka
asymptotics theory for large econometric models.

Kunitomo (1988) ([44] studied the distributions of the test
statistics for over-identifying restrictions in a system of
simultaneous equations under the null and non-null hypotheses. The
effects of th- normality assumption for disturbances on the test
statistics and their power functions based on their asymptotic

expansions were investigated.
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