Bl e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliagraphic Services Branch des services bibliographiques

395 Wellinglon Stieet
Ottawa, Ontano
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may he:ve indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferio:
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canadi

305, rue Wellington
Ottawa (Ontano)

Youw hie Ve rdfevery @

(M bl Mt 1dtoeens

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a conferé le grade.

La qualité d’'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originale. ont été
dactylcgranhiées a l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
c’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

Scheduling of Jobs on a Single Machine to Minimize
Total Cost

Singu Babu Yerra

A Thesis
in
The Department
of
Mechanical Engincering

Presented in partial fulfillment of the requirements
for the Degree of Master of Applied Science at
Concordia University
Montreal. Quebec, Canada

February 1996

©Singu Babu Yerra. 1996

Bl

Acquisttions and

Bibliothéque nationale
du Canada

Direction des acqussitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontarnio
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your e A ote tofdren e

Our g Notre 1818100 ¢

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéeque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent -~ étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-10911-9

Canada

Abstract

Scheduling of Jobs on a Single Machine to Minimize
Total Cost

Singu Babu Yerra

This thesis focuses on the problem of minimizing the total of work-in-process,
carliness, tardiness, and machine idle costs involved in the sequencing and scheduling
of jobs on a single machine. In the most general case that we consider, jobs can have
possibly diffcrent release times and multiple due dates. This problem is of special
interest because of its use in solving general job shop scheduling problems, its
application in a Just-In-Time manufacturing environment, and also because of its own
intrinsic value.

A special case of that problem is known to be NP-complete in the strong sense and
others were able o solve it optimally only for a very small number of jobs. Therefore
we concentrate on providing quick and efficient heuristic procedures. We also propose
new optimal idle time insertion procedures to insert idle times between successive jobs
of a given sequence. We test our heuristics for range of different factors and compare

the results to other heuristic procedures, that could be adapted to the problem.

i

Acknowledgment

The author 1s extremely thanktul to his supervisors D Sanur Anouny and e v A
Bulgak for their intellectual guidance and moral support throughout this work 1t has been

indeed a privilege to wark under their supervision

The author would also like to thank the members of the faculty Cstaft and fellow siudents
of the department of Mechanical Engineering, Concordiae University for then time and

assistance throughout the course of the work.

I would like to thank Mr. Arun Yellamiaju for his help in conrecting the test Ttas also
appropriate 10 thank my friends Dr. G B. Reddy, Koganti Rama, Anil and my toom

mates Sudheer Reddy. Selva for their encouragement & support during this waork,

This thesis is dedicated to author’s parents, grand mothers, mama, brother, sister, sister iy
law for their love and encouragement to achieve excellence. without them this would not

have been possible.

Table of Contents

List of Figures Viii
List of Tables ix
Nomenclature Xii

CHAPTER 1

Introduction
i.1 Problem Classification 2
1. 1.1 Processing Capacity 2
1.1.2 scheduling Criteria 4
1.2 Mathematical Solution Methods 6
1.3 Thesis Problem Definition 7
1.4 Organivation of the Document 8

CHAPTER 2

Literature Review

2.1 Identical Earliness and Tardiness Penaltics 9
2.1.1 Common Due Date 9
2.1.2 Distinet Due Dates 11
2.1.3 Non Lincar Penalties 11
2.1.4 Stochastic Model 12
2.1.5 Parallel Machine Models 12
2.2 Difterent Earliness and Tardiness Penalties 12
2.2.1 Common Due Date 12
2.2.2 Different Due Dates 13
2.3 Job Dependent Larliness and Tardiness penalties 13

2.3.1 Common Due Date

2.3.2 Distinct Duc Dates
2.4 Due Date as a Decision Variable
2.5 General /T Models
2.6 FET Model

2.6.1 Non-lincar FEET Problem
2.7 Other Models

2.8 Concluding Remarks

CHAPTER 3

Single due date per job and equal release times
3.1 Problem Formulation
3.2 An Optimal Idle Time Insertion Algorithm
3.3 Dominance Conditions
3.4 A Job Insertion Heuristic
3.5 Heuristics Used for Comparison
3.6 Experimental Design
3.7 Experimental Results

3.8 Conclusion

CHAPTER 4
Single due date per job and different release times
4.1 Problem Formulation
4.2 An Optimal Idle Time Insertion Algorithm
4.3 A Job Insertion Heuristic
4.4 Experimental Design

4.5 Experimental Results

vi

(v
19

20

13
16
18

50

52
53
55
55

56

4.6 Conclusion 61

CHAPTERS
Multiple due dates per job and different release times
5.1 Problem Formulation 62
5.2 An Optimal Idle Time Insertion Algorithm 63
5.3 Madified GRLEDY INSERT 65
5.4 Experimental Design 68
5.5 Experimental Results 69
5.6 Conclusion 74
CHAPTER®
Conclusion and Future Work 75
References 78
Appendix A Experimental Results for the #/1/ FETM Problem 89
Appendix B Experimental Results for the #/1/r, / FETM Problem 92
Appendix C Experimental Results forthe n/1/r,/d,, / FETM Problem 95
Glossary 97

vii

List of Figures

Figure Page

3.1 Average relative performance of heuristics to1 the n 'V FEIV problem

3.1(a) Loose due dates & small range 48
3.1(b) Loose due dates & wide range 48
3.1¢c) Tight due dates & small range 40
3.1(d) Tight due dates & wide range 49
3.2 Average running time of algorithms 50

4.1 Average relative performance of heuristics for the nw/ U/ r, 7/ FEIN

problem at

4.1(a) Loose due dates & sinall range 59
4.1(b) Loose due dates & wide range 59
4.1(c) Tight due dates & Small range 60
4.1(d) Tight due dates & wide range 60
4.2 Average running time of algorithms 01
5.1 Representation of penalties for decomposed job shop cost problem 63

5.2 Average relative performance of heuristics for the n/1/r, /d,, [IFI'TAT

i

problem at
5.2(a) Loose due dates & small range 12
5.2(b) Loose due dates & wide range 72
5.2(c) Tight due dates & small range 73
5.2(d) Tight due dates & wide range 73
5.3 Average running time of algorithms 74

viii

List of Tables

Table Page
3.1 Example Scheduling Problem 30

3.2 Experimental design to see the effect of different factors on the performance

of heuristics 37
3.3(a) Average performance of heuristics relative to APII for 10 jobs 40
3.3(b) Average performance of heuristics relative to APII for 20 jobs 41
3.3(c) Average performance of heuristics relative to APII for 30 jobs 42
3.3(d) Average performance of heuristics relative to AP for 40 jobs 43
3.3(¢) Average performance of heuristics relative to API1 for 50 jobs 44

3.4(a) Effect of tardiness factor: Performance of heuristics relative to API

averaged over all combinations of the other factors 45
3.4(b) Liffect of due date Range: Performance of heuristics relative to API1

averaged over all combinations of the other factors 45
3.4(¢) Effect of EP/TP: Performance of heuristics relative to AP11 averaged

over all combinations of the other factors 46
3.4(d) Eftect of WIP/EP: Performance of heuristics relative to API1 averaged

over all combinations of the other factors 46
3.4(¢) Etftect of Machine idle cost: Performance of heuristics relative to API1 averaged

over all combinations of the other factors 47

ix

4.1 Average performance of heuristics relative to API2

5.1 Average performance of heuristics relative to API2

A 1. Average total costis tabulated at T 0L & R O8forthe n | FEIV
problem

A2 Average total cost is tabulated at T'-0.T & R 1 2 forthe ' 17 8TV
problem

A.3 Average total cost is tabulated at T 0.4 & R 0.8 for the n/ U/ FETV
problem

A.4 Average total cost is tabulated at T 0.4 & R 1.2 forthe n/ 1/ FE7TM
problem

A.5 Average CPU time on Pentium P at 75 mhz for the /17 FIEETM
problem

B.1 Average total cost is tabulated at T-0.1 & R 08 forthe n/1/r 7 [FITM
problem

B.2 Average total cost is tabulated at T-0.1 & R 1.2 the for n/ 1/, 7 IF1TAT
problem

B.3 Average total cost is tabulated at T 0.4 & R 0.8 forthe n/1/r, 1 FINTM
problem

B.4 Average total cost is tabulated at T=0.4 & R 1.2 for the n/1 /v, / I'ITM

problem

80

00

90

()l

()I

0D

92

93

93

B.5S Average CPU time on Pentium PC, at 66 mhz for the n/1/r,/ FETM

problem 94

13.6 IFastness of heuristics with respect to API2 for the n/1/r /| FETM
problem 94

C.1 Average total cost is tabulated at T=0.1 & R=0.8 for the n/1/r,/d,, | FETM
problem 95
(".2 Average total costis tabulated at T=0.1 & R=1.2 forthe n/1/r /d,, | FETM
problem 95
(.3 Average total cost is tabulated at 1T=0.4 & R=0.8 for the n/1/r, /d,, | FETM
problem 96
(.4 Average total cost is tabulated at 1=0.4 & R=1.2 forthe n/1/r /d,, | FETM
problem 96
C.5 Average CPU time on Pentium PC. at 75 mhz for the n/1/r, /d,, | FETM

m

Problem 96

Xi

Nomenclature

n = Number of independent jobs

r, = Release time of job i

p, = Processing time of job i

P = Total processing time of n jobs

d = Common due date of all the jobs for single due date problems
d, = Due date of job i for jobs with single due date

d,, =mth duc date of job i for jobs with multiple due dates

(', = Completion time of job i

W, = Work-in-process of job {

¥ = Common work-in-process penalty for all the jobs / unit time
v, = Work-in-process penalty of job i / unit time

E, = Earliness of job i

oo = Common earliness penalty for all the jobs / unit time

o, = Earliness penalty of job i / unit time

7, = Tardiness of job i

B = Common tardiness penalty for all the jobs / unit time

B, = Tardiness penalty of job i/ unit time

B ,, = m th tardiness penalty of job i / unittime for jobs with multiple tardiness penalties

M, = Total machine idle time

xii

p = Machine idle cost / unit time

T - lardiness factor

R - Duc date range

1C - Total Cost

o - The schedule obtained from optimal timing algorithm
a = The schedule with small difference from o

o' = Optimal schedule

(R - Potential cost reduction

I, - Idle time before the first job / in schedule o

I, - Idle time before the first job j in schedule ¢

i.j, k k', u = Jobindexes

Xiii

CHAPTER 1
Introduction

A job scheduling problem is a problem in which we decide the order ol all jobs on
each machine and determine the starting time of cach operation in order to optimize an
objective function. Many researchers consider that job scheduling problems are some of
thc most interesting problems in production analysis. They have received considerable
attention from researchers. Most of the problems are very complex and far from being
completely solved because of their combinatorial nature (Elsayed 1994).

A broad classification of job scheduling problems will be given below. Buat first,
we shall define several basic terms that we often come across:

Processing Time: A processing time is the length of time which is required for the
completion of a job on a particular machine (S. Ashour 1972).

Sequence: A sequence does specify the arrangement of the operations comprising all jobs
on all machines. A sequence does not provide the time at which the operations are
performed nor the existence of idle times between vartous operations (8. Ashour 1972),
Schedule: A schedulc is a feasible sequence in which the starting and completion times
of the operations comprising all jobs on cach of the machines, are specified. It also
specifies the idle time, if any, between the processing times of each succeessive operations
or jobs (S. Ashour 1972).

Bottleneck: A bottleneck is the department, work station, or aperation that restricts (he
flow of product through the production system. A bottleneck machine restricts the flow of
product from upstream machines and starves down strcam machines (Mark and Gregory
1991). Bottlenecks can change over time.

Other commonly used terms arc introduced in the glossary at the end of this thesis.

1.1 Problem Classification

Numerous schemes have been proposed for categorizing job scheduling problems.
The intention of any classification is to provide a semblance of organization so that the
major differentiating dimensions of the problem classes are identified. For our purpose,

we classify job scheduling problems as follows:

1.1.1 Processing Capacity

Processing capacity is concerned primarily with the number of processing steps
associated with cach production task or item. A common breakdown for this class is as
follows:
o One Stage, Single Machine Scheduling

Single machine scheduling problems have received substantial attention because
of scveral reasons. These types of problems are important because of their own intrinsic
value, as well as because of their role as building steps for more generalized and complex
problems. Sometimes an entire production line may be treated as a single processor for
scheduling purposes. In a multi-processor environment, for example, single machine
schedules are used to solve job shop scheduling problems by using a shifting bottleneck
procedure (Adams 1988, Dauzere-Peres 1993) or a decomposition approach (Raman
1993, Wilhelm 1994), or to organize task assignment to an expensive processor.
Furthermore, single machine problems are of fundamental character and allow for some

insight and development of ideas when treating more general scheduling problems.

e One Stage, Parallel Machine Scheduling

This problem is similar to the one-machine problem in that each task requires a
single processing step. but that step may be performed on any of a number of parallel
processors. These processors are usually identical, but in some cases their processing

capacitics may be different.

t9

« Multi Stage, Flow Shop Scheduling

For the multistage problem. cach task requires processing at a set of distinet
processors or machines. In the flow shop problem. there is a strict precedence ordeting of
the processing steps for a particular task. All tusks are to be processed on the same set of

machines with an identical precedence ordering of their processing steps.

o Multi Stage, Job Shop Scheduling

Like the flow shop, there is a strict precedence ordering for each task. But unlike
the flow shop, jobs can have different precedence orderings and numbers ol operations.
In a classical job shop, operations have to be performed in a fixed sequence such that
each operation has been pre-assigned a unique machine which may perform that

operation so that a job does not visit the same machine twice.

o Multi Stage, Open Shop Scheduling
The open shop problem is the most general job scheduling problem in the
classification; here there arc no restrictions on the processing steps lor a task, and

alternative routings for a task may be allowed.

All the above mentioned scheduling problems could fall under the following
cases:
a. Static and Dynamic: A static problem refers to one where the number of jobs and their
ready times are known and fixed (French 1982). Problems in which jobs arrive randomly
over a period of time are called dynamic. There exists many static cases in practice and
experience from the static problem leads to understanding and insight into the dynamic
problem. Also, the solution methods for the static sequencing problems help our

understanding of the techniques in combinatorial optimization.

b. Deterministic and Stochastic: ‘I he deterministic case is the case where all elements of
the problem, such as the state of arrival of the jobs in the shop. due dates of the jobs,
processing times, availability of machines and so on do not include stochastic factors and
are determined beforchand. The stochastic case refers to the case where at least one of
those clements includes stochastic factors (Bellman, A.O. Esogbue and 1. Nabeshima

1982).

1.1.2 Scheduling Criteria

Scheduling criteria indicate the measures with which schedules are evaluated.
‘Two broad classes of criteria are schedule cost and schedule performance. A study of the
criteria proposed in the literature indicates that a wide variety of measures of performance

are employed. The most commonly used criteria are:

a. Makespan: 'The length of time required to complete all jobs is called the makespan
(‘Thomas and David 1993).

h. Average Job Flowtime: A job flowtime is the amount of time between the job’s arrival
into and departure from the system (Thomas and David 1993). The average flowtime over
all jobs in the schedule is used as a performance measure.

c. Average Job Latesess: A job lateness is the algebraic difference between the
completion time and the due date of a particular job, regardless of the sign of the
difference. The average lateness over all jobs in the schedule is used as a performance
measure (Thomas and David 1993).

d. Average Job Tardiness: A job tardiness is the length of time taken to complete a
particular job after its due date. Tardiness considers only the positive difference between
the job completion time and its due date. The average tardiness over all jobs in the

schedule is used as a performance measure (Thomas and David 1993).

e. Weighted Flowtime and Weighted Lateness: When using the mean flow time
criterion, the jobs are given cqual importance. One way to accommodate unequal
importance is to assigh a value or weighting factor to cach job and to incorporate the
weighting factors into the performance measure. These weights could be cost. The
weighted version of mean flow time is called weighted mean flow time, The weighted
version of lateness is called weighted lateness. The weighted version of tardiness is called
weighted tardiness (Thomas and David 1993).

f. Maximum Lateness, Tardiness: Minimizing maximum tardiness is important when
customers tolerate smaller tardiness but become rapidly and progressively more upsel for
larger ones. Minimizing maximum lateness is primarily important because it can be used
as an aid for solving other problems (Thomas and David 1993).

g. Average Job FEarliness: A job carliness is the length of time taken to complete a
particular job ahead of its due date. Farliness considers only the negative difference
between the job completion time and its due date. 'The average carliness over all jobs in

the schedule is used as a performance measure.

In real situations, any one of the single criteria cannot be optimized at the expense
of the others and thus, it is necessary and desirable to assess the alternate schedules with
respect to multiple critcria. The most common way of defining multiple criteria is
expressing different single c.iteria's into penalty and minimize the total penalty. Some of
the multiple criteria studied in the literature (Fry, Arm strong and Black stone (1987),
Fry, Leong and Rakes (1987b), Yano and Kim (1991, 1994), Davis and Kanct (1993),
Lee and Kim (1995)) are given below:

a. Weighted Early-Tardy: This objective is used when the customer does not want jobs to
be tardy but will not take early delivery. This Kind of situation is very common in Just-In-

Time manufacturing (Thomas and David 1993).

b. Weighted Early-Tardy-Flowtime: This objective is used to represent the conflicting
objectives of inventory levels and customer satisfaction. Minimizing a mean flowtime to
represent work-in-process inventory and total job carliness to represent finished goods
inventory with total tardiness to represent customer satisfaction (Morton and Pentico

1993).

1.2 Mathematical Solution Methods

‘The theory of scheduling includes a variety of techniques that are useful in
solving scheduling problems. Indeed, the scheduling field has become a focal point for
the development, application, and evaluation of combinatorial procedures, simulation
techniques, network methods, and heuristic solution approaches. The selection of an
appropriate solution technique depends on the complexity of the problem, the nature of
the model, the choice of a criterion, as well as other factors. In many cases it might be
appropriate to consider several alternative techniques. Solution procedures for solving

scheduling problems may be categorized as follows:

e Optimization Procedures

These optimization procedures provide optimal solutions for the given problem.
The most common optimization procedures used in job scheduling problems are branch
and bound which is basically an implicit enumeration technique that examines a subset of
the feasible solutions, and dynamic programming which decomposes the problem into
stages that are linked through recursive computations.

FFor both branch and bound and dynamic programming, while “small” problems
can be solved exactly. large problems have remained intractable, and realistic problems
are expected to remain so in the foreseeable future. The reason is that most scheduling
problems are usually known to be "NP-complete”, which means roughly that it is highly

unlikely that a solution method can be discovered that doesn't grow exponentially as a

function of the problem size. For example, no computer is available that could cheek out
all permutations of S0 jobs on onc machine. Even it such an extraordinary machine were
developed. to solve a problem with 55 jobs would 1equire a computer about 300,000,000
times faster (Thomas 1993). Of course. exact mathematical methods are more clever than

this, but running times do still go up exponentially in problem size in the same way

e Heuristic Techniques

Most of the problems in job sequencing are NP-complete. So it is very important
to have efficient heuristic procedures to produce quickly nem optimal solutions. he
literature on heuristics is immensc and we don't intend to mention all of it here. One class
of heuristics are improvement procedures. Improvement heuristics begin with a feasible
solution and successively improve it by a scquence of exchanges or mergers. Generally,
the feasibility of the solution is maintained throughout the procedure. Some of the
important improvement heuristic procedures are ‘Tabu Scarch, Adjacent Pairwise
Interchange, Pairwise Interchange. Beam Scarch. Genetic Algorithms, and Simulated
Annealing. Other heuristics are construction algorithms that generate a solution by adding
individual components onc at a time until a feasible solution is obtained. *Greedy’
algorithms, seeking to maximize improvement at cach step, comprise a large class ol
construction heuristics. In most construction heuristics, a feasible solution is not found
until the end of the procedure. A classical example of a construction heuristic is the

nearest neighbor heuristic for the Traveling Salesman Problem.

1.3 Thesis Problem Definition

This thesis mainly concentrates on static, deterministic, single machine scheduling
problems where the objective is to minimize the total of carliness, tardiness, work-in-
process, and machine idle costs. A special case of these problems is known to he NP-

complete. So, we provide quick and efficient heuristic procedures to solve them. Beside

having their own intrinsic value, these problems can be used to soive more complex job
shop scheduling problems. In particular. we consider the case where job have non zero
rclease times and multiple duc dates which we will refer to as the “‘decomposed job shop
cost problem”. As Amiouny (1995) shows, this problem can be used to solve job sliop

problems where the objective is to minimizc total cost.

1.4 Organization of the Document

Chapter 2 presents an overview of the literature on minimizing cost in single
machine scheduling problems. We found little work done on our problem of interest. We
start by considering special cases of the decomposed job shop cost problem; This allows
us to benchmark our heuristics against others found in the literature and to gain insight
into the general case. Chapter 3 presents a formulation of the problem, the design of a
heuristic procedure and experimental results for the special case where all jobs have zero
release times and cach job has a single due date. In chapter 4, we relax the assumption of
zero release times and present a formulation of the problem, the design of another
heuristic and experimental results. In chapter 5, we consider multiple due dates for each
job and present a formulation of the problem, design and experimental analysis for the
decomposed job shop cost problem. In chapter 6, we present our conclusions and sugg.est

directions for future work.

CHAPTER 2
Literature Review

The study of carliness and tardiness (£ /7)) penalties in scheduling models has
been a growing field of interest since the JIT philosophy started playving a major role in
industry. The use of both carliness and tardiness penalties gives rise o @ non tegulbar
performance measure i.c. the cost function may decrease as completion time increases,
which leads to new methodological issues in the design of solution procedures. The vast
majority of articles on £/7 problems deal with deterministic single-machine scheduling
models, although some single machine results have been extended to the parallel and
stochastic case. Here, we review the literature on £2/7 problems and recent extensions o

them.

2.1 Identical Earliness and Tardiness Penaltics

In this model both ecarliness and tardiness arc penalized at the same rate for all the
jobs.
2.1.1 Common Due Date

This problem involves minimizing the sum of absolute deviations of the job

completion times from a common due date . This can be expressed as
TC =Y|C, —d|
[
This problem was examined by Kanet (1981 a), Sundararaghavan and Ahmed (1984),

Hall (1986), Bagchi, Chang and Sullivan (1987), Hall, Kubiak and Scthi (1991). De,

Ghosh, and Wells (1993), Lece (1994), and Ventura and Weng (1995). ‘There are two
possible assumptions about the problem. a). If 'd is too tight (Z, P, < d). then it will

zero start time. b). If 'd’ is not tight (Z:',_ ., >d) then the problem is unrestricted. The

9

unrestricted problem has the following properties can be solved optimally in polynomial

time.

1. ‘There is no inserted idle time in the schedule.

[1. The optimal schedule is V-shaped, i.c., jobs are sequenced in Largest Processing
‘Time (L.PT) order before the due date and in Shortest Processing Time (SPT) order
after the due date.

111. One job completes precisely at the due date.

For the restricted version of the problem, only Properties I and II hold. A proof is
given by Ragavachari (1986). Hall, Kubiak and Scthi (1989) have demonstrated that the
restricted version of the problem is NP-complete. Bagchi, Sulivan and Cheng (1986)
outline an algorithm for determining multiple optimal schedules for the restricted version
assuming that the start time of the schedule is zero. Szwarc (1989) pointed out that the
procedure does not give an optimal solution when the start time is non-zero. Baker and
Chadowitz. (1989) relax this condition and generalize the algorithm. Hall, Kubiak and
Scthi (1991) solved a problem with common due date '« which is unrestrictively late by
using dynamic programming. Later, Ventura and Weng (1995) were able to eliminate two
subroutines from that pscudo-polynomial algorithm without affecting the final result. De,
Ghosh and Wells (1993) examined the properties and concepts necessary for the general
solution of two related classes of Early/Tardy problems, termed as (E7), and (WET),
where r is a positive integer exponent of completion time variance from due date. They
developed a solution methodology with a pseudo-polynomial complexity by using
dynamic programming. They showed that this methodology applies effectively to
instances of the two problem classes for r<2. Lee (1994) developed simple and hybrid
genetic algorithms by investigating basic operators for the applications of job sequencing
problems. e presented experimental results by comparing his simple and hybrid

heuristics against optimal solution procedure.

2.1.2 Distinct Due Dates

Oguz and Dincer (1994) examined the special case of single machine scheduling
problem where the distinct due dates tor the different jobs are related to processing times
according to the equal-slack rule. After determining some properties of the problem., they
showed the unrestricted casc to be polynomial time solvable and the restricted case as to

be NP-complete. The objective function is
TC=31C, —d,|
[

where C, is the completion time of job i and ¢, is the due date of job 4.

2.1.3 Non Linear Penalties

In some case, large deviations from the duc date are highly undesitable. One way
to account for this is to use the sum squared deviations from the commaon due date as the
performance measure. The objective function is shown as

"
TC =) (C, =d) = i(la,’ 171
-1 !
where E, is the carliness of job i and 7, is the tardiness of job /.

Bagchi, Sullivan and Chang (1987) show that the unrestricted version of this
problem is equivalent to minimizing the sum of absolute variation of completion time to
due date. This problem is also studied by Eilon and Chowdary (1977), Kanct (1981a),
Vani and Ragavachari (1987), Weng and Ventura (1994). Bagehi, Chang and Sullivan
(1987) also examine the general casc in which carliness penalty is different from tardiness
penalty assuming that the schedule starts at time zcro. They proposed implicit
enumeration procedures based on scveral dominance conditions and reported their
computational experience. For the restricted version of the problem, De, Ghosh and Wells
(1989a, b) present enumerative solution procedures without assuming that the schedule

begins at time zeio. Weng and Ventura (1994) presented an integer programming

formulation and a lagrangian solution procedure to approximately solve the tight'

restricted version of the problem.

2.1.4 Stochastic Models

‘The problem of scheduling # jobs on a single machine. which is subjected to
random break downs. to minimize the expected sum of non regular penalty functions has
been studied by John and Raghavachari (1993). They consider a simple resource model
when the penalty function is the squared deviation of job completion times from a
common Jdue date. They developed characterizations of optimal schedules for the
objective function when common due date is a decision variable and when it is given and

fixed.

2.L.5 Parallel Machine Models

Hall (1986). Sudhararagavan and Ahmed (1984) extended the basic version of the
unrestricted problem to the parallel machine case. They examined the minimization of
total absolute deviation with m identical machines operating in parallel. Emmons (1987)
extended this analysis to the case where carliness and tardiness are penalized at different
cost rates. He also considered uniform parallel processors (non identical machines, where

cach machine has its own efficiency factor). He outlined an algorithm for the problem.

2.2 Different Earliness and Tardiness Penalties

Here all the jobs have identical penalties. but the carliness penalty is different
from the tardiness one.
2.2.1 Common Due Date

This is a generalization of the previous model which has same earliness and

tardiness penalties. The cost function to minimize is

TC =Y (ak, + 1)

-1
where o is the earliness penalty and P is the tardiness penalty.

This problem is analyzed by Bagchi. Chang and Sullivan (1987) and brietly by
Emmons (1987), Krieger and Ragavachari (1992). The unrestricted version of the
problem can be solved optimally by using properties I, I and 1.

For the restricted version of the problem. which is NP-complete, Bagehi, and
Chang and Sullivan (1987) showed that properties | and 11 hold. Baker and Chadowits
(1989) presented a heuristic solution approach for this version. Krieger and Ragevachari
(1992) showed that any optimal schedule which minimizes the sum of the penalties (carly

or late) for all the jobs is V-shaped when the penalty function for cach job is "monotone”.

2.2.2 Different Due Dates

Szwarc (1993) examined single-machine # job carliness-tardiness model with job-
independent penaltics where processing time not necessarily starts at time zero. e
demonstrated that the arrangement of adjacent jobs in an optimal schedule depends on
critical value of the start times. Based on these precedence relations, he developed a
criterion under which the problem can be decomposed into smaller problems. He claimed
that the developed results can be incorporated in a branch-and-bound solution method. He
mentioned that without the lower bound the branching scheme can handle only small
problems. He tested 70 examples of the size n=10 where the branching scheme

significantly reduced the search for an optimal schedule.

2.3 Job Dependent Earliness and Tardiness penalties
Here each job has independent carliness and tardiness penaltics. This s

generalized version of the problem mentioned in the previous section.

2.3.1 Common Due Date
In this casc every job has its own penalty function. but all jobs have common due
date. The cost function to minimize is

TC=Y (a,E, +B,T))
=1

The unrestricted version of this problem has been examined by Bagchi (1985),
Cheng (1987), Quaddus (1987), Bector, and Gupta and Gupta (1988), Hoogeveen and
Van De Velde (1991), De, Ghosh and Wells (1991), Bahram and Duane (1995), Lee and
Kim (1995). The restricted version of this problem has been examined by Hall and Posner
(1991), Hoogeveen, Oosterhout and Van De Velde (1994). The unrestricted version of the
problem is NP-1lard. Bagchi (1985) considered the case in which the earliness penalties
ar¢ proportional to processing times (o, =op,). Bector, Gupta and Gupta (1988)
presented a lincar programming perspective on these same results. Hall and Posner
(1991) established the relevant variations of propertics I and II and also some dominance
propertics that provide necessary conditions for an optimal sequence. They proceeded to
develop a dynamic programming algorithm, which they showed to be pseudo polynomial.
Quaddus . 1987) considered the general case in whicha, # B, but only dealt with the
selection of the common due date. But Baker and Scudder (1989) pointed out that
Quaddus (1987) neglected the sequencing aspects of the problem. Hall and Posner
(1991), Hoogeveen and Van De Velde (1991, De, Ghosh and Wells (1991) examined the
case where oo, =3, for all jobs. Hoogeveen and Van De Velde (1991) proved that this
problem is NP-hard even if all job weights are equal. They presented a pseudo
polynomiil algorithm that requires O (n2d) time and O (nd) space. De. Ghosh and Wells
(1991) showed that the solution to this problem can be derived from solutions to different
subproblems. Properties of these subproblems were identified and used to develop an
exact algorithm of pseudo-polynomial complexity. Hogeveen, Oosterhout and Van De

Velde (1994) developed a branch-and-bound algorithm based on lagrangian lower and

upper bouiids that are found in O (nlogn) time. They proceeded to develop a 4/3-
approximation based upon the lagrangian upper bound. Bahram and Duane (1993)
showed that the V- shaped property holds for the general case. Lee and Kim (1993)
developed parallel genetic algorithms for this problem. They illustrated the efticiency of

the parallel genetic algorithm with computational results.

2.3.2 Distinct Due Dates

In this case earliness and tardiness penalties with independent job due dates are
considered. The objective function for this casc is same as the section 2.3.1.

Garey, Tarjan and Wilfong (1988) were the first to show that this problem is NP-
complete. Recent papers exploring solution procedures include Yano and Kim (1991),
Fry, and Armstrong and Blackstone (1987), Abdul-Razaq and Potts (1988), Szware
(1988), Davis and Kanet (1993), Kim and Yano (1994), and Lee and Choi (1995). In this
model Properties 1 and II do not hold. An optimal sequence may not be V-shaped and
inserted idle time may be desired. The search for an optimal schedule can, however, be
decomposed into two subproblems as follows: Finding a good job scquence; and
scheduling inserted idle times.

Abdul-Razaq and Potts (1988) usc a relaxed dynamic programming procedure to
obtain good bounds. But they did not insert any idle time between successive operations.
Szwarc (1988) gives a branching procedure for finding an optimal schedule without
inserting idle time. But he did not report any computational experience. Ow and Morton
(1988,1989) examined a few heuristics without inserting idle time between operations,
Garey, Tarjan and Wilfong (1988) gave the procedure to insert idle times optimally for
symmetrical earliness and tardiness penalties. The proposed algorithm runs in O (nlogn)
time. Fry, Armstrong and Blackstone (1987a) described a linear programming procedure
to insert idle times optimally for a given sequence. In their model, asymmetrical carliness

and tardiness penalties arc assumed. Davis and Kanet (1993) presented a time tabular

15

procedure to insert idle times for a given sequence. They claimed that time tabular
procedure takes modest time to get optimal start times. They presented computational
experience for few heuristic procedures. Kim and Yano (1994) identified several
propertics of optimal solutions for this problem. They developed a branch-and-bound
algorithm and a heuristic algorithm (priority relationships) based on these properties.
They observed that CPU time requirements for the branch-and-bound procedure depend
heavily on the range of due dates. That is, problems with less widely dispersed due dates
are more difficult to solve optimally with the branch-and-bound algorithm. Lee and Choi
(1995) developed a genctic algorithm by employing problem specific reproduction,

crossover and mutation operators.

2.4 Due Date as a Decision Variable

Iere we review the problem of finding an optimal schedule and due date for a set
of jobs, in a static single machine system. The scheduling criterion is the minimization of
the carliness and tardiness penaltics. This problem has been studied by Cheng (1985.
1986a, b, 1988a, b, ¢, 1990), Quaddus (1987a, b), Bector (1987, 1988). Bector, Guptha
and Guptha (1988). Suresh and Dilip (1992), and Parthasarati (1993). Cheng (1989)
presented a review article where due date as a decision variable. Cheng (1985) outlines a
procedure to find an optimal due date by solving the lincar programming dual problem to
minimize weighted average of the absolute value of job lateness. This problem has been
extended to determine the optimal value of the flow allowance (which is a constant add:d
to the processing time to decide due date) and the optimal job sequence to minimize a
cost function based on the flow allowance and the job earliness and tardiness values by
Cheng (1988b) where he solved the problem by using linear programming. Cheng
(1988a) studicd the problem of finding the optimal common flow allowance for the
common due date assignment method, and the objective function is based on the idea that

there is no penalty for a job that misses its due date marginally. When a job misses its due

16

date by a big margin. it assumed that the penalty is proportional to the amount of missed
due dates, regardless of its being carly or tardy. He presented three lemmas to enable the
determination of the optimal due-date and sequence.

Quaddus (1987a) developed a lincar-programming model to find the optimal
'CON due-date’ i.c. constant-allowance due date, where cach job receives exactly the
same due date. He considered a more generalized version (job dependent) of minimizing
earliness and tardiness problem and presented an optimal solution procedure by using
duality theory. Quaddus (1987b) considered the problem of minimizing absolute
deviation of completion times from common due date and presented a lincar
programming procedure to find an optimal CON due date which is solved by considering
its dual. Cheng (1990) presented a partial search algorithm to solve single-machine
common due-date assignment and sequencing problems. This partial scarch algorithm is
not polynomial-bound. but he claimed that it is showing better performance in terms of
computational efficiency than that presented in Cheng (1987).

Bector, Gupta and Gupta (1988) developed an optimal algorithm based on the
idea of sensitivity analysis in lincar programming and clementary concepts in lincar goal
programming to find an optimal value of common duc date and a corresponding optimal
sequence for minimizing mean absolute deviation of completion times from a common
due date. Suresh and Dilip (1992) developed an optimal algorithm of order O (nlogn) to
determine optimal duc dates and a sequence for an #-job problem when the number of
jobs to be assigned to different due dates. They developed important dominance property
to determine the number of jobs to be assigned to different due dates. Parthasarati (1993)
presented a branching procedure for finding an optimal solution to a common due date

case o minimize weighted sum of carliness and tardiness penaltics.

2.5 General E/T Models

[.iman and Ramaswamy (1994) studied the problem of » jobs on single-machine
to minimize the sum of weighted carliness and weighted number of tardy jobs given a
delivery window. There is no penalty if jobs arc completed with in the delivery window.
They assumed that the length of delivery window (which corresponds to the time period
within which the customer is willing to take deliveries) is a given constant. They
considered two cases of the problem: a). Unrestricted window case (one where the
position of the delivery window is internally determined). b). Restricted window case
(one where the position of the delivery window is externally specified parameter). They
described some optimal properties. and proved that the problem is NP-complete even in
the unrestricted window case. They presented dynamic programming algorithms for both
cases. They did not report any computational experience.

Li, Cheng and Chen (1995) considered the objective of minimizing the weighted
number of carly and tardy jobs under the condition that the start times and due dates are
“agreeable™, i.c., the start times must increase in the same sequence as the due dates.
They showed that the problem is NP-hard in the strong sense. They discussed the
computational complexity of the case when all carliness penalties are the same and all
tardiness penalties are same. They proposed a dynamic programming approach to solve a
special case of the /T problem in pseudo-polynomial time. They presented two
heuristics to deal with the general problem and claimed that one of the heuristics will
generate near optimal solutions. They presented somc computational results and

suggested directions for future research.

2.6 FET Model
The E/T problem was extended by Fry, Leong and Rakes (1987b) to FET (Flow
time, Earlines, and Tardiness penalties). where they included work in process penalty in

the model. They considered independent job earliness and tardiness and work in process

18

penalties. They studied the static. single-machine, lincar cost case by inserting idle time
in-between job operations and described a linear programming procedure to insert idle
time optimally between jobs. The objective function they used can be expressed as

TC=Y(y W, +a E, +P,T)

[
Fry, Leong and Rakes (1987b) examined two precedures for the above problem.
The first is an enumeration scheme using bounding and dominance criteria and the
second is a mixed integer lincar programming formulation. Computational experience

with the two models was also presented.

2.6.1 Non-linear FET Problem

Zheng, Nagasawa and Nishiyama (1993) cexamined an unconstrained single-
machine scheduling problem with a common due date where the objective is to minimize
the total cost of flow time, earliness and tardiness. They considered a non-lincar cost
function that is identical for all the jobs. They proposed several dominance conditions
necessary for an optimal schedule. However Weng and Ventura (1994) point out that two
key dominant properties that were derived by Zheng, Nagasawa and Nishiyama (1993)

do not necessarily hold for an optimal sequence.

2.7 Other Models

Lee, Danusaputro and Lin (1991) examined the n-job, non-preemptive, single-
machine problem of minimizing the weighted sum of tardy jobs and carliness-tardiness
penalties about a common due date. They studied the case of job-dependent penalties
under a certain condition on the ratio of processing times and weights. They considered
two cases: a) Due date as a given parameter. b) Due date as a decision variable, and
provided dynamic programming algorithms to solve both instances. They proposed some

efficient algorithms for the special case when the weights are independent of jobs.

Sung and Joo (1992) examined the single-machine scheduling problem with a
common due date. The objective function is to minimize the sum of earliness, tardiness
and starting-time penalties in the situation where all jobs are not required to be available
at time zero. They characterized several dominant solution properties with respect to
assigning cither carly or tardy positions to each job and to sub-sequencing all the jobs
assigned in such carly and tardy sub-sets, respectively. They suggested a stepwise
procedure for finding an optimal starting time for an arbitrary given sequence. These are
then all put together to construct a heuristic algorithm for a good solution search. They
presented their computational experience with the proposed heuristic algorithm.

Herrmann and Lee (1993) examined the single-machine problem of minimizing
the sum of carliness and tardiness penaltics and the delivery costs of the tardy jobs, where
the tardy jobs arc delivered in batches with a fixed cost per batch about a common due
date. They used a pscudo-polynomial dynamic programming algorithm to solve the
problem. They also discussed some special cases that are solvable in polynomial time and
showed that for a given schedule of tardy jobs. the problem of scheduling the batch
deliveries is equivalent to the dynamic lot sizing problem. Finally, they presented the

results of empirical testing of the dynamic program and a number of heuristics developed.

2.8 Concluding Remarks

The above research does not include machine idle cost into the model, although
we believe it is an important component. An industrial survey conducted by the
sequencing research group at Texas Tech University indicated that the percentage
idleness of the machines varies from 15% to 35%. This survey shows the need of
including machine idle cost in the objective function (Gupta 1970). Moreover, keeping
machine idle may cause future delays. Adil, Rajamani and Strong (1993) developed a
mathematical model for cell formation by considering machine idle time penalty, work in

process penalty. carliness penalty and tardiness penalty. This kind of formulation for

20

scheduling problems is very important to generalize the model. A lot of work needs to be
done towards this kind of problems to get efficient solution methods that find near
optimal solution because this problem is AP-complete. More computational experiencee is
required to find a good heuristics for this model. Another aspect of the decomposed job
shop cost problem that is not addressed in the literature is multiple due dates and multiple

tardiness penalties for cach job.

21

CHAPTER 3

Single due date per job and equal release times

In this chapter, we formulate a model and design a new heuristic procedure for
single machine scheduling problems in which jobs have zero release times and the
objective is to minimize the total of earliness, tardiness, work-in-process, and machine
idle costs. We also propose a new heuristic procedure to insert idle times optimally for
a given sequence. We start with this simplified version of the problem for several
reasons:

e We believe that this problem provides good understanding and foundation to
develop efficient heuristic procedures to solve the decomposed job shop cost
problem.

e Simplified problems often allow to gain insight into the more sophisticated ones. In
particular, we wanted to identify the factors that had the most effect on the relative
performance of different heuristics.

e Other authors (Fry, Armstrong, and Blackstone (1987a), Yano and Kim (1991),
Davis, Kanet (1993)) looked at very similar problems. This allow us to have a
benchmark to compare our results.

e The problem is of interest in itself as the interest it has generated proves.

3.1 Problem Formulation

Consider a non-preemptive, single-machine scheduling problem with n jobs. All
jobs with deterministic processing times p, have possibly different due dates d, and are
ready for processing at time zero. Set up times are included in processing times. Idle
time is allowed between any successive job operations. This model includes work-in-

process cost, earliness penalty cost, tardiness penalty cost, and machine idle cost. Here

22

the objective is to minimize the total cost consisting of the sum of the above mentioned
costs:
Total Cost = Work-In-Process Cost + Earliness Penalty Cost +

Tardiness Penalty Cost + Machine Idle Cost.
Work-In-Process Cost (WPC) : This cost, which is also known as the tlowtime cost,
is the cost incurred due to the wait for processing of unfinished jobs in the shop. The
job which waits in the shop is a form of capital tied up in the shop. This capital could
have been utilized to produce additional return on capital. For a job i with work in
process penalty y,, and flowtime (or completion time) ¢, we assume that the penalty is
a linear function of time:

WPC = v ,(,
Earliness Penalty Cost (EPC) : This cost is duce to ecarly completion of jobs.
Customers are often unwilling to receive goods before a certain date (the due date) due
to the JIT manufacturing philosophy. Therefore, a job that finishes carly incurs a cost
for finished goods inventory. Other than that, carly job completion can cause the cash
commitment to resourczs in a time frame carlier than nceded, giving rise to carly
completion penalties. For a job i with earliness penalty «, and carliness 72, We assume
that the penalty is a linear function of time:

EPC = « F,

Tardiness Penalty Cost (TPC) : This cost is due to late completion (after the due date)
incurred due to various reasons, such as loss of good will, penalty clause in the
contract, or opportunity costs of lost sales. For a job i with tardiness penalty 3, and

tardiness 7;, We assume that the penalty is a lincar function of time:

TPC =B,T,

23

Machine Idle Cost (MIC) : This is the cost incurred for keeping the machine idle. Due
to the JIT production, jobs need to be processed on time which force the machine to be
idle. If a machine is kept idle to schedule present jobs effectively, it may cause jobs
waiting for machine in the future. Depending upon the expected future demand, it may
be wise to give some penalty for keeping the machine idle. Where machine idle cost
per unit time isp and M; is machine idle time, that cost is

MIC = th

We represent single machine scheduling problem with the objective of
minimizing the total of work-in-process, earliness, tardiness, and machine idle costs as
n/1/FETM . The function we seek to minimize is the sum of all those costs, and can
be expressed as

TC = Y (¢ W, +a,E, +B,T,)+pM,

-1

The above problem is NP-complete in the strong sense, since it is a
generalization of the weighted tardiness problem, which is known to NP-hard in the
strong sense (Lenstra 1977, Lawler 1977). Fry, Armstrong, and Blackstone (1987a),
Yano and Kim (1991), Davis, Kanet (1993) examined E/T problem as two different
problems. First they find best schedule without inserting idle times in between jobs and
then they insert idle times optimally for the obtained schedule. If we follow that
procedure we need to have an algorithm which inserts idle times optimally for

n/1/ FETM problem.

3.2 An Optimal Idle Time Insertion Algorithm
Here we present an algorithm to insert idle times optimally in between job

operations for n/1/FETAM problem. Several authors have suggested optimal

24

procedures to insert idle times given the sequence. Here we developed another such
procedure that we feel is more elegant and easier to understand and implement.

Our procedure starts with all the jobs scheduled, in the given sequence, starting
at time zero and with no inserted idle time. Starting with the first job, we insert idle
time before a job j only if moving that job and all succeeding ones forward by one time
unit results in a reduction in total cost. The amount of idle time we insert is equal to
the minimum non-zero earliness among ; and its successors, since the cost reduction
will not change over that range when all costs are linecar. Then we recalculate the
potential cost reduction to see whether inserting more idle time is beneficial. Denoting
by C,, E;, and T, the completion time, earliness and tardiness of job i, the above

procedure is formally stated as follows:

Algorithm IDLE TIME INSERT [ITI]: Schedules n jobs in a given sequence to
minimize the total of flowtime, earliness, tardiness, and machine idle costs.
1. Number the jobs 1,..., n in the order of the given sequence, from a schedule with
no inserted idle times, and compute their carliness and tardiness:
(a) Set C; = p,, E; = max{0, d} —Cy}, and T}, = max{0, C, —d,},
(b)Set C, = Cy + p, E, = max{0, d,— C}, and T, = max{0, C,— d} for i
=2,...,1.
2. Initialize two counters j «—1, k <1, and a number to keep track of potential cost
reduction from inserted idle time CR « ().

3. Compute the change in cost when pushing job k forward one time unit, and add that

cost to CR:
(R« CR+u, -v, if lp >0
CRe«CR-B, -7, otherwise

4. Check the values of CR and k:

25

(a) If CR>0 and k<n, set k « k+1 and go to step 3.

(h) If CR<0 and k < n, set j « k+1, k « k+1. CR « O and go to step 3.

(¢c)If CK >p and k = n, move all the jobs j,..., n forward in the time by
min /. Update the earliness and tardiness of the moved jobs, setk « j , CR

[7]
« 0 and go to step 3.

(d)If CR<p and k = n, stop.

In step 4(b), since the cost increases by moving jobs j,..., k forward, we stop
considering those jobs for idle insertion and continue to start with job A+1. Note that
cach time step 4(c) applies, at least one job that was carly becomes on-time. Since there
can be no further reduction in cost when all jobs are either on-time or tardy, there will
he at most # iterati-ns of the algorithm. In each iteration, there will be at most n jobs

to consider, so the time complexity of the [DLE TIME INSERT is O).

Theorem 1 For a given sequence of jobs, algorithm "IDLE TIME INSERT" inserts idle
times optimally in between jobs when all costs are linear.
Proof: Denote by o the schedule obtained from Optimal timing algorithm and let o
be any other schedule with the same sequence but at least one difference in inserted idle
times. Let j be the first job such that the idle /, before j in o is different from the idle
time /, before j in o .

If 1, > [, we know that moving j and any number of succeeding jobs forward

by one time unit will reduce the total cost, so o can not be optimal.

If I, < I,. let k denote the first job after j that has idle time after it in o . We
know that moving the jobs ¢,....k for any ;j <i<k forward by one time unit will not
reduce the total cost. Now let & denote the first job after j that has idle time after it in
o . If ¥>k . then moving the jobs j,...k in ¢ backward in time by one time unit will

not make o any worse. Otherwise, moving jobs & ,..., k in o backward in time by

one time unit will not make ¢ any worse. Therefore, o will be no worse by at feast

one of the above reductions in idle time. O

3.3 Dominance Conditions

One way of reducing the enumeration is through the stablishment of dominance
relations. Such dominance conditions are established here for n/1/FEIN problem.
The possibility of inserted idle time complicates the problem since a job which was
once early in a partial sequence may be forced tardy as more jobs are added to that
partial sequence and idle time is inserted.
Lemma 1: In an optimal schedule o, all jobs scheduled after the latest due date imust
appear in non-increasing order of the ratio (B, +y,)Y/ p, .
Proof: The proof is by a simple interchange argument. First it is obvious that o
should contain no idle time between any (wo jobs scheduled after the latest due date.
Now assume that there are two adjacent jobs i and j such that both 7 and j start after the
latest due date, i is scheduled before j, (b, +v)/ p, <(B,+y)/ p,. and there is no
idle time between i and j. Interchanging ¢ and j results in a change in total cost of

(B, +Y NG =CH+(B, +y NC, =)
=B, +y NC +p, =CH+(P, +y NC, =p,—C))

= (B,+y,Xp,)=(B,+y Xp)
BI+YI BJ+YI
<
P, P,

< 0 since

So interchanging i and j reduces the total cost.

Lemma 2: In an optimal schedule o, all jobs scheduled before the earliest due date
must appear in non-decreasing order of the ratio (v, —7,)/ p,.

Proof: Same as before. O

27

Lemma 3: Consider a sequence with adjacent jobs i and j such that job i is late, job j
is early and i « j. Interchanging i and j will never decrease the penalty unless
pCr,=uw,)>pB+7,).

Proof: The interchange will increase the lateness of the late job and the earliness of the

carly job. Therefore cost will never decrease unless p,(y, —a,)> p, (B, +v,) is true. O

2.4 A Job Insertion Heuristic

Since n/1//ETM scheduling problem is known to be an NP-complete, the
development of heuristic algorithms that guarantee good solution becomes necessary to
solve big problem sizes, while optimal procedures can solve very small problem sizes.
Existing heuristics for earliness tardiness problems are mostly applications of general
scarch techniques. Here we develop an algorithm that is specially tailored to the
problem and takes advantage of the lemma 1.

We start by sorting jobs in non-increasing order of (f,+y,)/p, and try to
schedule each job at its due date. If it does not overlap ary previously scheduled jobs,
we go on to the next one. Otherwise, we try placing that job at the beginning, then at
the end, and then we try three ways of inserting it in between previously placed jobs
close to its due date, pushing other jobs earlier or later so that it fits. Finally we keep it
in the position that results in the lowcst total cost.

To make the presentation easier, we use the expression “pushing jobs forward”
for a set of scheduled jobs to designate changing the start times C, —p, of those jobs
from their current values to larger values while keeping them in the same sequence and
satistying the constraints that their processing time intervals can not overlap. We also
use the expression “f is in currently idle time” for a point in time ¢ to mean that in the

current schedule, there is no job i such that (', — p, <1< C, . The details are as follows:

28

Algorithm GREEDY INSERT [GI]: Schedules 7 jobs on a single machine in an

attempt to minimize the total of flowtime, earliness. tardiness, and machine idle costs,

which need not be linear.

1.

Sort the jobs in non-increasing order of ([, +y,)/p,. Break ties by carliest due

date first.

Fori =1, 2,..., ndo:

o If placing i so that it completes exactly at its due-date does not interfere with
any of the previously placed jobs, place it there.

e Otherwise, select among the following five schedules the one with lowest total
cost:

(a) Place i so that it comes first in the sequence ot scheduled jobs, with no idle time
between i and the next job. This may require pushing forward some previously
scheduled jobs.

(b) Place i so that it comes last in the sequence of scheduled jobs, with no idle time
between i and the preceding job.

(c) If d, is in currently idle time, place i so that it completes at o, and push
preceding jobs earlier so that they do not overlap. Otherwise, find the closest
idle time that occurs prior to d, and insert ¢ there, pushing preceding jobs
earlier if necessary. In both cases, if pushing preceding jobs carlier is not
enough, succeeding jobs are pushed later.

(d) If d, - p, is in currently idle time, place i in that idle interval as late as possible
if it fits, or by pushing succeeding jobs later if it does not. Otherwise, find the
closest idle time that occurs after o, — p, and insert { there, pushing succeeding
jobs later if necessary.

(e) If d, is in currently idle time and job / fits in that idle interval, place it so that it

starts at the start of the idle interval. If it does not fit, place it so that it

29

completes at the end of the idle interval and push preceding jobs earlier to make

it fit.

The five schedules tested in step 2 may not all be distinct ones. However, at
least two options are tested: One placing the job early, and one placing it tardy. So
although we are initially sorting the jobs according to their tardiness and flowtime
penalties only, the effect of the earliness penalties and of the machine idle cost comes
to play when choosing among the five schedules of step 2.

GREEDY INSERT works in O(nz) and results in a schedule with idle times already
inserted, through not necessarily in an optimal fashion. This is important especially
when the costs involved are not linear, since the IDLE TIME INSERT algorithm and other

similar procedures presented elsewhere require all costs to be linear.

Numerical Example Illustrating GREEDY INSERT

Consider the n/1/FETM problem with 5 jobs, specified by the data in Table

3.1
Table 3.1 Example Scheduling Problem:
Jobs Processing Due date Earliness Tardiness Flowtime
Time Penalty Penalty Penalty
1 2 6 6 10 1
2 5 18 4 8 1
3 8 15 10 20 2
4 10 30 8 13 4
5 4 4 6 8 2

Machine ldle cost = 1

30

Solution:
Step 1: If we sort jobs by non - increasing order of (B, +y,)/p, . we get a sequence of
1-3-5-2-4.

Step 2: Since Job 1 is a first job, place it exactly at its due date.

d =6

1]

Y 4 6

Placing Job 3: completes exactly at its due date and does not interfere with any of the

placed jobs, so place it there.

d, =6 d, =15

lJII |J3 I
4 6 7 15

Placing Job S: completes exactly at its due date and does not interfere with any of the

placed jobs, so place it there.

Placing Job 2: at its due date will interfere with job 3. So, following 5 cases will be

examined and schedule with least cost will be chosen.

(a).Place job 2 so that it comes first in the sequence of scheduled jobs, with no idle
time between job 2 and the next job. This may require pushing forward some of

the previously scheduled jobs such as JS, J1, J3.

d;=4d =06 d=15d,=18

R s Tl B
0 5 9 11 19

31

Total cost for case A = 294
(h). Place job 2 so that it comes last in the sequence of scheduled jobs, with no idle

time hetween job 2 and the preceding job 3.

d.=4 d, =6 d,=15d,=18

Total cost for case B = 81
(¢).Since due date of job 2 is in currently idle time, place at its due date 18 and try to

push all the previous jobs earlier so that they do not overlap.

d;=4d, =6 d,=15d, =18

Total cost for case C = 79
(d). Since d, - p, interfere with job J3, we find the closest idle time that occurs

after o, — p, and then insert J2 there, pushing succeeding jobs later if necessary.

d.=4d, =06 d,=15d, =18

Total cost for case D = 81
(¢).Since the due date of job 2 in he idle time and fits in that interval, we schedule
job 2 to start at time at the start of the idle interval i.e. 15. The schedule looks as

shown below.

d;=4d,=06 dy=15d,=18

s (] [T n]
b 4 6 7

Total cost of case E=81

From the above select the schedule with lowest cost i.e. case (O).

Placing Job 4: completes exactly at its due date and does not interfere with any of the

placed jobs, so place it there.

di=4 d =6 d,=15d, =18 dy 30

T T EE 1on | 71]
46

h 4 1920 30

Total cost for this schedule =200

3.5 Heuristics Used for Comparison

The computational effort required to exactly solve NIP-hard problems grows
remarkably fast as the problem size increases. Comparison of GREEDY INSERT with
optimal solutions for large problems (greater than 15 jobs) is very difficult, so we
restrict the comparison to some of the efiicient search techniques that were found to
perform well elsewhere. We present a brief description of such procedures, the first
four of which are dispatching rules, and the last three are neighborhood search

techniques.

SHORTEST PROCESSING TIME [SPT]: The jobs are sequenced in non-decreasing
order of their processing time. Ties are broken by carliest due-date first. We consider
this dispatching rule since our total cost includes work-in-process cost and it is known

that [SPT] minimizes flow time in single machine scheduling problems.

EARLIEST DUE DATE [EDD]: The jobs are sequenced in non-decreasing order of

their due-date. Ties are broken by shortest processing time first. We consider this

33

dispatching rule since our total cost includes earliness, tardiness costs and it is known
that [EDD] minimizes the maximum job lateness and the maximum job tardiness in

single machine scheduling problems.

SHORTEST SLACK [SLK]: The jobs are sequenced in non-decreasing order of their
slack (for a given job is the until due date minus the time required to process it). Ties
arc broken by carliest due date first. We consider this dispatching rule since many

rescarchers felt that [SLK] provides reasonably good solutions in less time.

BistT OF EDD AND SLK [E/S]: This selects best solution obtained by EDD and
SIK for a given problem. We consider this dispatching rule since it provides always

best solution out of [EDD] and |SLK] in less time.

ADJACENT PAIRWISE INTERCHANGE: This is a search algorithm that starts with a
given sequence (in our experiments, we used the solution from [EDD}) and tries to
improve on it by interchanging the positions of adjacent jobs in the sequence. We
consider two implementations of the search:

1. APII begins at the first position in sequence and proceeds front to back. When
interchanging a pair of adjacent jobs results in cost reduction, the interchange is made,
and the search for a favorable interchange begins from that position onwards in the
sequence. This procedure terminates when their is no improvement found in (n-1)

comparisons from front to back.

2. API2 forms the (n-1) sequences obtained by a single adjacent pairwise interchange
operation (the “neighborhood™) and evaluates the total cost of each, then takes the one
which results in the least cost. This procedure is repeated on the last sequence until

their is no further improvement in the total cost.

4

PAIRWISE INTERCHANGE: This search algorithm is similar to the previous one
except that it considers the interchange of any two jobs in the sequence. Again, we
consider two implementations of the search:

1. PI1 : This algorithm starts with the initial sequence (in our experiments, we used the
solution from [EDD]) and tries to improve the solution by considering all possible
pairwise interchanges. Unlike APIL, the jobs nced not be adjucent. Here we do
immediate interchange if it results in any reduction of total cost betfore considering the
next pair. This procedure terminates when their is no improvement found in nn-1)/2

comparisons from front to back.

2. PI2 : Unlike the above here we form the neighborhood for the solution available
form [EDD] by pairwise interchange operation and evaluate the best possible seed in
the neighborhood to be consider as a next sequence. Here we form n(n-1)72 sequences
as a neighborhood for each step. This procedure continues until there is no

improvement in by forming the neighborhood.

TABU SEARCH: Tabu search, which is a strategy designed to guide other methods (in
this case search methods) to escape the trap of local optimality for solving optimization
problems, saw its beginning over a decade ago and was first fully described in by Fred
Glover (1977, 1986, 1990). Since that time, tabu scarch has been shown to be a
remarkably effective approach to a wide spectrum of probiems. Tabu scarch has
obtained optimal and near optimal solutions to a wide variety of classical and practical
problems in applications ranging from scheduling to telecommunications and from
character recognition to neural networks (Fred Glover 1990). This search algorithm
keeps a list of recently visited sequences (the tabu listy and moves in cach iteration to
the best sequence that is in the neighborhood of the current one but not in the tabu list,

even if that sequence results in an increase in cost. This allows for diversification in the

35

search and may prevent it from being stuck at a locally optimal sequence. In our
implementation, we define the neighborhood as consisting of all possible pairwise
interchanges of a sequence. When all moves in the neighborhood are in the tabu list,
we choose randomly among them in order to continue the search (this is known as the
aspiration criterion). We stop the search after a fixed number of iterations, and use the

notation [TABUK] to denote a search with k iterations.

3.6 Experimental Design

In order to test the performance of our heuristic and compare it to other
procedures, we designed a 2° factorial experiment that takes into account the following
factors:

1. The tardiness factor 7', which is a measure of the tightness of the due dates.

2. The due date range R, which is a measure of how spread out the due dates

are around their average.

3. The earliness cost to tardiness cost ratio.

4. The flowtime cost to earliness cost ratio.

5. The machine idle cost.

The first four factors are used by other rescarchers, we added machine idle cost
in generating problems to see the effect on the performance of heuristics. The full
factorial design to conduct experiment is shown in the Table 3.2. In order to be
consistent with results reported elsewhere, we randomly generated the processing times
of the jobs from a Discrete Uniform [1,30] distribution, the due dates from a Discrete
Uniform [P(1- T - R2), P(1 - T + R/2)] distribution where P = Z?:l p,, and the
tardiness costs per unit time 3, from a Continuous Uniform[l1,5] distribution. We ran
the experiment for instances with 10, 20, 30, 40, and 50 jobs per problem and tested
GREEDY INSERT against heuristics that have been proposed by others for solving

carliness tardiness problems with different due dates, and that can be easily modified to

36

accommodate flowtime and machine idle costs. All the algorithms presented in this

chapter were coded in PASCAL and run on Pentium at 66 M.

Table 3.2 Experimental design to calculate the effect of different factors on the

performance of heuristics:

Design Factors considered in the experiment
Number T R w/ y ‘u n

1 0.1 0.8 0.25 0.1 5.0
2 0.1 0.8 0.25 0.1 25.0
3 0.1 0.8 0.25 0.25 5.0
4 0.1 0.8 0.25 0.25 25.0
5 0.1 0.8 0.75 0.1 5.0
6 0.1 0.8 0.75 0.1 25.0
7 0.1 0.8 0.75 0.25 5.0
8 0.1 0.8 0.75 0.25 25.0
9 0.1 1.2 0.25 0.1 5.0
10 0.1 1.2 0.25 0.1 25.0
11 0.1 1.2 0.25 0.25 5.0
12 0.1 1.2 0.25 0.25 25.0
13 0.1 1.2 0.75 0.1 5.0
14 0.1 1.2 0.75 0.1 25.0
15 0.1 1.2 0.75 0.25 5.0
16 0.1 1.2 0.75 0.25 25.0
17 0.4 0.8 0.25 0.1 5.0
18 0.4 0.8 0.25 0.1 25.0
19 0.4 0.8 0.25 0.25 5.0
20 0.4 0.8 0.25 0.25 25.0
21 0.4 0.8 0.75 0.1 5.0
22 0.4 0.8 0.75 0.1 25.0
23 0.4 0.8 0.75 0.25 5.0
24 0.4 0.8 0.75 0.25 25.0
25 04 1.2 0.25 0.1 5.0
26 0.4 1.2 0.25 0.1 25.0
27 0.4 1.2 0.25 0.25 5.0
28 0.4 1.2 0.25 0.25 25.0
29 0.4 1.2 0.75 0.1 5.0
30 0.4 1.2 0.75 0.1 25.0
31 0.4 1.2 0.75 0.25 5.0
32 0.4 1.2 0.75 0.25 25.0

37

3.7 Experimental Results

For [SPT], [EDD], and [SLK], we used an IDLE TIME INSERT on the sequence
obtained. For the search procedures, we first tested their performance when the
improvement is judged based on sequences with no inserted idle time, and used IDLE
TIME INSERT algorithm only when search concluded. This performed very poorly. In
many cases, the cost increased with respect to the initial sequence with idle times
inserted optimally. So in all the presentation that follows, the searches are done by
inserting idle times optimally for each member of the neighborhood.

In a first phase, we ran a few cases to determine the number of runs required
for the average performance to converge. We settled on 200 runs for each case which
gave us a confidence interval of about +3% around the average performance. So, we
generated and tested a total of 6400 problems for each value of n (200 for each design).
For converience, we present in Table 3.3 the average performance over the 200
problems of each heuristic relative to the average performance of [API1]. To see the
individual effects of the five factors Table 3.4 presents the average performance of the
heuristics relative to [API1] for each factor separately. For example, in Table 3.4(a),
cach entry corresponds to the average of 3200 problems corresponding to all designs
where T is either high or low. From Table 3.4, it is clear that the most significant
factors affecting the relative performance of [GI] are T and R. Accordingly, we will
concentrate from now those two factors only. Figures 3.1 plots the results as the ratio
of the performance of [API1] to that of the heuristic for different values of T and R.
These were averaged over the performances at eight combinations of levels of the other
three factors. We used [GI+] to designate the performance of GREEDY INSERT followed
by the application of the IDLE TIME INSERT algorithm. The exact average total cost
figures obtained from running problems for all heuristics at different T and R values are
tabulated in Appendix-A which includes Tables A.1, A.2, A.3, A4. Average CPU

times are tabulated in A.S.

38

Some interesting results of our study arc listed below, where we use

“significant”™ to denote 90% confidence level significance:

e There was an insignificant ditfcrence in average performance between |API] and
[API2], and between [PIl1] and [PI2}. but a substantial increase in running time.
[PI1] however was significantly better than [APIl], and more so for a larger
number of jobs, but at the expense of a substantial increase in running time (about 6

times more for 20 jobs and 25 times more for 50 jobs).

o While the results of all search procedures plotted in Figure 3.1 and in all tables arc
for an [EDD)] starting sequence, we have tested several starting sequences. We
could only detect a significant difference in performance for [APH] and |API2]
where a better starting sequence resulted in betier performance. For [PIT], [PI12]

and [TABU 100] however, the starting sequence was practically irrclevant.

o While [SLK] performs significantly better that [EDD] for loose due dates (T =
0.1), [EDD] seems to be doing better for tight due dates (T = 0.4).

» Performance of Tabu Search is greater than all other heuristics presented, but it is

very expensive in terms of computation.

e GREEDY INSERT runs in a fraction of a time of the scarch heuristics, but performs

very well on average, even better than [API1] for small range R.

39

Table 3.3(a) Average Performance of heuristics relative to API1 for 10 Jobs:

Due | Range | E/T [WIP/EP | MIC | APITV | APIV | APIV | APIV] APIT | API1
dates EDD | SILK EIS | GI Gl + P
5 0.838 (0.862 [0.886 | 1.009 | 1.027 | 1.068

0.1 25 10.853 |0.887 |0.899 {0.981 | 1.015 | 1.066

0.25 5 0.908 [0.923 [0.936 |1.01 |1.015 |1.039

0.25 25 10909 [0.932 |0.939 {0.970 | 1.000 | 1.040

Small 5 0.853 [0.864 |[0.891 |0.997 | 1.014 {1.046

0.1 25 |0.863 |0.881 [0.902 [0.997 [1.013 | 1.047

0.75 5 0.920 {0.929 [0.944 |1.00 [1.010 | 1.027

.25 25 10.922 10936 |0.947 [1.00 |1.013 |1.029

Loose 5 0.894 [0.902 [0.928 |10.950 | 0.974 | 1.035
0.1 25 0910 [0.926 [0.942 {0.90 |[0.961 |[1.033

0.25 5 0.943 [0.948 }0.961 |N0.972 |0.987 | 1.017

0.25 25 10.945 |0.956 [0.964 [0.914 [0.962 | 1.018

Wide 5 0.912 (0914 [10.940 | 0.961] 0.976 | 1.013

0.1 25 10.920 [0.928 [0.948 [0.959 [0.977 |1.011

0.75 5 0.956 [0.958 |0.971]0.984 |0.9v2 | 1.008

0.25 25 10.958 (0.963 |0.974 10.979 | 0.990 | 1.009

5 0.737 |0.666 |0.751 [0.922 [0.949 | 1.064

0.1 25 10.740 [0.670 |0.754 {0.874 | 0.903 | 1.061

0.25 5 0.796 [0.728 |0.805 |0.931 | 0.951 | 1.045

0.25 25 0.798 {0.730 |0.807 |0.891 {0.914 | 1.043

Small 5 0.794 [0.766 |[0.815 [0.966 | 0.984 | 1.047

0.1 25 [0.798 [0.775]0.822 10.955 |0.975 | 1.052

0.75 5 0.862 |0.835 [0.876 [G.976 [0.987 [1.030

0.25 25]0.863 [0.839 |[0.878 [0.968 |0.979 [1.031

Tight 5 0.750 |0.698]0.761 [0.896 | 0.913 | 1.032
0.1 25 |0.756 [0.709 [0.769 |0.834 |0.869 | 1.030

0.25 5 0.803 [0.757 |[0.811 [0.918 [0.932 | 1.021

0.25 25 10.806 [0.763 |0.815 |0.859 |[0.889 | 1.020

Wide 5 0.822 |0.789 0.836 [0.939 |0.951 | 1.017

0.1 25 10.828 [0.800 [0.844 |0.928 [0.945 | 1.017

0.75 5 0.879 {0.854 |0.889 [0.960 | 0.968 | 1.012

0.25 25 10.883 [0.860 |0.893 |0.953 |[0.964 | 1.015

40

Table 3.3(b) Average Performance of heuristics relative to API for 20 Jobs:

Due

Range | E/T [WIP/EP | MIC [APt | it} apny 1 ariv | arin | Arn
dates EDD | SLK | E!S | Gl Gl P
5 0.848 10.863 [L.876 [1.024 [1.039 [1.097

0.1 25 |0.863 |0.881 | 0.892 [1.015 | 1.037 | 1.088

0.25 5 0.917 [0.926 [0.934 | 1.014 [1.021 [1.040

0.25 25 10921 |0.932]0.938 |1.004 | 1.018 | 1.045

Small 5 0.848 [0.858 [0.872 [1.005 [1.017 | 1.060

0.1 25 10.857 | 0.868 | 0.881 |1.005 | 1.016 | 1.060

0.75 5 0.923 10.92910.937 [1.005 | 1.010 | 1.031

0.25 25 10.925 [0.933]0.940 | 1.005 | 1.011] 1.032

Loose 5 0.913 [0.916 [0.934 [0.960 | 0.970 | 1.032
0.1 25 10.927 10.933[0.945 [0.949 [0.974 | 1.027

0.25 5 0.959 | 0.961 | 0.970 [0.984 | 0.989 | 1.024

0.25 25 10961 |0.965]0.971 [0.967 [0.985 |1.023

Wide 5 0.922 [0.925[0.940 10.966 | 0.976 [1.107

0.1 25 10.929 10.933[0.946 |0.967 |0.977 | 1.095

0.75 5 0.965 [0.967 [0.974 [0.985 |0.990 | 1.131

0.25 25 10.967 [0.969 [0.975 0.984 | 0.989 | 1.103

5 0.740 [0.690 [0.750 10.935 [0.956 | 1.096

0.1 25 10.741 10.694 [0.752 [0.920 [0.943 | 1.093

0.25 5 0.815 [0.771 [0.823 [0.949 [0.901 [1.050

0.25 25 | 0.815 |0.772 | 0.823 | ¢.930 [(945 | 1.049

Small 5 0.791 [0.776 { 0.806 [0.980 [0.991 | 1.065

0.1 25 10.792 | 0.780 | 0.809 | 0.973 | 0.985 | 1.066

0.75 5 0.873 | 0.860 [0.884 [0.987 [0.994 | 1.039

0.25 25 |0.874 | 0.861 | 0.884 | 0.985 [0.990 | 1.038

Tight 5 0.739 0.683 [0.746 [0.901 [0.917 [1.033
0.1 25 | 0.750 | 0.698 | 0.757 |0.886 | 0.911 | 1.031

0.25 5 0.816 |0.770 | 0.821 [0.941 [0.946 | 1.055

0.25 25 10.820 [0.777 1 0.825 | 0.913 10.933 | 1.054

Wide 5 0.830 | 0.800 | 0.841 [0.943 [0.958 | 1.022

0.1 25 |0.837 | 808 |0.847 |0.946 | 0.958 | 1.095

0.75 5 0.898 | 0.874 10903 [0.969 [0.974 | 1.131

0.25 25 10.899 | 0.877 | 0.905 |0.906 |0.973 | 1.122

41

Table 3.3(c) Average Performance of heuristics relative to API1 for 30 Jobs:

Due | Range | E/T [WIP/EP | MIC | API1 | APIV | APIY | APIV | API1 | API]

dates EDD | SLK | EIS | GI GI + P
5 0.852 1 0.859 [0.870 | 1.036 | 1.045 | 1.106

0.1 25 [0.866 [0.875 [0.884 [1.032 | 1.043 | 1.098

0.25 5 0.925 [0.929 [0.935 [1.022 | 1.026 | 1.051

0.25 25 [0.929 [0.934 [0.939 [1.019 |{1.026 | 1.050

Small 5 0.853 | 0.857 [0.866 { 1.014 | 1.022 | 1.067

0.1 25 [0.860 | 0.865 [0.873 | 1.011 | 1.021 | 1.065

0.75 5 0.928 [0.930 [0.935 | 1.008 | 1.013 | 1.034

0.25 25 10.930]0.933 {0938 | 1.008 |1.012 |1.034

Loose 5 0.925 [0.934 [0.942 | 0.964 |0.972 |1.030
0.1 25 10.936 {0945 [0.951 | 0.959 |0.974 |1.026

0.25 5 0.967 | 0.971 [0.975 [0.986 |0.99C | 1.014

0.25 25 10.969 | 0.974 | 0.976 | 0.978 |0.988 | 1.013

Wide 5 0.936 [0.941 [0.949 | 0.972 |0.981 | 1.017

0.1 25 [0.940 [0.946 [0.953 | 0.971 |0.981 | 1.016

0.75 5 0.972 1 0.975 [0.978 [0.987 |0.991 | 1.008

0.25 25 0.973 { 0.976 | 0.979 | 0.986 | 0.990 | 1.008

5 0.767 | 0.740 { 0.776 1 0.981 [0.993 | 1.123

0.1 25 0.769 | 0.743 1 0.777 | 0.972 | 0.986 | 1.123

0.25 5 0.849 [0.825] 0.855 | 0.978 |0.986 | 1.064

0.25 25 0.851 | 0.827 | 0.856 | 0.970 | 0.980 | 1.065

Small 5 0.806 | 0.802 | 0.818 | 1.007 | 1.018 | 1.085
0.1 25 0.808 | 0.805 { 0.820 | 1.003 | 1.014 | 1.086

0.75 5 0.890 { 0.885 | 0.897 | 1.003 | 1.008 | 1.045

0.25 25 0.891 | 0.886 | 0.898 | 1.000 | 1.005 | 1.046

Tight 5 0.748 | 0.703 1 0.753 | 0.906 |0.918 | 1.040
0.1 25 0.760 | 0.718 | 0.765 | 0.897 | 0.917 | 1.038

0.25 5 0.836 | 0.801 | 0.839 |1 0.942 | 0.950 |1.023

0.25 25 0.840 | 0.807 | 0.843 | 0.930 | 0.945 | 1.023

Wide 5 0.847 | 0.821 [0.853 | 0.942 }10.953 | 1.023
0.1 25 0.852 | 0.823 | 0.858 | 0.941 |0.953 | 1.023

0.75 5 0.912 | 0.895 1 0.915 1 0.969 |0.974 | 1.012

0.25 25 0.914 | 0.897 | 0.917 | 0.967 |0.973 | 1.012

42

Table 3.3(d) Average Performance of heuristics relative to AP for 40 Jobs:

Due | Range | E/T | WIP/EP | MIC | APIV| APIT| APIV | APV | APIT | APT
dates EDD | SIK | Ers | Gr | Gia | orn
5 | 0.837 [0.850 |0.858 | 1.040 | .04 | 1.113

0.1 25 | 0.860 | 0.864 | 0.871 | 1.037 | 1.047 | 1.107

0.25 5 10923]09250.930 | 1.025 | 1.028 | 1.055

0.25 25 |0.927[0.930 | 0.934 | 1.024 [1.020 | 1.054

Small 5 | 0.847 [0.848 | 0.856 | 1.020 | 1.028 | 1.075

0.1 25 |0.853[0.855|0.862 | 1.019 | 1.027 | 1.075

0.75 5 |0.926]0.927 |0.931 |1.012 | 1.015 | 1.038

0.25 25]0.929]0.930|0.934 [1.012 [1.015 |1.039

Loose 5 10.933[0935[0.945 [0.065 |0.971 | 1.033
0.1 25 [0.941 [0.944 [0.952 |0.961 |0.972 | 1.028

0.25 5 0.972]0.972[0.977 [0.987 | 0.990 | 1.015

0.25 25 |0.973 [0.974 [0.978 |0.983 |0.989 | 1.014

Wide 5 10.942[0.943[0.950 [0.975 |0.982 | 1.020

0.1 25 | 0.945[0.947 |0.954 [0.974 | 0.982 | 1.019

0.75 5 10.976[0.976 [0.980 [0.989 | 0.991 | 1.010

0.25 25 0.976 | 0.977 |0.980 |0.988 | 0.991 | 1.009

5 |0.765|0.746 |0.772 [0.993 | 1.001 | 1.137

0.1 25 | 0.767 | 0.749 [0.774 [0.985 | 0.996 |1.137

0.25 5 | 0.854]0.837 | 0.858 |0.990 | 0.995 |1.069

0.25 25 |0.855|0.839 [0.859 [0.982 [0.988 | 1.071

Small 5 |0.798]0.794 [0.806 | 1.018 | 1.026 |1.093

0.1 25 [0.799 [0.797 [0.808 |1.016 | 1.024 | 1.096

0.75 5 |0.889[0.885]0.894 [1.009 |1 013 | 1.050

0.25 25 | 0.890 | 0.887 [0.895 | 1.009 | 1.012 | 1.052

Tight 5]0.765[0.730 [0.769 [0.915 |0.924 | 1.042
0.1 25 | 0.776 | 0.743 [0.780 [0.909 | 0.925 | 1.040

0.25 5 | 0.856|0.831 |0.858 [0.952 |0.958 | 1.022

0.25 25 | 0.860 | 0.835 | 0.862 |0.947 | 0.958 | 1.021

Wide 5 |0.859|0.842 [0.865 | 0.951 |0.960 | 1.025

0.1 25 |0.864 [0.847 |0.869 [0.950 [0.959 | 1.025

0.75 5 | 0.924[0912]0.926 |0.974 [0.978 | 1.012

0.25 25 |0.925[0.914 [0.927 [0.972 [0.977 | 1.012

43

Table 3.3(¢) Average Performance of heuristics relative to APII for 50 Jobs:

Duc | Range | E/T | WIP/EP | MIC | APIT| APIV | APIT | APIN | API1 | APIl

dates EDD | SLK | EIS | GI Gl + P
5 1.237 [1.233 [1.220 | 1.048 [1.007 [0.942

0.1 25 1.217 [1.211 [1.200 | 1.047 |1.009 |0.945

0.25 5 1.113[1.111 [1.1.5 | 1.028 [1.003 [0.975

0.25 25 1.110 | 1.106 | 1.101 | 1.029]1.005 |0.976

Small 5 1.213[1.212 | 1.201 | 1.028 [1.008 |0.956

0.1 25 1.204 [1.201] 1.191 | 1.027 |1.008 |0.955

0.75 5 1.0951.095 | 1.090 | 1.015 [1.003 |0.977

0.25 25 1.093] 1.092 | 1.087 | 1.015 |1.003 |0.977

Loose 5 1.040 [1.038 | 1.027 [0.971 [1.006 [0.940
0.1 25 1.033[1.030 | 1.021 | 0.972 | 1.012 |0.945

0.25 5 1.018[1.017 | 1.013]0.990 [1.002 |0.975

0.25 25 1.01711.0151.012 | 0.989 |1.007 |0.976

Wide 5 1.043[1.042 [1.034 [0.982 |[1.008 [0.963

0.1 25 1.039}1.037 | 1.029 | 0.982]1.008 |0.963

0.75 5 1.016 | 1.015] 1.012 [0.991 |1.003 |0.982

0.25 25 1.015{1.014 | 1.011 | 0.991 |1.003 |0.982

5 1.208 [1.341 | 1.297 { 1.001 |1.008 |0.880

0.1 25 1.298 | 1.330 | 1.287 | 0.996 |1.011 |0.876

0.25 5 1.165 ; 1.188 | 1.160 | 0.995 [1.005 |0.931

0.25 25 1.156 | 1.178 | 1.151 | 0.988 | 1.006 |0.923

Smatl 5 1.2861.292 | 1.274 | 1.026 [1.008 |0.939
0.1 25 1.281 | 1.286 | 1.268 | 1.024 | 1.008]0.935

0.75 5 1.140 [1.144 | 1.134 [1.013 | 1.004 |0.964

0.25 25 1.137 | 1.142 | 1.131 | 1.012 | 1.004 |0.962

Tight 5 1.208 | 1.265 | 1.201 | 0.924 [1.010 |0.887
0.1 25 1.192 1 1.245 1 1.186 | 0.925 | 1.019 |0.890

0.25 5 1.119 [1.153 | 1.116 [0.958 {1.006 |0.938

0.25 25 1.114 | 1.146 | 1.111 | 0.958 |1.012 [0.938

Wide 5 1.118 { 1.141 | 1.110 { 0.960 [1.010 |0.937
0.1 25 1.111 1 1.132 | 1.104 { 0.959 |1.010 {0.936

0.75 5 1.058 | 1.072 { 1.055 1 0.978 |1.004 |0.966

0.25 25 1.057 | 1.069 | 1.053 | 0.977 [1.005 |0.965

44

Table 3.4(a) Effect of Tardiness Factor: Performance of heurstics relative to [APIL)

averaged over all combinations of the other factors

Nomber [Tasdiness [01— 00 T 0 1w [|
of Jobs | Factor
Low 0.906 0.919 0.936 0.974 0.995 1.032
10 High 0.807 0.765 0.820 0.923 0.942 1.034
Low 0.915 0.923 0.933 (0.990 1.001 1.063
20 High 0.815 0.781 0.8234 1 0.945 0.958 1.071
Low 0.923 0.928 0.934 0.997 1.005 1.040
30 High 0.834 0.812 0.840 (0.963 0.973 1.052
Low 0.923 0.925 0.931 1.001 1.007 1.044
40 High 0.840 N.824 0.845 0.973 0.981 1.057
Low 0.927 0.929 0.933 1.007 1.012 1.048
50 High 0.850 0.837 0.853 0.985 0.992 1.001

Table 3.4(b) Effect of due date range: Performance of heuristics relative to [APIH]

averaged over all combinations of the other factors

Number |Due date, -/} APII A API AP A
of Jobs | Range SLA 15 Gl Gl ’
Low 0.841 0.827 0.866 0.966 0.984 1.046
10 High 0.873 0.858 0.8904 [0.932 (.953 1.020
Low 0.847 0.837 0.863 0.984 0.996 1.060
20 High (0.883 0.866 0.894 (.952 0.964 1.074
Low 0.861 0.856 0.871 1.004 1.012 1.072
30 High 0.895 0.883 0.903 0.956).966 1.020
Low 0.858 0.854 0.865 1.012 1.018 1.079
40 High 0.905 0.895 0911 0.962 0.969 1.022
Low 0.863 0.862 (.870 1.028 1.033 1.090
50 High 0.913 0.904 0.916 ().965 0.972 1.020

45

Table 3.4(c) Effect of EP/TP: Performance of heuristics relative to [API1] averaged

over all combinations of the other factors

Number | EP/TP an AP AP API API AP
of Jobs SLK LIS Gl Gl + P
Low 0.837 0.816 0.858 0.927 0.954 1.040
10 High 0.877 0.868 0.898 0.971 0.984 1.026
Low 0.847 0.827 0.860 0.956 0.972 1.053
20 High 0.883 0.876 0.897 0.979 0.988 1.081
Low 0.862 0.849 0.871 0.973 0.984 1.056
30 High 0.894 0.890 0.903 0.987 0.994 1.036
Low 0.867 0.857 0.874 0.981 0.989 1.060
40 High 0.896 0.893 0.902 0.993 0.999 1.041
Low 0.875 0.867 0.880 0.991 0.998 1.065
50 High 0.901 0.899 0.906 1.002 1.007 1.045

Table 3.4(d) Effect of WIP/EP: Performance of heuristics relative to [API1] averaged

over all combinations of the other factors

Number | WIP/EP /%I/l) API AP API AP APl
of Jobs SLK k1S Gl Gl'+ P
Low 0.829 0.815 0.856 0.942 0.965 1.040
10 High 0.884 0.870 0.901 0.956 0.972 1.026
Low 0.833 0.819 0.850 0.961 0.977 1.073
20 High 0.897 0.884 0.907 0.974 0.983 1.061
Low 0.845 0.837 0.857 0.976 0.987 1.061
30 High 0.911 0.903 0.917 0.985 0.991 1.031
Low 0.848 0.840 0.856 0.983 0.992 1.067
40 High 0.916 0.910 0.920 0.991 0.996 1.034
Low 0.855 0.849 0.861 0.996 1.004 1.074
50 High 0.921 0.917 0.925 0.997 1.001 1.036

46

Table 3.4(e) Effect of Machine idle cost: Performance of heuristics relative to [APH

averaged over all combinations of the other factors

Number | Machine ,';,5', (rn 1 (0 il 1
of Job | idle cost M £ v vl !
Low 0.856 0.842 0.878 0.949 0.969 1.034
10 High 0.858 0.842 0.878 0.947 0.967 1.032
Low 0.864 0.851 0.877 0.968 0.980 1 065
20 High 0.866 0.851 0.878 0.966 (0.978 1 066
Low 0.877 0.869 0.886 0.981 0.990 1 047
30 High 0.879 0.870 0.888 0.978 0.987 1.O44
Low 0.880 0.873 0.887 0.987 0.994 1.052
40 High 0.883 0.875 0.889 0.985 0.992 1.048
Low 0.887 0.882 0.892 0.997 1 003 1.056
50 High 0.889 0.884 0.894 0.994 1.000 1.052

47

(a) T=0.1,R=0.8

1.08
~ 106 TABU100 —
S 1.02
2 Gl+ /——’/’—/APH
g 1 GI=
g 0.98
£ 096
Q
a
o 0.94
2
& 092 ES———
[
LY SLK /’7\
0.88 EDD : . . .
10 20 30 40 50
Number of Jobs
Figure 3.1(a) Loose due dates & small range
(b) T=0.1, R=1.2
1.1
-~ 1.08
a
< 1.06 /
3 1.04
g TABU100
£ 1.02 4
E 1 APl
[¢]
5
Gl
°
0.92 EDD 1 A 1 i J
10 20 30 40 50
Number of Jobs

Figure 3.1(b) Loose due dates & wide range

48

(c) T=0.4, R= 0.8

Relative performance w.r.t API1

1.05

0.95

0.9

0.85

0.8

0.76

K
TABU10Q —————
= 1.05 o ——
n' mar—
< APH
- 1
;‘ /_/
g 095 Gl+
g G
E 0.8
£
G 085
Q
Z 08 EDD
s
Q
® 075 SLK—
0‘7 n 1 n — pd
10 20 30 40 50
Number of Jobs
Figure 3.1(c) Tight duc dates & small range
(d) T=0.4, R=1.2
1.4

Pl
G|+//

G|/
EIS /
£DD

SLK

A A A A —

API1

10 20 30 40 50

Number of Jobs

Figure 3.1(d) Tight due dates & wide range

49

CPU Time in seconds on Pentium PC at 75 mhz for n/1/FETM

TABU100 TABU25 Pi1
APHH

-
(=]
-

CPU Time in Seconds
o - N (”) L3 [4,] N 0~ -] [{-]

EDD, SLK, E/S Gl, Gi+
10 20 30 40 50

Number of Jobs

Figure 3.2 Average running time of algorithms

3.8 Conclusion

In this chapter, we developed dominance conditions for scheduling of jobs on a
single machine where the objective is to minimize the sum of earliness, tardiness,
work-in-process and machine idle costs and used them to develop the GREEDY INSERT
heuristic. The computational study showed that these complex combinatorial problems
can be solved within reasonable time and reasonable accuracy by using GREEDY
INSERT. The results also showed that the relative magnitude of earliness, tardiness,
work-in-process penalties did not have significant effect on the relative performance of
heuristics when [}, >, >y,. So, we will eliminate these three factors for future
consideration when we generalize the problem to non zero release times and multiple
duc dates. Although dominance conditions suggest to sort all jobs in non-increasing
order of (B, +v,)/p, for [Gl], we found that the performance of B, / p, is better, so all

results, unless otherwise specified, are presented for an initial sorting of jobs in non-

increasing order of {3,/ p,. Because of the poor performance, [SPT} will not be
considered for remaining work. Since the results showed that there is no significant
difference in the performance between heuristics [APIl] and [APi2] or between
heuristics [PI1] and [PI2] we decided to keep only [API2} and [PI2] for future
consideration. While search methods like Tabu, |PI2] and [API2] perform better for
small problem sizes but they become prohibitive for large problems. Therefore we
recommend GREEDY INSERT for large problem sizes. We strongly believe that GREEDY
INSERT will provide perfect trade off between solution quality and computational cost

for big problem sizes.

51

CHAPTER 4

Single due date per job and different release times

In this chapter, we extend the single machine scheduling probiem of chapter 3 to
non zero release times but keep cach job with a single duc date. We take this intermediate
step because this problem has its own intrinsic value as attested by others who study non-
zero release times. This problem may help researchers solving more complex job shop
scheduling problems for minimizing total cost. So, we first develop an optimal idle time
insertion heuristic for the problem, and then we modify [GI] to account for non-zero
rclease times. Based on the results of the previous chapter, we test the modified [GI]

heuristic against others.

4.1 Problem Formulation

Consider a non-preemptive, single-machine scheduling problem with » jobs. All
jobs with deterministic processing times p; have possibly different due dates d, and have
possibly different release dates 7, 2 0. Set up times are included in processing times. Idle
time is allowed between any successive job operations. Here the objective is to minimize
the total cost by minimizing the sum of carliness, tardiness, work in process, and machine
idle costs.

Total Cost = Work-In-Process Cost + Earliness Penalty Cost +

Tardiness Penalty Cost + Machine Idle Cost.

We represent single machine scheduling problem with non-zero release times
with the objective of minimizing the total of work-in-process, earliness, tardiness, and
machine idle costs as n/1/r / FETM . The function we seek to minimize is the sum of

all those costs, and can be expressed as

52

»

-

= @ W o E BT+,
-1

The formulation is identical to that of section 3.1, except for the release times. Unlike the

section 3.1. work-in-process can be calculated as (C, ~ 7).

4.2 An Optimal Idle Time Insertion Algorithm

We designed an algorithm to insert idle times optimally in between job operations
given their sequence, for n/1/r / FETM problem. Our procedure starts with all jobs
scheduled, in the given sequence 1, 2,..., n, starting at the release time of the first job
and with no inserted idle time. First select the first job « such that difference between
completion time of job « and the staring time of job w41 is greater than zero. Starting
with the first job, we insert idle time before a job i only it moving jobs i, i+1... . u
forward by one time unit results in a reduction in total cost. The amount of dle time
we insert is the minimum of two quantitics: 1).The smallest non-zero carliness among,
i, i+1,..., u. 2). The difference between the completion time of job # and the start time
job u+1, since the cost reduction will not change over that range when all costs are
linear. Then we calculate the potential cost reduction to see whether inserting more idle

time is beneficial. The above procedure is formally stated as follows:

Algorithm IDLE TIME INSERT RELEASE [ITIR]: Schedules n jobs with possibly
different release times in a given sequence to minimize the total of flow time, carliness,
tardiness, and machine idle costs.
1. Number the jobs I...., n in the order of the given sequence, form a schedule with no
inserted idle times, and compute their carliness and tardiness.
(a) Set | =r +p,, k, = max{0,d, -}, and 7} = max{0,C, -d,}
(b) Set C, =max{r,,C _}+p, I =max{0,d —C}, and 7' =max!0,C’ d} for

i=2,...,n.

53

2. Initialize three counters j «- 1. k « 1. u < land a number to keep track of potential
cost reduction from nserted idle time CR « 0.
3. W u+ n and there exist a job 1 from k 1o 11 such that there is an idle time between
processing of wand wt 1 compute diff « (Starting time of job w+1 - Completion time
of job w, © < n). Otherwise u - n.
4. Compute the saving resulting from pushing job & forward once time unit. and add that
cost to C'R:
(CR«—CR+u, -7, ifly -0
(R« CR-3, -7, otherwise
5. Check the values of CR and &:
() If C'R-0 and &< u. set k < k+1 and go to step 4.
(D) IFCR< 0 and k < w.setj « k+1.k« k+1. CR « 0 and go to step 4.

() I CR > p and u=n. move all the jobs j...., n forward in the time by
mini = j..... n I, . Update the carliness and tardiness of the moved jobs. set &

d) If w0 # n, move all the jobs j..... u forward in the time by min{diff min E .
J00s / ey IS
F,oen

Update the carliness and tardiness of the moved jobs, set k < j, CR « 0 and
go to step 3.

(¢) I CRZ p and k = n, stop.

In step S(b). since the cost increases by moving jobs j,..., k forward, we stop
considering those jobs lor idle time insertion and continue starting with job k+1. Note
that cach time step 5(¢) or 5(d) applies. it is not necessary that a job which was early
becomes on-time, because we are taking the diff into consideration. At most we need (2x-
1) iterations to mahe all jobs ou time or tardy. In each iteration. there will be at most #

jobs to consider, so the time complexity of the optimal timing algorithm is O ().

54

Theorem 2 For a given sequence of ,0bs, algorithm "IdLr Tive INSERT Ritrast ™
inserts idle times optimally in benween jobs when all costs are linear.

Proof: Same as the proof of theorem 1. O

4.3 A Job Insertion Heuristic

Here we adopt GREEDY INSERT procedure tor the #/ 170/ FETAM problem. The
following principle should be honored throughout the |Gl procedure o accommodate
non-zero release times:
Starting time of any job should be at least greater than or equal 1o the release time of that
job.

Otherwise, all the details are the same as before.

4.4 Experimental Design

In order to test the performance of our heuristic and compaie it to other
procedures, we designed a 2* factorial experiment which takes 1T & R into account
because of their significant effect on the performance of heuristics. In order to be
consistent with results reported elsewhere, we randomly generated the proces.ing times
of the jobs from a Discrete Uniform |1, 30] distribution, the release times from a Diserete
Uniform [0, P/2] distribution where = Z:' |+ the due dates by adding r, to a Disaete
Uniform [P(1- T - R2), P(1 - T + R/2)] distribution, the tardiness costs per unit time {3,
from a Continuous Uniform[0.5, 5]P/n distribution, the carliness cost per unit time «,
form a Continuous Uniform [0.25, 0.75] 3, distribution, the work-in-process cost per unit
time y, from a Continuous Uniform [0.1, 0.25]«, distribution and the machine idle cost 15
generated from a Discrete Uniform |5, 25} distribution. We ran the experiment for
instances with 10, 20, 30, 40, 50. and 75 jobs per problem and tested Gripby INSLRT
against some of the heuristis that have been introduced in the last chapter for solving

earliness, tardiness flowtime, and machine idle cost problems with different due dates,

55

and that can be easily modified to accommodate with non-zero release times. In a first
phase, we ran a few cases to determine the number of runs required for the average
performance to converge. We settled on 200 runs for each case which gave us a
confidence interval of +2-3% around the average performance. Since we are
conducting four experiments for two factors we generated a set of 800 problems for each
instance. All the algorithms presented in this chapter were coded in PASCAL and run on

a Pentium at 66 MHz.

4.5 Experimental Results

The exact average total cost figures obtained from running 200 problems for all
heuristics at different 7 and R values are tabulated in appendix-B which includes tables
B.1. B.2, B3, B.4. Average CPU times are tabulated in B.5. The average relative
performance of heuristics with respect to [API1] is presented in Table 4.1. The average
relative performance of heuristics with respective | API2] for different cases is plotted in

the Figures 4.1(a), 4.1(b). 4.1(c). and 4.1(d).

Some of the interesting results of our study are mentioned below:

e The performance of GREEDY INSERT for small problem sizes seems to be a little
inferior to that of [API12]. But, as the problem size gets larger, performance becomes
superior to that of |API2], for small R, and very close for wide ranges. This

performance can be noticed from Figures 4.1(a), 4.1(b). 4.1(c), 4.1(d).
e (CPU time required for GREEDY INSERT increases almost linearly as problem size

increases. But for [API2], [PI2], and Tabu Search. CPU time seems to grow

exponentially with the problem size. This can be clearly seen from Figure 4.2.

56

Performance of GREEDY INSERT is superior to [EDD]. [SLK]. [F/ST tor all tardiness

and range factors.

While [EDD] performs slightly better than that of [SLK] for tight duc dates (77 0.4)
wide ranges (R=1.2). [SLK] seems to do well for loose due dates (7 0.1) at wide

ranges (R=1.2).
GREEDY INSERT runs much faster than scarch heuristics. For instance GREFDY INSERT
solved 75 jobs problem as much as 150 times faster than |API2] and performed

superior to [API2] for small ranges (R=0.8). close to |APL2] for wide ranges (R 1.2).

Performance of Tabu Scarch is greater than all other heuristics presented. but atis

very expensive in terms of computation.

57

Table 4.1 Avcrage performance of heuristics relative to API2:

No | Duce |[Range [API2/EDD | APIZ/SLK | API2/ES | API2/GI | API2/GI+ | API2/PI2
jobs | dates
Small 0.893 0.899 0917 0.974 0.984 1.008
Loose | Wide 0.929 0.936 0.950 0.963 0.981 1.007
10 Small 0.813 0.799 0.854 0.930 0.947 1.020
Tight | Wide 0.805 0.761 0.831 0.952 0.961 1.034
Small 0.903 0.900 0916 0.987 0.994 1.018
Loose | Wide 0.952 0.956 0.964 0.981 0.990 1.007
20 Small 0.865 0.846 0.879 0.954 0.966 1.025
Tight | Wide 0.851 0.824 0.873 0.968 0.980 1.029
Small 0.905 0.907 0914 0.995 1.002 1.022
Loose | Wide 0.960 0.960 0.967 0.986 0.993 1.006
30 Small 0.870 0.871 0.882 0.975 0.986 1.031
Tight | Wide 0.903 0.896 0915 0.971 0.981 1.016
Small (.899 0.901 0.907 1.000 1.007 1.028
Loosc | Wide 0.960 0.961 0.965 0.986 0.992 1.007
40 Small 0.864 0.867 0.873 0.983 0.994 1.040
Tight | Wide 0.877 0.867 0.889 0.970 0.980 1.018
Small 0.898 0.900 0.904 1.007 1.012 1.030
Loose | Wide 0.965 0.966 0.969 0.990 0.995 1.007
50 Small 0.861 0.863 0.868 0.991 0.999 1.043
Tight | Wide 0.911 0.908 0.922 0.981 0.990 1.015
Small 0.905 0.906 0.908 1.014 1.017 ---me
Loose | Wide 0.973 0.973 0.976 0.994 0.997 m-eee
75 Small 0.871 0.871 0.875 1.003 1.009 e
Tight | Wide 0.931 0.925 0.936 0.984 0991 1 -

58

(a) T=0.1,R=0.8

1.04
1.02 TABU252/’
o™
o Pi //:__f/'//
< 1 API2
3 Gl//
0.98
8 Gl
&
E 096
L]
E 0.94
Q
2
[5}
@ ——
0.9 SLK ——
EDD—
0_88 i i i 1 i —
10 20 30 40 50 75
Number of Jobs
Figure 4.1(a) Loese due dates & small range
(b) T=0.1,R=1.2
TABU25
1.01 ﬁ\
PI2
1 API2
N
& o099
$ o098 Gl+
]
e 097
o
§ 0.96 Gl
£
2
S 095 E/S
2
8 094
e SLK
0.93 EDD
0.92 A —
10 20 30 40 50 75
Number of Jobs

Figure 4.1(b) lLoose due dates & wide range

59

(c)T=0.4,R=0.8

.05
10 TABU25.________ —
PI2
o 1 API2 e
o
ﬁ /
3 095 Gl
8 e]
&
E 09 |
E /—_—’\ =
o 085t E/S /
2
< EDD
@ 08 SLK
0‘75 L i i 1 1 -
10 20 30 40 50 75
Number of jobs
Figure 4.1(c) Tight due dates & small range
(d)T=0.4,R=1.2
1.08 TABU25
o 103 PIZ‘L
0.
< API2
T 098 Gl —_—
H W
! Gl
e 093
L]
£
& o088
&
2 o83 E/S
< EDD
X o078
SLK
073 i A L L i)
10 20 30 40 50 75

Number of Jobs

Figure 4.1(d) Tight due dates & wide range

CPU time In Seconds on Pentium 66 mhz for n/1/rilfFETM
TABU 25 P12 API2
12
10 |
o 8t
E
-
2 o
[&]
41
2t Gl, Gi+
0 s —
10 20 30 40 50 75
Number of Jobs

Figure 4.2 Average running time of algorithms

4.6 Conclusion

In this chapter, we modified & tested the GREEDY INSERT heuristic against other
procedures that we could adopt for solving the single machine scheduling problem (o
minimize work-in-process, earliness, tardiness, and machine idle costs where release
times of jobs are greater than or equal to zero under different experimental conditions.
We also provided a new heuristic procedure to insert idle times optimally for a given
sequence on a single machine with non-zero release times. The computational results
showed that GREEDY INSERT will be an alternative to solve large problem sizes
efficiently with low computational cost. The efficiency of the results obtained for this
problem by GREEDY INSERT strengthen the idea of extending this heuristic procedure to

the decomposed job shop cost problem, which will be examined in the next chapter.

61

CHAPTER 5
Multiple due dates per job and different release times

In this chapter, we extend our previous single machine scheduling problem to
account for the case where cach job can have multiple due dates. This is the problem that
was obtained by Amiouny (1995) when decomposing the job shop scheduling problem
with the objective of minimizing total costs into single machine problems in a manner
similar to the Shifting Bottleneck procedure of Adams, Balas and Zawack (1988). For
consistency with carlier chapters. we first formulate a model. then develop an optimal
idle time insertion heuristic for a given sequence, and then design new heuristic

procedures for the problem. Finally, we test the new heuristic procedures against others.

5.1 Problem Formulation

Consider a non-prcemptive, single machine problem with n jobs. All jobs or
operations with deterministic processing times p, have possibly different multiple due
dates o, where m is the niaximum number of due dates of any job, which is different for

different jobs and have possibly different release times » 2 0. Each job will have multiple

tardiness penalties B, corresponding to multiple due dates. We assume without loss of
generality that the multiple due dates for job i arc numbered in such a way that
d,<d, <.<d, ad the corresponding tardiness penalties are such that
BB, .. - Sctup times are included in processing times. Idle time is allowed
between any successive job operations. Iere the objective is to minimize the total cost by
minimizing the sum of the work-in-process. carliness. tardiness, and machine idle costs.

Total Cost = Work-In-Process Cost + Earliness Penalty Cost +

Tardiness Penalty Cost + Machine Idle Cost.

In the case of Amiouny’s reduction, sz <nand J, < B, ..~ B . Also that Amiouny

B
suggests an artificial machine idle cost to avoid slack schedules at the beginning of the
solution procedure.

We represent the single machine scheduling problem with possibly non-zero
release times and multiple due dates. and with the objective of minimizing the total of

work-in-process. earliness, tardiness. and machine idle costs as w/l/r /7 d,, [FETM.

"

The function we seek to minimize is the sum of all those costs, and can be expressed as

= Z(y,W, + ot E +[(C ~d OB 4 +(dy —dy OB e (d =d DB DAL
1=1

where d,,

, 20, >d,

dy d, di
Figure 5.1 Representation of penaltics for decomposed job shop cost problem
All the costs are exactly calculated like the section 4.1 except tardiness cost. Here
the tardiness cost is a piccewise linear function where the number of terms depends on
the completion time of the job. A penalty is incurred only for due dates that fall before
completion time and after its first due date. The total tardiness cost of” a given job is
summation: of all independent tardiness costs which takes place hetween any of two

consequent due dates and those due dates less than or equal to - smpletion time of the job.

5.2 An Optimal Idle Time Insertion Algorithm
We designed an algorithm to insert idle times optimally in between job
operations for a given sequence. This algorithm is similar to the one presented in the

lasi chapter. The muain difference is that tardiness costs are not linear as hefore. So,

63

when we insert idle time, we also take the difference between completion time to

nearest due date into consideration. The details arc as follows:

Algorithm IDLE TIME INSERT MUL DUE DATES [ITIMD]: Schedules n jobs

with possibly different release times and multiple due dates in a given sequence to

minimize the total of flow time, carliness, tardiness, and machine idle costs.

9

Number the jobs 1,..., # in the order of the given sequence, form a schedule with no
inserted idle times, and compute their earliness and tardiness.
(a) Set €, =v, +p, £, =max{0,d,, - C\},and 7} =max{0,(, -d,,}
(b) Set ¢, =max{r, C }+p,, £ =max{0.d,,-C,}, and T, = max{0,C, -d,}
fori=2,..n
Initialize three counters j <1, k <=1, v «— 1 and a number to keep track of potential
cost reduction from inserted idle time (R « 0.
If there exists a job u (k < u<n)such that there is an idle time between processing of
wand w+1 compute diff «(Starting time of job (x#+1) — Completion time of job u,
n<n). Otherwise set w4 <—n.
Compute the saving resulting from pushing job k& forward one time unit, and add that
cost to C'R:
(R« CR+a, -y, ifE, >0
CR—CR-B,, -7, otherwise
Cheek the values of CR, & and u:
(@) I CR>0 and k<u, sctk « k+1 and go to step 4.

(b)Y IFCR=<0 and k < u.setj «— k+1, k « k+1. CR « 0 and go to step 4.
(¢) IfCR > p and w=n, calculate gap « misn {d,-C,} (where d,, is the first
JSisu

m m

dpy>C,
due date of job i which is greater than (: since CR > i, there must be at least

one job with d,, > (), and move all the jobs j...., » forward in the time by

i

min{gap. min £ }. Update the carliness and tardiness of the moved jobs, set
t=y, u

IR
k « j. CR«0 and go to step 4.

() If CR> p and u=n. calculate gap « min{d, —C } (where d,, is the first
A AR]

g~
due date of job i which is greater than (2 since CR > o, there must be at least

one job with ¢, > (), and move all the jobs 7, . .o forward in the time by
min{diff gap, min £ }. Update the carliness and tardiness of the moved
[]

jobs, set k «— j, CR « () and go to step 3.
(e) If CR< 1 and k = n, stop.

In step 5(b), since the cost increases by moving jobs j. . & forward, we stop
considering those jobs for idle time insertion and continue starting with job &+ 1. Note
that each time step 5(c) or 5(d) applies, it 1s not necessary that a job which was carly
becomes on-time, because we are taking diff and gap into consideration. Al most e
need (n-1)*(mi+1) iterations to make all jobs on time or tardy. In cach iteration, there will
be at most # jobs to consider, so the time complexity of the optimal titring algorithm is O
(n*m).

"y

Theorem 3 For a given sequence of jobs, algorithm "iDLE TIME INSERT Mul Dut,
DATES” inserts idle times optimally in between jobs when all costs are linear.

Proof: Same as the proof of theorem 1. U

5.3 Modified GREEDY INSERT

Here we extend GREEDY INSERT for the problem at hand. Since in this problem
each job can have multiple due dates and multiple tardiness penalties, we need to modify
the way we sort the jobs. So, we tested a few sorting proced:es for GREFDY INSERT. The

following are some of the promising ones:

65

Sort 1

Sort the jobs in non-increasing order of 3,/ p,.

Sort 2

Here we first find a range where a job is likely to complete and then take the
average of all the tardiness penaltics of that job corresponding to its due dates that fall in
the range. Finally, we sort the jobs by non-increasing order of the ratio of that average
penalty over the processing time. The details are as follows:
¢ Sort the jobs by non-decreasing r and make schedule to minimize € . Assume that

processing range is |7, Cx -

e Assume cach job j cqually likely to finish in the interval [r, + p,,C ./].
o Compute "Expected tardiness penalty” of i

o Find all the due dates of i that are in the range of [r, + p,.C, ..]. We call them

d

e

d,,....d, and the corresponding tardiness penalties B,,.B, ..., B .

o lixpected tardiness penalty of i= (B, +B,,+..+B 4)/ k
(BII +Bll+"'+Blk)/k
P, '

e Sort the jobs by non-increasing order of

Sort 3

! p,. where B, . the max tardiness

I ma

Sort the jobs in non-increasing order of

1N

penalty of job i.

Sort 4

This sorting procedure is similar to sort 3 but here we scale each penally by its

corresponding range. Therefore we sort the jebs in non-increasing order of

B:(\ (dll - (’: + [’1))+ [51I (‘1/2 _d:l)+"'+B:L (('max _dll.)
(‘m.l\ —(’.: +[7,) .

66

We start by sorting jobs using any one of the above sorting procedures and try 1o
schedule each job at its first due date. It it does not overlap any previously scheduled
jobs, we go on to the next one. Otherwise., we try placing that job at the beginning, then at
the end, and then we try three ways of inserting it in between previously placed jobs ¢lose
to its first due date, pushing other jobs earlier or later so that it fits. Finally we keep it in
the position that results in the lowest total cost. One should keep in mind that no job can

start before its release time. The details are as follows:

Algorithm GRELDY INSERT [GI]: Schedules : jubs cach having possibly difterent
release time and possibly differcnt multiple due dates on a single machine in an attempt
to minimize the total of flowtime, carliness, tardiniess, and machine idle costs, which nead
not be linear.

1. Sort the jobs in non-increasing order by any onc of the above mentioned procedutes.

Break ties by carliest due date first.

2. Fori=1,2,.,ndo:

o I[fplacing i so that it completes exactly at its first due-date does not interfere with
any of the previously placed jobs, place it there.

e Otherwise, select among the following five schedules the one with Towest total
cost of all placed jobs:

(a) Place i so that it comes first in the sequence of scheduled jobs and starts exactly al
it’s rele- se time, with no inserted idle time between i and the next job. This may
require pushing forward some previously scheduled jobs

(b) Place i so that it comes last in the sequence of scheduled jobs, with no inserted
idle time between i and the preceding job. Make sure that starting time of job s
at least greater than or equal to its release time.

(c) If d,, is in currently idle time, place i so that it completes at o, and push

preceding jobs earlier so that they do not overlap and start before their release

67

times. Otherwise, find the closest idle time that occurs prior to d,, and insert i
there, pushing preceding jobs carlier if necessary. In both cases, if pushing
preceding jobs carlier is not enough, succeeding jobs are pushed later.

(d) If (d,, - p,) isin currently idle time. place / i that idle interval as late as possible
il it 4its and also starts at lcast by its own release time, or by pushing succeeding
jobs later if it does not. Otherwise, find the closest idle time that occurs after
(d, - p,) and insert i there, pushing succeeding jobs later if necessary.

(c) If'd, is in currently idle time and fits in that idle interval, place it so that it starts
at the start of the idle interval. If it does not fit, place it so that it completes at the
end of the idle interval and push preceding jobs carlier to make it fit. Make sure

that job i should not start before its own relcase time.

The five schedules tested in step 2 may not all be distinct ones. However, at
least two options are tested: One placing the job early, and one placing it tardy. So
although we are initially sorting the jobs according to their tardiness penalties only,
the cffect of the flowtime, earliness penalties and of the machine idle cost comes to
play when choosing among the five schedules of step 2. GREEDY INSERT works in
O(nz) and results in a schedule with idle times already inserted, through not

necessarily in an optimal fashio..

5.4 Experimental Design

in order to test the performance of our heuristics and compare it to other
procedures, we designed a 22 factorial experiment that takes T & R into account. We
randomly generated tle processing times of the jobs from a Discrete Uniform [1,30]
distribution, the release time from a Discrete Uniform [0, P/2] distribution where P =
Z:' , 2, « the first due daue for all the jobs is generated as

d, =, +U[PA=T=R/2)., PQ=T+R/2)))

68

and the next due date of the job is generated as
d, = d,“_” +{/[PU-T=-R/2D.PA=T-+R/D|/m fork=2,.... m

where 1 is generated from a Discrete Uniform |2, »] distribution. Fhe first tardiness cost
per unit time of the jobs is generated from Uniform [055]7/n and the nest tirdiness
cost per unit time is generated as § ;) + (U]OSS]P/#) . The carliness cost per unit time
o, form a Continuous Uniform [0.25. 0.75] B,, distribution, the work-in-process cost pet
unit dme y, from a Contiruous Uniform [0.1, 0.25]¢ . distribution and the machine idle
cost is generated from a Discrete Uniform [5, 251 distribution. We ran the experiment for
instances with 10, 20, 30, 40 jobs per problem and tested different heuristic proceduies
against heuristics that have been introduced in the previous chapters for solving carling .
tardiness flowtime, and machine idle cost problems with different due dates with celease
times, and that can be casily modificd to accommodate with multiple due dates. We
generated a sct of 800 problems for each instance. All the algorithms presented in this

chapter were coded in PASCAL and run on a Pentium PC at 75 Mz,

5.5 Experimental Results

We use [GI1+] to designate the performance of GREEDY INSERT, which sorts jobs
initially by sort 1 procedure, |GI2+] to designate the performance of GRITDY INSERI,
which sorts jobs initially by sort 2 precedure. and [GI3 1] to destgnate the performance ol
GREEDY INSERT, which sorts jobs initially by sort 3 procedure. We use |GEH2 1V to sclect
the best <olution obtained by [GI14] and [GI2+4]. Similarly [GII231] to seleet the best
solntion obtained by [GI1+], [GI2+], and [GI3 +]. The results are classilied according 1o
the value of tardiness and range factors. Some of the results obtained are presented in

Table 5.1, Figures 5.2, 5.3 and remaining are tabulaied in the Appendix-C’

Some of the interesting results of our study are listed below:

69

Performance of [GI121+], [GE1234] for loose due dates and small range is better than

that of [APIZ], and very close to [API2] for wide range at loose and tight due dates.

Performance of [GI12+] and [GI123+] 1s significantly better than [EDD], [SLK]. and

11/S] for all due dates and range factors.

Performance of GREEDY INSERT is greatly varied depending on initial sorting of jobs

for all the cases and significantly noticeable for tight due dates at small range.
CPU time required to solve the decomposed job shop cost problem is increased
tremendously for [API2]. [PI2] due to multiple due dates and multiple tardiness

penaltics compare to that of problems presented in the previous chapters.

CPU time requirement for GREEDY INSERT is small and much less than that of [API2],

[P12).

While Performance of GRIEDY INSERT increases as problem size grows bigger for all

cases except for tight due date and small range.

Performance of [EDD]. {SLK], and [1/S] is better for loose due dates than that of

tight due dates.

Performance of [P12] is significantly better than a. | other heuristic presented here.

But CPU time requirements is much higher than any other heuristic presented here.

CPU time requirement for [EDD]. [SLK]. and [E/S] is smaller than GREEDY INSERT.

70

Table 5.1 Average performance of heuristics relative to API2:

No Due | Range | APIZ/EDD [API2/SLK | APIZES | APLR2'GE | APL2'GLE | APLR2PLR2
jobs | dates 124 234

Small 0.886 0.904 0.920 0.990 1.002 1016
Loose | Wide 0.924 0.93, 0.954 0.986 0.993 1.007
10 Small 0.796 0.748 0.827 0.948 0.979 1.045
Tight | Wide 0.740 0.647 0.768 0.991 1 001 1.002
Loose | Small 0.894 0.903 0.912 0.995 0.998 1.023
Wide 0.951 0.952 0.963 0.988 0.990 1.005
20 | Tight [Small | ~ 0810 0.779 0.829 0.941 0.964 1.052
Wide 0.741 0.683 (0.780 0.977 0.992 1.082
Loose | Small | 0.897 0.901 0.908 R 1012 033
Wide (1.9506 0.959 (1.964 (1.9945 0997 1.009
30 | Tight | Small 0.834 0.823 0.850 0,920 0.946 1.040
Wide 0.750 0.749 0792 0.976 0.994 | 058
Loosc | Small 0.898 0.902 0.907 1.016 (ST TN B—
Wide 0.958 0.960 0.965 (.996 0.997 [----
40 | Tight | Small 0.835 0.838 (0,855 0.897 0.925
Wide 0.705 0.685 (1730 0,972 0991919 | ——---

71

(a) T=0.1, R=0.8

Number of Jobs

1.04 ¢
o~
< 1027 PI2—"GM 23+
o 1 API2
3 GH2
8 098}
8
0.96 |
E’ 0.94
5 0
g 092} E/S—
® SLK
g 09 | R —
0.88 EDD; : .
10 20 30 40
Number of jobs
Figure 5.2(a) Loose due dates & Small range
(b) T=0.1, R=1.2
& 1o P12
5 11 API2
< o099 | G|123+f
3 Gi12+
z o098l
Q
S 097
E 0.96 | —
t
g 095} ElS
S o094}
;f 093 | SLK
44
0.92 EDD; ; . ,
10 20 30 40

Figure 5.2(b) Loosc due dates & wide range

(c) T=0.4, R=0.8

14
N
3 1.05 PI2
S 1 API2
Y G123+
> 095 GI12+\\
‘é 0.9 I ——
0.85 —_—
£ E/S
2 o8 EDD
2 ors SLk
']
g o7
0.65 : :) '
10 20 30 40
Number of Jobs
Figure 5.2(c) Tight due dates & Small range
(d) T=0.4, R=1.2
1.09
S o PR T
o 1.04 API2
T 099} G2+
S ’
g 084 G125+
g 0.89 |
S o084}
t
g 079 |
e EIS
2 0.74 | EDD /\
K]
< 069 ¢} e
® 064 SLKe—r™" . ,
10 20 30 40

Number of Jobs

Figure 5.2(d) Tight due dates & Wide range

73

Average CPU time in seconds on Pentium PC at 76 mhz
PI2 API2

40 +

35 4+
(%3
8 301
c
o]
g 25+
v
£ 204
Q
E 151
>
?5 10 +

sl EDD,SLK, B/ 12*
1123+
0 4 -t _— i
0 10 20 30 40
Number of Jobs

Figure 5.3 Average running time of algorithms

3.6 Conclusion

In this chapter, we designed & tested new heuristic procedures against cther
methods to solve the decomposed job shop cost problem to minimize the total of work-in-
process, carliness, tardiness, and machine idle costs under different experimental
conditions. The computational results showed that the new heuristics presented in this
chapter will be an attractive alternative to solve big problem sizes cfficiently with low
computational cost. This kind of heuristic procedures are more important, since solving
multiple single machine problems with reasonable accuracy with low computational
cost solves complex job shop scheduling problems quickly with reasonable accuracy.
The results obtained from new heuristic procedures are significantly varied depending
upon the initial sorting procedure used. We recommend Sort 2 for initial sorting of jobs
for |GI} because of its good performance. Here we did not use our version of tabu
search because it is taking more time. So, for this problem we recommend usage of P12

for small problem sizes and {GI12+] or [GI12 +] for large problem sizes.

74

CHAPTER 6
Conclusion and Future Work

This thesis provided efficient heuristic procedures to solve a single machine
problems to minimize work-in-process, carliness. tardiness, and machine idle costs where
B, >a, >y,. On the way to solve the decomposed job shop cost problem, this rescarch
also provided efficient heuristic procedures to minimize total cost on single machine
scheduling problems with or without release times. The significance of machine idle cost
was well demonstrated by taking that into the model to respond to the fiture demand in
JIT manufacturing and also used to avoid slack schedules in solving job shop scheduling
problems.

Generally it is not casy to obtain precise figures for flowame, carliness, tardiness,
and machine idle costs. Added to the fact that these problems are in a class of problems
that are known to be computationally difficult which make heuristics such as jGl} a
logical choice. Whencver costs arc not directly available, use relative importance to give
weights.

Some of the important results are:

e Tardiness and Range factors have significant effect on the performance of heuristic
procedures. Relative magnitude of work-in-process, carliness, tardiness, and machine
idle costs have no significant effect on the relative performance of heuristic

procedures.

75

e Itis observed from the results that optimal insertion of idle times after each step of all
scarch procedures will give significantly better results than optimal insertion of idle
times at the end of the search.

e Tabu Scarch is reccommended to solve small problem sizes (20 jobs). As problem size
becomes larger, we highly recommend to use the GREEDY-INSERT heuristic to obtain a
good solution with low computational cost. GREEDY INSERT is quick and performs
very well on average, significantly better than the dispatching heuristics we tested.
This makes |Gl an ideal heuristic procedure that provides perfect trade off between
good solution and computational cost.

e To solve job shop scheduling problem, shifting bottleneck procedure proposed by
Amiouny (1995) requires solving multiple single machine problems, therefore we
recommend to use [Gl] at carly stages to get good solution in rcasonable time, and use
[API2] or Tabu scarch towards the end, if the computational power allows it for the
problem.

e We recommend to choose heuristics based on the value of tardiness factor and due
date range. For instance, it is highly advisable to choose |GI] to solve single machine
problem with multiple due date for all cases except for the ~.ase with tight due dates
and small range at large problem sizes.

Future research can focus on solving job shop problems to minimize total cost in

JI'T manufacturing with the help of heuristics which we developed in this thesis. We

strongly belicve that GREEDY INSERT is an efficient tool in solving complex job shop

problems, which can be solved by solving multiple single machine job shop problems,

76

because of its low computational cost with reasonable accuracy. It will be interesting to
use [GI] to solve job shop problems and try to compare it with other procedures. Since no
other work done on the specific single machine problem with multiple due dates, others
can use our results as benchmarh.

Inspite of all the work done so far, the problem of minimizing total costs in job

shop scheduling is likely to remain as a challenge to rescarches for a long time to come.

77

0.

()'

References

Abdul-Razaq T. S. and C. N. Potts, "Dynamic programming state-space relaxation
for single-machine scheduling”, Journal of Operational Research Society. Vol. 19,
No. 2, PP. 141-152, 1988.

Adams, J., Balas, 5. and). Zawack. "The shifting bottleneck procedure for job shop
scheduling”, Management Scicnee, Vol. 24, No. 3, PP. 391-401, March 1988.

Adil, G. K., Rajamami, D. and D. 5trong, " A mathematical model for cell formation
considering investment and operational costs". European Journal of Operational
Research, vol. 69, PP. 330-34!. 1993,

Ahmadi, R. and U. Bagchi, "Single machine scheduling to minimize carliness subject
to dead lines”, Working paper 86/86-4-17. Department of management, University of

Texas. Austin, 19864,

Ahmadi, R. and U, Bagchi, "Just-In-Time scheduling in single machine systems",
Working paper 85/86-4-21, Department of management. University of Texas. Austin,
1986b.

Amiouny, S.V., "A shifting bottlencck procedure for minimizing earliness/tardiness

costs in job shop scheduling”, Working Paper. Concordia University, Montreal, 1995.
Ashour, S.. "Sequencing theory”, New York: Springer-verlag, 1972.

Bagchi, U., "Scheduling to minimize Earliness and Tardiness penalties with a
common due date”, Working paper, Department of manage:nent. University of Texas,
Austin, 1985.

Bagchi, U, Chang, Y. and R. Sullivan, "Minimizing absolute and squared deviation

of completion times with different carliness and tardiness penalties and a common
due date”, Naval research logistics quarterly. Vol. 34, PP. 739-751, 1987.

78

10.

11

13.

14,

15.

16.

17.

18.

19.

Bagchi, U.. Sullivan. R. and Y. Chang. "Minimizing mcan absoluic deviation of
completion times about a common due date”. Naval rescarch logisties quarterly, Vol
33. PP. 227-240. 1986

Bagchi. U.. Sullivan, R. and Y. Chang. "Minimizing mean squared deviation of
completion times about a common duce date”. Management Science, Vol. 33, PP, 894-
9006. 1987

. Bahram, A.. "Numerical methods for single m=chine scheduling with non-lincar cost

functions to minimize total cost", Journal of Operational Researeh Society, Vol. 44,
No. 2, PP. 125-132, 1993.

Bahram, A. and D. Rosa, “A note on the V-shaped pronerty in one - machine

scheduiing ™, Journal of the Operational Research Society, vol. 46, PP, 128-132, 1995

Baker, K. R., " Introduction to sequencing and scheduling”, New York: John Wicely,
1974.

Baker, K. R. and G. D. Scudder, "Sequencing with carliness and tardiness penalties.

A review", Operations Research, Vol. 38, No. t, PP.22-36, Jan-Feb. 1990,

Baker, K. R. and A. Chadowitz, "Algorithms for minimizing carliness and tardiness
penalties with a common due date", Working paper No. 240, Amos Tuck School of

Business Administration, Dartmouth College | Hanover, N.H, 1989,

Baker, K. R. and G. Scudder, "On the assignment of optimal due dates™, Journal of
Operational Rescarch Society, Vol. 40, PP. 93-95, 1989.

Bector, C., Gupta, Y. and M. Gupta, "Determination of optimal common due date and
optimal sequence in a single machine job shop", International Journal of Production
research, Vol. 26, PP. 613-628, 1988

Bellman, Esogbue. A.O. and I. Nabeshima, "Mathematical 1spects of scheduling &

applications”, International scrics in modern applicd mathematics and computer
science. Vol. 4, Pergamon Press1982.

79

20.

21.

22.

20.

29

Buxey, G., "Production scheduling: Practice and theory", European Journai of
Operational Research, vol. 39, PP. 17-31, 1989.

Ceyda O. and C. Dincer, "Single machine Earliness-Tardiness scheduling problems
using the cqual -slack rule", Journal of Operational Research Society, Vol. 45, No. 5,
PP. 589-594, 1994.

Chae, Y. L., “Genetic algorithms for single machine job scheduling with common due
date and symmetric penaltics”, Journal of the Operations Research Society of Japan,
Vol. 37, No. 2, PP. 83-95, June 1994.

23. Chae, Y. L. and 1. Y. Choi, “A genetic algorithm for job sequencing problems with

distinct dve dates and general Early - tardy penalty weights”, Computers anl
Opcrations research, Vol 22, No. 8, PP. 857-869, 1995.

. Chae, Y. L. and S. J. Kim, “Paralle] genetic algorithms for the earliness-tardiness job

scheduling problem with general penalty weights™, Computers ind. Engng, Vol. 28,
No. 2, PP. 231-243, 1995.

. Chand, S. and 1. Schneeberger, "Single machine scheduling to minimize weighted

carliness subject to tardy jobs", European Journal of Operational Research, vol. 34,
PP, 221-230, 1988.

Chang, S. S. and U, G. Joo. "A single machine scheduling problem with
carliness/tardiness and starting time penalties under a common due date", Computers
and Operations rescarch, Vol. 19, No. 38, PP. 757-766, 1992.

. Cheng. T. C. E., "A duality approach to optimal due-date determination”, Engineering

Optimization. Vol. 9, PP. 127-130, 1985.

.Cheng. T. C. E., "A note on the common due-date assignment problem", Journal of

Operationai Rescarch Society, Vol. 37, No. 11, PP. 1089-1091. 1986.

.Cheng, 1. C. L., "An algorithm for the CON due date determination and sequencing

problem”, Comp. Opns. Res., Vol. 14, PP. 537-542, 1987.

80

30.

32.

34.

35.

36.

37.

38.

Cheng. T. C. E. "Optimal common duc Jate with limited completion time
deviation”. Comp. Opns. Res., Vol. 15, PP. 91-96, 1988a.

.Cheng. T. C. E.. "Optimal constant due-date assignment and sequencing”. Int.)

Systems Sci., Vol. 1988, Vol. 19, No. 7. PP. 1351-1354. 1988b.

Cheng. T. C. E. " A note on a partial scarch algorithm for the single-machine optimal
comnion due-date assignment and sequencing problem”. Comp. Opns. Res., Vol, 17,
No. 3, PP. 321-324, 1990.

. Cheng. T. C. ., and M. Gupta, " Survey of scheduling rescarch involving due date

determination decisions", European Journal of Operational Rescarch, vol, 38, PP,
156-166, 1989.

Cheng, T. C. E., and Z.-1.. Chen, "Paidlel-machine scheduling problems with
earliness and tardiness penalties”, Journal of Operational Rescarch Society. Vol. 45,
No. 6, PP. 685-695, 1994.

Chung-Lun, L., Cheng T. C. E. and Z.-1.. Chen, “Single-machine scheduling to
minimize the weighted number of carly and tardy agrecable jobs™, Comp. Opns. Res.,
Vol. 22, No. 2, PP. 205-219, 1995.

Chung-Yee, L., Danusaputro, S. [.. and C'.-S Lin, "Minimizing weighted number of
tardy jobs and weighted earliness-tardiness penaltics about a4 common due date”,
Comp. Opns. Res.. Vol. 18, No. 4, PP. 379-389, 1991.

Dauzere-Peres, S. and J.-B. Lasserre. "A modified shifting bottleneck procedure for
job shop scheduling", International Journal of Production Research, Vol 31, No. 4,
923-932, 1993.

Davis, J. and J. Kanet, "Single machine scheduling with a non regular convex
performance measure, Working poper, Department of Management, Clemernison
University, Clemenson. S. C. 1988.

39.

40.

41.

42.

43,

44.

45.

46.

47.

48.

De. P.. Ghosh. J. and C. Wells. "A note on the minimization of mean squaned
deviation of completion times about a common due date”, Management Science, Vol.
35.PP. 1143-1147. 1989a.

De. P.. Ghosh J. and C. Wells, "Scheduling about a common due date with carliness

and tardiness penalties, working paper. University of Dayton, Dayton, Ohio, 1989h

Eilon, S. and I. Chowdhury, "Minimizing waiting time variance in the single machine
problem ", Management Science, Vol. 23, PP, 567-575, 1977,

Emmons, I1.. "Scheduling a common due date on paratlel common processors”, Naval
Research Logistics quarterly, Vol. 34, PP. 803-810, 1987.

French, S., "Sequencing and scheduling: An introduction to the mathematics of the

job shop", New York: John Wiley and Sons, 1982.

Fry, T. D., G Keong Leong, "A bi-criterion approach o minimizing inventory costs
on a single machine when carly shipments are forbidd :n", Comp. Opns. Res., Vol. 14,
PP. 363-368, 1987.

Fry, T. D., Darby-Dowman, K. and R. Armstrong. "Single machine scheduling to
minimize mcan absolute lateness", Working paper, College of Business

Administration, University of South Carolina, Columbia, 1988.

Fry, T. D., Armstrong, R. D. and J. H. Blackstone, "Minimizing weighted absolute
deviation in single machine scheduling”. I1I: Transactions, vol. 19, No. 4, PP, 445-
450, 1987a.

Fry, T. D, Leong, G. K. and T. R. Rakes, " Single machine scheduling: A comparison
of two solution procedures”, OMEGA Int. J. of Mgmt Sci., vol. 15, No. 4, PP. 227-
282, 1987b.

Garey, M. R, Tarjan. R. E. and G. T. Wilfong, "Onc-processor schednling with

symmetric earliness and tardiness penaltics”, Mathematics of Operations Rescarch,
Vol. 13, No. 2, PP. 330-348, May 1988.

82

49,

50.

51.

53

54.

55.

56.

57.

58.

Glover, F., "Tabu Scarch: A Tutorial". INTERFACES. Vol. 20, PP. 74-94. 4 July-
August 1990,

Gupta, J. N. D., "Economic aspects of production scheduling systems". Journal of
Operations Research Society of Japan, Vol. 13, No. 4, PP. 169-193, March 1971.

Gupta, S. and J. Kyparisis. "Single machine scheduling research”, OMEGA, Vol. 15,
PP.207-227, 1987.

- Gupta, S, and T. Sen, "Minimizing a quadratic function of job lateness on a single

machinc"”, Engn. Costs Prod. Econ., Vol. 7, PP. 181-194, 1983.

Hall, N., "Single and multi-processor models for minimizing completion time

variance”, Naval Research Logistics quarterly, Vol. 33, PP. 49-54, 1986.

Hall, N. G. and M. E. Posner, "Earliness-tardiness scheduling problems, 1: Weighted
Deviation of completion times about a common due date”, Operations Rescarch, Vol.
39, No. 5. PP. 847~ , Sept.-Oct. 1991.

Hall, N. G, Kubiak, W. and S. P. Scthi, "Earliness-Tardiness scheduling problems, 11:
Deviotion of completion times about a restrictive common due date", Operations
Rescarch , Vol. 39, No. 5, PP. 847-, Sept.-Oct. 1991.

Helmut G. K., "Scheduling with monotonous earliness and tardiness penalties",
European Journal of Operational Research, Vol. 64, PP. 258-277, 1993.

Herrmann, J. W. and C. Lee, "On scheduling to minimize earliness-tardiness and
batch delivery costs with a common due date". European Journal of Operational
Research, Vol. 70, PP. 272-288, 1993.

Hoogeveen, J. A., Oosterhout H. and S. L. Van De Velde, "New lower and upper
bounds for scheduling around a small common due date", Operations Research, Vol.
42, No. 1. Jan.-Feb. 1994,

59. Hoogeveen, J. A, and S. L. Van De Velde, "Scheduling around a small common due

date", European Journal of Operational Research, Vol. 55, PP. 237- 242, 1991.

83

60.

61.

063.

64.

65.

66.

67.

68.

69.

Kanet. J.. "Minimizing the average deviation of job completion times about common

due date”, Naval Rescarch Logistics Quarterly. Vol. 28, PP 6043-651, 1981a

Kanet, J.. "Minimizing variation of flow time i single machine systems”,
Management Science, Vol. 27, PP, 1453-1459, 198 1b.

.Kim, Y. and C. A. Yano. "Minimizing mean tardiness and carlimess in single-machine

scheduling problems with uncqual due dates”, Naval Rescarch 1 ogistics Quarterly,
Vol. 41, PP. 913-933, 1994,

Krieger, A. M. and M. Raghavachari. "V-shape property tor optimal schedules with
monotone penalty functions", Computers and Operations Rescarch, Vol 19, No. 6,
PP. 533-534, 1992.

Lakshminarayan, S., Lakshmanan, R., Papincau, R. and R. Rochette, "Optimal single-
machine scheduling with carliness and tardiness penalties”, Operations Rescanch, Vol
26, PP. 1079-1082, 1978.

Lawler, E. and J. Moore, "A functional cquation and its applications (o resource

allocation and sequencing problems", Management Scienee, Vol. 16, pp. 77-84, 1969

Lawler, L. E., "A pscudopolynomial algorithm for scquencing jobs to minimize total
tardiness, Annals of Discrcte Mathematics, 1, 331-342, 1977,

Lenstra J. K., "Sequencing by cnumerative methods”™, Mathematisch Centram,
Amsterdam, 1977.

Lenstra, J. K., Rinnooy Kan, A. II. G and P. Brucker, "Complexity of machine
scheduling problems", Annals of Discrete Mathematics, 1, 331-342. 1977.

Maccarthy, B. L. and J. Liu, "Addressing the gap in scheduling rescarch: a review of

optimization and heuristic methods in production scheduling”, International Journal
of Production research, Vol. 31, No. 1, PP. 59-79, 1993.

84

70.

71.

73.

74.

75.

76.

77.

78.

79.

Mittenthal, J. and M. Raghavachari, "Stochastic single machine scheduling with
quadratic carly-tardy penalties”, Operations Research, Vol. 41, No. 4, July-Aug.
1993,

Morton, 'T. k. and 2. W. Pentico, "Heuristic scheduling systems with applications to
production systems and project management", New York: ETM Wiley scries in

enginecering & technology management, 1993.

.Ow, P. S, and T. E. Morton, "Filtered beam search in scheduling”, International

Journal of Production Rescarch, Vol. 26. No. 1. PP, 35-62, 1988.

Ow, P.S.and 'T. E. Morton, "The single machine early / tardy problem”, Management
Science, Vol. 35, No. 2, IFeb. 1989,

Panwalkar, S., Sn.th, M. and A. Scidmann, "Common due date assignment to
minimize total penalty for the one machine scheduling problem", Operations
Rescarch, Vol. 30, PP. 391-399, 1982.

Parthasarati, 1J., "Common due date scheduling problem with separate carliness and
tardiness penalties”, Computers and Operations Research, Vol. 20, No. 2, PP. 179-
184, 1993.

Prabuddha. D., Ghosh, J. B. and C. . Wells, "Scheduling to minimize weighted
carliness and tardiness about a common due-date”, Computers and Operations
Resecarch, Vol. 18. No. 5, PP. 465-475, 1991,

Prabuddha, D., Ghosh. J. B. and Charles E. Wells, "On the general solution for a class
of carly/ tardy problems", Computers and Operations Research, Vol. 20, No. 2, PP,
141-149, 1993,

Quaddus, M.. " A generalized model of optimal Due-date assignment by linear
programming”, Journal of Operational Research Society, Vol. 38, PP. 353-359,
1987a.

Quaddus, M., " On the duality approach to optimal due date determination and
sequencing i a job shop”, Engineering Optimization, Vol. 10, PP. 271-278, 1987b.

85

80.

81.

83.

84.

85.

86.

87.

88.

89.

90.

Ragavachari. M.. "A V-shape property ot optimal schedule of jobs about a common

due date". European Journal of Operational Rescarch, Vol. 23, PP 401-402, 1980,

Ragavachari. M., "Scheduling problems with non-regular penalty functions - A
Review", Opscarch, Vol. 25, PP. 141-104, 1988,

. Raman. N. and F. B. Talbot, "The job shop tardiness problem: A decomposition

approach”, European Journal of Operational Rescarch, Vol. 69, PP, 187-100 1993

Rinnooy Kan, A. I1. Gi.. "Machine scheduling problems: Classilication, Complesity
and Computations", Martinus Nijho!T/ The Hague, 1976,

Rinnooy Kan, A. H. G.. Lageweg, B. 1. and J. K. Tenstra, "Minimizing total costs in

one-machine scheduling”, Operations Rescarch, Vol 23, No. 5, PP 908-927, Sepl.-
Oct. 1975.

Sen, T., and S. Gupta, " A state-of-the-art survey of static scheduling, rescarch
involving due dates", OMEGA, Vol. 12, No. |, PP. 62-76, 1984,

Sidney, J., "Optimal single-machine scheduling with carliness and tardiness

penalties”, Operations Rescarch, Vol. 25, PP. 62-76, 1977.

Steve Davis, J. and J. I. Kanet, "Single-machine scheduling with carly and tardy

completion costs", Naval Rescarch Logistics Quarterly, Vol. 40, PP, 85-101, 1993,
Sundararagavan, P. and M. Ahmed, "Minimizing the sum of absolute lateness in
single-Machine and multi machine scheduling”, Naval Rescarch Logistics Quarterly,

Vol. 31, PP. 325-333, 1984.

Suresh, C. and D. Chhajed, "A single machine model for determination of optimal
due dates and sequence", Operations Rescarch, Vol. 40, No. 3, PP. 596-602, 1992.

Surya, D. L. and S. Ramaswamy, “Larliness-tardiness scheduling problems with
common delivery window”, Operations Rescarch Letters, Vol. 15, PP, 195-2073, 1994,

86

91

93,

94.

Ys.

00.

97.

98.

99,

Szwarc. W, "Mimimizing absolute lateness in single machine scheduling with

different due dates”. working paper. University of Wisconsin. Milwaukee. 1988.

CSeware. W., "Single machine scheduling to minimize absolute deviation of

completion times from a common due date”. Naval Rescarch Logistics Q. urterly.
Vol. 36, PP. 663-673, 1989,

Szwarc, W.. "Adjacent orderings in single-machine scheduling with carliness and

tardiness penalties”, Naval Research Logistics Quarterly. Vol. 40, PP. 229-243, 1993,

Vani, V. and M. Ragavachari. "Deterministic and random single machine scheduling

with variance Minimization", Opcerations Research, Vol. 35, PP, 111-120. 1987.

Ventura, 1AL and M. X Weng. “An improved dynamic programming algorithm for
the single machine mean absolute deviation problem with a restrictive common due
date”, Operations Rescarch Letters, Vol 17. PP, 149-152,1995.

Vonderembse, M. A and G. P. White. ™ Opcerations Management Concepts, Methods,

and Strategies™. West Publishing Company. 1991,

Weng. M. X and 1. AL Ventura, "A note on single machine scheduling for minimizing
total cost with identical. asymmetrical carliness and tardiness penalties”. International
Journal of Production Research. Vol. 32, No. 11, PP. 2725-2729, 1994,

Wenp, M. X and J. AL Ventura, A quadratic integer programming method for
minimizing the mean squared deviation of completion times”, Operations Research
letters, Vol 15, PP, 205-211, 1994,

Wilhelm. 8§ . "The job shop tardiness problem: A corrected model”, European Journal
of Operational Research, Vol 79, PP. 549-550, 1994,

100, Yano C. and K. Yeong-Dae, "Algorithms for a class of single-machine weighted

tardiness and carliness problems”. FEuropean Journal of Operational Research, vol.
52,PP. 167-178. 1991.

87

101.Zheng. W. -X.. Nagasana. T, and Nishivama, N, "Smgle-machine schedulimg tor
minimizing total cost with identical. ass mmettical carliness and tardiness penalies™,

International Journal of Production Rescarch. Vol 31, PP Lol 1-1620, 1993

88

68

.................. SteLt] mmmes 0LOLST | TPOCST | 899CC1 | S66CLT | CLIELI - | €0ETVLL 0§
8TTCrC6| 9°CCC86 | £S8001 | L7CCSBO | 90066 | SETILL | €E6111 | ¥I0CHT | T601CT oy
PUTOLLE | L71E6S | T°89909 | ¥7ILY6S | 1°€H86S | LEPY99 | T°C1699 | v108YL | ¥8°SCCLI 0¢
CETCO9C 1 S18L0LC | L6'601LC| 17980LC | 9TLLLT | L'H9E8CT | €°606LT | 1°0918T | 0°0960€ | ¥'¥8TIE | ¥'SLILY |6V VT91E 0¢c
16°CL8L [€8CTO8L 16179564 | OCHTOL | 86°L118 | 9S79SC8 [LSCSI8 | 1L°69C8 | TO9T68 | 09'1806 | TOOELL | 9Ly SYT6 01
sqof

00104V | sTngvlL cld 11d cldyv 11dV +1D 1D S/3d ATS 1dS adgd (3o squnN

WI[qOIJ NI /1/U Y} A0] SINsIY [erudwrrddxy

V-XIAN3ddV

wajqodd Jyz7.4 1,130 10] 8'0=¥ % [0=L 1€ paie[ngel SI 1500 [210] a3eIdAY [V djqe],

.................. LEYOL OFLSTD | +0SOTL | 8FEIILE | $8.C81 | I8Ited “mem b A8seyd O«
............ 6800898 | 8 IHICL | 66SHSL | SL.29CL | 0°860€L | T'8EE98 | THELLS | O8FETT | £79¢698 of
............ FESTLIE| TH98Et | STISHE | €98t | CCSLtt | TT1L0CS | £709Ces | 199981 | Itoescy 0t
€C6810T [THLSTNT|6S€9SOT| 1°69€0T | 1'0LSIT | 8°+9HIT | STEOIC | 0°S8ICT | TL69ST | 9'6189C | 8789L09 | £'6109C 0c
8EOLTSY | 1LS'8ES9 | R6STO99 | LE7 €099 | 88169 | 99°€8R9 | +'6E1L | LEELTL | 10°66L8 | $'T168 | TOFIOL | 0°LSHS 01
sqof
001N4gVv.L | cTgvl cld [1d v 1dV ~19 1D S. 3 NS 1dS aad | JolqunN
woajqoxd J\ 74, 1. ¥ Y1 10} §'0=4 ¥ + 0=L1 1€ PAL[NQE] S1 IS0 [L101 ASEIAAY €'V IqEL
.................. LE6CE] B C6OCCT | T16SLET | F96LCT | 09961 | CC10t - 167990t 0¢
6807898 | ' 1LSL8 | €18088 | €°€SC68 | L798968 | L'+6L06 | +78ECI6 | +ECISC | +78¢€16 ot
[CTCLTS| 6'PTLES | 8'8THES | T'ILIES | L'SESHS | TLEISS | 6'SIPES | €6€C91 | S6L9€C 0¢
88°LCOTT | 8 1€0ET | PO PO1ET| OLITET | €9€0SC | 8'80CSC | TSI9ST | ¥'61+8ST | 6L19C | €OVHOC | €860SL | S+ H+1S9¢C 0c¢
QLLLYEL | CILESEL|LI066EL | SO6°COEL | TOLLSPLI C1E00SL| FLEYIL | 19°008L | 68°CI8L | &FTPOL | 8L9L8L | CC1T66L 01
sqof
0014Vl | STNgvl cld I1d Ccldv [1dV +ID 1D S/4d AIS LdS add |JjolsqunN

walqoad JY L7 /1/U 341 10§ T 1=y % 1'0=L 1& PAL[NQe) 511509 [e10) 3381V TV AqEL

16

61€C0CH] L1I181T | L6L88°6 | TCOLY'L | I¥ISI'O | 18THI0 | ¥YL10°0 | 82600°0 | 08L00°0 | €18L00°0 0s

...... CO01 | CIESILTE] SLBEL0 | €959L0°0|881L90°0|9€1600°0| €TS00°0 | STIL00°0 | 88940070 oy

...... SL8L'Y | SL81°1 CLETO |8EY8YO0[8E6SE00) STISO0°0|889%00°0 | SETI00°0 | €9S100°0 0¢

or | sToo0l [<isLert| <090 | 88991°0 [91050°0 | 187€0°0 | £07€0°0 | 66€00°0 | €12000 | 0 0 0z
9¢6'T | 18T859°0{90+1+0°0 [€959z0°0| €90r10°0|60¥500°0[182€10°0|61L1T00[szoo0 [0 0 0 o1
sqor
001NGVL | STNEVL| cld d | TdV | 1V | +ID 10 S/3 | IS | ldS | aad |JoqunN
Walqoid AL /1 /U A1 10§ ZYW G/ “Dd WNAUS UO 2wl (14D §'V 2IqEL
...... §tL6S6 | - | TH99L6 | 8v6001 | c€ot0l | €8¢601 | seLill | -~ [1'9z8601] 0S
LT68€89| T'TITSO | TLEPD | 6°TcL99 | STETLY | L'606TL | 99LLYL | OE61PT | L'10TEL or

FESCLIT| PELLLE | 8°CEPOP | O'1FCTY | €S9TF | €LE99F | v'PIE8Y | 199VST | 8°0S89Y 0¢

CETCO9C | SLSLTSL{tH81981 | T68E81 | 6°C690T | +°+9€0C | 0°91CIT | 0'19S1T | €968SC | ST101ST | SLT6IL | 880VT 0c

16°€L8L [98+°66S9 | COCLEGY| 81°CEI9 | +H7LL89 | LETCLLY | €COITL | SOEPEL | 9P 6€08 | 1'TOS8 | 6°€€€81 [8CI9PI8 01
sqof

00119Vl €19Vl cid 11d cIdVv 11dV +ID ID S/4 IS LdS adad | Jo lsqunN

wajqoxd Jy77 /1 U AP 10J T 1=y 2@ +'0=] 1 pare[nqgel s 1509 [2101 33BIAAY $'V 3qe

APPENDIX-B

Experimental Results for the »n/1/ I [FETAM Problem

Table B.1 Average total cost is tabulated at I-0.1 & R 0.8 fou the n/ Ve / FETM

problem
Number | EDD SLK E/S Gl Gl API2 Pl2 FARBLU2S
of jobs
10 8968.7 | 8900.1 | 8728.9 | R218.7 | 81323 | RO04.4 | 7939} 780063
20 20152 | 29237 | 28734 | 260682 | 26484 | 26333 | 25874 25793
30 62007 | 61864 | 61401 | 56391 | 56031 | 56133 | 54905 54861
40 107689 | 107446 | 106841 | 96827 | 96212 | 96847 | 94258 | —---m-
50 162686 | 162281 | 161621 | 145025 | 144386 | 146063 | 141781 | ~-----
75 356056 | 355871 | 354874) 317862 | 316815 | 322272 | -eeee | —oeee-

Table B.2 Average total cost is tabulated at T=0.1 & R -1.2

forthe n/1/r 1 IFETA

problem
Number | EDD SLK E/S Gl Glt API2 P12 TABLI2S
of jobs
10 8210.1 | 8147.9 | 8022.1 | 7918.9 | 7775.6 | 7624.4 | 7573.4 | 75533
20 25831 | 25748 | 25517 | 25075 | 24852 | 24601 | 24437 24370
30 54643 | 54622 | 54247 | 53188 | 52816 | 52442 | 52134 | 52094
40 92560 | 92457 | 92056 [90067 | 89562 | 88820 { 88226 | ------
50 138723 | 138626 | 138143 | 135246 | 134600 | 133921 | 133049 [------
75 302307 | 302261 | 301614 | 296142 | 295185 | 294219 | ceeeee | oeeee

92

Table B.3 Results are shown below at 1=0.4 & R = 0.8 for the n/1/r,/ FETM

problem
Number | EDD SLK | DA Gl Gl+ API2 P12 TABU25
of jobs
10 7379.8 | 7515.3 | 7031.8 | 6454.8 | 6338.1 | 6002.1 | 5882.5 5794
20 21899 | 22387 | 21553 | 19854 | 19596 | 18937 | 18478 18400
30 45837 | 45781 | 45246 | 40925 | 40453 | 39894 | 38703 38649
4() 79484 | 79239 | 78617 | 69863 | 69056 | 68659 | 65996 [------
50 120330 1 119979 | 119268 | 104494 | 103578 | 103557 | 99282 | ------
75 260594 | 260454 | 259448 [226289 | 224987 | 227014 | ------ | = ------

Table B.4 Results are shown below at T=0.4 & R = 1.2 for the n/1/r,/ FETM

problem
Number | EDD SLLK E/S Gl GI+ API2 P12 TABU2S
of jobs
10 7860.7 | 8308 | 7610.2 | 6640.9 | 6581.4 | 6324.1 | 61193 6089
20 21443 | 22147 | 20908 | 18836 | 18614 | 18242 | 17728 17655
30 41124 | 41478 | 40584 | 38265 | 37858 | 37149 | 36555 36492
40 70629 | 71472 | 69689 | 63850 | 63208 | 61939 | 60837 | ------
50 101580] 101834 | 100370 | 94282 | 93393 | 92497 | 91133 | ---m--
75 2014915 [216323 | 213867 | 203368 | 201953 | 200179 | == | =-emes

93

Table B.5 CPU Time in seconds on Pentium PC. 66 mhy tor the n 1 » FEIV

problem .
Number EDD SLK LS Gl Gl AP P2 FABLU2S
of jobs -
10 0.00168 | 0.00169 | 0.00203 | 0.01013 | 0.01013] 0.03633 | 0 [4904 1 1 1213
20 0.00313 | 0.00306 | 0.00581 | 0.03081 | 0.03269 | 034828 | 233625 | 17 3228
30 0.00444 1 0.0045 | 0.00875 | 0.06325 | 0.00444 | 15927) 20505 | 84 8328
40 0.00631 0.007 0.0125 | 0.1133 | 011031 4025 05 e
50 0.009 | 0.00788 | 0.01781 | 0.1869 { 0.19023 12 M
75 0.01756 | 0.01675 | 0.03363 | 0.45973 | 0.4756 | 70,9340 e -ooee

Table B.6 Fastness of heuristics with respect to API2 forthe /1 1 FETM

problem o

Number | EDD SLK I5/8 Gl Gl AP | PI2 [TABLIS
of jobs ~

0 21.5259 | 21.5259 | 13.8381 | 3.58765 | 3.58765 | 1 | 024275 | 0.03231

-0 111448 | 113.722 [599183 | 11.3030 | 10.6547 [T [014907 | 0.02011

30 358.918 | 353.933 | 182.023 | 25.1810 | 247170 | 1 | 0.07733 | 0.01R7%

40 780.198 | 703.571 304 | 434687 | 423428 | 1 | 0.CO986 | -

s 133333 | 1523.81 | 673.684 | 642055 | 63.0832 | 1T | 0.05647 | -—---

75 4038.86 | 4234.9 | 2109.58 | 154.298 | 149.148 | | | ----- I]

94

$6

€C0Eh8 | C'1068 | 601106 | £9,106 | €6L806 | S0TS68 | £6S106 | - § 60068 | £°6LCT6 | ST19LT6 | 0°S06T6 14
9'LESES | 0'8F9ES | 6¥80VS | T996ES | L'09PYS [9'STRES | 8'vPThS | TI68TS | S'SEES | LELESS [$79695S | 0£8SS 0¢
€°6L6SC | 9TL09C | 1'6S€9T [0°SSTIT | €9L99T | L'OLYIT | €0LLIT | ST16SST | £°6TLST | $760L9T | 8'610LC | 1'0¥0LC 0Z
Py 8TrL | 6S°08VL | IL°66SL | LOVISL | TL'OSOL | Y9 9TSL | L86S9L | TOPTEL | 98'FLEL | IV OELL | 68°806L | 170861 01
sqof jo

+€C1ID | +ClID +€ID +CID (459 +11D 1D cld cIdVv S/d IS adad | squnn
wojqoxd L7 / P/ "4/ 1/u 341 10§ T[=Y % 1'0=L I8 Pa1e[nqel SI 1503 [£10) 33124y 7D IqEL

C85C96 | 156096 | 1'8CCO6 | £°£ESL6 | €89C86 | 09¢96 [9700046 - 7’86446 | £68L01 | 805801 | 816801 1)
CO6SLE | SLOSLS | PLYEO6S | S00E8S | L'€S88S | 9°CILLS [STESI8S | STOLYOS | €°S0E8S | 9°¢bTH9 | 1'1SLYI | 866619 0¢
VLY6LC | L'SY08C | S'9688C | SOVP8C | L'€S88T | 1°€L18C | 1'64¥8T | 6'19TLT | ¥'168LC | S'¥8SOE | €°L060¢ | ¥ 0611¢€ 0¢
€98LL | 8°083L | 99°1tC8 | C9096L | €5°9908 | LE0O16L | 66'€008 | L66L9L | LS66LL| 11848 [891¢98 | L'66LS 01
sqof Jo

+£clID | +C1ID +€1D +ZID [43) +11D 11D cld cidv S/d AIS ddd | squnn

waqoxd jyI74/ “p/'4/1/u 34 10] §°0=y % 1'0=L 18 paje[nqe) s1 1509 [e)0} 9FRIAAY [*D I[qE]

walqoxd LT /““p /% 1 /4 aup 10§ synsay [epusmLIadxy

O-XIANAddYV

96

co8'1 | <zozi| 90| 16790 SIS0 €€8C90 | 8+SECO| - $'601 | 9800€°0 | 9t€11°0 | 9r6t1°0 ot

| 8/.£08°0 160 cc1oz0] c109c0] cczzol coozol stcTo| sTroc| SLue| 8SIT°0 [1£48€0°0 | 9£€£0°0 0<
€ee12¢ 19996170 | 249070 | £6590°0 | €££50°0 | 950£0°0 | ++190°0 | STTL'ST | SIT°C | 9S1€0°0 | €9+10°0 | 9C£10°0 0C
czz0°0 | ¥610°0 | SL£00°0 | 1820070 | 95900°0 | 81800°0 [£00°0 | 8906C°0 | $8190°0 | €£00°0 | 69100°0 | 88100°0 01

sqor jo

+€2ID | +TlD | +€D| +U9 ao| 1o 11D Cd | Tldv s3] WIS| agd [equnyN
woajqoxd yy 7 / “p s 4/ 174 Y1 10J MO[3q UAIT STawl] NdD €D AAqeL

6'9v289 [27969 [9°€9608 | £°L9ThL | 6°68SSL | 9°9¥8L | 0'48P08 | - +'€6929 | 8'TH0T6 | T99L86 | 0°LE096 o
6°TH00Y | 8°6LL0V | 8°€91vY | L1T8EY | LOTLEY | 6°1LTSK | €6TE9 | €°S19L€ | €L086€ | £68C0C | +'911€S | 1'HOIES 0¢
99,517 | 1'€061T | ¥'¥8LKT | 6'L06TC | 8'019ET | 1'1SOVT | 9'4TSHT | €L8L61 | S90VIT | 8'chPLT | 6 1HET1E | L'8068C 0C
$L°06%9 | 09°€669 | €2°€09L | 20°SE1L | T8'LTEL | 18°1€9L | 60°LT6L | 08°96+9 | $8'6689 | 96 +868 | 0'+9901 | 9€°0€€6 0l
sqof Jo

+EC1ID | +71ID| +EID| +UD U] +I1O 11D Ud| TV S/A| JMIS| dad | sequnN
wojqoxd WIFA /P /4 /1/u U103 T [=4 % p'0=L I8 PAIe[nqe] s 150 {2101 35e15AY) IqEL

€¥c89L | £8516L | 9°S81¥8 | TOV8S8 | 6'€9168 | 801586 | vO¥TOL | - S'EC0IL | 1°S90€8 | L'S8LYS | 91158 4
1'8T8bb | L'9009% | v'2z86F | 0°00€6+ | T7911s | €0019¢ | £'s6L6S | 6°6vS0v | 0°€6€Th | 9°1686% | 6 11STS | £°6080S o€
| 9'¥TLIT | T8STTT | 0'SESET | 8'8TSET | TBSLYT | ¥'1919C | £9LTLT | 9'96861 | LYEG0T | 1'E9TST | $'1989T | 1'1686T 0T
698079 | b7 Eiv9 | €1229 | L1029 ! vL L61L [65801L | TOPSSL | 697185 | 8TLLOY | 1H'SHEL | €1°9T18 | £T'IE9L 01
sqof Jo

+€ZIID | +T1ID| +EID| +UD 0| +11D 11D Zid| Tdv s/A| WIS| agd | equny

wopqosd WIdL ;P41 /U 241 10Y 8°0= %P p'0=L & PAIE[nqE) 11500 [B)0) 3FRIaAY € JqBL

Glossary

Some of the basic terms used in this thesis are introduced below:
Job: A job is a unit of a product that must be processed on certain machine. An

alternative name is a task or an operation (S. Ashour 1972).

Machine: A machine is a single device capable of performing a certain process. An

alternative name is a facility, processor, or work center (S. Ashour 1972).

Job Release Time: A job relcase time is the time at which a job is released to the shop
after it has been engineered. It is equivalent to the earliest time that the processing of
the job could start. An alternative name is job ready time, or job arrival time (S.

Ashour 1972).

Job Start Time: A job start time is the time at which a job starts processing on the

muachine (S. Ashour 1972).
Job Completion Time: A job completion time is the time at which a particular job is

completed. It is equivalent to the completion date of this particular job (S. Ashour

1972).

97

Machine Idle Time: A machine idle time is the length of time for which particutar

machine is not utilized before performing an operation or task (S. Ashour 1972).

Just-In-Time (JIT): Can be used as a basis for planning and scheduling, vet is more
properly viewed as a strategy for designing manufacturing systems that are responsive
to customer requirements. Apply JIT forces a reexamination of operating philosophy.
The JIT philosophy focuses on reducing lead times, reducing set-up times and
improving product quality to minimize raw material, work-in-process and finished

goods inventory (Mark and Gregory 1991).

98

