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Abstract 

The Role of Individuals in Innovation Networks: A Simulation 

Approach in Canadian Biotechnology Network 

Dorsa Tajaddod Alizadeh 

 

Today, innovation is the key to survival in biotechnology markets. Innovation occurs in 

collision of different sources of knowledge in innovation networks. The innovation 

networks have already attracted the scholarly attention, but the research remains mostly 

at the firm and cluster levels, while much less research effort has been devoted to the 

study of the roles of individuals and their relationships. Moreover, the innovation 

networks are usually investigated as static, while the study on their dynamics has 

generated much less interest among the researchers. The contribution of this thesis is 

twofold. First, a simulation model of Canadian biotechnology innovation networks is 

developed using real data on the publications and patents extracted from the USPTO and 

Scopus databases. This scientists-level simulation model has been created as very 

flexible, and as such it can be used for further research examining the Canadian 

biotechnology network under various conditions. Second, the thesis has investigated the 

roles of individual scientists and their relationships in terms of the network innovative 

productivity and its knowledge transmission capability. While the repetitiveness of the 

collaborative relationships among scientists has shown quite negative effects, the 

presence of the Gatekeepers has proved to be very positive for the overall efficiency of 

the innovation network. The impact of star scientists on the innovative activities has been 

found positive, but some negative effects on the flow of knowledge in the network have 
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been detected. Finally, we make recommendations for future research using the 

developed tool for the study of the dynamics of the innovation networks.  
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1. Introduction 

As customer demand for new products grows all over the world, the traditional methods 

of production and services are becoming less reliable. Today, firms are looking for many 

new and specialized products and procedures to survive in the current highly competitive 

world of commerce. The principal key to succeed in fulfilling the radically changing 

demand of customers is nowadays believed to be innovation. 

Today, innovativeness goes beyond the borders of single industries, and therefore firms 

should try to enlarge their external knowledge sources of relevant technologies. The 

increasing pace of knowledge generation, as well as the decreasing life cycle of 

innovative products/procedures, has forced the firms to look for the situations in which 

they can have a quick access to new knowledge. 

Knowledge is primarily produced and certified in the laboratories and research branches 

of any establishment, such as universities, research and development sections of the 

firms, governmental research programs, etc. Once some piece of new knowledge is 

achieved, the beholders of the knowledge will try to utilize it to attain their objectives. 

However, creation of new knowledge is both expensive and time consuming, and requires 

specialized people and vast access to the information sources. Therefore, it is more 

reasonable to have continuous interactions with the knowledge possessors in order to gain 

the advantages of the new knowledge they generate. (Robertson and Langlois 1995) 
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In this regard, involvement in the innovation networks
1
 is considered as a good solution 

for firms to get updated knowledge and information they need. As firms and universities 

start to collaborate through innovation networks, more and more flows of information are 

created that connect innovators in various firms in the network.  

The mechanisms of knowledge creation and also learning processes are playing the most 

important role in the innovation networks. The operational behaviour of networks has 

been studied in the last decades, in order to find applicable theories, rules and policies for 

firms and governments to accelerate the innovative efforts. However most of the research 

in this regard is mainly at the observational and description level (Zaheer and Bell 2005; 

Rogers 1995; Becheikh, Landry, and Amara 2006; Gopalakrishnan and Damanpour 1997; 

Porter 1998; Zucker, Darby, and Armstrong 1998, and many others) and only a few have 

tried to examine the theories and inspect the effectiveness rate of innovation networks 

(Gilbert 2004; Albino, Carbonara, and Giannoccaro 2006; Pyka, Gilbert, and Ahrweiler 

2009). 

There are yet a number of questions that must be answered regarding the dynamic 

behaviour of innovation networks, and the role of individual scientists in transmission of 

knowledge, so as to facilitate the procedure of managing and controlling the networks, 

and also to allow firms make new regulations and decisions regarding innovation 

networks and flow of knowledge. 

The individual scientists in the networks have different levels of importance according to 

their position and capabilities regarding knowledge production and transmission. The 

                                                 

1
 In this thesis, innovation network refers to any kind of social network in which new knowledge is 

produced by the nodes of the network and transferred between them. 
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inventors, who connect many directly unconnected clusters
2
 together, are called 

Gatekeepers. As the innovation networks grow, the role of the Gatekeepers becomes 

more essential for the solidarity of the network and its survival, since they prevent the 

networks from division. 

Star scientists are also another class of scientists, the role of whom affect the structure, 

productivity and improvement of the innovation networks significantly. Generally, stars 

are the scientists with noticeably higher number of patents and publications. In other 

words, star scientists are those who utilize the knowledge flow in the networks more 

efficiently, and produce more new knowledge than others. 

Besides the specific roles of individuals in the innovation networks, the extent of loyalty 

to previous partners, i.e. the willingness of scientists to work with their earlier 

collaborators, rather than searching for new partners may affect the network’s structure 

and productivity. Therefore, it would be interesting to study the impacts of the loyalty of 

scientists on the performance of the innovation networks, in order to come up with better 

understanding of the effects of mutual relationships on innovation.  

The innovation networks are really complicated, and not all of the internal interactions 

are easy to recognize and study at the time. Therefore, simulation models are the best 

solutions to imitate the behaviour of the networks and to copy their characteristics, so the 

researchers can examine the validity of their hypotheses and theories. With the assistance 

of computers, the simulation based studies about innovation networks are increasing 

recently. The concept of agent-based modeling has advanced the learning capabilities of 

                                                 

2
 In this thesis, the word cluster refers to any partitioning of nodes in the network, which can be based on 

their various characteristics such as geographical situation, organization type, field of work, etc.   
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researchers for investigating various aspects of networks, and examining theories, rules 

and regulations that could improve the efficiency of the networks.  

The research objective of the present thesis is to employ simulation modeling 

methodology in the domain of innovation networks in order to develop a flexible 

simulation model, and reveal the related features of the Canadian biotechnology network 

in a scientist-level of study, and analyse the model for various scenarios of the presence 

and absence of the Gatekeepers, and star scientists, and different levels of loyalty in 

mutual relationships of individual scientists, and find appropriate solutions and answers 

to the research questions of the thesis. 

In the next part of the thesis, the relative literature on the innovation networks and their 

characteristics is reviewed.  
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2. Literature review 

In this part of the thesis the relevant research work from the literature is reviewed. The 

available literature can be divided into three main categories: the first category introduces 

the literature on the existence of industrial clusters and innovation network, and the 

related definitions, characteristics and factors. In the second category the simulation 

based surveys and their approach and results are reviewed. Finally, the last part reviews 

the literature about the role of the Gatekeepers, star scientists and individual scientists in 

the innovation networks. 

2.1 Innovation 

Innovation can be defined as any alteration of thought, process, product or manner that 

leads to a better condition, i.e. increased satisfaction, productivity, wealth, etc. Because 

of the broad meaning of innovation and its applicability to almost any field of science, 

namely engineering, economics, psychology, sociology, marketing, etc. it has been 

addressed many times in numerous research works. Although all of the researchers are 

thinking about “newness” when issuing innovation, the viewpoints are diversified in 

various fields. This survey’s objective is to cover innovation mostly in the perspective of 

economics and technology management.  

“Innovation plays a role in nurturing the economy, in enhancing and sustaining the high 

performance of firms, in building industrial competitiveness, in improving the standard of 

living, and in creating a better quality of life”, as Gopalakrishnan and Damanpour (1997), 

and others state. Therefore, understanding its nature and emergence procedure in 

manufacturing firms and industries can assist managerial activities to make operative 



6 

 

decisions that will foster innovativeness, which is greatly emphasized in recent research 

works (Lenz-Cesar and Heshmati 2010; Harrisson and Laberge 2002; Pittaway et al. 

2004). 

Innovation can help companies in two distinct manners: introducing new products with 

new features to satisfy demands more specifically; or developing new procedures of 

manufacturing products to compete with rivals on the rate of responsiveness, efficiency 

and cost reduction.  

In the book “The theory of economic development”, 1934, Joseph Schumpeter argues 

that if a firm wants to maintain its competitive advantage on the market, attract customer 

satisfaction, or enter a new market, innovation should be set as its priority. Firms should 

attempt to be innovative in all of their fundamental activities, from transportation to 

employment policies, and learning innovation essentials and features could help them in 

this regard. 

In the literature, innovation has always been considered within two distinct categories: 1- 

Discrete outcome of innovation in form of either a new product or a new procedure, 

arising as a new idea, methodology or device (Kimberly and Evanisko 1981; Damanpour 

and Evan 1984); 2- The innovation development procedure (VAN DE VEN and Rogers 

1988; Ettlie 1980). The first category is mostly related to the marketing aspect of the 

innovation, and the adoption of innovation after it is introduced. However, in this survey 

the second aspect of innovation is taken into account, which deals with the procedure 

before and during the time when innovation happens.  
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Either by improving existing products and procedures, or by introducing something 

totally new, innovation is nowadays proved to increase the competitive advantage of 

companies in various industries. With the rapidly changing demands of clients for 

innovative products, it is vital for firms to have a vast innovation capability to survive in 

the current, rapidly-changing business world (Udell, Bottin, and Glass 1993; Lenz-Cesar 

and Heshmati 2010). 

Although the importance of innovation is already known, and its advantages are already 

vastly discussed, there have been few researches done on the elements that determine 

innovation development in the firms. There exist only a few empirical studies that specify 

the factors with key role in the development of innovation in various industries (Frenken 

2000; Gilbert, Ahrweiler, and Pyka 2007; Shih and Chang 2009). 

At the end of the 19
th

 century, the innovation networks and their principles attracted the 

scholarly attention increasingly.  Souitaris (1999, 2001, and 2002) has tested the effect of 

external communications on the innovative behaviour of firms, and also the effect of firm 

and the region on this behaviour, through empirical studies. Many others have also done 

related studies that specify the affecting factors on innovation in organizations (Acs and 

Audretsch 1987), effect of firm size; (Galende and Fuente 2003), internal resources and 

factors effect; (Nohria and Gulati 1996), slack impact on innovation; (Damanpour 1987), 

organizational factors; (Laursen and Foss 2003), human resource and management 

effects; etc.). In all of these studies one or more variables have been taken into 

consideration and various degrees of association with innovation rate have been 

discovered. However, Coombs et al. (1996) believe that this kind of literature does not 

help in comprehending the innovation phenomenon as a whole. 
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In almost all of the studies, the key factor in the procedure of developing innovation is 

said to be knowledge. In other words, innovation is achievable by experimenting 

available knowledge in unexplored ways, by practicing new knowledge, or by using a 

combination of available and new knowledge. There are two distinct methods for 

achieving new knowledge: either by using inter-firm R&D departments, or by exploiting 

the overflow of information from external sources like other firms, universities, research 

departments, etc. 

However, having access to new knowledge alone is not enough to gain creativity in 

products and to satisfy the customer requirements. There are other factors that affect the 

development of product innovations, related to the way that knowledge transfers among 

various sources. The term “knowledge transfer” and its characteristics have been known 

as a fundamental factor for improving competitive advantage of companies since long 

time ago. In this regard, the role of “innovation networks”,  and “industrial clusters”, also 

known as “industrial districts (ID)”, have been discussed in various studies, e.g. Marshall 

(1890), Krugman (1991), Porter (1998), etc. 

Conclusion: The literature targets the innovation as a fundamental necessity for 

improvement in the markets. The innovation is said to occur in the collision of different 

sources of new or available knowledge. Although innovation has been already vastly 

discussed by various authors, its principles and characteristics yet must be studied more 

by analyzing the elements that would affect the transmission of knowledge inside the 

innovation networks. In the next section, the related literature on the definitions of 

clustering and innovation networks is covered, and the related features of innovations 

affecting the circulation of knowledge are reviewed.  
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2.2 Clusters: pros and cons for innovation 

Any group of competing/co-operating linked firms, companies and other related 

institutions that are close geographically can be thought of as a cluster (Porter 1998). 

Although the concept of “cluster” was first introduced in the last decade, there are yet 

many different definitions for that found in various references (Martin and Sunley 2003). 

In this thesis, the word cluster applies to a number of firms, organizations and institutions 

that are connected to each other within a geographical proximity, sharing benefits of the 

same market, and cooperating in knowledge exchange process, in order to produce 

innovative ideas that could suit the purposes of the whole cluster. The individual 

scientists from different clusters and with various research fields are then nodes of the 

network, which can produce, transmit, or absorb knowledge as their interactions with 

each other trough co-publications. 

Marshall (1890) seems to be the first one bringing up the theories on clustering, and later 

Krugman (1991) shed some light on the procedures and characteristics of the clusters. 

Krugman claims that the higher availability rate of labour and intermediate inputs, as well 

as better chances of exposure to knowledge spillovers
3
 attract new companies to enter the 

clusters, and result in the evolvement of the clusters. 

The role of the industrial clusters in the innovation growth is highly dependent on the 

nature of the industry in which they are studied. In the knowledge-intensive industries, 

such as biotechnology or nanotechnology, the more connections a firm establishes in the 

                                                 

3
 Zucker et al. (1998) define knowledge spillovers as “Positive externalities of scientific discoveries on the 

productivity of firms which neither made the discovery themselves, nor licensed its use from the holder of 

intellectual property rights”. 
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network, the more innovative it will become due to the high rate of knowledge 

generation, transition and spillovers inside the clusters. However, in the industries with 

less sensibility to knowledge, such as paper manufacturing industry, the innovativeness 

level of the firms does not alter significantly as their connections with other similar firms 

increase. (Baptista and Swann 1998) 

The evolvement of the industrial clusters is mostly indebted to the centralization of the 

market, mediators, sources, and knowledge that attract the newcomers to join the cluster 

and benefit from its advantages. There are many benefits for the clusters mentioned in the 

literature, such as pooling the specialized people together, presence of specialized 

suppliers that could provide dedicated tools and services for the industry, lower costs of 

research activities due to the centralization of the knowledge within the clusters, lower 

transportation costs and wider focus on the whole market, and most importantly the 

information flow between the agents, also called spillover, which facilitates the 

innovative actions within the clusters. (Marshall 1961; Porter 1998; Prevezer 1997; 

Zucker, Darby, and Armstrong 1998 and many others) 

Besides all the benefits of clustering, there are also some inevitable drawbacks. Growing 

competition between the firms in the cluster, declining pricing powers on the market, 

shortage and high prices of resources, loss of trade superiority, decreased profits, and 

shorter lifecycles of products and services are some of the disadvantages of the clusters 

discussed in the literature. (Meyer-Stamer 2002; Baptista and Swann 1998) 

A successful cluster will result in faster growth of its firms, and higher rates of 

innovation, which in turn will attract more new firms to enter the cluster and lead to its 
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own growth (Porter 1998). This has been also confirmed by other authors as well (Swann 

and Prevezer 1996; Baptista and Swann 1998). Moreover, they conclude that firms tend 

to grow faster in the clusters of their own industries. Besides, the stronger a cluster is, the 

faster firms grow in it (Baptista and Swann 1999).  

The localized knowledge spillovers existing in the clusters have been suggested to help 

the firms located within the cluster to be more innovative than their rivals elsewhere 

(Dahl and Pedersen 2004). The knowledge generated inside the boundaries of a cluster 

can spread inside it more rapidly, and therefore firms inside the clusters are more capable 

to benefit from it. In this regard, both the position and proximity to the firms within the 

cluster plays an important role. 

Conclusion: The benefits of the clustering have proven to overcome its drawbacks 

empirically (Cowan and Jonard 2004), and nowadays the size of the clusters is growing 

in different fields of industry all over the world due to the transmission of knowledge 

(Beaucage and Beaudry 2006). Innovativeness, as one of the main results of clustering, 

leads to the appearance of more and more individual innovators in the clusters 

(Rampersad, Quester, and Troshani 2010). These individuals are then playing the key 

role in producing and transferring the knowledge within the clusters. The connection of 

the individual innovators inside and outside the clusters will shape a network of 

innovators, called innovation network.  
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2.3 Innovation networks 

Powell et al. (1996) indicate that learning processes can no longer remain inside the 

territories of the individual firms, and more attention should be paid to the inter-

organizational collaborations, inter-firm activities, and their features and characteristics. 

In today’s knowledge intensive economy, a firm needs to exploit knowledge resources 

more creatively and intelligently than its competitors, and establish a continuous learning 

procedure as well as cooperative research capabilities, in order to improve gradually 

(Cowan and Jonard 2003). A firm, even with highest levels of research activities, cannot 

survive on the market without cooperating with other firms and using available 

knowledge in related industries.  

Dahl and Pedersen (2004) declare that high innovation rates and fast collection of 

knowledge, derived from the disclosure of information among competing agents, are 

created by groups of socially connected individuals. The socially connected groups of 

individuals are one of the direct key characteristics of innovation networks. Therefore, 

more information about the behaviour of networks and their structure, which lead to the 

transition of knowledge, is required to improve the performance of the whole industry 

(Cowan and Jonard 2003). 

Zaheer and Bell (2005) argue that involvement in the innovation networks not only 

exposes firms to the outside sources of information and improves their innovativeness 

levels, but also enhances the productivity of their internal capabilities and boost their 

inner functionality efficiently. 
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There are many studies that discuss the importance of industrial collaborations, which 

emphasize the dependence of innovation improvement on the presence of innovation 

networks, and knowledge flows between the individuals from industrial groups and other 

sources of knowledge and information (Henderson and Cockburn 1996; Carneiro 2001; 

Midgley, Morrison, and Roberts 1992; Aharonson, Baum, and Feldman 2004). However, 

most of these works have mainly been at descriptive stage, introducing various factors 

that theoretically have shown effect on innovation systems.  

Carneiro (2001) believes that since the innovativeness potential of the firms is dependent 

on the extent of knowledge diffusion among the groups of individual agents, which by 

itself is affected by the structure of the organization and network, in various studies, the 

focus has been on the social features of innovation networks. In social network analysis, 

the individual agents in various firms are the nodes and any relationships between any 

two of them in terms of knowledge exchange are considered as the links in the network 

(Carneiro 2001). 

The innovation networks as social networks have been studied in two distinguished levels 

in the past literature. First is the level of innovators, who are the individual scientists 

from different organizations with a number of publications and patents, and are 

collaborating with each other to produce new knowledge (Zucker and Darby 1996; 

McMillan, Narin, and Deeds 2000; Gauvin 1995; Smith 2007; Sosa and Gero 2005; 

Keller 1991; Macdonald and Williams 1994; Macdonald and Williams 1993). The second 

is the inter-firm collaboration level that is a set of firms and companies involved in the 

research collaborative partnerships with other firms (Aharonson, Baum, and Feldman 

2004; Powell, Koput, and Smith-Doerr 1996; Van De Ven and Rogers 1988; Damanpour 
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1987; Kimberly and Evanisko 1981; Damanpour and Evan 1984). The results of former 

studies show that in either form of the networks, the tendencies to continue collaboration 

with previous partners are high (Mayer and Argyres 2004; Dyer and Harbir Singh 1998; 

Kale, H. Singh, and Perlmutter 2000; Kim and Vonortas 2005). This means that any pairs 

of individual inventors or firms, who have already come up with innovation together, 

trust each other and are more prone to keep in touch for their further innovations, and 

their relationships may last even after one innovation is introduced. 

Conclusion: The learning processes are faster on the innovation networks, since the 

exposure to various sources of knowledge is high. The social context of innovation 

networks has been studied as the main basis for the knowledge transmission. The 

literature targets the network of individuals and firms collaborating with each other as the 

nodes of the networks. In this level of study the social features of the agents are studied.  
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2.4 Simulation approach 

Becheikh et al. (2006) reviewed empirical studies that try to find factors and variables 

determining the progress of innovation in manufacturing firms, from 1993 to 2003. They 

categorize these factors into two major groups: 1- inter-firm factors, 2- external factors. 

The inter-firm factors, according to Becheikh et al. are: general characteristics of firms 

such as size, age, ownership, etc; cooperative and business strategies of the firms; firm’s 

structure; management structure; functional departments and their strategies.  

On the other hand, Becheikh et al. consider the following factors as external factors that 

authors have studied through literature: industry; geographical location; structure of the 

network; level of the technology and knowledge; government and public policies; culture. 

Different authors have studied the above mentioned factors (Becheikh and Su 2005; 

Zaheer and Bell 2005; C. Wu and Zeng 2009; Wang et al. 2008; Shih and Chang 2009; 

etc), and for each of these factors, there are a number of articles that either support or 

reject their positive effect on the innovative behaviour of the firms. The diversification of 

the results from various authors suggests that the innovative behaviour of the firms in the 

industries is derived from a combination of factors, identification of which is a 

complicated problem that requires a more systematic approach, rather than empirical 

studies. For example, Rogers (2004) develops a survey using empirical data to evaluate 

the effect of various factors on innovation. The analysis outcomes show that exporting 

activities can only improve innovativeness in small sized firms, and does not have a 

significant effect on big firms. Therefore, the various possible combinations of the two 

factors and the complementarily among them, exporting activities vs. firm size, may have 
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contrasting results on the innovation networks. Many of these contrasting results can be 

seen through the work of authors same as Rogers, who merely use empirical data to form 

their analysis.  

The dynamic behaviour of innovation networks has not been discussed much. The 

introduced factors must be analyzed in order to measure the magnitude of their impact on 

the innovation networks, in the presence of various combinations of all other factors. 

Taking into consideration all the possible factors and studying the behaviour of 

innovation networks thoroughly requires an enormous model to be established, which can 

imitate the procedure of innovation networks in different situations. 

One of the widely used methods in this regard, mostly in recent works, for evaluating 

these factors is simulation. Simulation models are developed to analyze and measure the 

impact of positive and negative factors in the networks, to develop various possible 

combinations of factors, and to compare these combinations.  

Albino, Carbonara, and Giannoccaro (2006) categorize the manner of discussion about 

innovation into three groups: conceptual, empirical, and simulation based. They 

suggested that now it is time to analyze the presented theories about innovation network’s 

characteristics through simulation. As mentioned before, although the economic, 

sociological, management and policy based studies have clarified the role of innovation 

networks in the process of knowledge distribution, there are as yet many fundamental 

questions about the dynamics of the innovation networks.  

Innovation networks and most of their features and behaviours are abstract concepts that 

need additional tools to be analyzed and understood effectively. Nowadays, computer-
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based software are helping researchers simplify the realization process of abstract 

systems and analyze various situations. Among all available computer software, 

simulation software is the most useful in analyzing the performance of the complicated 

abstract systems.  

Since organizations and firms, as the agents of the innovation networks at issue, are 

autonomous units that act independently, and the changes in the whole network instead of 

its subsystems can show the evolvement of the networks over time, Agent-Based 

Modeling (ABM) simulation software is the best solutions for modeling such systems, 

and have been used for these kinds of problems in the previous works of several authors 

(Pyka, Gilbert, and Ahrweiler 2009; Gilbert 2004). According to Ma and Nakamori 

(2005) ABM is a very powerful tool for examining the “complex adaptive systems”. 

They also believe ABM is generally beneficial in modeling the complications from 

micro-level activities on the macro level agents and systems. Pyka and Fagiolo (2005) 

state that ABM is also capable of modeling the related complex phenomena, their 

emergence, growth or destruction, and is a good tool for depicting various incidents in 

time, both quantitatively and qualitatively. ABM is said to allow the managers and 

decision makers to compare several scenarios of development. 

Gilbert, Pyka, and Ahrweiler (2001) are among many authors that have studied 

innovation networks through simulation. They believe that the positive role of innovation 

networks has been examined, but the literature does not discuss the creation process of 

innovation networks, the procedure of its expansion, destruction or merging with other 

ones. Gilbert et al. have developed the simulation model of a general innovation network, 

in order to examine the outcomes of various situations and conditions, and also verify the 
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assumptions and theories behind that. According to Gilbert et al. simulation uses 

assumptions to generate data on which further analysis and deduction can be performed. 

The developed ABM in their survey primarily tries to simulate the procedure of 

formation, growth and death of firms in the innovation networks. Gilbert et al. suggested 

that the simulation model can be used to examine the consequences of policies and 

changes and is a tool to help decision makers decide based on the possible results of the 

decisions. Their essay evaluates three case studies by means of simulation: 

telecommunication, biotechnology and electronic business. The results show that the 

initial distribution of agents is very much important on the formation and growth of the 

networks. There can be two main types of agents in this regard: large firms, and small 

firms. The extent of investment on innovative activities is also observed to play an 

important role. Besides, the firms that choose to cooperate with others are more likely to 

survive and grow than those trying to use only the inter-firm R&D. Gilbert et al. also 

concluded that if a network dissolves, the agents will have difficulty in connecting to 

other networks and are more prone to death. In addition, any firm that gains bigger 

amount of capital (reward) as a result of its activities in the initial stages is more likely to 

succeed further in the model. Finally, Gilbert et al. imply that there is still much work 

that can be done on simulating the innovation networks, and more detailed computer 

simulation models can be developed in the future in order to analyze the complicated 

behaviour of various innovation networks with different characteristics.  

Albino et al. (2004) define industrial districts (IDs) as a group of firms that are engaged 

in manufacturing of similar products. In other words, industrial districts can be thought of 

as a special kind of geographical cluster, in which the firms are highly specialized in 
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some aspects of the procedure. Specialization leads to the improvement of knowledge, 

and learning processes. Two major learning processes are suggested by Albino et al. 

(2004): traditional and new. Traditional learning process refers to the innovation that is 

achieved by using the distributed knowledge and information inside the IDs, i.e. learning 

based on the interaction of firms. On the other hand, new learning methods are innovation 

processes that use the knowledge from outside of the IDs, such as universities and 

research centers, or try to produce new knowledge by investing on R&D activities inside 

the IDs. Albino et al. introduced, developed and simulated four different scenarios to 

answer the questions of their survey: In which scenarios are IDs more innovative, when 

the demands of clients are rapidly changing? Which learning process should be adopted? 

And what is the role of the leader firms?  

The two decision factors are probability of demand of new products in IDs, and the 

probability of high rate of required innovativeness, in two levels, low and high. An agent 

based simulation model is then developed to evaluate the impact of each learning method, 

and role of leader firms in industrial districts. Albino et al. concluded that in order to 

improve the innovative capabilities, firms inside the IDs must adjust their innovation 

processes to the needs of a highly competitive environment. The traditional learning 

processes should accompany the new ones in order to provide the needed knowledge and 

information to compete in today innovative world. The existence of leader firms is also 

investigated to be important for IDs to increase innovativeness, but is not sufficient by 

itself.  

According to Tian and Zhang (2008), the formation and growth of innovation networks 

are highly dependent on the properties of the industrial clusters, in which they arise, and 
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as the industrial clusters evolve overtime the innovation networks continuously grow as 

well. In the ABM simulation model developed by Tian and Zhang, the knowledge level 

of agents has been considered to affect the success of innovations. The distribution rate of 

new knowledge, called transferability, the direct or indirect relation between agents that 

use the distributed knowledge, and internal capability of agents to gather knowledge are 

also the factors considered in the model. Tian and Zhang assumed that there is a negative 

relation between the distance of two agents and the probability of one being selected as a 

partner. Tian and Zhang also assumed that agents are more likely to reconsider their old 

partners than starting a new relation. Making any connection is assumed to cost the 

agents the amount that is proportional to the geographical distance between agents. The 

results of Tian and Zhang’s model imply that the innovation networks in industrial 

clusters tend to grow as the knowledge difference and specialization level of agents 

increase. And also the preferential rule of selecting partners and the increasing cost of 

new connections, as the distance increases, result in small networks that are 

geographically close inside, and have some connections to other further networks (small 

world effect).   

Pyka et al. (2009) developed an ABM simulation study to test the hypothesis claiming 

that innovation networks are temporary structures that disappear after the organizations 

grow enough to act independently. Their results were different. Pyka et al. claim that the 

creation and development of the innovation networks happen in a recurring manner, 

which means that some of the small networks can grow enough to join the main network, 

and some others may disappear temporarily due to lack of strong connections between 

their firms. They also claim that the presence of the big firms at the initial stages of 
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network development has a positive effect on the survival and growth of the networks. 

They observed that the more the firms/ scientists are loyal to their previous partners, the 

more it is likely for the whole network to grow and become scale-free, which confirms 

the earlier theoretic hypotheses regarding the impact of loyalty to previous partners 

introduced by Mayer and Argyres (2004), Dyer and Singh (1998), Kale, Singh, 

Perlmutter (2000), and others.  

Gilbert et al. (2001) generated an ABM simulation model as well, in order to compare the 

situations in which firms and organizations are more willing to either invest on their own 

internal R&D, or create collaborative interactions with other ones. They, via simulation, 

show that in some situations and under some parameter settings of the model, which 

depends in the network being studied, investing in firm’s own R&D produces better 

results, and with some other settings collaborative interactions are preferred. The fact that 

various settings of the model result in different answers also supports the idea that by 

creating more specified models of target networks, more precise conclusions can be 

drawn for the policy and decision makers (Gilbert, Pyka, and Ahrweiler 2001). 

There are yet some other simulation based studies that have been carried out to clarify the 

current hypotheses about the innovation networks (Udell, Bottin, and Glass 1993; 

Guardiola et al. 2002; Gilbert, Ahrweiler, and Pyka 2007; Wang et al. 2008; Wu and 

Zeng 2009; Lenz-Cesar and Heshmati 2010). 

Conclusion: There are three methods for analyzing any type of system: direct 

experiment, mathematical analysis, and simulation modeling. According to the literature, 

simulation modeling is an applicable approach for studying the dynamics and 
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characteristics of the innovation networks. Most of the literature in this regard is targeting 

the firm-level of study, and less are devoted to the individual-level of innovation 

networks. Besides, there is no simulation approach in the literature using the realistic 

data, and the simulation models are built up according to the hypotheses.  

2.5 Gatekeepers and Star Scientists 

As described before, the information transmission, which results in novelty and 

creativity, is the key characteristic of the innovation networks and clusters. The 

information transmission occurs through formal or informal channels, inside or between 

organizations, which are established based on the personal contacts of individuals. Of 

course not all of the transmissions lead to novelty, and not all of the individuals are 

innovators. However, the individuals who are formally responsible for providing the 

channels and link separate sources of knowledge are defined as Brokers (Marsden 1982).  

The role of the intermediaries in the innovation process as the facilitators of transition of 

knowledge and information has attracted a lot of research interest. The most important 

role of brokers is to make connections between actors, who do not have either approach 

to or trust in each other (Marsden 1982, 202). Not all the firms are connected to each 

other in a network, and therefore there are many “structural holes” in the network 

preventing the information from flowing evenly among the firms.  

Burt (1992) defines a “structural hole” as a disruption in the flow of information between 

agents in a large network, as a matter of lack of connection. The more successful a firm is 

in filling up these structural holes, the greater advantage it has over competitors. Burt 

(1980) and later Fernandez and Gould (1994) argued that organizations with brokerage 
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position in the networks are more influential than others. However, according to Burt 

(2007), only the immediate network around a broker is beneficial, and all indirect links 

for the broker in the network have significantly reduced profit.  

The intermediary role of transferring knowledge between sources of new ideas in the 

innovation networks is not all a broker does in the network. Since brokers transfer 

knowledge, they are also valuable depositories of knowledge, who are able to merge 

different existing ideas and come to new solutions in various industries (Hargadon and 

Sutton 1997). Among all the roles suggested for brokers
4
 (Gould and Fernandez 1989), 

the act as a Gatekeeper is specially addressed in the present thesis. 

The information can be categorized as related and unrelated. The related information is 

easily detectable and the information systems inside organizations can search for them 

and provide them to the demanding parts without any problem. Though, most of the times 

innovation occur when some seemingly unrelated and unusual information is provided, 

and new solutions and creative ideas are brought on. The role of the Gatekeepers consists 

of the recognition and gathering of this unusual information at the right time, and more 

importantly, providing it to the right sub-system in the organization (Sosa and Gero 

2005). 

The term “Gatekeeper” has been used in various related articles with meanings slightly 

different from each other (Sosa and Gero 2005; Keller 1991; Macdonald and Williams 

1994; Morrison, Rabellotti, and Zirulia 2008; Smith 2007). In the present thesis, only 

                                                 

4
 According to Gould and Fernandez (1989), the mentioned roles for the brokers in the networks are:  

Gatekeeper: the one who decides to grant access to an outsider 

Representative: assigned member of a subgroup for communicating with outsiders 

Liaison: a link between two subgroups without commitment to them 
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those individuals who are primarily inventors by themselves, and make connections 

between two or more separate clusters by bridging their information flow, are called 

Gatekeepers.  

According to Schiffauerova and Beaudry (2008), usually only a maximum of one fifth of 

the innovators in the networks are accountable for absorbance of external fresh 

knowledge in a cluster. The creation of connections between Gatekeepers takes time, 

trust and money for both parties. The low number of the Gatekeepers, as well as their 

crucial role in transmitting the confidential or general knowledge makes the organizations 

concerned about the sustainment of the Gatekeepers within their positions (Macdonald 

and Williams 1994). 

The question that arises is what is going to happen to the connection, and consequently to 

the network, if a Gatekeeper is no more in its position, or lost. The related literature 

regarding the Gatekeepers and their role in the networks has seldom considered this 

question. Sosa and Gero (2005) point out that most of the previous work around 

creativity and innovation think of it on the basis of individualistic assumptions, which 

look at the innovativeness as an extraordinary ability of a single person. Though, 

innovation is usually a novel solution given to an existing problem, and most of the times 

generated after a group of people are engaged in the problem and various possible 

solutions are brainstormed. Therefore, Sosa and Gero (2005) define Gatekeeper as an 

opinion leader who manages the process of innovation by controlling the selection, 

feedback and assessment of the new ideas.  
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Obviously, this definition is different from the view point of the present thesis, in that it 

does not consider the Gatekeeper’s knowledge transfer characteristic. However, Sosa and 

Gero’s findings related to the common characteristics of the innovation networks and 

Gatekeepers are interesting for this work, since they have also developed a simulation 

model.  

Sosa and Gero (2005) believe that the social ties are playing an important role in 

controlling the power of Gatekeepers in the networks in the way that in the networks with 

strong social ties between Gatekeepers, “lower mobility and hierarchical structures of 

influence exist”. They conclude that in societies with strong ties
5
, gate-keeping is more 

unchangeable in a way that only a small group of experts are always playing the 

Gatekeeper role, while in weakly-tied societies Gatekeeper role is rather distributed 

among the agents and does not represent a consistent behaviour. It also can be concluded 

that the ties and links can determine the effective power of Gatekeepers, and 

consequently the sensitivity of the network to their presence.   

On the contrary, Macdonald and Williams (1993) did not see any necessity for a 

Gatekeeper to be an expert. They define Gatekeeper as a know-who instead of a know-

how, in sense that they “know who knows” the particular information outside of their 

organizations. They believe that Gatekeepers have enough knowledge to use the 

information they gather, and even better, they can decide which information is worth 

gathering and which is not. 

                                                 

5
 “Strong social ties usually exist between nodes in a kinship network, while weak ties 

characterize networks where casual encounters occur between strangers or 

acquaintances” (Sosa and Gero 2005) 
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In the age of change and flexibility, and where most of the telecommunications are 

formal, it is vital for the organizations to be alert to new information as a whole, instead 

of only some individuals, Macdonald and Williams argued. However, the role of 

Gatekeepers in transferring the information that triggers innovation is still as important as 

before, they believe. Macdonald and Williams also distinguish Gatekeeping from the act 

of mere information bringing. In their opinion Gatekeepers still coexist with other 

methods of communication.  

Obviously, the more links a company or scientist has to outside sources of knowledge, 

the more amount of fresh and new knowledge it can access and bring into the cluster for 

further innovative activities. However, the big number of links by itself does not 

guarantee the quality of innovations, and the capabilities and experience of research 

personnel and scientists are also key factors in determining the excellence of results. The 

ability of a scientist in detecting useful knowledge and combining it with already existing 

one in order to produce innovative results highly depends on his previous research 

activities and background. Consequently, the productivity rate of innovativeness in a firm 

is both affected by the number of its external links as well as the research quality of its 

scientists. (Henderson and Cockburn 1996) 

Zucker and Darby first in 1995 and then in 1996, applied the term “star scientist” to 

qualified research personnel of firms, who improve internal research productivity by their 

excessive experience in research and innovative activities. In the other words, star 

scientists are researchers with significantly higher productivity in terms of innovation and 

knowledge development than their colleagues and rivals.  
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Although the qualitative definition of star scientists as researchers with greater number of 

discoveries, articles and patents than other equivalent researchers is clearly understood 

and accepted at the first sight (Zucker and Darby 1996; Queenton and Niosi 2003; Cohen 

and Levinthal 1990), the exact qualitative definition of them varies from study to study 

based on the characteristics of the networks, their organization types and major of 

activity.  

The benefit of Gatekeepers and star scientists for networks is the improvers of knowledge 

circulation and new knowledge generators respectively, as the former bring new fresh 

knowledge to the cluster (Schiffauerova and Beaudry 2008), and the latter have enough 

experience to utilize this new knowledge and produce innovative outcomes out of it 

(Smith 2007; Keller 1991; Zucker and Darby 1995).  

In the literature, there is not much said about the characteristics of the Gatekeepers and 

star scientists. There are only various studies about their behavioural effect in the aspect 

of psychology and society, which seem unrelated to the purpose of this thesis. One of the 

closely related studies about the role of Gatekeepers has been done by Keller (1991), who 

introduces the following characteristics based on an empirical study in U.S. and Mexican 

organizations: concentration and proximity of Gatekeepers in strong organizations; 

higher performance that usual employees i.e. higher number of patents and publications; 

similarity of action in various industries. 

Overall, there is a lack of research on the formation of innovation networks in the 

presence and absence of the Gatekeepers and star scientists, and still more study is 

needed to enable us to understand, analyze, and predict the alteration of innovation 
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networks in various possible combinations of their components, i.e. scientists, 

Gatekeepers and stars, in addition to the above mentioned empirical and tentative studies. 

Therefore, this thesis poses its two main research questions as: What is going to happen 

to the innovation networks, if a Gatekeeper or star scientist is lost? One of the objectives 

of the present thesis is to provide answers to these questions.  

Conclusion: The literature categorizes the role of scientists in the innovation networks 

according to their affection on the creation and circulation of the knowledge. The main 

creators of new knowledge are called stars, and the intermediary scientists responsible for 

the inflow of knowledge to the cluster are called Gatekeepers. There is a vast discussion 

of the role of the stars and Gatekeepers, and their characteristics. However, almost all the 

surveys are qualitative, and there is no quantitative definition or examination on the role 

of different types of scientists in the networks. 

2.6 Canadian Biotechnology Networks 

Biotechnology is a sub-field of biology science that combines biology with engineering, 

chemistry, physics, computer science and mathematics, in order to utilize and modify 

living organisms according the human needs, and develop bio-products (Shmaefsky 

2006). Biotechnology is said to be a very young science and fast growing compared to 

other fields of science. Since it was first introduced in 1919 by Ereky, biotechnology has 

found many applications in various fields of science, such as agriculture, energy 

production, environmental sciences, manufacturing, and medicine all over the world 

(Fári, Bud, and Kralovánszky 2001). 
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The Canadian biotechnology society (Biotech Canada)
6
 defines biotechnology as 

“applied scientific disciplines including chemistry, engineering, physics, and computing 

to living organisms to create innovative products and techniques”. After 1980, Canada 

has become the second pioneer country in Biotechnology, after United States, mainly 

based on its number of firms, patents and innovative products (Niosi and Bas 2004). 

 

Figure 1: (Left) Canadian Biotech Companies’ Working Field, (Right) Canadian Bioeconomy Components 

Distribution 

 

 Canadian biotechnology has three main categories: health, agriculture, industrial. The 

largest sector of Canadian biotechnology is health, consisting of four subcategories, 

Therapeutics, Diagnostics, Medical Devices, and Vaccines. According to the latest 

statistics published by BioteCanada
6
, there are a total of 583 Canadian biotechnology 

companies. Figure 1 (Left) shows the working fields of these 583 companies. Among 

these companies, 35% belong to western Canada (Alberta and British Columbia), 28% to 

Ontario, 21% to Quebec, and 16% to other regions. With 7.0 percent of the GDP, 

                                                 

6
 http://www.biotech.ca 
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biotechnology constructs the third economical fundament in Canada. According to 

Statistics Canada
7
, the distribution of main components of Canadian Bio-economy is as 

presented in Figure 1 (Right).  

Canadian biotechnology innovation networks have recently attracted the attention of 

some network researchers. J. Niosi and Bas 2001 study Canadian innovation systems and 

believe that as a knowledge-intensive research field, biotechnology clusters are prone to 

geographical concentrations because of the high amount of spillover in them. They study 

the regional partitions of Canadian biotechnology, and categorize Toronto as the leader 

cluster in Canada’s biotechnology.  After that, Montreal and Vancouver are ranked as the 

second and third clusters. They also show that spillover, between Canadian 

biotechnology clusters, is dependent on region, organization type, and also size and 

characteristics of the market such as availability of capital.  

Niosi and Bas (2001) categorize universities and government laboratories as first and 

second organizational sections of biotechnology in Canada. They show that “star 

scientists” as the most productive innovators in Canadian biotechnology network are 

mainly working at the universities of the large cities in Canada. Therefore, according to 

(Niosi and Bas 2001), universities handle the main research activities in Canadian 

innovation system. 

Niosi and Banik (2005) suggest that in Canadian biotechnology innovation network, the 

three largest provinces, Ontario, Quebec, and British Columbia, are the center of 

innovation, and as the distance from them grows, the number of innovative firms 

                                                 

7
 http://www.statcan.gc.ca (2011) 
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decreases. Therefore, the concept of location seems to play an important role in Canadian 

innovation systems. Besides, they claim that more patent licenses are granted in these 

provinces than other regions.  

Schiffauerova and Beaudry (2011) also have studied the structural characteristics of the 

Canadian biotechnology network and the role of star scientists on the Canadian 

biotechnology network and showed that stars have more collaborators and have better 

access to the flow of knowledge in the network. They also use empirical data about 

patents and patent ownership, and number of citations to prove that most of the star 

scientists and more than half of the highly cited scientists are also Gatekeepers in 

Canadian biotechnology networks.  

As for conducting an empirical analysis of the innovation networks, and more precisely 

for developing a simulation model for this purpose, the primary necessity is having real 

data of an already established network. Most of the empirical analyses conducted by 

other authors also are based on case studies of various clusters and networks around the 

world (Acs and Audretsch 1988; Beaucage and Beaudry 2006; Gemünden, Ritter, and 

Heydebreck 1996; Keller 1991; McMillan, Narin, and Deeds 2000; Schartinger, 

Schibany, and Gassler 2001).   

According to Gemünden, Ritter, and Heydebreck (1996), at the time there were two 

general types of empirical analysis in the literature regarding the interactions in 

technological environments that may result in innovative accomplishments: studying the 

relationship between crucial scientists by conducting face-to-face interviews; quantitative 

and large-scale analyses through mailed questionnaires.  
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However, since 1996 the data collection technologies and methods have improved 

significantly, and nowadays computer-based databases are available including the details 

of scientists’ performances in the networks. As one of the very primary steps in 

simulation modeling, data collection is then highly dependent on the case under study, of 

which the crucial and specific characteristics of the networks could be detected and 

applied to the model (Velten 2009). 

The main focus of the present thesis is on the Canadian Biotechnology patent and 

scientists, the data for which is extracted from USPTO (United States patent and 

trademark office) and SCOPUS
8
 respectively. The data consists of all the biotechnology 

articles and patents with at least one Canadian author/ inventor. USPTO is the only patent 

database that includes the geographical location of residence of each inventor. So, the 

combination of databases helps to have a realistic analysis of the innovation network 

among Canadian biotechnology scientists. 

As a similar study to the present thesis about the Canadian biotechnology innovation 

network, (Aharonson, Baum, and Feldman 2004) study the extent of innovativeness in 

firm level of the network, constructing four empirical analyses on a US patent database. 

Considering the Canadian biotechnology industry in their paper, they investigate the level 

of influence that the R&D activities of one’s own firm and other geographically local 

firms may have on the firm’s innovative output, which is estimated based on the patent 

application rate of the firms.  

                                                 

8
 SciVerse Scopus is the world’s largest abstract and citation database of peer-reviewed literature 

and quality web sources. (http://www.scopus.com) 

http://www.scopus.com/
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Aharonson, Baum, and Feldman (2004) suggest that using realistic data that is confined 

to a heterogeneous industry can specify a more detailed model that excludes uncontrolled 

characteristics of firms. Moreover, using a highly detailed database provides them with 

much more specialized information about knowledge spillover among firms of the same 

kind. This way, stronger conclusions can be made about spillover effects than previous 

related studies, which hypothesised cross-sectional spillover among firms on much 

broader industries, without any actual proof gained from the real world. 

Rampersad, Quester, and Troshani (2010) also believe that although there exists a vast 

literature on the principles of innovation networks and their characteristics, a few are 

dedicated to firm level and individual level of specific industries. They insist that without 

specialized information of a certain industry, decision making processes cannot be 

conducted in managerial levels of study, i.e. new product development and marketing.  

Therefore, they have established their studies based on the information from high 

technology networks, including biotechnology. According to them, there is a gap in the 

literature for exploring diverse network actors such as universities, research 

organizations, government research groups, etc.  

In addition, Gittelman (2007) believes that learning the principles of innovative 

communities in order to extract regulations for them requires a more detailed picture of 

each society, so that they can benefit from specialized approaches appropriate for their 

kind of activity.  

As a result, in order to investigate the innovation networks more precisely, and develop 

applicable guidelines and instructions for various structures of the networks, it seems 
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necessary to analyze the systems based on the information extracted from recent activities 

in them. In support of this notion, and with the intention of understanding the structure of 

the Canadian biotechnology innovation networks, the simulation model built for this 

thesis, as mentioned before, uses realistic data about patents and publications of an 

individual-level perspective of scientists in Canada from 1952 to 2006. 

2.7 Conclusion  

Innovation is said to be the main competitive advantage of firms. It emerges in the form 

of any change in the existing thoughts or procedures, and aims at improving the human 

life (Gopalakrishnan and Damanpour 1997). The development process of innovation has 

therefore attracted attention in various industries. Knowledge is known to be the key 

factor for innovation, and knowledge transfer mechanisms have been known as the main 

basis for innovative activities (Marshall 1961; Porter 1998; Chuanrong Wu and Deming 

Zeng 2009; Wu and Zeng 2009). 

The concept of innovation networks has attracted attention recently, and in the late 

twentieth century the role of intermediaries, clustering and networking in the distribution 

and improvement of knowledge was almost clarified (Howells 2006). Various 

determinants and characteristics have been identified for the innovation networks, and 

different hypotheses have also been introduced, among which geographical position of 

the agents in the network and the characteristics of individual scientists have been 

discussed the most and the least respectively.  

As it is stated in the literature, scientists are more interested in the collaboration with 

people in their region, rather than people in long distances or overseas (Schiffauerova and 
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Beaudry 2008; Fleming, King, and Juda 2007; Martin and Sunley 2003; Gittelman 2007). 

The concept of clustering, as geographical concentration of firms and organizations with 

purpose of exploiting available knowledge spillover from competitors, has been in the 

center of attention in analyses of innovation networks.  (Baptista and Swann 1998; 

Baptista and Swann 1999; Porter 1998; Martin and Sunley 2003; Prevezer 1997; Swann 

and Prevezer 1996) 

Beside geographical distance, the influences of other factors such as organizational size, 

level of specialization, loyalty to previous collaborators, and inter firm activities in the 

innovation networks have also been studied (Plank and Newell 2007; Damanpour and 

Evan 1984; Kimberly and Evanisko 1981; Damanpour 1987). Furthermore, the impact of 

individual scientists on the transmission and improvement of knowledge in the networks 

has been analysed (Schiffauerova and Beaudry 2011; Zucker and Darby 1996; 

Macdonald and Williams 1993; Zucker and Darby 1995). 

Understanding the dynamics of innovation networks can help in improving policies and 

rules for firms and governments and lead to the enhancement of innovation, both 

quantitatively and qualitatively. In order to understand the dynamics of the observed 

characteristics of the innovation networks, and to study the magnitudes of the factors in 

various combinations, a systematic approach should be applied (Wu and Zeng 2009). 

Methodologies employed for exploring different aspects of innovation networks vary 

from personal questionnaires to complicated simulation modeling and systematic 

analyses of the relationships in the networks. Among all the introduced methodologies, 

agent based simulation modeling of the networks seems to be a suitable methodology for 
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examining their dynamics, since it provides a vast and detailed picture of the activities 

among individuals, firms and clusters in the network (Gilbert 2004). 

However, the complexity of the innovation networks and the detail and the extent of 

information required for developing the simulation models have acted as a drawback for 

using this approach more frequently, and there are thus not many instances in the 

literature studying the dynamics of the innovation networks through simulation. The few 

instances that exist also do not cover all the many aspects of networks together, probably 

since such an inclusive modeling requires a highly detailed data gathering and powerful 

software. Most of the simulation models developed for analysis of innovation networks 

are agent based model, which are said to be the most appropriate tool for imitating the 

complex, multi-agent behaviour of innovation networks (Lenz-Cesar and Heshmati 2010; 

Albino, Carbonara, and Giannoccaro 2006; Ma and Nakamori 2005). 

The role of intermediary individuals has been classified in this thesis into two major 

groups, star scientists and Gatekeepers. Stars are the most prolific scientists in the 

network, generating more amount of knowledge than others (Niosi and Banik 2005). 

Gatekeepers are individuals responsible for bringing fresh knowledge to their clusters by 

bridging over long distances (Macdonald and Williams 1994). The basic characteristics 

of stars and Gatekeepers are introduced in the literature. However, no research study so 

far has focused on the dynamic performance of networks in the presence and absence of 

stars and Gatekeepers. 

Finally, innovation network of biotechnology, as an important and fundamental 

technology that feeds many other industries and technologies, has been the subject of 
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recent research on the topic of networks (Schiffauerova and Beaudry 2011; Rampersad, 

Quester, and Troshani 2010; Schiffauerova 2009; Schiffauerova and Beaudry 2008; 

Gittelman 2007; Beaucage and Beaudry 2006). Understanding the performance of 

knowledge distribution and its stimulators can provide a vast understanding about the 

networks and trigger a big step toward further innovative accomplishments in 

biotechnology and related industries. The performance of Canadian biotechnology 

network has been analysed theoretically and the activities of stars and Gatekeepers have 

been investigated (Queenton and Niosi 2003; Niosi and Bas 2004; Schiffauerova and 

Beaudry 2011). However, simulation-based studies are needed to understand the 

dynamics of Canadian biotechnology network, in order to improve its performance. 
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3. Research Questions and Objectives 

3.1 Research Questions 

Since the main focus of the thesis is on the interactions of scientists in the Canadian 

innovation networks, the innovative productivity of the scientists shape the heart of the 

thesis. The relationship between the productivity of the scientists and the characteristics 

of their network are studied in this thesis.  

First, the structural behaviour of the network is investigated to study the behaviour of 

various factors, such as geographical clustering, scientist’s background, and organization 

types on the innovative rate of the Canadian biotechnology network.  

Second, the impact of the loyalty is investigated in the networks. The consequences of 

loyalty to previous partners are determined by Mayer and Argyres (2004), Dyer and 

Singh (1998), and Kale, Singh, and Perlmutter (2000), suggesting that scientists remain 

loyal to their previous partners and prefer to work with them again in their future works, 

which can affect the whole network in a way that beginner scientists have lower 

opportunity for future works, and may be disconnected from main sources of innovation 

flows and become isolated. However, the effects of the loyalty on the structure of 

innovation networks has so far not been analysed quantitatively. In the present thesis, the 

impact of loyalty is analysed in Canadian biotechnology networks in order to shed more 

light on this topic and to understand whether there are advantages or disadvantages for 

the repetitive relationships in terms of the overall innovation efficiency of the network.  

Third, the presence of star scientists is investigated, and the effect of their activities and 

their presence on the network structure of Canadian biotechnology clusters is also 
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studied. At the theoretical level, the impact of star scientists on the growth of innovation 

has been studied in the literature (Schiffauerova and Beaudry 2011; Zucker and Darby 

1996; Niosi 2006; Smith 2007; Macdonald and Williams 1994; Keller 1991). In the 

present thesis, their roles are analysed in the Canadian biotechnology network with 

empirical data to compare the performance of the networks in their presence and absence.     

Finally, the role of Gatekeepers is investigated in the network. Gatekeepers have been 

shown to play a critical role in the flow of knowledge between geographical regions in 

the networks (Macdonald and Williams 1994; Macdonald and Williams 1993; Keller 

1991; Schiffauerova and Beaudry 2008). In the present thesis, the consequences of their 

presence and absence in the Canadian biotechnology network are investigated.  

3.2 Research Objectives 

Objective 1: Simulate a general innovation network 

Develop a computer based model imitating the relationships and characteristics of 

innovation networks in scientist-level of study 

Make the model as flexible as possible for future investigations 

Determine the variables that could be included in the scientist-level network from 

the database of affiliations 

Objective 2: Examine the loyalty of the scientists toward previous partners and its impact 

on the innovativeness 

Determine the performance of network with and without the loyalty factor 

Analyse the growth of network in case of high loyalty levels 
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Objective 3: Study the role of Gatekeepers in Canadian biotechnology network 

Describe the performance of the model in the presence and absence of 

Gatekeepers 

Determine the impact of Gatekeepers on the innovativeness in the network 

Objective 4: Study the role of star scientists in Canadian biotechnology network 

Describe the performance of the network in the presence and absence of star 

scientists 

Determine the innovativeness in the absence of star scientists 

Determine the impact of star scientists on the innovativeness of networks 
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4. Methodology 
4.1 Innovation networks 

The innovation networks considered in this thesis are formed by a group of individual 

scientists which are characterized by various real-life attributes. These scientists 

collaborate with each other in order to exchange knowledge and information, and thereby 

produce new scientific knowledge leading to an innovative output in the network. The 

scientists are represented by the nodes of the network, while the collaborations between 

them are the links connecting these nodes.  In the real life the scientists meet for many 

possible reasons, but not all the connections between two scientists necessarily lead to the 

creation of new knowledge. In this thesis, the main concern is about the links that help 

improve the total level of innovation in the network, i.e. only the connections which 

resulted in the publication of a scientific article or the registration of a patent are 

considered. The innovation networks are thus built through mapping the article co-

authorship and the patent co-inventorship linkages (the citations are not included). Such 

networks represent the creation of the scientific knowledge and of the innovative 

outcome through a complex web of knowledge-based relationships.  
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4.2 Data - USPTO and SCOPUS Databases 

In order to create the networks an extensive data was needed. Two databases of the 

publications and patents
9
 in Canadian biotechnology are available. The main approach of 

the thesis consists of the exploitation of the large amount of information extracted from 

the patent database of the United States Patent and Trademark office (USPTO)
10

, and 

SCOPUS, which is the abstract and citation database of peer reviewed research literature.  

The information gained from the data is used to establish a simulation model of the 

Canadian biotechnology network and analyse the dynamics of this network.  

The required information is extracted from the database, using an automated extraction 

program. The necessary information includes patent name, and inventor’s name and 

address, for all the Canadian patents registered before March 31, 2007 (Schiffauerova 

2009). 

USPTO is the only patent database which provides the geographical location of the 

residence for each inventor. In the USPTO available patent database, there is a total of 

104792 distinct patents, each with its own name, inventor’s name, application number, 

year of application, year of granting, and number of claims. In the SCOPUS database, the 

database of biotechnology articles from 1952 to 2006, there is a total of 100750 articles, 

                                                 

9
  According to USPTO official website, a patent is defined as “a property right granted by the Government 

of the United States of America to an inventor “to exclude others from making, using, offering for sale, or 

selling the invention throughout the United States or importing the invention into the United States” for a 

limited time in exchange for public disclosure of the invention when the patent is granted.” 
10

 The patent database available for the empirical study of the biotechnology clusters is the United States 

Patents and Trademarks Office (USPTO) database since it is the only patent database containing the 

geographical location of the residence for each inventor. The use of the USPTO database may introduce a 

bias in the data, which is expected to be minimal, because Canadian inventors usually patent both in 

Canada and in the US. Canadian biotechnology firms prefer to protect their intellectual property in the 

USA, since the much larger and easily accessible US biotechnology market offers great potential to 

Canadian biotechnology firms. An analysis of the Canadian patents registered at the USPTO should hence 

provide a realistic picture of Canadian biotechnology innovation. 
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each with the complete information on the name of the article and the journal where it 

was published, year of publication, number of references, authors’ first and last names, 

country, affiliation for each co-author and cluster into which each co-author has been 

assigned. 

Less than 2000 entries in the two databases have one or more blanks in the records, 

which are omitted in the analysis process in order to have a homogenous input. Since 

2000 defective entries out of more than 100000 represent less than 2% of the whole data, 

and also considering the fact that the entries are independent, the omission does not affect 

the investigation.  

As long as the main purpose of modeling the Canadian biotechnology network in this 

thesis is to represent a true picture of real incidents in that network, only complete and 

appropriate data are considered for the simulation phase. The two databases are then 

analysed and necessary queries are created in order to calculate the input formula and 

parameters for the model, which is discussed in detail in input analysis part of the thesis. 

The examination of the Canadian patents and publications at USPTO and SCOPUS 

would help to attain a more practical demonstration of Canadian Biotechnology 

innovation network for further investigations of the components and procedures. 
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4.3 Simulation modeling 

The aim of this thesis is to study the dynamics of the innovation networks. For this 

purpose, the most suitable methodology was determined to be the simulation of these 

networks. Simulation modeling, according to Banks and Carson (1984) is one of the 

operational methods for studying a system, especially abstract or unavailable systems, for 

which implementations of direct experiment or mathematical analysis are not possible. 

Simulation modeling is mainly used for analyzing dynamic and complex systems that 

evolve over time.  

The system of collaborative scientists is a dynamic system of individuals with certain 

links among them at different points in time. As a dynamic network, Canadian 

biotechnology network shows a changing behaviour over time in terms of number of 

scientists, their collaborations, and the innovative products. In order to capture the 

performance of the network and analyse its characteristics, a time-based approach is 

needed to depict the evolution of the network over time.  

Generally, simulation modeling refers to any re-creation of a real or abstract system, in 

order to examine its behaviour and characteristics over time, without directly interacting 

with the real system (Rossetti 2010). It is mainly a combination of system modeling, 

computer programming, design, engineering, probability and statistics. Basically, as a 

system evolves over time, its alterations and behaviour can be modeled via simulation. 

For this purpose, the principles of the real system should be created and validated in the 

form of mathematical and logical relations between agents of the system (Banks and 

Carson 1984). 
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Developing a simulation model enables researchers to answer to “what if” questions 

about the system, and lets them examine various possible scenarios and their impact on 

the system, without actually running the scenarios on the system. Simulation is therefore 

a practical tool for analyzing the performance of both already existing and to-be-

developed systems and designs. It is also very useful in decision making situations for 

defining new policies, rules and procedures, since it helps managers observe the results of 

their decisions on the whole system before actually setting them (Rossetti 2010). 

As the main target of this thesis, the network of scientists in Canadian biotechnology 

field is an extremely large and expanded network. The observation and examination of 

the components and their behaviour over time in such a vast network requires a 

systematic approach. There are hypothesised characteristics for various types of 

components (star scientists, Gatekeepers, etc) in innovation networks, that remain at a 

theory level in the literature because of lack of access to all the components. However, a 

simulation model of such a network can assist in analysis of various hypotheses without 

directly conducting time consuming and expensive experiments on it.   

Today, technology has made simulation modeling a lot easier with the aid of computer 

programs and software that enables scientists to create even the most detailed simulation 

models of the real-world or abstract complex systems, and observe their evolution over 

time. One of the most important key advantages of simulation modeling in comparison 

with other methodologies is its representational ability in demonstrating the complex 

interrelationships and interactions between the agents of the systems. This ability is 

especially of value in this thesis, and can exactly lead to a better understanding of the 

Canadian biotechnology network and its characteristics, by signifying the collaborative 
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interactions among innovative scientists. Nowadays, as the advantages of simulation 

modeling have become more and more understood, it has found new applications in many 

different areas such as manufacturing, logistics, military, social sciences, geology, 

telecommunications, etc. (Velten 2009). 

In addition to its advantages, simulation modeling requires a vast amount of data and 

time to be established and despite the fact that it sounds to be a great tool for analyzing 

any system at first, simulation modeling is not a recommended technique until other 

faster and cheaper methods can be applied to the situation (Rossetti 2010). A faster and 

cheaper method for analysing the innovation networks could be sampling, which is 

specially utilized when some theories and principles about some certain aspects of a 

network are needed to be testified. However, sampling is not appropriate for studying the 

whole network, since not all the connections among the agents in a network could be 

captured, and sampling usually requires neglecting some of the links in order to limit the 

sample size and make it possible to study all its components individually (Hanneman and 

Riddle 2005). Although empirical analyses provide more accurate results which are based 

on direct examinations of the system, they are less applicable when the size of the system 

grows.  

The most time consuming part of simulation modeling however, involves gathering 

information and data from the real system, and building up general mathematical 

expressions in order to imitate its behaviour correctly and precisely. Data gathering phase 

of simulation is therefore the most expensive phase of modeling as well, and depends on 

the availability of the system and its characteristics and complexity. Since simulation 

modeling saves researchers and managers from doing expensive or sometimes damaging 
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experiments on the real system, there is a trade-off between the expenses of doing the 

experiment directly and creating the simulation model instead.  

There is also another trade-off between the time of creating a model of the system and the 

time it takes to use other solutions for the analysis process. Considering the advantages 

and disadvantages of simulation, and the fact that a simulation model is only useful and 

helpful when it is accurately built with sufficient data, it must be considered as a solution 

to the situation when all other methods are rejected (Banks and Carson 1984). 

For the present thesis, the data gathering phase had been already done and the required 

data is available from the sources described before. This fact plays an important role 

when choosing the methodology for the thesis, letting consider simulation modeling as a 

way to find solutions for the research questions. The advantage of having the information 

of the whole Canadian biotechnology network simplifies the step of data gathering, and 

saves a lot of time and effort in the analysis process of Canadian biotechnology network. 

The availability of the data also rejected the need for implementing direct experiments in 

the network, and sampling from the network.  

In the present thesis, the complex nature of innovation networks and relationships 

between the agents of the network, and also the previous similar works in this regard that 

have chosen simulation modeling as a clue for investigating the innovation networks, was 

a motivation to employ this approach as the methodology for the purposes of this thesis, 

and answering to the research questions of the thesis. The data gathering phase is already 

done by extracting required information from USPTO (United States patent and 

trademark office) and SCOPUS. The required information for each part of the thesis has 
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been extracted from two complete databases available, defining appropriate Queries by 

SQL in combination with MS Access 2007. For building up the model, Java Developer 

language in accordance with Eclipse coding environment has been chosen. Although 

there already some pre-developed software for simulating agent based networks exists, it 

is chosen to develop the whole simulation model from its basic principles by author, so 

that the model could be completely flexible and open source for further similar analyses. 

In the following sections, the created model is described in detail, and the interactions 

with databases are clarified.  

4.4 Model Description and Input Analysis 

The simulation model type selected for this thesis is an agent-based simulation model 

(ABM), since individual agents of the model are typically characterized as rational 

(personal reasoning behaviour), presumed to be acting in what they perceive as their own 

interests using certain decision-making rules.  The system state variables (i.e. number of 

scientists, number of publications, and number of links) of multiple agents change at 

discrete points in time.    

In the innovation network created for this thesis, the level of study is based on the 

scientists; in other words, scientists are the nodes of the network. Since the available data 

about scientists is on a yearly basis in the two available databases, and the time between 

publications is assumed to be on a monthly basis, the time slot for the model has been 

chosen to proceed monthly.  

Based on the available data, the model is defined as follows: At the beginning of each 

year, a number of new scientists are added to the network, the trend for which is gained 



49 

 

directly from the publications database (SCOPUS), by calculating the total number of 

new comers per each year. The yearly basis for new comers is mainly because of the 

structure of data in the two databases, but since the concept of time in the whole model is 

flexible (i.e. one can easily imagine that it is based on months, and then the results would 

be interpreted proportionally), this hypothesis for scientists to only enter the network at 

the beginning of each year does not affect the simulation results. In other words, since the 

evolution of the network is not affected by the time basis, and final number of links, 

nodes, patents and publications does not depend on the run-time clock of the model, this 

time frame is suitable for the purposes of the present thesis. However, other time bases 

can be used for different databases in the future. 

For each new scientist, the new set of attributes and variables are defined with primary 

values. This set of attributes includes: scientist ID, geographical cluster ID, entrance year, 

organization type ID, research field, chooser threshold. These numbers are constant 

during the life of the scientist in the network. More details on the values of geographical 

cluster, organization type, research field, and chooser threshold are provided later in the 

present section of the thesis. 

The set of variables for each scientist contains: Idle/busy status, number of articles, patent 

quality, journal’s impact factor, number of links inside the cluster, number of links 

outside the cluster, score, age, star status, and Gatekeeper status. At the beginning, the 

idle/busy status is set as idle for each new comer. There is an initial value randomized 

uniformly for the number of articles, patent quality, journal impact factor, and the number 

of links inside and outside the cluster. This initial value is required for the programming 

purposes and does not affect the results of the modeling. 
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The star status of each scientist is set as true as soon as they meet some minimum 

specifications (i.e. the total number of their articles and/or patent quality is more than a 

flexible threshold defined in the model). Besides, as soon as a scientist has at least five 

links inside and two links outside the cluster, his/her Gatekeeper status is set as true.  

The score is a number that evaluates the scientist’s importance on the network based on 

its number of publications and patents and journal impact factor, and is mainly used in 

the choosing procedure of new partners for programming purposes. This number is 

calculated by multiplying the number of articles, patent quality and journal impact factor 

for each scientist. The summary of simulation modeling main parameters is presented in 

Table 1. 

Table 1: List of simulation modeling parameters 

Simulation modeling parameters 

Set of attributes Set of variables Partner selection decisive factors 

Scientist ID Idle/busy status Geographical distance 

Geographical cluster ID Number of articles Organization type 

Entrance year Patent quality Previous collaborations 

Organization type ID Journal’s impact factor Score 

Research field Number of links inside the cluster Field of study 

Chooser threshold  Number of links outside the cluster Star status 

  Score Gatekeeper status 

  Age in the network   

  Star status   

  Gatekeeper status   

 

At each point in the time slot of the model, first for each idle scientist in the network a 

random number is produced to decide whether they want to go to a busy status or not 

(more details on this number is provided in the “Idle/ busy status” section of the thesis). 

Then, all the scientists who are chosen to go to the busy status enter a loop. In the loop, a 
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scientist is chosen and for him/her a random number as the number of partners is set. 

Then all other remaining scientists are searched to find enough number of partners for the 

present scientist. The scientists are selected as soon as the chooser variable meets the 

maximum of chooser threshold for both scientists. When all the scientists are assigned to 

a group, all their statuses are set as busy, and for each group a publication duration is set, 

during which all the scientists are busy and imagined to be working on the new 

publication (more details are given in the “publication duration” section). 

For the scientists whose busy period is over, their number of articles, patent quality, and 

journal impact factors are updated. Then, a programming decisive variable decides 

whether the scientist remains in the network or dies. In the model, a scientist dies if one 

or more of the three death conditions are met: 1- his/her number of active links in the 

network fall to zero; 2- his/her age in the network passes twenty years (i.e. the longest 

observed life of one scientist in the two databases); 3- he/she is idle for more than 10 

years. All these numbers are changeable in the model in order to analyse the behaviour of 

the network with various scenarios. 

In order to picture the network of scientists, some information about the links between 

each pair of scientists is also required to be recorded. This information includes the age of 

the link and the IDs of scientists at each end. The age of the link is set to zero whenever 

two scientists stop working together. There is a link age defined in the model that causes 

all the links older than that to be omitted from the network. This is primarily useful when 

the effect of previous partnership in the network is examined, while choosing a new 

partner. For that, whenever a pair of scientists is chosen to work together, their link age is 
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checked, and the more recently they have had worked together, the more probable it is for 

them to choose each other. 

For the purpose of analysing the mutual collaborations in the Canadian biotechnology 

network, all the links in the two databases are analysed. For the links that occurred more 

than once then, the times between occurrences are measured and recorded. According to 

the databases, the average number of years between reconnection of links is 4.7 years. In 

the model, this fact is made effective while searching for a new partner, in the way that if 

the last collaboration between two scientists has been done in less than five years ago 

(because of the yearly basis of the model), the chance of choosing the partner increases 

by a fixed number.  

In the procedure of choosing a new partner the following conditions are checked by the 

model: if the two scientists are from the same cluster, if the two scientists are from the 

same organization type, if the field of work for both scientists are the same, if at least one 

of the scientists is star, if scientists are Gatekeeper, if the distance between two scientists 

from two different clusters is less than a threshold, if the difference in the score number 

of two scientists is less than a threshold. For each condition, a fixed positive number is 

added to the chooser variable according to the level of advantage of the condition, i.e. if 

the scientists are from the same cluster they are more prone to work together, so a big 

positive number is added, while if the fields of them are the same a smaller number is 

added, since innovation is prone to occur in the collision of different fields of science as 

well. The overall flowchart of the simulation model is presented in Figure 2. 
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Figure 2: Flowchat of simulation model 

More details on some attributes and variables, and where applicable input analysis 

procedures are provided below: 

Geographical Cluster: In the database of articles extracted from SCOPUS, the 

information about the geographical locations of the affiliations of the authors is available. 

According to the database, there are a total of 160 countries. 58% of the scientists are 

Canadian, 19% American, and 23% from all other countries. Since the main objective of 

the present thesis is analyzing the behaviour of Canadian biotechnology inventors, the 

geographical location of Canadian scientists should be analyzed in detail, while the 

location information related to the foreign scientists could be simplified. For this purpose, 
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the scientists are partitioned geographically. According to the database, fifteen 

geographical groups are defined, thirteen of which correspond to Canadian biotechnology 

clusters, one group includes all the scientists affiliated to the American institutions and 

one group puts together the scientists from all the other locations in the world. For the 

remainder of this thesis, these groups will be referred to as geographical clusters. The list 

of the geographical clusters and the percentage of scientists in each is represented in 

Table 2. 

Table 2: Geographical Clusters 

Geographical cluster # of inventors % 

Toronto 22428 11 

Montreal 21332 10 

Vancouver 13154 6 

Edmonton 7530 4 

Ottawa 7466 4 

Calgary 5447 3 

Quebec 5936 3 

KINGSTON 2833 1 

SASKATOON 3772 2 

WINNIPEG 5173 3 

HALIFAX 3374 2 

SHERBROOKE 2122 1 

OTHERS CANADA 18180 9 

UNITED STATES 38942 19 

OTHER COUNTRIES 46163 23 

Sum 203852 100 
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The collaborations between each pair of scientists are also analysed separately. The Table 

3 shows some statistics related to the number of collaborations between geographical 

clusters. As it is shown in Table 3, most of the collaborations occur inside the cluster. 

This confirms the fact that scientists are more willing to collaborate with partners inside 

their clusters. The highest inside cluster collaboration is for Canada, which is predictable 

because the database is mainly established based on Canadian biotechnology 

collaborations. However, as the distance between two geographical clusters grows, the 

distribution of the number of collaborations becomes the same, i.e. 9.5% between Canada 

and United States, 8.9% Canada and other countries, and 5.3% other countries and United 

States.  

Table 3: Distribution of collaborations between geographical clusters 

 

The simulation model is therefore designed in a way that scientists from the same 

geographical cluster are more likely to be chosen as partners. In the simulation model of 

the present thesis, the cluster of each scientist is an identity factor for him/ her in the 

network. Beside the identification, the main usage of the geographical location of 

scientists and their distances, which is basically dependant on their clusters, is in the 

decision making process for choosing a new partner. As it was also mentioned in the 

Collaborations Number Percentage

Inside Cluster 1021861 71.20%

Inside Canada 694384 48.30%

US - Canada 136990 9.50%

Other - Canada 128349 8.90%

US - Other 75719 5.30%

Inside US 191565 13.30%

Inside Other 209181 14.60%
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literature review (Cowan and Jonard 2004; Frenken et al. 2009; Schiffauerova and 

Beaudry 2008), the scientists from the same cluster are more willing to work together. 

Although it was not directly verified from the database, the literature also suggests that as 

the distance between two geographical clusters grows, the biotechnology collaborations 

are less likely to take place. The reason for this is that biotechnology innovation involves 

a highly tacit knowledge, whose diffusion is limited over long distances (Schiffauerova 

and Beaudry 2008). Therefore, the model applies a distance based factor, which causes 

the scientists from different clusters to be less willing to choose each other for 

collaboration. It is also suggested in the literature that as soon as the distance passes some 

minimum limit, it loses its importance, i.e. any scientists farther than 500 kilometres has 

the same probability to be selected (Schiffauerova and Beaudry 2009). Accordingly, the 

model is also designed in a way that for all the distances greater than the average distance 

between all pairs of clusters, the probability of selection becomes the same. 

Since the gathered data encompass the period of about 55 years, there are instances where 

a scientist belongs to two different clusters at different points in time. There are two 

possible ways of dealing with this situation. The first option is to identify the scientists 

who have changed their location during this period, and record their cluster at each time 

of publication, and then make these variations effective in the model. However, since the 

number of scientists who have changed their location in the database is less than 3% of 

all, we can neglect this change. The second way of dealing with this situation is 

considering one scientist with two different clusters as two distinct scientists, one 

entering the network at a sooner time with cluster A as his/her identity, and leaving the 

model when the second one enters the network with cluster B as his/her identity. The 
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second way is preferred in this thesis because it is more straightforward and leads to a 

clearer picture of the whole network. Moreover, calculating the network measurements 

(betweenness centralization, degree centralization, etc.) with a dynamic node would 

introduce additional complexity to the analysis. Since geographical cluster of a scientist 

affects the decision making procedure in the model by considering the distance as a 

drawback when choosing a partner, this hypothesis does not make any change in the 

results.  

For assigning the cluster numbers in the thesis, first from the two databases a separate 

data sheet including the clusters and scientists’ first and last names is developed. Then 

the redundant records are deleted, using SQL coding. This new data sheet excludes the 

duplicates of scientists or clusters. Then, the number of occurrences for each cluster is 

calculated, using SQL code. Finally, the resulted data is fed into ARENA input analyzer 

to get the best fit. The suggested distribution function for the cluster’s numbers is as 

follows: 

                            

Square Error = 0.0014 

in which EXPO is the inverse probability function of exponential distribution. This 

equation is then used in the simulation model whenever a new scientist is added to the 

network, in order to assign cluster ID to him/ her by rounding the resulted value to the 

nearest integer number.  

Organization type: The organization type of each scientist is also an identification factor 

for him/ her. Each scientist belongs to a certain organization type at each point of time. 
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The information regarding the organization type of each scientist is derived from his/ her 

affiliation in the database, which is included in the SCOPUS database and which was 

extracted to our database of articles. The affiliations were classified into five distinct 

organization types: firm, hospital, university, institution (i.e. governmental laboratories, 

research centers, etc.), and individual. The individual scientists belong to no organization 

at the time of the publication.   

Like geographical cluster, the organization type for a scientist could also change during 

his/ her life in the network, meaning that one scientist may change his/ her organization 

in the same cluster or when moving from one cluster to another. The database is analysed 

to discover the probability distribution of scientists within various organization types. 

Most of the scientists (75%) remain within only one type of organization during their 

lives in the network. However, there are still 25% of inventors who have had publications 

under more than one organization type. In order to deal with this situation, any possible 

combination of organization type is considered as a new type by itself, i.e. for the 

scientists who have had both university and institution in their affiliations, a university/ 

institution type is defined.  

In order to assign organization types in the simulation model to each new scientist, the 

percentage of each type of organization is calculated, extracting the data set of authors 

and organization types. The Table 4 shows the distribution of scientists in various 

organization type combinations. As it is shown, half of the scientists have publications 

solely under university affiliation, while one fourth of scientists publish either under 

university or institution affiliation. 
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Table 4: Organization types 

Organization Type Number of Scientists Percentage 

University 80725 50.30% 

Institution 20966 13.10% 

Institution / University 20239 12.60% 

Hospital 11559 7.20% 

Hospital / University 9592 6% 

Hospital / Institution / 
University 

6203 3.90% 

Firm 5774 3.60% 

Firm / University 2360 1.50% 

Hospital / Institution 1340 0.80% 

Firm / Institution 810 0.50% 

Firm / Hospital / University 549 0.30% 

Firm / Hospital 204 0.10% 

Firm / Hospital / Institution 102 0.10% 

Individual 50 0% 

Sum 160473 100% 
 

In order to analyse the collaborations between various organization types, all the mutual 

collaborations in the database of articles are studied to illustrate the preference of 

scientists in terms of the organization types of their partners. The results are shown in the 

Table 5. As it is illustrated in the Table 5, 73.46% of the entire collaborations occur 

between the partners of the same organization type. Besides, in more than 70 percent of 

the collaborations, at least one scientist is from University. The simulation model is 

designed in a way that in 73.46 percent of times, scientists are more willing to work with 

partners with the same organization type, while in the remaining 26.54 percent of times 
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scientists choose to work with partners from other organization types according to the 

percentages provided in the Table 5.  

Table 5: Organization Combination of Mutual Partners 

Organization Combination Percent of Collaborations 

UNIVERSITY/ UNIVERSITY 48.9 

INSTITUTION/ INSTITUTION 12.6 

INSTITUTION/ UNIVERSITY 12.4 

HOSPITAL/ HOSPITAL 9.0 

HOSPITAL/ UNIVERSITY 6.9 

FIRM/ FIRM 3.0 

HOSPITAL/ INSTITUTION 2.7 

FIRM/ UNIVERSITY 2.5 

FIRM/ INSTITUTION 1.2 

FIRM/ HOSPITAL 0.7 

INDIVIDUAL/ UNIVERSITY 0.0 

INDIVIDUAL/ INSTITUTION 0.0 

FIRM/ INDIVIDUAL 0.0 

HOSPITAL/ INDIVIDUAL 0.0 

INDIVIDUAL/ INDIVIDUAL 0.0 

Sum 100 

However, since the total population of scientists from University type is very high, it 

cannot be concluded that scientists from the University have higher chance of being 

selected. Such comparison can be made when the populations of all kinds of organization 

types are the same.  
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Research field: Scientists carry out their research within various fields of specialization. 

In the real world, the scientific research interests of scientists are determined mainly by 

one’s graduation field, and in the present thesis they are hypothesized to remain 

unchanged during the scientist’s life in the network. One of the criteria in choosing the 

working partner for generating new scientific or innovative outcome is also the similarity 

of scientists’ research specializations. The simulation model developed for this thesis 

therefore considers the similarity of research fields as a decisive factor for choosing the 

partner.  

Biotechnology, as the main area of specialization for the network of the present thesis, is 

a vast field of study with numerous fields of specialization. In the two databases, 

scientists’ fields of specialization could be tracked via their affiliation information. 

According to the affiliations and publications, four distinct general zones of 

specialization are distinguished in the database of articles, based on the keywords 

identified in their title or abstract. In order to assign specialization field to each node of 

the model, the co-authorships are analyzed respecting these four research fields, and 

corresponding percentages are extracted for each of them (first research area 59.61%; 

second research area 21.68%; third research area 14.65%; and fourth research area 

4.06%). For the present model, it is hypothesized that all four fields have equal 

importance as to be chosen for co-authorships. This means that as soon as a scientist finds 

someone with a different specialization field from his/ her field, a positive value is added 

to the decision variable, making it more probable for the two to work together. However, 

the simulation model is built flexible and the total number of specializations can be set as 

required in further utilizations of the model. Since no trend is detected in the two 
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databases for the research fields, this attribute is randomly assigned to the scientists in the 

model, based on the calculated probability of occurrence for each field. 

Chooser threshold: In order to make each scientist’ decision making process unique, an 

attribute is defined for each scientist separately as his/ her choose threshold. This number 

is a uniform random number in the model, which remains constant during the life of a 

scientist in the network, assuming that preferences of any scientist for choosing a partner 

do not change during his/ her life.  

In the model, some hypothesised decision making factors are used in order to imitate the 

behaviour of different scientists in the network. In the real world, scientists as individual 

human beings may have very personal motivations and reasons for choosing to work with 

others. Detecting all the incentives and recording them requires questioning each 

individual about their specific criterions separately. Developing such a detailed list of all 

the incentives requires direct questionnaire for each individual scientist, which is not 

feasible for the purposes of the present thesis, since only the network related 

characteristics of the scientists are important. In the present thesis, the decision making 

process has been based on the available data. According to the databases, the decision 

criteria of scientists about their partner’s network-based characteristics can be traced by 

analysing the mutual collaborations in the network. For example, as it was shown in the 

“geographical cluster” section, almost 71% of the scientists prefer to have partners inside 

their own clusters.  

The decisive factors that were traced from the databases are: geographical cluster, 

organization type, history of previous partnerships, research field, Gatekeeper status, star 
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status, and scientific quality of each scientist. Therefore, the model is designed in a way 

that all these factors are considered when choosing a new partner. For this purpose, two 

temporary variables called preference indicator are introduced in the model whenever the 

model is considering two scientists for a possible partnership. The model checks each of 

these decisive factors between the two scientists, and updates the preference indicator 

variables with a new value as soon as each criterion is met. For example, if the two 

scientists are from the same cluster, then a positive value is added to both preference 

indicators, and when one of the scientists is star, then a positive value is added to the 

other scientist’s preference indicator, representing his/her desire to work with a star.  

In the process of new partners selection, first each two scientists (potential partners) are 

examined in terms of all the decisive factors, and the references of each towards his/her 

possible partner are summarized by his/her preference indicator variable. Then the 

preference indicators of each of the two scientists are compared to the chooser threshold 

of each scientist, and as soon as the chooser threshold of both scientists is met (i.e. for 

each of the two scientists, his/her preference indicator is greater than his/her chooser 

threshold), they are chosen to start a co-publication together. 

Entrance year: As it can be seen in the databases, scientists enter the network in some 

period of time and produce innovation (i.e. scientific articles or patents), and then leave 

the system either temporarily or permanently. Since it is not expected from a scientist to 

be active forever, the entrance year for each scientist is recorded. This allows him/her to 

exit the network after a certain period of time, even if he/she is very productive. In other 

words, the entrance year variable keeps track of the age of each scientist in the network, 

and let him/her exit the system after some average number of active years, just the same 
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as in the real world. In order to calculate the average age of a scientist, the maximum and 

minimum years of activity of each scientist is extracted from the two databases. 

According to the results, a maximum number of active years are 37, whereas a minimum 

is 1 year. The data is fed into ARENA input analyzer to develop a mathematical formula 

for the age of scientists, and the results show that age of a scientist in the network 

behaves exponentially, with a mean of 5.66. This formula is then applied to the model to 

produce random ages for the scientists. 

For calculating the number of scientists who should enter the network at the beginning of 

each year, the two databases of patents and publications are used. First, the data regarding 

the name of each scientist and year of publication/patent grant are extracted from the two 

databases and merged together. Then, using SQL code, only the first year that the name 

of each scientist appears in the data is recorded separately. This year actually indicates 

the entrance year for the scientist in the Canadian biotechnology network. After that, in 

order to develop a mathematical distribution function for the trend of entrance, the 

numbers of duplicate years are recorded. The result is then fed into input analyzer of 

ARENA software in order to get the best fitting distribution. The result is as follows: 

                                                    

Square Error = 0.000499 

in which BETA is the inverse probability function of Beta distribution. This function is 

then fed into the model, in order to generate entrance years for scientists. 

Number of publications/patents: As soon as a new scientist is created in the network, 

he/she should have some primary characteristics assigned in order to survive in the 
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network of the simulation model and get engaged in the decision making process for 

choosing new partners. It is therefore hypothesised that some scientists enter the network 

from other already existing networks, which enables them to have had some initial 

number of publications and patents before entering our network. It should be noted that 

this primary number is only used for modeling purposes and does not affect the whole 

procedure and/or simulation results. 

There is no exact evidence in the two databases as to the previous publications of authors 

entering the Canadian biotechnology network, so the model is designed in a way that this 

primary number of publications is flexible and for further analyses could be set as 

required. This initial setting does not affect the overall simulation results, but shortens the 

warm-up period of the model. Since the model is designed as finite horizon, it is 

necessary to have some decision making criteria enabled at the beginning, so that a 

shorter warm up period towards stable results is achieved. In the model of the present 

thesis, the two numbers (the initial number of the articles and of the patents) are set as a 

uniform random number between 1 and 10 for each scientist. However, the initial number 

of publications does not affect the final analysis for this thesis, because only the rate of 

productivity of the network is of importance, and this is detectable trough a cumulative 

trend of number of papers and patents in the network.  

Although the primary number of publications and patents does not affect the innovative 

productivity of the network, it can be used as a decisive variable while choosing to work 

with other scientists in the network.  
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After any co-authorship or co-inventorship event the total number of publications/patents 

for each scientist in the group is updated. First the model determines the type of the event 

to be either an article publication or a patent registration. According to the two databases, 

3.53% of all events are patent co-inventorships, and the remaining are article co-

authorships. Then, if it is an article, the number of publications for all the co-authors will 

increase by one. If it is a patent, then the patent quality of all the co-inventors will be 

updated according to the patent quality distribution in the USPTO database. The patent 

quality is based on the number of claims
11

 for each patent in the database. The probability 

distribution function for the patent quality is built in ARENA input analyzer as follows: 

Expression: -0.001+GAMMA (10, 1.59) 

Square Error: 0.001 

in which GAMMA is the inverse probability function of Gamma distribution. 

Primary links: Similarly, it is assumed that every scientist has a random number of links 

initially. Again, this assumption will help the model to pass its warm up period faster. 

The input data for this model is based on a finite horizon, meaning that the data has a 

starting and ending state. According to the database, each scientist has some number of 

links as soon as he/she enters the network, since the links are defined based on the co-

publications. In the database, the number of links inside the cluster per scientist is 

between 1 to 5 links, and outside the cluster it is 0 to 2 links. In other words, a scientist 

                                                 

11
 Patent claims are numbered expressions used to describe the technical terms of invention and 

demonstrate the protection extent presented by a patent. A high number of patent claims indicates that an 

innovation is broader and more profitable, potentially (Schiffauerova 2009). 
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may have 1 to 5 links inside its cluster and 0 to 2 links outside its cluster as soon as 

he/she enters the network.  

The average number of initial links for each scientist is derived from the database. For 

that, the first 10 years of data is analysed and the average number of links per scientist is 

calculated separately. Then the probability for each number of links per scientist inside 

and outside of the cluster is calculated separately. Table 6 shows the percentage results 

for the first ten years. 

Table 6: Number of links per scientist inside and outside of the cluster (%) 

Number of Links 0 1 2 3 4 5 sum 

Inside Cluster 6% 18% 31% 12% 25% 8% 100% 

Outside Cluster 44% 37% 18% 1% 0% 0% 100% 

Sum 50% 55% 49% 13% 25% 8% ------- 

 

As mentioned before, the initial number of links assigned to each scientist helps in 

reducing the simulation running period by omitting the warm up period. Since the 

simulation model is agent based, the initial picture of the system should be comparable 

with any other picture taken in various time slots during the replication. In addition to 

reducing the warm up period, this realistic initial status of the model ensures that the 

whole output data of each replication is appropriately the same as the real behaviour of 

the database.  

Journal impact factors: Since in the world of publications it is not only the quantity 

which counts, the quality of the scientific output should be taken into consideration as 

well. The quality of the journal articles produced by the scientists should therefore be 
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evaluated. The article forward citations are so far generally recognized as the most 

appropriate paper quality indicator, but unfortunately the information on the article 

citations is not available in our data. Instead, it is decided to include the journal impact 

factors corresponding to the journal in which each article is published in the model. 

Journal impact factor is admittedly a very noisy indicator of article quality, but it does 

give a certain indication on the scientific value of the work. The impact factors of the 

journals for the year 2008 are extracted from ISI Web of Knowledge
12

. The 

corresponding impact factor for each journal in which the article has been published is 

then assigned separately to each article. Using ARENA input analyser, the following 

expression is provided for the journal impact factor distribution in the data.  

Expression: -0.001 + LOGNORMAL (2.3, 3.73) 

Square Error: 0.0015 

 in which LOGNORMAL is the inverse probability function of Lognormal distribution 

function. Using the above mentioned formula, as soon as a new article is produced, some 

random number as journal impact factor is added to the corresponding variable for all the 

co-authoring scientists. 

The histogram presented in Figure 3 shows the frequency of journal impact factors for all 

the articles in the database. As the figure show, most of the articles (more than 50%) are 

published in journals with impact factor less than 2.5.  

                                                 

12
 An academic search service for citation indexing, provided by Thomson Reuters 

(www.isiwebofknowledge.com) 
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Figure 3: Frequency of Journal impact factors for articles 

Idle/busy status: There are two general statuses defined for each scientist in the network: 

busy; and idle. Whenever the status of a scientist working on a co-publication is set as 

busy, he/she cannot be selected for any other co-publication and is neglected in the 

chooser procedure of scientists during this period. However, in the real world, it is 

possible for one scientist to work on more than one publication or innovation at the same 

time. This means that even while working on a project and being busy, in the real world a 

scientist still could be contacted for working on other projects. This phenomenon is not 

detectable through the databases, because in the both databases only the years of article 

publication in a journal or innovation registration at the patent’s office are recorded. 

There are many scientists in the databases who have published more than one journal 

paper in one year. Even though it is not clear from the database whether the periods of 

work on these publications have had any overlap. It is expected that in order to produce a 

research article at least several months of research is required and thus the simultaneous 

work on several collaboration projects is likely. Nevertheless, in the simulation model of 
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this thesis, it is assumed that each scientist can only work on one single project at most, at 

any point in time.  

This assumption affects the possibilities for choosing a new partner, as the scientists who 

are already working on a project are opt out of selection. The fact that each scientist can 

work on one single project at a time also affects the number of links a scientist has in the 

network. Although scientists in the real world usually work on more projects at the same 

time and thus should have a higher number of simultaneous links, the assumption reduces 

this number in the simulation model. However, this situation is solved by the defined age 

for the links in the model. As it was stated before, as soon as a link is connected between 

two scientists in the network, this link remains active in the model for five years. Now, if 

a scientist in the real world works on more than one innovation at a time and has more 

number of links connected to him/ her at the same time, the situation is solved by this link 

age.  

The database of the simulation model results is produced in MS Excel for each run, 

which has a limited capacity for the size of the matrix of nodes in the network. Besides, 

as the number of links per scientist increases, the run time of model increases as well. In 

order to speed up the model and overcome the limits of the software, and in order to 

make the scientists have realistic number of publications in the network, a monthly time 

frame is considered in the model. As it was stated before, the database records only bear 

the year of publication, and it does not indicate the publication duration. Therefore, if the 

publication duration in the model is set to be less than a year, then each scientist has the 

opportunity of producing several publications in a year, which could imitate simultaneous 

co-publications for each scientist. 
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In order to have a more realistic picture of the network for further analyses, the realistic 

number of links per scientist is required. The solution proposed for this situation in the 

present thesis is to develop a prolonged picture of the system for output analysis 

purposes. This means that instead of having a picture of the nodes and links in the 

network at each single point of time, the model would give all the information about all 

the links and nodes over a longer period of time. This picture is more realistic when this 

period of time is set as a year, since the database on which the model is developed 

proceeds yearly. 

In order to extract the number of busy scientists for each year, first the two databases are 

merged together, and the query of publications, years and scientists is developed. Since 

redundant entries are possible in the merged query, a SQL code is developed to produce 

the distinct query of scientist, year and publication, in which each scientist is only once 

related to each article he has published during a year. Then, duplicates of scientists for 

each year are extracted from the resulted datasheet, using wizard of MS Access. The 

Figure 4 shows the growth rate of number of busy scientists during the period under 

study.  
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Figure 4: Number of busy scientists per year 

 

As it is seen in the figure, the growth rate of scientists in the network is very fast. The 

figure shows that the biotechnology as a new and separate field of study was initially 

introduced in 1970s and the beginning of 1980s, and that there were not many patents and 

publications before that. However, as the figure also suggests, the growth rate of number 

of scientists in Canadian biotechnology network is high, and the number of scientists in 

this field is still growing at the end of 2005. This implies that in the simulation model of 

the present thesis there should also be a growth in the number of scientists working in this 

field as the time passes.    

Feeding the data in ARENA input analyzer the best match is as follows:  

Number of busy scientists = -0.001 + EXPO (19.6) 

Square Error: 0.015135 
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In which EXPO is the inverse probability function of exponential distribution. The square 

error is relatively high, since the data is very scattered in the first years. This probability 

function is then fed into the simulation model whenever a scientist should decide to start 

a new publication, i.e. going from idle status to busy. The model checks to see if the 

number of current busy scientists is less than the number produced by this function, to 

add a new busy scientist to the model.  

Publication duration: The main advantage of simulation modeling, as stated before, is 

the ability to analyse systems over time. As soon as one wants to build a simulation 

model, the exact timings for events in the system should be recorded to be made effective 

in the model. In the present thesis, the most important event in the network is the process 

of co-publications of the articles and co-inventorships of the patents between the 

scientists. In order to have an exact formula for the publication duration however, the 

exact information about the beginning and end of each publication is required. In the two 

available databases, the only time value available is the year of publication or patent 

grant. Therefore, other time elements should be estimated based on other observations of 

the data.  

For calculating publication duration, the number of publications per scientist per year can 

be considered. As long as a scientist produces only one publication during a year, it can 

be assumed that the publication duration is one year. However, for imitating the 

publication process of scientists who have worked on more than one publication at a 

time, the query of scientists with more than one publication during one year is taken from 

the databases. Then, the probabilities for each number of publications per year are 

calculated separately. Based on the possible number of publications, various possible 
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publication durations are then defined in the model. This means that for example, for two 

publications per year, the probability is assigned to the six month publication duration, or 

for three publications per year the corresponding probability is assigned to four month 

publication duration, and so on.  

Therefore, as soon as a group of scientists is selected to start a new research contribution 

in the network, specific publication duration is set for them, during which their status is 

set as busy, while before and after that their status is idle. This way, for example, if a 

scientist in the real world has had three simultaneous publications at the same time, 

he/she is represented in the model as someone who has three consequent publications 

during one year. This regulation also helps the computer model to run faster, as the 

number of choices that should be considered each time for starting a new publication is 

confined to the idle scientists only. The results for the behaviour of both the simulation 

model and the real world (represented in the present thesis by the database) would be the 

same, since at last both of the results are presented on a yearly basis. However, if some 

more detailed data is provided in the future, the simulation model of the present thesis is 

defined flexibly and it could take new settings for having more than one contribution at a 

time.  

For calculating the probabilities for each busy period, first the query of scientists, 

publications/patents and years is extracted from the databases. The total number of 

publications in comparison with patents is very high, i.e. 100750 articles versus 2932 

patents. Therefore, the probable difference between the duration of patenting and 

publishing can be neglected, and both data sets can be merged together for duration 

calculation purposes.  
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Since the two databases of patents and publications are combined together for this 

purpose, some duplicate records may occur. To overcome this problem the duplicates are 

removed by using SQL codes. Then, using MS Access query wizard, the duplicate years 

for each scientist are calculated. The Figure 5 illustrates the percentages of publication 

duration and patenting duration taken from the two databases.  

 

Figure 5: Publication/ Patent Duration 

As it is illustrated in the figure, almost 80% of the scientists have had only one 

publication per year, and for more than 95% of times, number of patents per year is also 

one. As the number of publications per year increases, the total number of incidents in the 

data falls significantly. Therefore, the simulation model is designed in a way that about 

80% of the times the publication duration is set as one year, which means that the status 

of each scientist involved in the publication is set as busy for one year. Other possibilities 
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of publication durations and their corresponding probabilities are also introduced to the 

model based on the developed equations.  

Number of co-authors: After the initial attributes and variables are set in the model, the 

simulation replication starts by searching for scientists with idle status. For each idle 

scientist in the network first the model decides whether he/she should start a new 

publication or not, according to the distribution of number of busy scientists per each 

year. The decision process for this purpose is randomized exponentially. If a scientist is 

chosen to start working on a new project, first a decision variable is needed to determine 

the number of co-workers.  

In order to calculate the number of co-authors working on the same project, the database 

of articles is used. In this database, first a query of all the publications and all the 

scientists working on each publication is extracted. Then in the new data sheet, the 

number of duplicates for each paper is developed separately, using SQL. The distribution 

of the number of scientists per publication is depicted in the Figure 6. As the figure 

shows, about 80 percent of times, less than seven people are working on the same 

publication.  
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Figure 6: Distribution of number of scientists per publication 

The simulation model is designed in a way that as soon as a scientist is chosen to start a 

new publication, a random number is generated based on the distribution above to decide 

about the number of co-authors needed for the new publication.  

Star Status: According to Queenton and Niosi (2003), Canadian biotechnology clusters 

are strongly related to high-class academic research and especially to the star scientists 

working in the network. As it is mentioned in the literature review, there is no universal 

definition for star scientists that contains numerical specifications regarding their 

productivities. In this thesis, a highly prolific scientist is considered to be a star scientist, 

and it is assumed that he/she is more prone to be chosen by other scientists as a partner 

because of his/her scientific background and research success. Clearly, the higher the 
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number of publications and/or patents a scientist has produced, the more he/she has been 

chosen as a partner and engaged in co-publications or co-inventorships. 

There is no exact evidence in the databases which shows that star scientists are chosen 

because of their higher productivity. Decisive effect of star status of a scientist is as 

undetectable as other personal decision factors in the network. However, the model is 

designed in a way that as soon as a scientist meets some lowest specifications (minimum 

of 5 publications, 2 patents, and 10 journal impact factors, which forms about 5% of the 

scientists in the real world data), he/she is less prone to leave the network. In order to 

consider both qualitative and quantitative productivity of the star scientists, there are 

three criterions defined in the model for a scientist to be a star: minimum number of 

publications, minimum patent quality, and minimum article quality. As it is stated before, 

the model is flexible and the criterions are manageable for various runs of the model.  

The following figures show the distribution of number of publications and patents for 

inventors in the Canadian biotechnology network (Figure 7). As it is depicted in the two 

figures most of the scientists produce less than 2 patents or 5 articles.  

 

Figure 7: Number of Patents and Articles per Scientists 
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In order to calculate the number of stars in the databases, the list of the scientists with 

more than 25 publications and more than 10 patents are extracted from two separate 

databases. Then, the mutual scientists are detected in the two new sets of scientists. Here, 

among 49 scientists with more than 10 patents and 1955 scientists with more than 25 

publications, only 33 stars are detected. Clearly, as the criterions are changed to 30 

publications and 15 patents, the number of stars reduces to 11 stars in the network. The 

average journal impact factors in both cases are set more than 10.  

In the model, the default values for minimum number of articles and patents for a star are 

set as 5 and 2 respectively. Besides, the minimum cumulative impact factor is set as 10. 

These specifications correspond to 4.7% of all the scientists in the databases. All these 

numbers are changeable for further analyses. At each point of time, the model checks the 

star status of a scientist, i.e. whether or not the scientist is a star in the network. As soon 

as a scientist meets the minimum specifications in the model, his/her star status is set as 

true. As it was mentioned before, the star status of a scientist plays an important role in 

the procedure of choosing a new partner, because in the model scientists are more willing 

to co-author with stars. 

Gatekeeper status: As it was defined in the literature review, the term Gatekeeper in the 

present thesis is applied to any scientist with at least five links inside and two links 

outside its geographical cluster. These criteria correspond to almost 14.2% of all the 

scientists in the two databases. The same criteria is applied to the simulation model, in 

which any scientist with at least five active links inside the cluster and two active links 

outside the cluster is considered as a Gatekeeper. An active link is a link which has been 

in use at least once in less than 5 years ago.  
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In order to analyse the distribution of Gatekeepers, the database of the co-publications is 

analysed. According to the database, 14.2% of all the scientists have at least once been a 

Gatekeeper, i.e. they have had at least one publication with five inside and two outside 

collaborators. 73% of these Gatekeepers are Canadian, 14% American, and 13% from 

other zones. The Table 7 shows the distribution of number of Gatekeepers with their 

frequency in the database. As it is shown in the Table, 69% of all the Gatekeepers have 

only been Gatekeeper once, while the remaining 31% have played the Gatekeeper role 

more than once during their activities in the network.  

Frequency 
# of 

scientists 
% 

1 34156 68.5093068 

2 8110 16.26684852 

3 3112 6.241976893 

4 1586 3.181161746 

5 813 1.630696406 

6 550 1.10317715 

7 378 0.758183569 

8 243 0.487403723 

>8 908 1.821245186 

Sum 49856 100 

Table 7: Frequency of Gatekeepering 

  As it is stated before, the simulation model is designed in a way that the distribution of 

Gatekeepers in the model is almost the same as that of the database. 
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The code consists of four classes, Manager, Scientists, Cluster, and write excel. The 

manager is the main class of the codes. The variables and parameters in the program are 

named in relation with their functionality in the model, in order to make the Java code 

more understandable. Besides, some comments are made through the code wherever 

necessary to describe the functionality of each part of the code. Since the model is created 

for the purposes of this thesis, no user interface is defined for it, and all the variables and 

parameters are set directly inside the Java code. 

In the next part, the verification and validation processes of the model are explained. 

4.5 Model Verification and Validation 

Model verification and validation, as two important phases of modeling, are basically 

integral sections of model development procedure. In the present thesis, as the whole 

simulation model is developed by coding in Java language, the verification and validation 

procedures are almost always done during the model creation procedure. In the following 

sections, the applicable verification and validation methods for the model and their 

results are described. 

Verification of agent-based simulation models, just the same as other modeling 

methodologies, mainly involves debugging the model to ensure it works correctly. As for 

validation, which ensures the right model is built, Klügl (2008) proposes four principal 

methods for agent based methods, which are face validation, sensitivity analysis, 

calibration and statistical validation. However, Fortino, Garro, and Russo (2005) propose 

that discrete event simulation methods of validation can also be performed for agent 

based models.  
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The simulation model created for the present thesis is primarily defined as a finite 

horizon model, since the duration for which data is available is finite, and further 

evolutions after the last year in the two databases of the system are unknown. However, 

the simulation model is created in a way that it can be run over infinite horizons as well if 

required, as the Java code of the model is open source and may accept any positive 

number for the total number of years that the model is run.  

Among all the possible terminating conditions for the model, the total number of years is 

selected as the termination point, since this is the only value that remains unchanged 

under all possible scenarios. Since the available data is gathered over approximately fifty 

years, any iteration of the model is also set to be fifty years.  

The output analysis for the simulation results of the present thesis is based on the method 

of independent replications, given that all the variable generators utilized in the model are 

random. The output analysis for the model will be done according to the across 

replication method, meaning that for each set of results required for different research 

questions of the thesis, the simulation model is run a couple of times, and the average of 

all the results are going to be applied in interpretation procedures. The number of 

replications required for each set of results is calculated based on the t-distribution 

iterative method. The confidence interval for all output analyses is set as 95 percent in the 

software. 

Verification: Verification of a software based simulation model actually means ensuring 

that the whole model is constructed correctly. Since the programming language of the 

simulation model is Java, which does a lot of debugging by itself, as soon as the model 
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runs without any error notifications, one can be sure that the software phase of the model 

is correctly built. Besides, the model is verified by two programming experts for 

correctness of codes and consistency of the results. 

Static Verification: As for the static testing for the function of all subsections and 

modules of the model, a walk-through variable was defined so that it reported its 

situation as soon as it entered any module of the model. Using this walk-through 

variable, the correctness of the structural properties of the model was examined 

and confirmed consequently.  

Dynamic Verification: As for the dynamic testing of the model, the time flow 

mechanism of the model was verified by tracing an entity during its life in the 

model. The software based program showed no sign of inconsistency. The time 

flow was also checked to work monthly, as defined for the model, and all the sub 

modules were also verified to work on a monthly basis. 

Validation: Validation phase of modeling is in fact assuring that the model which is built 

exactly imitates the real world phenomena. In the present thesis, the correctness of the 

model basically depends on the closeness of its behaviour to the evolution of the two 

databases in time. However, the two databases do not contain separable data to be used 

for model development and validation independently, so the same data is used for both 

model generation and validation. Besides, since the available data is heterogeneous in 

time, meaning that there is a significant change of behaviour in the state of variables such 

as number of scientists or publications over time, it could not have been divided into two 
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time-based sections as well. For validating the model, the following validation methods 

are considered as applicable and applied to the model as explained hereby.  

 Face Validation:  The very basic validation method for a software based model is 

the usage of animation elements in order to compare the external appearance of the model 

to its instance in real world. As for the innovation network under study in the present 

thesis, the main elements that could be detected in animation are the scientists (nodes) 

and the links between each pair of scientists that lead to the creation of new publications. 

The animation interface for the model is mainly developed using various steady state 

pictures of the model, developed in PAJEK
13

 network analysis software. The Figure 8 

shows an example of the picture developed in PAJEK out of the simulation model of the 

thesis.  

Since the total number of nodes and links in the real world network is too high to be 

pictured, for getting a better demonstration of the results for validation purposes, the 

simulation is run with a proportionally smaller population. For this purpose, all the 

relative settings have been set as one tenth of their correct values. 

                                                 

13
 PAJEK is a program for analysis and visualization of large networks, developed by Vladimir Batagelj 

and Andrej Mrvar. 

Figure 8: Animated picture of the model 
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As the figure suggests, the overall appearance of the model is acceptable, since each 

scientist has its own cluster, and the links are also generated properly for each pair of 

scientists working together. 

 

 Degenerate tests: in order to validate the model, some degenerating tests are 

performed in the model.  

 The score threshold in the model is set to a number bigger than the summation of 

all choosing factors in the model. It is expected that by applying this setting, no scientist 

can be ever found for partnership and therefore the number of links, and consequently 

scientists in the network decline to zero after a couple of years. Under this condition, as it 

is expected, the population of scientists in the model declines very fast. The Figure 9 

depicts the situation over fifty years. 

 

Figure 9: Degenerate test. No partner selection possible in the network. 

 When the maximum possible age of a scientist in the network is set as one instead 

of twenty years, it is expected that the model stops working after a couple of years. As 
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expected, the population drops to a number near zero in the first year, and the model does 

not proceed after the third year since there is no more any scientist in the network.  

 Setting the maximum age of a scientist to a number greater than the whole 

duration of a replication, it is expected that the population of scientists grows positively 

in the model, since no scientist leaves the network during this period. The Figure 10 

compares the number of scientists in the two situations. For comparison, the figure also 

illustrates that when the maximum age of a scientist is set as twenty years, the population 

of the model shows a steady behaviour.  

 

Figure 10: Degenerate test. Age of scientists 

 It is also expected that the number of scientists declines fast if the probability of 

death in the network is set as a big number. The results show that with the high 

probability of fifty percent for unexpected omission, the population of scientists 

decreases very fast.  

 Internal validity (Statistical Validation): For conducting the internal validity tests 

on the model, the same setting is run ten times in order to check the consistency of the 

results. Since different sets of random variables are used for each iteration, the produced 
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data are supposed to be slightly different. However, the trends in the outcome data for 

iterations should resemble each other. The following figures show the trend of output 

data over one hundred years of run for five independent replications. The fact that the 

trends are the same confirms that the model is working heterogeneously.  

 

Figure 11: Internal validity. Data trend for number of active links in the network 
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Figure 12: Internal validity. Data trend for number of publications 

 

 

Figure 13: Internal validity. Data trend for population in the network 

 Sensitivity analysis: In order to perform sensitivity analysis for the model, the 

total number of active links in the network is considered as examination variable. The 

total number of links in the network is mainly affected by the maximum number of 
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partners a scientist may have in the network. For performing the analysis, three different 

scenarios are run. In the first scenario, scientists may have only one partner in the 

network. In the second scenario, the number of possible partners is exactly three partners. 

And in the third scenario, any number of partners is equally possible. The Figure 14 

shows the results for the total number of links during fifty year replications for the three 

scenarios. All other settings for the three scenarios are the same. 

 

Figure 14: Sensitivity analysis 

As the figure shows, the total number of links in the network is sensitive to the possible 

number of partners. Therefore, the scenario with exactly three partners produces the 

highest number of links in the network, and the scenario with exactly one partner 

possibility produces the lowest number of links, during a fifty year replication. These 

results were expected, since the higher the number of partners, the more links are 

produced in the network. 
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 Comparison of data trends (Calibration): It is necessary to make sure that the 

simulation model is generating numbers for various variables as intended. For developing 

the input expressions of the model, ARENA input analyzer have been used as mentioned 

before. In order to compare the results of the model and that of the database, three 

variables are chosen and the corresponding developed expression for each is presented in 

Table 8. The table shows the trend of data from database and ten iterations of the model. 

The first variable analysed is the number of scientists per cluster, which is actually a 

direct variable that is fed into model based on the trends in the database. As soon as a 

new scientist is added to the model, a cluster ID is assigned to it based on the Exponential 

expression that is fed to the model according to the trend in the database. Since the 

number generator of Java works randomly, the results for the runs are slightly different. 

However, the consistency of the results is clear as the expressions of the model are almost 

the same.  

In order to show the fact that the performance of the model represents well the database, 

the indirect variables of the model need to be compared to the database. The second and 

third variables shown in Table 8 are indirect variables. The number of the patents per 

cluster obeys an exponential distribution with mean of 117 in the database. In the model, 

the number of patents depends on the collaborations among scientists and rate of co-

inventorship.
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Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

0.5 + EXPO(8.26) 0.5 + EXPO(9.04) 0.5 + EXPO(8.56) 0.5 + EXPO(7.61) 0.5 + EXPO(8.58) 0.5 + EXPO(7.54)

2 + EXPO(117) 2 + EXPO(122) 2 + EXPO(117) 2 + EXPO(114) 2 + EXPO(111) 2 + EXPO(115)

10 + EXPO(330) 10 + EXPO(305) 9 + EXPO(331) 10 + EXPO(351) 11 + EXPO(329) 10 + EXPO(345)

Iteration 6 Iteration 7 Iteration 8 Iteration 9 Iteration 10

0.5 + EXPO(8.26) 0.5 + EXPO(8.06) 0.5 + EXPO(8.52) 0.5 + EXPO(8.63) 0.5 + EXPO(8.97) 0.5 + EXPO(8.06)

2 + EXPO(117) 2 + EXPO(118) 2 + EXPO(115) 2 + EXPO(121) 2 + EXPO(117) 2 + EXPO(117)

10 + EXPO(330) 10 + EXPO(332) 10 + EXPO(344) 9 + EXPO(320) 9 + EXPO(341) 10 + EXPO(335)

Variable
Expressions from Model

Variable

# of Scientists per Cluster

# of Patents per Cluster

# of Collaborations per cluster

Expression from Database

# of Scientists per Cluster

# of Patents per Cluster

# of Collaborations per cluster

Expression from Database
Expressions from Model (continue)

 

Table 8: Data Trends 
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As it is illustrated in the table, the number of produced patents in the model is in 

consistency with the database, since it also obeys exponential trend with slightly different 

means to those of the database. Finally, the total number of collaborations inside each 

cluster is analysed. Since the number of collaborations depends on several direct 

variables in the model (the chooser variables), less consistency is expected in the results. 

As the table shows, the expression of the trend is still exponential. It is predictable since 

the number of scientists in the clusters is distributed exponentially. However, the 

expressions vary from run to run as the decision variables (chooser variables) change.   

 

Finally, no model is ever a hundred-percent perfect representation of a system, since all 

of the complications of the system could seldom be detected. However, while developing 

a simulation model, the trade off between the accuracy of the model and the cost of 

increased validation efforts should be considered. As soon as the proper results are 

attainable from the model and the face validity and assumptions in the model are in an 

acceptable level, the model is considered to be complete. After the verification and 

validation of the model is done, it is ready to run various scenarios and analyse the 

outcomes.  
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5. Analysis of the model and the results 

This part of the thesis deals with the research questions of the thesis and tries to apply 

various scenarios to the model in order to find answers to these questions. To compare 

the various scenarios, some basic characteristics of the network must be studied and 

analysed in common for all the scenarios. As it was also declared in the literature review 

of the present thesis, the structure of the innovation networks plays the key role in the 

diffusion of knowledge and production of innovation. The flow of knowledge in the 

networks depends on some characteristics of the networks, such as degree centralization, 

betweenness centralization, density, etc.  

All the network characteristics are calculated by PAJEK social network analysis 

software, after it is given the data about each scenario of the model. In order to establish 

the network by the software, first a vertex is assigned to each distinct identification 

number of each scientist. Then, the cluster, research field, and organization type of each 

scientist are given as partitioning conditions in the network. Then for each scientist, its 

current number of articles plus patent quality and the star status are given as values for 

each node, indicating the importance of each scientist in the network. Finally, the graph 

of all the links between pairs of scientists is fed into software in order to analyse the 

network properties. The age of the links, i.e. the duration of time that the link has been 

connected between two scientists, indicates the length of acquaintance for scientists and 

is given to the software as the weight of each link.  
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5.1 The effects of loyalty on the innovation networks 

The cooperative relationships between humans are affected by various criterions. The 

duration as well as the depth of a relationship is dependent on its purpose and benefits for 

engaged partners. In a productive academic environment the collaboration ties are created 

in order to produce new knowledge, so the similarity of goals, required skills of the 

partner, trust, and records of previous successful collaborations are all very important 

when scientists choose their partners (Che Mat, Cheung, and Scheepers 2009). Everyday 

life experience however has shown that there are other personal factors that play a role in 

the decision procedure of choosing partners, such as culture, family, social life, etc. 

Therefore, it is expected to see some people changing their partners frequently, while 

others prefer loyalty to their current partners (Buchan, Croson, and Dawes 2002; Kollock 

1994).  

Since the process of searching for new partners is time-consuming, people are most of the 

times willing to remain loyal to their previous partners, even when better choices are 

available. The loyalty to previous partners causes the structure of collaborative networks 

to become embedded (Che Mat, Cheung, and Scheepers 2009). It also increases the 

existence of heterogeneously closed populations (Amaral et al. 2000).  

The important factor of an innovation network that is also the main focus of the present 

thesis is the flow of knowledge between its components (individuals, clusters). The faster 

and more freely knowledge flows in the network, the faster the innovation grows. The 

flow of knowledge in the network is closely related to the structure of the network, as in 

the networks with dynamic links, knowledge has higher chance of transmission (Zander 

and Kogut 1995). However, in the innovation networks, loyalty to previous partners 
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results in a static network, in which some of the links may never be connected and some 

routes for flow of the knowledge never shape. Although the survival advantage of loyalty 

in the network encourages scientists to stick to their previous partners for their new 

collaborations, the reduced number of potential paths as a result of highly clustered and 

embedded network structures acts as a disadvantage for the innovation production 

(Segbroeck et al. 2009).  

In a network with strong social ties, there also exists a challenge for new-comers to find 

collaborative partners, since many of the present scientists have a tendency to work with 

their current partners, and refuse to start collaborations with new ones. As Kemelgor and 

Etzkowitz (2001) suggest, becoming a scientist requires knowing other people and be 

involved in a highly socialized context. They also confirm that having access to 

professional interactions is crucial for a scientist to survive and improve its position in the 

network. Without being involved in scientific collaborations and having social support, 

most of the new scientists may find it difficult to survive in the network, and may remain 

disconnected from sources of knowledge and isolated consequently.  

It can be concluded that loyalty to a previous partner when building new collaborations 

has an impact on the network structure. In order to analyse the consequences of loyalty in 

the Canadian innovation network, the duration of collaborative relationships is 

determined as the indicator of loyalty between partners. The model is built in a way that 

scientists take into account their previous partnerships while searching for new 

collaborations. In this regard, there is a higher probability for a scientist to be chosen if 

there is a record of mutual collaborations in a specific period in the past, as it is illustrated 

in the methodology section of the present thesis. 
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In order to analyse the effects of loyalty on the innovation networks, the average age of 

links between partners is considered as the independent variable in the model. By 

changing the average age of a link in the network, the duration of loyalty to previous 

partners is changed in the network, i.e. higher levels of social ties are represented by 

higher link ages in the network. The simulation model is then run with various settings 

for the average age of the links, and the behaviour of scientists and the whole network is 

analysed in order to understand the impact of loyalty on the networks better. 

According to the literature, it is expected to have a more embedded network as the 

average link age between partners increases in the network (Dyer and Singh 1998). 

Besides, high loyalty amongst scientists decreases the collaborations between existing 

individuals and new comers, and creation of new collaborative links amongst already 

existing scientists. This may prevent the connection of separate components in the 

network, and decrease the growth rate of the largest component proportion in the 

network. Consequently, there will be more isolated cliques, in which there might be 

different flows of knowledge. This could increase the probability that some information 

does not transfer heterogeneously in the network (Tallman et al. 2004). 

For analysing the impact of loyalty, different link ages are set as average age of the links 

between partners from one year of loyalty to thirty years. In the two extreme scenarios, 

the situations with no loyalty and life-time loyalty are analysed by setting the average age 

of the links as zero and thirty years (more than the average age of a scientist in the 

network), respectively. The simulation model is run independently in order to gain the 

results. The performance of the network is then analysed through charting different 

indicators of the network structure to compare the results for various scenarios.  
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5.1.1 Productivity of the network 

The first feature of the model which is analysed in order to compare the network under 

various loyalty levels is productivity. As the Figure 15 shows, the total number of 

contributions (articles plus patents) remains almost constant in the network. However, as 

the level of loyalty between partners increases, the population of scientists in the network 

also increases. This implies that the scientists work on average in bigger teams and for 

the same number of contributions more scientists are required in higher levels of loyalty.  

For a better understanding of the network, the first indicator analysed is the innovative 

productivity of scientists in the network. In order to calculate the productivity of the 

network, the average total number of publications and patents per scientists is calculated 

for each scenario. Since the impact of various loyalty levels on the performance of the 

Figure 15: Total Contributions/ Scientists in the Network 
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network needs to be examined, the average productivity of the scientists is a good 

measure for the overall performance in the network. This indicator is calculated from the 

following formula for each run of the simulation model separately: 

                     
                                                    

                        
 

This number is based on the results of fifty-years run of the model, and represents the 

performance of the network over its total life. The Figure 16 shows the Average 

productivity of the network with thirty different levels of loyalty (i.e. the age of the links 

between scientists). As the figure illustrates, the overall productivity of the network 

decreases as the loyalty of scientists to their previous partner increases.  

In order to show that the share of the knowledge contribution per scientist decreases as 

the loyalty level grows, the ratio of star scientists to the whole population of the scientists 

is presented in the Figure 17. As the figure shows, the number of stars decreases fast as 

the loyalty increases. This indicates that not only the share of productivity decreases for 

the network, but also it decreases for highly productive scientists, resulting in less 

Figure 16: Average Productivity of the Network 
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number of stars in the network. The figures also suggest that having less loyalty in the 

network would result in a higher overall productivity.  

 

5.1.2 Network characteristics 

In order to analyse the structure of the Canadian biotechnology network for various levels 

of loyalty levels between scientists, the degree centralization
14

 and betweenness 

centralization
15

 measures of the network nodes are computed. As mentioned before, in 

the simulation model of the present thesis, the lines connected to each vertex are actually 

the collaborations between mutual scientists. Since the loyalty in the network is 

represented by the age of the links, it is expected that the degree centralization of the 

                                                 

14
 The degree centrality is a measure of graph theory that indicates the number of lines connected to each 

vertex. In the simulation model of innovation network, since the vertexes are scientists, this number 

indicates the number of collaborators for each scientist in the network. Degree centralization is calculated 

by dividing the variation of nodes’ degrees by the highest possible variation in a network of the same size. 

(De Nooy et al. 2011) 
15

 The betweenness centrality indicates the amount of information that passes through each inventor by 

calculating the proportion of all shortest distances between pairs of other vertices that include this vertex. In 

other words, the betweenness centrality of a node is defined as the proportion of all shortest paths between 

pairs of other nodes that contain this node. The variation in the betweenness centrality of nodes in a 

network is measured by betweenness centralization. (De Nooy et al. 2011) 

Figure 17: Ratio of Star Scientists to the Whole Population 
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network increases as the loyalty level increases between scientists. This means that there 

are more active links connected to a scientist in high loyalty levels.  

The corresponding average degree centralization of the network for each loyalty level of 

the simulation model is extracted from PAJEK, and the results are shown in the Figure 

18. As it was expected, the average degree centralization of the network grows, and there 

is an average of 10 to 11 links per scientist in low levels of loyalty, while in higher levels 

this average reaches almost 14 links per scientist in the network.  

 

 

Although degree centralization is interpreted in terms of the variance of knowledge flow 

among the nodes through the network, a higher level of degree centralization does not 

necessarily result in faster flow of knowledge; i.e. it is possible to have some few nodes 

Figure 18: Average Degree Centralization of the Network 
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with very high degree centralities and all others with low centralities, resulting in a 

relatively high average. 

As another characteristic of the network, changes of betweenness centralization are 

measured for different levels of loyalty in the network. The results show that the 

betweenness centralization does not seem to be affected by the loyalty amongst scientists 

and fluctuates steadily for various scenarios. The Figure 19 shows the betweenness 

centralization of the simulation experiment for various levels of loyalty. 

 

Figure 19: Betweenness centralization of the network 

The flow of knowledge in the network is also affected by the density
16

 of the network. 

The higher the density of a network, the faster the knowledge flows between its agents, 

due to the higher number of connections between them. The density of Canadian 

                                                 

16
 The density of a graph represents the proportion of ties in the graph to the total number of possible ties of 

a graph with the same number of nodes.  
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biotechnology network is measured for different loyalty levels, from one year to thirty 

years, between scientists using PAJEK, and the results are presented in the Figure 20. 

 

As the figure shows, the density of the network decreases fast as the loyalty increases, 

then the decrease slows down and after reaching the link age of around 8 the density 

remains relatively stable. This shows that although the growth of loyalty affects the 

average degree centralization of the network positively, it has a negative impact on the 

density of the network, resulting in sparser network in higher levels of loyalty. 

Figure 20: Network Density 
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This outcome also confirms that loyalty affects the embeddedness of the network, and 

reduces the number of potential paths between scientists that could result in more 

frequent flow of knowledge. Another measure for analysing the embeddedness of the 

networks is clustering coefficients
17

. Clustering coefficient represents the fraction of 

collaborators of a node who also collaborate with each other. Networks with higher 

interconnectivity among their nodes have clustering coefficient closer to one. Therefore, 

higher clustering coefficient would result in faster transmission of the knowledge 

amongst the scientists. The clustering coefficients of the network are also measured by 

PAJEK software for various loyalty levels (link ages). The results are depicted in Figure 

21 to show the impact of loyalty on the network average clustering coefficient. As it is 

seen, the clustering coefficient of the network declines as the collaborative relationships 

between partners become more long-lasting, i.e. more repetitive. Although the decrease is 

not very significant (less than 0.05), it still shows the tendency of the network to have a 

                                                 

17
 The clustering coefficient is defined in graph theory as a measure of degree to which nodes in a graph 

tend to cluster together. 

Figure 21: Network Clustering Coefficient 
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less socialized context. This fact is also undesirable for new scientists, and can affect the 

performance of new comers in the network negatively, i.e. making it more difficult for 

them to have access to the main sources of the information in the network.  

The last analyzed structural property of the network is the size of the components in the 

network. As the simulation experiment shows in Figure 22, the proportion of isolated 

scientists to the total number of components in the network increases as the loyalty level 

grows among them. This phenomenon most probably happens because in higher levels of 

loyalty fewer chance of being chosen as a partner for a new scientist is possible, and the 

chance of having single-scientist innovations increases consequently. This implies that as 

the loyalty level increases in the network, scientists are more prone to work alone. 

 

Figure 22: Proportion of isolated scientists to the total number of components 

 

Overall, as the simulation model of this thesis showed, long-lasting collaborative 
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flow of knowledge among agents of the network. Besides, as the model shows, loyalty 

results in reduced number of paths among the agents, less productivity of the network and 

scientists, and affects network characteristics such as centralization, density, and 

clustering coefficient negatively.  

 

5.2 The role of star scientists in the innovation networks 

Since star scientists are the scientists with the extremely high contribution to the 

scientific output, their role in the innovation networks has been much discussed in the 

literature (Zucker and Darby 1995; Niosi and Banik 2005; Schiffauerova and Beaudry 

2011; Zucker and Darby 1996; Darby and Zucker 2003). The star scientists are the main 

producers of innovation and knowledge in the network. According to Zucker and Darby 

(1995) they represent less than one percent of the population of the scientists, but are the 

authors of more than 15% of the articles and patents.  

The literature on biotechnology star scientists reports that, in most cases stars are more 

likely to repetitively collaborate with the same scientists (Zucker and Darby 1996), which 

could consequently result in a less socialized network context that reduces the 

transmission of knowledge to other scientists in the network. Since the stars are the main 

sources of knowledge in the network, the flow of knowledge might be affected by their 

presence and absence in the information based innovation networks.  

Star scientists usually occupy more central positions in the network (Schiffauerova and 

Beaudry 2011). Their central position is the result of the higher number of connections of 

stars than what other scientists have. It is hypothesised that many inventors in the 
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network thus would be isolated in the network if their connection to the stars is lost for 

any reason (Schiffauerova and Beaudry 2011). However, since as a part of innovation 

networks, star scientists appear and grow in the networks naturally, the hypotheses 

regarding their absence from networks cannot be justified by real evidence. In order to 

analyse the behaviour of innovation networks in the absence of star scientists therefore, a 

substitution for real world would be required, in which the effects of their absence on the 

characteristics of the networks could be examined.  

It is expected that in a network without star scientists the structure of the network would 

be more homogeneous, and the links between vertices would be more evenly distributed. 

Besides, it is expected that also the knowledge production will be more evenly distributed 

among the scientists if the star scientists are not included in the network.  

Buchan, Croson, and Dawes (2002) and later Niosi and Banik (2005) consider “trust” as 

the basis for scientific collaborations in almost all social contexts, and Kollock (1994) 

claims there is a relation between trust and reputation in the formation of cooperative and 

exchange structures. The academic reputation of star scientists hence makes them more 

trustable than other scientists in the network, which may results in the overemphasis on 

the trust and the neglect of other factors during the selection of potential collaboration 

partners.   

 

In order to analyse a network without star scientists, the primary settings of the model are 

modified in a way that no star scientist exists at the beginning of iterations. The definition 

of star scientists is also deactivated in the model, and no scientist is thus defined as a star 
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further in the iteration. The characteristics of the innovation network are then analysed 

and compared for both scenarios, with and without star scientists. In order to gain more 

even results, five iterations of the model are run for each scenario. The results are then 

compared for these ten runs of the model. 

The next section will numerically analyse the structure of innovation networks, and 

general characteristics of innovation networks in a scenario without preferred individuals, 

in which all the scientists have the same value in the network in terms of productivity and 

innovativeness, and compare the gained results with the current situation of having star 

scientists in the Canadian innovation network.  

5.2.1 Productivity of the network 

First, the performance of Canadian biotechnology network is analysed in the presence 

and absence of star scientists. The average productivity of the scientists (i.e. total number 

of articles and patents divided by the population of scientists) is measured for both 

scenarios, and the corresponding results are presented in Figure 23. As it is illustrated in 

the figure, the average productivity of the network reduces to almost two thirds of its 

amount in the absence of star scientists in the network. Since the total number of 

collaborations in the network remains almost the same for the both scenarios (around 

57529 collaborations for scenario with stars, and 56308 collaborations for scenario 

without star scientists), it can be concluded that in the case where no scientists are 

considered as preferable collaborators, the opportunity for all the scientists to be selected 

is more similar, and therefore the share of productivity is more evenly distributed among 

the scientists. 
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Figure 23: Average Productivity of the Scientists 

Figure 24 compares the total number of collaborations in the network. As it is depicted in 

the figure, the total numbers of links in both scenarios are almost the same. However, the 

average of total number of links for the five iterations in no-star scenario is slightly 

smaller than the scenario with stars.  
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In order to analyse the distribution of links in the network in the two scenarios, the 

average number of links per scientist is compared in Figure 25. As the figure shows, the 

share of links in the scenario with the star scientists is slightly more than this value in the 

scenario without the stars. This can imply that in a network without star scientists the 

links are more evenly distributed, and the possibility of collaboration for scientists is 

more similar, giving all the scientists the opportunity of being chosen for innovative co-

authorships.  

The results of the simulation experiment for the two scenarios do not show much 

variation in the overall number of publications and patents in the network. Generally, as 

the results of the simulation model show, although the absence of the star scientists does 

not affect the productivity of the network in terms of total number of patents and 

publications, it increases the share of productivity per scientist by evenly distributing the 

collaborations in the network. 

Figure 24: Total Number of links in the Network 
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5.2.2 Structural Characteristics of the Network 

The structural characteristics of the Canadian biotechnology network are analysed and 

compared in the presence and absence of star scientists. The results for average 

betweenness centralization, average degree centralization, average density, average 

clustering coefficient, and average proportion of isolated nodes to the total number of 

components are presented in Table 9. The results show no significant change in 

betweenness centralization and average density of the network for the two scenarios. The 

betweenness centralization, which refers to the centralization of the nodes in a network 

and deals with shortest paths in the network, shows no significant change in the presence 

and absence of stars. However, it should be also taken into consideration that the 

population of star scientists is very small in comparison with the whole network, and 

therefore causes no significant structural changes in the two cases. 

Figure 25: Average Share of links per Scientist 
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Table 9: Network Characteristics for the Two Scenarios 

 
Ave. 

betweenness 

centralization 

Ave. degree 

centralization 

Ave. 

density 

Ave. 

clustering 

coefficient 

Ave. 

(#isolates/#components) 

Network 

with star 

scientists 

0.045 11.362 0.006 0.79 0.849 

Network 

without 

star 

scientists 

0.045 10.476 0.007 0.85 0.723 

 

Obviously, the total number of links which stars have in the network is significantly 

higher than in case of other scientists because of the star scientists’ more prolific life in 

the network. However, as the results show, their absence from the network does not cause 

the other scientists to lose their links, and scientists would still search for new scientists 

and continue their collaborative actions.  

The fact that scientists have a comparable opportunity to find other regular (not 

necessarily star) scientists and start collaboration for both scenarios is also verified by the 

unchanged average density in both cases. Since the density represents the proportion of 

ties in a network relative to the total potential ties, we can conclude that in the network 

without star scientists, there is still an equal number of links and collaborations in the 

network, and hence scientists do not have difficulty in finding new partners. Although 

there is no significant change in the betweenness centralization and density of the 

network in the absence of star scientists, the Table 9 shows that their absence would 

result in lower degree centralization, and also higher clustering coefficient in the network. 
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Average degree centralization, as an indicator of the average number of links per node, 

has decreased by about 1 link in the network for the second scenario. This was expected 

since it is assumed that the network in the presence of the stars is more centralized, i.e. 

more heterogeneous in terms of share of ties between vertices (scientists). The fact that 

the population of stars is very small (about 5% of the network) makes this relatively 

significant change even more considerable, implying that the share of ties among other 

scientists is very low in amount. Obviously, the flow of knowledge in the network is very 

much affected by the share of ties between the nodes in the graph and mathematically a 

network with higher average degree centralization has potentially more flow of 

knowledge among its nodes. The results of the simulation exercise so far suggest that star 

scientists are not only productive scientists by themselves, but also can improve the 

knowledge transmission performance of the whole network by making the network more 

centralized. 

The next network characteristic analyzed for the two scenarios is clustering coefficient of 

the network. The Table 9 shows that the clustering coefficient of the network in the 

absence of the starts is closer to one, indicating that in a network without stars there is 

more interconnectivity between the nodes than in a network including them. As it was 

mentioned before, clustering coefficient measures the proportion of partners of a scientist 

who also have collaboration with each other. According to the results, there is 85 percent 

chance for two individuals with a common collaborator to also have partnership together 

in a star-excluded network, whereas this chance is around 79 percent in a star-included 

scenario. 
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This suggests that a network with stars is less interconnected and has more hubs than a 

network in which all the scientists have the same possibility of access to the knowledge, 

regardless of their previous performance in the network. This also provides an advantage 

for new scientists, who might get completely disconnected in the network with low 

interconnectivity measure.  

In order to compare the flow of knowledge in the network, the number of isolated nodes 

is determined for each scenario, and the proportion of isolates to the total number of 

components in the network are presented in the Table 9. According to the table, there is a 

higher chance of having isolates in a star-included network. Eventually, we can say that 

new comers in a network without star scientists have higher possibility of survival, since 

there is a higher chance of having access to new knowledge and getting involved in 

innovative collaborations for them.  

Overall, as it can be concluded from simulation experiment results, the presence of stars 

has positive impact on the average productivity per scientist in the network. The overall 

network characteristics are comparable for the two scenarios. However, in a network 

without stars, there exists more interconnectivity and consequently better flow of 

knowledge amongst scientists, which would result in faster growth of innovation, and 

also there is higher chance for new scientists to be selected as a partner, resulting in less 

isolated components in the network.  
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5.3 The role of Gatekeepers in the innovation networks 

As an interpersonal and information centered process, the creation of innovation is the 

key to the emergence of communication networks and various roles for scientists acting 

as the networks’ agents (Keller 1991). One of the critical roles in the network, the role of 

Gatekeepers has been introduced in previous parts of the thesis. 

 Sosa and Gero (2005) define Gatekeepers as individuals with access to outside sources 

of knowledge, who maintain the role of intermediaries in the dissemination of knowledge 

by having personal communications inside and outside their clusters. As it is also 

mentioned in the literature review section, no other research study has examined and 

compared the network dynamics in case of the presence and the absence of Gatekeepers.  

Since Gatekeepers are defined in this thesis as individual inventors in the system who 

have several communicational links inside and outside their clusters, it is obvious that if 

the Gatekeepers are completely lost, i.e. most of the outside cluster links disappear, the 

whole network would be split into a number of local clusters working independently, and 

the components would be more isolated. Heikkinen et al. (2007) state that Gatekeepers 

not only have a significant impact on the success of the networks, but also improve the 

performance of individuals connected to them in the network. They argue that the 

presence of Gatekeepers in the networks is inevitable, since they have emerged naturally 

and remain in the network by natural requirements and connections that take place in the 

network. The critical role of Gatekeepers as the possessors of the resources and 

controllers of the connections can even affect the direction of the research in the network. 
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As it was discussed before, establishing any new collaborative link requires time, trust 

and sometimes money. Therefore, a Gatekeeper becomes more and more valuable in the 

network as the number of his/her connections grows, both inside and outside the cluster. 

Although the presence of Gatekeepers is vital for the networks as the directors of 

information and opportunities, the scientists with no direct connection to Gatekeepers in 

the network are in danger of being isolated in the network because of the low information 

flows connected to them. This section will examine the structure of the innovation 

networks and the flow of information in case that all the scientists in the network have the 

same opportunity for making external connections outside their clusters.  

In a static network with invariable Gatekeepers, the social ties are tighter, and there 

would be a smaller possibility for new scientists of making connections in the network. In 

the present part of the thesis two scenarios will be compared in order to analyse the 

structure of the networks with and without constant Gatekeepers. In the first scenario, the 

Gatekeeper status of a scientist is set as valuable in the choosing procedure of partners, 

which results in the survival of the Gatekeepers, while in the second scenario the 

Gatekeepers have the same probability of being chosen as other scientists, which makes 

the same opportunity for all the scientists in the network to become Gatekeepers.  

 

5.3.1 Productivity of the network 

In the network where only some distinctive scientists are responsible for the inflow of 

knowledge from outside geographical clusters, fewer scientists may try to construct their 

own links outside their clusters and merely depend on Gatekeepers in this regard. 
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Therefore, in case of having no distinct Gatekeeper, it is expected to have a greater 

number of links per scientist in the network, providing individual inflows of knowledge 

to the cluster.  

The results of five separate iterations of the simulation model for Gatekeeper-included 

and Gatekeeper-excluded scenarios show that there is a higher total share of external and 

internal links per scientists for the Gatekeeper-excluded scenario (Figure 26: Average 

Share of Links per Scientist). The results illustrate that the average of total number of 

links per scientist is 5.9 in a Gatekeeper-included network, while this number increases to 

6.4 in a Gatekeeper-excluded network. Therefore, the results of the simulation 

experiment have confirmed our hypothesis of having individual scientists building up 

their own links in the network when no one is responsible for the inflow of the 

knowledge to the cluster. 

 

Figure 26: Average Share of Links per Scientist 
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The average productivity per scientist is depicted in the Figure 27, showing that the 

average individual productivity in the network in the presence of Gatekeepers is almost 

doubled. At the first glance, it may seem a pure advantage for the network to have static 

Gatekeepers (Gatekeepers who are recognized and do not change over time), since it 

results in higher average productivity of the scientists in terms of their patenting and 

publishing activities. However, taking a closer look at the total number of contributions 

(patents plus articles) and total population of scientists, as the Figure 28 A and B, reveals 

that in the both scenarios the total number of contributions are almost the same, while the 

Gatekeeper-excluded scenario contains twice bigger population of scientists, resulting in 

lower share of the knowledge production per scientist in the network.  

 

This comparison implies that, the outcome of a network in terms of total innovative 

contributions remains almost unchanged between the two scenarios, but the chance of 

Figure 27: Average Productivity per Scientist in the Network 
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survival for a scientist is much higher in a Gatekeeper-excluded network. The reason is 

that in a network where all the scientists have the same opportunity of making 

connections outside their clusters, the chance of survival for a scientist is higher (a 

scientist who cannot be productive for more than one year ceases to exist in the model).  

 

The comparison of productivity for the two scenarios proves that, although more 

scientists find the opportunity of getting involved in innovative collaborations when no 

Gatekeepers are recognized, the total quantity of the patents and articles in the network 

does not increase. Besides, since the previous experience of a scientist is hypothesised to 

have positive impact on his/her chance to be included in further collaborations, a network 

with a lower average productivity per scientist is also expected to have less patents and 

publications. However, this cannot be confirmed with the present results and some further 

studies are required in this regard. 

Figure 28: (A-Left) Total Number of Scientists (B-Right) Total Number of Publications and Patents 



119 

 

 

5.3.2 Structural Characteristics of the Network 

The results of the simulation experiment of the thesis have been fed to the PAJEK 

software in order to calculate the network characteristics of the two scenarios including 

and excluding Gatekeepers. These are presented in the Table 10. The Table 10 shows the 

average values for four structural characteristics (betweenness centralization, degree 

centralization, density, clustering coefficient, and proportion of isolates to the total 

number of components) that are computed for five iterations of the model for the two 

scenarios separately. 

The average betweenness centralization in the network reduces greatly (from 0.045 to 

0.017) in the absence of the Gatekeepers in the network, as it is shown in the table. Since 

the betweenness centralization represents variation among betweenness centralities of the 

scientists, this reduction is predictable. The presence of the Gatekeepers as the 

intermediaries of the flow of knowledge in the network results in higher betweenness 

centralities for them in comparison with other scientists. This happens because the 

 

Ave. 

betweenness 

centralization 

Ave. degree 

centralization 

Ave. 

density 

Ave. 

clustering 

coefficient 

Ave. 

(#isolates/#components) 

Gatekeeper-

included 
0.045 11.362 0.006 0.79 0.849 

Gatekeeper-

Excluded 
0.017 13.521 0.004 0.77 0.941 

Table 10: Network Characteristics 
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Gatekeepers shape hub-shaped connections in the network and play as the center of the 

hubs, having shortest paths running through them than other individual scientists. 

The innovation network benefits from the presence of the Gatekeepers in a way that with 

less number of ties between scientists, more transmission of knowledge is generated. This 

also happens because the presence of the Gatekeepers provides the network with more 

static links overtime. The Gatekeepers in the network act as static bridges over long 

distances between clusters. Therefore, a Gatekeeper-excluded network, where each 

scientist tries to build up his/her own ties to gain access to the external knowledge, 

inevitably results in more redundant and dynamic ties in the network. 

The higher average degree centralization of the network nodes also confirms that the 

average number of links per scientist increases in the Gatekeeper-excluded network. The 

fact that a Gatekeeper-included network has higher average betweenness centralization 

and lower average degree centralization could be interpreted by considering the role of 

the Gatekeepers in the network. The Gatekeepers, as the intermediaries of the knowledge 

exchange between clusters act as a hub and reduce the total number of between-cluster 

links in a network, resulting in a more static network. This also clarifies why a 

Gatekeeper-excluded network exhibits higher average degree centralization, which is an 

indicator of the total number of ties that are incident upon a node in a graph. 

The results also show that the average density of the network is higher for the 

Gatekeeper-included network, which could result in faster flow of knowledge between 

nodes of the network. Besides, the clustering coefficient of the network is also higher 

when Gatekeepers are recognized and static in the network. However, this difference is 
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not as significant as the difference in average betweenness centralization and average 

degree centralization, the two measures that deal with the average centralization of 

vertices in the network. 

As the last indicator, the proportion of the number of isolated components to the total 

number of components is calculated for the both scenarios over five runs of the model. 

As Table 10 shows, there is a lower number of isolate scientists in the Gatekeeper 

included network. This also supports the idea that the presence of the Gatekeepers 

improves the connectivity of the clusters in the network and prevents individuals, 

especially new comers, from becoming detached from the flow of the knowledge in the 

network.  

Overall, the results of the simulation study suggest that the presence of the Gatekeepers 

in the innovation networks benefits the network significantly, both in terms of 

productivity and network characteristics that lead to more flow of knowledge through the 

network. It can be also concluded that most of the scientists from other geographical 

clusters prefer to bridge through intermediaries rather than directly connecting to 

scientists from other clusters.  
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6. Conclusions; Limitations; and Future Study 

6.1 Conclusions 

This project has been the first attempt to address the role of individual scientists in the 

Canadian biotechnology innovation network using simulation modeling. The 

characteristics of the innovation networks have been of interest to the researchers for 

decades, and there is a vast literature on the organizational-level of study in this regard. 

The goal of the present thesis has been to shed some light on the individual-level of study 

of the innovation networks, and propose the simulation modeling as a suitable 

methodology for this type of analysis.  

In doing so, this project first investigates the possibility of the use of two existing 

available databases of articles and patents in the Canadian biotechnology network. Then 

an agent-based simulation model of the scientists has been developed for the 

experimentation with the variables and structural properties of the network. The 

simulation model has been developed using JAVA programming language, and has been 

made as flexible as possible for future analyses and studies. According to the databases, 

some factors have been detected as decisive factors for the scientists in the procedure of 

establishing new collaborations, such as geographical proximity, similarity of fields of 

study, organization types, previous background of collaborations, and the role of 

scientists as Gatekeepers or stars. 

Apart from the development of the simulation model of the individual-level of innovation 

networks, there are three research questions which have been raised, and the simulation 
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experiment has been employed to find answers to these questions by proposing various 

scenarios of the behaviour of the model.  

The first series of scenarios examines the effect of the repetitiveness of the collaborative 

relationships among scientists on the overall efficiency of the innovation network in 

terms of its innovative productivity and its knowledge transmission capability. In order to 

investigate this, the simulation experiment has been run for thirty different durations of 

loyalty to previous partners. The corresponding results showed that the average share of 

productivity per scientist declines as the social ties among loyal partners become stronger 

in the network. Besides, the structural properties of the innovation network that account 

for knowledge transmission capabilities, such as betweenness centralization, degree 

centralization, and density, showed negative results of long-lasting levels of 

collaborations. 

The second research question of the thesis deals with the role of highly prolific scientists, 

known as stars, on the productivity, and structural characteristics of the network. In order 

to find answer to the question, two scenarios which consider either  the presence or the 

absence of the stars in the network have been experimented by the simulation model. The 

results showed that the rate of innovative productivity per scientist is lower in a star-

excluded scenario. However, the total number of collaborative activities is higher in a 

star-included scenario. The simulation experiment displayed positive overall influence of 

stars on the innovative activities of the network, but on the other hand, it showed 

reduction in the interconnectivity of the scientists in the presence of stars, that could have 

negative consequences on the flow of knowledge in the network. 
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The last research question of the thesis examines the role of Gatekeepers as the 

intermediaries of the knowledge exchange in the networks. Two scenarios, i.e. the 

network in the presence and in the absence of the Gatekeepers, are experimented by the 

simulation model. Based on the results, it can be concluded t that the presence of the 

Gatekeepers in the network enhances both the productivity performance, and the 

structural properties of the network. 

6.2 Limitations 

Several limitations were encountered during the analysis of the present thesis. 

First, the structure of data in the two databases was not completely compatible. This 

resulted in slight mismatches of the records, and might have resulted in some bias in the 

results.  

Besides, not all the relationships among scientists could have been captured from the 

databases, since some of the records had incomplete data. However, the total number of 

incomplete records was negligible. Moreover, there was a lack of information on the 

collaboration durations in the databases, which was solved by making several 

assumptions in the model.  

Next, since the two databases only reflected the successful scientific collaborations, i.e. 

only the articles and patents that have been published or registered, there must have been 

a certain amount of collaborative relationships which has been neglected because they 

never resulted in any final published outcome. On the same note, we are aware that  most 

of the formal and informal relationships are in fact never recorded. 
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Moreover, since the two databases included only the recent collaborations in Canadian 

biotechnology network, i.e. from 1952 to 2006, many other possible collaborative 

relations either before this period, in other sectors rather than biotechnology, or in other 

regions rather that Canada might have been neglected.    

The fact that there was only one series of data available also confined the verification and 

validation steps of the model, i.e. the model was validated using the same data that was 

used to generate it. However, it was also inevitable since no other source of data with the 

same properties is available. In addition, the current databases could not have been 

divided into two sections, since all the correlations were interconnected and dependant, 

both geographically and chronologically.  

Finally, the programming software used for the present project is not the best of its kind, 

and this resulted in slow runs of the model for each scenario. However, the same 

methodology could be used in the more appropriate software for the future similar 

analyses. 

6.3 Recommendations 

Finally, this thesis proposes some recommendations that could be taken into 

consideration for the future studies. 

First, it is recommended to include other critical factors such as funding, collaboration 

costs, and collaboration durations in the modeling for the future analyses in order to have 

a more realistic model. The drawback effect of cost of establishing new connections can 

be used to perform optimization research and propose applicable regulations and policies 
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for the scientists, as well as organizations and government in order to facilitate the 

circulation of knowledge and improve the innovation production speed in the networks. 

Next, it is recommended to use different databases of various regions to create the 

networks in order to be able to validate the model more effectively, and make the 

simulation more applicable to other innovation networks of different fields of science. 

Moreover, the information on the citations of the articles can be extracted and used as an 

evaluator of the quality of the articles, in the future research.  

The geographical regions, organizational types, and fields of study could also be analysed 

in more detail with the appropriate data, if available, in order to obtain more specific 

results. Finally, in order to improve the choosing procedure of the collaborative partners a 

better understanding of the factors based on which the scientists make their selection 

decisions is needed. This could be achieved by developing a questionnaire and 

conducting a survey, which can shed some light on the intentions of the scientists. 
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