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ABSTRACT

Sensitivity of Flexible Manipulators to
Payload Mass: A Parameiric Study

Glen Bilodeau

The effects of a payload on a flexible manipulator are studied and results of the study are presented
in this thesis. The manipulators are inherently non-rigid mechanisms with muitiple degrees of freedom and
effects of flexibility of their components have been the researchers’ ongoing interest. This work investigates
the effects of typical payloads on kinematics and dynamics of a manipulator. For simplicity, a two-link
planar manipulator is selected but work can be extended to an n-link planar manipulator. The objective of
the study is primarily to estimate the significance of the payload effects and test sensitivity of the
mathematical model to the changes in the payload. The purpose is to provide better information to the
design and controls engineers in their tasks to achieve safe and precise manipulator operation.

A model of a two-link manipulator with actvators provided at joints for each link is formulated.
The model is based on the finite element formulation. The assumptions include: distributed mass, smatl
deflections and so called Timoshenko’s beam model for links which takes into account the rotary inertia
and the shear. A further assumption is that the end point of the flexible link will follow the same path as
the end point of the respective rigid link, By applying the inverse kinematics the resulting deflections with
respect to rigid link are determined. The driving torques are determined such that the links follow the
required trajectory. The numerical time integration is carried out using a scheme similar to Newmark’s
algorithm. The boundary conditions imposed are clamped-end on the driven side and free-end, for both
links,

The model provides the dynamics of the manipulator’s links due to two typical payloads. The
links’ material and cross-section sizes are selected for convenience. The results are obtained for all
quantities necessary for design and control purposes: driving torques, transverse and axial deflections, shear
and axial forces and presented graphically for both the rigid links and flexible links. The comparison of
the results for the two cases is carried out. Verification of the model is done and results found justifiable.
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Chapter 1

INTRODUCTION

Every structure has an inherent flexibility including robotic manipulators. They
should be regarded as deformable bodies [1]. This is especially true of industrial
robots with lightweight and flexible links. Special purpose robots such as medical
and manufacturing robots (typical tasks include surgery, welding and materials
handling) require high precision, repeatability and accuracy [2] [3]. Furthermore,
manipulators in space must be light to conform to launch requirements and must
be capable of manipulating a large load mass [4].

Robot arms have been considered as having rigid links in many studies, but
there are drawbacks to this assumption. For example, if one models the
manufacturing robot as rigid links they must be designed and constructed as
undeformable as possible, which means heavy arms and large motors. By allowing
the links to elastically deform, that is, by reducing the requirement for rigidity, one
is able to increase working speeds, reduce energy consumption, and increase the
payload of the manipulator. Deformations are estimated and then compensated for
by designing a suitable control scheme. Therefore, in modelling, simulation and
design, structural flexibility of robot links should be included into the study [1] [S].

In this thesis, emphasis is placed on the effect of payload on a manipulator



assuming that the links of the robot are inherently elastic (non-rigid). One may
know the maximum payload the manipulator is able to safely carry but one may
not know how this payload affects the manipulator in terms of driving torques,
deformations and internal forces. Another aspect of the payload that is important
is the modelling of the mass at the end effector or gripper. Also, in the presence
of gravity, as a payload is lifted, the links will be loaded axially. As a
consequence, it is proposed to model the links as beam-columns rather than simply
as beams. Hence, determining the effects of a payload on dynamics would give
a better idea of modelling a manipulator with payload taken into account.

The structure of the thesis is as follows: in chapter 2, some previous studies
are reviewed and the scope of this thesis is outlined. The model of a two-link
manipulator, through finite elements, is formulated in Chapter 3. The contribution
of payload mass to the model is stated. Throughout Chapter 4, the results (driving
torques, deformations and internal forces) are presented graphically and discussed.

In Chapter 5, conclusions are drawn and some recommendations for future work

are given.




Chapter 2

LITERATURE SURVEY

In order to formulate the scope of the present work, a review of the previous
studies will illustrate the evolution of the research on flexible manipulators. At the

same time, the objectives of the present work are presented.

2.1. Previous studies

Much of the early work dedicated to flexibility in links involved the study of
mechanisms defined as a combination of rigid or resistant bodies formed and
connected such that they move relative to each other [6]. Some of these early
works include Benedict and Tesar [7], Dubowsky and Gardner [8], Book [9], and
Huston [10]. Essentially, the same methods apply to robots since robots are a
subset of mechanisms. A robot is defined as an automatic, reprogrammable,
multifunctional manipulator designed to handle material, tools, or specialized
devices through variable programmed motions for the performance of a variety of
tasks [3].

Methods to obtain the equations of motion and methods for analysis of



flexible manipulators are varied. Kelly and Huston [11] model the flexibility
effects in robot arms using d’Alembert-Lagrange principle. Book [12] uses a
Lagrangian formulation of the dynamics reduced to a form similar to that of the
rigid-link case. Others like Sunada and Dubowsky [13] represent the elastic links
as discrete systems possessing finite elastic degrees of freedom and using a finite
element method, analyze the behaviour of robot manipulators with complex-shape
flexible links. Other papers dealing with finite element method applied to
analyzing robot structures include Usoro et al [14], Naganathan and Soni [15],
Bayc [16], Bayo et al [17] [18], Bricout et al [19], Kalra and Sharan [20], Beres
et al [21]. Usoro et al [14] and Bricout et al [19] use Lagrange equations to
formulate their model. Simulations are done, yet the model neglects effects like
shear and rotary inertia. Kalra and Sharan [20] developed software to
automatically generate the dynamic equations for a flexible manipulator. Some
advantages of the finite element method include easy adaptability to changing
boundary conditions, to different mass properties and to varying tip loads [16].
The finite element method provides a straightforward formulation of the
manipulator equations of motion. As such, the finite element method is used in
this thesis to model the system.

Furthermore, studies dealing with control issues of flexible manipulators
require a model of the system. Cetinkunt and Book [22], Siciliano and Book [23],

and Hastings and Book [24] use a Lagrangian-assumed mode approach to develop

4




the model of their manipulator. Hamilton’s principle provides the basis for the
formulation of the flexible manipulator in Cannon and Schmitz [25) and Matsuno
et al [26] studies. In the case of Cannon and Schmitz [25], experimental work
was carried out on the control of a one-link device which was constrained to
deflect in a plane. Sakawa et al [27] use, essentially, Newton’s Second Law to
derive manipulator dynamic equations. As it can be seen, several methods are
available to determine the governing equations of the systems.

In the above studies, the effect of payload mass is not extensively
investigated, but in some papers it is nevertheless modelled as a point mass or a
rigid body with a concentrated mass as its centre of gravity. Several questions
have been posed in a report by Whitney et al [28] concerning the design and
control of industrial and space manipulators. Among other issues, consideration
of payload mass is essential in the design and control processes. Continuing, the
payload and the distance the weights are moved constitute the major variables to
be considered. Furthermore, a criterion by which the performance of a manipulator
is judged is the payload-speed relation. It is indicated that as a robot arm handles
a mass, the torques applied at the joints must overcome the inertia forces as well
as the weight of the links, hence, speed is limited. This report suggests that a
payload would have a very complex effect on multi-degree of freedom
manipulators. As a consequence, research of payload effects on manipulators is an

imperative.




Parks and Pak [4] investigate the effect of payload on a single-link
manipulator. Their model is based on the Euler-Bernoulli beam theory in which
rotary motion, longitudinal motion, shear strain, and structural damping are
neglected. Conclusions state that payload mass has a profound effect on the
manipulator dynamics and that there are changes in the fundamental frequency and
in the mode shapes. Furthermore, sensitivity to payload inertia is much greater
than to payload mass. Experimental work on a horizontal, planar, one-link
manipulator was done, yet the link was constrained to satisfy the Euler-Bernoulli
beam theory assumptions.

Jen and Johnson [29] used the CMS (Component Mode Synthesis) method
to study the effects of varying configuration, payload and several physical
parameters on the natural frequencies of the manipulator. Their model neglects the
effect of shear on the links. It was found that increased payload mass yields lower
natural frequencies. Furthermore, the rate of decrease is larger for lower
frequencies than for higher frequencies since the vibrations of the payload at lower
modes are stronger than at higher modes. In general, it can be seen that the
manipulator is very sensitive to payload.

With the addition of a payload at the manipulator end point, the
manipulator’s vibratory motions are affected. Wang and Wei [30] study the
vibrations of the end point of a manipulator with a moving slender prismatic beam.

They concluded that the contracting and extending global motions have both




stabilizing and destabilizing effects on the manipulator.

2.2. Scope of Thesis

A parametric study is carried out to determine the influence of payload on a
manipulator with link flexibility. The objective of this work is primarily to
estimate the significance of the payload effects and test the sensitivity of the
mathematical model to the changes in the payload. This is accomplished through
the investigation of a two-link planar manipulator, although the work may be
applied to an n-link planar robot arm. Payloads, as part of robot arms, have
recieved some attention, but the model of the manipulator should be able to
account for shear forces and axial compression. Since the manipulator in this study
is in the vertical plane, gravitational force contributes to an axial force along the
manipulator links. A finite element model of the arm [15] is used to which a
model of the payload is incorporated. Timoshenko theory is used to model the
links to include the effects of rotary inertia and of shear. To improve the model,
the links are treated as beam-columns rather than simple beams as in previous
studies which did not include such a formulation. As such, the contribution of
own-weight (linearly varying) and payload weight are taken into account. Also, the
model incorporates two payload orientations in the dynamics of the manipulator’s

links.




Chapter 3
FORMULATION OF THE MODEL

In this chapter, the formulation of the model of a flexible manipulator with payload

is given, The methodology and the time function solutions are presented.

3.1 Description of Problem

The objective of this section is to model the dynamics of a two-link flexible (non-
rigid) manipulator with the effect of payload. Finite element formulation is used
to describe the links’ dynamic model. Timoshenko beam theory, which takes into
account the rotary inertia and shear deformation, is the underlying theory in the
modelling of the links. This beam theory offers an improved model since most
manipulators may be modeled much simpler with the assumption of non-slender
links. The Bernoulli-Euler theory assumes slender links. When the ratio of
thickness to length of the link is increased the Bernoulli-Euler model becomes less
accurate [32]. In the present model, the links are assumed to be deformable
axially, transversely, and angularly. The three directions of deformation will be

described by independent shape functions.



In order to simplify the procedure, some assumptions are made. First, the
total motion of the links includes the rigid body motion and the superposed elastic
motion due to deformations. The end points of each link of the flexible arms will
follow the same path as the end points of the respective rigid link manipulator. As
such, the kinematics of the end point of each link is known since they are
constrained to follow the same trajectory as the corresponding rigid link (inverse
kinematics is readily obtained from the rigid body motion). Next, the links have
a distributed mass and structura! damping is ignored. Joint friction and actuator
inertia are neglected in this study. In addition, these joints are assumed to be rigid.
Finally, for simplicity, a two-link manipulator is studied but the formulation may

be extended to an n-link robot arm. Also, only planar motion is studied.

3.2 Method of Solution

The solution involves a systematic procedure beginning with the determination of
the kinematics of the flexible manipulator and ending with the time solution for
deformations and torques. Once the model of the manipulator is established, the
payload model is added. The step by step procedure follows:

» Determination of kinematics of a typical element on a link.

e Dynamic equilibrium of an element to determine governing equations.

» Application of principle of virtual work.
+ Assuming shape functions for finite element formulation of one link.



* Determining element equations of motion, assembly of element matrices.
* Imposing boundary conditions.

* Inclusion of paylecad model and axial force effects

* Solution for deformations and torques.

3.3. Kinematics of Manipulator

Figure 3.1 illustrates a two-link manipulator. The manipulator’s links have
respectively lengths L, and L,, mass density p, cross sectional dimensions b and
h giving an area A=bh and area moment of inertia I = bh’%/12. Other cross
sectional shapes can be introduced by caiculating the area and moment of inertia
for that cross section. Material strength properties include Young’s modulus E and
shear modulus G. Furthermore, Timoshenko beam theory requires a shear
coefficient which depends on the cross section of the beam and is given by k [33].
This shear coefficient allows for the approximation of the stress distribution over
the cross section. Furthermore, the value of k is dependent on Poisson’s ratio or
on the cross sectional dimensions of the link. For a solid rectangular cross section,
it can be taken as k=5/6 [34] [35].

The torques are applied at the base joint of the first link and at the base joint
of the second link. Consequently, the links undergo rotations of 0, and 6, with
respect to the preceding link (Figure 3.1). If this manipulator is rigid, then the
kinematics of every point on the rigid links is known through a simple kinematic

analysis. Recall that the motion of a flexible manipulator may be

10




A

Figure 3.1. Two-link manipulator.

11



described by a rigid body motion and an elastic displacement due to deflections.
The rigid body motion consists of angular displacements, velocities and
accelerations of the links, that is, 6,, 0,, 8,, 6,, 6,, 8,, for a two link planar
manipulator. By inverse kinematics, the Cartesian positions, velocities and
accelerations may be found for any point on the manipulator. The points of
interest are the end points since the flexible manipulator will be required to follow
the same trajectory as that of the rigid manipulator.

The procedure of Naganathan and Soni [15] is followed. By combining the
rigid body and elastic kinematics, it is possible to determine the kinematics of a
flexible manipulator. Figure 3.2 describes a typical element on a link. The
objective is to determine the acceleration of the centroid of the element, point G.

From rigid body kinematics one obtains the acceleration vector
Ug=0,+ @ x(W xr) + @, xr+2a,xv,  +a,, 3.1)
where

re@+u)iyu j,
Veeg = 3y 4y Jy 3.2)
anl=lixfb+ﬁyjb
a,=a,3,+a,J,
Here vectors r, v,,,, and a,,, represent the kinematics of the deformation, and are

relative to the rigid link motion. The angular accelerations and angular velocities

of the base (subscript b) are equal to the sum of the joint accelerations and joint
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Figure 3.2. Typical element on a link.
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velocities of all the joints of preceding links and including the link under study.

For example, for the second link,
(0] b=é 1 "’62 (3.3)

From equation (3.2) and Figure 3.2 it is evident that the relative positions,
velocities and accelerations are composed of the elastic deflections and their
respective rates relative to the rigid link. The base acceleration, a, is determined
from the rigid body motion, that is, the inverse kinematics of the manipulator as
if the robot arm were rigid. The angular velocity and angular acceleration of the
centroid of the element are given by,
@g=(w,+0)k, (.4
& =(a,+8,)K,
Here, 0, and its time derivatives represent the rotational deformations and the rates
of deformation of the element. Now that all the kinematics of a typical element

on a link are found, the dynamic equations may be determined.

3.4. Dynamic Equilibrium
Consider Figure 3.3, which shows the forces acting on an element within a link.

A standard procedure is followed by drawing a free body diagram for the element

as shown in Figure 3.3.  Applying Newton’s Second Law, the inertia forces

14




Figure 3.3, Element force diagram.
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and moments are summed,

EF =dmaa (3.5)
IMg=dl a,

For the time being, the effect of an axial force (due to payload and self-weight) is
neglected; this will be included in Section 3.7. Several relations can be obtained
from elastic theory and Timoshenko beam theory that relate the axial and shear
stresses and bending moments to the deformations. By Timoshenko theory, the

shear force can be CXpl'CSSCd as,
Vy_k AG ez — 3.6

The term within the brackets represents the loss of slope, equal to the shear angle.
0, describes the slope due to bending while the partial derivative denotes the slope

of the center line of the beam [36]. Further, the bending moment is simply,

M £ 12 (3.7)
ax

Finally, the forces in the axial direction due to deformation are considered,
Ou
F =4 E—= (3.8)
ax

By summing up the forces and moments in the x, y and 6, directions, dynamic
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equilibrium expressions per unit length are obtained,

Pu
A EEx-; +f =pAag,
av.
% oA, 49
oM,
ax

'Vy= ¢%g

If external forces (including gravitational forces) are present, they would be
included in the terms (per unit length) f, and f,. The dynamic equilibrium has been
established. The principle of virtual work on virtual displacements is applied to set

up these equations into a form suitable for use in finite elements.

3.5. Finite Element Equations of Motion

The finite element equations of motion for a two-link flexible manipulator are
derived from the principle of virtual work and applied to the kinematics and

dynamics obtained earlier.

3.5.1. Principle of Virtual Work

Application of the principle of virtual work directly to the equations representing
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dynamic equilibrium allows one to set up the equations of motion. This results in,

; V, & M
[ ([pAao’+ia-x2-f,]6u,+[pAa&-AE a:; SLou Ugag-—1+V,100,)dx=0 (3.10)

Here, x, and x, locate the finite element, along the length of the link, with respect
to the link’s base-attached frame. Knowing the elastic relations between the shear
forces, bending moments and the transverse and rotational deformations given in
the previous section, they are substituted into equation (3.10). Carrying out the

differentiation and integration leads to

- & %0, . & o
- - * - __‘ I8 (2 =
£ Tpdac,du, *pAagdu,~1,8u, 1,8, +1gugb0,+V,8(8,-— 1) +MS(—) »AE—2 ()} G.11)

[-bu’V,#GO‘MlMEﬁbu, ]&

& g
This equation represents the work done by the inertial forces including rotary
inertia, by the shear and axial forces, and by the bending moment within the
interval [x,, x,]. In order to approximate the deflections, shape functions for the
deformation must be chosen as a step in the finite element formulation. This is

discussed in the next section.

3.5.2 Finite Element Formulation
In the finite element method, an assumption of the shape of the deflections within

the element in terms of the nodal deflections is made. [37] For simplicity the
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deflections are taken as linear within the element. Therefore, deflections within the

element may be expressed as a product of linear shape functions and nodal
displacements, in matrix form,

) =[N1,{g},, (3.12)

where {u},, is the vector of deflections at the centroid of the element, {q},, is the
vector of nodal displacements, and [N], is the shape function; n in the subscript

refers to the nth link. Expand equation (3.12) so that

(UAX
U
u| (M@ 0 0 N@ 0 0 e
(ez)l
u|=| 0 N® 0 0 N@ 0 ) (3.13)
o] |0 o N®w 0 o N@|| **
UM
(6,), ]
where
B (G2 3.14
N,(») %) s No) %) (3.14)

As one can see, this approximation has separated the space and time dependency
of the displacements. Also, the generalized vector is the vector of nodal

deflections,

@l =), V), (6), (U, U, )], (3.15)

If equation (3.15) and its variations are substituted into equation (3.11) and the
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differentiation is carried out, the equations of motion for an element are obtained,

(18]

[M]Mi” +[C']ll¢q.ll +[an¢quc =F, ne (3'16)

M],, = Element inertia matrix of the nth link.

[Cl,. = Element damping matrix consisting of Coriolis terms [18].
Structural damping is ignored.

K], = Element stiffness matrix of the nth link made up of structural
stiffness [K],, and stiffness matrix due to relative tangential
and normal accelerations of the element, [K],, [18].

F, = Element force vector of the nth link due to external forces,
accelerations, etc {18].

Equation (3.16) represents the equation of motion in terms of the rotating reference
frame which is attached to the rigid link.

By using independent shape functions for u, and 6,, a phenomenon known
as shear lock occurs when the model is used to approximate slender beams. Here,
too much empbhasis is placed on the shear strain term in the Timoshenko expression
for shear stress. With the model as it is now, when the beam has an increased
slenderness, the model structural stiffness increases, just the opposite of what
should happen in reality. In order to correct this problem, reduced integration (one
point instead of the exact two point integration) is used on the shear strain term to

obtain a better model which is valid for both slender beams and beams of large
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depth [37]. Both the conventional and reduced order stiffness matrices are given
in the Appendix I in addition to the contents of the mass and damping matrices.

It can be observed that the matrices are functions of time as justified by the
dependence of the element stiffness and damping matrices on the global motion of
the reference frame attached at the base of each link. In order to obtain a model
of the whole system, the matrices must be assembled. Once assembled, two
equations of motion will emerge; one for the first link and one for the second link.
Of course, this would correspond to n equations for n links.

To be consistent, the matrices of each link must be expressed in a common
reference frame. When one comes to numerically integrating the rates of change
of the deflections to obtain the deflections, the vectors will be expressed in the
same frame to ensure compatibility between displacement, velocity and acceleration
for the degrees of freedom. The deformations and rates of deformations are then
expressed in a common frame. All deformations of a link are measured with
respect to the corresponding rigid link or the frame parallel to the rigid link (Figure
3.2). R, designates the rotation matrix transforming the element vectors from the
link attached frame x,y,, to a frame (also attached to the link) X,,Y,,, which is
parallel to the fixed base frame. This is illustrated in Figure 3.4. It is understood,

for the planar case, that the z-axis remains unchanged after the transformation.
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Figure 3.4. Local and global frames attached to link (for two elements).
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The rotation matrices for each link (as indicated by the numerical subscript) can

be written as,

cosd, sind, 0

0 0 1
3.17)

cos(9,+0,) sin(,+6,) 0
Ry;=| -sin(6,+6,) cos(6,+6,) 0
0 0 1

In order to transform the element deformation vectors, the rotation matrices mast
be augmented to 6x6 matrices, which consist of diagonal matrices in terms of the
rotation matrices given in equation (3.17). The element deformation vectors
expressed in a common frame (parallel to the base frame) are given as,
Qe Reglly
g, = .:s-q"+ R,,:'q',,, (3.18)

. =T sT. T
Qe =Roglag 2R gy * Regllyg

Upon substitution of equations (3.18) into equation (3.16), the equations of motion

become

[M]nging+[qngq.;,*[KJMQ., =F, e 3.19)
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where,

[M1, =R, [M], R,
[C),,=R, 2IM], R +[C], R (3.20)

(K,,=R, (IM], R +1C), R o+ (K], Rog)

ne~RrogFne

The element matrices expressed in the common global frame can be assembled by
the standard finite element technique. Note that the inertia matrix (for planar
elements) is invariant after a rotation, therefore, some computation is saved [38].
The boundary conditions will be imposed by illustrating the two element case for
the sake of simplicity. Figure 3.5 shows the type of boundary conditions that will
be used. It is assumed that the link is clamped at one joint, that is, the angular
deformation at this joint is zero. Recall that the deflections of a flexible link are
mecasured with respect to the rigid link. In order that the manipulator follows the
same trajectory as the corresponding rigid manipulator, it is assumed
that the end points of the flexible links have the same kinematics as the
corresponding rigid links [18]. For example, if the end point of the first link has
an acceleration, a, for the rigid case, then it is assumed that the same end point
will have acceleration a, for the flexible case. Also, since the motion of the links
are taken as a superposition of a rigid body motion and elastic deflections, the
imposed boundary conditions can be taken as cantilever beam with respect to the

rigid link, the clamped end being the driven end of the link. For example, in terms
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Figure 3.5. Boundary conditions with local and global attached frames.
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of the coordinate frame x,y,, for a two-element link,

g,=(0 0 0 (U), (U), (6), (U, (U, (B)s (3.21)

It follows that the time derivatives have the same boundary conditions. As stated
previously, for the solution of the deflections over time, a one-step time integration

procedure (outlined in Section 3.8) will be used (39]. Therefore, all deformation

variables must be expressed in the same reference frame since vector addition
between previous and present time values is required in the integration procedure.
In this case, the boundary conditions in the reference frame X,,Y,, become (for the
cantilever beam, it is invariant, but the deformations are measured in a different

reference frame),

g.=I0 0 0 (U), (U}, ©6), (UD, W), 01y (3.22)

where the prime designates measurement in the frame X,,¥,,. Recall that the
displacements are written in a local coordinate system attached to the rigid link.
As for reactions and torques at the boundaries, it is known that at the end effector,
when the manipulator is in free space, the reactions are zero. At the joints,
reaction forces and driving torques are present. These reactions must be added

to the force vector F,,. The vector representing the reactions is designated
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as T,,. For the case of a link described by two elements,

T,~[R, Ry, 000 R, .. R, -t,.,I (3.23)

In fact, the solution consists of the deformations, g, (equation 3.21) and the
torques, T,. The payload and the effects of an axial loud are included into the

model of the manipulator.

3.6 Consideration of Payload in Manipulator Model

To include a payload of mass m, into the manipulator model, it must be
incorporated into the element mass matrix and the element stiffness matrix (due to
the motion of the reference frame). In addition, the element force vector will be
modified to include the payload’s inertia due to the global motion. The payload
is considered as a lumped mass, therefore, it can be added directly to the mass and
stiffness matrices, and the force vector. In these cases, the payload is added only
to the last node of the outermost link. For a two-link manipulator this corresponds
to the third node of the second link. Consider the inertia forces due to the motion
of the payload. This is essentially the product of the payload mass and the

acceleration of the end point of the outermost link. Considering only the payload,
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the inertia force of the mass in the axial and transverse directions are

(F)m=m0y = (U)y 0L~ 05(U), 200, (U, +(T),) (3.24)
(F y)m =mp(aby + abLz + ub( Ux)s - “’i( U,)s *20’5( 0,)3 "'( ax):;)

In the rotational direction, the rotary inertia of the payload about the center of

gravity of the last element of the outermost link is
(Jo),.=mp(§)’(a,,+(§z)3) (3.25)

with [ being the length of the element. By comparing equations (3.24) and (3.25)
to the equations of motion of the manipulator in equation (3.16) one may collect
the appropriate terms to determine the element matrices and force vector due to
payload mass. In a similar fashion, the gravitational term is added to the element
force vector. The payload arm, r,, is now discussed.

The payload, when it is located at an offsetted length r, from the end
effector (in order to simulate the location of the centre of gravity of a mass), may
be modelled in two ways describing the orientation of the payload. First, the
payload remains in a horizontal orientation throughout the trajectory to simulate a
payload such that it must remain upright during motion. Second, the payload taken
as a simple extension of the outer link is studied for comparison purposes. The

two configurations are shown in Figure 3.6. Of course, many orientations are

possible and all will have their own effects on the dynamics of the arms, but here,
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two orientations are investigated. It is assumed that there is a rigid massless
connection between the end of the outermost link and the payload, thus the payload
location follows the same deformation as the end of the second link. The element
mass and stiffness matrices, and the force vector that should be added to the last

element matrices and vectors of the outermost link are given in Appendix II.

3.7 Effect of External Axial Force

As the arm moves through a trajectory, lifting a payload, components of the weight
will act in the axial direction of the links. Hence, the effects of axial forces due
to the weight of the payload in the presence of gravity and even due to the weight
of the robot links are now taken into account. First, as the robot manipulates a
payload, the axial force depends on the angular position of the robot. That is, the
component of the weight considered is one along the link. Second, the axial force
acting on an element includes the axial component of the weights of the elements
above it and its own weight which is linearly distributed within that element.
Here, an additional stiffness matrix is derived which takes into account these
axial forces. In terms of a Timoshenko beam, the contribution of the axial force
to the shear force is the product of the axial force and the displacement due to

bending [40), which is 6,. Therefore,

P,<P,0 (3.26)

XX
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Figure 3.6. Two configurations of payload.
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Here Py is the contribution of axial force P, to the shear force. Now, consider the
potential energy of the Timoshenko beam from which the conventional stiffness

matrix and the stiffness matrix due to the axial force may also be derived,
ou
P.E.gheqr= kGAf( 2 ﬂ]dx+ f 9, ’dx-—fPde (3.27)

The first term on the right side gives the conventional stiffness matrix given in
Section 3.4 while the next two terms represent the modification due to axial force
P_ . In order to obtain the stiffness matrices, one needs to substitute the nodal
expressions for the transverse and the bending deformations.

The axial forces that are considered include the weight of the payload and
the weight of the link. First, the weight of the payload is constant throughout the
link, but as the robot moves through its path, the magnitude changes. Figure 3.7
shows a typical element under the action of axial forces. The variables, x; and x,
locate the nodes of the element, with respect to the link’s driven joint, along the

rigid link. The following may be pointed out,

1. P Axial component of weight of payload.

2. pAn,, Ig sin(0) Axial component of weight of elements above current
element.

3. pAg (x, - x) sin(6) Axial component of weight of current element as a
function of x, from the limits of integration x, to x,
(equation 3.25).
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The axial forces on a typical element consist of the weight of the elements above
the element plus its own weight which varies linearly within the element. P,
consists of the sum of the three forces above. By substituting into equation (3.27),
carrying out the differentation and integration, one obtains the additional stiffness
matrices. These matrices which should be added to the stiffness matrices derived

earlier are given in Appendix III.

3.8 Solving Over Time: One Step Integration Algorithm

In order to solve for the torques and the deflections over time, one must observe
that the mass and stiffness matrices are functions of time. The method referred to
as the SS22 algorithm, developed by Zienkiewicz et al. [39] combines the
Newmark method, its variants and the Wilson 6 method. At present, the algorithm

is used to solve the second order matrix equation of the type,
M§+C§+Kq-F=0 (3.28)

Focus is mainly on the quadratic algorithm in which the position vector is

approximated by a 2nd order polynomial in time ¢, that is,
7-q, +q‘..t+§a,.,t2 0<t<At (3.29)

g, and g,, are the values of the position and velocity (in this case, the deflection

and rate of change of deflection) at the beginning of the time interval Az. The
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Figure 3.7. Axial forces within elements due to payload and self-weight.
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unknown to solve for is ¢, (acceleration) from which one can get by the numerical

integration procedure, the rate of change of deformation and the elastic deformation

itself.  The procedure consists of predicting a value of all quantities

up to the second last time derivative given starting values for g, and q,. The steps

for the quadratic algorithm are [39]

INITIAL ESTIMATE:

qm*l ’:qm +qu 1‘91
qmo-l =q,|

EVALUATION OF ACCELERATION:

a,-(M(nA:)+A:e,ca+A:)+£-2!39,K(:+A:))-‘(F(:+A:)-c«mo&-x(nm)q)

NUMERICAL INTEGRATION:

Qpor =Gyt A, * 2, A2
qm‘l =qm+“mAt

An estimate of the error is given as [39]

2
Ecst'_"éa%"(am-am-l)

(3.30)
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(3.32)

(3.33)

Therefore, the smaller this error, the more accurate the solution to the acceleration

is. To continue, according to the Newmark algorithm, the parameters ©, and ©, can
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be compared to the Newmark parameters Y and  with the following relations [39),

1=, 334
p=0.58, (3.34)

These parameters are related to numerical stability and allow the current algorithm
to embrace others by substituting different values to the parameters [39] [41].

Some advantages of the algorithm include [39]

. only the value and first derivative of gq,, is required (natural initial
conditions).

. the governing equation is satisfied on average.

. time varying matrices may be included.

To illustrate the solution procedure, a case study of a two-link flexible manipulator

is attempted and results are presented in Chapter 4.

3.9 Two-Element Example

As an example, in preparation for the simulation in the next chapter, consider the
solution of a two-link planar manipulator with each link divided into two finite
elements to save computational time. First of all, the two equations of motion are

obtained (one for each link) which consist of assembled matrices expressed in a
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moving frame taken parallel to the global frame,

M 13?.:1,“("134: 1;"’(13413:17 13+T ig (3.35)
Mig2g* Cralng*Kogag~Fog* Ty

These equations are written in their respective local coordinates which are attached
to their respective rigid motion position. Here, with boundary conditions in place,

the deflections are given as,

9,,=[0 0 0 (UD, (U, 8D, (U Uy; B3Iy (3.36)
T

04=10 0 0 (U, (U, ©), (Up); Uy, 6]z

and the reaction vectors are found to be,

T,~[Ry Ry 7, 00 0 R, R, ) (337)
T,~[-R, -R, %, 00000 01"

The outer equation may be solved first (here, the equation corresponding to the
second link) and then work out the solution until the base joint is reached. If
proceeded in this fashion, the deflections in the second link aie obtained followed
by its reactions and applied torque. Substitution of the reactions and torque into
the first link’s equation leads to the deformations in the first link and finally to the

reaction at the base of the first link and joint torque. In summary, there are 12
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equations and 12 unknowns. They can be solved for the unknown displacements
using the SS22 one-step integration algorithm. The reactions and torques then can

be obtained by back substitution into the individual link equations, that is, equation

(3.35).
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Chapter 4
RESULTS AND DISCUSSION

Implementation of the derivation from the previous chapter through a computer
program written in MATLAB provides some results which are presented and

discussed here.

4.1. Preliminary

The manipulator described in the previous chapter consists of two non-rigid links

with the material properties (Aluminum) given in Table 4.1. The gravitational

Table 4.1. Material Properties of Links [34] [35].

Density 2715 kg/m’
Young’s Modulus 7.11x10" N/m?
Shear Modulus 2.62x10" N/m?
Yield Strength - 2.1x10° N/m?

acceleration used is g = 9.81 m/s%. Joint trajectories consist both of a step input
and a cycloidal input. The step input allows one to see how the system behaves
to an instantaneous change in position and serves to verify the formulation. In this
case, the final position of both joints (8, and 8, from Figure 3.1) is n/4 radians.
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The next trajectory consists of the cycloidal motion which represents a simple pick

and place maneuver. It is given as

oft2f3)

/ f

where 0,, and ¢, are the final joint position and the final time respectively. With
this trajectory, the final position for both joints is taken as 7t/2 radians. The final
time is 1 s while the time step in the numerical integration is 0.004 s. The
trajectory is shown in Figures 4.1, 4.2, and 4.3.

In order to save time and amount of computations, two finite elements are
used to describe each of the links in the manipulator. More elements would lead
to larger matrices and hence longer computation times, but yield closer
approximations.

In all the simulations, the "Newmark-like" parameters, ©, and ©,, are set at
0.7 such that they represent some intermediate value between 0.5 and 1.0. With
this value, some artificial damping is provided. As a consequence, the effects of
the payload can be seen more clearly [39]. The high frequency oscillations present
in the results will be artificially reduced so as to clearly show the payload’s effects
on the results. Only in the case of minimum and maximum numerical damping
they are assigned the value of 0.5 and 1.0, respectively. The case of minimumn
numerical damping represents the physical model. The effect of these parameters

is demonstrated.
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Figure 4.1. Angular position of first link.
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Figure 4.2. Angular velocity of first link.
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Figure 4.3, Angular acceleration of first link.
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The results include torque time histories about the respective rigid links
torque, the axial and transverse forces within the elements, and the respective
deflections as time functions. The results reveal the effects on manipulator
performance of the following:

1. Variation in payload mass and orientation.

2. Variation of link length and cross sectional size (with payload).

3. Variations in the integration parameters, ©, and ©,.

In order to verify the model, the manipulator is made rigid by increasing Young's
modulus. As Young’s modulus increases, the manipulator links become more rigid.
Comparisons are made in Appendix IV, and show that deflections have decreased
and torques correspond very closely to the rigid links torque.

The maximum payload that a manipulator may carry (in open loop) is
determined by several factors, one of which is flexibility of its links. The criteria
used to determine whether the manipulator has reached its maximum payload
capacity is failure by either buckling (exceeding the critical buckling load found by
an eigenvalue analysis) or by yielding (for more rigid links) [32]. This is observed

specially when the manipulator is to follow the cycloidal trajectory since payload

capacity depends on trajectory.

4.2. Response to Step Trajectory

First, the response of a two-link flexible manipulator to a step trajectory is
investigated. Variations of payload and its arm (location of payload centre of
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gravity relative to the end effector), the manipulator size, and the changes in the
numerical integration parameters are observed. Furthermore, this type of trajectory,
as a simple case, is used to verify the model. The initial position is chosen
horizontal for both links. The final position of the links is 7t/4 radians as shown
in Figure 4.4. This trajectory is chosen with the intention to test the

manipulator arm at an unstable position.

4.2.1 Effect of Payload and Payload Arm

While keeping the cross section of the links as a square, the effects of the payload
at the end effector are studied. To study the effect of a payload arm, the load is
located a distance r, from the end effector. The effect of orientation of the payload
is also investigated.

A two-link manipulator with cross sectional dimensions of b = & = 0.02 m,
and link lengths of L, = L, = 1 m without a payload is simulated first. The torque
required to drive the links to follow the step input and to maintain the manipulator
in the final position is given in Figure 4.5. A plot of the torque for the rigid body
case is presented for comparison. As it can be seen, the torque values for the
flexible links oscillate about torque values for the rigid links; a phenomenon also
observed by other researchers [14] [15] [19]. The gradual decay is due to the
numerical damping and shows that the torque for flexible links indeed varies about

the torque for rigid links to which it converges. The driving torque is virtually
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zero for the second link since this link does not require any torque to remain in the
vertical position. However, for the flexible links, since the step input acts as a
shock, oscillations in torque value are prominent as the link end (being the furthest
point from the corresponding base joint) of each link is constrained, by the model,
to the same kinematics as the corresponding rigid links model. Since all initial
conditions are set to zero including forces, a step force equal to the weight of the
links is present. This acts as a constant force on the system and causes the large
magnitude oscillations. As the manipulator maintains its position under the
influence of gravity, the torques oscillate with a magnitude twice the rigid links
torque since, first it must compensate for the weight of the manipulator to maintain
the position, and second, it must compensate for the flexibility in the system which
is excited by the constant gravitational force. For the rigid links case, this system
is essentially static, but it is evident that periodic variations are generated as a
result of the flexible links. Even when the torques are small, as for the second
link, these periodic vibrations are present, yet insignificant in magnitude,

The trends observed in the driving torques are found for the transverse nodal
deflections as illustrated in Figure 4.6. The nodes represent points along the links.
For a two-element link with the discretization described in Chapter 3, there are
three nodes: the driven joint (node 1), the midpoint of the link (node 2) and the
end-point of the link (node 3). The deflections represent the position of the nodes

with respect to the rigid links motion for each node. As expected, the axial

47



o

L]
-t

)
N

......................

s
-

Axial Defleption Link 1 (m)
w

'
oU'I

(=]

3
o
(34

)
-

0
-
0

Axial Deflection Link 2 (m)
o

o

Figure 4.6.

0.5 1
time (s)

Transverse Deflection Link 1 (m)

Transverse Deflection Link 2 (m)

0.5 1

time '(s)

node 2

node 3

node 2

node 3

Axial and transverse deflections due to step response, 6,= 0,= /4, b = h

= 0.02 m, no payload.

48




deflections are small (of the order of 107) as are the high frequency oscillations,
indicating high stiffness in the axial direction. Since the first link’s end-point
deflects, the second link will not be exactly vertical, therefore, when computing the
transverse component of the deflection of that link, it is very close to zero. This
also causes the slight deviation off the corresponding rigid links torque. However,
the first link deflects transversely as it holds a payload of mass 1.09 kg, the mass
of the second link, and maintains the same position. The end-point deviation is
slightly over 6 mm and its nominal value is close to 4 mm.

A payload of 5 kg at the end-effector yields the results shown by the plots
in Figures 4.7 and 4.8 for the torques and the deflections respectively. For the
second link, the torques and deflections exhibit a decrease in frequency of
oscillations, from 16 Hz to 3.5 Hz. The values are insignificant once again for the
same reasons stated above, but the effect of payload is seen. It induces a lower
frequency oscillation, effectively reducing the stiffness of the second link.
However, in the first link, close frequency of oscillations is observed, that is 16 Hz,
as in the case without payload. Evidently, the 5 kg paylozd does not affect the first
link significantly in terms of stiffness. Increasing the mass of payload significantly
would have a similar effect on the first link as the 5 kg payload has on the second
link. Further, axial deflections shown in Figure 4.8 as compared to those of Figure
4.6 for the case without payload indicate that the links undergo larger compression

and they exhibit larger amplitude high frequency compression-tension.
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Once the mass is located a small distance away from the end-effector,
several effects are evident. The results with the same load of 5 kg located 0.4 m
away from the end-effector remaining in a horizontal position relative to it are
shown in Figures 4.9 to 4.11. In these plots, two oscillations are revealed, a fast
oscillation and a slow one. The fast oscillation at 16 Hz decays once again due to
the numerical damping. The other takes much longer time to fade out. The high
frequency curve is evident from previous plots (Figures 4.5 and 4.7 among others).
This is mainly caused by the instantaneous nature of the trajectory and the force
due to gravity. Under these conditions, the model constrains the kinematics of each
link’s end-point to be the same as those of the rigid links’ model. The slow
oscillations (approximately 3.5 Hz) are due to the payload and its offset. The first
link is also affected, whereas 1n Figure 4.7 the effects of a small payloal offset
(caused by the deflection of the end-point of the first link) were insignificant. It
is seen in Figures 4.10 and 4.11 that the transverse deflections and forces are
mostly affected by the payload offset. The axial deflection of the second link
remains unchanged as compared to that of Figure 4.8. 7T'he force acting along link
2, which remains vertical, is still 49.1 N in addition to the weight of link 2, 10.7
N. Meanwhile, the first link is rotated ®t/4 radians. Since the effect of payload is
significant, it is transmitted in both axial and transverse directions contrary to
Figure 4.8 where the effects were negligible. Comparing Figures 4.10 and 4.8, the

maximum average deflection in compression is still small, just over 0.0015 mm,
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only the period of oscillations and driving torques have changed. The maximum
transverse deflection of the end-point of the first link is just over 5 cm while the
second link experiences an end point deflection of 2 cm. The displaced payload
essentially induced a moment ger.2rating larger transverse deflections.

In order to study how the load orientation affects the manipulator, an
investigation of the payload as an extension of the second link is undertaken. Time
histories of the torques, deflections and internal forces are illustrated in Figures
4.12 to0 4.14. Comparing the driving torques on joint 1 in Figure 4.12 reveals that
they are equal to those in Figure 4.7, the case with no payload arm. A downward
force of 59.8 N (close to the magaitude of the maximum axial force in link 2, the
discrepancy being due to discretization) is acting on the free end of link I in both
plots. The major difference occurs in link 2 where the frequency of oscillations
reduced from 3.5 Hz in Figure 4.7 to 2.5 Hz in Figure 4.12. As explained earlier,
since the second link is oriented slightly off the vertical position, the oscillatory
displacements and forces in the transverse direction are nonctheless affected.
Again, the payload arm induced a decrease in the frequency of the response which
was clearly shown for the payload horizontally offset from the end-effector. In
fact, the payload and its offsetting from the end-effector greatly alter the system
characteristics. For example, the lower frequency vibrations indicate a reduction
in stiffness. Also, caution should be taken to keep the system within safe limits

with respect to resonant frequency in order not to excite the natural modes of the
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links since the different magnitudes and different offsets of the payload affect the

oscillatory characteristics of the response.

4.2.2, Effect of Manipulator Dimensions
Several results are presented which illustrate the effects of manipulator dimensions
such as length and cross section size while carrying a payload at the end effector.
These parameters include a payload of 3 kg, and a payload arm r, = O m. Full
square cross sections as well as a hollow square cross section are studied for
comparison. Figures 4.15 and 4.16 illustrate the driving torques for two
manipulators with square cross sections of dimensions 0.02 m and 0.05 m,
respectively. The notable difference between the two is a resulting increased
rigidity. The initial disturbances decay more rapidly in the case of the larger cross
section. The driving torques in Figure 4.15 resembles those in Figure 4.7. But,
there is a significant increase in frequency of link’s 2 applied torque as a
consequence of the reduced mass. For the larger cross section, the oscillations of
the link’s 2 driving torque are of higher frequency, 23 Hz as compared to 4.5 Hz
for the reduced cross section, indicating a lesser sensitivity to payload effects.
Higher frequency of response indicates higher stiffness of the system.

A comparison of Figure 4.17 to Figure 4.18 allows assessment of the
contribution of the payload to the axial and shear forces. Figure 4.17 illustrates the

shear and axial forces in the two links without a payload while Figure 4.18 shows
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the same results for a payload mass of 3 kg. The contribution of payload becomes
significant to the force system as the ratio of payload mass to manipulator mass
increases. With reference to Figure 4.19 for a larger cross section, axial and
transverse forces are dependent on the weight of the links as depicted by the larger
difference between element forces. Here, the payload mass to manipulator mass
ratio is 0.22 compared to the previous case where it is 1.4. Large ratios indicate
the importance of the payload as part of the manipulator. From these results,
heavier payloads as well as larger cross sections lead to larger internal forces. For
design considerations, manipulators with slender links should be able to withstand
axial forces while manipulators with less slender links (which are more susceptible
to shear failure [35]) should be able to withstand the higher shear forces.

Finally, Figures 4.20 and 4.21 indicate that smaller cross section links
undergo larger deflections. For the square cross section of 2 cm, the maximum
end-point deflection approaches 2.0 cm while the thicker cross section of 5%5 cm
exhibit a maximum end-point deflection of 1.2 mm. This is in accordance with an
increased rigidity of the links.

Further, aspects of using a hollow cross section or a solid cross section are
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investigated. The cross section is a hollow square with outer size of 5 cm and an
inner size of 4.8 cm. The thickness of the hollow section is 1 mm. In the
Timoshenko shear relationship (equation 3.6), the shear coefficient, k depends on
the shape of the link cross section [35]. This coefficient may be evaluated for a
hollow rectangle with inner width and height, b, and h,, and outer wi&th and

height, b, and h, as,

o 20sh-bih)
3h,(b;h; -b,h)

The manipulator is loaded with a mass of 3 kg located at the end-cffector.
Subjecting this manipulator to the step trajectory, the corresponding driving torques,
dellections and internal forces are shown in Figures 4.22, 4.23 and 4.24,
respectively. Comparison to ths manipulator with solid cross section of 5x5 cm
is made referring to Figures 4.16, 4.19 and 4.21, respectively. Looking at the
torques, some features may be observed. As the mass of the links is reduced
significantly compared to the solid section, 0.53 kg as opposed to 6.8 kg, a lower
frequency variation is prominent in the driving torque of link 2. It is reduced from
24 Hz for the solid cross section to 11 Hz for the hollow cross section indicating
a much more flexible system.

Comparison of the hollow link deflections (Figure 4.23) to solid section link

deflections (Figure 4.21) reveals that the hollow link manipulator undergoes slightly
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Figure 4.23. Axial and transverse deflections, step response, hollow links.
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larger transverse deflections. The maximum deflection for the hollow link is 2.3
mm whereas the maximum deflection for the solid section approaches 1.2 mm.
Also, an increased compression of both links 1 and 2 is evident as the links are
hollow and therefore of reduced axial stiffness. As a consequence of the reduction
in mass of the system, a signi‘icant change in internal forces for hollow links
occurs. Comparison of Figure 4.24 to Figure 4.19 reveals this change. The effect
of link mass on internal forces is minimal as compared to the contribution of the
payload mass. In fact, the ratio of payload mass to manipulator mass has in~reased
from 0.22 for the solid section to 2.8 for the hollow section. The effect of the
hollow link is quite good considering the high ratio of payload mass to manipulator
mass. It is hoped that the effects of deflections and oscillations on the manipulator
performance may be compensated for through control techniques.

Nevertheless, attention should be payed to a shorter solid cross section links
manipulator. Keeping the payload at 3 kg and reducing the links’ length to 0.5 m
may be beneficial. Figures 4.25 to 4.27 depict the joint driving torques, nodal
deflections and internal forces of the manipulator as it is subjected to the step
trajectory. The results have a trend similar to that of the results for hollow links
(Figures 4.22 to 4.24). The difference is that the payload to manipulator mass ratio
is 0.88, still smaller than 2.8 for the hollow section. The results indicate, as before,

that payload effects are more pronounced for manipulators of reduced mass.
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4.2.3. Effect of Numerical Integration Parameters

To verify the effects on results caused by changes in the numerical integration
parameters, ®, and ©,, some results with changed values to these parameters are
produced and compared to results obtained by using the original values of the
parameters (O, = ©, =0.7). Two extremes are compared; minimum and maximum
algorithmic damping have been used, that is, the "Newmark-like" parameters ©, =
©,=0.5 and ©, = ©, = 1.0, respectively are tried. The results are obtained for a
solid square cross section of dimension 0.02 m and length 0.5 m with a payload
of 3 kg. The driving torques and the deflections in Figures 4.28 and 4.29 for the
minimum damping are compared to those shown in Figures 4.30 and 4.31 for the
maximum damping. Obtained for the undamped case the deflections exhibit high
frequency oscillations and its amplitudes exhibit periodicity (Figure 4.29). This
may be due to the fact that the numerical solution converges to a final solution as
in Figure 4.26. Without damping, the solution is bounded by the extremes of these
perturbations. The high frequency oscillations of the driving torque closely

resemble those reported by Usoro et al [14].

4.3 Response to Cycloidal Trajectory

In this section, the manipulator arm follows a more practical type of motion, that
is, a simple pick and place trajectory described by a cycloidal motion for
convenience. Effects of a payload and its location relative to the end-effector of
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the manipulator are investigated. As for the step response case, the effects of
changing the "Newmark-like" parameters are observed too. In this section, more
than in the previous, the focus is on payload capacity as determined by failure and

stability criteria such as yielding and buckling.

4.3.1. Effect of Payload and Payload Arm

As stated in the previous section, a payload and its arm affect the manipulator in
terms of frequency of response, decay time and internal forces in the links. Now,
with a more adequate trajectory, the effect of the inertia of the payload can better
be appreciated. Also, some limitations as the maximum load are observed. Again,
a two-link manipulator with a uniform square cross section of 3 cm size and links’
length of 1 m is selected for convenience. The iuitial, transitional and final
positions of the manipulator are shown at steps of 0.02 s in Figure 4.32. The
asterisk indicates position of the payload. The resuiting driving torques, internal
forces and nodal deflections for no payload are shown in Figures 4.33 to 4.36.
Figure 4.33 illustrates the oscillations of the torques about the value for the rigid
with a frequency of approximately 23 Hz. The numerical damping reduces the
oscillations. As a consequence of the initial position of the manipulator, the gravity
load acts as a step force input. Since initially the first link supports its own weight
and that of the second link, its oscillations are more pronounced than those of the

second link. The step moment due to gravity with respect to the secoad joint is
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12.0 N-m while the initial moment with respect to the first joint is 47.9 N-m. With
the rigid body kinematic constraints imposed on the end-poin.s of each link, the
trajectory is followed with low deflections as shown in Figure 4.34. Here, the
maximum deflection is 15 mm for the first link and approximately 2.5 mm for the
second link. Figure 4.35 reveals that the first element of each link supports the
greater loads and in turn exhibits the higher amplitude oscillations. Furthermore,
the shear distribution along the first link is relatively constant demonstrating that
the element inertia in the transverse direction is negligible compared to that of the
second link. The base of the link supports almost double the axial and shear loads
as compared to the second link. The base link must be designed accordingly to
support these transmitted loads. In brief, Figure 4.36 illustrates the internal forces
with respect to the angular positions of the links. The location of the maximum
magnitude of forces within the trajectory is shown. These maxima occur at the
beginning of the trajectory as the initial gravity loads and inertia loads are
overcome, and towards the end of the trajectory where the large loads are due to
deceleration.

Figures 4.37 and 4.38 show the criteria due to which failure may occur.
Figure 4.37 compares the critical load for buckling for the links of 3 cm square
cross section to the axial forces within the first link. By an eigenvalue analysis,
the critical load for this beam-column is found to be 1.2x10° N [32]. As

illustrated, the axial forces are well within the limits of the compressive critical
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load (the negative constant line). The positive horizontal line is plotted for
convenience so that the graph appears visually symmetric. Figure 4.38 compares
the axial stress to the yield strength, 2.1x10® N/m? for Aluminum [34]. Again, the
stresses are well within the imposed limits. Both limits are plotted since axial
stress due to bending is symmetric about the axis of the link. These plots will
prove useful to determine the maximum payload for the given trajectory.

After several executions of the program and verifications of the critical
buckling and yield loads, the maximum payload the present manipulator can carry
through the given trajectory is found to be approximately 6.7 kg. The critical
buckling load was the limiting criteria in this case. The driving torques, internal
forces, and deflections are plotted in Figures 4.39, 4.40 and 4.41. Comparisons are
made to the corresponding plots in Figures 4.33 to 4.35 for the case of no payload.
In general, nominal values of torques, deflections, and internal forces have
increased in magnitude. For example, the torque at the base joint increased from
close to 130 N-m to 600 N-m, the maximum deflection is just over 7.5 cm
compared to 1.5 cm in Figure 4.34, and the maximum magnitudes of the axial and
shear forces are near 1.5x10* N and 400 N respectively. Hence, the payload
effectively increased the inertia of the system. Turning to the oscillations of Figure
4.39, the high frequency disturbance in the curve of the first link’s torque is due
to the initial gravitational loads. This perturbation is of small magnitude compared

to the lower frequency oscillations which are prominent. In Figure 4.39, the

91



(3.
[=
(=]

.............................

Torque for Link 1 (N-m)

Rigid Link—""
g) :
5 SO0k g
= 0 0.5 1
Q time (s)
€
<
N 0
:asr. 500 ;
- :
- :
2 E
2 o0 :
g :
(=] .
- :
2 -500 :
Z 0 0.5 1
o time (s)

Figure 4.39. Driving torques for cycloidal motion, m, = 6.7 kg.

92



)

0.04
0.02

-
-

0.5

L=

0.02 lnodef ....... e ........
-0.04}- % ............ e ........
.06} {../.node 3 ........ ........

' .‘o
- O

Axial Deflection Link 1 (m)
(=]
Transverse Deflection Link 1 (m

0.04
0.02

.

(=)

-0.02}-
-0.04
-0.06

Axial Deflection Link 2 (m)

0 02 04 08 08
time (s)

Transverse Deflection Link 2 (m)

Figure 4.40. Axial and transverse deflections, cycloidal motion, m, = 6.7 kg.
93




15 3
S o 200} v e NG s
= 1 x
=
< 05 -
5 g O i
g 0 S
-] w
l.L‘O-S \(a IEERYY SETETIE SUTTTPRRIERTRIIIP
B 2
z- “ -
400k .- .. \J .. [ . L J
0 0 02 04 08 O

time (s)

5 1.5 g
~ o~
< ! =
[ -
=5 0.5 i
5 o 8
E w
— 0.5 &
3 @
3 - &5

Figure 4.41. Axial and shear forces, cycloidal motion, m, = 6.7 kg.

94




payload’s inertia dominates in the oscillatory magnitude of the resuits. The
frequency of oscillations have decreased from 24 Hz to 6.5 Hz. The decreased
frequency of oscillations is a result of the decrease in stiffness of the system
relative to the payload.

Consider the same manipulator, but with the payload displaced with respect
to the end effector. Two cases are studied. First, the payload remains horizontally
displaced from the end-effector throughout the trajectory, and second, the payload
is displaced at a constant distance in the direction of the outermost link (link 2).
The oftsetting of the payload or anm, r, is 0.4 m. Again, by repeated computations,
the maximum payload capacity, with respect to the critical buckling load, for the
first case is approximately 6.5 kg and for the second case, it is approximately 5.5
kg. The payload arm introduces an increase in inertia. Driving torques, internal
forces and deflections are shown from Figure 4.42 to Figure 4.47 for both cases.
The initial response for both cases is identical due to the initial conditions in which
the horizontal orientation of the payload from the end effector is identical for both
cases. The similarity between the two cases is significant the first 0.4 s t0 0.5 s
of the trajectory. The magnitudes of the nominal values and frequency of
oscillations closely correspond. The frequency is approximately 5.0 Hz to 5.5 Hz,
which is 1 Hz lower than it was observed for the payload with no offset in Figure
4.39. With a payload offset, the links are more susceptible to deflections as the

overall stiffness of the system decreases as reflected in the reduction of frequency
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of the response.

Figures 4.48 and 4.49 indicate the trajectory of the payloads for the two
cases. Both depict similar features at the beginning of the trajectory. A so called
sling-shot effect can be observed. As the driving torques are applied, a bending
action in the links occurs due to an action-reaction phenomenon before the links
commence their trajectory. The payload for the first case approaches the base joint
as the manipulator moves through its trajectory. The frequency of oscillations
increases gradually from 5 Hz to 8 Hz within the motion. This occurs as the
payload folds in toward the second link (Figure 4.48). On the other hand, the
dynamics for the second case increase since the payload is further from the base

(Figure 4.49) compared to the first case.

4.3.2. Effect of Manipulator Links’ Dimensions

When the manipulator dimensions vary, the payload carrying capacity is affected.
An increase in the cross section size of the manipulator links from 3 cm to 5 cm
is investigated. The maximum payload for this manipulator is found to be about
50 kg according to the yield criteria of failure. This is about ten times that of the
manipulator with cross section of 3 cm square. Graphically, the driving torques,
internal forces and deflections shown in Figures 4.50, 4.51, and 4.52 depict,
generally, an increased rigidity. The most prominent characteristic is that the order

of the shear forces (Figure 4.52) is closer to that of the axial forces, indicating a

102




lllllllllllllllllllllllllllllllllllllllllllllll

L) L] ¢ ’ + ) L]
(Y . [ . . '
. . [ # h . .
.« » . . [l .
“ [l 1 [ ' .
0 ' ] . .
(=) = = = o = o~ - - W » - - - g} o - aflls = o = = & 1®= @« ¢ » = o -
o . . [ [
“ [ [} . . .
. . o [ . .
() ¢ s
L]
LI
lllllllllllllllll
.
’
“
e
[ ]
st
tar
()
()
()
(]
L]
[
it
o
.
D]
L)
[ ]
()
.
1
.
0
L]
o
-
0

v - - - oee.

ke -e---

-1.5

. . [
. 0 ‘
] ' ¥
) [l ]
] ' 1
. [ .
. | [ ]
n o w
e <

(s1o1011) uontsod-£

2.5

x-position (meters)

Figure 4.48. Motion for horizontal payload case.

103




.

Y-position (meters)

-0.5

i i 4: 1 i L 1 'l
146 -1 05 0 05 1 15 2 25

X-position (meters)

Figure 4.49. Motion for extended payload case.

104



3

2 :

— 4000} i AN SRRLAITIEEERREELERE
% :

3 2000ty e .. ....................
e .

e .

g ofF oo b A
g Rigid Link—

,S 2000F e SN

@ :

£ .

Z 0 0.5 1
o time (s)

Driving Torque for Link 2 (N-m)

Figure 4.50. Driving torques for cycloidal response, b = h = 0.05 m, m, = 50 kg.

105




- E

E -

g x 0.04 ;

x 5 :

£ g 0.02 j

- 5 0 node27

(=] [«}) .

k5] 5 :

g D 002 - T N

8 g : : :

—_ o© -0.04} N/ e free NG e 1

3 2 ' :node 3 :

é 5 008k AL e L d

= 0 02 04 06 08
time (s)

0.04... ..................
0.02

od

(=)

-0.02} M

S
[4)]

-0.04

[}
s

.....................................

Axial Deflection Link 2 (m)

Transverse Deflection Link 2 (m)
S
oo
g

Figure 451.  Axial and transverse deflections, cycloidal motion, b= k= 0.05 m, m,=50 kg.

106




N
-
o
8

: 8 .

)

Axial Force Link 1 (N)
o

Shear Force Link 1 (N)

0 02 04 06 08
time (s)

g 3

~ o 1000

x b .E

[~ 8=

a3 E; 0

B ol NN

E 0 element 2 é -1000

B 2 5

2.2 ........ g : g.zooo-- | E | :
0 02 04 06 08 0 02 04 06 08

time (s) time (s)

Figure 4.52. Axial and shear forces, cycloidal motion, » = k = 0.0Sm, m, = 50 kg.
107




significant contribution to the force system. As it is known, shear forces are more
significant for large cross-sections as compared to smaller cross-sections. In other
words, failure by shear is more probable with larger cross sections [35]. Also, for
the first and second link, the shear force has a close to uniform distribution along
the links much like the shear forces in the case of the 3x3 cm cross-section in
Figure 4.41. The payload’s inertia contributes more significantly to the transverse
forces than the element’s inertia.

From Figure 4.53 and Figure 4.54, the criteria for failure by buckling and
yielding are verified respectively. In Figure 4.54, the criteria for yield has been
violated, signifying failure by yield as opposed to buckling. This corresponds to a
payload of 50 kg determined earlier. Due to Figure 4.53, buckling is unlikely as the
axial force is completely within the boundaries of the critical load (0.91x10° N).

Finally, the effect of the load’s arm is investigated with the same
manipulator, that is, b = A = 5 cm, and links’ length of I m. Comparisons to the
results obtained earlier with the 3 cm square cross section links (Figures 4.42 to
4.47 for both the first and second payload location case). Here, the offset of the
payload is once again r, = 04 m. The results for the first case and for the second
case are shown in Figures 4.55 to 4.60. They include applied torques,
axial/transverse deflections and internal forces. These are for a payload of 40 kg
in both cases, which is the maximum that can be manipulated according to the

yield limit. The payload limit turis out to be identical in both cases since stresses
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due to bending are symmetric. Thus, the critical load according to the yield limit
occurs at the beginning of the trajectory where, as stated earlier, the two cases of
payload offsetting give almost identical response.. For more flexible manipulators,
buckling criteria is used toward the end of the trajectory as the axial forces begin
to compress the two links. The axial stress relative to the yield limit is shown in
Figures 4.61 and 4.62 for the first and the second case of payload offset

respectively.

4.3.3. Effect of Numerical Integration Parameters

The effects of the numerical integration parameters are discussed briefly. Results
for ©= ©, = 0.5 and O, = ©, = 1.0 representing no damping and maximum
numerical damping, respectively, are shown in Figures 4.63 to 4.68. Driving
torques, axial and transverse deflections, and axial and transverse forces are
illustrated. In the case of minimum damping, persistent oscillations are evident as
shown for first link’s torque, transverse deflections and shear forces. They may be
due to an incrementing error induced by discretization which is effectively damped
out in Figures 4.66 to 4.68 for the case of maximum damping. Looking at the
axial deflections and axial forces for the second link in this case, a compression is
expected at the end of the trajectory. It is observed for the case of minimum
damping, and should exist for this case too since the links undergo a compression.

This discrepancy indicates the order of magnitude of the deflection is very small
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and as such is affected by the numerical damping which overdamps the results. In
other cases, no effect is noticed since the order of magnitude is high enough, or at
least beyond that of the numerical damping. Care must be taken to choose
reasonable values for the integration parameters, even though limits are suggested
(0.5 £©,, ©,<1) [41]. In this thesis they were chosen to be 0.7 to emphasize

payload effects while suppressing the higher frequency oscillations.
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Figure 4.61. Comparison between yield strength and axial stress in bending, horizontal payload.
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Chapter 5

CONCLUSION AND
RECOMMENDATIONS

The study of the effects of a payload on a flexible manipulator which is undertaken
with the knowledge that manipulators are non-rigid reveals that flexibility must be
considered in the modelling of robot arms. Some conclusions are drawn from the

present work. Furthermore, some recommendations for future work are proposed.

5.1 Conclusions

The effects of a payload on a two-link flexible manipulator was studied Two
trajectories were employed, a step trajectory and a cycloidal trajectory. The first
allowed the verification of the model and provided some information on the effects
of the payload. The second provided a more realistic trajectory and revealed the
performance of the manipulator under the various assumptions about payload

position. The following conclusions may be drawn from the results:

1. The addition of a payload to the end effector of the manipulator

effectively decreases the stiffness of the system. This is justified by
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the reduction in the frequency of the responses. A similar statement
may be made about the payload arm since, for the same payload, a

further reduction of the frequency was observed.

For the hollow links (outer square of 5 cm and thickness 1 mm) and
short links (length of 0.5 m), the payload dominates the dynamics of
the links due to the almost negligible mass of the links as compared
to the mass of the payload and its inertia. The effects of payload are

more pronounced in the lightweight manipulators.

The hollow links provide a high payload mass to manipulator mass
ratio as compared to their solid counterparts. This indicates a greater
effectiveness in manipulation since most of the driving torque is used
to move the mass rather than the manipulator links. A control
technique is needed to compensate for the increased deflections

associated with the lower rigidity.

Payload capacity of a manipulator increases with increasing rigidity
(as the links become shorter and thicker) and failure is determined by
the yield limit. The yield criteria allows much larger payloads than

the buckling criteria.

128




5. Increased flexibility leads to a change in failure criteria from yielding
to buckling. For the cycloidal trajectory studied, the increase in
payload induced low frequency response while increased inertia

induced large internal forces in the links.

6. For the cycloidal trajectory, with the horizontal displacement of the
payload relative to the end-effector, the frequency of oscillations
increased throughout the motion. The lowest frequency, indicating
the most flexible configuration, occurs at the initial position when the

payload is simply at an extension of the robot links.

Generally, the present study provides useful information for control and design
purposes: driving torques, transverse and axial deflections, and shear and axial

forces. Nevertheless, some recommendations for future investigation are in order.

5.2 Recommendations for Future Work

Some effects of payload on a flexible manipulator have been observed, yet room
for some further investigation is left. Although the present model adequately
formulates the effects of payload on the manipulator under specified conditions,
some limitations of the model are foreseen.

For the manipulator model, the elastic effects on rigid body motion will need
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to be taken into account for lightweight robot arms. The overall motion of the
system is affected not only by the nominal motion but also by the elastic motion.
As illustrated, the payload contributes to this elastic motion. In this work, the
manipulator model considered the superposition of elastic motion on rigid body
motion and included the effect of rigid body motion on the elastic motion but not
the reverse.

In order to better model the payload/manipulator system several additions
would lead to a more complete and complex model. The mass and inertia of the
actuators can be added to the model as lumped masses at the joints of the links.
Furthermore, joint flexibilities can be considered in cases with high speed
operation.

The payload mass, in this investigation, consisted simply of a lumped mass
at the end effector or offset from it. The whole manipulator-mass system remained
in the plane. If the payload is displaced away from the plane of the manipulator,
a twisting of the links about their axes would occur. In this case, the model should
incorporate an extra degree of freedom at the nodes for torsional deformation.
Such a formulation would lead to a different set of design and control information.
In addition, a more general model for payload effects would emerge.

Further research may focus on trajectory optimization. Some questions that
would be asked include: In what configuration should a certain manipulator carry

a payload? Should the payload be close to the base or far from the base?
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Optimization techniques could be used to obtain a trajectory which limits the end
points deflections and constrains the internal forces to some maximum values.
Finally, several studies may be made to consider unisotropic materials,
varying cross-section size, different types of finite elements, and non-linearities
which were not taken into account in this study. Most importantly, experimental
validation of the theoretical findings should prove useful in order to continue

progress.
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Appendix 1

Element Matrices

Element Mass Matrix

043 0 0 pd6 0 O
0 pAl3 O 0 pAlJs O .
0 0 I3 0 0 pIJ6
M ags 0 0 pdi3 0 0
0 pAll6 O 0 pAl3 O
. 0 0 opIj6 O 0 pIGIIB.”
Element Damping Matrix (due to motion of rigid link)
0 -2pAw 3 0 0 -pAw,l/3 0]
2040,/3 O 0 pAde3 O
0 0 0 0 o 0
€hl 0 paegs 0 0 -2pdwys 0
pAw, 3 0 0240)3 O
0 0 0 0 0o 0]
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Element Stiffness Matrix (Exact)

[ AEJl 0 0 -AE/l 0 0
0 kAy/l kAY2 0 -kAy/l kAy/[2
0 kAy/2 EIJl+kAyY3 O -kAy/2 -El+kAyll6
Kl _agn 0 0 AEl 0 0
0 -kAyfl -k Ay[2 0 k4y/l ~kAy[2
| 0 kAy/2 -EIJI+kAY}l6 0 -kAy/2 EIz+kAyI/3_"

Element Stiffness Matrix (Reduced Order Integration)

[ AEJI 0 0 -AEJl 0 0
0 kAyll  kAy?2 0 -kAy/l  kAy2
0 kAY/2 EL[/l+kAvy4 0 -kAy/2 -El+kAyl4
K _agn o 0 ABIL 0 0
0 -kayll ~-kAy/[2 0 kAy/l -kAy/2
. 0 kAy2 -Eljl+kAyljd O -kAy/2 EIL+kAyl/4 ],

Element Stiffnes Matrix (due to motion of rigid link)

[-pAH3 -pAayl3 0 -pAwll6 -pAa,l6 O]
pAQl3 -pAwl3 O pAal6 -pAwil6 O

0 0 0 o0 0 0

[K"']"‘: 2 2
-pAWLI6 -pAa,l6 O -pAwiy3 -pAa3 0O
pAAYE -pAwLl6 0 pAaj3 -pAwll3 O
0 0 o0 0 0 o,
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Element Force Vector

[ pAIW2@2x,+x,)/6-a,/2) 412 ]
-pAl(ay(2x, +x,)/6 +a, /2) +f }]2
-plga,lf2
PAL(W3(x, +2x,)/6-a, [2) +f |2
-pAl(e,(3,+2%,)/6+a, 2)+f ]2
-plga,l/2

(1,

138




Appendix 11

Element Matrices due to Payload Mass

The following element matrices are added to the last element matrices of the most
outer link of the manipulator (upon assembling).

Mass matrix due to payload

0000 0 O
00000 0
00000 0
Myy000m 0 0

0000m 0
000 0 0 mupR+y

Damping matrix due to motion coming from payload

oo o 0 O
000 0 0 0
000 0 0 0
oBooo 0 -2me, 0
0002mw, O O
boo o o o
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000
000
000

K70 0 0 -myw?

000
000

0
0
0

mpa b

0
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Stiffness matrix due to motion coming from payload

0 0
O 0
O 0
~m,, 0
-mpmi 0
0 0




Force vector due to payload

[ 0 1
0
0

(o wyl,posP -a,l,sinp -m g,,-m gsin(g, +q,)
-wi),sinp ~a,}, cosB-m,a, -m gsin(q, +q,)
(w508 +a ) sinp)ring, ~(},sinf + o, sin ) +r,cosq,,>-m,gcos(q,*q,-q.x§cosq..+r,)1

Here, the angles B and g, and the rest of the geometry are shown in Figure A2.1.

We have, by the cosine and sine laws,

2,2 42
cosp Tt
2L},

sinp =lisincn -q,)
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Figure A2.1. Outermost link with payload and payload arm.
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Appendix III

Element Matrices due to Axial Force

Stiffness due to constant axial force

00 000 0]
00 -%oo-%
““o0o 000 0
00 %oo-}
oot

Here,

P= Wﬂysin(e)+(n—i)pAglsin(6)
n = total number of elements
i = i-th element
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Stiffness due to linearly varying axial force (self weight within element i)

0 O 0 0O 0 ]
1 |

0 -= —
0 6 00 12

1 1 1 1

0 -5 %% ¢

K,=W,

0 O 0 0 O 0
1 1

0 0 -5 0 0 E
1 1 1 1
——_— - —_— =]
02 §°1% 12|

Here, W, is the linearly varying weight within element i,

W;=pAg(x,-x)sin(0)
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Appendix IV

Verification of the Model

In order to verify the model of the flexible links manipulator, it is reduced to the
rigid links case by increasing Young's Modulus. Here, Young's modulus is
increased from 7.11x10" N/m’ to 7.11x10" N/m?, The cycloidal trajectory is
followed. The parameters of the manipulator include #=h=0.02 m, L,=L,=1.0 m
without payload. The results for the driving torques and deflections are shown in
Figures A4.1 and A4.2 for the first case of Young's modulus. Figures A4.3 and
Ad4.4 show the driving torques and deflections for the second case. The ideal rigid
links torques are also plotted in the respective graphs. The slight discrepancy in
Figure A4.3 is due to discretization. Thus, as the links become more rigid, the
torques reduce to the ideal rigid links case. Obviously, for the ideal rigid links
case, the deflections are zero. As the links become more rigid, the transverse
deflections reduced from a maximum 0.02m to a maximum of just over 1x10”* m.

Obviously, these results serve as a good verification of the model.
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Figure A4.4. Axial and Transverse Deflections for Cycloidal Trajectory with
E =17.11 x 10" N/m?.
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