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ABSTRACT

Separation of Superimposed Digital Communication

ar.d Speech Signals Time-varying ARMA Approach

Serkalem Melese Adigeh

The problem of separating frequency overlapping signals such as a digital communication sig-
nal and a speech signal is considered. It is assumed that the signals share the same bandwidth
and appear simultaneously, precluding the use of both FDM and TDM techniques

The proposed approach is based on structural signal processing, which learns from examples by
constructing an input-output mapping for the problem at hand Structural signal processing is
attractive for practical application by virtue of its ability to deal with nonlinearity, non stationar-
ity, and non-Gaussianity. More over, it offers robustness with respect to parameters tuning,
which are for a setting of optimal value parameters by non expert users In this research, a spe-
cial linear time-varying model, which takes advantage of the intrinsic properties of a digital
communication signal, is developed to separate signals whose spectra overlap The present
approach uses an Almost Symmetric-Autoregressive Moving Average (AS-ARMA) model that
is combined with the proposed nonlinear blanking algorithm used to nullify residual interfer-
ences that appear at the output of Moving Average model.

To motivate the development of the thesis, two cases of the problem are presented. The first
problem is to detect the presence of a digital communication signal when the received signal is
composed of a weak digitai communication signal with a strong speech signal and channel
noise. The second case assumes that the speech signal of interest is interfered by a strong quasi-
periodic signal and channel noise The simulation results show that the performance of the sig-
nal separation improves the signal-to-interference ratio for the digital communication signal
detector Thus the presence of a strong speech signal does not degrade the performance of signal
detection. On the other hand, a reconstructed speech signal is of good quality, so that the differ-

ence between the original and the reconstructed speech signal is minimal.
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CHAPTER 1
INTRODUCTION

In general, the function of any communication system is to convey from transmitter to
receiver a sequence of messages which is selected from a large number of predetermined
messages. A specific aspect of a signal (data or speech) is the information that it carries
rather than an average power or energy.

With the increased reliance on digital communication, bandwidth constraints have become
the principal concern. It has become important to consider the efficient usage of a given
bandwidth.

The convergence of computer, television, and telephone technologies has been gaining
momentum for many years, but perhaps nowhere with as much impact as it is beginning to
have in the area of residential access to information [1]. This is information in the broad
sense: anything that can be stored and delivered in the form of bits, ranging from personal-
ized newspapers to digitally transmitted versions of classic movies. All this is moving rap-
idly into the public consciousness under the terms Information Highway, interactive TV,
multimedia, and so on. Expectations that something significant is about to happen are
being raised, although there are many different opinions as to what the tide of convergence
will actually leave on the beach. It is clear, however, that communication standards are
needed in order to make this information revolution effective. More than perhaps any
other field, communication require standards, from the physical medium to the user’s
application. Without standards, communication cannot occur since both sides of the line
will not understand each other. To date the standards work undertaken in this field has
been very successful

The type of applications that are envisioned place a wide variety of requirements on the
network that will deliver the data to the user. In the case of voice and video, real-time con-
siderations are critical. the audio and video streams must be reconstructed as they are at
the source. Delays in transmission must not exceed the buffering capacity of the destina-

tion. Most of the delay penalty is in digitization, compression, and buffering, leaving a



very strident allowance fot network delay The transmission of data and still images. while
more variable yet, is generally more delay-tolerant

The other physical issue is noise ingress, which resides at base-band signals Analog filter-
ing before the analog-to-digital converter (ADC) stage is ultimiately related to the defini-
tion of bandlimiting. Where the definition of bandlimiting deals witn the content of the
signals that may be present, analog filtening before ADC represents a signal processing
stage where certain frequencies can be attznuated It is important to know the signals that
can be presented before filtering and the filter’s transfer function With the knowledge of’
both of these, the true spectrum of the signal to be digitized can be determined Sampling
the Nyquist rate presents a large and often impractical demand on the filter used before
digitization (anti-aliasing filter). Ideally, an anti-aliasing filter placed before an ADC
would pass all of the desired frequencies up to some cutoff frequency and provide infinite
attenuation for frequencies above the cutoff frequency Thus sampling at the Nyquist rate
would be two times the cutoff frequency and no spectrum oveilap would occur Unfortu-
nately, practically realizable filters cannot provide this type of ideal response The attenu-
ation of real filters increases more gradually from the cutoff frequency to the stop band

Therefore, for a given cutoff frequency on a real filter, sampling at two times this cutoff

frequency will produce some spectrum overlap

In general, more complicated filters are required to achieve steeper transitions and higher
attenuation in the stopband therefore, more complicated techniques are required to reduce
the distortion in the sampled signal due to spectrum overlap for a given sampling rate.
Oversampling, i.e., sampling at rates greater than the Nyquist sampling rate, eascs require-
ments on anti-aliasing filters. One of the benefits of oversampling is that the copics of the
spectrum of the analog signal / (f) [2] that are present in the spectrum of the sampled
signal Fs (/) become increasingly separated as the sampling rate increases beyond the
Nyquist rate. The trade-off, of course, is that increasingly faster ADCs are required to dig-

itize relatively low frequency signals

In quadrature sampling, the signal to be digitized is splitinto two signals One of thes_ sig-
nals is multiplied by a sinusoid to down-convert it to a zero center frequency and form the
inphase component of the original signal The other signal is multiplied by a 90-degree

phase-shifted sinusoid to down-convert it to a zero center frequency and form the quadra-



ture-phase component of the original signal. Each of these components occupies only one-
half of the bandwidth of the original signal and can be sampled at one-half the sampling
rate required for the original signal. Therefore. quadrature sampling reduces the required
sampling rate by a factor of two at the expense of using two phase-locked ADCs instead of
one.

Sampling at rates lower than 2fmax can still allow for an exact reconstruction of the
information content of the analog signal if the signal is a bandpass signal An ideal band-
pass signal has no frequency components below a certain frequency, fl and above a cer-
tain frequency, fh' For a bandpass signal, the minimum requirement on the sampling rate
to allow for exact reconstruction is that the sampling rate be at least two times the oand-
width [, ~f; of the analog signal.

A bandpass signal can be used to down-convert a signal from a bandpass signal at an RF
or IF to 4 bandpass signal at a lower IF. Since the bandpass signal is repeated at integer
multiples of the sampling frequeiicy, selecting the appropriate spectral replica of the origi-
nal bandpass signal provides the down-conversion function. Theoretically, bandpass sam-
pling allows sampling rates to be much lower than rates required for sampling at two or
more times the highest frequency content of the bandpass signal. This means that ADCs
with lower sampling rates may be used [3]

Until recently, teleconferencing required two phone lines, one for voice and one for data.
Recently, three technologies have been developed for the purpose of using one line for
carrving both voice and digital communication signal simultaneously: Digital Simulta-
neous Voice and Data (DSVD), Voice-span, and Voice-view.

The DSVD technology digitally compresses voice and multiplexes it with the data stream
of a 28 8 kbps, V.34-compatible modem [4].

The Voice-span technology from AT&T Paradyne transmits analog voice signals by mod-
ulating the amplitude of the transmitted digital data while simultaneously detecting the
voice-and-data modulation at the receiving end.

The Voice-view method, unlike the other two methods, is not a simultaneous voice-over-
data technology However, voice and data can be carried simultaneously over a standard
telephone line using this technique by toggling between voice and data.

The DSVD technique has three states: analog voice transmission, digital data signal trans-



mission, and the DSVD state  When it is in analog voice transmission state the modem
simply switches the analog voice call to the down-line phone, completing a nommal con-
nection No data transmission occurs, and the call is er.ded by placing the down-line phone
on the hook In digital data signal transmission state, the modem wransfers only data using
the V.34 protocol. To end data transfer, one modem sends a stop command to the other
modem. When it is in its own (DSVD) state, the modem samples and digitally compresses
the analog signal from the down-line phone for transmission The modem multiplexes the
compressed voice with user data by using the V 42 link access proceduie for modem data-
link protocol The voice and data are transmitted to another DSVD-capable modem The
data link cornection identifier, a 6-bit address field, implements the logical channels The
DSVD specification multiploxes audic onto the data stream, using a separate data link
connection identifier for audio Once connected in analog state, a modem can make the
transition to a DSVD state. The originator modem transmits a V 8 start-up sequence that
the answering modem detects. Upon detection of the start-up, sequence, the handsets are
muted for a few seconds. This silencing prevents the users from hearing the data transfe
while negotiations between modems occur. After a short protocol-negotiation phase,
voice-over-data operation begins, and digital compressed audio is routed to the down-line
phone. When a V.34 modem is transmitting at 28.8 kbps, the modem can transfer data at
19.2 kbps. This transmission rate allows fora small | 1 kbps overhead rate when the voice
is compressed to 8 5 kbps. When the modem detects audio silence, the data-transmission

bandwidth automatically expands to 28.8 kbps

The current thesis considers structural signal processing for the purpose of separating fre-
quency overlapped signals, which are the result of multiple usage of the same bandwidth
The usual method of passing a received signal through a filter, which keeps the interested
signal relatively unchanged while suppressing the interference, is not necessarily appro-
priate.

The thesis takes advantage of the intrinsic properties of signals and their structural nature
to provide specific modeling for the separation of signals whose spectra overlap A linear
time-varying ARMA model is considered to achieve the preferred task [S] This technique
allows the use of the telephone channel for multiple purposes,-- for instance, sending data

while speech occupies the same bandwidth. The algorithm is very simple to implement



To evaluate the performance of this model, mean-square-error (MSE) is used to measure
the integrity of the reconstructed speech, and a bit-error-rate (BER) assesses the digital

communication system.
1.1 Statement of the Problem

In certain communication situations, a primary input is available consisting of a signal
component with an additive undesired interferences. The problem of the reception is to
gain information from the received input signal, which is the sum of multiple user signals
transmitted using a single physical path Conventional techniques employ multiplexing
mechanisms to combine different user signals in a single physical path. Based on struc-
tural signal processing, the present work uses a telephone channel for conversation and
data communication simultaneously. In this thesis the work, which is to separate the inter-
est signal from interferences, is done by exploiting the intrinsic properties of the digital
communication signal. A null-operator associated with a blanking algorithm is modeled to
suppress the digital communication signal totally from the received input signal. The
remaining speech signal is passed through an anti-null operator to be reconstructed. The
problem under consideration may be stated as the retrieving of a weak signal in the pres-
ence of a strong interference, whose spectra entirely overlap with the spectra of the useful
signal.,

To motivate the development of the thesis, two cases of the problem are presented. These
problems are specially difficult to solve using the theories of measuring the power spec-

trum. Consider the signal model,
M

r(t) = z s, (0 +x(0) +n (1)
k=1
(1.1)
where § k(l)is a non-Gaussian interfering signal that temporarily and spectrally over-

laps x (f), x () is a communication signal of interest, and 1, (f) is a broadband noise.

All the signals and noise are considered statistically independent of each other. The power



level of the noise is assumed unknown and is varying within the observation interval

The first problem is to detect the presence of x () while a strong interference occupies
the whole bandwidth. Methods of detecting x () that are based on measuring the power
spectrum are ineffective because the power level of noise and interference is unknown and
time-varying; setting a threshold for energy detection is difficult

Consider a weak digital communication signal x () , that is superimposed with a strong
speech signal. The BER is used to evaluate the system performance of detection.

Next assume that § k (1) is a speech signal of interest which is interfered by a strong quasi-
periodic signal, and noise. In this case the concern is a strong digital communication sig-
nal that corrupts a speech over the same bandwidth.

Since both the signals occupy the same frequency bandwidth and appear at the input of the
receiver simultaneously, the problem is to retrieve the weak signal, whose spectra are

entirely overlapped by a strong interference.
1.2 Organization of the Thesis

Chapter 2 is devoted to the mathematical representation of data-communication and
speech signals, and error analysis on signal detection and speech reconstruction as it
relates to the thesis work

Chapter 3 covers structural signal modeling. It presents the concept of structural signal
representation, the linear time-invariant structural signal representations, such as MA, AR
and ARMA modeling, as well as time-varying and nonlinear structural signal representa-
tions.

Chapter 4 illustrates the concept and rules for the design of a linear time-varying null-anti-
null operator. Basic properties of such a time-varying null-anti-null operator are then dis-
cussed. It shows that physically implementable anti-null operator cannot be perfectly sym-
metrical to a null-operator. The transparency property can be achieved by introducing a
certain strategy to control the symmetrical nature of the transparent operator. This chapter
explores the almost symmetrical ARMA model and its unique properties such as annihila-

tion and fransparency.



In Chapter 5 the transparency problem of the ARMA model is studied. It shows that a
symmetrical anti-null-operator can provide an ideal fransparency, but it is sensitive to
undefined initial conditions The MA part of the AS-ARMA model creates spurious spec-
tral components when a digital communication signal changes its phase. Using an extra
blanking algorithm, which eliminates the null-operator residues, will lead the model to
become an almost transparent model by choosing the symmetric factor near unity.
Chapter 6 presents the investigation of sources of noise, which affect the detection of a
digital communication signal and the reconstruction of a speech signal. A signal detection
problem is considered when a weak digital communication signal is imbedded in a speech
signal and channel noise, and a signal estimation problem when a weak speech signal is
imbedded in an interfering digital communication signal and channel noise. This nonlinear
noise, which is seen at the output of the AS-ARMA system, will affect the detection of a
digital communication signal as well as the reconstruction of speech signal. In order to
verify the system performance, the bit-error-rate (BER) is measured and the quality of a
speech signal reconstruction is evaluated.

Chapter 7 outlines a novel self-synchronized signal controlled AS-ARMA model. The
basic approach is to define parameters that will minimize the mean-square separation error
over a short segment of the input signal. The resulting parameters are then assumed to be
the parameters of the system function, [ (z), in the model for signal separation.

Chapter 8 concludes with a summary of works which are presented in the thesis and sug-

restions for future work.



Chapter 2
Representation of Data-communication and Speech Signals

Most of the engineering processes can be represented by means of signals. These signals
are represented by different mathematical models that are convenient for the analysis
Representation of data-communication and speech signals can be based on time-domain
techniques, frequency-domain techniques, or a combination of these techniques. In this

section the focus is mainly on time-domain representations

2.1 Representation of Data-communication Signals and their Properties
In general, a signal can be classified as either analog or discrete. Analog signals can be
represented by a series of discrete samples, each of which represents a value of f(/ at a
particular sampling point. One of the simplest ways of discretizing an analog signal is by
equally spaced sampling. Such a type of sampling procedure is usually called uniform
sampling [6].
A signal whose Fourier spectrum vanishes outside an interval can be easily realized, it is
called a bandlimited signal. A continuous time signal /(f), band limited to |w| < W can
be reconstructed from its equally spaced samples if the sampling frequency is at least
equal to the Nyquist frequency. A typical practical example is the voice signal in tele-
phone systems where the highest frequency is approximately equal to 3 3 klz, and the
sampling frequency is chosen to be 8 kHz, which is above its Nyquist frequency If the
minimum sampling rate, which is 2 W, is not met, the spectral components will overlap In
this case, the origina! spectrum will appear with that of the other components and cannot
be uniquely determined. This process is called aliasing.
In general any communication signal may be described as a modulated signal, having a
carrier frequency f .
x(8) = R(t)cos [2mft+ ¢ (1))
21

where R() represents the real envelope of x (£) and ¢ (¢) represents the phase deviation.



Equation 2 1 can be written in the form.

x(1) = Re tR (1 d?O >

2.2)

or

(1) = Re {z(tyd ey

23)
where the quantity x (¢) is called a complex envelope of a real signal x (f) Clearly
x =R ) 6/¢’ () isa complex function of time that is independent of the carrier fre-
quency fc It is important to note that a complex envelope involves signals that are usually
slowly varying with respect to a carrier frequency. Since the bandwidth of a bandpass sig-
nal is significantly less than f o it takes a much lower sampling frequency to represent a
complex envelope x (¢), than to represent a real-time signal x ().
The result is a smaller number of samples for a given time segment of x (f). The complex
envelope is usually expressed in rectangular form X (H = xd(t) +jx _(f) where
x ; (1) is the direct (o~r real) component of x () and Xq (¢) is the quadrature (or imagi-
nary) component of X (). Assuming that the carrier frequency is known, the complex

envelope contains all of the information contained in the original signal x ().

¢ Signal Generation

Both deterministic and random signals exist in almost all communication systems. Models
must be developed for each of these signal types that can be implemented in digital com-
puter simulation. Deterministic signals are usually generated using the defining equation
for the signal [7] Random signals are usually generated using either a linear congruential
algorithm or a Pseudo-Noise PN sequence algorithm. Although the mathematical descrip-
tions of these two algorithms are somewhat different, they are essentially equivalent.
Since a digital computer is a finite-state machine, it is not possible to generate a truly ran-

dom signal on a computer, and all computer-generated sequences are periodic. Within a



period, the pseudorandom sequence approximates many of the properties of a random sig-
nal. One is therefore able to generate “noise-like” waveforms for use in a simulation to

represent both random signals and noise, hence the term Pseudo-Noise (PN) sequences.

* Base-band Signal Modulation

Base-band signals can be modulated onto a sinusoidal carrier by modulating one or more
of its three basic parameters: amplitude, frequency, and phase. Correspondingly, there are
three basic modulation schemes in digital communication. Amplitude Shift Keying
(ASK), Frequency Shift Keying (FSK) and Phase Shift Keying (PSK).

The digital communication schemes can be classified into two large categories' constant
envelope and non-constant envelope. The PSK schemes have constant envelope but dis-
continuous phase transitions from symbol to symbol The Continuous Phase Modulation
(CPM) schemes have not only constant envelope, but also continuous phase transitions.
Thus they have less side lobe energy in their spectra in comparison with the PSK schemes
From Table 2.1, it is clear that a Binary Phase Shift Keying (BPSK) and Quadrature/ Off-
set Quadrature Phase Shift Keying (QPSK/OQPSK) have the same power efficiency, but
QPSK/OQPSK have twice the bandwidth efficiency. MSK is just a special case of a large
class of constant amplitude modulation schemes called Continuous Phase Modulation
(CPM). This class of modulation is jointly power and bandwidth efficient. The CPM sig-
nal is defined by:

x() = /21-? cos(27tf0t+(D(t,a))

24)
where the transmitted M-ary symbols a ; appear in the phase is given by Eq. 2.5:
o0
®(,a) = 2mh » ag(t—iT)
i = —00
(2.5)



with
{
g() = [g(e)an
—x
The function g(t) has smooth pulse shape over finitetime interval O £t < LT and is zero
outside When L. > | there is a partial-response pulse shape; when L < | there is a full-

response pulse shape.

Modulation Bandwidth Efficiency(bps/Hz) Eb/NO (d5)
schemes Nyquist Null-to-null S
Py = 10
BPSK 1.0 0.5 96
QPSK 2.0 1.0 96
OQPSK 2.0 1.0 96
MSK n/a 2/3 9.6

Table 2 1 Comparison of power and bandwidth efficiencies for various signal modulations

The present thesis uses BPSK, FSK and MFSK modulation techniques to represent a digi-
tal communication signal. The modulated signal, which is represented by one of the three
techniques mixed with a speech signal, will be transmitted using a single path to remote.
In this thesis the task is to research a model that can be used to separate a speech signal
from a digital communication signal without affecting the original quality of a speech and
data detection. Conventional techniques exist which allows different users to occupy a sin-

gle physical path for communication

* Multiplexing

Muitiplexing combines and bundles together a number of communication channels and trans-
mits them over one physical common broadband channel. At the receiving end, demultiplexing
separates and recovers the original channels. The main conventional techniques of multiplexing

are Frequency Division Multiplexing Access (FDMA), Time Division Multiplexing Access



(TDMA), and Code Division Multiplexing Access (CDMA)

* Frequency Division Multiplexing Access (FDIMA)

In FDM systems, a portion of the frequency spectrum (that is, a frequency band) is allo-
cated in each transmitter The transmitted signal spectral component must be confined to
the allocated frequency band.

Examples of FDM systems are the telephone network, cable television (that is, the Com-

munity Antenna Television CATV), voice frequency multiplexers, satellite systems, etc

* Time Division Multiplexing Access (TDMA)

In TDM systems, the entire frequency bandwidth of transmission media is allocated in
each station but only for a limited portion of time, called a time “slot” There are two basic
techniques for time division multiplexing. Synchronous Time Division Multiplexing
(STDM) and Asynchronous Time Division Multiplexing (ATDM)

In STDM each source is repeatedly (hence, the word synchronous) assigned a portion of
time of the capacity. TDM is understood to imply STDM. Circuit switched telephone net-
works use (synchronous) TDM.

On the other hand, in ATDM, each source is assigned a portion of the transmission capac-
ity only asit is needed ATDM is used in statistical multiplexers, known also as St-Mux or
concentrators, packet switches, and asynchronous transfer mode (ATM) switches pro-

posed for broadband ISDN.

+ Code Division Multiplexing Access (CDMA)

In CDMA, each user is provided with an individual and distinctive pseudorandom noise
(PN) code. These codes are almost uncorrelated. To illustrate the principle of operation of
CDMA, consider that at a given time, each of k users is transmitting data at the same car-

rier frequency fO .using a direct sequence spread spectrum, and his particular code g, (¢



Then, each receiveris presented with the same input waveform,

k

=1

v(t) = Z ﬁ?;gi(t)di(t)cos (0y*6),)

(2.6)

where each signal is assumed to present the same power PS to the receiver, each PN

sequence &, (£) has the same chip rate c » and a’l. (1) is the data transmitted by user i.

The data rate for each user is the same. If the receiver is required to receive each of the &

users, it needs k correlators. The advantage of a CDMA system is that collisions are not

destructive, i.e., each of the signals involved in a collision would be received with only a

slight increase in error rate.

[ Time-Domain FrequencyDomainL Remark
FDMA Superimposed Separated Channel Banks
TDMA Separated Identical Time Slot
CDMA Su_pfimposed Overlapped Orthogonal Code

Table 2.2 Comparison of Multiplexing Techniques
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Figure 2.1 Conventional Multiplexing Techniques

A Structural Signal representation can be considered as one of the multiplexing techniques
which drives different users into a single information path. In Structural Signal Multiplex-
ing Access (SSMA) the intrinsic properties of each digital conmunication signal is used
to model a signal separator. An Almost-symmetric ARMA model whose function is to
separate an interest signal from the mixture will be introduced in later chapters. Overlay-
ing CDMA with SSMA is a possible technique in ever-growing band width constraints.
Each digital communication signal modulates the base-band signals, which are mentioned

in the previous section, and it is transmitted to its destination in a single channel
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Figure 2.2 Structural Multiplexing Technique

This multiplexing and demultiplexing technique uses the structural signal properties of the
modulated signal. The transmitted signal, which is the sum of modulated signals mixed
with speech, covers the entire telephone bandwidtii. A speech signal is a broadband ran-
dom signal. When it is transmitted through a telephone channel its bandwidth is limited by

alowpass filter.

2.2 Representation of a Speech Signal.

The notion of representation of a speech signal is central to almost every area of speech
communication research. Often the form of representation of a speech signal is not singled
out for special attention or concern, but yet is inaplicit in the formulation of the problem or
in the design of the system. A good example of analog representation of a speech signal is
in telephony, where speech is in fact represented by fluctuations in current for purposes of
long distance transmission. In other situations, however, one must often pay strict atten-
tion to the choice and method of implementation of a speech signal. This is true, for exam-
ple, in such diverse areas as speech transmission, computer storage of speech and
computer voice response, speech synthesis, speech aids for the handicapped, speaker veri-
fication and identification, and speech recognition. In all of these area digital representa-
tions, i.e., representations based on a sequence of numbers, are becoming increasingly

dominant. There are two basic reasons for this. First, through the use of small, general pur-
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pose digital computers, speech researchers have been able to apply a wide variety of digi-
tal signal processing techniques to communication problems [7]. These techniques cover a
range of complexity and sophistication that is impossible for analog methods to match
Second, the recent and predicted future developments in integrated circuit technology
makes it possible to realize digital speech processing schemes economically as the hard-
ware devices having the same sophistication and flexibility as a computer program imple-

mentation are available in these days.

* A digital Model of a Speech Signal

The vocal tract is an acoustic tube that is terminated at one end by the vocal cords and at
the other end by the lips. An ancillary tube, the nasal tract, can be connected or discon-
nected by the movement of the velum. The shape of the vocal tract is determined by the

position of the lips, jaw, tongue, and velum [8].
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2.3a) Schematic diagram of mechamsm of speech production.
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Sound is generated in this system in three ways Voiced sounds are produced by exciting
the vocal tract with quasi periodic pulses of air pressure, caused by vibration of the vocal
cords Fractive sounds are produced by forming a constiuction somewhere in the vocal
tract and forcing air through the construction, thereby creating turbulence which produces
a source of noise to excite the vocal tract. Plosive sounds are created by completely clos-
ing off the vocal tract, building up a pressure, and then quickly releasing it All these
sources create a wideband excitation of the vocal tract which in turn acts as a linear time-
varying fiiter, which imposes its transmission properties on the frequency spectra of the
sources The vocal tract can be characterized by its natural frequencies (or formants)
which cormrespond to resonances in the sound transmission characteristics of the vocal
tract Because both the sound sources and vocal tract shape are relativelv independent, a
reasonable approximation is to model them separately, as showi in Figure 2.3b.

In this digital model, samples of a speech waveform are assumed to be the output of a
time-varying digital filter that approximates the transmission properties of the vocal tract
and the spectral properties of the glottal pulse shape This model is the basis of a wide
variety of representations of speech signals. These are conveniently classified as either
waveform representations or parametric representations depending upon whether a speech
waveform is represented directly or whether the representation is in terms of time-varying
parameters of the basic speech model. The choice of the digital representation is governed
by three major considerations' processing complexity, information (bit) rate, and flexibil-
ity. By complexity, it means the amount of processing required to obtain the chosen repre-
sentation. A low bit rate means that the digital representation of a speech signal can be
transmitted over a low capacity channel, or stored efficiently in digital memory. Flexibility
is a measure of how a speech can be manipulated or altered for applications other than
transmission, e g., voice response, speech recognition, or speaker verification.

In general, greater complexity is the price paid to lower the bit rate and increase the flexi-
bility. In transmission and voice response applications, the quality and intelligibility of the
reconstituted speech are also prime considerations.

The following techniques are capable of producing good quality and highly intelligible

speech



* Digital Waveform Coding

Conceptually, the simplest digital representation of speech is concerned with direct repre-
sentation of speech waveform. Such schemes as pulse code modulation (PCM), delta
moduiation (DM) and adaptive differential PCM (DPCM) are ail based on Shannon’s sam-
pling theorem, which says that any bandlimited signal can be exactly 1econstructed fiom
samples taken periodically in time if the sampling rate is twice the highest frequency of
the signal.

The objective of digital waveform coding is to represent a specch wavetorm as accurately
as possible so that an acoustic signal can be reconstructed from the digital represcutation

In many speech processing problems, however, one is not interested in constructing an
acoustic signal but rather one is concemned with representing a speech signal in terms of a
set of properties or parameters of the model discussed in the previous section Some tather
simple, but useful, characterizations can be derived by simple measutements of the wave-

form itself, i.e., upon a PCM regresentation of the waveform

The key to these and indeed the key to all parametric representations, is the concept of
short-time analysis. For a short period of time (10-to 30-ms duration) it is quite probable

that the properties of the waveform remain roughly invariant over that interval

* Homomorphic Speech Analysis

Homomorphic filtering is a class of nonlinear signa' processing techniques that is based
on generalization of the principle of superposition that defines linear systems Such tech-
niques have been applied in separating signals that have been combined by multiplication
and convolution. The application of these techniques to speech processing is again based
on the assumption that although speech production is a time-varying process, it can be
viewed on a short-time basis as the convolution of an excitation function (either random
noise or a quasi periodic pulse train) with the vocal tract impulse response These methods
for separating the components of a convolution are of interest [9] The cepstrum is an
excellent basis for estimating the fundamental period of voiced speech for determining

whether a part’ .lar speech segment is voiced or unvoiced.
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Figure 2.4 Homomorphic processing of speech

The signal at A, which is shown in Figure 2.4, is assumed the discrete convolution of the
excitation and the vocal tract impulse response. Then the short-time Fourier transform
(i.e., the spectrum of the windowed signal), is the product of the Fourier transforms of the
excitation and the vocal tract impulse response. Taking the logarithm of the magnitude of
the Fourier transform, one obtains at C the sum of the logarithms of the transforms of the
excitation and vocal tract impulse response. Since the inverse discrete Fourier transform
(IDFT) is a linear operation, the result at D (called the cepstrum of the input A) is an addi-
tive combination of the cepstra of the excitation and vocal tract components. Thus, the
effect of operations, windowing, DFT, log magnitude, and IDFT is to approximately trans-

form convolution into addition.

The vocal tract transfer function, often called the spectrum envelope, can be obtained by
removing the rapidly varying components of the log magnitude spectrum by linear filter-
ing. One approach to this filtering operation involves computing the IDFT of the log mag-
nitude spectrum (to give the cepstrum), multiplying the cepstrum by an appropriate
window that only passes the short-time components, and then computing the DFT of the
resulting windowed cepstrum. This method corresponds to the fast convolution method-in
this case being applied to filter a function of frequency rather than of time. The smoothed
spectrum obtained by the above method is in many respects comparable to a short-time
spectrum obtained by direct analysis using a short data window. The major difference,

however, is that the cepstrum method is based upon the initial computation of narrow-
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band spectrum, which involves a wide time window, while the wideband spectrum is com-
puted using a very narrow-time window. The smoothing is done upon the narrow-band
log-magnitude spectrum rather than upon the short-time Fourier transform itself, as is the
case for wideband analysis Thus, for speech segments in which the basic parameters such
as pitch period and formant frequencies are not changing, one should expect the cepstrum
method to produce superior results to direct spectrum analysis When the speech spectrum
is changing rapidly, as in the case of voiced/unvoiced boundary, the direct method may
produce a better representation than the cepstrum method due to its shorter averaging
time. Specifically, voiced/unvoiced classification of the exciting is indicated by the pres-
ence or absence of a strong peak in the cepstrum [10]. The presence of a strong peak for
voiced speech is independent upon there being many harnmonics present in the spectrum.
In cases where this is not true, such as voiced stops, zero crossing rieasurements are help-
ful in distinguishing voiced from unvoiced speech [11]. If a strong peak is present, its

location is a good indicator of the pitch period.

* Linear Predictive Analysis

Among the most useful methods of speech analysis are those based upon the principle of
linear prediction. These methods are important because of their accuracy and their speced
of computation. The basic idea behind linear predictive coding (LPC) is that a sample of
speech can be approximated as a linear combination of the past speech samples By mini-
mizing the square difference between the actual speech samples and the linearly predicted
ones, one can determine the predictor coefficients; i.e., the weighting coefficients of the
linear combination.

Once the predictor coefficients have been obtained, they can be used in various ways to
represent the properties of a speech signal.

The results of most of these techniques can be applied in a variety of speech processing

applications including speech recognition, speech synthesis, and speech verification
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2.3 Error Analysis on Signal Detection and Speech Reconstruction

A major issue which arises when trying to understand the results of this study is how to
interpret the various error scores This is one problem for which one has no simple answer
other than that it depends on the intended application. The level at which various types of
errors become significant depends strongly on the application

In order to evaluate a system in analog or digital communication, one needs to measure
errors, estimating or detecting an observed signal at the receiver and comparing it to the
original. The error rate in signal detection is a function of the distance S of the signal from
the decision threshold compared with the level of noise. If the noise exceeds S at the deci-
sion time, there is an error. This quantity is given in bit-error-rate (BER), which is the
probability of the noise exceeding .§

In speech enhancement, a system evaluation is based on many factors such as intelligibil-
ity, naturalness, cost of implementation, etc. These factors of speech quality are governed
by the interference and background noise.

Intelligibility varies from fair to excellent. It is worst when the recovered voice is weaker
and best when voices are strong. Naturalness of the recovered speech is striking. The

sound is unmistakably that of a person, not a machine, and the voice is recognizable.

* Error Analysis on Detection of communication Signal

It can take a long time to accumulate enough errors to accurately assess a digital commu-
nication system. To accurately measure the error rate of a digital communication system,
one must record a fairly large number of errors [1]. If # errors are counted, then the inaccu-
racy is about ~= For example, for 400 recorded errors, the inaccuracy is 5%. But if the
error rate is ver)’;’ low, it may take hours or even days to accumulate 400 errors. Measure-
ment time can be reduced if the goal is to determine an upper bound on the error rate
rather than to pin down the rate itself. If the system is error free for a period T, then there’s
95% confidence that the error rate is less than 7 For example, if no errors occur for one
hour, then 95% of the time the system will have less than three errors per hour. Digital

communication system must have very low BER. Measurement of such low rates presents
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a dilemma: either the test will take a long time or results won't be accurate Suppose the
communication system under test has a bit rate of /5 and the BER must be less than P,
This limit corresponds to f P Pe errors per second. In general the error rate r is the bit-

error ratio times the bit rate.

F=BERXf b
@27
The error rate is continually calculated according to the formula:
;o= h
7'1
(28)

where n is the number of errors counted during 7. For short measurement times, r varies
wildly, but it settles down as time increases. A Poisson process presumes an actual or
average error rate  that can be determined from the process itself. Our task is to get an

estimate ' of this actual rate by measuring » errors in a period of T and dividing;

(2.9)
If 7'is one hour and if one takes many one-hour measurements of », one will get a range of
answers with deviation & of the measurements in the rms of the difference from this aver-

age:

(2.10)
where AN is the number of measurements, about 68% of the measurements will lie within
of the average n.

The standard deviation of » is given in terms of n:
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o~ n

That is, n is within 4/;1 of the expected count 68% of the time. If one takes the inaccuracy

of the measurement to be  as a fraction of », then:

. c 1
inaccuracy = - —
0.68 n qu

(2.11)
This relationship, or the curve for 68% confidence, is easily plotted (Figure 2.5). As an
example, suppose that the desired accuracy is 0./0 or /0%. Then from the inaccuracy 68%
equation, the test must continue until n=700. If the time required to collect /00 errors
turns out to be 7=/9 hours, then r’'=100/19=5.26/hour, and this is within 70% of the
actual error rate r. That is, 7 is inferred to lie between 5.26-0.526=4.634/hour and
5.26+0.526=>5.63-4/hour (with a confidence of 68%). Because of the measurements, statis-
tical nature, » -/00 can be more than /0% away from the expected measurement, but 68%

of the time it will be less than /0% away.

The confidence level can be improved by using 26 . The measured n=100 is within 20
(or 20% here) of the expected count 95% of the time (Figure2.5). In the example of
r'=5.26/hour, r is inferred to lie between 3.26-1.052=4.208/hour with a confidence of
95%. There’s greater confidence that the inaccuracy won’t be exceeded, but the inaccu-
racy is twice as large. To maintain a confidence of 95% (the higher figure in Figure2.5)
and still have an inaccuracy of /0%, one must count more errors. If 26 is to /0% of n,

then G is 5% of n, or

= 0.05

319

(2.12)

Using © = J/n, the inaccuracy can be calculated, :/'-‘=0.05, or n=400. The general

expression with 95% confidence is:

20

Inaccuracy, 95 = o

2
n
(2.13)
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Figure 2.5 Inaccuracy of BER measurement.

* Test for Upper Limit

The proposed method for determining an upper bound on an error rate is to require the
system under test to be error-free for a measurement period 7. The longer 7' is, the lower
the error rate boundary. Suppose one wants to be sure that the actual error rate of a system
is less than a specified error rate of r=3.56/hour, then one must choose 7 so that an error
rate of r=5.56/hour or greater will have at least one error in the period 7. Because of the
statistical nature of the measurement, this cannot be absolute no matter how large 7is.

If one cannot be /00% certain that the actual error rate is less than the specified error rate
r, the next best thing is to settle for an acceptable level of certainty, say 90% of an actual

rate of less than ». Choose T so that »=5.56/hour will fail the test 90% of the time. In other
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words, choose T so that the probability of measuring r=zero errors is only /0% when the

error rate is at the limit ». The side-bar on Poisson errors gives the probability of measur-

ing n=0 as:
p(0) =T
(2.14)
Then set p(0)=0.10 or 10% and solve for T
r_ [Hn(010)] _ 23
¥ r
(2.15)

For r=5.56/hour, this gives T=0.414 hours. If the system is error-free for 0.414 hours (25
minutes), one can be 90% confident that the error rate is less than r=>5.56/hour. In general,

for a confidence level (" that the error rate is less than r, the error free period is given by:

T = —-};ln(l -0)

(2.16)
For example, if C=0.99 and r=>5.56/hour, then T=0.826 hours. By doubling the test time,
the confidence level is increased from 90% to 99%.
Where the objective is to measure the error rate accurately to determine an upper bound on
the error rate, one can decrease the measurement time dramatically by stressing the system
under test. The stress produces a higher errcr rate, and the higher error rate can be mea-
sured more quickly. Then, if the error rate as a function of stress is known, one can extrap-

olate to the error rate the system would have when it is not stressed.

* Quality and Intelligibility of Speech Signals

Getting a speech signal through a noisy, interference-ridden channel is a well-known prob-
lem in communication. Attempts to find a new speech enhancement technique have met
with varying degrees of success. In order to evaluate speech processing algorithms, it
would be useful to be able to identify the similarities and differences in perceived quality

and subjectively measured intelligibility. The quality of speech addresses “how” a speaker
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conveys an utterance and may include such attributes as “naturalness,” or speaker recog-
nizability. In contrast, speech intelligibility is concerned with what the speaker has said-
the meaning or information content behind the words.

The difficulty in separating the notions of quality and intelligibility is due in part to the
difficulty in isolating and characterizing those acoustic-correlates of quality and intelligi-
bility in speech. However, extensive research has been carried out in developing both sub-
jective and objective tests to ascertain quality and intelligibility.

Subjective measures are based on the opinion of a listener or a group of listeners regarding
the quality of an utterance. As suggested by Hecker and Williams (1966) [12], one means
of classifying subjective quality measures is to group them as utilitarian or analytical. Util-
itarian measures employ testing procedures that are both efficient and reliable and that
produce a measure of speech quality on a unidimensional scale The main advantage is
that a single number results, which can be used to directly compare speech processing sys-
tems.

In contrast, analytical methods seek to identify the underlying psychological components
that determine perceived quality. These methods are oriented more toward characterizing
speech perception than measuring perceived quality, and typically use more than one
dimension for reporting results.

Maximum intelligibility is a function of effective signal-to-noise ratio. Most methods of
speech enhancement have in common the assumption that the power spectrum of a signal
corrupted by uncorrelated noise is equal to the sum of the signal spectrum and the noise
spectrum. Thus, power subtraction is used to separate a speech signal from the noise
observation. The suppression rules for the power subtraction, Wiener filtering, and maxi-
mum likelihood algorithms are used.

A useful criterion for estimating a speech signal is to minimize the mean-square
error min {E (s~s) } There are many methods in research for speech estimation. The
most known area of research is system identification [13] A least square analysis system
identification technique is based on optimal estimation. The output speech is modelled as
having been obtained via linear filtering of the input signal. For the least square method
the model is unknown, and one makes an optimal estimate so that the estimated output and

the desired speech have little difference [14].
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The least mean-square adaptation algorithm is an iterative, minimum-seeking method for
determining 1he least square solution. Assuming that @ ; is an estimate of {1 at ithitera-
tion, the new estimate /A j+ isdeterminedas:
hivy = h-uv

2.17)
where V is the gradient of “é (n) "2 with respect to i and u is a constant. Basically, V
determines the direction in which the correction is made for the i+/ iteration and u is a
constant which controls the size of the step taken in that direction. Since "é (n) "2 is a
quadratic function of l_ﬁ , a single minimum exists in the error surface and it can be shown
that the algorithm converges to this minimum if the step size is not too large. The LMS

adaptation algorithm uses the gradient of a single error:

Vx-2x(n-m)eé(n)
(2.18)
New estimates of {i are then computed on a sample-by-sample basis as data samples
X (n) and y(n) become available. The new estimate of the mth coefficient of A is

then computed as:

hy+1(m) = Ay (m) +2ux(n-m)é(n)
(2.19)

Since the choice of # depends on the variance of x (1) , a self-normalizing form of the

LMS adaptation algorithm,

n 2
41 (m) = hy (m) +Kx(n-m)é(n) /s,
(2.20)

was used.

To measure the performance of these techniques, the O measure is defined. The ) measure

is basically the ratio of the norm of the coefficient error vector to the norm of the true
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coefficient vector. It is useful for characterizing how well the estimate /i approximates the
true 4. The second measure, (', is a frequency-weighted measure which is useful for
characterizing the performance of system identification methods for nonwhite inputs. The

O measure has the form:

M-1
2
> [h(my -h(m)]
Q= 10-1ogm=0M_l
S A (m)
m=0

(2.21)

It can be shown that for a white input signal x {#) and with uncorrelated white noise

e (n), the quantity Q) is a simple function of the system parameters, namely N, M and the

signal-to-noise ratio, > = 10 - log [0- 2 /G 2], at the output of the system, and is of
n v’ e

the form:

Qlwhlle =10- ]og(%) - % (dB)

input

(2.22)
where M is the estimated duration of the impulse response, and N is the signal duration.

The above equation predicts the performance of the least square analysis system identifi-
cation method for white uncorrelated inputs. The quantity () is directly dependent on the
signal-to-noise ratio at the output of the system. It improves (decreases) by 3 dB per dou-
bling of the block size, and it degrades (increases) with log M . For the case of nonwhite
inputs, it is not possible to express (J in the form of Eq. 2.16. In general, for nonwhite
inputs, the value of (J will be larger than Eq.2.16 and in this sense Eq.2.16 represents a
lower bound on the expected value of (J. That is, a white uncorrelated input signal is the

best form of input signal to use in the system identitication problem. The modified ()
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measure, ()', applies frequency weighting which is equal to that of the frequency
response of the filter which is used to create the nonwhite signal from the white sig-
nal x (n) [15). This weighting can conveniently be achieved by convolving h (1) and
fi (n) by nonwhitening impulse response g (n). This procedure serves to weight the

performance measure by the frequency spectrum of the input signal.

2
D [(h(n) -h(n)) Rg(n)]
O = 10-log|n

S h(n) ®g(n)]°

(2.23)

The properties of (' as a functioin of N, M, and 5/n are somewhat more complicated
than those of the () measure, since the “coloring unwhitening” filter, g (1), affects the
result. However, it can be shown that the properties of (J' and Q are quite similar.

In this work, the basis of the separation process is to use an Almost Symmetrical Time-
Varying ARMA model to track the BPSK signal, which interferes with the speech signal.
This algorithm is simple to implement and possesses a fast convergence property. The fac-
tors which affect the quality and the intelligibility of a speech signal are the presence of
the residual BPSK signal and the background noise. The aim of the work is to check the
influence of the speech-to-digital cominunication signal ratio on the quality and intelligi-
bility.

The first part of the ARMA model is suppressing the BPSK signal without affecting the
intelligibility of the speech. At the output of the MA part of the model, a residual BPSK
signal was found at the synchronous point when a digital signal changes from one level to

another. An extra blanking algorithm is used to eliminate this residual signal.

In the research a formal listening test is performed to assess the quality and intelligibility
of the enhanced speech. In all aspects the intelligibility of enhanced speech was the same

as the unprocessed signal. The speech-to-digital communication signal ratio affects the
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quality more than the intelligibility of a speech signal. The intelligibility is more depen-

dent on the speaker, on context, and on the phonetic content.
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Chapter 3
Structural Signal Modeling

Work on structural signal modeling has been escalating. Structural signal processing can
approximate any continuous input-output mapping to any desired degree of approxima-
tion, given a sufficient number of hidden units. This property is also shared by classical
methods based on the use of smooth functions such as algebraic or trigonometric polyno-
mials. What is really important, therefore, is the rate of convergence with which the
unknown function is approximated for a prescribed set of basis functions.

In contrast to conventional filtering, structural signal processing-based methods are attrac-
tive for practical applications by virtue of the ability to deal with nonlinearity, non-station-
arity, and non aussianity. Moreover, these methods offer robustness with respect to
parameter tuning and sample properties, which are important for a good setting of user-
tunable parameters by nonexpert users.

To start with the design one would assume a complete knowledge of the signal properties
and initial state of structure, and the exact time history of the input signal. Consider, for
example, the simplest situation in which a structure is an idea! first order autoregressive

model:

y(n)-ay(n-1) = x(n)
(3.1)

where X (1) represents the input signal.

If it is assumed that x (#) on the right hand side of Eq. 3.1 is precisely known, then the
output of the structure can be computed exactly. This is called a deterministic structural
signal modeling. On the other hand, if the input signal of the above model is random, obvi-
ously the output becomes random. Examples of input signals which are essentially random
are numerous in signal processing. Speech and digiial communication signals fall into this

general category.

31



The form and matenal of structural signal properties dictate their behavior, which in turn
dictates the character of the analytical model. A structural signal model is linear if the rela-
tionship between input and output signal is represented by a linear operator If this opera-
tor is not linear, the structural signal model becomes a nonlinear one. A structural signal
model is time-invariant or time-varying, depending on whether the parameters of the
model are time-invariant or time-varying during signal processing. All these behavioral
aspects of the structural signal modeling will have a significam influence on the nature of
the analysis used in studying structural signal processing [16] Finally, the nature of the
input signal, which is independei:t of the function of the model, will also influence the
analysis. For example, a simple analytical model may suffice to reject a known tiequency
sinusoid interference other than that which would be required for enhancing speech signal
which is interfered with by other speech signals It is important to recognize at the outset
that the concepts that will be presented can be extended to the solutio. of many other

classes of structural signal modeling problems.
3.1 The Concept of Structural Signal Representation (SSR); Signal-system Duality

The basic of the concept of structural signal representation has been explained as “the idea
that a process under analysis is a particular realization of an ensemble of different trans-
formations of the same signal” [16]. Although the characteristics of different realizations
may vary from one to another, there are some intrinsic properties which are considered to
belong to the ensemble, as well as to each individual realization.

Structural signal representation is the subdiscipline where different realizations of the
same signal s (/, &) are combined into an ensemble by the application of a certain rule.
This kind of description is well-suited to clarify many important issues related to the rep-
resentation, prediction, and identification of signal processes For instance, the spectral
density S (Jw) of signal s (/, &) may be considered as a particular realization of signal
s () given by Fourier transform; the autocorrelation function RSS (1) of signal s (/) is
yet another real zation with a new independent variable-time-lag 7. Because the autocor-
relation function is the expected value of a signal s (/ multiplied by a delayed version of

itself, which is a quadratic transformation, it can be viewed as the expected value of a sig-
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nal y (/, T) that is obtained by nonlinear transforming s (/), [17]
T T
] = A' ’ + -) ( . - -)
y(i, 1) s(l 5)5\i=5

and the expected value of the signal is:

(3.2)

R (1) = E[y(i,7)]

(3.3)
In particular, if the autocorrelation function is zero for all T Rss (t) =0, the operation
becomes a null-operation, which characterizes a property of the ensemble § k (7). Similar
to classical signal processing, structural signal representation SSR may be classified as
either analog or discrete (based on the properties of independent variables).Depending cn
the properties of the operators, SSR may be categorized as either linear or nonlinear, time-
invariant or time-varying. There exists, however, one essential property which belongs
explicitly to SSR, which is parameter invaiiance (partial or complete).

To illustrate this property, consider a null-operator given by

p
z(= ) a;(t)s(t-i) = 0
i=0
(3.4)
where § P is a continuous sinusoid of arbitrarily chosen parameters (frequency, amplitude,

phase) and the model parameter value a; (?) depends on the signal frequencies [18]. A
null-operator transforms the input signal to zero independently of such parameters as
amplitudes and phases.

Another example is a null-operator which applies to any arbitrary signal with time-varying
parameters and transfer to zero is presented [19]. A constant envelope FM signal is one
example in this situation. When a strong FM signal, which the instantaneous phase a pri-
ori known, is burying a weak narrow band digital communication signal, one way of per-

forming the removal of this strong FM signal is to apply a nonuniform sampling and use a
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second order time-invariant AS-ARMA model. Applying a nonuniform sampling to the
input mixture will concentrate a wideband FM signal into a single spectrum line, and
transform a digital communication signal into wideband spectrum. A second order AS-
ARMA model will cancel the FM signal, while leaving unchanged the desired signal [18].
Another approach to this problem is to use a second order time-varying AS-ARMA
mcdel. An a priori knowledge of the instantaneous phase of the FM signal is used to com-
pute the model parameters. A perfect separation can be achieved if the true phase of the
FM signal is available. If the coefficients are computed by using an estimated phase, then
the parameters of the model deviate from their true values, and an ideal separation

becomes impossible.

3.2 Linear Time-invariant SSR: MA, AR, ARMA Modeling.

For decades, the time-invariant parametric model has been a subject of intensive study in
the field of signal processing. The properties and applications of these time-invariant mod-
els are well known.

The first known example of a parametric model-based signal processing is the model for
describing exponential by roots of exponential polynomials, first suggested by Baron de
Prony. Yule introduced the idea of the regression equation and Walker combined such a
representation with the LMS criterion for the analysis of damped sinusoidal functions cor-
rupted by noise. The result of this analysis has been the so-called Yule-Walker equation
which is very broadly used in regression analysis [20].

The Yule-Walker equation is the basis of some very efficient algorithms for high resolu-
tion spectral analysis. In recent years Moving Average (MA), Autoregressive (AR), and
the more general Autoregressive Moving Average (ARMA) models have been intensively
investigated.

If a signal can be represented by a linear combination of a complete set of independent
functions, such a set of linear independent functions constitute a system of fundamental
solutions (Wronskian-system) for a particular linear homogenous equation. Thus the sig-
nal may be considered as a solution of this linear homogenous equation. Such a homoge-

nous equation is defined as the MA parametric model associated with this signal. If the
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coefficients of this homogenous equation are fixed values, the parametric model is a time-
invariant one, if at least one of the coefficients of this model is time-varying, then the
model is a time-varying one

If a signal can be represented by a certain W-system, then the output of the parametric
model associated with such a signal is zero. Therefore such a parametric model may be

treated as a null-operator with respect to a given signal

When an AR (p) model is assumed for the Nsample input signals X5 Xo, ... X, the

prediction error signal ¢ (2, 1) is written by the following equation
p
e(p,n) = x(n) + z alx(n-i)
i=1

(3.5)
where @ is the prediction coefficient This process is using N sample of the output signal
to compute optimum coefficients, which are used in the model to estimate the current
input signal There are a number of methods to determine the model coefficients. All of

them target to minimize the prediction error

The theory of ARMA models has its roots in the early contribution [21,22] on AR models,
and has found many applications in connection with time-series prediction and identifica-
tion. These models are also called parametric models. The properties and applications of
these time-invariant models are well known. In a certain sense, time-invariant signal mod-
elling is equivalent to the problem of signal filtering based on knowledge of the Fourier

spectrum of signal under analysis

A model for a linear system, suitable for implementation on a digital computer, is usually
determined from the transfer function of the system H (f) , or the unit impulse response
h (t). If the transfer function H (f), is for a lowpass type system, the computer model is
easily determined directly from H (f) using one of the standard digital filter synthesis
techniques that map a transfer function into an equivalent digital filter Perhaps the most
popular synthesis techniques are those that yield impulse-invariant, step-invariant, and
bilinear z-transform filters. All of these synthesis techniques involve approximations,

thus, it is important that the approximations be understood if the simulation user is to have



confidence in the simulation result.

A complex envelope signal representation is generally used for bandpass signals If the
system is a bandpass system, the unit-impulse response of the system will be a bandpass

signal The complex envelope is usually expressed in rectangular form

x(f) = x4 +jx, (1)
(3.6)

where X d(t) is the direct (or real) component of x (f) and x~q (1) is the quadrature (or
imaginary) component of X (). As such, that unit-impulse response is usually represented

by the complex envelope model of the bandpass system, defined by,
B () = hy(n) +jh, (0

3.7

The complex envelope of the system output _;/ (1), is the convolution of the complex

envelope of the input, represented by Eq. 3.6, and as given by Eq.3.7. This yields

() = [xg+ix, (01 @ Uy () +jh, (1]

(3.8)
where ® denotes convolution. The preceding expression can be written as:
YO = [5y() ®hy (1) -x, () ®h ()]
(i xg () ®h (1) +x, (1) ®hy(D)])
(3.9)

This yields the structure shown in Figure 3.1 Since the functions hd(t) and hq (1) rep-
resent lowpass signals, computer models for these signals can be realized using the same

techniques described in the preceding paragraph. Two filters will be necessary, one for
h; (1) and one for hq (1).
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Figure 3.1 Complex envelope representation of bandpass linear system.

Many of the linear systems used in a communication system involve a filtering operation.
Since filters have memory, past input or output samples are used in forming the current
system output. Efficient filtering routines are therefore essential elements in a simulation

program.

3.3 Linear Time-varying SSR

It is a well-known fact that an ideal separation of signals by time-invariant filtering may
be achieved only if the Fourier spectra of the superimposed signals are located in non-
overlapping frequency ranges. However, in most signal processing procedures, this is not
the case. It is an established fact that a time-invanant model is optimal for the processing
of signals with rational Fourier spectra. However, if the Fourier spectrum of a signal is not

rational, only an infinite order time-invariant parametric model can be associated with
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such a signal. On the other hand, it is possible to find a finite order time-varying paramet-

ric model to represent a signal with nonrational Fourier spectrum

In the separation of signals for which the Fourier spectra are overlapping, using a conven-
tional linear time-invariant filter becomes almost an impossible task In contrast, a linear
time-varying structural signal representation is considered in order to provide an effective
model for such signals separation. Since the process of constructing a time-varying para-
metric model is essentially independent of the knowledge of the Fourier spectrum of the
input signal, such a model may be used for the separation of a certain class of signals with

overlapping Fourier spectra.

In SSR, the model coefficients, synchronization and being time-varying are derived from
the input mixture. In some cases the computation of coefficients of such a model could be
performed by applying the input mixtirc to a phase-locked loop These coefficients are
used to design a specific filter based on a structural signal representation of a signal under

analysis.

The straight forward time-varying structural signal representations are MA, AR and
ARMA models. For instance, a nonstationary ARMA process () () may be represented

by the following difference equation,
p q
o) = e(f) + Z a, (N0 (t-iy+ Z b () r(t—i)
i=1 i=0
(3.10)

where @, ( t) and bi (t)are time-varying parameters of AR and MA models respectively,
and e is a null-operator residue. Figure 3 2 illustrates a time-varying ARMA model,
which may be used in a variety of problem, such as signal synthesis, spectral analysis
(spectral estimation), signal classification, and data compression [23] The above model
becomes an AR model if all the coefficients of an MA model are zero, hl (1) =0
Assuming that the given signal can be represented as the output of the system of Eq.3 10,
a standard problem is to estimate the parameters @, (), bi (¢) and the variance of ¢ p
from a knowledge of N output samples. A reasonable method of estimating these quanti-

ties is to use the minimum mean-square error (MMSE) criterion
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Figure 3.2 Time-varying ARMA model

3.4 Nonlinear Systems and Nonlinear SSR

Nonlinear system models are common in many areas of scientific inquiry, such as physics,
biology, and engineering. A common practice is to determine an appropriate model for a
particular system, and then to design and carry out experiments to determine the model’s
parameters.

A popular approach to the identification of nonlinear dynamical systems from input-out-
put measurements is to model the system in terms of Volterra series, which is a generaliza-
tion of the power-series (or polynomial) representation of a memoryless system to systems
with memory, and then to identify one-by-one the Volterra kemels, each one of which
characterizes one term in the series representation. The first kemel is the impulse response

of the linear part of the system. The second kernel is a two-dimensional generalization of
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the impulse response of the quadratic part of the system, and so on. Common approaches
to identifying the kernels are based on cross-correlation measurements between the
unknown system output and specially designed nonlinear functions of the system input A
well-known example is the Volterra series expansion. Unfortunately, this expansion is

computationally expensive and therefore rarely used.

» Models for Nonlinear Systems

Nonlinear and time-varying systems present special difficulties when bandpass models for
these systems are needed. While complex envelope models exist for linear, time-varying
systems, there is no guarantee that a complex envelope model exists for systems that are
both nonlinear and time-varying. One must rely on approximation methods to model these
devices.

Little can be said about the most general class of time-varying, nonlinear systems. The
only method that ensures that these systems can be accurately modeled is to translate the
complex envelope back to a bandpass signal and pass it through an appropriate device
model.

To develop more computationally efficient models, one must make assumptions about the
device model. There are also a variety of models for nonlinear but time-invariant systems.
There is a special class of nonlinear devices that have very short, or no memory. Inatrue
memoryless device, such as a square-law device, the output is only a function of the cur-
rent input. If a single sinusoid is placed into these devices, the output will have terms only
at the harmonics of the input frequency, and if the bandpass filter follows the memoryless
nonlinearity, all but the first harmonic term can be removed. Thus, a sinusoidal input pro-
duces a sinusoidal output, where the amplitude of the output may be a nonlinear function
of the amplitude of input. This type of device lends itself well to the complex envelope
representation.

Another class of interesting systems have “short” memory, i.e., the time constant of the
nonlinearity is long with respect to the carrier frequency, but short with respect to the mes-
sage waveform. These systems can be called complex envelope memoryless systems, or

envelope nonlinearities. This is because the complex envelope of the output can be
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approximated by the memoryless, but nonlinear, function of the complex envelope of the
input. As with the truly memoryless nonlinearity, the complex envelope of the input is
decomposed into its amplitude and phase. The amplitude is both passed through a nonlin-
ear device and used to alter the phase of the signal. If the input to the (assumed memory-

fess) nonlinearity is:

x(1) = A(t) cos[2nf 1+¢ ()]
(3.11)

then the output is represented by,

y(1) =f[A(t)]cos {2nf t +g[A()]+¢ (D)}

(3.12)
The function f[A(f)] is known as the AM-to-AM conversion characteristic and
g[A ()]s known as the AM-to-PM conversion characteristic. For a constant envelope
of x (#), A(2) isa constant and thus f[A(#)] and g [A(f)] are constants. This

explains the interestin constant envelope modulation techniques.

¢ Nonlinear SSR

Due to the severity of signal interference, structural models may respond nonlinearly
when subjected to these signal hazards. In addition, the interference characteristics reveal
nonlinear properties and consequently have to be modeled by a nonlinear structure. MA,
AR, and ARMA models are successful models of linear systems because they allow a
complicated system to be represented in terms of a small number of parameters [24]. This
statement applies to nonlinear versions of these models. A system with an infinite number
of nonzero infinite length Volterra kernels could possibly be represented with a small
number of parameters using a nonlinear version of the AR model.

A nonlinear MA model is alinear MA (all zero) model with nonlinear feed-forward paths.
Such a model has a finite number of non-zero Volterra kemels (high order impulse

responses) and the kernel sequence is also finite, i.e, the model has a finite impulse
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response (FIR). Similarly, a nonlinear AR model is defined as an all pole linear AR model
with nonlinear feedback. In this case, the model has an infinite number of non-zero Volt-
erra Kernels and each of these kernel sequences is infinite in general. The nonlinear AR
model has an infinite impulse response (IIR) A linear system with nonlinear feedback
loops is called feedback linearization (FBL) because nonlinear feedback transformations
can map such systems to linear systems by redefining the nonlinear feedback as input, so
that the system appears to be linear.

The linear AR model is the most popular approach to time series modeling when only out-
put data is available. This is because accurate estimates of AR parameters are found by
solving a set of linear equations [25]. The nonlinear AR model also has the very desirable
property that all parameters, even the nonlinear ones, are found via linear equations
Applications of the nonlinear AR model results indicate that this data may be represented
by a nonlinear model that contains fewer parameters (and less computations) than a linear
model representing the same data.

Nonlinear ARMA models are an extension of ARMA models where the sampled response
of a system is modelled as the weighted sum of the previous input and response values
plus nonlinear combination of these input and response samples. The nonlinear differen-
tial equations are mapped to nonlinear ARMA models that relate the sampled input to the
sampled response of a nonlinear system. Briefly, a nonlinear differential equation of the
form [26]:

Za,d, +ZB y(' = x(

(3.13)

is divided into its linear part and nonlinear elements are transferred to the right hand side
and grouped with input.
i
4 23 0}
Where idt is the sum of linear difference functions, and Y is the sum
i i
of nonlinear functions. Animpulse invariant mapping of the linear part of the model yields

an AR model. Nonlinear ARMA models can be obtained by cascading a nonlinear or lin-
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ear MA into a nonlinear or linear AR model with at least one section nonlinear. Also,
since nonlinear or linear cascades are not commutative, reversing the order (AR into MA)
produces another set of nonlinear ARMA models.

A nonlinear system could be time-invariant or time-varying depending on whether the
parameters are time-invariant or time-varying; the system is to be one with memory if the
input at an earlier time will affect the output at a later time, or memoryless if the outputis

determined from the instantaneous value of the input signal.
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CHAPTER 4

Structural ARMA Modeling and Separation of Frequency Overlapping Signals

Separating signals from other signals whose spectra overlap the entire bandwidth is of
major interest in digital signal processing. In this section the concept of signal subspace,
time-varying null-operator and its property is introduced. First, the concept of signal para-
metric modeling is established by exploring the relationship between a homogeneous
parametric model and its fundamental solutions. If a signal can be represented by a linear
combination of a complete set of independent functions, such a set of linear independent
functions constitutes a system of fundamental solutions for a particular lizear homoge-
neous equation. Thus, the signal may be considered as a solution cf this homogeneous
equation. In 1815 Hoene Wronski a Polish mathematician, published his celebrated mem-
oir, “Philosophie de la Technique Algorithmique”, where he: gave the following funda-
mental result (as presented in [27]):

Let {cp,.(t)},_ ]:vl te R, be asystem of any N functions which together with their first
N-1) derivatives are continuous. The necessary and sufficicnt condition for such a sys-
tem of functions {(p1 (), 9y o, ..., O N (?) } to be the linear independent solutions of

the homogeneous equation is that a Wronskian determinant be nonvanishing at any instant

of time.
e 0 0 ey
¢ () @'y (1) e ()
MZ(q», .00, gy) =) A
di [N=-1] [N-1] N=1]
_(pl (l) (pz (') (PN (l)_j

(4.1)
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In 1880, /- C'asorati [28] presented a discrete version of Wronskian for a system of dis-
N

crete functions {p, (k)

kel
’ =

BRG 9, (k) oy ]
’ Do, (1) Da, (k) Dy, (k)
Mj,\;((ol (), (k), ...(p_v(k)) = ’ ’ ‘ #0
N-1 N-1 N-1
D @1 (k) D" p2(k) .. D @y (K)
(4.2)

where [ denotes a shift operator, Dm(p () =9, (k—m).

N

Later, Bortolotti extended his idea to a general functional setting. He stated if {¢, (1)}

i =

be a system of analytic functions having a common domain of convergence, and O be a
one-to-one mapping functional operation, the necessary and sufficient condition for such a
system of functions being associated with a homogeneous equation with coefficients with

respect to () is

- -

®, (k) @, (k) ®y (k)
N O (1) Ow, (k) Ogp,, (k)
M()((pl (l\)x‘(’z(l‘)‘ “PN(k)) = N ¢0
N-1 N-1 N-1
0" 1) 07 o2tk .. 07 ey (k)
4.3)

These three works provide a concrete base in the theory of linear squations, and a mathe-
matical tool for linear structura! signal processing. For a system of N linearly independent

functions, there exists a unique monic homogeneous equation of order N given by:

] -

V-l
0 "o (“’l (1, @y (15 @) (1), @) (D), ...,(pN(t)x(l))
Uo(¥) = v =0
W()(\pl (’)' (pz ([), veey (P‘\,'(t))

(4.4)

N+

where W 0 (...) is an augmented Wronskian. Such a homogeneous equation also
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defines a linear operator, which can be expressed as a linear homogeneous equation in the

form:
[1 +ta ()0+a, (D0 + Lotay(N0 ]x(t) =0

(4.5)

where,

1“"1M‘g(q’l(')’(pz(')""""l(')"pl+1(’)~---"PN(!))
a () = (-1 ¥
0 (9, (0.0, (0, o0y ()

(4.6)

. +1 . . .
and MJ(\), (...) is the minor of Wz with respect to the Laplace expansion of x (¢ .
Bortolotti’s result is of special interest, since it provides a mathematical support to struc-
tural signal processing, where the operator O can be treated as an arbitrary chosen build-

ing block.
4.1 Signal Subspace and Time-varying Null-operator

Given a linear homogeneous equation, one can find a system of fundamental solutions
such that the Wronskian of this system of functions constitutes a positive function. An N-
dimensional W-system of function spans an N-dimensional signal subspace, {2 . A linear
span of W-system of functions {¢, (k) } " constitutes an N-dimensional signal space. Such
a signal space is a null singularity of ti;r;e‘-varying null-operator. An Nl -order time-vary-
ing null-operator is defined by the homogeneous equation.

Consider two signals that belong to two different subspaces €2 |, and QZ’ and which have

the following properties:

X (k) e Q, S(k) e Q,

(4.7)
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I QuQ, =0

1 QnQ, =0
(4.8)
Consider that the above two signals are transmitted simultaneously using a single path and
are received at the destination. If the two signals’ Fourier spectrum is not overlapped, con-
ventional techniques can be used to filter the interest signal. However, in most cases, and
in this application, the two signal Fourier spectra are overlapped. If the interest signal is

S (k), one must build a transparent operator () | suchas:

I O [X(K)] = 0

I 0X() +S(] = SK)

(4.9)
If a signal can be represented by a certain W-system, then the output of the parametric
model associated with such a signal is zero. Therefore, such a parametric model may be
treated as a null-operator with respect to the given signal. The relationship between a null-
operator and its null singularity is a very important key to the parametric modeling of a
signal. The non-harmonic system usually represents a linear time-varying model. The
basic approach to carrying out separation of signals whose Fourier spectra are overlapped,
is to build a special time-varying transparent operator. The time-varying transparent oper-
ator consists of a time-varying null-operator and time-varying anti-null-operator. The first
objective of Eq. 4.9 can be accomplished by a time-varying null-operator. However, to ful-
fill the second objective one needs both operators. The suppression process distorts other
signals which do not belong to the signal subspace QI . In order to satisfy our second
objective one needs to compensate the distortion in signal subspace . 25.
The transparency property of a linear operator Q1 is defined by Eq. 4.10, which states
that if a signal does not belong to a subspace, where a null-operator is modeled, it will pass
through the model without change. The distortion, which is caused by the null-operator, is

compensated by the anti-null-operator.
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410
In the case of a discrete time-varying null-operator and anti-null-operator, where this
study’s interests are focused, the transparent operator may be expressed by Moving Aver-
age (MA) and Autoregressive (AR) models. The moving-average model suppresses all the
signals belonging to subspace Ql and constitutes the so-called anmihilation property,
and the autoregressive model recovers those signals which do not belong to the sub-
space Q, leading to the fransparency property. Such a model that possesses the annihila-
tion and transparency properties may be represented in the cascaded form, which can be

written as:

Hlha (@) = LV (@R ()

4.11)
where q_1 is a delay operator. For time-invariant cases, this model represents a conven-
tional digital filter, where the zeros are created by the MA part and the poles are created by
the AR part. The zeros are subtracting energy from the input signal while the poles are

adding energy in a very narrowly defined range of frequencies to the output signal.

Annihilation  HUV () B () X (41) = 0

Transparency H () HIN (1) S(q71) = S(q71)

(4.12)

It is seen that a time-varying null-operator fulfills the first requirement. But this achieve-
ment is shared with the expense of distortion to other signals which are not constituted as

a null singularity. With that in mind, to ensure the second objective, an anti-null-operator
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(AR model) is considered. An anti-null-operator associated with such an MA model is
dedicated to compensate the distortions which are created by the use of a time-varying
null-operator.

The necessary and sufficient condition for a time-varying operator Q1 to be transparent
to any signals other than its null singularity is that the time-varying anti-null-operator be

perfectly symmetrical to the time-varying null-operator.

Thus,

HEOL (@) (X () +S@} = S(g)

4.13
The second order time-invariant null-anti-null-operator maybe presented as:
y(k) +ta (k)y(k-1) ta,(k)y(k-2)
= x (k) + bl (KH)x(k-1) + b2 (k)x (k-2)
(4.149)

where, a, (k),a, (k),b, (k), and b, (k) are parameters of the operator. If these
parameters are constant for all , the operator is a time-invariant; otherwise, it is a time-

varying operator.
4.2 Input of the Model

Figure 4.1 illustrates the application of the processing being considered based on the null-
anti-null-operator as applied to the problem of interest: separation of data-communication
and speech signals. The digital communication signal is a quasi-periodic signal, while the
speech signal is a broadband random process. It is assumed that the input signal occupies
the whole bandwidth of the channel. It is true that conventional techniques, such as apply-

ing a time-invariant rilter to perform this task, is fruitless.
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Figure 4.1 Proposed signal separation model

The present work is concerned with one specific example of this problem. When conver-
sation is on in a particular telephone channel it is obvious that this specific channel is not
available for other purposes, unless bandwidth or time allocation sharing techniques are
applied. This is because the entire frequency band is occupied by the speech signal. If one
wants to use the same channel simultaneously for other purposes, for example data-com-
munication, one should find a way to retrieve the signal without losing any information.
By exploiting the properties of structural communication signal, the present work shows a
technique which can separate a digital communication signal that is mixed with a speech
signal.

Let 7 (t) denote the input to the model, which is the sum of a digital communication sig-
nal x (t), a speech signal s (¢), and a background noise # (), which is expressed as the
following:

r(t)y =x(t)+s() +n()
(4.15)
where x(f) = A-cos [ (¢) +¢ .
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Suppose at the outset that ¥ (¢) is known and A and ¢ are unknown. Applying the time-
varying MA model that represents a null-operator associated with x (¢) to the received
signal will reject a quasi-periodic signal X (), and obtain s () + n (¢) at its output
(where $(¢) and £ (t) are distorted versions of s (f)and n (£) respectively). In the
analysis of communication system, given a wave form x (1), one shall be interested in
normalized power, which is the quantity )c2 (¢), where the bar indicates the time-average
value. In the case of periodic waveforms, the time averaging is done over one cycle.

For a sine wave of amplitude A, the power is simply calculated as

= - 42
Ps 2A
(4.16)
The power density spectrum PD.S (m), on other hand, can be calculated as:
PDS(m) = ~1X(m))2
S(m) = wlX(m)
@.17)

where, X (m) is the Discrete Fourier Transform (DFT) of the sequence of N samples of

the signal x(n):

N-1
_j21cmn
X(m) = Z x(n)e N
n=20

(4.18)
The BPSK signal, which represents a digital communication signal, has one fixed phase
when the data is at one level, and the phase difference is T when the data is at other
level. This change is instantaneous in time, which leads the spectrum of a digital commu-
nication signal to widen and overlap with the speech spectrum. The instantaneous phase of
the BPSK signal is
¢k) = o k+b nlU(k-nT,)

(4.19)

where o  is the carrier frequency, Tb is the symbol duration, and U( - ) is a unit



step function.
The phase change is considered to be at the zero crossing point so that the value of the

BPSK sample is zero at this instant. To guarantee this condition the phase must satisfy:

mod [w nT,] =0
(4.20)
If the present input sample is a null singularity of the null-operator, then the output will be
zero. The sampling of a pure sinusoid is a good example. The parameter of the time-

invariant null-operator can be determined by applying a pure sinusoid signal of frequency

o, in the following equation:

z(k) = x(k) +tax(k-1) +x(k-2) =0
4.21)
If x(k) = A cos(w o T @ . then the transfer function associated with this operator

becomes:

—j® -2jw
1+ae” "+e =0
(4.22)
From equation 4.22 the null-operator coefficient is extracted:
1 +e72%
a = -———— = -2005Q,
e J%0
(4.23)

The input signal, whose spectra are shown in Figure4.1, represents a sum of a speech and

a digital communication BPSK signal.
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Figure 4.1 Input of the model: Spectra of speech mixed with BPSK signal
4.3 Transfer Function of the Null-anti-Null model.

In general, the input-output relationship of the second order time-varying null-anti-null-

operator may be expressed as:
i 2 §

1+ Y b, (m)z"

n=1
Ym = 3 x (m)

—k
1+ a,(m)z
L k=1 d

(4.24)
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In order to satisfy the transparency property put  a = b k for k=12

2 i
~—H
1+ z a, (m):
n=1

?

x(m)

v |l

y(m) =

1 + Z ak(m)z‘k
L k=1

(4 25)
Such a second order canonical form defines the linear time-varying transparent operator
Ql [ - ] Itis shown that a physically implementable anti-null-operator cannot be per-
fectly symmetrical to a null-operator. The anti-null-operator in fact is a function gencrator,
such that its impulse response is a causal function. The ideal transparency of the perfect
symmetrical operator Ql [ - ]is based on the assumption that the system operates in
the steady-state. Obviously, this is the ideal case: since any physical system has to be
causal, once the input is applied to the system at a certain instant, the system contains pre-
viously unknown initial states which will produce an undesired residual output. In what
follows, the causal transparent operator Ql [ - ] cannot provide ideal transparency
within a short-time. This can be attained by introducing a certain strategy to control the
symmetrical nature of operator Ql [ - 1 The one-sided, almost symmetrical operator
Q% [ - ] isdefinedas:

2 2
ym[l + akak (m) k| = [ 1+ Z a, (m) z7k X
k=1

LS

(4.26)
where real valued coefficient ¢ < | is called the symmetry factor. Thus the explicit

expression of an AS-ARMA model may be written in a difference equation form



y (k) +oa, (m)y (k-1) +ala, (m)y(k-2)
= x(k) ta,(m)x(k-1) +a, (m)x(k-2)

4.27)
A one-sided, almost symmetrical transparent operator (AS-ARMA) is built with a null-
operator, which is modelled on Q] , and an almost symmetric anti-null operator. The anti-
null operator reconstructs those signals which are distorted by the null-operator and do not
belong to Q] . When the input signal is a BPSK signal, the residual signal from the null-
operator is found at synchronous time instants.The residues that appear at the input of the

AR part are written as:

Ax(kto) = —ZCos(mOkto)
(4.28)
where kt is the synchronous time instants.
0

The response of the AR part for this particular input signal sample is a damped sinusoid

with frequency 0, has a form:

Ok = —Zakcos (0yk)

(4.29)
If the symmetry factor is a fixed value o < 1, then the residual from the BPSK signal
approaches zero Ax () — O as observation time increases.
When the symmetry factor approaches unity o¢ —> 1, the output signal from the above
residual stays for a longer time. The time duration (L), which takes this output to be zero,
is of interest when system instability is considered. It is obvious that if o « 1 , the output
signal damps over a short period. On the other hand, selecting the symmetry factor to be
small does not provide the needed fransparency. Such a transparency becomes almost
ideal if the symmetry factor approaches unity, i.e. o0 = 17, A trade-off to this problem is
made by choosing the symmetry factor near unity and using different algorithms to elimi-

nate the nonlinear noise which is created at synchronous time instants.
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CHAPTER S

Transparency of the AS-ARMA System

In the previous chapter, the second order ARMA model that satisfies the null-singularity
was introduced. It was shown that a symmetrical anti-null-operator can provide an ideal
transparency, however, it is sensitive to undefined initial conditions. If the symmetry fac-
tor approaches unity, the model becomes almost transparent. However, the null-operator
residues which happen at synchronous instants create problems for the signal reconstruc-
tion and detection models. To fulfill the almost ideal transparency property of the model,
using a one-sided symmetry factor leading to an almost symmetrical anti-null-operator is

introduced.
5.1 Ambiguity at Synchronous Instants

Consider a BPSK input signal sample when phase changes occur. This input signal sample
does not satisfy a null-singularity of the MA model. The input sample at this particular

instant is written as:

x(k) = ej(m0k+1t) _ _e/'wok

(5.1)
where k = me andm =12,.n
Unless an extra blanking algorithm is used at this synchronous instant, the MA model cre-
ates an undesired impulse at its output, which will cause transparency imperfection and
may be thought of as an “instability” of the AR system. The duration of this instability
depends on the proximity of the symmetry factor value to unity. If the symmetry factor is
unity 0 = 1, these spikes which are generated at the output of a moving-average model
at the synchronous instants will create additional sinusoid signal with frequency @ ot the
AR output. In Figure 5.2 the autoregressive model response to these spikes is shown for

two specific symmetry factor values when a <1 .
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Figure 5.2 The model response to phase changes of BPSK signal




Table 5.1 shows the input output relation of BPSK signal phase keying at & = m Tb

instants.

" k INPUT (BPSK) | OUTPUT(SPIKE)
+ mT—1 +e TOqimh 0

+ T, +eimT -2cos0,,

-1 —pJTCopimT; 0

Table 5.1 Input-output relations at synchronous instant
5.2 Blanking Algorithm

For a given AS-ARMA model, the MA part is always stable. The stability problem arises
only from the AR part. The MA part of the AS-ARMA model creates spurious spectral
components when a digital communication signal changes its phase. Unless these spikes
are not suppressed by an extra blanking algorithm, they will have an enormous effect on
the signal detection and the speech reconstruction process. The first blanking algorithm
approach is to replace every MA output sample at the synchronous point with zero. This

blanking algorithm is called a deterministic blanking algorithm.

U (@) (X (gD |, =0
(5.2)
where k = me andm =12, n.
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Figure 5.3 Nonlinear blanking operation

If blanking algorithms applied at each synchronous point, one succecds in eliminating tne
BPSK residual where it exists. However, since the speech is superimposed on the BPSK
signal, blanking operations at synchronous points will eliminate the speech components
too, or equivalently, such a nonlinear operation will induce a new noise at the input of

h"4[ lle] (q~1) at synchronous points.

5.3 A Quasi-deterministic Periodic Blanking Algorithm

A close examination of this induced noise, which is generated at the output of the MA
mogel, leads to two equivalent Time-Varying AS-ARMA models that cancel fully the

BPSK signal. These models can be represented as the following:

y (k) +oa(m)y(k-1) +§ (k) aly(k-2)
=x(k)y+a(m)x(k-1) +C(k)x(k-2)

or

y(k) +C(kyaa(m)y (k-1) + oy (k-2)
=x(k) +C(kya(m)x (k-1) +x(k-2)

(5.3)

59



where

sgn {b 1 k = nT,

b
C (k) = [ n'n-
1 otherwise

5.4)
The above models transform the input BPSK signal into a pure sinusoid signal with a con
stant frequency . The transformation is made by counteracting the phase change at
synchronous instants which is caused by the data change from one level to the other. If the
input is a pure sinusoid signal, a time-invariant MA model will cancel it perfectly
Theoretically, such an ASTV-ARMA model can perform a perfect separation if the infor-
mation §{b n} is a priori known. Each system is quasi-deterministic and periodically
time-varying. Therefore, if sign change is done to the ASTV-ARMA model parameters at
synchronous instants, and the consecutive digital communication input signal { h" Ydoes

not change sign, the switch mechanism of the AS-ARMA model will introduce additional

noise as the nonlinear blanking operation.
5.4 Trajectory of AS-ARMA Model Parameters

Consider the trajectery of the system coefficients where BPSK, MSK and FSK modula-
tion are used. Figure 5.4 illustrates the model coefficients state within the bit duration The
ASTV-ARMA model coefficients, which are used for suppression of the BPSK signal, are
jumping between two points at synchronous instants When an ASTV-ARMA modc! is
used to suppress MSK or FSK signals, the coefficients are constantly changing with time
If the information source {b"}obeys a certain Markov model, then the optimal periodical
AS-ARMA model should be a Markovian one.

If the model is time-invariant, the two coefficients are constant (Figure5.4a) The time-
invarian' MA model is capable of eliminating a pure sinusoid signal, whose frequency
determines the model parameters. A perfect blanking of a BPSK signal is possible if the
phase change of the modulated signal is already known This a priori knowledge changes

the sign of the model parameters a: synchronous instants, so that a BPSK signal will be
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transformed to a pure sinusoid one (Figure 5.4b). For an MSK input signal, the coeffi-
cients of the model move from cne point to the other to track the input signal frequency.
The input signal is a constant amplitude with a continuous frequen :y change, which deter-
mines the trajectory of the model coefficients. Figure 5.4c shows how the continuous
phase change is translated into the model coefficient during the bit period. FSK modula-
tion for binary data transmission uses two frequencies If the information bit is at one level
it uses the first frequency, and the other when the information bit is changed. Figure5.4d
shows the coefficients state. At a synchronous point the coefficients might jump from one

point to the other if the transmitted data level changes.

BPSK
Time-invariant ARMA ASTV-ARMA
a, (k) a )
at instant
me
@ @ < or »
(a) a, (k) (b) a, (k)
MSK FSK
ASTV-ARMA ASTV-ARMA
k
a (k) during [mT,, (m+1)7,) a (k) at instant
me
(c) a, (k) (d) a, (k)

Figure 5.4 Trajectories of AS-ARMA model coefficients
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CHAPTER 6
Detection and Estimation of Signals

In the previous chapters an AS-ARMA model is presented, which is used to extract a use-
ful signal from a spectrum overlapped mixture. This technique exploits the property of
structural signal representations, that is, a null-operator is modeled to suppress certain sig-
nals that belong to a subspace where a null-operator is modeled In the present chapter
sources of noise which affect the detection of a digital communication signal and the
reconstruction of a speech signal are investigated. There are two problems to consider one
is the signal detection problem when a weak digital communication signal is imbedded in
a speech signal and channel noise, and the other is the problem of signal estimation when
a weak speech signal is imbedded in an interfering digital communication signal and chan-
nel noise. The process of separation rejects the digital communication signal from the

received mix by using the null singularity property of the communication signal
6.1 Detection of a Weak BPSK Signal

To evaluate the effect of the system described in the previous chapters on the digital com-
munication signal, the bit-error-rate of the digital communication signal detection must be
computed. In simulation the received signal is assumed to be composed of many indepen-
dent modulated sine waves, whose sampled amplitude has an almost Gaussian distribu-

tion. The received signal » (m, k) may be expressed as:

r(m k) = A(m, k) JOmR) +p (k)

(6.1)
where, A (m, k) is the required modulated digital communication signal amplitude, and

n,,, (k) is an additive Gaussian noise.

The modulated BPSK signal is completely cancelled by an MA null filter and extra blank-
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ing algorithm The nonlinear blanking zeros the output of the null-operator, which occurs
at the synchronous instant to insure a complete rejection of a digital communication sig-
nal This process will introduce a nonlinear distortion to a system, when speech samples
exist at synchronous instants The other distortion is caused by the value o' the symmetry
factor During the separation process, some input noise samples also leak through the sys-
tem. Two questions are posed to this point' (1) how does the separation process affects the
overall SNR of the digital communication signal detector? and, (2) how is the speech qual-
ity degraded compared to the original speech signal” The overall AS-ARMA system out-
put noise is written as
By (k) = nMt (k) +ng (k)

(6.2)

where n% (k) is the leakage of the input Gaussian noise (response of a linear system with

transfer function 1 -7/ (¢! for a # 1 to the input Gaussian noise 1,y (k)), and

ARMA
n (k) is the response to a nonlinear distortion, which is created during nonlinear blank-
ing operation This nonlinear noise, which is seen at the output of the AS-ARMA system
will affect the detection of a digital communication signal as well as the reconstruction of
a speech signal In order to verify the system performance one has to measure the bit-
error-rate (BER) and evaluate the quality of a speech signal. The accumulation of enough
enors to accurately assess the above system can take a considerable amount of time. To
accurately measure the error rate of a digital communication signal, one must record a
tairly large number of errors. The proposed method for determining an upper bound on an
error rate is to require the system under test to be error-free for a measurement period T.
The longer the T is, the lower the error rate boundary In order to determine the upper

bound of the error rate, the type of noise. which confuses the decision of the detector, is

analyzed
6.2 Leakage of Additive Gaussian Noise

The power spectrum density of the leakage output n?‘] (k)is defined by the shaded area of
the system transter function f{‘R"A (1), which is shown in Figure 6.1 It is also well-
known that the stationary Gaussian noise passes through a time-invariant linear system
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that remains Gaussian.

Normalized Frequency

Figure 6.1 Leakage output of Gaussian noise

The variance 0'121 of the leakage noise of AS-ARMA model ";ll (k) ts estimated by
(23]

T
> cov (n% (R)} = J'[l_ 1+a4m+612@ 2}02‘%‘0
0 1 +aae/® + q2e/20
(63)
Eq. 6.3 can be further expressed as:
n
2 . i~ 12 . n 12
cJ‘ |1 + a0 d/® + a2e/29]” _|1 + aef® + o/29)] o
= — )
- . 2
0 |l+aael“’+a2e/2ml
(6.4)
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From this a closed form expression of Y% is obtained:

+4)2+B
(cosw ) d

T
Ya=02|:a2—l]j‘
Tl «? 1Y (coso+C)2+D

0

where,

afo(l+a?)-2]

(6.5)

(6.6)

4(a2-— 1)
. al1+ @2-na?+a?@2-2)]-a?(@®~20+2) " (a-1)
16 (a?-1)
¢ = a(l +0L3)
-
D= 4[l+a2(a2+a2—1)] —a2(1+oc3)2

1602
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The PDF function of the output noise, which appears at the digital communication signal

detector is written as

T ) =1 (2) 84y, ()

6.7
The PDF function f: g{;}" (2) isan even symmetry function, and the BER computed at
the output AS-ARMA model is given by.

e8]

BER = [fT07T4L () dz
I

(6.8)
In order to minimize the BER of the digital communication signal detector, one should
minimize the variance of the model noise. The rnodel notse depending on & is shown in
Figure 6.1. There must be a unique symmetry factor @ = a* such that the BER for the
BPSK detection attains the minimum value, i.e.,

min {BER}
as

(6.9)
The calculation of the SNR usually requires that the waveform of interest (the test wave
form) be compared to a “desired “or “ideal” waveform (local replica). The desired wave-
form is often chosen to be an amplitude-scaled and time-delayed version of the informa-
tion-bearirg waveform since amplitude scaling and time delay do not contribute to
waveform distortion. The test waveform is then compared to the desired waveform and
that portion of the test waveform that is orthogonal to the desired waveform is defined as

noise. For this case the SNR estimate becomes [7]:

SNR =

l-p

(6 10)
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where p represents correlation coefficients of model output and desired waveforms.

The gain of signal-to-noise ratio {SNR} in AS-ARMA model output is directly derived

from the model output noise, and is illustrated in Figure 6.1:

_ SNROUT
GSN SNR

IN
(6.11)

The SNR gain vs. the symmetric coefficient for Tb = 10 and Tb = 100 is shown.
When « is near to zero the model acts as a low pass filter, and when o approaches the
unity the AR part becomes unstable. The simulation presents the output SNR as a function

of a symmetry factor. The optimum value of the symmetry factor is near (0.8-0.9).

_l 2.2 T T A\ T
G SNR 2

Figure 6.1 Effects of the symmetry factor to SNR

Figure 6.2 shows an upper bound on the bit-error-rate (BER) of a digital communication
signal detection for three different schemes: (1) Signal detection with no signal separation
process, a weak digital communication signal mixed with a strong interference is applied

to the detector. (2) Signal detection with carrier suppression but blanking at synchronous
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instants is not applied: A null-operator is used to suppress the BPSK signal, but an extra
blanking algorithm is not used at synchronous moments. The nonlinear noise created at
synchronous instants degraded the detection performance (3) Signal detection with pre-
processing of si__nal separation: when a BPSK signal is canceled using a null-operator
with sign change algorithm, the detection has the lowest upper bound of bit-eror-rate.

Each signal processing model is simulated for different bit rate to estimate the BER. All
three signal detection processes exhibit reduction on an upper bound when the bit rate

decreases. It is obvious that a signal-to-noise ratioimprovement is achieved by signal sep-

aration.
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Figure 6.2 Bounds on the error probability and signal to interference ratio
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The simulation is used to establish the test waveform for the system under study. As a sim-

ple example, if the complex envelope of the test waveform is:

0=A-%(t-1) +n())
(6.12)

the SNR is AZF-X where Px and Pn are the signal and noise powers respectively. In
most applications’,’ the values of 4,6, 1, Px’ and Pn must be estimated before the
SNR can be determined. Simulation can assist in this undertaking,

In digital communication systems the probability of demodulations error Pe’ is typically
the prime performance measure. For simplicity binary communication systems will be
considered and Pe will be referred to as BER. The techniques discussed here can typi-
cally be extended toinclude M-ary communication systems.

To minimize the BER, increasing the signal power is not always a solution. Figure 6.3
shows that for large values of SNR the residual signal from the MA model increases dras-
tically so that the AS-ARMA model does not have any role in BER reduction and the BER

remains constant.
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Figure 6.3 Increasing SNR beyond limit becomes no effect to BER

6.3 Reconstruction of a Weak Speech Signal

Processing of a speech which has been degraded due to the interference (digital communi-
cation signal) is the focus of this section. Most systems directed at processing speech in
the presence of a background noise rely, at least to some extent, on a model of a speech
waveform as the response of the vocal tract. This system is represented as a quasi-station-
ary linear system, to a pulse train excitation for voiced sounds or a noise-like excitations

for unvoiced sounds.
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A commonly used and physically reasonable short-time model for a vocal tract is a linear

system for which the transfer function is all-pole of the form [29]:

1

v(z) = 5
1 - Z akz—k
k=1

(6.13)
Thus, on a short time basis, the speech waveform s (7) is assumed to satisfy a difference

equation of the form:

p
s(n) = Z a,s(n—k)+u(n)te(n)
k=1

(6.14)
where # (1) isthe input excitation to the system and € (1) represents the modeling error
in considering a speech generation process as the output of an all-pole system excited by a
simplified source. The basic problem is that of estimating the vocal-tract parameters a,
from a sequence of observations of § (#).
The variance of speech reconstruction noise from the non-perfect symmetry of an AS-
ARMA model is given as:

e = [ 0¥, @) do

(6.15)
where [ () () isthe PDF of the ARMA model
TARMA '
The second noise is generated when the AR input samples are put to ground at the syn-
chronous points to remove the BPSK residues. Bla/rtlking at synchronous instants when

. . , 0
speech sample is present creates a nonlinear ncise I'  at the output.
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The total MSE of a speech reconstruction noise at the output is:

o ko

Y+

(6.10)
The simulation result shower! that there exists a unique symmetry factor ¢ = o* such
that the MSE of speech reconstruction reaches its mimmum value:

min {Y% + Yk°} ©.17

6.4 Simulation Pesults

In order to assess the subjective quality of the reconstructed speech signal, the speech sep-
aration and reconstruction systems have been simulated, which were described previously.
The speech wave was lowpass filtered and sampled at frequency of 10kHz A speech sig-
nal mixed with a digital communication signal was applied to the system. The parameter
a and the optimum symmetry factor value of the system were determined to reject a
digital communication signal and to keep a system stabte, respectively. From the simula-
tion results it was concluded that the optimum symmetry factor, which provides an ade-
quate representation of output speech, lies between 0.8 and 0.9.

The primary goal of a computer simulation of a communication link is to evaluate or pre-
dict the performance characteristics of the system. A number of performance estimates are
now considered. In any speech segment, the amplitude of the nth speech sample S" can
be decomposed into two parts: one part q, contributed by the memory of the linear sys-
tem carried out from the previous samples and the other part 57" from the current sample.

Thus,

S, =4¢,% Sy

(6.18)
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Assume that n=/ is the first sample and n=M the last sample of the current spec.'i* seg-

ment. The first part q, 1sgi enby

2
k
dy = Z o« aq, lsnsM
k=1

(6.19)
where ¢, ¢_, represents the memory of the predictor carried over from the previous
speech samples.

Let P ; be the mean-square value :f the speech samples then P ¢ isgivenby,

(6.20)
The technique used here exploits the structural signal property to 1eject a digital communi-
cation signal and passes the rest of the input signal with minor distortions. The two signals
are added sample by sample and corrupted by additional random noise generated by the
sis . 'ator This sum represents the input of the desired system. Based on the structural sig-
nal properties, first the nature of the communication signal is deternuned, and then an AS-
ARMA model is designed to minimize the BER of communication signal detector, and
MSE between the reconstructed and the original speech signal.
Figure 6.4 shows the input of the AS-ARMA system, where the speech-to-digital commu-
nication signal ratio is computed from the - .ean-square value of the speech sainples and

the amplitude of digital communication signal.
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(6.21)

Figure 6.4 Input Speech signal superimposed with BPSK signal

The MA part of the AS-ARMA model suppresses the BPSK signal fully except at the syn-
chronous points (Figure 6.5). The input signal energy is decreased by this process. Blank-
ing at the synchronous instants will eliminate the BPSK residues completely. However, if
a speech sample is present at that point, then this speech sample will be eliminated too. As

a result, distortion is created.
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After a blanking algorithm is applied to the output of the MA part, the residual passes into
an anti-null-operator for enhancement. The AR part of the model reconstructs the speech
signal, which is distorted by the null-operator. Contrary to the MA part, the AR part adds

energy to its input signal. Figure 6.6 shows the reconstructed speech of the system:
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Figure 6.7 shows the simulation result of the MSE function of the symmetry factor for var-
ious data rate. It is shown that when the symmetry factor approaches unity the MSE
decreases significantly. However, the BER is affected when the symmetry factor nears
unity. The optimal symmetry factor for the minimum MSE of speech reconstiuction and
the minimum value of BER of the BPSK detection are not the same. There exists an opti-
mum symmetry factor for the minimum MSE of speech reconstruction and the minimum
value of BER of the BPSK detection.
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Figure 6.7 Normalized Speech Reconstruction MSE
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CHAPTER 7

Dynamic Evaluation of Processing Parameters

7.1 Self-synchronized Signal Controlled AS-ARMA Model

Retrieving a signal corrupted by a strong frequency overlapping interference is the prob-
lem under consideration [30). The particular form of the model that is appropriate for sig-
nal separation analysis is shown in Figure 7.1. In this case a digital communication signal
represented by a time-varying MA model whose steady-state system function is of the

form:

W (z)
X(2)

H(z) = = 1+b (m)z by (m)z

(7.1)
This system is excited by the sum of a speech signal and a BPSK signal The model will
suppress the modulated signal while a speech signal will pass through the system with
minor distortions. The basic problem is to determine model parameters trom the input sig-
nal. The above model perfectly suppresses the modulated BPSK signal when the parame-
ters of the signal are known and thus may be used to compute the model parameters If the
parameters of the modulated signal are not known, the suppression process is not ideal and
parameter estimaticn must be performed before the separation process is started The basic
approach is to find parameters that will minimize the mean-square error in separation over
a short segment of the input signal The resulting parameters are then assumed to be the

parameters of the system function, H (2), in the model for signal separation
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7.2 Dynamic Evaluation of BPSK Signal Parameters

The three parameters which guarantee the perfect suppression of the received BPSK sig-

nal are the synchronous time instant ¢ k. the bit rate T, and the carrier frequency ® 0"
0

Blanking at %,

s> Speech Signal
x, —>  BPSKdata
= Synchronous Time Instant

T, —  Symbol Widlth, Bit Rate

wo,—>  Carrier Frequency

Figure 7.2 AS-ARMA model

If cae of the above parameters is not known, the suppression of the BPSK signal is not

perfect. To assist the synchronization of the transmitter and receiver parameters, a
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dynamic control system is recommended for the first few samples of input signal. These
input samples are used to train the system of updating the parameters, which later are

implemented in the signal suppression process [31].

¢ Evaluation of Carrier Frequency

Figure 7.3 uses the basic adaptation formula that computes the new estimate as a sum of

the old estimate and a correction term.

Input: ry = Sptx,

Quiput: 0, = rk-ik residual signal

(7.2)

Blanking at /%,

e

Figure 7.3 The case corresponding to carrier frequency unknown
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The normalized MSE E {lxk—;cklz between X, and its series representation ik de-
pends on the number of terms in the series and the (basis) functions used in the expression.
The least-square method abandons ail need fur stochastic information and treats the esti-
mation problem as a deterministic optimization problem. Typically, the cost function is
defined on the basis of MSE criterion, with the error signal itself being defined as the dif-
ference between a desired response and the actual output of the network produced in
response to the corresponding input signal. The desired system leams from examples by
constructing an input-output mapping for the problem at hand. The approximate gradient

descent minimization of the average squared parameter evaluation is given as:

= 2
wg,, = 0gtuv J

(7.3)
where | is a small positive step size, which is a viable recursive solution to the cost func-
tion.

Cost Function: J = minkX {02} oge [0,m]
{wg}

(7.4)

where,
O, =r,—2cos () r,_,+r,_,+20cos (0f) 0, _,~a20,_,
(7.5)

The LMS algorithm from Eq. 7.3 for evaluating the system parameter is given by the fol-

lowing expression:

co;:+ | = 0g+2usin(0) O (r,—a0, )

(7.6)
The convergence properties of the algorithm are largely determined by the step size

parameter |1 and the power of the model output O ;- In general, making | large speeds
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the convergence, while a smailer )L reduces the asymptotic cancellation error Figure 7.4

_presents the convergence rate for different step size.

(DO
2

1.8¢ Mﬂ!‘l —g—— Variable step size _
|

1.6 -
1.4 .

1.2 ) true frequency
«— fixed step-size

) T 1

1

0.8

0.6

0.4

0.2

0 50 100 150 200 250 300 350 400
Samples

Figure 7.5 Dynamic evaluation of carrier frequency

* ldentifying Synchrouous Instants

A dynamic evaluatiun to identify synchronous instants is presented in Figure 7.6. The
input of the system is a strong BPSK signal overlapped with speech, and the output of the
system is a reconstructed speech interfered with a residual signal. This residual signal is
the difference between the input BPSK signal and the estimated BPSK signal, which is
evaluated by using the present synchronous point. This signal difference will be added to
th. reconstructed speech signal which increases the output signal power. The synchronous
time instant together with the bit duration determine the length of signal processing. The

process of searching for the optimum synchronous time instant is based on the LMS
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method. The process is started by choosing an arbitrary synchronous point. Using this syn-
chronous time instant, the AS-ARMA system is modeled and the output signal is evalu-

ated. A cost function is calculated as the cumulative output power for the period of an

output signal sample damps, L

0
Cost Function: J, = Z Oz*m
m=-L
7.7
. . . 2 .
where L is evaluated to the nearest integer of the damping length, L = T This pro-

cessing duration is determined by the symmetry factora. .

~

Blanking at %,

Figure 7.6 Identifying the synchronous instants
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When the search approaches the real synchronous point the output signal energy becomes

minimum, and Eq. 7.8 becomes lower than a predefined minimum threshold, y LY
0

0
Y, = Jk—-}: > Jk+m—1§
m=-L
(78)
Wher: the cost function reaches its miuimum, the success of the control algorithm will be
stopped and the signal separation process continues. Figure 7.7 shows the output signal of
the AS-ARMA system. The input signal is a strong BPSK signal whose unknown syn-

chronous time instant overlaps with weak speech.

10 i L 1 ) ¥ 1 ! LI ]

AMPLITUDE
n

1 1 1 1

&
i

10 20 30 40 50 60 70 80 90
samples

7.2.2.2 System output (while evaluation of synchronous point)
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e Determining the Data Rate

In communication, the data rate of the far end is unknown or varies from time to time. At
the start of communication the receiver has to evaluate the bit length in order to synchro-
nize with the received signal. Figure 7.8 shows a system which controls to determine the
bit rate of the input BPSK signal. Clearly what is required is a practical measurement of

the output signal power.

Blanking at /%,

Figure 7.8 Determining the bit rate

The target is to minimize the output signal power. This quantity is computed for a pre-

defined window.

nTim

v : . = 2
Cost Function: J. > 0%,

= _nTO(m)

(7.9)
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where nTém), and —i' (()m)

are the upper and lower bound of the window respectively. If
the cost function reaches its minimum and sustains {or a number of windows, y, <v, .

the evaluation, registers the last bit rate as optimum.

N
3

Ye T Jk—jlq > Jk+l

I=-

wl =

(7.10)
where N is the number of windows, where the average cost function is computed. It has
been shown that the convergence time constant is inversely proportional to the power of
O %~ and that the algorithm will converge very slowly for low-power signals. To remedy

that situation, the loop gain is usually normalized by an estimate of that power.
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Chapter 8

Conclusions and Future Work

The thesis presented how separation of frequency overlapped signals, such as speech sig-
nal interfered by BPSK signal, can be achieved using a one-sided AS-ARMA model asso-
ciated by a blanking algorithm, which nullify null-operator residues. The model is built
from a symmetrical ARMA model, where its symmetric is controlled by a model parame-

ter.

8.1 Conclusions

The research studied the problem of signal separation, where the received signal is the
result of the stmultaneous transmission of speech signal and digital communication signal
operating within the same channel bandwidth. A1 almost symmetrical ARMA model,
which is accompanied by a special design blanking procedure is constructed to solve a sig-
nal separation problem. The technique which is used to construct the model is based on the
exploitation of the structural property of the digital communication signals Although
some sophisticated algorithms such as Viterbi algorithm can be incorporated to challeng:
the described problem, a second order ASTV-ARMA or AS-ARMA model in conjunction
with the nonlinear blanking operation showed that signal separation can be achieved with
an acceptable quality of performance.

It is shown that a symmetiical anti-null operatcr can provide an ideal transparency, but it is
sensitive to undefined initial conditions If the symmeti ; factor 0. approaches unity the
model becomes almost transparent. However, the null-operator residues which happen at
synchronous instants create instability for the system.

In this thesis an optimum symmetry factor that is found by simulation is used to design the
almost symmetrical ARMA model. It was shown that for the small values of this fac-
tor & « 1, the MA part output of the model vanishes over a short period. On the other
hand, selecting the small value symmetry factor to be small does not provide the needed

transparency. Such a transparency does become almost ideal if the symmetry factor
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approaches unity, ie o0 —> 17 A trade-off associated with thic problem requires to

choose the symmetry factor close to unity (ot = 0.9) and different algorithms to be con-
sidered to eliminate the nonliniear noise which is created at synchronous time instants

An additional blanking algorithm is introduced to prevent the residues of the null-operator
from entering into the anti-null model, which will excite the model to be a frequency gen-
erator. The one sided null-anti-null operator and the blani.ng algorithm together permits
separation of a speech signal, whose frequency overlap by a communication signal, with
acceptable guality

The major contribution of this work is the development of two types of blanking algo-
rithms that significantly improved AS-ARMA model transparency quality (see chapter 5).

The main properties of this blanking procedures may be outlined as following’

(1) Periodical nonlinear-blanking AS-ARMA model

This model suppressed the BPSK signal totally at the output of a null-operator A perfect
signal separation is achieved if speech samples do not exist at synchronous instants. Note
that, speech samples that may appear at synchronous instants are canceled by the blanking

algorithm, resulting in some speech signal distortion.

(2) Quasi-deterministic periodical time-varying AS-ARMA model

Instead of blanking at all synchronous instants, the algorithm detects the sign change of
the BPSK signal to blank the null-operator residue at synchronous instant. This approach
is more perfect than the previous blind blanking algorithm. Blanking is done when there is
desired, so that speech samples are not deleted at all synchronous instants. This approach
provides more reliable separation of the considered signals.

The performance of the model under analysis is assessed in two different cases. First a sig-
nal detection problem is considered, when a weak communication signal is mixed with a
strong speech signal. The quality of the detector is expressed by measuring BER of signal
detection. Second a signal reconstruction problem is considered, when a weak speech sig-

nal is interfered by a strong BPSK signal. The intelligibility of the reconstructed speech
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and the quality of the speech reconstruction are used to assess the model performance The
intelligibility of the reconstructed speech is characterized by listening, and the mean
square error is used to show the quality of speech signal reconstruction The result of the
analysis are presented in chapter 6

A BPSK signal with unknown parameters is used in the last chapter to separate from the
interfered speech signal A dynamic evaluation of AS-ARMA model is considered for this
problem. The basic approach is to find parameters that will minimize the mean-square
error in separation over a short period of input signal. The result shows that signal separa-
tion can be achieved with acceptable quality. It is necessary that more work has to be done

in this direction.

8.2 Future Work

Among the future research topics that can be explained concerning the subjects studied in

this thesis; it is necessary to mention directions of future development to be followed

(1) The problem of retrieving a signal corrupted by a strong impulsive interference can be
addressed by using a time-varying AS-ARMA model. The advantages of AS-ARMA
model that it offers easy control of bandwidth, an infinite null, and the capability of adop-

tively tracking the exact frequency of the interference are areas that need future work

(2) Possibility on increasing a communication system channel capacity by using a Struc-
tural Signal Multiplexing (SSM) based on the ability to separate superimposed frequency
overlap signals. Overlying SSM with CDM is the area which future investigation should

focus.

(3) Development of self-synchronized AS-ARMA modeling, which leads to an adaptive
signal controlled modeling is a right direction to future work. This area of signal process-
ing is very important in digital communication where system synchronization is driven

from a received signal.
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(4) System identification based on AS-ARMA modeling is another important area where
future work should be considered. Further investigation of AS-ARMA model, where its
coefficients define unknown system characteristics will lead to system identification. This

area of work will address speech recognition, speech enhancement and speech synthesis.
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