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: S ' This thesis proposes four new séquential algorithms,
‘and two new parallel algorithms, for symbolic computation of

-integer powers of completely or almost completely sparée ' . 9

polynonmials in one or several variables, and analyses their C

Y .

. fime complexity and space complexity. The two parallel. .. \é’

algorithms are specifically intended to be run on two pro- bl

. posed special-purpose parallel machines, also described in
* the thesis. We cénjecture that one of the new sequential

S algorithms is optimal for time and space within the family .

,0f algorithms which adopt a binomial-expansion approack to

4 [

computing integer powers of sparse polyndmialsul If the .

original sparse polynomial consists of t monomials, -Lhen the

B ' "time complexity of computing the nEE power usiﬁg the best

} 0 new sequential algorithm is given by:

13 - * : R ’ N
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The space complexity for the same task and the séme algorithm

i is giveh by: . y . - (A\VW>L
- : ’ - . ‘Y 2 - o .
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The two new parallel algorlthms, one for a multlprocessor

machlne and one for an aSSOC1at1ve—processor machlne, both

havg speed-up ratlos which asymptotlcally approach(the thedretiP
cal ideal of a spéed—up ratio of M for N processors.. Thé
aim here has been,not to exhibit oétimal~a1gorithms, but

merely to demonstrate the extreme suitability of a parellel

’

_\Q K] i Lo : . 4
approach to this problem. The space complexities of the

~

pérallel algorithms do not‘greatly'exceed the space complex-

ities of. thelr sequent1a1 counterparts. We give arguments: o,

which suggest that the a55001btlve-processor archltecture w

B - ot

may Be  the preferred arch;tecture of the two. ’.‘; ,
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| CHAPTER 1
v : TNTRODUCTION
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This thesis' cc;ntams results arlsz.ng from the J.nvestl- .
' -,q‘ation d analys:.s ‘of new algorz.thms for comput:l.ng powers of

= symbollc olynomials- on both sequenta.:_\ and parallel machines;
- it is intended as a contrlbutlo,n to theore‘tlcal computatlon— N
al complexlt;v which would not be irrelevant to practlcal prob—

lems of algorlth.‘m assessment and’ programub.ng. Prev:Lous

- attempts to determine best algorrl:hms foi polynbmial powering

g
on sequentlal machines have been motivated by a des:u:e to ob—

L \

ta:x.n sysﬁ,em programs for use in symbollc algebralc maxupula—-
‘tiott\systé,ms ' Parallel polynonual powerlng algorlthms nave
been much less studied, if at all° the aim here J.s to devise
more or less:v sy_:;eca.al-purpose computer arclutectures, and tﬂen
formulate parallel algorlthms espec:.ally suited to them. It
is noteworthy f:hat eff:.c:.ent serial algorlthms are not ne;:ess-

r *
arily extendable to obtaln eff1c1ent parallel algorlthms. The ~

"parallel algonthms presented here are obtamed“ by fmdmg or .

- creating parallellsm in the sequential algorlthms, and then
explcntlng it. - -I- . . )
‘ -

“The 'clioice of an appropriate Y ter algorithm will .
determme ghe nze and complexity of 'prcblems wlu.ch can- be -

R sol.véd in ?7reasonable tinie. The approacp taken in this thesxs

v

13 to choose one out of a set of canpeting alg‘&'ftgms on the . T
basis’ cf a theoretical analysis of the mtnnslc algon.thm
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g o »complexlty rather than, say, on the bas:.s of ‘run-time tests.

»order that the problems of algorlthm analysis be well-

" posed, it is necessary to specify both a cqﬁputat;onal model,

\

arhich characterlzes the problem domaJ.n, and a cost model

which provides the crliterlon or cr:.ter:.a by which‘;n.trmmc

1

Adifficulty is to be ‘measured. The computational model is that

T N A M T ey, T

the input polynomials be‘completely' sparse polynofuials (de-

S

finition follows) in one or more variables (indetemi'.nates)
#
with integer coefficients. The cost model is that the algo-

rithms w11L be analysed m/terms of the number of coefficient
* multlplicatz.ons' required to compute the final resuLt ~ in f o
U . -the parallel case, in terms of the number OE parallel cycles

needed to perform these mﬁltipl'ications. Both models will .

. now be exple'ined.. [/

2

¢

Completely dense and completely sparse polynomials

. , : o0
" J " are the two basic complementary computational models i;br which.

e \ . . < A Vs

o one does an analysis of powering algorithms. Sparse poly-

! nomials have no zero coefficients. A univariate (oné-variable)
- -~

polynomial of degree 4 is 'cgmple‘tely dense ‘if it ? no
. s . v . ‘
zero coefficients.‘ That is, it has 4 + 1 terms. multi-

variate ‘polynomial with v variablegyf? each variable

" Xy, cse s X, 7 OCCUrs to maximum degree d will be completel
' )
dense if all posm.ble terms are present. In that case,

£ 3 - . ¢

A3 - . -~

' o a -
BN SRR

nomials have few non-zero coefficients; completely dense poly-’

i




.. * where size(f) is the number of monomial terms in £. If £

»

L]
v

, ¢ . Lo
: ’ﬁzompletely dense in v-1 variables, and
K . y Q‘ _

size(f) = (a+l)V, ‘

»

<

i

‘has (id+l)v Lerms for -1 < i < n, then £l remains comglet'ely_

-~

" dense to‘powexr/n. . This is the worst case assumption of poly-

nomial grawth. Dense polyhomials in 3 or more variables Yan

- ., R . AY
ohly bd raised to quite small powers before either core/or

3 L

time become excessive. [10] _ ) .
<

i

-

In sparse polynomials, whatever the number of variables

._(indetermina.tesh) in the polyni;mial, and whatéve; the degree of
the,pélynomial in each vériablg (indeterminate), there are

only " t. non-zero terms. We represent a polynomial in the _

- "

class of .sparse polync;mials as a sum of monomials, where each
. S, . o . . B .
monomial is.'of the form c(nxil) r @ 20, ¢ and a; .integers.
_A sparse polynomiai may be characterized by the number &£ non-
. .

. - i
zero terms, t, in its representation as a sum of monomials.

We say that a polynomial £ is complete'ly sparse to power n

if f::L, fully expanded, for all i, 1 <'i <n, contains .
exactly t,he. number of terxgs: of the t-term multinomial expan-
sion. To smhat the ntmber of terms is given by the size of
the t'—term multinomial expa;nsiori is to say that no further
collection of like terms is possible. Multivariate prQblems {
dealt with by symbolic algeb;:'aic manipulaf:ion systems are ‘df;:en_
sparse in character. The theoret.ical'modql of 'sparse péq >

nomial' . is due to Morven Gentleman. [7]"




7 B . . .
The a&ssumpt:.on in the computational model of complete

: /;;sparsit‘y of the input polynomials affects the design and

analysis of the powering algqrif:hms in tvo ways. From the stand-

_then the analyszs remains correct, but the algorithms, as they

' 'non—grow1ng , to allow us to assume that the cést of coeffi-

.to take the qoefficients from a fuute fleld\. In this way,

-

point of design, sparsity guaz"an;:ees that no like terms will .
saver be formed through multiplying one fmbpolynomial by ‘
another, given the particular atructure of the new binomial-ex- )
pansion algorithms. This will be ‘explained below. From the‘
‘standpoint of analysié ; sparsity allows us to predict the

sizes of all .intermediate resultsi, a\.nd.thus carry through the
analysis in a mathematically tractable way. If the ;.nput

@olynonual is more or less spatse, but not completely spa.rse,

now stand,\produce results in which the relatively few like
S : N )

T

terms have ni?t been collected.

We have sa;Ld that the conﬁ:(ztmg time will be analysed
for completely: ‘sparse polynonuals with 1nteger cqfflclents,,

actually, ;t is only necessary that the coefficients be

cient arithmetic is ‘constant. One way to guarantee this is

AY

multiplication and addition costs do not grow w1th _the numbei'
of digits in the result. Alternatively, pne may suppose that
all cbefficlent arithmeti:Dis single-precision ;‘.loai;ing—point
or single-precision integer a;:ithmetic. To £ix tb\e model, we : B

choose integer arithmetic.




5

. ”& i "The pruposed cost model xmpllés that the algorithm ba
| : ' hanalysed in terms\aglthe number of coefflclent multlplicatlons

§ . ¢ required to compute the final result. Thls model will now be

| ~ Justified. The coet of an algorithm may be taken to be the , :x
number of elementary operatlons which occur during the compu- ‘ I;

g tation. When the overhead is minimal, this reducea to the

-

ﬁ~' " number of elementary arithmetic*operations.\ The cost of
1 Lo “ ;mult?flying two sparse polynomials is the cost of multiplyingg ‘l

each term of one by each term of the other,thd then collect—- | *
ﬁ , ing any like terms which m __thave been formed. Slnce the

Bparslty of the polynomlals 1mp11es that the. number of like terms

is small the cost of addltlon in actually rollectlng the 1ike

~ e
1}

\ terms is negligible. Thls is for the general case. Foi’the
new algorithms presented in this thesis, wholly based on '~ . ?
the principle of hinohialmexpansion; no’like terms are gformed
thrdugh the ﬁultipiication pf'sparse polynomials. Hence, o 6

*  there are no like terms to be collected.

1

~

To see this last point, consider computing 1 as

n r -r
! il 8 + .-
o ft: f’: () fl)f’z‘ ,
— . v
where f: {and f2 are the two halves of f..

Imagine at the powers of both £; and’/f have been com—~ . L I
puted. It can be shown that if any of yée terms in the pro- o
ducts of the summation combine, then £f is not complete}y/'

sparse to power n, contradicting the hypothesis. This will

I

- be proven below. In all of the algbrithq; presented in this. °

L -




o,

P

' _gient multiplication plus exponent set addition) and some- \ »"-:\S i
/_% ~ . [ 1
lh
L

T B g o et S e e

thesis, the fundamental arithmetic work consists, either of | |

‘anultip;ly':i.ng a binomial coefficient by a é‘ﬁbéclynomial, or
of multiplying a subpolynomial by another subpolynocmial and
than not collecting like terms,wluch do not exist in the
ccmpletely sparse case. The total computation, therefore,

consists of some number of monomial multiplications (coeffl- 5

number of bingmial coefficient multiplications (coefficient
xhuitiplication without exponent set addition.)  The sum of

these two numbers is the number of coefflclent multiplications

required by the algorithm, ~and also the number we use to J ‘

v

measure the cost of the algorithm.: ; S -

8 . e

!I.‘here 1.8 empirical ev:Ldence, as well as theoret1ca1 ¢
arguments s in favour-of the cost model adopted 1n this thes:.s.

Richard Fateman [5] has made theoret1ca1 and experlmental

analyses of algorithms fpr muYtlpllcatlon and powering of o

dense symbolic w.& . These algorithms. involved mdlti~ -
‘* plications, diviéion,c:x, additioris,- subtractions, and ‘exgonentia- 1

‘ . |
¢ ] ‘

tions. Comparing results of timings with actual counts of the ° i

above /Bperations showed that actual computation times weze “ ‘
v |
closeJ,y proportlo,nalfto the total of these counts and reason— .) ‘

Y

ably proport:.onal to just the multlpllcatlons/dlv:.sxons. in

the blnoxnlal-expan.'-'.lon algorithms developed in this thesis,
the only elementary operations are (li product of monomial '

" times monomifl, and (2) product of bmomlal coefficient t:.mes
’ h LN

' monoMital. For each of the algor:.’thms preaented an exact (

pbunt is glven\ of’ the number of such products wl;:.ch occur.




4

PRI YO | BTN R NG AY 33 g e AL R S 5 S AT i b N e o 8 e, e R o, Sy

This thesis is intended as a.contribution to theoreti- :

a n cal computational complexity. I}z may. not be inappropriate,

E ]
4
{

however, to stress again the practical concerns which underlie

- ~ much work in symbolic algebraic paﬁipu;ation. " symbol mani-
: . o pulation systems, such as the MACSYMA system a‘t Project MAC .
., | . or the Altran symbolic rﬁanipulator at Bell Telephéme Labora-
tories, were developed as practical, cost-;effective ‘gystems
for actual computation. The designers of such systems were
{ . . interested in the analysis of algorithms because they wanted

sufficient understanding of the relative merits of competing

T PN B L ot b Sl ot 2

algorithms to make concreté, practical decisions, vig., which

algorithms to implement as system programs most suitable to’
L ' ' .

the actual computations to be undertaken by their system. In -

this contexf, -therefore, the design and analysis of algorithms

) . has roots in practical problems existing, in some sense, out~ \

side of computer science..

\ s . w

f\ ‘ Several algorithms for computing integer powers of

e

—\S ‘ . sparse polynomials on sequential machines have been givén re-

cently by Fateman [4],aﬁd represent the state-of-the-art ti:rior i

to the current work. The principal aims of this thesi&@re ;

o o severalfold: (1) to exhibit superior algorithms for computa-

stion on seguential machines, (2) to provide insight, based
on analysis and leading to. intuition, as to why certain algo-

rithms are better than others, (3) to make. an exhaustive . "‘

. ¥ . ,
complexity analysis, both with respect to time and with re-

spect to space, (4) 'to devise special-purpose computer archi- . ..§ !

tectures fOf parallel . computation, and (5). to modify and
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&

-

adapt the sefruen ial algorithms to abtain parallél iigéritth

especially suited: 'to the 8pééia1~pu;ppse computer argjxiteqtures. -
__ﬂc best éa:rallel algorithms are then compared with the best -
. ' ' . ! ) ’

‘ sequential algorithms,: tO'ohta:;LDn the speed-up fatio, or the

xatici of computation times on seduential and parallel machines.
: i . p ' Y : ’ .

Each of the"a“lgorithm’s presented in this thesis,

whether for computation on a secjugntia). machine or for computa-

tion on a parallel machine (two examples are'provid,ed in this-

_ ., thesis), takes a binomial-eypansion approachto .the symbolic,

.comp?tation 6f inte,gér powers of sparse polynomials, as this
approach is ‘..‘judged pptj}‘lﬁm.’l An exhaustive analysis of the
who\le'family of binofnia‘l-—e)tpansion algordithms. is undertaken.
In this p‘::ob)l‘et'n -aréa,- ifé:is Wf'li.cult, if not inﬁposs;’.blg, to

prove\'»ﬂlat any.-one algor‘ith'm is optimal, aven given a complete
S . , 3 N

specificatioh o’f the computational model, the cost model, agnd;

the general approach to be taken. }ioyvever, in all of the b:'i-

{

nomial-expanéi&n‘algorithms that v;e have been able to imagine,

there is one, or perhaps two, which are vastly superior to all

4

4 .

S

the rest. It is unlikely that the leading ‘terms of their cost -

functiong can‘b‘e bettered. In the parallel ’case, we have

tvlvo' pa‘ra_llél‘algor'itlm‘xs‘, to be run on two s&cial-:purpos;e
parallel :afchitectures, boi‘:h of whose speed-up fatios qp\proaci}
)thel theoi:étical upper limi'I; in an asymptotic sense. ‘In an'
even strongér asy'mp.to‘tic sense, the complexity of: the seq{xen'-

tial algorithms approaches the theoretical lower limit.

¢ -

I
Y

B S e et

B S .

wee

&
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will'be explored systematically. Accord:.ng to Dljkst\ra [a]

The fam:.ly of sequent:.al bmom.al—-expans:.on algorlttnns

/

~

. ‘ %
‘A program should be conceived and understood as a

member of a famlly cee o

Compare Par;;g,,[n]; | - v~

4

’ 'I‘he aim of the new des:.gn methods s to allow the
dec:.s;.ons which can be shared by a whole family, to
. be made before those dec:Lsn.ons, which differentiate
family membBers. " v A ) oy
Y ! N '

-
»

eTrees are" convenlent representation of program famly struc-‘

solved, ( and the t;erminal

tures. The root .is the problem to ‘b
nodes are the m—spec:Lfled algorJ. '. - doing ch. The
branches which des./c?end. from a node are the‘alte‘rnative design
‘declslohs which may be taken at that point. Such trees allgk;
dreat insigh‘t into'the rélative costs of algorithms . In the
parxallel case, paraliel binomial-expansion algorithms are

- developed for multipjocessor a{id associative grocessor aréhi-—

- #
tectures . The parallel algorl thms« and archlte ctures are com-
¥,

pared w1th each other ’ aﬁnd w:l.th thelr sequent1a1 counterparts.

In reallty, we favour the assoc1at1ve processor. archltecture,

even though its grnma facie speed-up ratio is less. It was

not p0551ble to J.mplement the parallel algor:.thms because, the

_envisaged parallel mach:.nes have not been bullt yet.

-

In what follows, after collecting certain analytioal

. results, theré will be ' (1) a statement of the problem before

: : . .
the current work was undertaken, i.e., a survey of Previous
. ‘ L ' ,

“

N e SR G T A fe
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results, (2) an exploration of theé family of sequential bi-

nomial expansion afgorithms, i.e., a systematic enumeration - . » ?'
of design alternatives, '(3) desciiptions of theusequentiai -
mlgorithms, (4) analysis of how to minimize tiﬁe‘iépfhe
-equeﬁtial‘case, J(S) anaﬂysiﬁL)f how to mihimi;; space‘in
the seqﬁenfial é;se, {6} ‘?lSCUSSIOn of the’ crlterla by which
';E the success an& eff1c1ency of parallel algorlthms and computer
{ . systems are Judged, (7)‘e descriptions of spec1a1~pﬁ;p§se mdﬁtl- ,;;
'proéeséor and agsociative-pfocéssoi arch}tectures,_ (8) des-- .

v \ .
A‘Liptions of tie parallel algorithms, L(9) analysis of the

a7

ed-up ratio and space complexity of the parallel algo-
rithm;, and finally, (10) some comments about actual 1mp1e-
mentatioris of the most successful sequentlal blnomlal—expan-
N, -Ssion algorithm. +In all that ﬁollows, a balance will ke sought

. between .analytic detail and informative. general 'statements

il

“.which provide a broad perspective.

~ A number of the new reshlts appearing\an this thesis

Setn

‘ HiVe already been publlshed in [2]}. In large measure, the’
first five chapters of the thesis are an elaboration of segtions
e

frqm the earller paper. "In particular, most of the new results

.in Chapters v’ and g appear already in [2 ” he exceptions

\\ N ﬁﬁgfg tﬁg closed form for E(t,n), and the eﬂﬁire discussion of

BINF, un own at the time the earlier paper was submitted The
. .
: new resu ts in Chapters VI VIII and IX have not yet been sub-
s
ndtted for publication, . and appear here for the first time. »

A . f R ' .~ \
7 . , R . s \
. ' ' N ) ' - - »
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NOTATIGN AND ELEMENTARY RESULTS
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N\ " © size(f?) =

4

' The proof is not difficult. = s ‘ '

anPTER II
© Y- SYJOTATION AND, ELEMENTARY Rxsuvrs» L

¥

[

1

In this section we w111 state a number of elementa:y
M

4 nmthematlcal results, theorems, notatlons ‘and. élosed form

expreSS1ons which will be of con81derable use in subsequent

vanalysis. The following standard theorems are quite useful.

¥
= v \ W
.n R
. Theorem 2.1 - iz (rzl) = (r+n+1) (r+§+1y
o =0
- n N ' N
_ Theorem 2.2 I (r;J.) (rﬂ;-l) - (2r+g+l)
o i N i!:O . |

-

© v

Theorem 2.3 Let f be a t-term po;yﬁomialﬁnich is

Pcompletely sparse to power n. If size(f)

)
'gives the number of non-zero terms in f,.

<

(Tl e s 2

The proof isféiven; e.g., in Fateman [4].

k\—l \:+1

Theorem 2.4
1=1

v
L

. c : then o ' L f

r+h~1—1 2r+n r+n-1 r+n
] r-1~)=( -\gtx)-,(r)

R e e Tt

Yo amtre -
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¢ -“Theorem 2.5 -The multiplicatioa=ofaa polynomial £ by

» »

a polynomial g can be done with a cost of
::ize(fi:ﬁizé(q).

" Proof: ' S ,Zﬁ;,‘ v

If £ and g are two sparse polynomials, then the cost
uoi obtaihing their product is the cost of‘;thiplying each .term
of one by each term of the other, and then collecting the likeg
% terms in the product so formed (The assumptlon here for
<completely sparse polynomlals, is that stralghtforward classl-
cal multlpllcatlon is dlff cult to 1mprove apon. ) Inasmuch as
;;?the spar51ty of polynomlals implies that the number of like
- " terms is small the .cost of addltlon in actually collectlng the
like terms is HEgllglble. ‘The cost, therefore, may* be 4aken
as size(f).size(q), 1f the ‘cost of the merge gort is ignored.
Mora rigorogslyp if it is kﬁown a priori that there are no
&

like terms, then the cost will QE_;ZMe(f).size(g)*:

’ Consider the fact that

: : S

o “gl (f/2+i— y (F/2tn=i-1, _ (t4n-1) _ 5 t/24n-1,
. Cye1 o E/271 t/2-1 n . . n < ‘4
.Thia implies, in :
, i S n n-1' i, A 1
D ‘ £ = (£,4£)7 f“ + f“ + 21 &4 L
. ’ is .

-

‘where 51ze(f1) = size(f;) = t/2, that‘no terms in aﬁy product
may comblne, because, if they d1d £2  would no londger have
S the proper size for a completely sparse polynomial.’ ¢

3 . . ) . S

°
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- first
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. o ' 13
C . ) , ¥
._1et us review the notation for Stirling nupbers of the

'kind. Our, reference here is Knuth [12].

a

5

B

2.1 VALUES OF A FEW STIRLING NUMBERS
f . OF THE FIRST KIND

3 )

. 3 I > B B w5 N I oo B M -3
ot . _ ’
\ . \ .
n=1 1 0 0 0 "0
-] n=12 1 1 0 0, ’ o -
n=3 - 2 3 T 0 0
. n=4 6 11 6 1 4 0
“n=5 24 | ’s0° 35 10 1
z | ! n
The following are important re‘sul'ts cpncerning these
]numbers." 5 ;
St . P
(}1,= 4n-131 7 [} =1 L2 = (D) =1 nmD
o . ] )
S 4 B ] v R i R \
Ch , -
_ 8(841) (s+2) = 2s + 382 +8° | ©

P
——

o P A

S ——ran




o
s

- _ | el ‘
s(s+1) (s+2) ... (stp) =

[ A
t
4 B
[}

N .
The functlon sue(f) has alre: y been mtroduced
R}
us changg;«*t.he notatron ‘sjlghtly s0
when s:Lze(f) = g,

As usual, sparsity is assumed.

We have
‘x‘“}
RS
. ) s+n-1 1 n 3 :
size (s,n) = ( ) == & [;]s (2.7)
p : n n!l . b .
' ng S G ‘
. ' : ‘ R ¢
Proof:- \ T '
. ’ . 3 . N
. : ) ‘(s+n_-l) _F (s+n-1)!
n - nl (s—-1)! )
SR . '1‘(s+n-l) ~. (s) )
a nl’ v A
) 1 n N
= —— I [ ] s
|
n 4=1
~—

by - (2.6)
, -of pgwers.

. \ '
We need a notation for the size of a collection or group
Let group(s,n) be

.- n : ‘
’ X size(s,]j)
~ ) -j‘l; .

&

- - 2 . . LY
i.e., the sum of sizés of‘ali\”«powers from 1 to -n of a poly-
nomia]ﬁ whose size is s,

We have

i

t s:.ze(s.n) is size (f )

p -EP;IJ/’;/ (2.6)
. R L SR S
,. j‘ N
\ ' ‘ fomJ
“ .

Iet us now state.and prove some preliminary closed

-
of useful expressuons wh:.ch arise later in the analys:.s
. of these /algorlthms T

Let




s —
e

?

......

- @* i
. n
. x + 1 +1
o growp (s = iMoo 1= 3 5110 2
. - j=1 <
Prgof: - - S
‘ ' o s4j§-1 stn, _ o B
:E.n( 3 ) ( n ) B goos
\ j—l , . )
= __(§ﬂ)_! - 1 r ’r,' v
. n! s! ! K
) -’ ‘ i
1 1 . L - “ .: )
> = — o ‘ ' -
5T 5 ° (s+n) ... (s){ k .
> : ’ !
: . 1 1 n+l n+l t ‘
’ =1 i
I M . . .
~ ) T . { n N ' . W'
LT AR Eema,
¢ =1 . ) W
. > \\v/ ) b'_‘
since - s X 1
¢ +l n ! ) I i
. ["171= nt, o .
. . ' '
where j has\been repiéced by j+l. The poeféi&ient of the ’
+1 .
leadlng term, viz., [2+l], is 1. :

Another usefuls:closed-form exﬁgession is the following.
. . ¢ . . < i .

7

— L “ - -
3 . ]
n =-j-1 .
ey Sne Ao s a0 @ (KR (2.9
’ . X j:l k:o j >
_— . -/
. .- ‘

where, as a convention, ... Ais -gzero. ,
o7 - . k=0 ’




Y

- above.

i

oL (sm)t
) =B TEyI(s+II

E%m (s+n) PR, (?"'2)-—.11

o
-

1 n_l n-'_'_’l j _' -t -
= Ta-07 r L 5 ] (s+2) '/Q//S{Y (2.6) i
DT 5a1 .
" ‘ngdl‘ P71y 1 (j)sk‘éj;“ -n
zn_lil j:l N j -k'=0 k ¢ Ed

1‘ .n=1, ' _ - =

5 ["flj.g"(j)sk'zj'k, ﬁ\\
-DT 55, "3 "y K B

v ' : i

since the constant term in (s+n) ... {st#2) is nl. -

¢

Expéngion and,collection‘of like terms gives finally -
- - . . /// *

o

(

stn, _ _ 1 I e T e R

-1) - n = == £ L s3] (5120 s

n 1 . , n ! j}l’:// k=0 k j k
{

-

, where the term fos j=n contributes nothing, as explained

1)

’

\
T e

The closed-form expressions which have j'ust been intro-
r a3 .

duced are instrumental in obtaining a closed—-form-expression

or the time complexity of the best sequential binomial-
~expansion algoritlm_x. The function size(s,n) is\;ged éontin-
ually in sparse polyr;omial time compléxity analysis; té?gether\_

with the function /{jroup(‘s,n) it also gives an ipportant\tool

" for sparse po],.yn/(nial space complexity 'ahaly‘s’ifa\.-’
/
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: % plications it uses with the theoretical lower limit to see

[ °

3 o Finally, there is a theorem, ~suggested by Michael

b
Lt

{

¥

i

H

[

Fredman [4], which gn.ves a lower bougd on the number of

mltipl:.cat:.ons requ:.red to couipute a power of a polynomlal.

/

~ ‘.l.‘hat humber is at least equal to size(f") - s:.ze(f)

.¢° Theorem 2.10 No algorlthm can éompute ,fn the nth K

/' power of an arbitrary polynomal, 1n

- ' fewer than #ize (f" ) - size (£) mult:x.pl:.— :
. * ' AL _ ' . 1
- ‘cations. : .

A Y A L . . F

Ay

The proof may be found in Fatemén [4]. Suppose now
that £ is completely sparse, and that size(f)‘= t. Accord-
ing to, Theorem 2.10, the lowq: limit on tt;e number of multi-

‘~

.plications required by any algorithm to- compute. fn, wh:.ch wd.l

[, VD —
A
-

be denoted by L(t,n), is given by

. i : ' |
) _ ‘ . A
} 1

L(t,n) = size(t,n) - t .= (tfg'l) -t
) : R : |
Lo d ‘(3’ . l
n » : . - B :‘ 1
SR S e R -~ by  (2.7)
o . nl j=1 j "
)/ \' . ' ) \
" " This meUI.a" may also be written as ) ~ c
T 70 D S L
. L(t,n) = 54 smogyy * Oft y , |
N . ) « — ‘ ' (}
: e

ThJ.S is the least number of multiplications possibie. When
Nne has a good algerithm, one compares the number of multi- ] - :

how far -off one is. The cost functions for\i‘«‘ BINE and "BINF,

- s

-




4

-~

these atter being the two best sequentaal blnmnial-expans;on

algonthms presented in this thes:.s, express the number ofe

multxplﬂ:atlons used by these algor;thms The 1eading .terms

€
Y

of ezther cost functlon are . ' I
AN ' !

BN

l
(n 1)1

1+ 0 (£%2y,

o1 -
ey e

for n >‘ 2. We w111 show by comparlson with the ost functions
/ . . -
of other algorithms Just how good thls is. \\:

;
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A CHAPTER 'III

:sﬂn:_ OF THE PROBLEM PRIOR TO THE
PRESENT WORK

\ “ ) .

Ehe best prev:.ously—exlstmg sequential algon.t.hm for
‘»comput:.ng powers of sparse polynomals is due to Fateman [41]. 3
It is one of several algon.t.hms for this problem he analysed \'“\
to obtaln\ms:.ght J.nto their relat:we merits. We shall repro-

duce hlS descrlptlons of these algorlthms and adopt his

' danalyses, except 1n the case of his best a.lgon.thm, whlch

will be analysed anew:. Another computatlonaliy much less
dnteresting, i.e., much more expensive, aigorithm for cemput-
ding powers of sym.bollc polynomials, due to Horow:.tz and Sahnl,
will also be mentloned. Fateman has cons:.dered repeated

i

-multiplication (RMUL), repeated squarlng (RSQ) , two specific

" approaches based on multlnomlal expans:.og (NOMA and NOMB) ,

" and two specific approaches based on binomial expansion (BINA

and BINB), all as methods for computing integer powers of
sparse polynonyials; The main conclusion is, that of these six
algorithms, algorithm BII@B' is ‘computvationaliy most efficient.
In general, the analys:Ls suggests that 'binomial expans1on is
the most promising. general approach. Th:Ls analysis led to a\ -

research programme to develop those superior binomial-expan-

sion algorithms for serial and parallel computation which are

'

presented in this thesis. - . . : L -

[
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3.1 ALGORITHM RMUL- (REPEATED MULTIPLICATION) L ‘

S
. . )

" . Description: . _

N N ) R ‘ R . R
RMUL successively computes £2 = f.f, £’ = f.f%,...,

£ = £.6971. cf. Gentleman [77.

X
a

4o

i\.nalxsis : ) |

.By Theorem 2.5, the cost for the polynomial multiplica-

o

tions is ) ' s )
. | N
n;"l - n—l ’ L] -~ .
\ size(f) . I size(e)) =t . z (fiTh
B © o +i=1 . i=1
, e () L (3.1.1)
\
P ‘ . ) : s . ' “ . \n

by Theorems 2.3 and 2.1.
« T
3.2 ALGORITHM RSQ (REPEATED SQUARING)

* . pescription: ' . 4 i
. i . B . T ‘ ’ T
When n 1is a power of 2, RSQ computes: £ "as . :

£2 = £.£, £*' = £2.£2,..., £2 = fnlz.fli/z. .When n is not a3

power of 2, it comp}:jtes a géquence of powers of £ based" on

the qxpansioi\ of n as a binary nuimber. More fprmal]..y‘ -
- . -

w . :
N ’

(1) aq<«1l. z+f. |
N(2) i« ‘r;i.éhtmost bit of n. Shift n right one bit..

“ Ifi=0, goto (4). o -

4 D 1

“

CRAASITAL A M4



>

14

Taie e vrenga e e AT SEMIEL T

- hm 1 e B e e it M T e e
i ' %
b - - . 5
i . 21 Ei
J Cy - - . fﬁ .
. ' . . .\ }f‘?
. 3 . ) ¥
,5- v T(3) Ifgq=1,q + z else q+qg.z. °* L i
P ' > . . :
L ) ‘ - (4)° Ifn =0, return g else z+ z.2z and B J
. . . * 5
. = o ’ i
: R i

go to (2). A

That this algorithm correctly computes £ by means of
. ' , . : s .
may be seen by considering

o binary expansion of the power n
n as a binary number and observing the relationship between

multiplication of powers and addition of exponents.

i
i,
!

. Analysis: S ot -
N 0 R - - . o
The analysis.is,done for n. a power of 2. Even in ~ &
: _ ;
~—

this case, RMUL is S\éefi_.or to 'RSQ. When n is not a
1 .

) -y - . ..
power of 2, this superiority (of RMUL) merely increases. When ‘

3 2 .
‘'n = 23', the cost for RSQ is

\

Jzle yyody

. -l i, -
\ . T osize(f2)¥ =1 (T 5TH? ' (3.2.1)
. i1i=0 i=0 , . -
@ A . a
For n =4, RSQ costs %—(t"+2t?+5t2) whereas 'RMUL costs R 4
— el ' . g
=’Q 8' ) * ; ‘

%—(t“+6‘t3+llt2‘) . For t > 7, RMUL is cheaper: ‘r;‘or n
1

RMUL is better for t > 3. -Both Fateman [4] and Gentleman [7]

LY

discuss the nature of the superiority of RMUL . to “@SQ:.

Fateman remarks that it is less costly to ‘multiply a large ‘

poiynomial by\ a small polynomial, than to multiply two poly- .

) L’tﬁmials of intermediate size. .

)

¢




»' 3.3 ALGORITHEM NOMA' (FULL MULTINOMIAL EXPANSION = A)° -

. : ' {g,,}, O , 22

. .: o . . . .o . ' ‘ '\\:) .
Description:” . o o .

Let,£ = a; + ... + a, vhere the a,, 1 < i< ¢, are
- r

monomials. Assume that we have preccomputed the ng} power

-

of g = toe.o oo where the u.l are new symbols (not in

f).- Then all we need to do is tc} subst:.tute a‘_.L for as in ’

i
gn. We can compute the substltutlons using. Horner s rule. : o
i

'For the detailed a‘;lgorlthm descrlptlon, refer to Fateman's

paper [4]. . ] o
. o . oo oo
: oy .,
Analysis: ' ) ‘ . - N ‘
Analysis - ’ e , )
v, ~ ’_3 -

The cost which is obtained is
Lo 1 t:(tij 2) = ¢(207y
: j=0_ A |

I3 v ¢

o+ o Rowen

3.4 ALGORITHM NOMB (FULL MULTINOMIAL EXPANSION - B) °
(oo ~ | | x I
Description: . )

4
s BB A L A

e ' de . . \ .
Foxr each of the t monomials in f, Alyeeesdy, compute

a list 2.. = <a;,a§,...,a2>. Next, compute all products con-

n. . .
s:LstJ.ng of comb:.nat:.ons of no moreJchan one element a o

I3

from each list such. that n; + g.. + n, = n. This proauct is

1 coefficient

then multiplied by the multino

4

(nl,oo-'nt, - ’ T




R
- ' t - ) N :g
\ P For more details, see Fateman [4]. R ’ I
< e . § , - . ‘ - N 4
~ ) o s o ' i
( Analysis: , ‘ (/ T « B
T c T . ‘ L ‘
\\\: S ) ' . L ’ ‘t - i
) ‘ The cost which is given is ) . ;
ﬁ ‘ \ ' . ‘ ‘ o ‘o ’
v ‘ (H'” %) 4 tn - 3t L (3.4.1)
w . . ' ) b
\ .
’ K3 5 ALGORZ[ZTHM BINA (BINOMIAL' EXPANSION wx’m < l
- MONOMIAL ' SPLITTING) . , : N :
2 - . " . ' = - /‘ . §
g DesprEben:- . - B ‘ : §
o Y S A T o . N .. c
- ' N o
T Tﬁe_polynomial f is split into two parts f£; + £,.
»k The /size of £; is 1( and the size of £,.is t-1. To compute?
, ‘fq, we compute f:,:.},ﬁ? and f:,.i.,fz, and use the binomial ‘;
theoi:‘gm : Lo | o g
] & I T .
: v S T (’i‘§;ft.f:‘1 |
] L i=0. o - : ‘
: - RN . ; L @
. Note that f:: can be dalculated-by BINA, and other powers
§' ‘are simply computed b fi = f fl 1. See Fa?emgn [4]. ;
- \- 5 . N . \\ \ ) -
” Analysis: ' > ' S ‘ . ' .
! , Itemizing the steps and their costs, and adding gives
finally the cost .for BINA, n > 2. It is o .-
N ’ i - (2 - ‘ ‘ . \
S t(t:flz) - Z(£2-3t+10) + 2n (3.5.1)
_) . S
. —
. A N k)
N ; &
‘i / P
T Ry e e A

o a
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HALF SPLITTING)

T

Desctiption:

’

]
-«

~Analysis:

»~

C o -t aqgs, he ‘obtaing as the cost far BINB -

Jn)‘yh

"

(t+n 1) + t(t/2+n-l) _ t/2f§-1

¢

higher cost function for BINB.

Ay ’

‘than RMUL. Comparing (3.4.1) with (3.1.1),‘'we see that

[

PIPRRIE TELRATY.

- - : | o ;P\\\;~7
‘3 6 ALGORITHM BINB (BINOMIAL EXPANSION WITH :

" We repeat the entirebanalysis below and obtain a élightly

RMUL is clearly cheaper than RSQ.. Cofmparing (3.1.1) «

T NOMB gets arbitrarily better as n increases. Yet NOMB

difficult to program. Comparing (3.5.1) with (3.1.1) and

24 .

.o BINB )is identical in concept to BINA, but f is

.zp}it as evenly as possible into .f; + fi. See Fateman [4}
§ .

-

When Fateman 1temlzes the steps and their costs, and

) - t/2(t/4-n~ °

“ o =* o —log t-lyvy T -7 {3.6.2)

]

with (3.3.1)‘ye see that, éurprisihgly, NOMA is no better -

NOMB/RMUL is approximately t/(t+n-1). That is, for a given t,

is

. " (3.4.1) gives: BINA/NOMB is approximately 1, and BINA/RMUL

is approximately t/(tin&}). Again, for fixed t and increas-

ing n, BINA becomes arbitrarily better than RMUL. Finally,

e AN h

St R L
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. camparing ¥3.6.2) w1th (3 5.2), “and calculating the leadlng

‘terms in both cases, we see that BINB is con31stently better
+than BINA. The leadlng term of the latter is t /(n-lO'; the
. leading term of the former, accordlng to Fateman 54], is

Y - y
oG ° -

EN

n [1-2;‘“ p1-n

ar Y WO

t

. n

These cost functions demonstrate clearly, that among

these six algorifﬁms, algorithh BINB is th& most computation-

ally efficient. Questlons of eff1c1ency and ease'of pro-

grammlng make the b1nom1al-expansxon aigorlthms appear as good

9h01ces for computing powers of sparse polynoplals. Fateman
g conjectures that - an algoriiﬁm superior to BINBnmay:be hard to

find. ,Tpé’conjectdré ;é, of cqgrée, false. Yet BINB is"'not,/W
. by any megné, a bad algorithm insofar as it QEEE aépfoach the

theoretical lower limit for coefficient‘multiplications Qhen

t and n become large; In'this context, the multinomial-

expansion dlgorithm for powering sparse polynom1als proyosed

FLEL IO n

by Horowitz and Sahn1[10] is con51derably less 1nterest1ng.

~The:.r cost fhnctlon is only of the order of thq{?heoretlcal

4

ower 11m1t, in one case being roughly equal td four tlmes that '
llmlt. It 1s p0551ble to 1nterpret his result’

further evidence for the;superiprity o)

appfoaéh.
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- Bolved. The terminal nodes represent fully—spec:.fzéd algorlthms

etructure of a family of algorithms which solve the same
. < N }

. problem. A tree structure, branching downwards from,the root,

‘sqme better, some }gorse, whlch solve the problem. Imeneral, \}\

O a2 P [ - o L e o e et
T g .

o] ’ ' - N : 26,
'CHAPTER IV  , ~° '

RERREY PSS

Professor Dijkstra has been- quoted above to the effect .
kY . / , . r

B -

that: ) .

L]

"A program should bé conceived and understood as
"

a member of a family ... .

N [

algorithm analysis; is that c¢hoices, thm ‘design decisions - . “‘
: %é
taken in any algorlthm can be evalua d only if one sees . ]

\"
them agalnst th ckground of a range of possible alternatlves. \

. ’ ¢ a i

One evaluates a sPecn.flc des:.gn dec151on which is taken in - R

_ comparlson ‘with other design dec:Ls:Lon,s which could have been . R

I /‘ a )
taken. . Ultlmatel'y, one evaluates a spec;.f,lc algor:.thm Whlch a

is proposed -in “bmparlson with other algcrlthms which cculd } -

have been proposed. In’this way, one comes to ufiderstand the

T

is an extremely conveﬁi‘e{xt graphical ’repre,sentation of the . %‘

Pad

algorithm family structure, of its decision points -and poss{ble

decisions. The .root of the. tree represents'the problem to be

~4

AN 2, o907 N A e ot

each non- ternu.nal node of the tree represents a p01nt at whlch

n
\ -

a-decsz.on must be taken, ‘a choice situation, while the ‘
\

branches -which descend downwards from that node represent the .

possible decisions at that po;pt, in that sltuatz.on.

~
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At the root of the pfogram family tree may be placed g

.a— oescription oxr (specificati n of t'he'n problem ‘to be golved.

e A

Im our case it is, construct an algorlthm wh:.c.h accepts an’

. input power n, n a\p‘tuve 1nteger, and an input polynomial

£, £ completely -or almost comple‘tely sparse to power n, and”

produce:? as-its output the resultant pollynomial £, "as , \

.mentioned previously, only a sub-famil:},- nmamely the family

" of sequential blnomlal—expan31on algorithms, will- be system-— B

. pomts over and above the analytically-obtained cost £

-

4

at:.cally explored Bs;mg ‘the program family tree. Binomial-

expansion ,algorithmns are considered the most promising;~
parallel algorithm_s will be considéred later in the thesis.

a

The chief analytic aim associated with the prqgram family
tree is to make statements about the relat:.ve costs of th;

various design dec:.s:.ons assoc1ated with dlfrerent Dranch:mg

ctions
e , . .
which allow us to choose among the fully-specified algorithms

. ]

on the ‘basis of thea.r t:.me complexlty. A knowledge ‘of these

A

relatJ.Ye costs allows us t.o explain the superiority (least
, N .

time-cost) of one pﬁrtl'@ular algonthm as having_resulted
. F o

from consistently lowest-cost decisions. It also adds weight

to the conjecture that this particular algorithm, the best so

far,‘is optimal. This optimality isg‘uaranﬁ\eed if no superior °
>~ * . - " ‘ ‘

design' decision exists at any branching point;<it will be

destroyed if’and when someone succeeds in imagining a design-
i . ) : @ s
decist:; superior to those considered here. ) .

v . -

st

s
.
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Por a while, attention will be restricted to, and
arguments concern, the sequential case. When attention is
e

redirected to the parallel case, the parallel de51gner must be

o
prepared to revise any decision which, although clearly correct

b

‘in the sequential case, is likel§ to hold back parallelism in -
the parélle; case. There is a body og analysis, congirmed

by results obtained.ﬁere,'whichréugggsts that binomial-expan-
sion‘is supefigr to other general‘approéches uéed in symbolic
powerfhg of sparse polynbmialél This aﬁalysis has begn done
for the sequential case; ﬁo one haé aﬁélytic results which
suggest that binomial expan31on 1s also the most: promlslng
parallel}approach; The parallel algorithms QevelOped in thls
thesis are bingmial-expgnfion élgoriphms,,the chief reason ‘for
this beigg primarily the extreme atﬁra%fivenesg of the sequen-
tial binomiallexpansion algorithms. Al;hoggh th; speed—u§

2

ratios of the parallel algorithms both approach the theoreti-

cal uppegr limit, this is no guarantee of optimality of approach

- in the parallel case. Wlth respect to the de51gn dec181ons

.

w1th1n the blnomlal expan51on sub-family, it has generally

been found that those deC1510ns whlch m' lmlze computlng time .

.

the possibilities

in the sequent;al.case do not interfere w'
&sxof‘exploiting parallelism in the parallel cas
good parallel algorithms, then, make use of,

. ' ™ 1] !
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4.1 DESIGN DECISIOES'

In this seciion,‘we,explain the four major design
: .- . ~
decision areas .which arise when one considers algorithms for .

- computlng 1nteger powers of sparse polynomlals. The program

: %

T family tree is a graphical accompaniment whlch records the

de51gn decisions which dlfferentlate algorlthms of the famlly,.

ené}ho serve\/to relate these algorlthms to each okher.

- * ) N , ’ B .
4.1.1 Ge&éral Approach - L . -

Y

Every aléorithm proposed in this thesis “takes.a binom-

ial expaﬁsion approech to computing integer powers of sparse
poiynbmiais._ ThlS means that if one has an input polynomlal

£, which is to be raised to some power H, one splits f into

\

two subpo;ynomlals £, and fz (which together, contain all the [;>

monomgsle of the-q:igiual polynomial), obtains the appropfiate'

powers of the. subpolynomials, and then combines the subpoly-
¢ ' . .

nomiel powers together with binomial coefficients according
to the theorem of binomial eigan51on to obtain the final

answer. fn That 1sw fn is computed as I

-

' n A ~ B
£7 = (f1+£2)" = I (2) £6
. < . r"so 1 2
i * 3

Bine§1a1 expan81on has been chosen in preference to scme other;

general approach, such as repeated multlpllcatlon, repeated

€

. squaring, or -some form of multinomial expan31on, ngt because

ﬁ

every b1n0m1a1—expan510n aigorlthm is superzor to every non-




fﬁinomial-erpansion aléorithms~are superior to the best.

attractive general approach. E .

b
v e e vt i oA o SRS S LS L e P A PP R St vy - wer

-

‘. - ) ' T N

.binomial-expansion'algprithnn but rather‘becanse‘tfm best

algorithms in each of‘the'bther generel approaches. The
position here is that blnomlal expansxon allows. a lower cost
reflnement in comparison with the reflnements avallable in
,other approaches. As a graphlcal convention in connectlon
with the program famlly tree we-agree to draw the branch -
which represents the least gost, or pOSSlblllty of least n

cost, on the “left. The first two branches,of the tree, then,

N

v

which descend frpm the root, are ‘binomial expansion' on

the left, and ‘'some other approach' onithe right. ' The

binomiai-expansion family is extgemely rich in aigorithms.

BINA° and BINB, the two preriopsly-publfshed binomial-

-expansion algorithms, .are only two of many posgible refine~

meﬂts. ‘These refinements differ considerably in cost. It
is the position here that BINB, the best previously-publish-
—ed binomiei-expansion algoritﬁm, does notwtake optiﬁal desiga
declslons by a w1de margln.‘ The obvious strategy to improve

on BINB, indeed, to look for the optimal alqerithmi‘is to”

\

consider a broad range of possible refinements of this most

‘ \

, 4.1.2 Splitting ‘
)

. In binomial expansion the original polynomial £. is
split into two parts, f, and f,. The relative sizes of f;
and £, affect the time complexity of a binomial-expansion

algorithm 3 ﬁ}glstinet and unrelated ways: on the one hand

!




H R B
S e e\ Sum s w1 0 4 e e essemrgns e e 2 Lm0 e oo e

PRTEN ]

31

they affect the time complexity of generating powers of sub-=. .

e . o PN

; polynomials, and on the other hand they affect the time com- ‘
plexlty7of comblnlng approprlate generated powers, sultably

\ multlplled by blnomlal coefficients, in the blnomlal expan-

- - ‘ sion. These effects are so large that an algorlthm with
optimal splitting and.a poor'technﬁgue for generating powers
may outperform aoother elgorithm with guboptimal Splittingfend
a good technique for generating powers. Some of’the ways of
splitting polynomials -into two parts are: (a) one term
and the rest, (5) as etenly as possible, (c) as unevenly as
possible, a power of two and the rest, when the number of
terms to be split is not a powef of two, else evénly, and

‘A finally, (4) as eyenly as possible, a power of two and the
rest. Considering many ways og_splitg;ng is consistent with
the idea of investigating a broad range of possible refine-

’ N o o
ments.. We.found that degree oI evenness of splitting is the

o~ only relevant splitting parameter in ohoosing from emong the

four splittings mentio¥ed. e
oF . v‘::., ’ ' ’

3

The need to choose the relative sizes of!the subpoly-
y. nomfals f1 and f2, where f = 1+fz, follows from.the very idea
of binomial, expansxon. There is another Spllttlng qpc151on,
hOwever, which arlseS“only 1f one cons1ders alternatlve ways
- . of generating powers of subpolynomxals. The two b1nom1al-'

/
eXpan51on algorlthms BINA and BINB adopt repeated multlplicatlon

N
as their prlnc1pal strategy for computxng powers of subpqu—* T

nomials. It is characterlstlc of thls approach Jthat the B .i

£ original polynomlal f is aplit only once; we call ‘this

. \ o>




<

characteristic: 'single-level splitting'. éingle-fével'splitting

is a consequence of a ‘'non-recursive' approach to’ the problem,

1

in which binomial expansion is:used to compute the power of

the whole polynomial, and something entirely di;fei'ent is used ™

to compute the powers '0f subpolynomials. If, on the other °
Hand, one carries through and ”uses bind;niall expansion to coni~
pute the powers of subpolynomials , One n;aeds t\;o split ,th:a’
original polynomial over and over haga:i:n, until finally the
monomial level is lreached.. Thi's i; éailed:~-:mu1ti}evel splitt-‘-*
ing'. All the algoritlims presented in this ‘"th"es‘is use variants
of binomial expansxon for generating powers of subpolynomals,.
and hence are committed to multilevel splitting, in contrast
to ~previously—published bihomial-lexpansi‘on algorithms, which
all adopt the single-level splitting approach. /

Analysis of the fully-specified‘algorithms al{.}ow\s one

to make two assertions about the preferred desigqn decisions

£ - N
relatlng to Spllttlng. It is 1ess costly to multiply a large -

é)olynomlal by a small polynom1a1 than to multiply two poly-
nomals of lntermedlate size. It follows that even splitting

increases the cost of comblnlng computed powers of subpoly-

nonuals. All the~techn1ques for computlng subpolynonual K
powers, whiether variants of binomial expansion.or simply re-
peated .multlpllcatmn, are such that even splitting reduces the .

cost qf computing these powers. In all ;nstances, the latter

-

effect predominates. Hence, in either a singlg-level‘o'r a -

multilevel context, polynomial split‘f:ing which is as-even as

P
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* N < N -
.

possible is éiways'to be preferred.’ This is thg first assert-
"ion. From the standpoing of'timé complexity, tefeatéd multi-
plication is a poor way_tq compute powers. of subpolynomials.
Both the variants of binomial expansion, to be discuésed short-
iy, éasily outperform repeated multiplication for this task.
Hence, in comparison.with'%inqle-level splitting, multilevel
'spl?tting is to be preferred. And this is the second ﬁssert—

ion. . - .

er ok wane

0f two sequential algorithms wirich are equally paréllel-

izable, that is, possess idenfical speed-up ratios, the least-

cosfksequgntial algorithm will give rise to the least-cost

.parallel algorithm. There is no evidence which 'syggests that
even splitfing reduces the possibilities for parallelism. On '
the contrary, even splitting breaks problems "inta subproblems

* . [

of equal sizes, -which can then be processedAsimultaneouély. C ;

h T

" One may also say that even gglitting is fully consistent with
. ) - ' 1 .

-trying to maximize the number of independent subtasks, an
;mpoftan£ step in extracting parallelism from a sequential '“

algorithm. Repe&fed multiplicétion,and hence single-level

Todr ot by e o TR

’splitting, has the [following disadvantage in the parallel case..

Because, even for completely sparse polynomlals, there is no

a .

.theorem which asserts that'no like tenms are formed when

WIS Ve e

generating subpolynom1a1 powers: through repeated/multlpllca—
tion, ;hls\;atter technique’ 1s‘less ea51ly paralllzable ‘ v
(becahse of the need to collect like terms) than the multi- -
léﬁel'binémial-expansion tééhﬁiqueé, for which it can Se shown,

as discussed previously, that no like ‘terms .are formed in-the-

a —

~




3

c:bse products ‘of the binomial expansion. Thus far at least,

the same decisions seemvreaébnqble in both the seqﬁential and?x

parallel cases; no further,plaim is made.

4.1.3 Powers of Subpolynomials - - o

m 4 N S "
NN\\\;awers-of subpoiynomials must first Be.cemputed ﬁefore . L
they can be comblned in the binomial expan51on together with o i
binomial coefflclents. What stxa?egy best computes these -

-

subpolynomlag powers is one of: the\fast 1mmed1ately apparent

1ssues in the whole blnomlal-expan510n famlly, and yet .one

central to the time complexlty. Previous blnomlal—expan31on
3

‘glgorithms have essentially used repeated multiplication for

-this task; the new algorithms bresented and analysed in this

.—

~at the root. New nodes (subnodes) are formed by takipg the

.riate sizes ‘(defermined by tﬁe eYenness dec1slon) to form the ' B BN

called the ''term group tree'. The whole polynomlal is placed

thesis use the techniques of- recursion and binary merge. These. -,

techhiéues will now: be explained. As soon as the decisions' \
concerning depth (level) and eyenness of splitting have been
teken,-the splitting of the or1g1na1 polynomlal is fully

specified, and may be dlSplayed as’ a blnary tree. A. 'term group’

is one or more terms from the orlglnal polynomlal. the tree is

¢

term Qroup at a jode, and sﬁlitting it inio hgaves of approp- .

\l

left and right subnodeg. Conven ion: let the size of the term
‘group in the left. subnode never be smal;er than that in the

right subnode. .When multl;evel spilttlngnhas been adopted, this

. process is repeated until one reaches the individual\aq@ms,l B

e
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. . ) .
2 -swhich are the terminal nodes of the term group tree.
* Bxamples: < B .
: ) : ‘ ¢ . ‘ .
. S L "
S8ingle-Nevel, one-and-the-rest splitting
3 . R T
: . - a+b+c+d
T i L) X ' : - ” . - ] ' . . -
" L “a+b+c a LT
' . "'\‘" . . - ) ! 5 ’ e N ) \\. ' P , )

‘Multilevel, as -gven-a-s—possibzle -y

N
' . . .
f‘ . . N Coae - . K

»

splitting

a+b +c

.o

N 1 ﬂ M -
., | , ' .. Multilevel, even #plitfting with t = 2% .
N \c ) ) Tt . . / -

g i i &

A : R4 a+b+c+d, e
§ SRR \ )

+b =

\
NASR

n

b
N
(<2

o0

v S FIG. 4.1  THREE TERM-GROUP TRERS
» e ’ ’ o = e
L ‘- ) . ) - . * .
‘\ ¢ ' R R .
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Recursion properly so-called and binary merge are tﬁe
o two '‘recursive' approaches to the cOmputatiog ofqpowers of
lubpolynomlals.‘ They are consistent appllcatﬁons of blnomlal

oxpan51on to the computatlon of powers of polynomlals at all
i 7
* stages, except of course, at the monomlalﬁievel itself. The.

by ‘recursive application of the total algorithm to the sub-
- nodes. The weakness of this approach, still vastly superior
_ to repeated multiplioation, is that one never computes single

* . powers of subpolynomials, but rather groups-of all powérs From

J

.1two to n. Separate recur31ve ;application for distinct powers »

Al

of a. subpolynomlal leads to recomputatlon dlstlnct powers of

a b1nom1a1 have computable factdrs in common. Bin merge is’

EOFITCITITRA, W"“‘"
. ) form of recurslon in whlch there is no recomputatlon. One

A7)

may compute the power of a node, or the group of powers (from.

two to n) of a node, 1f one has the groups of powers. (from

two to n) of both subnodes.  .Equivalently, -once one has comput-
- ! , ) , . . \

ed groups of powers of subnodes, one may go on to ‘compute

b groups of powers (or singlé powers)-gf'tﬁe father node. In

L8

‘blnary merge we progress up. the tree, startlng from the te:mlnal

T nodes, using the alreaay computed powers of the sdbnodes -(once

= they have been eomputed) to compute the groups of powers of the

father nodes. Ultimately, a single power of the .root. node,

which contains the original polynomial, is computed. -
;\ . . ) 1}

N - W

. , i O - .

.

- idea of recursion is to cbtain the powers of the subpolynomials

v ey g,
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‘ . 4.1.4 Combining Powers
; B ' . * ] ) . - .

R . A We assume that a table of binomial coefficients (:); =
0<s <r<n, is available to the computation. References to

this table are overhead. According to _the cost model, each

multiplication of a monomial by a binomial coefficient counts

as one coefficient multiplication. If the powers of the: two

,_fT Y 4 .
. ] suppolynomials f; and f,, where f = f; + f2, are availzble,

O

TN = (4" = 2T
. . b 1 2

may be obtained by combining suiéabie’powers with binomial co-

r.n-r . Y

efficients in the binomial expansion. The product ( )f

‘o ' may be obtained either ‘(a)q.left to rlght, 1rrespect1ve of »

the re%ﬁflve sizes of- f and f , or (b) by first multlplylng

( ) by the smaller of the two polynomlals, and then this 're~

} : sult by the remaining polynomlal. Prev1ous algorithms have

, . . .
' i '

invariably used the first éechnique; our begt algorithms use .

the second techﬁique.' It is immediate that the  second tech~ 'wki“
- . ) , .

nique reduces the number of coefficient‘multiplicationﬁ. We .

i call the first teéhniqhe:'left—to—fight' and the second -

technique“:'smallerl If the first technlque is used, the .Lb

product may also be written as. fn N )f . That 1s, one . .t

always multiplies by the power of £, flrst In the second

A technlque, one chooses the order of multiplication for each -
' ' }

- . ~ -

product. . -

ik M A1 . SR 5T .
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.

If one were to list .the preferredrchoices which have
. been- made so far, one would have, first, th;\use of binomial ' . )
expanSLOn, second, 5p11tt1ng the polynomial as evenly as

possxble, third, adoptlng one of the 'recursive’ approaches,

1

which commits one to multllevel splltting, fourth, preferring P
o ' binaly merge to recursion properly so-called, and last, foim- *

ing the cross _products u31ng the smaller technlque. These
ch01ces specify an algorlthm, -which we have called BINE, about ~°

k :
[ ¥ - whlch it is conjectured thaé the leadlng terms - the time- L
|

L%

2 . complexity cost function cannot be bettered There_is, how-

7 L oo ever, one final improvement which can be made. Suppose that . . .3

a and b are the left Eﬁéérlght subnodes of the root of the
term group tree, andgthaﬂ b; and b, are the left and right

. - subnodes ot b. We will use the same names for a node, and for m;
| the terﬁ.grogp associatedxg%th'that node. Suppose that we are

L

| ot , computing the foqrth“pbwer of the root. In that case, we are
T : v >
* . interested in the produdt a?.6b?. It is not necessary to have

I

)
S Ao N T E e R e e AR

.previously computed b? as, bi + b; + b;.2bz. ' Rather, one may

L

Acomputeyﬁbz directly as_Bb:.+ 6b§ + b1.12b,. One saves as many
coefficient multiplications as there are terms in the‘product
L "bi.b2 at the cost of multiplying 6 by 2. This technique is

alled: 'distribution';it amounts to not having to compute some
. { N - .

bf the lower powers of.the left and right subnodes of the root.

‘tails of the technique will be given below in section 5.6,

i
tgon ‘is a mixed strategy whxch dev;ates from pure blnomlal

| K§ICh analyses the time savxngs due to distrlbutlon. Distribu-

.". ‘~ - ékpans;on at the hlghest levels of the term group tree. If the /

. )
L

. ] T
: ~ - . N
| . L] .
. > N

=
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algorithm which differs from BINE only ‘in that distribution

o . N 0
is used, STe\wc\:\ailed BINF, then BINF is the least-cost sequential

binomial—expan:ion algorithm (for cofputing powers of sparse
'polyndmieils) known_at the time of writing.
‘ o #
4.1.5 Optimum Design Decisions

~

~ If we think of distribution as a modified form of merge,

then the whole set of optimum désign decisiong can be diagrammed

)
. A
4

- in the following way: - . - S
. X

binomial expansion ——) ¢——— some’ other appro“ach

~

even splitting —p

multilevel . — single;—levei’slalitﬁing
splitting (non-'recursive'}
(*recursive')
iy
modified ——) €¢—— recursion
merge - - o

-

smaller —— ¢ left-to-right

.

7 Bimp © . FIG. 4,2 THE PROGRAM FAMILY TREE
(Binomial F) ' ) ' .
. . “\3' '
. . ~ - . T
.. . The diagram which has been given is a very partial and

réprésentation, even of the sul_)-family of b..i."nomial-“

-’

a

incomﬁlete
" expansion algorithms. The reader may ima@ine the combina+-

toric possibilities in permuting choices. Two algorithms will

differ in cost if even one decision is not the same. In the

H
4 . - T

b

v

.
e e oS
et it

- "—’I

.
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. rithms, most of them new. The superiority -of BINF will be

' demonstrated; if no leftmost branch above can be improved

~and analysis of algorithms, we may use the program f:]nily tree
b

_subpolynomal powers. BINA and BINB use left-to-right. Many

next section we presexit and analyse some representative al\go-

R

upon, then this algorithm is indeed optimal.

. —

Before passing to the section for formal description

for an initial comparison between previously existing binomial-

expansion algorithms and those presented in this thesis.

Obviopsly, all Belong to the binomial-expansion -subfamily. .

il
T e g A 30 S oo

Fateman's BINA employs monomial splitting (the most uneven o

s

!

¥
{

splitting), while his BINB splits as evenly as possible.. Most
of the new algorlthms use even spllttlng, those that do not

pay a time penaltyu BINA and BINB are both non- recursxve,
81ng1e-level spllttlng algorlthms , as repeated multlpllcatlon‘
generates the powers of subpqunomals. All the new algorlthms
are 'recursive’, multllevel—spllttlng algorlth.ms, using, varz.ous-

1y, merge, moplfled merge, or recursion for the generatlon of

of the new algorlthms use smaller; those that do not pa,y a time

penalty. The program-family 'tree is an important complement to
‘ . . « ) " . "_
the exact, .analytically-obtained tost functions. It gives \\\

us a capsuleA view of the full range of differences be*tweex{ amy
two algorithms. It also provides a graphical representation . - ‘

of which decisions are to be preferred at each dec.lslon po:.nt.

3

In thJ.s way, we come " to understand why certain algorithms out-

perform others. _ : I |
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We discuss:below Fateman's BINB, which %’e analyse anew,

-

and four algorithms which are all refinements of the binomial- T
Vs , ' - st L

expansiofx approach. Each of the four algorithms- is superior

to BINB.  The' algorithms will be described 'ysing the terminol-

b

"'Qg'y develépéd in donnection with the progf'am family trée of
. |

!

{

3

2

¥

- [N . - : N , %
Chapter IV. For each algorithm, the input is 4 power n, and a ~ .
poljrnomiqi f completely sparse.to power n, while the output is §
,Gixe resultant polynomial £®. The aim of the time—complexi:tyﬂ

analysis is to give the cost in coefficient multiplications | .

as a function of t and n r each algorithm.

v

0

5.1° ALGORITHM BINB (Binomial B) . - |
“ M - - 3 N
° O ’ . ' . % ““a
. N , . .
This ‘algorithm-is specified by the design decisions: .
" binomial expansion, even splifting, single-level splitting',l in-

. . q
~ sofgr as recursion is used foi; the squares of subpolynomials ’ i
-7and repeated multiplicatien for all other powers, and finally, g

left-to-right. The cost function propesed in [4] is —
s ’ ’ { ’ | \1“ N C

B(E,n) = (D7h ¢ e (WENT) _ 2Ly o

! . . - e
. t/2(t}4-n—logz(t-l)+4ﬁ ) (5.1.1) N o

. . B .. ' R : ’ \ | ]
As stated, .BINB uses a mixed strategy for computing powers of ’

G
N 1

k!

-~

»




R

g

- o

subpolyno)nials: recn{gion for the squares, and repeated
ﬁlultipliéati‘bn for higher powers.

sophy Behind this; a remark by Fateman in another paper [5]

.

¢ A AT 2 e B R TTR Y A £, Bepsg e o

bY

2

-

" There may be no deep philo-

shows he did not think it made much difference.

inspecting the steps ih [4,

the total cost of this algorithm as follows:

[}

4

p.152-153], we would itemize

e e T i |

After closely

’

Case 1z = 2 f= £1+f, . size(f,) = siée(fz) = t/2 i
’ - ) 8 i
S . ’ 1
¥« TABLE 5.1 ITEMIZING THE COSTS IN BINB R
!
Step Compute Cost. ‘
!
v. - ) .‘
- 1 S TN £2/4 + kt/2
~’ [ .4\ ‘3 ) n i .
£loeet) Rl e/24i-1
2 - s 2.8/2 T (g7
£3,...f 2
2 2
3 (n)fz t/2 . )
A *
n7‘\‘ ‘ ‘n-1 D=l 4ok ' |
4 2 i- :
. | 2 |
v ‘ i\‘ '
n-i _
1< .<_ ne1 |1 t/2 -1 Tt/2-1
- . hN
id . ¥
.Total Cost
Bi(t,n) = (t+§-qﬁ 2(1:/2+n 1 . (t+1)(t/§:2_l)
o d :\5”\ . ,
- t/2(t/2-log,t+l) - 1 (5.1.2)




.
f = §g+fz“€m sxze(f;) = [t
size(£f;) .= Lt/

Itemizing the cost as before we get '
%

ty+n-1, _ (tz+n-1

t+n-1) - ) +

Bz(trn)\=‘( n n n

/

\\~

Het e (! 2*“ l) +p(t). (5.1.3)

where p(t) is a polynoﬁial’in t of degree 2.

chééring (5.1.1) with (5.1.2) we note that, even for'
t = 2k, the cost we calculate is greater than the reported cost.
This difference will show up in the second leading term of the

cost function B(t,n). o

5.2 ALGORITHM BINC (Binomial C)

. Thig algorithm is specified by the design decisions:

blnomlal expansion, even splifting, multilevel sﬂllttlng, as

g

recursion is use@ to generate all powers of all subpolynomials

. other than monomlals, ‘and flnally, left~to-right. The ana1y81s

-

w111 be carrled through for t = 2‘. The original polynomial

f is split into two parts, 'f; and f2, where ) ' \ -

-
b1
2

Bize(f:) = size(fs) = t/2 L

. , . \ . '
T . n - PN ’
We use fﬁe binomial theorem f* =.I (;)fff: T to cbmpute £,
L . ’ '
. - 0 ! ,

4
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The powérs‘ of the subp‘olynomiall;s' ‘(other than monomials) are

obtained by recursive .applicat'iox\l of the algofithm just .

B LU
¢

| o specified. L i 4 ‘ F’

,5.2.1 Analysis of BINC

-

~
4

- . o Let C(t,n) be the cost in cdefficient multiplications :

, > . , i .
? ) - of computing £ when size(f) = t. | (The cost function is always :
2 the last letfer of the algorithm n e.) If we expand £f" in t
) 6 ‘ N ) ‘ . . » -
E < the form -
o L -
’ 1 £ n) g gh-T
- 2 ’
‘we have:- '
»
C (t,n) (5.2.1)
e t
- j
* where Or‘ is the sum of costs itemized as follows: _ -
> '—‘ . ) % |
TABLE 5.2 ITEMIZING THE COSTS IN BINC - - §
-, ) Ce- i . $
i L
v Step- Cost :
" il
. ‘ - ;
1 C(t/2,r) o
e C 2, ' c(t/2,nr)
. . _;II, N L
;; . . .
t/2+r-1
ﬁ”lf- . ' - 3 ! ( t/2-1 )
A}
: t/2-1 ' t/2-1 -
. . , . ‘
. . . o




[

Qn-l

t/2+r-l

N c(t,n) = 2C(t/2,n) + 2 i Clt/2,x) + i Cera-1?
Sy S t/z+r-1 t/2+n-r-1 "
Using (2.1) and (2.2) we obtain °
t+n-1 t/2+n-1 t/2+$-1 ,;

C(t'n) = n ) = 2( n ) + ( n-1 )
n | ‘

. - 14+2IC(t/2,r)B (5.2.3)
1

[

Me may bootstrap a closed form for C (t n) 1nto one for C(t n+1)

by using the formula-

c(t,n+l)

4 b )

Ay

\

obtained from (5.2.3) by changing

currence on t.

obtain -the general form of C(t‘,n).

a(n) - iﬁ’ 2n-1

C(t,n) =

B

a polynomial in

‘snt-l':—fr'(t-ml) +§
- Xk -1 — r~1
+12 C(t/2 ,n)
1

o

2:.--'1 (t/2r+n-l)
n

+

(5.2.4)

Using this formulal and inductiof on n, we

-

o
<

of

+t I ai"’ xi-n

, n+l

t and k.. Iné;;ection yields

.“"’ - 1/n!

i
g

- ~

(n)
a2n 1

o4

-

- 1./2{’!1-1) !
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Exact analysis yields tlie following for n = 2,3, and 4: )

c(t,2) = t%/2 + t/2 + kt/2 . (5.2.6)
: . . . 4% (

c(t,3) = t%6 + 5t%/4 + 7t/12 + t(k+k?/4) (5.2.7)

<

. . ¥
C(t,4) = t%/24 + £3/3 + 65t2/24 - t/12 +
— . .
+ t(31k/24+5k2/8+k%/12) -

c(t,n), we need to know the general form of the second co=

(n)
2

efficient a

éoefficient of

Using (2.7) we see that the coefficient of " in

. For an analysis of the two leading terms of the cost function

(5.2.8) °

-

. - This is the coefficient corresponding to the

& N
t® in C(th+1). ‘

- .
3 . A

\

. t-l(t+n-l) in(n-1) - 1
-A¥I" n (n+I)1

i

Similarly, 3fter some manipulation, we obtain the coefficient

of t" in T - lkt\*
k r
. . I 2r-—l(t/Z ;n—l) as i—l ,
1 2n! (277 -1) .

. g |

Subétituting (5.2.5) ‘into (5.2.4) and rearranging yields the co-’

efficient of t" in.,

S

k ! . n-1l \
T 21‘-1 C(t/2r‘_l,n) as —-g—n—_r—"
1 - nl(27 "~1)
éinally, adding'énd_chahging n+l to n, i.e., ain+1§ to g(n)’
. ' : 2

we obtain the coefficient of .the second leading\term. It is -

a(n).-
t za
Y

‘1

+

3

3

TG T

(n-1)1 (27712

.

2)
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) n ia(t,n) c(t,h) L(t‘,'n)
i -{J
[ 5
2 5t2/8 t2/2 - t?/2
| 3 £1/4 - t'/6 t3/6
il-n ' ‘ '
. ™
n>3 [1 m—']t ﬁn{n! tn[n!
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A
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-

The coeffxcxent of the leadlng term, from __I(t+n-1)

n , i’s‘

-

afn) x l/n! Compare the analysis in [2] . We can now ces-—

pare the leading terms of the cost functions B(t,n) and

'.‘C(t,n) with the lower-limit cost function L(t,n). We have:

TABLE 5.3 LEADING TERMS FOR B(t,n), C(t,n), L(t,n)

[

It 1s instructive to calculate the relatlve dev1at10ns

of B(t n) andic(t ,n) from the manlmum cost L(t,n) We. have:

[

L

N | g
{C(t,n)-Lit,m /L(t;n) = 30/(2" M) + o7y -

" and - -

[B(t,n)-L{t,n) I/L(t,n), = (n-1)t/2""1 + 0(1)
. F : .
For large. t and large n,C(t, n) approaches L(t,n) much more
C.b

rapidly. In fact, for n > 2 and t > 16, BINC outpe:formsj

"BINB. - (See Appendix I).1 The faqg at there are (at ieast)

»

‘four algorithms which are éuccegsi iy bétter and better than

°

“‘\\ : : L
; T LER

. : <h@§

e it
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; q‘i BINB points up the weakness in the argument that, because

a’B(t n) is asymptot1¢a11y L(t n), therefore BINB may he diffi-

) _ ‘ cult to improve upon.‘ Asymptoth arguments ‘can be mlsused.
The important thing is to obtain analytlca ly-exact cost

* functions, and to make aicoefficient\by c fficiegt compari-

son of their leading térms: ', e

N t - ~
+ - v

\ 5.3  ALGORITHM BINS (Binomial.S) :

We considered an algorithm wﬁigh is identicél'tb BINc;N
) . N S . . q~
except that balanced i splitting was used in place of.

even splitting. ‘That is, whenever the si e of thé.polynomial

v

> - to be Spllt‘was not a power of 2, the polynomlalawas Spllt as
evenly as p0551b1e into two polynomials such that the/51ze of

‘ong of them was a power of 2. ' This splitting is less even than

even splitting. Hence, it represents a regression with re-

" spect to BINC and is, in faét,dmore éxéenéive. This less

attractive algorithm still 6utpérforms BINB for t > 12. We

merely quote the' final cost‘function. _Let us suppose that -
the balanced binary multilevel splitting is t = t; + ... + tss

ty = 2k, et el a g e G0 L e, e
- o

In this notation S(t,n) is

¢ . - N . .
4 N - ~

-

- p-2 '.(r) o P . p-1 <
s(t,n) = I s(t'"' n=1) + I C(ten)+ I . T, (5.3.1)

where N i
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' ' (r-1) {r)
t +n-2 t +n-2 £ 42 t_+n+l
R e I R e R
See [2] for mbr’e detail. ‘ ‘ -~ ‘ \
;o P -
5.4 ALGORITHM BIND (Binomial D) . . - \ ///

-

“This algorithm is sgpecified by the design'decisions:\
binomial expansion, even éﬁlitting, multilevel splitting, re-

cursion, and smaller. That is, it is BINC in which left-to-

?,

sy

| right has been &eplaced by smaller. More- formally: -

3 . :
N < s & a ° o . e

[t/21
Lt/2]

)

[]
rt
-

{1).  split f=f, + £1,8ize(£f;)

' size(£,)

(2) Forr =2 to n, c@mputé ff ‘andj f: ‘

unless the £, is monomial. i e

(3) For r =1l ton~--1

\ A ‘

(a) Multiply (D) by whichéver of £ and ff‘r
. ¢ ’ -

has fewer terms

‘e . J

~(b) Multiply this produég by the remaining fhctof.

-

(4)  Collect the terms of the -binomial expansion.

«
KN

A . Y
—Analysis of BIND: o -

¢

As before, D(t,n) is the cost in coefficient multiplica-

"tions of obtaining £ when size(f) = t. The costs are -

N

]
t
»

\

)
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: o < 50 .
itemized as follows: : . E \\ _
| - TABLE 5.4 ITEMIZING THE COSTS IN BIND , \ "
\ - . e - - 3 - ‘\ ‘ '
Step . ' Cost o & )

. .
2 . L [D(ti,;r) + D(tz,r)] |
2 e
1 o .
| n— ,
3a) v+ © T omin [(B1FFTh (Reinorlyy SRy
¥ . 1 X n 4
w / R . A ‘ ’ ) 5
3(b) T (biteely eatnmre »
1 T n-r ‘ i

s

D(t,n) is the sum of -expressions in the right-hand column.

We restrict the analysis to t = 2k. However, D(t,n) has been

tabulated for t 7 2X. - (see Appendix I). . ‘ : \/f',f ?
pe,nf = 2  D(t/2,5) + 2 (t/z"r Woae (/202 - k?
2 1 —
/*/'/~ , ) a - - . \
: t/2+r-1, ,t/24n-r-1, . -
\ ." . ' + i ( t/z 1 )( t/2"1 ) - (5-‘.15 _ -
( »3
where m=n/2, ¢ = 1 " when n is even
~and ms=s (n-1)/2, Gn = 0 when n is odd. ’
1 % T s

‘ { = , )
Using‘(Z.l) and (2.2) this may be rearranged to yield:




‘ q "/bv' @
. ; % ,r-1 r-1 t-1 ,t+n-1, ,
S _1 D(t,n+1)q: nt/+ i 2% D(5/2 S+ 3 (FRTh) p
| @.t : i : “ - ~ B . ¥
! Xk ro1 t/2%4 (no1)/2) - | |
l h If we let m = L(n+1)/2J, the last term of the right-hand side '
Il ' s
simpllfles to . f 5
% : . . ) N ) :
Vo o i=0 2 -1 ] i ;
\ ) . .
v - 5 .th . .
‘ where Gi is the i— symmetric fynctlon on 1,2,...,m-1. We.

assume, after inspection of the first few special cases, that

the general form for D(t,n) is

; .én—l . o '
D(t,n) = I a, tn’%+1 +t I a kP (5.4.4)
) . i=1 . i=n+l : ,
{ ! ’ -
where a, = a(n). We have \
’ k. - n-1 n-j ., ¢
£ 2"t p(e/2 ) = . 1 2 PR ) R
1 ' . 1 (2"71-1)
. n zn-l k: u-n
' +t. I a, I 87 (5
) ~ n J s=1 3
he b d‘ ‘ ! w
' Also ) * |
- L T GT T—rr r—rrr S .
/ .
e Lk (5.4.6)
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Slnce algorlthm BIND, in its leading terms, is the optlﬁal

blnomlal—expan51on algorlthm whlch uses recursion for comput~
ing powers of subpolynomlals, it is worth quoting the closed
form éf the cost function D(t,n) in:full detail. Substituting.

the previous four results in (5.4.2) and féarrqnging gives N

Q

(5.4.9) &

finally \\ ) -
“* ) ,
. o n+l ' m-1 -
- N " _ 1 I g (m=1) m-r_ _
D(t,n+l1) minT t tln nin+l) 2ml L 9/ 1)
.7 , - _1)'
n-1 . . n-1 g (m- :
- p a2 EPTIinyy e r WRTTHL r*ﬁ:?‘l +
1 J " n-mtl . 2m! (277 7-1)
a 27t | 0(2_;) - Giﬁil) e L 2"
t oL m+I)T ] vEo® [‘EZE:I *
(n"‘l) (n'l) .
(o] T
+ (n+l)! ] + kt(a +§m) +
3 //
2n-1 “j-n
+t I. ag z‘élz 3 “}(fii (5.4.7)
n+l. J j=1
This formula gives the coefficients a§n+l) of D(t,nfli in terms
" of the coefficients . a™ f D(t,n). Cf. [2).
, \\ s
When n = 2,3,4, we have,alﬁays assuming t = 2k,\
D(t,2) = t2/2 + t/2 + kt/2 . . (5.4.8) .
D(t,3) = t¥/6 + t? + 5t/6 + t(5k/4+k*/4)
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t*/24 + 11t3/36 + 53t2/24 ¥ 4t/9 + t(7k/4 +

D(t,4) =
) + 3k2/4+k%/12) (5.4.10)
h
« In general “ ‘ : ' . ..
8 . .n-1 ol e ]
D(t,n) = =+ t R — +
e nt T T T i
+ ot T - T sl
Tl:1e impro‘\:euit-;nt of BIND over BINC is given. by -
"l - .
c(t,n) - D(t,n) = o T l‘n-l +
T (n-1)1! (2" ~-2)
+o(t"" S0 (5.4.12)
L ' ) :
. Another interesting result is that, for n > 2,
lim D(t,n) - L{t,n) - ‘ '
£ e LR - 0 o (5.4.23)
. 4
while k. —
' lim  B(t,n) - L(tln) ., n-1 .
t+o - L(t,n) ) = n‘l.z (5.4.14)

o

This last result places BINB in a different asymptotic
class from the superior binomial-expansion algorithms develop-
ed here. Thus far, we have seen the first few members of a

’seque.noe of succ'gssiirely better and -better algorithms. ' With

é

& PR =
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the exception of the 'S'A in BINS, the identifying letters
(algorithm names) have all been chosen 80 t.hat the r-'l:ime--ct:m-
plexity of the named algorithm decreases as we move through -

the alphabet (BINA,BINB, BINC, BIND BINE BINF) . There is no

~ BING. As the obvious and then the less obvious and tﬁ'en the
subtle improvements are incorporated, it «becomes' n\o\% and more
d-ifficult to improve on each sucdessive algorithm. The size

‘of the. improvement decreases. BINC differs from BINB in the
1ead?ng term ot: the cost function, BIND f;om BINC in the

second leading term. To see clearly the significance of each

improvement, we must give exactly the anaiyt,ic cp"st function

- of the new algorithm, and then compare the coefficienté "of

the leading terms against the previous best member of the

i

- sequence.  After BINC, there are no more imbrovements in the R
leading term. BINE, 'however‘, is another improvement 4in the "
second leading term. - ~ ' o - -

5.5 ALGORYTHM BINE (Binomial E)

s ‘

|
- [

This algori'th;n is specified by the design decisions:-
binomial /e'xpansion, even splittding, multilevel spiitting,
o binary merge for -computing subpolynomial powers, and smile;,

More formally, we make the following &escription. \'As usual,

¥ f =t + £, .o L S
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Description:
| 5
'W
(1)

f:

(a) Place £ at ‘the root
(b) ‘lslace‘ 'fl, size(f,;) = Fsize(‘f) /2], in the left
_ sub-node
E (c¢) Place £, in the right sub-no:ie

(d) Répeat steps (i)) and (c) fér the subpolynomiéls
_until each term of £ has been placed at one of-
. the terninal nodes of the tree‘

(2)‘ For each term of the original polynomial f,' compute

all powers from-2 to n. This completes the processing

of the terminal nodes. )

- i
\ ¢ ”

(3) =~ For each strictly interior node, both of whose sub-

nodes have already been prqéessed, compute all powers

) . '
from 2 to n according to the following schepe:
1 ' [

(node)® = (left sub-node + right sub-node)®

&

{

expanded binomially.
' '

Create the binary term=—group tree for the polynomial .

( () 'For s=1toz1do:: p

-~

(a)

(b)

Multiply (:) by“whichever of (1
ngcie)s and (right sub-xiodeJ)f-s

(/

Multiply the result in (a) by the remaining

4
factor. ‘ _ ‘.

eft 'sub-

has fewer terms.

°®

A
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(ii) Colleét (left sub-node)” + (right sub-riode)”
the products‘computea in (1) . -
(4) Compute the nth power of the root accordiﬁg to the -
‘ 3

<
LI

previous scheme.’
Analysis: ‘
The importance of this algorithm juétifieé giving the
anélysis in full detail. But for distribution, BINE is\

(conjecturally) the optimal sequential binomial—expan510n~

algorithm. We W111 make use of the results and closed- form

~

expressions 1n>Chapter 11, and iay the groundwork for the.
space—complexity’enalyses in Chapter VI. ye begin by deyelop—

ing the concept of a ‘'power group triangle’, which is a repre-
sentation for the binomial expansions (via sub- nodes) of the

powers from 1to n of a node, the so—called power group of

that node. The representation follows from the 'smaller'

{ - ®

" idea. ’ ' K : ’,

4 n

Con51der a typical power group, i.e., setxof binomial
expansions for all powers from 1 to n, for the n in £
More’ preCisely, the power group triangle for a node a +b is
the graphical representation in trianguler fprm of all bi-

nomial expansioos required to compute all powers from 1 to 'n

of that node, éiven all powers from 1 to n of the two sub- .

~

nodes. : BN 7

&

"‘?
1
1




- o = b |
»

[ |

% o

—,} -~

La* "+ b* + a’.db + bskfa + a%.6b?
. a® + b® + a?.3b + b%.3a’

a? + b2 + a .2b

¢ + b® + aS.6b + b5.6a + a*.15b? + b".15a + a’.20b°

a® +b% +. a“*.5b + b*.5a + a'.10b? + b?.10a?

e

(]

a +b
N
( t ‘ -
\. ' .
) ¥ j
FIG. 5.1 THE POWER GROUP TRIANGLE WHEN n = 6 L g

o

avallablllty (apért from blnomlal coeff1c1ents) of all. powers

0

from 1 to n of both subpolynomials.

sub-node, and b is the right, sub-node, size(a) > 'size (b). The

first two columns do not involve computation. In each of the

- ) o
. ‘%&, ('

3

remaining columns, the so-called prodﬁct columns, care has - 1
been taken to group the bihomiai‘coefficéént togethégfwith the

.“ smaller of the two polynohials in each créss‘product; Wgeﬁ
te= 2k, this is rigorously exacf. ' When t # ?k' there ﬂ}ll’be,a b

**few isolated instances when a 1atgef’power of the ‘right sub-
node W1il have fewer terms than a smalleg‘power of the left

sub—node. We 1gnore such’ instances and maintain the power

R " 3 -
group triangle ‘in its present form.

~

.all powers from } to n. of the polynomial a + b assuming the

1

is is actually a partially-specified algorifhm for obtaining

]

Because a is the left

.
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' Our fJ.rst analytlb tas& is to evaluate BC(s n) , the ‘ i ' '
1 N T - T~ ' j . '
I b total binomial-coefficient work required to Create the power
{ ‘/
# . \ group df\a node whose sub-nogdés are of size s. For instance, s
‘ P ¥, ‘ . . . v N . . \ . ’
‘ -, BCls,;2) =8 - ' |
i 4 14
| { o N ’ \ ;7 |
BC(s,3) = 3s t . . |
- ,,,/ , ) ' B » - I‘ !
. (Beds,4) = 3(lls#s?)
’ ' ' 2y \ ‘
: »",  BC(s,5) = }(17s+3s?) o\ ;é
| ¥ . M . i L R
A S That 'is, we must evaluate the sum of sizes of polynomials = _ N
I R which are multiplied by binomial coefficients. . 7. )
Now - i , Lo
. i g -1 _ - ! Lt TN
BCYs,2m) - BC(s,2m-2) = n z (s"J 1_) + (3+$ 1 o
I . : 1
f; ' ' : SR /s-!*mrl é s+m 1
. S /‘\ \ AL D ¥ ) - 1] + ( )  (5.5.1)
E . ‘ * m-1
ra ,g ) * ) > . L
b, Similarly . .
- . m

, Vd . ’ X
C(s,2mHl) - BC(s,2m-1) = 4 [(s““ l) - 1] + 35T L

o C o - . (5.5:2)
‘ “ : “ .
. . P . , .
: . Therefore /('; ’ . T
g(s,n) - BC(s,n-2) = 4°[ (S”P’l) - 1)+ ‘Mn.'(s*g'l)(s.s.s)
‘ where E o ‘ C v
»\ ! N -
. ln/2] and Moo= 1 when n is even
S . 4 ‘ = 3 when n is odd
- . ‘ s . EaR) w v
. . ) s+0 : . A s
K Let x be 2 or 3. BC(s x) = M ( 14 ‘A dlfferenqe
T o~ T . 3 co ]
P . . scheme, counting down from n by twos, 'gives @
"f;: . . " 3 ‘
.,;g,; ‘ . - i o ' .
S :
s R ARCPATTA 14" 2 IS e ) gy P




. . . p ' 3
;, BC(s,n) -'BC(s,x) = 2 {4 ( jj) - 1] + M (;:i)} \(5.5.4)’<;

9

Using (2.1) for the summations and.adding BC(s,x) gives

'

BC(s,n) = 4 [("“‘6 + M [(’*P) (5.5.5)

4

5
P
v

A closed form for BC(s,n) is therefore:

| P oM . g P37l Ktd, X 3
Be(e.m) = b (51 [ Sl * oT o (R3] (2
. - .  (5.5.6)

L

. N . 4 "~
where we have used (2 9) and (2. 8), and where it-is Jhderstood
-1 s M .
"that I ... is zero. The leading term of BC(s,n) is —T-sp.
k=0 . P
BC(s,n) is a dense polynomial in s, of degree p, minus the

- V’ 3 “ . ] " Le '
constant term; this allows a convenient division of BC(s,n) b} s.
In algorithm BINE,‘a'power group is computed for each strictly
interior node, -i.e., each node neither terminal nor  root. By

]

'summing over all intbrior nodes ,.we may obtain the total group

A

binomlal work, Ehat is, the total number of multlpllcatlons by

binomlal coefflclents involved in computing gro%ps of powers.

’

- Consider the.folioW1ng term group- tree.

FIG. 5.2 A TERM GROUP TREE




¥ . ‘ o
| A S - 60 S ¢
. / . ' . , .
R '!here is no binomi,al work at level K, the level of the tem:.ni
| n0,1 nodes. There is a powef*@rguptnangle adsociated with - - . ;
B . each of the darkenedv stricﬁly’ ixﬂ:e‘rior nodes. Theﬂtotal-bi(i ; .
: ;\; \ nt:nial work here is ““counting - from the bottom) s / ?

. .
‘ s : d . © . ! ‘ ‘ b0 ’_/ -
B
- . . .
- .
“ c
' .
e .

§ BC(1,n) + %«*\BC(Z,n) oot z.ac(P‘, n)y-

(¢ !
C k=2 . . ) :
§- .z 27 BC‘(QZﬁ,n) ‘ i
R o . : . L 4
1Y Now AY
' ) p ‘ . ) , s\‘

| ‘ oo : . - ..]; BC(s,n) = L aj(n)‘ Bj-l - e (5 .5.7)
| . ‘ ' y o1 ’ K -
| ‘ T ‘ \ ) o
| * :

vhere Lt . ‘

- . '_'_l
(n) p+l 4 P~J k+3 \ v
a = + X
i ET“ ed * weoor 2 %k
. . - . ! [ oo \
P " . The group binomial work (GBW) is, therefore ',
' o k-2 p \
., cew=5.1:1 1 a® miTl
) R ' m=0 :):l‘ J a ~
. s .
) L} '

_ ‘ - p k-2 ‘ .

q YL ln J‘n’ T (It S

v . i = - m=0 ¢ ) \\‘-//’
. Q ;o ' . : J / -
E A N ¢3S St il ¢ 3 1:42)3l o
) ‘ oo 7’ al - (k-1) + . :)""l : Ir-_\ . 4
Y < T l. = * SO |
| S AP T S (5.5 .




Sete 4o

‘where r ='(n/2]1 and N_ =1 when n %: even ' B -

In addition ts this group binomial work (GBW), there is oot

binomial work (RBW).

r-1 ( ‘
* : t/2+ t/2+r l . 5.9
 RBW = 2 'L +.N( T (5.5.9)
l . j‘]»\ ) o

~
wo

- 4
=0 when n ig odd.

F\ . . Y
\\a-'/ : ) ' ’
Hence . ‘ : o

RBW = 2 [(t/2+r 1) - l] +mn(t/2;r"l)

\

=2 . group}t/z,r-l) + Nn.size(t/z,r)

L2 oy SRR IR

' ) ) . ' . )
The £3§al binomial work‘in algorithm binomial E (BINE) is the

R ]

sum of the group blnomlal work and the root blnomlal WO k. The ® <:J

leadlng term of that woqk dhen p > 1, is given by . . . i
| -l%,-<§>p.fé-nn+;i_‘%__13 s

- ‘ _ .

where the first two terme are from RBW d the last term is ' i
v

from GBW. As the leadlng term of L(t, nl,ls t /n!, we see that
the leading terms of E(t,n) result from non-bxnomlal work. i

That is, since’the blmomlal work does not affect the leadlng ;

terms of E(t,n), the dlfferences in leadlng terms between . B :

L{t,n) and E(t,n) are due to nonfblnqmlal work. - E ¢




N

inomial work in algorithm BINE is ™

Rl

considerably easier o evaluate. It is the sum of the work
required to process ‘the termnal nodesh? the work regquired -

E to evaluate all crot 3 products in all binomial expan31ons as C

[ S—

if tlge‘re were no binomial coefficients in binomal expansions.

2

P . As before, we will plit this non-binomial work into group
i .

. work and root work.| Consider again the term group tree.

| }
. - )
;- * Co- .
PIG. 5.3. A TERM GROUP TREE =~
’ ‘ -« . | \ . 13 . . . ’
\ é . .. The .group work at level is"t(n-1), which is - . ' e
; ! ‘ ) ) ' I l ' o
| - ) < ° ¢ ) . s
| 4 : '
] t.group(l,n) -
'write the binomial expansion with the bidomial coeffi- |
SeE RS ‘ |
ts suppressed - A :
- — 4 a N
_n T r.on-r -1
£ = £ + f +-L f f
™ h - -, we see that the rnon-binomial work to compute £7 is given I B

-

by size(f") - 2.size(fr:) , as there is one coefficient multi-

. Plication per extra term formed. >ience, after the group work

t. at level k has been 'compl}ted, the additiofial 'non-binomial

- , : ' [N




(W o v ' .
[ i work required to comp‘ute all powers from 2 to n of all nodes
. 8 o
' ) ‘ "~ at level k-1 is given by ;- . group ¢2,n) - t.group(l,n). The
# N

total nonbinoniacl \;vork to level k-1 is the sum

§- .group (2,n) - t

N

3 - . ~ | :Q; . . ‘ ; ' . L
| By continuing tﬁﬁs argpment, the total non~binomial work to. T f
| —le\re]z 1, the total group non-binomial work, is just -]
H . v -
‘ 2 . group(t/2,n) -t ‘ ’ . !
} & . . 3 . L
‘The ropt non-binomial work is sir?ly , o
- I % ;
size(t,n) - 2}.size (t/2,n) ’1’
4 1
Al ) ’ ) * I‘ (
X & The total non-binomial work is their sunm, namely, !
.8ize(t,n) + 2.group(t/2,n-1) ~ ' . ,
‘ ' . . - . o / |
: C A\ - AR )
or i Cs . : g ., ° =
. . . . - . - . iz
o A T S PR = TN ‘ , / .
‘ N N //\ .
| " which is \ ‘ . ( :
i ‘ - o : - ‘ g [
! ‘ D n-l' ! " 1 L n-2, .°
| Tttt Tt T+ ot “)(5.5.13)
| 7 ‘ A 2 (n-1)! ’
- ,{? : ‘ , N .
4  This last reis’ult is ext:iemely interesting for the foljowing \

reason. ‘'We have seen thét\‘the ‘ie'éding terms of E(t,n) come
v »  from the non-binomial work. If the second term in brackets S

i .

© were zero, we would have the two leading terms the same as in




) ;- L L(t,n) Tlus means that, even if we reducge the binomial cost

/

’ ‘ ‘ E(t,n) = L(t,n) + 2.group(t/2,n-1) + BW, ‘
. e ,'\ ——— . b 9" ;
* Y

. .
- . Y )
A - .
w
N v
, .

A t (n) o _ t (n) (t/2) :
v + oz oea (k-1) \+§-. ]H—lj-—-—(s.s.m
. . l 2°-1 :
where . : - ’ .
Wb . ;(“) = hi’l [Pty , __4 P-)-1 [P ](k+3
b oo ?3 . Pl 3+11 p-IT 1o k+3
B :l $. 3 r | ‘
Toa "p = Ln/2] . N, =1, M o2 1 when n 1is even.
| ‘ r = [n/21 - N, =0, Mn =3 .when n is odd .
i 5 ‘_ - s . . 't
. . R \ R ) 'S
B We may|use thig to ‘obtain E(t,n) forn = 2,3,4. We have: ,
’ ‘ ’ ' " . ‘
u' L g: : ’

o
k] d. £,
I, L ek reegr camreg e e ey TR T VRMTI T NI SN S MR £ T M TP e o
. AN

) o - ’L/u

- . N ¢

R . 1 N
j .

&

ﬁ{ A to zero, the second term in brackets shows an excess cost

‘ ; * " (compared to L(t,n)) necessarily associated with a binary-
merge, binomial-expansion algorithm. We can express that

. { . .
excess cost very simply. Subtracting L(t,n) from .the total

i i T T
N .

non—bino;r\\ial work ines a non-binomial excess of 2.group(t/2,n-1). :

That iS, ’ I ‘ . 4

.
¢
? r

where BW, the total binomial work, is 0(tP), p = Ln/2]. The

{‘ . complete, closed-form expression for E(t,n) is the sum of the . | i

L= ’ [
¥ closed-form expressions for total non~binomial work and total

binorrual work, namely, | ®

- - n n-l . ' ' -
? LU e - AT L5189 + "(n_-'T' Do) - e '
| c |
! - , 2 - r 4t3 , n % 3

R o [j+1]('2').+'rT §[3(7’ *




E(t,2), - t3/2 + £/2 + kt/2 (5.5.15)
< L]

( ) . . . \\
E(t,3) = /6 + 3t2/4 '+ t/3 + 3kt/2 15.5.16)

E(t,4) = t%/24.+ 7t%/24 + 29t%/24 - 2t/3 .+
+ 11kt/4 ' f (5.5.17)

Y

- ‘e -

The impro ement of BINE over BIND may be expressed as

D(tln) - E(tlnf) = tn-l " nifj
) ~ (n-1)1 (2" “-1)2

n-2 +

+0(t"?) (5.5.18)

In the se&uence B{t,n) to E(t,n) there is a stricﬁl& monotonic
Las (-5

decrease Hoth of the cost funcdtions and of the differences

between adjacent cost functions. The biggest improvement

>

‘occurs for the BINB to BINC transition which{gﬁaws up in the

leading texm of the cost functiom. BIND and BINE successively

lower the roefficient of - tlie second leading term. Aftef? BINE
3

(i.e., BINF) the coefficient of the second leading term is

A

not decreased. It is worth quoting‘again the two ieading terms
of E(t;n), which, we conjecture,- cannot be improved upon.

They are not improved upon by BINF, even though BINF is an

improvement. These terms -are given by Lo

4

n - - R ¢ .
. _t n-1 1 5 1 -
E(t,n) = aT* t [fTﬁ?fTT +~'E"7"_—*_'] +

277 “(n=1))

- .

- +(5.5.19)

-

_2)

+ o(t"
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5.6 ALGORITHM BINF -{Binomial F)

- This algorithm ‘\is\ speéified by thg design decisions:
binomial exp#nsion, even splitting, multilevel ;sp;l. tting,
modified mexrge for sub-polynomial powers, and smaller. BINF
differs .from BINE only in the 'handl{ng of multiplii: tion by

“binomial coefficients m‘aa.r the .top of the term grouL tree,

|
As such, it does not affect the non-binomial work, or the

non-binomial-work cost functions, th.ch are resf\onsmle for

the leadmg terms of the total time-complexity cost function.
)
The formal description is as follows. As before, f = f; + fg-

i

Description: -

(1) Form the binary term group tree for the polynomial £
in the usual manner;: place f at the .root, split f as
evenly as possible placing the slightly larger half (J.f

t,be sizes are not 1dent1ca1) in the left sub-node and

the other half 1n t}1e~r1ght sub-node, and continue this

' +
process until monomials are reached,

=

~,.,(25 .. Process the terminal nodes (orig%n_al monomiads of f) ‘

a 3

by forming all powers from 2 to n,

y (3)  .'For all strictly interior nodes other than the two

soﬂs of the root, and both of whose sub-nodes have élready

-\ been processed, 'compute all powers from 2 to n by:

~ (node) T = (left sub-node + right sub-node)®. : ’ R

expanded binomially. . ’,. : . .

\ : 7
- R S
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(i) For 8 = 1to r-1 do

(a) Multiply (:) .by whichever of .{(left sub- °
’ : node)® and (right sub-node)® 2 has fewer
terms. ) _ .

!
~

(b) Multiply the xesult in (a) by the remain-

- ing factor.

g (ii) ‘ Collect (left -.=f.ub-nod.e)‘r + (_righ{c sub-node)f.‘+ )

the broduéts computed in (i).

J

\ . ¥ .
(4) For the - left and right sub-nodes of the root compute
‘all powers from 2 to n except for the following: \
. 9 — )

(a) For the left sub:-node, all powers from 2 to

o

L(n-1)/2], if any Y

(b) For the right sub-node, all powers from 2 t:éSl
F(n-i)/ﬂ, if ar;y

(5) Compute the nt—h- ‘p'ower of the root according to the ¥
‘fr:\llowing scheme. Use binomial expansion in the manner of

( (3), that is » form each cross product of the expansioﬁ as
A . (larger sub-pdlynomial power. (binomial coefficient . small-
er sub-polynomial power)). If the smaller sub-i)olynomital
Nhas.already been ‘co/xp&.uted in (4), compute the inner paren-

©

thesis as indicated: 035therwise, compute: the inner paren-

thesis by distributing the binomial coefficient over

- the summation which forms the binomial expansion of the

.
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smaller sub-‘-pblynomial power. That is, if gr‘ is the s:;;a,ller

sub-polynomial power, compute (:) gr * as’

n,. r n, . r n, ,x, 8 r-s
(P19, + (g, +,§ () (g9, 9,

f=g+h. and g =g, + g;

e R TN S
Lo Analysis: ) ' ‘ ' - o

We are interested in evaluating E(t, n) - F(t,n) , the
Pl .

mnnber of funomal coeff:.c;(/ent multlphcatlons*, if any, saved
by not computing allA powers from 2 to n of the left and right
suib-nodes of the root. 'fhis savings of bipomial coefficien;
muitiplications accounts for all of the diffgrem.:ein time~-.
connplexify betwégri BINE and BINF. The use of distribution _to\
by-pass the independent computation of s'ubpo_lynom.ial powers ‘

effectively reduces_ the amount of root binomial work; the

~ most direct way to compute F(t,n), then, is simply to re-
evaluate the functio‘n\RBW(t,n) « We have seen previously that,

in BINE, this ‘function is given by , - *

'y

\.

e RBW = 2[( t/2+r-1 d

t/2+rl_l]+N( ) :

r-1 r

.

\ ’ Nev' »
= 2.group(t/2,r-1) + N_.size(t/2,r) . (5.6.1)

-

i

r=[n/27 and N_=1 when n is éven

= 0 ‘whey n is odd

7
=




| , .

L

o ' . In BINF, distribution is used to evaluate products of.

the form (z)gs in precisely two:.cases: (a) when g is

oy 8 -the left sub-node of the root, and 8 lies between 2 and

...

l{n-1) /2], and (b) when g "is the right sub-nodé of the .root,
and 8 1lies between, 2 and [(n-1)/27. 1If g = g; + gy, then
distribution meang: compute (g')gs as . B |

n,s, n. s, %Y n s 3 s-j
,(s)glf (glg, + § (g) (j)q‘1 g, .

B s e s S
°
.
- e

¢ X
\ ) . . . ,
That is, if we allow for the cost of computing the (n) (s) , We

- b

avoid the cost of multlplylng ( ) Hy the product terms in the !

LR ——

binomial expansion of g . The cost of forming the ( )( ) is -
[s/2J, the number of dlstlnct ( ) when l<j<s-1; the
msultant savin 1gs is that the blnomlal cost of computing
(" )g drops from s:.ze(g ) to 2 s:.ze(g ). (The cost of multiply-

ing the ( )( ) by the appropr.late polynomals is already

S accounted for in the binomial cost of computing g'., i.e., in

GBW.) We note that, when.s = 1, there are no product terms

in the binoMafexpwsion of gs. Thus where, for BINE, RBW

L

was given by

. ' N i -
3 . .
\\ . R ’ ]
. <

. RBW=2. % (t/2;3“1) ¢ w20l (5.6.2)
. | 1

! ‘ Vit is now, ‘fax\ BINF, given by

"]

e WY
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k Construct the sequenéES S ' l'< i < t, whose jEE

t = 2

term, 1 <3< size(t,r-1), is obtalned by multlplylng the 151-1

term of f by the 3—2- term of fr 1.' That is, 54 is the.

product of £ -1 _with the iEE-_term of £. Next, merge

Conlltnil oo

-

v} -

e o bt i € 3

Szi\¥§¥}th S i for 1 <ic< t/2, cohbihing terms. Then mexrge

the resultlng sequences in palrs, combining-terms, until one

sorted sequence_remalps. In theory, the sortlng tlme, namely,

i

' t
>

. .0(t.k.size(t,r~1)) .- S . ,
'\/ ) . . . R " - ‘ ' PR )

™ dominates the multipiieation.gost, namely,‘t;size}t,r-l),

but we are ignoring sorﬁ%ﬁg time 'both for the sake of uniform- ‘~. f

ity and to be generous 'td both RMUL and hence BINB. (Fateman

asserts that‘tﬁe sorting, time‘for any pracfical problem appears‘1

to be negligible~[ 4]). None of our algorlthms requlres any

sortlng whatsoever when the polynomlals are completely sparse.

‘

£

-~

The laréest core - requirements forfcomputing £ by

repeated multlpllcatlon occur during the step £ = f.fn—l.:lf

all of’the subsequences are obtalned before merging, then

t.size(t,n-1) terms need to be stored. This is a merge sort of

« t.size{t,n-1) numbers‘witﬁ t runs. Alternatively, if eaeh,

subsequeﬁce is merged immediately after'itq/formation: we are . _ J

- N . !
’interested in the space required to merge the last subsequence g v

with the sequence Wthh is thé union (by merge sort) of all ‘ | B

previous subsequences. A merge sort of n records typlcally

2

r" requires 2n iocations. , We can avoid this, and sort'in

place, by app%ylng a list merge sort (rearranging poxnters) to

polynomlals represented as- llnked ‘lists. The combined size
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. central memory words. , i

Yi

~—

‘
B
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by . N
b .

Ny s

kof- the last two lists to be merged does not greatly _exceed . (/ . o

#ize (tyn) , the 51ze of the f1nal result. Given the diversity

of multlpllcat1on—p1ui-sort1ng schemes, 1t is simplest. to #a®sdign
./
“the' follow:.ng space complex:l.ty to RMUL, whlch is, in fact, an

extremely generous lower llm:.t Taking the combined. 1list size

,J

"at the end as roughly size(t,n), we ass:Lgn a space complex1ty

" of s:.ze (t, n) , provided a link fleld is attached to each term.

. In that case, if size(f) = t, the space complexlty of computlng'

£ by repeated multiplication is given by s:.ze(t n) . (l+E+P)
},

”

It is our general conclusion that a linkedrlist repre-

sentatlon for Qolynomlals, with a storage requlremeqﬁ of (1+E+P),.

central-memory word,s per. polynomlal term, makes good sense

-

“from both the’ tlme-‘»complexrty and space—comple:glty stand-points,

and this for all thé sequential binomial-expansion algorithms‘

" considered in this thesis. If this be so, we need only '

?

measure the space complexlty as number of terms of storage

requlred. ‘ The final answer, fn,j may reasonably be me/tte.p

2 o

to - disc, or some other form of secondary storage. our
real concern,. then,is to determine, for each algorithm, o

-

the indispensable minimum core-s'torage reqlnred by the compu-—
tation. This working storage w1ll be essentlally the Space f
‘to store 1ntermed1ate results after they have been obtal?ed but
beforeithey have been used. The different ways 1n wh:.ch the

various algorithms generate and use intermediate results

. . °, v Y 2
naturally give rise to different space complexities. As bin-~",

ary merge is a streamlined form of recursion (very much in

t':ile spirit, actually, of dynami'c programhing) in which pre-

3

7
5
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cisely the minimum amount of intermediaté results is generated,

. we concentrate here on comparing the space compgexity 'of the

o p—————— e~ +
~
a

‘algorithmMs which use merge .for subpolynomlal powering with the
!

ﬁpaC:e complexlty[ / the algorlthms whlch use repeated multi- N

p lcat;on. A family of J.mplement-gtlon strategles for BINE

will be considered, leading ultimately to a new algorithm,
' BINF. . ) | '
. ., e - . S

% 4 ‘
6.1 SPACE 'ANALYSIS FOR BINA AND BINB (Bfhomial A - V
c and Binomial B) , _ . . s e

o '
~ . . .
£ - N ' 4

- TN TEIR s it 3 v AP ABE L 7 8 ey

We consider in-core, linked-list implementations of

. v : il .

. ‘ these two alg'or::Lthms',".wherethe f'inél ahswer, £%, may be

piiy

4 X written to disc, and .calculate the minimum storage required

x S .to store the :mtermedlate results. The Space complexities
] N \ . -
' of.BINA and BINB have never been.analeed; in the¥ case of |

. BINB, we are faced with decisions concerning the- implementa-,

e + tion strategy which will radiéal’ly affect the spgrce compléxity

of the algorithm. In these algorithms, £%  is computed as
, / » N 0 '. '

)
ER 4+ P () £TeNT

) A 2 T 12 et
T o - 4 ‘ R

whei'é'the powex"s- of £ . ard f2 are -first computed by repeated

. L

and size(f) = t-1, while in BINB, size (£1) = size(f;) = t/2.

In the first algorithm, i.e., BINA, the  space required to

. M

compute’ f’: ;. dominates all other storage réquirements. Usincj

¢ . : .
the previous generous lower limit for the space complexity’of
RMUL, we ma{y_say that the space complexﬂy of algorithm BINA

/ is size({t-1,n) .ternis. This may also be wxjitten ..

- ' 'Y

M)
d
'
'
“
A

T rfiultiplication. The difference is “that, in BINA,""si‘ze(f;) =1
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The coefficient of t is T .

. . i v ' R
. this space complexity is not radically leds than size(t,n) »

. ~ o - . .
the size of the final answer. _ .
© L e ", % -
§ N ' ‘" . .

That the space complexity of BINA i? size(t—i,n)-may be

. seen as follows. Because the sizes~of the ff are insignifi-.

S

o

cant, one need ot worry Wthh subpolynomlal powers to keep in
core, nor in what order, one first generates all the ( )f

-8tores then, and then gene;ates the successive powers of . fz
(from 2 to n) using each power in the binomial exbanéion as

soon as it has been generated' In a word, the taské of"comput—

ing the' (M5 e™F are independent subtasks. The most space
r 12 P

N is required to generate f:, as exp{a;ned. Yet no two powers'

s

of £, (apart from fz ;tSelf, of course)  need be present in

core at the same tlme. (One is assumlng gophlstlcated garbage

collection here,Aand the ability to ovérwrite £ in the cells -

n-1

= b ‘
which held f .) Thus, yideally, one can manage with only

s;ze(t-l n) cells, since 0(t) cells more is negligible.l In )

LY

;ﬂ? BIN » ON the other hand, the 51zes of £, and fz, and of thelr
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If one attempts to hold 311 the powers-of both f1 and £, in
] core before expandlng blnomlally, téé total space requg;ed is

p \2 group(t/2 n), that is,, twice the sum of SlZES‘Of all powers

from l to n'of-a polynomial of sxzelt/z. This is

i
{
;
¢ .
i — . N "‘ . @
P L oo ~ ' " ‘
N ‘ NP Ve R 5 . \xh o
) = LI ](-) : . .(6.1.2)
v, - . [\ 3 n! J+l B ' TS
g : : ‘ ' )
i / : | * . \
E L which is not smail, but much less than size(t,n). o
o : \ . . ’
¢ )“Two times‘q;oup(t/Z,ﬁ)ﬁis not a.}ower b%und for the ’ *
- space complexity of> BINB: we can do better. We observe first
’ that a power of f1 or f; not needed toy eperate higher powers,
N \
N > E 8
\ and already used in the binomial expansion oﬁyfp, need, not be

)

retalined in core. The non-fegligible sizes_oggpoﬁh the ff

and the'ff'give us less‘flexibility here, but the following’

ol ) approach may'be tried. '(We mainta}n the, ﬁerhaps oﬁergeneroush
- ’ s Ty ~ '
. assumption that f1 = f fr -1 may be computed in space size(t/zhr).)

M L
- First, generate all powers from 2 to p of both f and f ' where'

= Ln/2J If n_ is even, the product ( )fpfp may now ‘be form~
ed,L and p—E- powers are no longer'requlred 1n the’blnom;al

expansion. ' Next, successively generate the powers from p+1n~

. fy .
. to'n of“f;, using each powe& ihnthe‘expanSLDn as soon/ as

generated f(one uses fn by writiné it to disg), releasging powers
\) e
of I whenever p0551b1e (once they have been used) , and not
i retaining powers of f; beyon& fp Flnally, successively generate

b T the‘powers from p\+ 1 to ni-off’fz, proceeding in exactly the .
' 'sepe manger- The \least value of the minimum space required

L) .
- - M N - " )
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s - : . ' J\ . ' [ ., ‘ -
\ . ‘is ev ing (P) £P¢P -
: . occurs when n is even. After forming (p)flfzs éne needs - s
' e\ '

¥ s .
* "¢  to retain the powers from 1 to p-l1 of. £; (to match the as yet
. oﬁngenerafed‘higher’powers ofifz),'and fg (to generate. these "3
C ) v . :
higher powers.) One also requires space fo generate f?.

Thus, at best, the spdce complexity of‘algdtithm"BINB is(

‘ {
. size(t/2,n) +, group(t/2,p) . This may also be writﬁeq; .- /
s, =L DI L [P J(—)J
} B, nl ;:°3°°2 pl i+l

) s o 1. ) ' . | . "2’
v . ] S ‘ , p = ln/2] (6.1.3)

For future reference, we list the leading terms

- '

/

& - correepondlng to size(t, n) and to, the space complexity func-
SO tions obtalned so far. ' S ‘ ® /
b, . - y & *
. ¢ * .
VT : : " ‘n-1 e ’ T
i}} T , ., size(t,n) = ar t o(t ) T . (6.1.4)
; . '- ’ v - : ‘ A' . . L .
§ N - * LY ' ‘ " ') ‘ M > ' i Y,
A | RN . n-1 I
R - ‘ \/\' B SA - IT" :" ,0’(t i ) _ N (§-1-5)
A 2. crouo (i " n-1 ~
; ©© 2.group(t/2,n) = ——— + 0(t"") . (6.1.%)
| L B n!.2 \ o /{
:\ o F ‘ w N ‘ TR
: | r ‘ SR T N : '
‘ ' ' 1 Bp T st ol )~ -7 (6.1.7)
nl2 . ‘ :

A}

These functlons are llsteé in strlctly decre351ng order. One/

\

sees that algorlthm\BINB has an 1mprégs1vely low space complex-“
oy ph
1xya essentlally that of the 31ze of 1ts single ‘largest inter<- .
* v

mediate :esult,.f?. (The rest is asymptotlcally negllgxble )

To'attempt to match the BINB space comglexity, a family of

]
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space reasé\
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problem, BINF‘has the least time and tﬁ} least space.

o

,e~
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Lo aiad

impleméntation strategies for BINE will be considéred, with
the same time complexity but better and better space complex-
‘ities, until fijally BINF 1s considered, needlng less tlhe and

requiring SLgnlflcantly less Space. " BINF was developedxkor

.Of all known sequent1a%/algor1thms for this

’ - .
6.2 SPACE ANALYSIS FOR BINE AND- BINF {Binomial E

. and Binomial F)

We beg}n by establishing a result which Qé have tacitly

assumed up until now, namely, if f

in core then

¢

()ffnr

may be obtained with space complex-

A

and. £2°F
2

ity‘not exceeding the space, if any, required to store the

“

result.

form the product by retrlev1ng each term of the smaller poly-

{(That is,

R

nomial, multiplying by the blnomlal ceoéfficient,

there is no need for worklng storage.) We

and then

retr1ev1ng and multlﬁaylng by each term of the larger poly-

nonﬁal, from which the result follows.

Next,

we consider the

épace rééuired to store all powers from 1 to n of all sub-

'polynomialsaassociated with nodes of‘the multilevel term-group

tree; this i§ potentially a rathexr large number.

Consider

-a father node, £, and the two subnodes, f, and fj. Suégsse

£
1

and fn
~ zf

The additional space reqiired to store f£°

the terms from the cross products.

. A .
are present in core,

7

i

f + f ¥ Z( )f

N

H

v

We compute

rnr

Suppose now the groups of

£ according to

is the space for

are present

%

a')
2

AT

e e e s
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gl and g2

into the lists at the next higher level. Aas the levels of the

) - '
< N .
. ° 83
* . -
’ 4
pé%ers of all nodes at level k])are‘piesent in core. The
\J - ‘ ! N . ' ‘ ‘ l" .
additional space required to store the groups of powers of .
. all nodes at level k-1 is the space for the terms from the cross
. ) . \/ Y
products. Continuing this-argument, we may form all powers —_

L

frcm‘l to n of all nodes at all levels from k to 1 (level«i}

corresponds to the two subnodes of the root) until finaliy

t

' our ‘space requirements increase to 2.group(t/2,n). .

The.linked~-1list representetiegrfor pol&ﬂoﬁials allows
us to hold all of level k in core, and then all of level k-1, ° \
and so on, up to level 1, the-level &f the two sub-nodes of

the root, without any garbage ¢ollection. This is becayse any*

i ) - '

power of any node at level \% belongs to the b1nom1al expan-

sion of the same power of some node at level 3-1 For example, ";

if \ - ,
. :\gr g+g+z()gerA;A | . . ;

b K\\the llnked list for g contains, first, the terms from the &

cross products, and second the two prev1ously exlstlng lists,

|

.. List goncatenation absorbs the lists at a level

.

term-group tree are successively cénstructed (stétting from .

I3

the terminal nodes), n6\5pacefls ever released-{}ather, w1th

each new level, more space must be ?llocated for the new terms

requlred to form that level. The most sﬁéce requlred is that

.for the hlghest level formed, here, 2. group(t/z,n). Thus, a

naive approach to implementing BINE ‘yields exactly. the ‘same
sgt:e‘complexity as the naive appfoach to implementing BINB, ' . ff

- ‘ o




¢

3

-

-

S .
except here there is no generous lower lxmxt, sophlstlggted

sortlng, overwriting and garbage collectlon, just straight

@ b

qpmputat1on. Dynamlc programming is a kind of recursion in

which one keeps'%rack of subproblems and never solves the

'geme problem twice;éthe term—group tree, with its groﬁps

N . . v . i
‘of powers of subpblynoﬁials, is the table of solutions to

all subproblems The simplicity of”the space complex1ty comes
about because “the solutlons to the smaller subproblems are

E t of the solutions to the 1arger subproblems.

We have agreed that the final angwer, fn, may be“{i

' ‘s
written to disc rather than retained in core. Thus, once the
. Pl

groups of powers of the root subnodes have been obtéined, . . ;

there is no need for additional central'memorv.‘ By rétaining

a full power groug for each node other than the root, and
-4

wrltlng the nEE- power of the .root out onto disc, we requlre

‘\{kgroup(t/z (n) terms of storage. Yet there is no need e#ef to

~all other powers of g1 and - gz are avaliable in gore.

: wrltlng the requisite cross products @ )g

<
tain the nsﬁ power of any subpolynomial. Let the two sub-

‘modes of anode g be gi and ga. | = X
&

N
A .
g =gl +gq) +z(>gr’2’r o

A
A

Suppose that gn and g have been written to disc,.and that

By

r ! »
n T to dlscﬂ we

have written g" to dlSC,‘ We may in fact, w;ite to disc the
nth power of every node, imcluding in core only the

'limited' pdwer group for each node, i.e., always excluding

1 | | | i\\

T e el

e o gkl A = 4 = K

raiiaia
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power n.. Not storing the nsh pawers at level 'l (an obvious
.Y

flrst thought) gives BINE a space complexity of 2.group(t/2, n—lf+

4:sxze(t/4,n), not storing the nEE po&ers at any level gives

]

BINE a much better space.complexlty, namely, 2.group(t/2,n~1). ©

- -

Thls may also be written

~ i
. n-1 BN
. s /m——;— T2 (6:2.1) O
" E -1 1 ]+l} . * .
) ’ . , tn—l ° ' ¢ .;‘
The leading term here is —————=3+ and Sg <|Sgs asymptoti-
L o o (n-1)12
cally. ' .

a -
7 ’

S

So far we have discussed two soplisticated implementa- i

tions of BINE, both with asymptotically smeller space complexi+t

.

ties than the lower limit for the space complexlty of BINB,

both based on the 1dea of not. retaining nE‘t—l powers of sub-
x . c ~

polynomlals in core. -BINB can make no use of this idea; in

N }

contrast to' recursion or dynamlc prOgrammlnF (here, binary merge),

repeated multlpllcatlon 1s a whole polynomial method commltted

I3

to building up f1 and f2 in core. To Sge,the relatlve

magnitudes of the space complexity functions for BINB (lower .

3

~1limit) and BINE(two implementations), consider the following

-three expressions.’ s, R ) »
n . N
' =1 5 onyd 1 P+1 £
N ' - ‘ 3 . ‘ - \ ' "
S , .
Y . : p = Ln/2) . (6.2.2)

s oo, AR . it s St ki s
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. )When discussing the.lower limit for BIﬁB _space complex~

I-

N : . R
i e et o T Y T T T s e T S e T i e i

l

» ' ' ®

2.group(t/2,n-1) + 4.size(t/4,n) = Tn_f_ﬂT 2 [ 1](5)3

5\

4 D onotg o , '
. ’ .+ h—r i [j](z-) , 't (6.2.3) i

‘ S = o2 ot [0 (L3 | :~'(624)
E " TazIlT, 51:1 j+14'2 e ©.2.4)

——rae

These three e:;pressxons are listed in strictly decreasing

Qxe
n! 2

third has leadinhg term . . > ' *.

asymptotlc order‘. The flrst has lgadmg term

h __.a e Do oy

‘tn—l . .o P
(n-1)12°"2 :
. . \ < - X ' . .
When t grows large, with 'n fixed, Sy grows faster thah

Sz- (The crdss’-ov r point for the leadirig terms occurs for '
t = 4n.) Still, the:;e will be values of - t and n for
which the BINB lower limit is less than \the BINE actual value.

V‘Veﬁ‘need_to improve the space co lex:.ty of our use of dynam1c .

programming,

.
. . fmi w e
RS LT ALPPRT TR L

L]

So Zef e it omieat
Y

A

ity, we saw that the tasks of computlng the ( )fr " are
essentlally J.ndependent subtasks. There is no partlcular

reason, when performlng one subtask to store the intermediate

results 'necessary to‘perform.some other subtask. Aas always,

S S TR S T S e ¥ S Sl :
1 2 r l' 2 '
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f . - C ]
- where f is the root, and f£; and f, the. nodes at level 1. BOth

¢

| f? and frzl have already been written to q{s\c. We now take

1

, ‘ 'g
the decision ta'generate the powers of nodes at’ level 1 (assum- i
ing the exlstence of the powers of nodes at level 2) on x as i

© o~

‘they are success:.vely needed in the bJ.nomlal expan51on. When i

R .
I A e ok

t is suffJ.cn.ently large, the_most space requlred will be that

to generate (1) £ lfz (or vice-versa). éTaJEing into ageount

' the gr?ups of powers at level 2, ‘we obtaln a space complexn,ty

N

WP g supny e

_S_E of size(t/2,n-1) + 4.group(t/4,n-l),! us:.ng a bar to d::.s-

ltingulsh the new space complexity function. ante this L0

BINE space complexity as ‘ . . ;

4
~
n iy SN HPARIA AR i = &

n 4, t]b — e \.)‘
YT o Lindeg - enzis)

'. Surely, -S-E = s:ize"(t/z n-l) + 4, group(t/4 n-l), the ’

‘1owest “obtainable space,complex{ﬁlty for: algorlthm BINE, is 1less .

7 than, i. €., asymptotlcally less than -

» . ' -

Ln/2]

[}

Sp = s;ze(t/z,n) + g Otl'p(t/\2 'P) P

-

a
~

which is a low_&.r }Voound on the space complexity of algdiithm

BINB. The first texrm of the sum dominates in both cases, and
- Y . q‘

F T U~ - S

_} " ‘size(t/2)n) > size(t/2,n-1). The leading term of S, is

-
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- It Beems extremely difficult to avoid in-core storage for‘the.
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i ) S . powers from 1 to n-1 of the,no al: *’level 2; these powers
\

v

are used agaln and" again at level 1l: they should be computed
7
\K\d// once, and stored. An improvement at level 1l with respect to

‘'storage is, however, possible, if we make use of‘distribution

to precompute directly products of the ,form (z)ff , which is

the characterizing idea of algorithm BINF. Consider writing

y - ' . SRR ! b ‘

¢(say) - £* ‘as DU ‘ . !-
. il ~ . : .

- ‘\ .
! f"+f;‘+f‘4f +C 4f +f26f°2 T

1,

T = g F »
y Ay PR P Easic il c' (o g
3

e o

; | Ai;e.;.according to the smaller idea. Apart from f: and:fl,
¢ which have already been written to disc, the binomial expan-‘-~
" ‘ sion of the desired power of:tﬁé éoot cg%sisés of -a number of
cioée‘gg“ otsuof the E6¥m,(larger pol;nomial times binomial

coefflci t times smaller polynbmial. " The larger pdlynomial

will be called the a-list; tﬂesproduct of the smaller poly-
s LT nom1a1 by the binomial coefflclent will be called the brlist.

The sum of interest thus becomes X ) RN
% . . . :

—
é t ‘.

L a-}ist,.. b-list, . ,
. i . i
. b} ) o v ' ¢
L - These new objects, namely, a-lists and b-lists, belong

. to level 1 of the term-group tree. We suppose that level 2~

~has already been processed, and that all powers from 1 to n-l.
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i S 'of all sub-polynomials at level 2 are available in core. The

claim is made that the nEE- power of- the root may be written

to dlSC using only the addltlonal amount of central memory y

4

)

BINF a total space complexity of’51ze(t/2,p) + 4. group(t/4 n-l),

p = Ln/2]. This may also be written 5
g ' - ) 7 .

’ ' | p p t. 5 4 - 07 -1 j
- N Sp ° El ifjj (’IH'*TH:TYT z [3+/J(2') ' .

1

'f ,Q ' required to store the largest b-list. This" glves algorlthm
§
i
1

S : - pi= Ln/24 - (6.2} s)
) n-l - ) o hA )
is — . Comparing the

(n-1) 12277 i S

éhe<leading term of SF

% leading term of ”SB' viz.,

: " we see that Sp is far superior. The claim made above may !L

sub antiated as follows. Consider a-iisti.b—list. for a

0

particular value of i. By ‘distribution of the b1nom1al co- .

‘efficient over the binomial exparsion of the smaller poly—

nomial, the b-list may be represented in terms of constants. “

< —

M '.W and powers of sub-polynomlals avallable at level 2. Hepce, it

may be computed and stored in core in a space able, by d -

finition, to hold the largest b Llst.’ That space is of size

size{t/z,p).

We continue the argument. One particular bflist is

- -« . - LN
. : L} -

now.available in core. The corresponding 'a~list possesses a -

N ¥ - v . © A




‘binomial expansion in terms,of binomial coefficients and

/
powers of subpolynomlals available at level 2. .This a-list

" may be computed at- essentlally no addltlonal central memory .

v

cost. Let the a-list be g , and “let the binomial expansion
“be. . "‘ - i “ "Q
g?=g +g + 2(5)g® g

. \ . :
. r .
For each term of gf and g , multiply bmieach terﬁ of the

S

b-list, and write this product to disc. For the cross products,
a sllghtly different strategy 1s adopted. Each cross product*
—has a larger polynomlal and a sm&l&er polynomlal, as usual.

~For each term of the smaller polynomxal multlply by the

\ binomial-coefficient, then by each term of the larger poly-
nomial, and finall&,by each terﬁ of the b;iist. The pr oducts:
computed in«the_iuner loop aré.wfitﬁen‘to éisc. ‘In pseudo-

Pascal, this is:

$

?

‘.W“ 4 i * '
for each term of small do

.tjampd;:- ’;—fi‘bc‘:oefficifent * gmall [i]
for each term of large do

fdf each terﬁ of b-list do
wfite(temp*large [3)*b-1list [k])
The whole loop, of course,-is executed once for each. cross
T N H LN ' . N ! L
product in the binomial expangion of the a-list in question. '

i - PSS

We can catalogue the various’ space—complexlty functions

Il

_obtained so far. The lower bound ‘on the BINB space complékify,

is size(t/2 n) + group(t/2,p), p = |[n/2]. The space complex-

LY
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v
L

Hiﬁieskgg}x e .various J.mplementatlons of BINE are: 2. group(t/z n),

2.group(t/2,n-l)+4 size(t/4,n) ,2.group(t/2,n-1) ' and
' size(t/2,n-1) + 4.group (t/4,n-1) . . The space con_:plexity of the
essentially uniqﬁe implementation of BINF is size(t/2,p) -;

- e :
-4.group (t/4,n-1) ,p = [n/2). The. E and °F %omplex1t1es do‘
l

represent thé space that would be used by these 1mplementa-

o~ ~

" tions; the B complexlty is a lower bound which is rather

-

K
i 32 i, oI B et R s i

. generous,- espec:.ally for smallivalues of n. and’ t. Clearly,

we want to compare the relative values of these functions. The

E and F series, as; written abeve, is strictly monq'tonicallyv

decreasing; each function is obtai)ned from the previpus by sub-

tracting a 's,tricj;{.].& positive qﬁanti’ty. The claim was made’

above- that the E and F implementations which did not retath

nEE powers in cor@ were asymptotically superior to-B, essentially
' . A . . ‘

on the grounds that nE-l}- powers of sub-pblynomials eventually

outgrow n-15t powers. But thére’is a danger in all such a

asjrmptotic argumenl:s that the ‘asymptotically superior algorithm
becomes superlor Just as we pass bey/ond the bounds of the
practlcally computable. Hence, we shall now make a more care-
- ful comparison ‘of ‘SB and SF' the 'séace co.m;plexit'i-esr,‘ re-
spectively,of the most successful repeated-mu'lltiplication aléo—,

rithm, and bhe most successful dynamic-prograniming algoxithm.

‘When t = 2, not too surprlslngly, the dlfferences ber »
/ ]
tween blnomlal—epcpansmn algori s dlsappear. Here,there is no

d:l.fference between single-level and multa.—level dynang.c programm— o

~

ing is repea‘;:ed multlpllcatlon, and no power of a monomlal is

smallér than any other. All the fomulas glven so far for time

’ . -

RIS s g



PR N A

T T ARTYERRATT T T

''n = 3), the BINB lower llmlt can be shown to be 1nappllcable. -

-is over the whole range of the practlcally computable (apart

complexity-and-space complexity, with_one exception, were .

derived under,the implicit assumption that- t was" a poner of ~

v °

two; when this is not the -case, the formulas are only . ' K'

approximate. To see the relative magnitudes of Sp and SF

very clearly, these, functlons were tabulated for various

values of t = Zk and n. When t = 4, BINB requ1res-less space;

the storage for 1ntermed1ate results, however, is less even

than the space required to store the program. When t > B,

BINF requires.less space; in the one case of equallty (t = 8,

’

Examlnatlon of ‘the tabulated results shows that; in fact, it

from the tr1v1ally¢§mall) that the space. complexrty of BINF

is superior to that of BINB. For a smali problem,.t = 8§, n=10,

8y = 411, 5 = 272; Yor a large problem t =32, n = 5, 5. = 15,656,

! B
SF = 2 112, One may conclude, therefore, that dynamlc programm-

1ng, coupled with lntelllgent Memoxry management leads to space

1mproveme s more dramatig even than those in the time domaln.
One is certainly very far ‘from the classical idea of a.space;,
. v - : ‘ VI
time trade-off. TTheaTab% is Appendix III.) !
8 ° - A \\/\/r

. .

.This coﬁbludes‘the discussion of the seguential binomial-.
. . 4 . .

’

fexpansion algorithms. -The results ocbtained depend totally on

© -y ¥

the two models for the problem which have been adopted xP thls

¢

thesis, namely, the cost-model and the computatlonal model

(3

Nothlng extends ‘the valldlty of these results to other models.

The computatlonal model ‘has been that the input polynomlals be

-4,

nmltlvarlate polynomlals completely or almost completely sparse
. . » .

. i

7
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AY

’
-

to power n, n the power sought. \Obviousry not all poly-
gomlals are sparse, yet existing algebra systems often need

’ 4

:to handle multlyarlate problems of-a sparse nature. The
algorithms treat almost sparse pqunOmlals as if they were
totally sparse. The cost model has been that the true run-

- time cost may accuratelg be measured by the nunber of co-
eff1c1ent multlpllcatlons used in the algorlthm to,generate ~

the f;nal result; this model has been_justlfled above. -

Finally, the space complexity of an blgorithm has been de-

flned as the central memory reqplred to store 1ntermedlate T

~results in the best implementation of- that algorlthm assum— -
1ng a llnked-llst representation for polynomlals; space
'complexltles have been ‘quoted in number of terms of storage
required. A term may require several cen¥ral megory words, {

\B

the exact number of which. is* algorlthm—ln ependent. These,

N
of the algorithms.

Very definite conclusions have bjen reached about which
algorithms have least time complexitj, and which least space
complexity (BINF, apparenttil is optimal in both respects.)

In‘additign,wconelusions ha beeﬁ’&rawn about. the desirabilzf,
! ' A - ) 4 » ) . ‘ v » ’ . :
of var%pus design options which exist in.sequential binomial-

éxpans%on algorithms. These conclusions, too, are model-
A~ « WS .

-

dependentl One example can.be given. When the polynomials

N

, are completely sparse, clearly it 1s best to Spllt the poly-"*.

~

o

nomlals as evenly as possible. . Thls reduces ‘costs, as we have

Al - T . *
TG P a B ‘ R ‘

}

»

&
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gseen. Yet nothing rules out the possibilit§ that,: for
. - ‘ P f; ' oA
completely dense polynomials, i:}’e best/thoice would have -

?

been tg'spiit the polynomials as uneVe\nlx" as possible. And so

on for the other decipions. The final 'conclusion is this. «
v

In this. section we have analysed ‘a family of éequential bi-

nomial-expansion algori;thms for symbolic \comp'\xtatién of" .

integer p;owers .0of completely or almost complete]_.'y‘sparse pol’y- '
! ) -

nomials. We have analysed the t:Lme and space c0mplex1t1es of T

JAC A

these algorithms. By £ series of refine artd 1mpfovements,

based on the ideas of dynamic programming and in
memory management, we have arrived at an algorlthm, algorlthm

BINF (pronounced‘* blnomlal F), which we belleve and: conlecture‘ -

~

to be optimal for both /clme and Space« within the blnomlal—

' - - e

éxpansion family under the assumptions listed above. Possibly,

it is the optimal way to poweY -
=e Optd p

Q.
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CHA?TEB VII

. @

"PARALLEL ALGORLTHMS-

In the discussion pf the sequential algofithms we saw

that the theoretical lower limit. on the number of coefficient
-multiplicctiOESaréguired to compute the nth power of an
' arbitrary polynomial was given by size(t,n) ~ t, which, for
arge t acd large'n,'can beccme an extremely large number.
'Th's result puts llmlté on what is practlcally computable
w1£h a sequential architecture. Recent,technolog%cal adYances,
in principié, makeAPOSSible the production of very cost—éffec—
tive hégh—pc{focmance‘compufers which make parallel use Of a
large number of processors. Rcsearcﬁers havc analysed various
parallel computer arch?%ectures,.and the problems of adapting
sequential algorithms to parallel- machlﬁﬁs, i appllcatlons
areas where enormous amounts of straight computatlon are .
requirad. A major lesson has been that spec;alrpurpose'
machines whiqﬁ have been adequctely failorcd«to t%eir appli-
cations area | 7an perform spectacularly, even if these same
‘Amachlnes do mﬁch less Qell when applled to problems they’ were
never 1ntended to solye. We consider two special-purpose’

N A
parallel architectu;es, one multiprocessor and the other

associativélprocessor, then examine the adaptations nececzzﬁy

to run variants of the best se§uen#ia1 binomial-expansion

algorithms on these machines, and.finally calculate the speed-
. . . d .

up ratio obtained for each architecture-algorithm combination.

= Y R .
The general conclusion is that integer powers of sparse
. .- o, ' .

A




polynomiais are well-suited to parallel cooputatioﬁ, with the

- ~\actual speed—ﬁp ratios approachiﬁg the theoretical ideal.

A'basif division of parallel architectures [6] is

into siégle'instruction stream;-ﬁgitiple data stream systems,
and mgltiple instruction stream, multiple data srreaﬁ‘systems.
(There are other types.) In the firgtlcategory, ohly one
instruotion_is executing at any one time (single control unit),
yet may act on a whole set of data (multipie processing uqiﬁs);

examples are array processors, and’associative processors. 1In
'2_\ ¢ R , . . ' ’, H
-+ -the. second category many instructions execuse simultaneously

-

(multiple control units) on ‘different data (associated hultiple

&

processing unlts), essentially, we have a iystem of inter- -

&

connécted conventional -processors. Of courceéfap archltetture
can be dev1sed whlch lies somewhere between these two extremes.
(The two extremes are having many control- less functronal unlts;
and having many.general-purpose computers. ) In the assoc1at1ve-
processor érch;tecture envisaged here, a large assoc1at1ve
memory (ih which data is addressed by tag rather than by
address) will be coupled with.a parallel processing -’ array

Pm—,
whose elements perform more or 1ess the same computation simul-

taneously. In the multlprocessor anééetecture, there will be \'

a central control section, capable of soplisticated process-

.

" ing, and a number of slave processors with extremely limited

. control capabilities. That is, the former system will -
. ’

essentially-be SIMD (single instruction stream, multiple daﬁé

stream,) while the other system will keep the deviations from'

-

. the SIMD'concebt to an acceéptable ‘minimum.




! S T "vv", . -
In general, one cannot obpain'good parallel algorithms

&

by simplé translation of'éxisting serial algorithms. This is
: -

N o ' because a particular parallel architecture-w1ll be eff1c1ent only

| . if the computation to be run on it has a particular form. If

oA Yo vten epy oAy

one is running on a machine, then the original c0mputa- )
< . -
u

tion must be broken into many amaller subcomputations which

e I i e A= TP
.
.
&

are structurally 1dent1ca1 but whlch may have different data’ |

L. ' vglues. When such a spl ttlng is not possible, one 1s forced

T

|
to use an MIMD machine, in which the subcomputations have, l

different structures as well as different data values. Thus,

in the paréllél case, on the‘oné hand, there is a definite

algo;ithm—machiné interdependence, and, on Ehe other hah
oo ' . . . : ' S ' ) W
. startiflg with a given serial algorithm for parallel adaptation [

1 . t

‘ wi;i place constraints on the way the computation may be broken

up into subcomputations, , In thé_sequential binomial-expansion’

Y

L
; T st A
PR ”mmﬁfw' A .
- M -
i - h
T3 - .
. .
- N ¢ <
. . B ¢ v
- [
v

e ey e

. algorithms, one mulQ}plies conrstants times polynomials, and -
polYnoﬁiaiézfi‘ s other polynomials. The firs{\operation is .
, monomi&&~;j@é§j§olynomial; the second operation is monomial
. timed¢ polynomial many times. The most“elementar} operation is

-

" simply monomial times monomial. One way to achieve parallelism,

/’ insofar as the elementary dperations are completély  independent,,

is to split a composite tésk, such as polynomial times p61y~

b : noﬁial, into égts of eleméntary sub-tasks. Ahother.wayhpé
- achieve‘pérallelism, specific to algorithms which employ multi-‘

v 1evé1 splitting} iﬁvtg take advantage of the struéturally—
ident1ca1 subcomputatlons assoclated with dlfferent nodes ;

‘ LY
. . belonglng to one partlcular level of the term-group tree These
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are the two main approaches. Both are used in connection )

with the multiprocessor q;chitecture;'thf‘former alone ii’used )

‘ l‘ [] . ' . .
in connection with the associative-processor architecture.

A\

. . » ,
‘One needs a criterion to measure the success of a

éarticular parallel algorithm-architecture combination that - =~

is, essentlally some measure of whether the decrease in run-

time warrants the additional exPendlture for the parallel

‘machine. Following Stohe [14], we adopt the measure for

specific problems of.the speed-up ratio defined as:

Y
Computatlon time on a serial computer

Speed-up ratio =

To be fair, we compare the best serial algorlthm for a specific
problem with the best parallel algorlthm for the same problem,
whether or not the parallel algorithm is an adaptatlon of the
serial algorlthm. 'For a- parallel archltecturl w1th a processor
or functiomal muﬁiéplicity of N, the ideal speed-up ratio)is N;

this is rarely obtainable. When the speed-up retio,is kN,

k < 1, but not much less, -we have a problem ve%y well-suited to

parallel computation. Speed-up ratios of kN/loY,N are less
des1rable,\ﬂule speed-up ratlos of k logﬂigﬁe simply inade-
quate. In the present thesis, we create the best-parallel
algorithme by adapting the. best sequenfial algorithms. As a

4 :
rough approximation, we consider the cycle time of the parallel

computers to be equal to that of the sequentlal machlnes. Hence, =

we measure our speedrup ratlos as number of coeff1c1ent multl-

Plications (which dces not change,from‘the sequentlal case)
l o . % .

¢ -
4

Computation’ time on the parallel computer

)
el

-

. .
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) d\i.Vl d by the number of cycles requn:ed {6 perform the- .
; . computation on the parallel machlne. For both parallel archltec—
: tures considered here, the spee“d—up ratios app;oach ‘the c ’
. theoretical ideal. . 4 - . P
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S MULTIPROCESSOR OPTION ‘ - .
' (MULTIPROCESSOR E) 7 o -
' & v

L T o ,m'

In thisusection‘ﬁe describe the parallel architectufe *

L envisaged,.give a*fdrma% specification of the corresponding -

parallel algorithm, and obtain a lower bound om the speed-up
: A )

-ratio for this system. We choose to make a parallel adapta-
- ) pa

“tion of the sequential algorithm BINE, and call the resulting
V N o ’
parallelvélgorithm:'Multiprocessdr E', The basic ideas in -
=3 ' * :
adapting BINE are not radically different frem those involved -

in adapting. BINF; the description énd'aﬁalysis of Multiprocessor

-

a . . . . .
‘E, however, is somewhat simpler. In any case, ease of parallel

adaptation is more important than the relatively minor time
R . ’ .

difference between.BINE and BINF.

7 8:1 DESCRIPTION OF THE ARCHITECTURE -~

°

. : ' %,
;,,':1,,.,, R -
(L The parallel machine consists of a’control unit with

- the°processingréapabilities of a conventional computa#, N pro-
- 3

,cessing units or slave processors capable of decoding a limited

-

set of specidl-purpose instructions sét into memory by the

° e
/

‘control unit, . and a large random%acce;;-EZHtral memory to which

both the control processor and all slaye processors have full
.- T L, : . .
access., Scﬁeduling and memory management are ‘the job of the
- -l _ N ' " .
control processor, who allocates himself a reserved section of
e v .

o ////ﬁ/Cﬁ::fi% memory. -The slave processors read their instructions
.- ) . ’
' R ® . .
- . fr other reserved sections of central memory, properly

’ . LI
. . .
A ~ N
’ .
3 .
. ~ - .
.

< ’

i

y Bt
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injtialized by the control procesgor. "Let us'take N, the
number of slave b;ocessors, to be ﬁ =25, - ’ o
.o : “m_.fj - R ' SN

. - ’ The block diagram of the system is:. .’

Y - 4

-

co, o " Control - .| . |
‘ ' ‘ : Uxij.t ‘ : )
: + : N x
\ o . : ' ' I ’ ) )

! R For control unit . ’ o
. e eec s e ——————— - e LN N N
: . } slave instructions J '
. ‘ - “ o mmmmse me——— == E ..
N a . P2 L . .
S slave . l-)l slave [ -
° . ’ ° - N -
L, , Central : . .
-0 . ‘Memory - ‘ .
< . slave ‘ K slave
w - e S, . —% - :
) ] . . . : @ ’ o
slave £ ’ . slave
c ’ T 2 S
FIG. 8.1 SYSTEM ~ slave - | slave o,
~ 'DIAGRAM _ . L
. . ' . o
. o . : (
5 o ' ) . \ N i
The non-reserved portion of central memory is used for the \

. ¢ N . . - %,
- storage of intermediate results gsnerqted by the computation,"

. that.is, by any of the slav ocessSing units. Use of central

memory is eséenfially additive, with more and more results

being added to an initially empty dtore. This expioits the DR

smaller subproblems are parts of soflutions to larger-sub-

[y

problems,‘as,discﬁgsed above.* One overwriting technigque,

- . -

1 kS S O SR

ot = vt ddn it @t SRS S Bt D a s L
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however, is employed:.in the computation of gf.(?)giﬁr, the ‘j

'space ultimately allocated to hold the final® result is initially

=

allocated to hold’(g)g:(r.‘ This allows a clean ;epération

e

within the parallel algorithm of multiplication by binomial

goeff1c;ents, and multlpllcatlon by the (remalnlng) polynomfal

We can giveha rough idea of tho kind of special—burpoée
inotiuotidn decoded by the slave brocessing units. Given the
character of algoritﬁmlBINE,.how might NAinq§pendent processorso
cooperate to perform the ov?rallscombutotion? The 1atte;
consists of a nuﬁber of list constant products, each oflohich,
sequentially, is the multiplication of a list (polynomial). by
a constant (a constant product) followed by the multiplication
of the resulting iist by another list (a liét product.) A

set of %ist constant products therefore, may be broken into a

set of constant products, and a set of list proéucts: we,

-requlre that a processor may be set to do an arbltrarz amount

of the ‘work reguired to compute a set -of constant éroducts, or

N
s ‘

a set Oflllst products. These lists are, of course, real ;lsts

in the linked-list sense. A sublist of a list is itself a

list. A list may be specified by giving both its lead element
and its lenéth. The'spécial purpose instructionsynor rather

sets of special-purpose instructions, for the slave process-
: A : ,

ing units should now be clear. One slave unit, as part of

computing a set of constant'products, might be instructed to

.

multiply each of several lii;s by one of several constants.

»

Another sla¢e unlt, as part of computlng a set of list pro-
t)u

ducts, mlght be ins cted to multiply-each of several lists by
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A

+ one of several other 1lsts. Operands for these operatiens L.

are specified mgre or less as descrlbed above; the target

.areas in central me ory to which the flnal results are to be

\”) w

written must &dlso be cdrefully spec1f1ed. --This spec1f1cat10n
4]

is*hn'overhead function assumed by the control unit.
‘' " ' .
The total computation of BINE consists of a number of

: @
. sets of list constant products, one such set for each node of

the term-group tree. Each set of list constant products .
consists of a set of constant products, and a set:of list

p;oducts\ Each set -0of constant products, and gach set of list

produéts consists of a number of élementary (because monomial)

«

and hence independent (mq%glpllcatlon) operatlevs. The

_assumption that a sliave processor may be set to dc 21 arbl_ra*y '

number of elementary operationb implies that N independent ‘-

- .

. _ |
- slave processors may divide the total computation among them-

selves and yield a’speed-up not radically diffetentéfrom N.
We define the idea of an N-split of m subtasks fsi, where
the subtask: Si consists of ﬂi elementary 0perat10ns. Let

¢ A\

W= ini and 0 = W/N1

Create N'(gewf subtasks T;, of maximum size Q, in the follow-
ing.way. Lay out the (original) subtasks Si in linear

order‘ Count off @ 'elementary operations from the start of

T this is the (artificial) subtask T:. Continue in the

I3

gsame fashion to obtain the (artificial) subtasksaTz‘thfough

) gN' Assign each of -theé N subtasks Ti to ome of the N

"

gy g i Lt 0

T T AN o T i e R
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r b ' . N - '
s slave processors. This completes the N-split.; ¥n the present !

- ! - . . . v

{
i . ,' context, the m subtasks. Si are either m constant products,
& or m list products. That is’, we make an N-spllt of either .

a set of constant products or a set. of llst products, and this

some number of times until the total computation is completed. v

q

Cow s We now make this more formal.. P
¢ - .

- . The precise operatlon of a multlprocessof N--spllt ma be ‘

explained as follows. For each value of n, there is an °

abstract object called. the powé“r& group tria:nglé,‘ which is used

-
A3
bt e sl

in BiNE to compute all powers from 1 to n &t a + b givén L . :
é\ll powers from 1 to' n of each of a and b. For example,

vhen n = 4, the triangle is:
. X o

r *

o
\ o ] ’-a',’ +b* + a’.db +b°. 4a + 'a?.6b’ .
' a“ b? + a?.3b + b2. 3a . 4 .
b .
M ) ./ ‘ \ az -': bz + a .zhn ) N
: | . e L .
I . a +b '
r “ , : - K
R g .- :

oo FIG. 8.2 POWER GROUP TRIANGLE (pgt) FOR n = 4
' . N ‘ . o ) 9

* -

Py

. . / - : ' - R
. In a.pgt, there are (g) constant products, and (2) list pro- = - y

ducts. The/ number of elementary operations: in each product is

a computalle function of's % gize(a) .= size (b). That is; we

" have two/sets of ( ) subtasks S., where we can evaluate the .

n,; for/ each S5 " by know:mg s. That is, for each node b

[
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‘processor allocation) for all the binomial work in the pgt),

R ey

o

the term-grpup tree, we are able to pe‘i:f&rm‘ an N-split (slave

- . !

and

3

then a second N-split “for the remaining nonbinomial work: The

Y are polynomial functions of sgwhich ave fixed once and

ifor all for-a gJ.ven value of n {&he n in £° ), but which

must be re-evaluated by the' control unit each tlme the value’

v

.of s(equ:.valenfly, tree level) cha,nges.
g,

\-}Once the values of

t}}e 'ni

X

are kn’own, the N-split (slave processor allocation)

procééeds as descr.‘i:b‘

@8

above.

n

!

N ) .
8.2 DESCRIPTION OF™THE ALGOBITHM

.o
4
. ! . A

Assumptions:

-

-

Det t;, i.e., sizeh(f), and N, i.e., the

-

slave processor

multiplicity, both -be powers of two, with N > t..

to the algorithm when t > N.are trivial,

The changes

o

Step 1

- Creation of the Term-Group Tree

The: control unit, in its section of central memoﬁ:v,
cr'_eat.els a binary term-group tree for the original pelynom;i_al
f. All of f ‘goes into the root, tihé twd halves of £ go
into the two subnodes of the root, and so on, recursively, with -
the larger half always in the left subnode. A directory is
malntamed wh:.ch, as the computation pro‘ce‘ed’s for eack.!0 node

other than® the root, and each- power from 1 to'n, poxnts ‘to

the list which contaa.ns the specxfled power of the Spelele.d

subpolynomial. - ' " . - r v

. « . i ,
- - : R . , q
. > .
.
. ' .
-

A e R , 4
.

o

i

1
|
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'\Step 3 - Processing of the Interior Nodes

/-
. / /\N‘._ ’ — 10‘5 S
: 5 f\
,» O ]
Step 2/ ~ Processing of the Terminal Nodes ~
‘ j The control unJ.t a351gns one slave p!’ocessor t6 each of

the t terminal nodes .and lets the other N-t slave processors

sit, idle. All powers from 2 to n of each term“of the

original polynomi_al are computed. This completes the process:-

in;g of the terminallnodes. The list -pointe’:g‘s are automatically o

ret8ined in the control-unit directory. . o .7

" -

o - ¥

-
3

N

For each }Jevel of the term—gfoup tree from k-1 to 1, in
A / / ;Y f

that order, the control unit causes all powers.from 2 to n of 1\
.all nodes on that lewvel to be ~computed, tak:.ng,advantage .of

the powers already available on the next lower IL*evelz 'The

fundafnental strategy far comput:.ng a group of powers of "avnode,
given the 'groups of powers of the subnodes, is expressed 1n(
/ \*’L/"

the structure, of the power group triangle;‘ discussed previously.
_/‘.

At level j, there are 27 nodes, with j < k. The control

] 1 N .
unit assigns M = N/27 slave processors to.each of the 27

w

. » * 4 - '
nodes at level j. M sld¥e processors cooperate to process one

product group triangle, i.e., one node. The control unit
evaluates the time complexity of the constant. products‘ and
list products involved in processiﬁg' nodes é't this level The
. control unit then causes eacl; group of M slave processors
assocrated with a node to perform, flrst an M-spl;.t of all bi- '

,nomial work in the pgt, and then an M-split of_,the (remaining)

- v
' 2

no‘ﬂ;binomial\ work. -That is, the M proces_sors‘splitthe
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constgant products, and then the list products.' The 2

3 groups

of slave processors work in parallel. At the 'end of this step,

all powers from 2'to n of allTinterior nodes will have been
» . .

computed. As pefore, the list .pointers are automatically re-

~

tained in the control-unit directo'ry. .

Step 4 - Processing of the. Root Node . e e

<

. -’
At the root level,’'all N ‘sla‘ve processors a;éwfhgn-

-ed. to compute fn, given the availability of the powers from 1l

-ﬁo n Wwf the two sub—polyno'mia_:ls £f1 and f£,. *Alothough only

the nte power of the root is corputed, the same strategy

maﬁ/‘ge applied. (We merely consider the binomial-expansion ofyg

the root, written in accord with the smaller idea, to be a

»

degenerate pgt.)  As before, thén, the control unit causes the

4 [N

group of N .slave processors.to perform, first-an N-split of

" the n-1 constant products of the root pgt,' and then an N-split

-

¢

K]

N R ; N
of the n-1 list. products. This co°mpletes the processing of

\

“the root, ' L . .

!

. .
L] N »

. . s b s

Multiprocessor E, like its sequential counterpart, BINE,
akes full use of the design decisions: even splitting, multi-
level splitting, binary merge (dynamic programhé‘nqg) , and

smaller. These are the deéisi_ons which fix the structure of

\

. N \ s
‘the term-group tree, and of the product group triangle .\i‘he

< latter merely expresses how groups of “pawers of polyhomials -
. - . — . AN

are to be éompute'd from gro.ups‘ of powers of subpolynon;i’als

binomial-expansion using the -smaller idea; it is a kind of

.
,

e . ‘ “
~ - + - 3 v

N -
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8.3 ANALYSIS OF THE. SPEED~UP RATIO -
- / !

abbreviated algorithm descf&ption. The term—grouplﬁree,‘a

multilevel, even;splitting.expansion of the original poly-.

-
L4

nomial, serves as a directory iyte the v riéys lists and sub-
lists generated during the compu?agion. Th 's are pro-

cessed by the slave'pfocessors under the control of the con-

»
¢

trol unit, which aljjfmahages the texrm-group tree.‘f
\ :

-

If a subcomputation containing s independently-'

*allocatdble units of‘WOr be divided (p—spiit) among P in-

d

dépendent prbcessors en ‘the speedﬁqP is’ glven by s/fs/p},
where s measures the\time for the ser1a1 computatlon, andA\

Fs/p] measures the longest time Msaken byﬁany ofgthe p co-

f

pperating“processp%s. The speed-up is less\tﬁﬁﬁ or equal to p.- -

If two subsfmputations, with s; and s, units of work, respective-

v,

1;, are succéssively p=split, then the sbeqd-up,is given by

o/
i

v
—
o
o)
—

o
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aré}p-split. Mulﬁiprocesébr E uses variable.p-splifiing in-

] \ <

~“level, ranging' from 1 at levedk to ﬁ at level 0. As ‘the

monomial products of the computadion are independeﬂtly'éilocat-

able, the speed-up vatio of MultipXocdssor E is given by
‘\‘ , .

A

. E(t,n) divided by the sum of the longest time taken e¢ach tlme

a p-split occurs. The number and mult1pl\c1ty of the- p—spllts

are entirely fixed by the,algorithm specification; they need

only be summed, or at least apgrox%paggd. .This we now do. .

3

> More: precisely, we.calculate T, the time taken by.

AN

élgorithm Multiprocessor E, where T is measured in units of

the tlme taken by a slave processor to compute one monomlal

product. For each non—term1nal node, there are 2 p-splitsse:

one for the constanﬁ\products, and one for -the list produc;s.

A Y

To calculate the time taken to process a node, we need to know

the processor\multiplicity, the hufber o omiai products

".all list products. For example, the t1m€°taken to process

. : woel
the root is. - . _ e .
- G "
2, group(t/2, r-l) + N .51ze(t/2 r)] ’
+

- . N ? '

! . ) b

' .. N »
r %ize(t,n) - 2.size(t/2,n)]
N —=

N A . ”
where r = [n/2?|,Nn = 1 (n even) or 0(n odd), and N.is the
number of slave processors available on the multiprocessor

, » o N
system. The time taken. to process a strictly interior node

in

,all constant products, and the numbexr of)monpmlal products in

, ‘ <k'(803 3
4 -

is

et sty 0 ALy . -
S Ty By e 2 aos Ty S,
NN G eadn et
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BC(s,n) ‘ group (2s,n) =~ 2.group{s,n) '
I-"'M_—‘ -I + l— . o . (8'3'2),.

-
X

where s is the subnode size, and M the précessor multiplicity

N (per node) available at that level. If we add in the n-1
i‘:‘) - C s . fl

: time units needed to compute all powers from 2 to n of the
terminal nodes (one processor per node); and take the sum over

all levels containing strictly-interior nodes, we-obtain

.

finally the total time for Multiprocessor E. It is

‘T(t,n) - (Eize(t,n)‘— 2;size(t/2,n)] +

N

- F 2
B ' 2.group (t/2,r-1) + Nn.siz'e(t/Z,r)-l
- - +

+ N
PR 2 5 [group(t/zj,n> - ?.groupu/-z”l,n)-l s
S B | ’ N/27 - :
oL 41 . ' |
2 S + lgc(t/Z : ,n)‘ll.+ n-1 - (8.3.3)
\ L, ; N/2 v . ) . :

.or

yhére, again r = [n/217, N = l(ﬁ\even) or 0(n odd), and N ‘is
the total number of 'slave processors in the system. The sum

runs over levels rather;than nodes because the gfoups of M

N

processors (per node)'run in parallel. The actual speed-up

ratio is given by E(t,n)/T(t,n). We use a simple traa®k to

P

~ obtain a lower bound on this ratio by obtaining an upper

bound on T(t,n). 1In general, [s/p] < s/p'+ 1. ‘The quantity

v
1

in curly‘braékets is e

-

I
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v L1+ |2 < L2 42 (8.3.4) .
n23|  ins23) : .

e -

Tl . . B (
But 2J(QfJ)+Q:J)) is the number of coefficient multiplications -
) - L : '
which occur at level j. (The quantity in parentheses is ‘the

number per node.) The same reasoning applies at the root le el,

that' is, . .
SHE RIS

S

Here, R; + R2 “is the number of coeff1c1ent multlpllcatlons at

=

.the root level. The time taken to process the termlnal nodes,

\

or

namely, n-1, may be written- as

 n-1= t(g-l)

+~(N—t;(n—l)
' L

(8.3.6)

Substituting the previous (in)equalities in’ the formula for

| Y

T(t,n) gives ' : e .

— N ‘ ¢

T(t,n) ¥ BEM) 4 gy 4 WoEMno]) (5,39

N

m
4

2 . . : ~

E(f,n)
T(t,n)

N

E(trﬂ) (8.3.8)

> N:E(t,n)+2kN+ N=ET (=17

make N = 2t for definiteness. For large t or large n,
t (dk+n-1) is negligiblekin comparison with E{t,n). That is,

I3 A . -
for large—t or large n, E(t/n)/T(t,n), the speed-up ratio
. 12 ~
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"~ for algorithm MultiprocesSor E, approaches the,fheoretical

NPT e e v oW

. [
.determining’ the etarting addresses bf the vagious'subliets e

‘'way an ideallor\opﬁimal multiprocessor algorithm difficult to

]

ideal of N, the number of'processors. The only counter-
N \ # . .
balanc1ng factor is the necessary overhead (assumed by the

control unlt) in properlyllnstructlng the slave processors.

The moet difficult and expensive . opexation here ls‘probably,

assigned to the slave processors for processing.

-

!
1

, As it now stands;aalgorithm Multiprocessor E does not
have a soace coﬁblexitf as low as the more sophisticated
implementations of,fhe sequentiai algorithm BINE. An algo-
rithm which consfetently Gomputeslthe constant products in a
pgt before the\list products must have space to store those
constant prodocts. 'Thie.consistent appgoach, of course,

allows a consistent and simplified p-splitting strategy. At

" the lower levels of the tree, one may write the constant

pro,duct; into the space which will subsequentlﬂ( contain the ‘
lisr prodﬁcts. At the lower levels, theh,-the space complexi?y‘ y
aoes not change. At the hlgher levels, though, where the

answers are wrltten to disc 'directly, more storage will be

requlred for the 1ntermed1ate results. Thereyls, however, no

reason why a sophlstlcated version of Multiprocessor F could

" not approach the ' space complexlty of the sequential algorlthm

BINF. One would simply requlre a more elaborate p-splitting. -

. strategy. Thus, we do not regard Mﬁltiprocessor E as in any

‘inprove upon; it is merEly a very clear indication how a

©w

e Yo E VL S
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multiprocessor parallel architqcturé.could be .exploited to °
yié}d a drahatic speed-up of the sequéntial computation,: There

o @ 'q .
is no doubt, however, that Multiprocessor E could be much

improved with respect to space compléxity.
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CHAPTER IX

ASSOCIATIVE-PROCESSOR OPTION'
’ (ASSOCIATIVE F)
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Once more, in this section we describe the parallerl o

Q

?

‘ASSO?
" (

\

ATIVE-PROCESSOR OPTION .
ASSOCIATIVE F) - /

\CHAPTER IX'

"architecture envisaged, give fa formal specification of the

¢

corresponding parallel algorithm, and obtain a lower bound

on the speed-up ratio for the system. This time, however,

we choose to .make a parallel adaptation of,the sequential

rithm BINF, and call the resulting parallel algorithm
] ! N > £ - v - . ‘- L]
+o 'Hssodiative F' S o . 3 .

,-

~

~

N

A .
The parallel machine consists of (1) a control unit

K

p

with the processing ca

Y

with all other processinglglements.

(monomial) field,

9.1 DESCRIPTION OF THE ARCHITECTURE : )

L] 4 -

' =
. -

' ilities of.a conventional computerf
(2) a large assoc1aqive or content- addressable memory in

which each .memory cell contains both a tag field and a *m

and retrieval is by tag val&e, (3) a

moderately large teim buffer for storing intermediate results,

and finally, (4) a parallel proceSSing ayray, that is, ,an

//

b

Each element of the

parallel processing arpéﬁf(PPA) contains a tag field and two -

term*fields, t{ aﬁa'tgf

. ' !
A term field may contain one term -

(monomiai). ‘When tﬁé Pé; is fired, each element which has

~been loaded ooﬁputes the product - tz'::= ti*t,; the resultipg

3

*

w“array of-processing elements, [in which each processing element,
\\

properly initialized, computes one monomial product in parallel

. .-
| R

.

o
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L

vaiueé of the t fields may be routed either to the term -

° .

buffer or to, the assocéatlve memony. o

The block diagram for the simplest form of this system

is as follows:

4 . . o
on/off . tag 'term’ L
‘ /11177 o
. — : Control Unit -
] 7
A B y . tag term, term, tert
1 =
-, }
Match Agsociative Parallel Processing Term
. Indicator Memory g Array . Buffer

FIG. 9.1 SYSTEM DIAGRAM

The condigi unit is in communication with all other system units.

When the contrcdl unit sets a tag value intoﬂthe Command buffer of

the associative memory, the entire mempry is searched in parallel

and any matches of tég values are automatically recorded in the
one-blt—per-cell match 1nd1cator. hThe eontrol unit may cause
the term flelds of matched assoc1at1ve—memory cells to be routed
"to the term, flelds of the parallel proce581ng array. The

control unit 1n1t1allzes the term, flelds of the PPA elther by

routing terms ;rom the term buffer or by lnsertlng terms comput-

within the control unit 1tse1f The contrel unit also S
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Roughly speaking, a tag value identifies a term bélbng—

i ' ing to a specific power of a specific'sup4polyndmial, that ' is,
to one of %he various intermediate polynomiéls generated during
\% * the computation. With an.associaﬁive memory, rather than

storing and retrieving, these polynomiais\as exp;icitly-linﬁed

.
o s o e ——n .
o

. ;>/‘ . 1lists, we do so by storing-and retrieving the terms be1pnging

PR L I W N g . -
~T
»

to a particular polynomial on the basis of their idehtifying' {

£
£

C rtég‘values. Just as we can manipulate linked lists by re-

setting the pointers, so we can manipulate taggea lists by re-
, FaEE . N . . )

. B . L] .

setting the tags. The control uQit (CU) requests a specific
& polynomial from the associative ‘memory (AM): by giving it the

appropriate tag value; the retrieved terms are then eVentually

- ©  routed to the t; fields of the‘PPA, where they are used in the
computation. The PPA generates new terms of new polynomials

in the t, fields. If the tag fields of the PPA.ha&e been

! . properly initialized(by the CU) with the new tag values

corresponding to the new polynomials, then, afteriﬁhe PPA has |fired,

the, t, fields of the_ PPA, together wi he corresponding tag
. S - A
- fields, fmay be routed back to the AM £o0 store the new polynomials

in the AM-so that they can subsequently be trieved for further

i computatién. It is, of course, \also the r sponsibility of the

CU ‘to initialize the t, fields of the® prior to each firing.

: This is one of the two ways the PPA is used in Associative F.
\' \-: . - -

™
- —~— n

Clearly,- there is a certain overhead in storing inter- .
mediate résu;ts in the aM and then retrieving them later for

' ~further computation. Therefore, in certain circumstances, we
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' choose to route the new terms computeﬁ in the t; fields of the

PPA to the term buffer, without anyucprresponding tag values,

he i

? and to retrieve them’ later by the simpleét form of random

access. PPA results go to the AM when terminal nodes are pro-

cessed,‘or when list products are computed. The alternative
routing:is used during the computatio%/?f alY the constant -
products in anz\one product column of a pgt. Consider, once

‘more, a typical pgt, this one for n = 5.

¥

T

a® + b + a*.5b + b*.5a + a®.10b* + b’.10a?

a* + b* + a’.4b + b’.4a + a%;GB”A - |
a’ + b® + a®.3b + b%.3a e v IR
a +b i -, ; . A 1

_FIG. 922  Pgt FORn = 5

Our task is to up—aaté“the AM, substituting the power groub of
s X ." N -4

the father node a + b for the power groupsjof the two sub- .

ok ' 5 :
. nodes a and b. " The\ first:two columns of the pgt are re-

tagging colurng, as this is all that is required herex The
remaining columns are product columns, requiring the computa-
tion of new terms by multiplications performed within the PPA.

For each product column, first the constant products are sent’

to the term buffer, and then the‘list produgpé are §ént\to the

[}
.-
>
' . . JJ

- : 4

T

.
T i 0 Y o b
. . .
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" associative memory. -
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The simplest form of Multiprocessor'E will run only if

the corréqundiﬂg pdrallel machine has a generous supply of

¥

' centrai memory. Slmllarly, the simplest form of Associative

F requires a large assoc1at1ve memory, d a relatlvely large

Q R ©,

term buffer. Both algorithms may be-refined (and compllcateiiﬁ

when the large space requirements of the simple forms become-
critical. In the simplest form of~Associative‘F, the product

columns' of each pgt are processed separately; all constant
, 3

.
!

products for a cdolumn are accumulated in the term puffer.

LR
v

\Therefore, to proceés a node, we need buffer space to’ ‘store

o A

- the largestaoollectlon of constant products. Let s be the

i

subnode size. When s and n ‘are suffiently 1arge, we .

reduireia buffer able to hold size(s,p) terms, p = Ln/2].
’ ’ 4 . L)

. * ) .
For root processing, s = t/2. The associative memory must be

able to hold ﬁbi\intermediate results from level 1 of o;

6

. term-group tree; this amounts to 2.group(t/2,n) a55001at1ve—.

memory cells, and the ability to do parallel searches on
associative memories of this size. We now present a versionﬁ

of Assocratlve F which is spitable for this vgry 1arge and

2

'powerfhl paralral machine. Again, we are more concerned with

AY

'_showing how to exploit an assqciative parallel architecture

-

than with displaying the opﬁimal associative algorithm; there

" is no doubt 'that improvements and refinements-are possible.

_We suppose that ‘the parallel processmng array has a
mult1p11c1ty of N,. and clarlfy the precise operatlon of a~

° 3

=

p —4.).....-{:- . A S b rran S A Al s -

N -

-
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N PPA N—spllt <C0n51aér o product column, and the constant

products within it. One polynom1a1 is to be multlplled by Lk

one‘br more bingmial coefficients. The set of constant products

f is a set of subtasks in which N elementary operations at a

- @ time can be‘executeg in parallel. As many copfeS‘oflthe ole

nomial as there are constant preducts'are concatenated.to'fo~u
,‘ one long polynomfal The first N terms og’this long poiynomial'
e are loaded into the N t1—fleld5 of the PPA. apprOprlate
T blnomlal coefflglents are then loaded into the ‘N tp-fields. - .
The PPA lS fired and_the‘results are routed to the term buffer.
- This ﬁrocesg is continued until all constant products for that
- product column have been computed:“ If W is the nuﬁbg; of .

»

elementary operatlons in the set of constant products, then

fw/N1 flrlngs of the PPA will be requlred to proccgs the entlre
: . " set. ‘IE’is an important feature of-constant—produc ‘N-splits

tﬁat the PPA is fired prec1sely once ‘for each time it is loaded.’

=4

Once the set of constant products for a product column has been

= R
' pacd&mulated in, the term buffer, the 1list products for. that
. A . ,
- column may be computed The li§t—product N-splits are slightly.
]
more compllcated basxcally in that the;PPA is fired several

tlmes for eaéh tlme that lt is loaded This will now also be 3

L o explarned. ot . . /?f

S

The list products in .a product column-congist of, one . x
or more tlmes, a distinct polynomial times another distinct L 1

polynomial These latter dlstlnct polynomials are the consé&nt . "

products which have- Just been computed, -and which are all of

* - ‘ P
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P4

o

) .
one or more times,

4

. are all of the same size,

t

precisely the same size. In a

of varying sizes,
All the a-lists of the tproduct
form Ghe long polynomlal. The

polynomlal are 1oaded ;Lnto the

appropriate first terms of the

. routed

. (They will all be

. 4
.is fired precisely

Assumptions:

[}

into the N tz-fields. The PPA

to the AM. The process

firing the PPA is

\\7
terms of the long

and the whole process of ti1-loading, tz-:loading, and PPA~-

firing is ' continued until all 1

column have been computed. If

long polynomial, and S is .the b-1ist "size, then S.[W/N]1' firings

of the PPA will be required teo

y -

preducts for the product column.

the PPA are loaded.

L

en a-list times a b list.

and are available in the AM;

exhausted s:.multaneously )

S ".times for eachsti

w120

. v
prev:.ous termm&logy, we have,
The a—llsts are

S——

the b-lists ,

and are available in the term buffer.

a4

' 3
column are concatenated to -

first N terms of this long

N tl-‘—fields -of the PPA. The,
\zarig_ﬁs b-lists. are then loaded

is fired and the results are

‘of loading the t, fiélds and

/

cont:,nued until the b lists. are exhausted

The next N

polynomial are loaded into the ‘t, fields,

v

1]

ist products for that product

W is the number of terms in the

.process. the entire set of list

More. exactly now, the P]}?Al

e the t;i f_ields of

1

9.2 DESCRIPTION OF THE ALGORITHM

°w

-

Let N, the PPA mult:x.pla.

to t, i. e.,,sn.ze (f).

°
L Q

~

?

01ty, be greater than or bqual

The changes to the algor:.thm -when t > N

5
w,

-

F

K .

re

o
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." Z\.. b’
. ce \
are trivial' Moreover,. let B, the buffer 51ze be sufficient
to hold the largest colleotlon of constant products of any..
a

product cdlumn. When this condltlon is not met, systematic

modifications to Assoéﬁative F can be made which allow the\\\; N

_computation to go through, *but which, naturally, reduce the -

speed-up ratio. ' ‘ o

«

’
. B . R ,
J . :
+ ¢ »
o
N

Step 1 -wfreation of the Term-Group Tree

n

i ( / \{‘ﬁ" ’ T
This. is essentlally a book-keeRing operatlon. Using its

private random-access memory, the control unit creates the
B2 \

Eo/un§quely 1dent1fy,spec1f1c powers of specific sub lynomia b

«
)

As in the multlprocessor case, the term-group tree unctionsl
as(g dlrectory into the various lists (polynomlals) stored in

Iy .
the AM The term-group tree essentla;ly specifies the node- "'

¢ - . ’ B
Subnode relationship, and gives the tag values for all nodes

Al

and all powers concernede

bl

Step 2 - Processing of the Terminal Nodes a

~

The control unit gateés the & terms of the original
polynomial .into t of the t, fields of the PPA. -N-t pror
cessing units sit 1dle throughout this step. The correspond-

ﬁng tag values are initialized by the CU and, immediatel&;

t

o »

terms together with tag values are gated to the AM. . Next,

the t terms are copled into the matching t;-fields ofiﬂf\\

P

~ PPA. The latter is fired n-1 times (tz o= t;*tz), creating

t . o . . P
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L the’ powers from 2 ﬁo n, of the terminal hodes. fThe tag values )
| are init;élized prior,to each firing, and terms plus taée are’
gated’to £he‘AM after each firing. The PPA cap‘ee;d.to the
AM only fiyom its t; fielde,-anq can reEeive'from the AM only‘ ‘ 'T
T in itshfz ;ields.v After n-1 firings of ihel?PA,,all terminal

node processing is complete. . » \

//jg?Ep 3 - Processing of the Lowér.Interior Nodes ~ ' !
) - « ‘ s -
For each level of the term-group %ree from k-1 to 2, in
. that order, all powers from 2 to n of all hodes at that level-
are coméuted. As Assoc1at1vé F uses dlstrlbutlon, level 1 is
treated separately. The,fundamentab‘strategy for coqputing a
'T“group of powers of a node, given the groups of powers of the

—

two’ sub-nodes, is as follows. The entire PPA is allocated to

N i e 2l O

one node at a time. The pgt for that node is processed -
‘product column by product column, let us say from left to right.

Each product column consists of some number m of pfoducts of

\

. the form a~list times b-list. The a-llsts are dlstlnct poly—

A A

nomlals, the b- llsts are distinct binomial coeﬁfLCLents tlmes

Fis, oy ':;“ P

a unlque polynomial associated with the product column. All

p ‘ L—liste for the column are computeé'and stored:iﬁ the term
h buffer uSLng the constant-product ﬁ%spllt descrlbed earller,
the unique polynomlal is retrieved from the AM Next the m
list products in tye column are computed anq stored in the aM

j 'using the list-product N-split deséribed in the same place;

. the m a~llsts are retrleved from the AM as needed to 1oad

the t1 fields of the PPA. Prior to each' firing of the PPA,
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fhe cu initializee the tag fields with appropriate tag va}ues,n
aﬂe the t, fieids with terms taken_frem the term buffer. After
each firing, the new values of the t2, fields, and the corres-
pondlng values of the tag flelds (whlch identify the’lists to‘ ,
which the new terms belong) are-routed to the AM. After all
product columns of all nodes%at 511e§é1 j"have‘heen pro-
cessed, the CU causes all terms at leyel j + 1 to‘berrete;ged, _
making the ;ists at the ‘lower lewvel part of the;hew level, '‘and
thus completing the process of writing the power groupe of

all nedeskat level j into the AM. At the end g} step 3, the

AM contains exclusieely the powef groups of all nodes at

L

level 2. o : !

'Stqp 4 - Processing of the Nodes at Level 1 ‘ e

s i o

Processing a pgt at level 1 is structdrally identical to
) . P

“processing a pgt at a lower level. The difference is precisely’{)

A : , . >
that, in some places, distribution coefficients are.substituted

for binomial coefflclents -before the computation begins. 1If
AN .

a binomial expansion at level 1 will’ be used 1n a b-list at

1eyel 0, then all binomial coefficients in that(expansion, if

S

any, must be substltuted For example, suppose that a,b,c,

\

“and d are the nodes at level 2, and that (a+b)2 6(c+d)2

' requlred in the bincmial expan31on ‘of the root, namely

[{atb) + (cid)]*. as part of computing the b list“6(c+d)? .
o . ~ 7\} - ) ’
directly, we substitute c¢.12d for c.2d in the pgt for ¢ + 4,

. . A
and so on. 'We defer all binomial coefficient multiplications

hssdciatédbwith'retagging‘columhs, e.g., 6(c2¥a?), to Step 5.
I b, -

Al . -
- “
- - v

v

DR TP T 2 e
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In corisequence, the retagg:.ng which normally follows the

2

say, c? and a? separate from 12 cd. At the end of Step 4,

we have comp

be used\&v .
\\C N ! - 3 4 ) “\ /’/}
Step 5 - Processing of the Root 'Node ‘ . '
. ~ N ’*;~\ ~ -;_\ -
« . __AS before, we write ) X Y
- ah ‘ - nv ) v - ‘ n_l
/ Ccea T e : n ““@n + f A1 a-llstf,b llst
. T 1 , :
S

This is tl';ecusuai blnomlal expanslon in whlch the hlnomlal ‘

coefé*CLe;xts have beer included in the b-lists. The p%jnomials_.

f??fZ' and all a-i;stsuhave been\compgted, We ﬁ§e a ézngle |
constant-product N:-split +o peiform “all the binomial cbefficient
multlpl:matlons nece:%sary ‘to complete the-computat:.on of the

3

b-llStS.l We load +he first two b -lists into the term buffer.

, ‘. We concatenate the first .two “a-lists ,to form.a l(mg polyromial.

i ~ We use a -single list-product N-split to cémpute the firgt two
X list pr;adﬁcts; the answers may be written to dis.é. We_[continue
: « in th~is“ way, two-by-two, yntil the n—l'l;:Lst products ‘lhave bs’een
E ‘§f | o computed.‘( This*’cormptletesdtl’\e \’proces;sina of the root.
E; N . - | c : . - - “

) | . | . N . v .0 )
- L : N , b
v / . .
. . N ) \




B ik
,
.
.
.
t

PN
rgnptony o e e pas Rt
'

e o e
.
.
.
> B P
. .
) .
. .

N

2
3w

.. 3
-y
s

P

~
<

PatE

A}

- all llSt-pTUduct Nrgplits.,

LT e g e § Tea s b

hY)

s gy e Y, TR
-

“

LEM gy e pgprRae e

iy

" ings for all binomial work.in a pgt.

S n-1 [.
“ _ BW(s) = I [l

_and v = Mit1)/21.
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9.3 . ANALYSIS OF THE SPEED-UP RATIO

‘We can obtain the speed-up ratio for Associative F "

.by-dividing the number of elementary operations in the sequen-

tial algorithm (BINF) by'the'numﬁeffyf firings of the PPA in

. \ . ~
the parallel algorithm. We denote these two quantities by

F(t,n) and P(t,n), respectively. We assess the speed-up

fatiogi};*i)/P(t,n)\by first calculating and then approxi-

mating the function P(f,n).

process the terminal nodes. We calculate the'nuhber,of firings

Ieguiied to ﬁtocess a node, at any level from k-1. to 2, when
’ .

lthe‘sub—node size is s. ' We calculate first the number.of fir-

This is given by

1
'

X, (n_i).(s+z-l{] , where u = [i/2]

=1

-.Té;s is just the ‘s “over product columns of celllng of l/N of

3

the size of all b-lists'in that column.

This is givén by

f]
'

number of firings for all non-binomial ‘work.

5

n-d4’ ‘ n-u . - - , .
NBW(5)= I (5*3"1). L% 3 ('S..‘“:."'l)-, , where u = [i/27(9.3.2)
i=1 j=v ] . ‘ '

« - v
. -

/
- ll

/

the size of'the b-list tlmes ce111ng of 1/N of the size of all
a-llsts in that column. We now have, .for each node, the number

of flrlngs 1n all constant—product N-Spllts, and the number in

There are n-1 firings of the PPA to

A9.3.1)

Next, we calculate the|

Thls is just the sum over product columns of

[ R

Lt TS SR Ny Loy
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The two formulas BW(s) and NBW(s) need to be summed
" over all interior noédes from level k-1 to level 2 for the N\
total number of firinds Qf the K PPA in the classical pgt work.
: . 7 .

Since the processing at level 1 differs only in the substitu-

tion.gEbdistribution coefficients, the sum may be extended to.

leve .+ The number of firings in .the single constané—product

+

N-split at _the root level is given by* .

.
.
.
. 7

-

2 .l%?- [4.group (t/4,r-1), + niéize(f/4,r)i] (9.3.3). ]

t

B ! q v - »* , N
where T = [n/27 and N, -= 1(0) when n is even (odd). .This is
X : .

just ceiling of 1/N times all root binomial work ih"either'6f4 L

the F algorithms (BINF or Associative F). ‘The number of
firings in the r-1 or r list—product(N:splits at the root level

is given by ) ' -

r-1 . 3 .’- . | e .
(t/2+3—1)_ 1 .2(t/2+n73-1q + Nn'(t/2+r-l);

) )
§=1 1 N n-j r - .
| T t/24r-1 : ‘ :
N )} o (9.3.4)

where r and N have the same.meanings as abeve. If we

% perform ;he,indicatéd summation of BW(s) and NBW(s), and add

the firings for the root node mand the‘terminal noaés, we obtain

A3

R

Seide S s domdlt

»
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r-
P{t,n) = I

3

1
. ["‘N"(

1

t/2er-1.] ; [1
) s

<t/2;j—l)

-

5

n-j

3.t/z_+n-j-1)-l nL

¢

t/é+r-ls

r

.)[4.group(t/4,r-l) +

i

° \
) bution of (N-t) (n- l)/N

‘ing the éeme inequality in NBW(s).,

. k-1" .. 341
+ 2N _.size(t/4,r)]| +  23[Bw(t/2?") +
n - - s : \5,
N . J—l . 3. o

" ' + NBﬁ(t/23+l)] +n-1 T (9.3.5) - ¢

. AN
£~\before we obtain a lower bound on the speed-~up ratlo

F(t, n)/P(t n) by obtalnlng an upper bound on ‘the quantlty P(t, n) .

In general, f[s/pl < s/p + 1. We make systematic substitu- ¥

tions of this inequality for each ocgurrence of the ceiling \ é
. N N,

function to obtain an upper bound of the form P(t,n) < F(t,n)/N +

. : s !

Qft,n) . The contribution to Q(ﬁ,n) from the root is just e

' b / "'\ . t
group (t/2,r-1) + N_.group(t/2,xr) + 1. As explained in the multi- 1
7 . p . .

< ke | E
processor analysis, the terminal nodes give rise to a contri-. .i
If ve .refer back to the form of BW(s )
-and NBW(s), we see that each lnterlor node makes a cont?ibutﬁpn

of n-1 + 2. group(s,r-1) + N .51ze(s xr), where s , as always, is>

the ,sub- node size.

b

ceiling: inequality in BW(s), the remaining terms.from substitut-

The term n-1 comes.from substituting the

' ' .

Therefore, we may write . ‘ ‘ Co
G . .

*

o f
-
. .
® ’ .
.o ’
. S o
(- . "
. e - .
4 .
.
N
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!

gfoup(t/z,r—l) + N .size(t/2

+ I 2j (n~-1 + 2/group(t/23+l r-1

{:‘
;_
Q(t,n) =
k-1 - '
s » ) j=1 N ﬁ
o

) + 1

'+'Nn.§ize(t/2j+1,r)3 + (N=t) (n=1) /N °

t

The summation may be written as

e

" k-2
. (n-1) (t-2) + 5 e P
-m=0

- [y

.+ N .size(zm,r
, n ;
Hongy

Using the closed forms of group (

(n-1) (t-2) + % . Lz
v . m=0 j=1
where v .
j° ir-ls J+l
Simplifying gives o

(n-1) (t-2) + % ._bfr).k +

Finally then

)1

s,n)

)'c

PR

o

»

-%"Y

2™m [2.gr9up62m;r—lry+

.
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(9.3.6)

(9:3.7)

and size(s,n) this is

(r)(z )J-l

b

(9.3.8)

.f":y‘. 'y

At s ot
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.on the speed-up ratio for Multiprocessor E.

) 129
Q(t,n) = group(t/2,r-1) + ﬁn.size(t/2,r) +
SR r-1 (r) T
~ -t) (n- t (t/2)7-1
. R gN t) (n-1)/N + 3 . jil bj+1 . 31 +
.+ -2 41+ 5. (9.3.10)

~

Sipce P{(t,n) < F(t,n}/N + Q(t,n), we have the follow-l -
“ing lower bound on the speed-up ratio for Associative F.

o
v
V)

LAY

F(t,n) . . F{t,n)
‘ P(t:ni > N FXﬁ,q) +’N.Q(t,n) ‘(9'3'11).

ThlS speed~-up ratio is, clearly, less attractlve than the

speed-up ratio for Multiprocessor E.: The leadlng term 3t Q(t n)
. . ) ‘ . , . \ v

] . . . K >
_?T 2 [l + -——I——J, where, P = [n/2] (9.3.12)

“
N ~
“ - . . .
.
. \ o

In comp&%ison, the leading te;ﬂ~of E(t,n) is tn/nl. Therefore,
g

for lafge

son with F(t”n) ‘1t follows that, asymptotically, “the speed-.
. . - [N

up ratio for Associative F approaches the theoretical ideal.

<

The quantity N.Q(t,n) is vasily larger than 2kN + (ltl-bt)(nf-l),-:1

- the corresponding quantity in the forhula for thé lower bound

JIt.can‘not auto-

P

'matically be concluded that the-mulgjproqessor paréllel archi% ‘

Q

tecture is superiér to the associative-processor architecture «

- for this computation; one would need to make a careful study

3
k)

a -

2 T P

t and large n,rQ(t n) w;ll be negllglblesln compari-" "

L RN P I v s
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" . of the hidden overheéd_in Multiprocéssor E. It seems that ..

A
the overhead in Associative F is considerably less. This may

ultimately tip the scales in favour of Associative F.
3 (~

Several modifications.and improvements of‘algorafhm
Aséocxatlve F suggest themselves. One .could adopt ‘a unified
st:ategy by proce551ng pairs_of product columns in the pgt~
.thls is the way llst products are computed at the root level in

“{
the present version. The pa1rw1se strategy would reduce the

. ®

contrlbutlon of each node to Q(t,n) to n-1 + group(s,r—l) +

-

Nn.s1ze(s r) ,which affects the coefflclent~0f the leading term
of Q(t, n) (In (9. 3 12§é¢62—N becomes 1l). 1In case the te;m ‘
buffer is not largé enough a 51mple modification of the |

:architecturep nemely, providing separate match indlcators for

4

a-lists and b-lishe, allows one to segment the subcomputatioﬁs\
as they ehe cqrrenfl§ defined, and have piecemeal .loading of
parts,of a—lists(and parts of b-lists, alternately, wiehout\
additional associative seefching. Finally, in choosing between
Multiprocessor E and Associative F, onhe must consider the
machine cost. The piocessing elements of the PPA are simpler
than the slave‘processors of the multiprocessor machine., Thus,
it is enti&ely possible that, froh an economic standpolnt,

one could achieve‘much largef multiplicity with the associative
architecture. We believe‘that Associative F ie a stronc |
argument: in favour of the very great‘euitability of an associa-
tive parallel ar&hitecﬁdre for this class of computations,

" . J
. more suitable, in fact, than the multiprocessor architecture.

7~
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We have been careful not to cJ:eim that aigofithm.
s \ . R

Associative F is tl'ie optimal way to exploit ‘the prOposed‘

spec1al-purpose assoc:Lat:Lve-processor architecture. Yet -

clearly it is a good way, for the follow1ng reason. We make

a

best use of the PPA by minimizing the number of times it is
fired when it is less than completely full, Associative F
ado;gts"‘ the strai;egy of proces‘sing the list products }n a

pgt at most two pmroduet colufins at a time. This ensures' that
the b-lists in the set of list products are all of prechisely
one size, say,'b.'— It will require some number of loads of

H
the t; fields of the PPA to mxhaust the a-lists in the set

.of list products. For each such load, except possibly the

last, there will be b flrlngs of the PPA which use its capé-_
pltyvto the ful\lest. Moreover, the :LnltJ.a.uzat:.ons of the
t, fields of fhe VPPA prior to each firing are straight-
forward: Let Ni ti-fields of the PPA contaixi all -ox pe.rt of

an a-list, aié the’N:.L matching ty,-fields are all filled with

. the next termof the corresponding b-list, bi’ With trivial

'random—a‘ccess' initialization of the t, fields, we get the L,
{).

\beneflt of b flrlngs of all ‘N cells of the PPA before the next

load from the AM. We have reason to believe, then, that we
are making good use of this.parallel machine, and that p'rocess—

ing two product columns at a time . is the best we can do.

! >,

3

.n -
The space requirements for Associative ¥ are not

absolute, -in the following sense. Normallf(, .to process. a set .

"of list products by the method gﬁtlined above, one needs a.

term buffer able to hold all the b-lists 5belon§ing to the set, .

e

ke

o tios

O TR I S

el L

A ¢




R

I M\_‘rh'w et -

‘ and{aall at once. When a buffer of this size is not available,

the éomputatiqri may be performed in a piecemeal fashion, with .-

a resultant decrease in speed-up ratio. The discussions rela-

.tive to thé space complexity of the sequential algorithm BINF

show that one could not hope to implement the parallel algo-

rithm Associative F, as it now étaﬁds, with less th n : ' :
size. (t/2,p) + 4.group(t/4,n-1) cells, of assocmatlve memory,’

nor less than 51ze(t/2,p) cells of term buffer, where p = |n/2].

The two requlrements are additive. Algorithm modification
T~ -

a8 R Ao bl AN P" e

amounting to space-time trade-off has already \begzn mentioned;

)
]
’

Lrs

. .
given the lower cost of buffer cells, it is probably not a ’/
good idea to make up for insufficient buffer size by increq‘sing

the’ size of "the associative memory. ,A somewhat generous esti-

r

mate for the space complexxty of. Ascocn.at*ve F, then, if wel i
. 4. t
comb:.ne the“?s%» forins of memory, is given by : - ’

‘ . -
- 2. 51ze(t/2 p) + 4,group(t/4,n- l), p = Ln/2_| .

t - [

”

@&
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CONCLUSION - S

o
-
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¥

Ve have restricted ourselyes to the problem of ‘the

symbolic computation of integer powers of comglete"lyfo*x:‘
almost completely sparse multivariate polynomials. Six new’

»

algorithms for this'problem, namely, the four sequential

algorithms BINC, BIND, BINE, and BINF, and the two parallel
J 1
algorithms Multiprocessor E and Associative F, have been

propeosed and investigated. The two pa}:allel algorithms are
specifically intended to be run on two special-purpose parallel
méchiries, also discussed in this thesis., All six algorlthms

>

are based on the idea of using bJ.nomJ.al expans1on as the funda—

n'uex;tel and exclusivé tool for computlng powers of polynomlals,
‘for 1':he de51red power of the original polynomial, for powers
.of sul‘;polynomlals (other than monomlals) arlslng in the -
original blnomlal expansion, and so on,r recur51vely. Previous

analysis did suggest the sd'ﬁe;iority of binomial expansion as

a general approach. However, the previous best sequential

b,inomial—-expansioﬁ algorithm, namely, BINB, did,not carry the
binbmial—exg*usion approach through systematically, i.e., re-
A o

cursively, and so did not realize the full benefits ‘of the

- ‘.
binomial-expansion approach. The fom sequential algo-
. . 1 . i

’ rithms are successive refinements and improvements of the .

sxs%ematie binomial-expansion approach.

% A

The ma1n conclus:.ons for the sequential algonthms may
»

be summarlzed as follows. - Both the time complexity and theé

1.

R T L
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_including BINB, Repeated multlpllcatlon is not a good way to

. .
: ol TP N NP AWy ¢
e e o weremg g ™ i A pyr e e,

o

spa(:e complex1ty of the algorlthms depend on the des:l.gn ‘decis-

‘ions relatlng to polynomlal splltt:mg, ’subpolynomlal powermg,
~and cross—product formation, as dlscussed above. When the
polynomials are sparse, even splitting is to be preferred

2

‘because of the sub‘stantialieduction in the cost of powering

. ’subpolynomlals, thlS idea“is used in all of these algorlthms,

»

" obtain powers of subpolynomials, both because of the excessn/e

number of coefficient multiplications required, and becausé of

\

v ' - .
the r}eeddto sort the intermediate results; this lesg than

- optimal approach is used in BINB, but in none of the new algo-

rithms. BINC and BIND both use recursion to generate powers

.ofv subpolynomials. ‘BINE uses a modifiéd form of recursion akin

to dynamic programming. BINF uses a moqdified form of dynamic

ty decreases each time, We think it

programmmg whlcT?a-vQ ds some 1ntermed1ate steps. \In this
serles, the tlme comp&

 is vewy unlikely that there is something better than dynamic,

. . - .
programming for computing the powers of subpolynomials, given.

the computational and cost models which have been adopted in

the thesis, and discussed above. s ¥

4 \

P o .
BINC, alone among the new algorithms in this respect,
3

does not use the ra}:her obvious imp‘r.ovement'of always multiply-
:Lng the bmo‘mlal coefficient by the smaller polynomla} first;
BINB also fails to take advantage of this 1mprovement. When
we analyse the time complexities of t'l:xe five sequential bi-

nomial—-expansion aigorit.hms BINB,BINC,B‘:END,BINE, and BINF, we

e

-
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find that the respecﬁive cost functions form a strictly mono- |
tonically decreasing (finite) sequence. The new algorithms
« Y4 .

have the further advantage that, when the polynom%als are

spafse, they ‘do not, unlike NB, require exponent/compari-

\

5

" sons. If one is generous in assigning a low space complexity

to BINB, then only sophisticated imblémentations of BINE, and
the sténdard imsiementation‘of BINF, ﬁave lower space complex-
uitiés. BINF. does very well from a space~complexity standpoint;
fﬁe modified form of dynamic programming it uées was .specifi-

cally‘intrbduced to save space, not time. We conjecture that

-~

BINF is optimal for both time and space among sequential bi-
nomial-expansion algorithms. The cost comparisons have been-
médé’usiné‘both comparison of leading terms of analytically-

obtained cost functions, and straight tabulation; the two

~methods do not give different-resulté, §

a
12

. In the parallel case, the aim is to dev}se parallel

o -

. algorithms %ﬁ conjﬁnction with\special—purpose»parallel architec-

kY

tures; parallel solutions to théiproblem of'poweiing sparsé
poiyhdmia}s appearlnot to have béen stpdied'el;ewhere. The
two pafalie; algorithms,Mdltiproceésor E and Associaqivé}i
both have speed-up ratios which, asymptotically, approech the
theoretical upper limit. Althouéh the calculated speed-up ”
ratio of the former seems to suggést»that Mpltip}ocesso; E is
)thevéuperibr ﬁf the;two-algorithms, we be}iéve that the time
compleéxity hiddén in the Multiprocessor Eﬁéveéhead, and hard-

. ware costs, boéh shift the balanée in favour of Associative ?.*
The space .complexities of the two parallel.aigorithmé, appa;gntiy,

. | /

1 . N N E
. «

s
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are not enormously different from thé'space'complexities of
e ~y » ‘\

their sequential counterparts. ' The main parallel result is, '

not to exhibit optimal.parallel algorithms,  but ratheﬁ\,to _

show convincingly- how very well-suited these or similar parallel,

aigorithms, rﬁnning-on tﬂe two preposed parailel machines, are
to the‘general problem of powermg ‘sparse polynomlals ‘It
+ seems also that good 'sequential algorithms for thlS problem
may be adapted, more or less dlrectly, to yield good parallel

. alg,orlt,hms. * The whole parallel area is-wide open for further

research. _-

This thes:.s has been :Lntended as a contnbutlon to

R theoretlcal computatlonal complexn.ty. It is the feeling among

- ' [ot3

" computer scientists today that'no new .glgorithm Tan be respect-
. ~ " . e

ably presenteé without some analysis of its behqviour.' While
not rejeécting the Qpproacﬁ which is based on empirical compari-
s;ns of (hopefully ?easenable) implementati?ns of eompeting
elgoritﬁmg, our approach to‘algorithm anélysis hee been essent-
. ially to .obtain the.analytically-execﬁvcost‘fuﬁctions, and
eompare them. However, we have testéd the performance of
algorithm BINE with a full implementation in PASCAL 6600: We
state again that major portlons of thls the51s have previously

- been published. in [2]; “ a short comparlson of the: earller

and later .write—ups OCCuth the ¢nd of Chapter 1. B
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. -APPENDIX I

.

. VALUES OF B(t,n).C(t,n),D(t.n),E(t,n), AND -
L(t,n) FOR SELECTED VALUES OF t AND n - ‘
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4 4 69~ . 98 96 .. 68 . 31
- ' 8 . 4 550 . 608 586 458 322
i 16 4 5878 . 5116 L4944 4400. ~ 384Q
17 4 7334 - 6252 46065 5434 4828
18 4 8980 7613 73664 6648 5967 :
19 A 10961 9150 8863 806D \ 7296 - ;
20 4 13173 .11070 - 10584 9692 (8835
21 4 15792 13058 12544 . 11555 © 10605
22 4 18687 15357 14748 13482 12428 i
23 4 . 22048 17922 17277 16494 - 14927
' 24 4. 25774 21604 20098 - 18818 17526 - %
o 25 4 30052 24696 23265 . 21865- 20450 !
. '26 4 34708 28193 . 246796 25276 23725 e
k 27 4 40029 32054 30715 29075 27378 T
o . 28 4 45785 36494 35054 33294 31437 : ;
29 4 \' 52306 41206 /39839 37947 35931 ° !
30 4 59323 46441 45104 43080 _ 40890 .
31 4 67212 52162 50876 48720 46345
32 4 © 785662+ S58424: . 57192 54904 52328 B
4 5 110 178 174 "110 - 52 .- |
8 5 1254 1419 1364 - 1036 . 784 i
16 5. 21870 | 18988 | 18412 16852 - 15488 ///” g
17 5 28687 24403 23794 21948 203327 |
18 5 36664 . 31172 30320 28184 . 26316
oo 19 ' 5 46830 39282 38247 35823 33630
20 S 58558 49639 47714 45002 42484
: 21 5 73178 61715 59076 56034 ° 53109 :
- 22 5 89846 75003 72462 69090 65758 B!
23 5 110245 91200 = 88247 - 84545 80707 R
24 5 133270 - 114527 106632 102600 982546 ~
25 5 161013 135572 - 128144 123688 118730 %
26 5 192060 160107 152932 148052 142480 !
27 5 228972 | 188307 161503 176199 ~ 1469884 !
, 28 5 269974 221274 214134 208406 - 201348 ‘/ |
’ 29 5 318160  ~258144 251457 2457343 237307 i
® 30 5 371338 300242 293740 287040 278226 §
31. 5 433203 347865 341642 334456 324401 V1
32 5 501086 401652 395528 387856 376960 :
z 4,6 - 162 290 284 164 .80 i
8 & 2574 - 2923 2820 -+ 2140 1708 "
16 " 6 71462, 62538 61084 57508 54248 T
17 6 98238 . 84484 - 82942 - 78617 74596
a 18 6 131020 113+15 . 110830 105756 190929 S )
19 6 174670 14929 146296 140473 134577 ¥ )
' 20 6 227199 194715 190672 184100 77080 '
. 21 6 295333 253107 246115 238640 ° 230209
. 22 6 376143 323243 “314274 305936 295988
23 6 .- 478702 409016 397801 388580 376717
24 6 598838 532548 498956 488852 474996
250 & 748521 652920 621356 610067 593750
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26 & 921984 = 797703 < 787598 . - 755124| - 736255 .
27 & 1134722 - 970146, 941871 928212 906165
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_ new sequential algorithm is given by:

\ o N v
' - - . r

Y
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ABSTRACT _ K o ‘8

* °  SEQUENTIAL AND PARALLEL ALGORITHMS FOR SYMBOLIC . ﬁ"\\\>’\\/?
- COMPUTATION OF INTEGER POWERS OF SPARSE POLYNOMIALS ‘ {

. ¢ . '.' o . B R ,;’

) (ﬂ : David Kgrl Probst ) ' .

wt . . ' St s - g',l

% . \ . - . P
This thesis proposes four new sequentlal algorlthms, v

‘and two new paréllel algorlthms, for symbolic computatlon of

- 1nteger powers of completely or almost completely sparse ' . %.

polynomials in one or several variables, and analyses their ’ ]

time complexity and Space complexity.  The two parallel

algorithms are specifically intended %o be run on two pro-
. L 4 .

pesed special-purpose parallel-machines, also described in

% -
4
the thesis. We conJecture that one of the new sequentlal

algorlthms 1s optlmal for time and space within the famlly .
b3 A .
of algorithms which adopt a blnom1a1~expansibn approach to

computing integer powers of sparse polynomials. If the
 Original sparse polynomial consists of t monomials, -then the . ¥

s

" time complexity of céhputingﬁthe aaEE pdwe; using the best

N .

n ‘ — ‘
. t n-1l . 1 1 n-2 L
nT * t’l [2(n-2)!‘+‘ n—2(n_1)!] + 0(t ),for n> 2

Tbé space complexity for the same task and the same algorithm

b

is given by: - >. ° | . ) ’ L
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: b .2nf4 4 O(En;z)wfdr n S22 e, - “
f * .'i '— 2 (n-l) !‘ v 5 “ '
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The two new parallel algorithms, one for:a,muLtiproééssor

A g B Lo hee
- N
51

1 < - +
machine and one for an associative-processor machine, both
)

A

-have speed—ug ratios which asymptotiéally app;dach the theoreti- .

ot - . cal ideal of a spéed-up ratio.of N for N processors. The

. ¢ :
aim here has been,not to exhibit 6ptimal algorithms, but
I ! .

: : X
Jerely to Q9monstrate the extreme suitability of a parallel Y
. - JI’A ' ' ~

approach to this problem. The-space complexities of the

parallel algorithms do not'greatly'exceed the space complex-

ities of their sequeptial counterparts. We give.arguments:

which suggest that the associative-processor arcﬁitecture
. “w -

-~ may be the preferred ‘architecture of the two. J‘M o
. ' ) ) ) / * ' ' ~ oL

’ ~ 4 e . 3
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. . CHAPTERI,
INTRODUCTION ° ,
~ " ao
’. ' - ) ~..

“«

3 ! - ‘ ¢ ~ ’ .
. (‘/\*I_Th{s\ thesis' contains results arising from the investi-

~gation d analysis_ of new algowithms for comput';ing pawers of

~  sgymbolic olynemiels on both Seyuential and parallel machines;

¢

’

ig is intended as a contribution to theoretical computation-
al complexlty which would not be irrelevant to practlcal‘prob-

lems of algorlthm assessment and’ prggra.mm.lng. Previous

attempts to determlne best algorlthms for pol?nomal powering '

on sequentlal machines have been motivated by a desn:'e to ob~

tain 5ys§em programs for use “in symbolic algebraic manipula-

tion systé;ns. Parallel polynomial powering algorithms have

been much less studied, if at all, the aim here is to devise ¥

more Or lebmspec1al—purpose computer archltectures, and then
It >

a 1

formulate parallel algorithms especially suited to them.

. is noteworthy {:hat e'ff1c1ent serial algorxthms are not necess—
2 / >
arily extendable to’obtain eff1c1ent parallel algor%hms. The

1

parallel algorithms presented here are obtained by finding or.

creating parallelfsm.in the sequential algorithms, and then

/ -

. exploiting it. - , ' J
) ‘ ‘ e ’

'\ “The choice of ain: appropriate” ccnupnter algorithm will
determine the size and complexity -of prcblems whlch can be

{
solved in a reasonable time. The app&'oéc(j(aken in this thesls

3
) '

is ‘to choose one out of a set of competing algorithms on thé
: basis of a theoretical ‘analysis of the mtn..ns::.c algorlthm

o

. e e

{
/
A
!

. -
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. now be explainéq.

plpiiaity T,

PRI B
9

AR

. complexity rather th@n\ say ; on the basis of run-time tests.

J.n.order that the probléms of a.lgor:.thm analys:.s be well-

/

_posed, J.t is necessary to specify both a computat:.onal model,
hich characterizes the problem domain, and a cos%odel ~
which prov1des the crltemcn or c¢riteria by which J.ntrmsxc
Aifflculty is to be measured \The computatlonal model is that .
the input polynonu.als be completely apa,rse polynomlals (de-:
finjition follows) in one or more variables (1ndetermmates‘) 1\’
with integer c;oefficients. The cost n;odel is that the algo-

/
rithms will. be analysed in terms of the number of ceeff1c1ent

e

[4

multlpllcatlons requlred to compute. the flnal result - J.n
Lo

+the parallel case, in terms of the number OE parallel cycles

needed to perform these nmli:ipiicatic)s. Both models. will ..

A 2

a Q « i
.Completely dense and completely sparse polynomials

are the two basic compiementary computational models for “which
one does an analysis of power:.ng algorlthms. Sparse poly-
nomals have few non-zero coefflclents, completely dense poly-

nomials have np,zerq coefficients. A um.varlate (one-variable)

ey

3 , 7
‘ polynomifl of degrée d is completely dense if it has n%

zero coefficients. That is, it has d + 1 terms. A mu];ij

variate polynomial with v variables where each variable

x{, cesy xv occurs to max:x.mum degree d will be co letel
ot F

A degse if all possible terms are present. In that caee, 0.
- A

y' o
[ “ "
- ~ >
‘n *
- -
\
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_where the fl are completely dense -in v-ll Lvariahies, and -

a

| size(£) = (a+1)¥%,
t . . .
where size(f) is the number of 'monom_ial terms in £. If fi

w

‘has (id}+1)V terms for 1 < i < n, then £t remams comgletelx

‘dense to power n. Thls is the worst case assumptlon of poly—

7

G T

/

nomial growth. Dense polyhomials in 3 or more variables can

Y

'only' be raised to quite small powers before either core or

time become excessive. [10]

. In sparse polynomials, whatever the number of variables

4 -

* ‘ 4 . :
_{indeterminates) in the .polynomial, and whatever the degree of .

the polynomial in each variable (indeterminate), there are

only t. non-zero terms. We repr'esen't a polynomial in the

class of sparse polynomials as a sum of monomials, where each
.o N a. .
, . : i ‘o
monomial is of the form c(IIXi ), a;, > 0, ¢ and a; .integers.

A ‘spaise polynomjal may be charactgi‘ized by the number o6f non-

zero terms, t, in its representation as a sum of monomials.

We say that a polynomial f is completelly sparse to power n

if fl ‘fully” expanded for all i, 1 <'i<n, con{:ains

. vexactly the number of terms of the t-term mult:.nom:Lal e}xzé-\

sion. To say that the number of terms is given by the size of

the t-term niul}tinomial expansion is to say that no further

. ~, . A
collection of like terms is possible. Multivariate problems

d;,lt wn.t/by symbolic algebra:.c manlpulatlon systems are often
’Y sparse in character. The theoret1ca1 model of 'sparse poly- .

nomial' is due to Morven Gentleman. [7]




The assumption in t.he camputational model of complete
_-sparsity of the input polynomials affects the design and

-analysis of the powering algorithms in two i:ays. From the stand-

point of design, spars:.ty guarantees that no like terms will ‘
sver be formed through nmlt:.plylng one subpolynomial by

another, given the particular structure of the new binomial-ex-

pansion algorithms. This will be expl'aiséd below. From the
standpoint of analysis; sparsity allows us to predict the
sizes of all intermediate results, ‘a‘nd‘thus carry through the
analysis in a mathematicglly tractgbie way. If the input
:polynomis.l ig more or less sparse, but not completely spsq:se,
. then ﬁhe analysis remains correct, but the 'algorithms, as they
na'w stand, produce results in which the relatively few l:;Lke

©

terms have .not been collected. )
. ? -
l

. I 4
we‘ have said\that the csmputi:} time will be analysed

for completely: sparse'polynomials with inteies' coefficiex&s;

actually, 1t is only necessary that the ‘coefficients be

'non—growlng » to allow us to assume that the cést of coeffl-

cient arithmetic is constanQ. One way to guarantee this is

to take the coefficients fnc:/ﬂx a finite fleld. In this way,

wmultiplication and adchtlon/ costs do not grow 'with the number

of digits in the result. Alternmatively, one’ may suppose that
all coefficient arithmetic is singile-precision floating-point 3

or si;zéle—precisioxi integer arithmetic. To fix the model, we- -
. AN

ot il e it

choose integer arithmetic.

3
L




y . The propésed cost model implies that thé algorithm be

™
!

-Qmalyaed in terms qf the number of coefflclent multiplications
required to computg\the final result. This model will now be
justified. The cqst of an algorithm may be taken to Se the
.lwmmer of elementary operations which occur during the compu-
tation. When the overhead. is minimal, this reduces to the
, number of elementary arlthmetlc—operatlons.‘ The cost of
\;mmltlply;ng two sparsé polynomlals is the cost of multiﬁlying
each term of one by each term of the other, and then collect-
ing any like terms which may havetbeen formed. Slnce the
sparsity of the polynomlals implies that the number-of like. terms
‘ is small the cost of .addition in actually rollectlng the llke
\ terms is negligible. This is for the general case. For the .
new algorithm;"presented in this thesis, wholly based on
the pgiﬁfiple‘of biqpmial%expansion; no like terms are fotméa
through the multiplication of sﬁarse polynomials. Hence,’ {

T

there are no like terms to be collected. | - .
N . . ‘ -

To see this last point, consider computing f£© = as

e
o

£+ £ O,
2 2 r 1 2
o . ) v

where 'f, and £, are the two halves of f£..

Imagine that the powers of both £, and f£ have been com~
. puted. It<paﬁ be shown that if any of the terms in thé pro-

ducts of. the summation combine, then £ is not completely |

sparse to power n, ;éﬁtradicting the hypothesis. This will !

be proven/bélwa In all of th§ algorith@s'gresented in this. - j

<

’

ot
v
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nultiplication w1thout exponent set addition.) The sum of

~ Richard Fateman [5]

thelis, the fundamental arithmetic \\n;rk consists either-of

-anultiplymg a binomial coefficient by a subpolynonual, or

of multiplying a subpolynotiial by another subpolynomial and

" then nbt collecting like terms, which do not exist in the

canpletely sparse case. The total computation, therefore,

consists of some number of monomial n;ultiplications (coeffi—

‘cient multiplication plus exponent set addition) and some

.

_number of binqmial coefficient multiplications (coefficient

v

these two numbers is the number of coefficient multiplications ' .

required by the algorithm, and also the number we use to

A3

measure the cost of the algorithm ’ -
[\ ) ’
There is empirical evidence, as well as theoretical

' - , . ¢ ’
arguments g in favour~of the cost model adopted in this thesis.

analyses of algorithms 'or mu{tiplication and powering of

dense symbolic polynomials. . These algorithms ‘involved multi-
plications, division_e R additions, subtractions, an.d exgonentia-
tions'. CO}r.iparing results of timings with actual counts of’ the
above operations showed that actual compui:etion times vere
closely proportiqna-]:/to the total of these counts and reason”-
ably proportiona(‘léto ]ust the multiplications/div151onsT. ']‘:n '

the binomial-expansion algorithms developed in this thesis,

.,

t'\he only elementary operations are (1) product of monomial

.. > " . V * "
. times monomial, apd (2) product of binomial coefficient times

]
/

mondmtal. For each of the algori'tnms presented, an exact

count is given of "the nusber of such products which occur.

. -~M.,.¢¢,,“ Ky S
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This thesis is intended as a. tribution to theoreti-
cal computatiocnal complexity. It may not be inappropriate,
however, to stress again the practical céncerng which underlie
much work in symbolic' algebraic manipulation. Symbol mani-

pulation sirstems, such as the MACSYMA system at Projéct MAC

-or the Altran symbolic manipulator at Bell Telephone Laborax

tories, were developed as practical, cost-effective systems
for actual cc;mputation. The designers of such -systems were
interested in the analy51s of algor:.thms because they wanted
sufficient understa.ndlng of the relative mer:.ts of competing
algorithms to make concretg, practical declslons, vig., which
ﬁgorithms bto impleme‘nt as system programs most suitable to: ”
the actual computations to be undertaken by their system In
thls context, therefore, the design and analvsm of algorlthms

has roots in practical problems existing, in' some sense, ou}z-

~side of computer science ¢ y

Several a;éorithms- for conq.')uting integer powers of
sparse polynomials on sequential machines have been given re=-

~ , _ . ) b
cently by Fateman [4],and represent the state-of-the-art %or

to ﬁhe current work.  The princ;pal aims of this thesis are
severalfold:" (1) to e:;hibi"c superior aigorirhms for computa-
tion on sequential machines, (2) to‘prov’ide insight, based
on analys:.s and leadmg to 1ntu1t:|.on, as to why certam algo—

rithms are better than others, . (3) to make an exhaust:we

complexity analysis, both with respect to time and with re-

spect to spaoe, (4) to devise special-purpose computer arcixi-

tectures for parallel computatlon, and (5). to modify and

,
e s A
.

5 e Bt Y S b At . S




. \. : o
adapt the sequential algoritims to abtain parallel ilgorféhms

especially suited to the spééial—pu;ppse computer architectures.
' The best parallel algorithms are then campaied with the best

1
sequentlal algorxthms, to obtaln the speed-up ratio, or the

ratio of computatlon tlmes on sequentlal and parallel machines.

& ©
N

Each of the algorlthms presentéﬁ in- thlS thesis,

ﬂhether for computation on a sequentlal machlne or for computa-

., tion on a parallel machine (two examples are prov;ded in this-.

thes;s), takes a blnomlalwexpan51on approach to the symbollc
computatlon of integer powé??-of sparse polynomlals, as 'this
,approach is .judged optimum. An exhaustlve analy51s of the
whole family of hinomial—expansion alqorithms.is undertaken.‘.
In this pkpblem area, lt is difficult, if not 1mp0581ble, ta
prove that any one algorlthm *s“optlmal aven given a eomplete
spéc:lflcat_lon of th; cpnx;utatlonal’ model /L the 'costt model, andr
the general apprdach to be taken. However, in all of the bi-
nom1al-expans18n algorithms that we have been able to 1maglne;
there is one, or perhaee two, which are vastly superior to all
the rest. It¥is unlikely that the leadlng terms of their cost
functions can he bettered. In the pqrallel case, ﬁé have

two parallel algorithms, to be run on two spec1a1¢purpose h
parallel arch;tectures, both of whose speed-up ratios approach
the theoretlcal upper 11m1t in an asymptotic sense. In an

even stronger asymptotlc sense, the complexlty of- the sequen-.'.

I

tial algorithms approaches the theoretical lower limit. .
. . K




- M o
M PR, - ey B i e i S Sl St e ey - ? Elan " ¥
’ ) Q

9
s “ ¥ hd

1]
./\ . K .‘

The fam:.ly_,e)f sequent:.al bmbm.al-expans\:.pn al&ithﬂ's ' -
vi.ll be explored systematlcally. According to Dijkstra [3]: oo ;

s

b IR Nty o

‘A program should be conce:.ved and understood as a i ' o. P

- _ member of a family ... .° S

\ L -Compare ParnaS'E’{{;; . _V'\*‘ S .
. . ‘ A ‘ 4 ) .. >
"1The. aim Of the new design methods is to allow the. - y
decisions which can be shared by a whole family, to . .
be made before those decisn,onsy whlch dlfferentxate '
, - family members. .

A s g e

i

“

'

G WEME DU 11 e o

a
‘75

. . ¥
t\;r:y/'fh root .is the probl

p ‘. nodes are the full‘y-—specif%ed algorithms for doing so. The

“
ks
N e i e S B

. branches which descend from a node are. the alternativagdesign

[
T . “

i " decisions which may be takerw at that point. Such trees'allow

b 4

great insight into the relative costs of algorithms. In the ®
o . . . ks -
parallel case,; parallel binomial-expansion algorithmvs are

- —

[P R R FF S Ty S ey

N . 3 [

s - developed fér multiprocessor and associ‘a"tive processor archi-
tectures. The paréallel algorithms and a‘rchitectures are com-
pared with each other, and, with their Sequentlal counterparts.

. In rgallty, we favour the associative processq;: arch:.tecture, @

even though its prima facie speed-:up ratio is less. It was

not possible to implemeht the parallel algorithms because the

3 -~

T o . envisaged parallel machines have ‘noﬁ been built yet. ' B 3

L4 . . “

In what follows, after collecting certain analytical

-~

.
e s Bk ok v B

/.

. results, ‘there will be (1) a statement of "the problem -before '
] .

oo the current work was undertaken, i.e., a/Burvey of previous

- .
N 0 . w~ . . N

3 . . v N 3 L.
L . - e = . .
~ L] W . . v - ‘
Ea N , .. , s . -
el . - - - < . N - .
f. . . . .
'

'
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:nsults, (2) aﬁ explotration of the family of seéuential bi-”
nomial expansxon algorlthms, i.e., a systematic enumeration

©of design alternatives,
(4)

sequential case,

(3) descriptions of theygequentlal
analy51s of/g;;N;;)mlnimlze time® in the
(5)

'the sequential case ,

algorithms,
analysls of how to minimize space in

(GY

discussion of the‘criteria by whiéh

3

the success an& efficiency of parallel algorlthms qnd computer

(7

A

systems are judged,

processq";nd é$30c1at1ve—processor archltectures, (8) des--

ctiptions of the parallgl algorlthms, (9) analysié of the

speed-up ratio and 'space complexlty of the parallel algo-

rithms, and finally, (10} some comments about actual 1mp1e-
o

mentations of the most suchssful‘sequentiai binomial-expan- c

sion algorithm. In all that follows, a balance will be scught

PR

between analytic detail and informative. general 'statements
".which provide a broad perspective.

o ' : ' ' . ~g
o ‘ A number of the new results appearing in this thesis

1 - .
have already been published in™ [2}. 1In large measure, the
- . ’

. . N s '
S ' first five chapfers‘éf the’ thesis are an-elaboration of s&ctions

% o . ) .
from the .earkier paper. 1In particular, most of the new results

\\-dn Chapters IV and V appeaf already in [2].{’Tbe exceptions
. "\'( H ,

.

are the closed formlfor E(t,n),iand the entire'discuss&enggf

BINF, unknown at th time-the earlier bapér was s itted. The

new’ results in Chapters VI VIII and IX have not ye ~beden sub-

. mitted for publlcatlon, and appean“here for the first time.

~descriptions of special-purpose multl-
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s - . 7 -~MOTATION AND ELEMENTARY RESULTS

In thds section we will state a number of elementary

m'ethematical results, theorems, 'notations, and closed form

4

express:Lons which will .be of conslderable use in subsequent

1:1 L ' B -

'The proof is not difficult. . . _ &

.
-analysis. The fo‘llowuxg standard theorems are quite useful. - ° )
y -
* Y
~ .n | : A cl . N ‘fl
. ‘Theorem 2.1 z (#i) __;,(r+n+l) (Tt ]
' e S on . : !
. | ‘
n . . '
- ¢ . N i‘O— r r N n .
- : . 3 ’ t. > ‘ R ‘0
, Theorem 2.3 Letp £ be a t-term polynomial which is .
. completely sparse to power n. If size(f) ’ ;
. . ' v N T
Y - gives the number of non-zerd terms in f,. (
[f - L »* then . :—.L\ﬁ:m/:i’ , s B , | . .‘%
\ ~> - size(fn) = (t+:~;“1) , Tt 2 u - . v
. - ¥ ", ' ‘ ;
- : ' ‘
The »;h;oof is, glven, e.g., in Fateman [4§ \ _ {
. L‘\n-l \& P | | gi!‘
@ +1 r«+n-1 1, _ ,2r+n r+n~-1,*  r+n ' ;
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“Theorem 2.5 Tha multlpllcatlon of a polynomlal f by

polynomlal g/ can be done w1th a cost of
size (£) .size(g) . 3’ .
. > N - .!l

PmOf: B - N s s ©
= % .o ) B

»

) If £ and g are two sparée palynﬁmi&ls, then the cost
OE obtaihing ;héir pfoducéf;§ fhe cost of.multiplying"each term :
of one by each term of the ‘©ther, and then‘colleéting the 1like
terms in‘the product so formgd}{ (The ass%?ption hg;e, for
‘<w@pletgly sparsgybolyndhiéls, is thagystféightforward classi-
‘cal multiplication.is\difficul?xta'improve apon.) Inasmuch’as
the spar51ty of polynomlals implies that the number of like
terms is small the cost of addltlon 1ﬁw%ctually collectlng tT
like terms is negllglble. The cost, therefore, may be taLen
as size(f) .size(g), 1f the cost of the merge sort is 1gnored
More r1gorouslyﬂ51f it is known g priori that there are ‘no
like temms, thénﬂthe~co§t<will be’ size(f).siﬁé(g)ﬁ

'Cénsider the fact that -

‘A\‘whe;e-sizé(fx) = size(f,) = t/Z} that no terms’iﬁ aﬁy product

RE

, ngl (f/2+i—1 t/2+n-i-1, _ ,t+n-1 t/2+n-1) . 4

i=1 t/2-l )\.( t/2-l ) = ( n ) - 2( n '~

This implies, in

’

: ' : n-1"
£ = (F,4f) = £+ 2+ £ (B )f f“"
y . b | 2 igl

may combine, becausg, if they did, £ would no longer have

the prd size for ‘a completely sparse polynomial.
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o ) Iet us review the notat:.on for Stu:llng numbers of the
first kind. Our reference here is. Knu._lg [12]. =
’ b . ,{' ' ¢ . ° v s
S ’ mw% 2.1 VALUES OF A FEW STIRLING NUMBE
’ - . . OF “THE FIRST XKIND p
' n, n Cen n n
* ‘t [4 [13 [2] [3] R 4]; [5]
n=1 1 0 0 .0 0
K
T n=2 1 1 0 0 0
' n= 3 2 3 1 0 0
n= 4 6 11 6 1 0
, n=5 24 .50 ° 35 - 10 ;1
“ o ' The following are important results concerning these
9 »
e -numbers. _
1 «
4
| ¥ ;
P . . \.
+ - ;-
' Ny ognayy R 2oy - n n, _ X _
[l]. (n l)! [n] =°1 [n_l] ‘2) i‘ n‘(n l) .
o 3 | S
- ny _ . _ayrn=1 n-l
- [m]-—(n 1)[ ]+[ ], n >0 4
¥ . ) . » o ) ":
B.g., ..8(8+1) (5+2) = 28 + 382 + 8% v
e " ’ 3 ' ) ' o
= I £?] sJ
1.3
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) K In general,

\ o ) 14 :
’ . 3/? \ ) : .
‘ S : * 1 L
s s(s+1) (s+2) .:. (s+p) = I .[P;,l] s (2.6) I
. v ‘ R . R u\, . \ j-l ) . K | _ N . i

|

)

Let us now state and prove some preliminary“&losed

]

}fqms',of useful expressions which arise later in El}e,‘ analysis

”~
’ /*?'f ‘these algdrithms. . \ ,
) . The function size(f) has already ~§>eex‘1 introduted. Let
us change the (.not:i;j.dn slightly so that size{(s,n) is size (£")
when size(f) = s. As usual», sparsity is'.ass\mneﬂ‘w We have 3
— ' - 2
PR : . _ ,s+n-1 1 o n j - L ,
- size(s;n) = (" ) = ¢ j-z=1 [j.] s”, (2.7? F
. . \ -
Proof: \ g !
“ & X 3 - X
: e .,8+n-1, _‘i(s+n-1)!
~ Ca = s5-1)!
. -
+ - 5T (s+n-1) . (s) AT
: ' x ]
A ) .
« 1l . n 3 . R !
aT jzl [jJ s 'bY ___(2-6) ' 4
. . i

""" We need a notation for the size of a col

. ~.of powers. Let grn:oup(s,xa) ‘bT iy
; . | ‘ |
_ I size(s,j) ) . ‘
g _Jnl x'_= - o !

<

- ™.

.

<3 .

i,tef, the sum of sizes of\ali”‘power‘s ‘from 1

nomial whose size is s. We have

P

8

7

N

\ .
lection or group

to -n of & poly-

%
3
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N n! s! oot 7
N \ (AN '!‘l .;'
. » o i
» “ 1 . 1 . ] rd
H - E‘ . (S"H’\) «aoa (S)“/ -
- ’ |
: S, ‘. \
- v = %‘,— . % . I [m-'l] s - 1 by (2.6)
,\ v ‘ j=l‘ |I “ ) A
a4 FAl ‘Y ° ! A
~_ T . . 1 . rh+l ‘
v & ~ = ar L l:3+l] ’ \ 5
.’J ‘;e, “; » J=l -t ~ ’ oo™
L y “ a W, a3
since : N b : N
’ [n ] = n1, i .
. S
LY > /—s
,vhhere_ j. has been replaced by j+l.. The coefficient of the
.. leading term, viz., ‘ [n+l], is 1. ’ N '
g L . : : e
\ Another useful .closed-form expression is the '
r— Q c . '
(s+n) n =1 ‘ le l’"%‘?- [n 1] ’ 3y ok &3 (2.9)
n-—l (n--'lk ! j=1 k=g k+j
o -1 ) .
where, 'as’ a convention, . I .. 1is zero. o
‘ k=0 L ~ -
. ' + s ﬁr‘.. ' E B
'3 ‘ A ”‘ ' L
R - ] N ] ' i ‘ T




o o=. (s+n)! -
(n=-1) t (s+l1)!

-~

-(B%I')—!.N (s+n) .... (B"'Z)— n
o - o -

-
'

n-1" 13“_1 | j | /
'£1 ¢ 3 ] (s+2) )/’E/ (2. 6)
J= P ,

e
3

n-1" T - .
7 pios IS S0} s"z’zj'kw- n
j=1

n-1.
L
C3=1

since the oonstax{t term in  (s+n) ... (8+2) is.nl.

¢ > -
’ .

Expansion ai'ﬁd,collection'of like terms gives finally-
,n nDJ-
L. [y 19
=17 PR ,

7 ) :

k+j)2 s'

’

i

2

T\ where the t€mm for j=n contributes nothing, as. explained

/ above.

i

, ; .
The\clo ed—form.éxp:;esgions which have just lahéén intro~
duced are{instrumental in obtainin:;”a closed-form -expression
for the time complexity’ of th; best sequential binomial-. .
.expansion algorithm. The function size(s ,r} is used co;ltin-

uvally ih sparse polynomlal time complexlty analysa.s, together

with the function group(s n) it ‘also gives an mpo\\iant tool

" for sparse polyn/oinlal space complexlty analysis.

/
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* Finally, there is a theorem, suggested by Michael ‘
Fredman [4], which gJ.ves a lower bound on the number of
nultipllcatlons required to compute a power of a polynonual
P
é /,/ “That number is at least equal tO‘ s:.ze(fn) ~ gize(f).
A — : o
L . : - th
4 a ¢ !t!heloremd’z.lo No algorithm can compute fn the n—
: I .
. . . power of an arzi/i;:}ary polynomial, in
/é L fewexr tham size (fn) =~ size (f) multipli-
cations. ’ , B
;/’/Ab\’, . . ' . ,
The proo? may be found in Fateman [4]. Suppose now

that f is completely sparse, and that size(f) = t. Accord-
ing to Theorem 2.10, the lower lirit on the number of multi- -~

; - plications required by any algorithm to compute. fn, which will

be denofed by L(t,n), is ;given by \

P | Lit,n) = size(t,n) -t = (Y71 _¢
+ ¥ / :
E L e
‘ S ' :
: = — ‘,,Z t - ° .
) ATk, BIE e by (2.7)
\ ) . R
“This formula may also be written ‘as , . - }
.tn' -1 n-2)

'.‘_ L(t,n) = T(H—Zr—+ O‘t

This is the least number of multiplications possible. When
one has a good algerithm, one compares the nu r of multi-
plications it uses with the theoretical lower limit to see

how far ‘of £ one is. i‘}le cost functions for“‘BINE and. "BINF,

-




of either cost..function are
\

-

[

ot

n

‘

<

: o

+ ot
ar
- - GO

=)

y

‘
t

!

.

[t
2{n-2)

for n > 2. We will show by compariso

+.
) '2n°2(n—1)

- of other algorithms just how good this ise

1+ o0&,
1 ' .

A

v

a.lgorithmé presented in this thesis, express the number 4'9f‘~*'
. multiplicaticns used by these algorithms. The leading terms

+

j /‘ " ' these lattér being the two b¢3£ sequential hiﬁo&ni'a;—expansion " e

1

{
n with the cost functions . °

4
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' CHAPTER III 7

STATE OF THE PROBLEM PRIOR TO THE
PRESENT WORK .

\ v
. The best prev1ously~ex1st1ng sequential algorithm for
scnmputlng powers of sparse polynomlals is due to Fateman [4].
Tt is one of several algorlthms for thls problem he analysed

to obtain insight into their relative merlts We shall repro—

“wdnce hls descrlptlons of these algorlthms and adopt his

analyses, except in the case of his best algorlthm whlch
~will be ang}ysed anev. Another Ebmputatloqally much less
interesting, i.e,, much more expensive, algorithm‘ﬁpi comput-
dng powefs of symbolic polynomials, due to Horowifz‘and‘Sahﬁi,
will also be mentioned. Fateman has considegeé fepeated
1nﬁitiplica£ion - (RMUL) , repeéﬁed squaring (ASQ), two specific
approaches based on multlnomlal expansion (Ng;A and NOMB) ,
-and two spec1f1c approaches based on binomial expansion (BINA
and BINB), all as methods for computlng integer powers of
sparse polynomlals. The main conclu31on is, that of these 31x
algorithms, algorithy BINB is computationally most gff1c1ent.

In general, the analysis suggests that binomial expansion is

the most promising general approach. This analysis led to a B

research programme to develop those superior binomial-expan-

sion algorithms for serial and parallel computation which are

presented in this thesis,
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B . L ’ '
3.1 ALGORITHM RMUL (REPEATED MULTIPLICATION) "

“ ' . -
f

' Description: . . .
RMUL successively computes £ = f.f, £Y = £.£2,...,
: [}

fn = f-f_r‘-lc cf. Gentleman[?]. ’ . T A P

]

i\nalxsis :

. By Theorem 2.5, the cost for the polynomial multiplica-

tions is . ‘ ) , ) ’ -
n-1 T n-1 . S
size(f) . I. size(f') = t. I (t:le) ‘ '»
C‘/ o i=1 . i=1 : ' -
, ! =t (" e (3.1.1)
by Theorems 2.3 andg2.1. ° -
3.2 ALGORITHM RSQ (REPEATED SQUARING) . /
Description:

When =n is a power of 2, RSQ. computes f° as .
£2 = £.f, £% = £2.£2, 0., £2 = £/2.68/2 vhen n

power of g,lit computes a sequence of powers of f based on

~

is not a

" the expansion ‘of 'n as a binary number. Mpre‘fOrmaily
: N .
, :

. (1) q+1. z+f.

N B3
- )

Y (2) i + rightmost bit ofn. Shift n right one bit.

I

If i =0, go to (4)




~

Tt s ”*‘*’I"J“W’“;"“"’""ﬁlﬂ'!w.‘ e w‘v::'--r-f ;vw-mmmwlw m;:ﬁt?"ﬁ')‘“"‘:.:ﬂ'd s AT e
: ‘ 21
. c » ° U - ‘ . ' 4 : »
- ‘4 / - ) .
- ‘(3).  Ifq=1l,q+ 2z else q + g.z.
. . . P
~ = (4) Ifn =0, reyurn.- g else 2z .+ z.z and
go to (2). )
;. » ~ \ T .
i That this algorithm correctly computes £ by mean% of ,
5 ‘ : ' . s ' .
Cy - binary gxpansion of the power n may be seen by considering
L - Q' as af binary number and observing the relationship between
R multiplication of powers apnd addition of exponents. .
L . ' ) e . C o _— . ° Jo
b L .Analxsisf:, R . . C - Ce Co .
e ) - / . . C
S . The ahalysis.is‘done&?or n - a power oq’fr//;;;n in
¥ this case,:- RMUL 1is superior to RSQ. When n is not a
¢ .

! R power of 2, this superiority (of RMUL) merely -increases. When

‘n = 23, the ‘cost for RSQ is

Ay

K . ) b ' ;4 "o
| . N R - N ,
A . -1 i j-1 i
! T ' I osize(f£2)? = 1 (}FA7hz U ¢ (siz.1)
o , . i=0 i=_0 ( ‘ . s
For n =4, RSQ costs %(t“+2t’+5t2) whereas . RMUL, costs

¢l DSV SN

aa . ¥
Z(*46t°+11t2). For t > 7,. RMUL is cheaper: For n = 8,

¢ RMUL is better for t > 3. Bch'Fatéman'[4] and Gentleman [7]
: : %,

o

discugs the nature of the'superioriﬁy_of RMUL . to RSQ.

Fateman. remarks that it is less costly to multiply a large

X 1<u,' bolynomial by a small polynomial, than to multiply two poly-

., homials of intérmediate size.

o B g s A =~
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0 * 3.3 ALGORITHM NOMA (FULL MULTINOMIAL EXPANSION - AR . ~

- . . N v T
LS bl

R “ . .
% . A

- Description:’

LI Jooom T

‘ALet.f = ;1 + .. +~at where'?he ;i’ 1<ic<t, are

7 monomials. Assume that we have precomputed‘the hEE. power
6f g = a1 + ... ¢+ at wheni the a; are new symbols (not in
£f). Then all we need to do is to §ubst1tute ai for a, 1n

gn. We can compute the substitutions u81ng Horner's rulg.

., " For the detailed algorlthm-descrlptlon, refer to Fateman's
‘paper [4]. g L. R
4 - ) - . N R
Analysis: L2 . R 5 -
‘ o The cost which is obtained is ' .
\ + +n—- . , .
. E BRI 2) e(¥Ly 0, (3.3.1)
B . . ’ j 0 t. o e .

I ' ‘
~.
B

3.4 0I‘&LGORiTHM NOMB ' (FULL MULTINOMIAL EXPANSION — g’
[ - o | ‘ ’

Description:. o &
For each of thé Tt ﬁpnomials in £, . a1,+..,a,, compute
N i .

t
a list 2. = <a;,ai,...,a2>. Next, compute all products: con- -«

n,

818t1ng of comblnatlons of no more~than one element a.l‘ L

from each list suchnthat ny + ... + nt = n, This product is

thén.multiplied by the multinomial coefficient

. wuba W e -
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- Analysis: o g ~ )
The cost whidh is given is ‘ ) -
- Ly ~T ) -
' 5 (ttn=-2 o ‘ iy '
® . ) t( t-l ) + tn 2 ‘ (3.4-1)‘
. A

3 5 ALGORITHM BINA (BINOMIAL EXPA 10N WITH

.~ MONOMIAL SPLITTING)
a’///i;;:grxptlon. ' A o e oS
. . - 2 ]
I . o v ' - .
The polynomial f is split into two parts £f; f\fi. T

‘ &’/ The size of £, is 1, and~thé/§ize lf £,.1is t-1. To compute

" . ' t+n-2

‘fn, we compute f:,..},f? and_f:,... f:} ana use the binomial .

. Note that f: can be calculated by BINA, and other powers

‘are ‘simply computed by fi £ - fi 1 See Fateman' [4]

Analzsis: . » '

Itemleng the steps ‘and thelr costs, -and addlng gives

-

finally the cost for BINA, n > 2 It is o -

L -1 )

- %(.t=-3§+1o) 2. (3.5.1)

Ll

R ST
v
*

-




3.6 ALGonrmﬂ BINB (BINOMIAL EXPANSION WITH
HALF SPLI'I’TING) - ] ST

. ° Description:

‘BINB JAs identical in concept to BINA, but f is

Ve

. & . B . g
split as evenly as possible into :fi + f2. See Fateman [47.

-«

Y

.Analysis: . ' -

- . ~n

]

‘When Fateman 1temlzes the gﬁeps and their costs, and

®e

Jadds, he oBtainé‘as the cost for B

. ' X u .
‘ \‘ (t+2fl) +=‘t(t/2+n 1) _ 2(t/2f§-l) - t/2(t/4-n~

.- - -'logz(£-l)+4). . : T (3.6.2)

We repeat the entirehanalysis below and obtain a élighﬁly -
higher cost function for BINB. \ ; s

N s

é
with (3.3.1) we see that, surprisingly, NOMA is no better

" 'than RMUL.A Coﬁparing (3.4.1) with (3.1.1), we see that ¢
NOMB/RMUL is‘approximately t/(t+n-1) .’ That is, for a giﬁen t,
s NOMB gets arbitrarily better as n ~incr)e.:mes. Yet NOMB is
-, difficult to program; Comparing (3.5.1) with (3.1.1) and
| (3.4.1) gives: EINA/NOMB is appréiimately 1, ané BINA/RﬁULJ -
S is approxlmately t/(t+n-l). Agaln, for fixed ot and increas-

ing n, BINA becomes arbltrarlly better than RMUL. ‘Finally,

BN P o e

‘»"/ ‘
e

RMUL is clearly cheaper than RSQ. Comparing (3.1.1) .

4
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. comparlng (3 6.2) wlth (3.5. 2), and calculatlng the leadlng

terms in both cases, we see that BINB is con51stently better
_~ +than BINA. The leadlng term of the latter is t /(n—l@!; the

(e leading ‘term of the former, according to Fateman [4], is
. v 0 ‘ . s : ‘ .
21—.!'1 ]
(n-1)1-"

+

. . —_ 1
These cost functions\aéﬁg§Ztrate clearly, that among

‘these six algoritﬁms; algorithm BINB is the most computatién- '
ally efficient. Questions of efficiency and ease of pro-

o N ' “\ Py i . ’ ¢ )
gramning make the binomial-expansion algorithms appear as good

choices(ﬁpr computing‘powers'of sparse pplynomials. Fateman
f;onjectures that -an algorithm superior to BINB~may'bg hard to

find. . gpe conjecture is, of’cqque, false. Yet BINB is not,
. by any means, a tad algorithm iqﬁofar as it does approach the

theoretical lower limitffo:dcoefficient multiplications when

.

t and n become 1arge; In this context the multlnomlal-
expan31on dlgorithm for powering sparse polynodlals proposed.
by Horowitz and Sahni[10] is considerably less interesting.

-

Their cost- function is only of the order of the, theoretical

- . ’ 2
« . - S

lower 1limit, in one case-ﬁeing rohghiy equal to four times that
limit. It is p0551b1e to interpret thls result’ as even
further ev1dence for the superlorlty of the binomlal—expan51on

- approach.
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CHAPTER IV S o
THE ALGORITHM FAMILY / '

.- 3

Professor Djjkstra has been quoted above to the effect

that:

"A program should be conceived and understood as L0
a member of apfamlly ceal

- 2

The reasoning-here, relevant both to a gorithm design and to

- .

algorithm analysis, is that choices, the design decisions

taken in'any algorithm, can 5e\eValu ted 6nly if one sees \

them against the baékground of a.rénge of possible altérn&t;;es.' -
A ! v >

One evalﬁatesvatspecific design’decision which is taken in

comparlson W1th other deslgn deq&51ons which could have been )

taken.“ Ult tely,(gne-évaluates a ‘specific algorithm which
Fds .
_/:S comparigscn with other algorithms which cculd .

is proposed

. -4
have been proposed. In this way, one comes to understand the .

structure of a family of algorithms which solve the same
proble‘mg A tree structure\,\lafa:nching downwards from ,£he root ," . »)‘,,’ .
is an extremely conveqiént graphicarrrepresentation,of the . a
alg&rithm family structure, of its decision ﬁoints énd pogsibieﬁ

decisioné:‘vThe,root of the tree repreégntS'the problem to be

. solved. The terminal nodes represent ful%y-specified alébrithms,_

IS R 'Y N

‘soﬁb bettergwsome worse, whlch solvé the" problem. In general,

each non—termlnal node of the tree represents a point at which R

a-decision must be taken, a choice situation, while thé i

‘branches whlch descend downwards from that node represent- the

~poss;ble decisions at that point, in that sztuatlon.

B DA f e ® o A a1
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’ \
) At the root Qf the prOgram famlly tree ma§ be placed C ﬁ \
‘?a descrlptlon{\ or speczfzcatxon of the problem to be solved. /
\ . In our case~it isa, cednstruct an alg 1thm whlch accepts an ,4

\ input power n, a posu‘.lve 1nt;eger, and an input polynomal

- o £, f completﬁly'o"r almost completely sparse to power n, and”
- ~
produces as- its output the resultant polynonual 2. as

" S mentioned previqusly, only a sub- fainlly, name]ry the fam11y .
j of sequential le?Omlal—expans;Lon algorithmy, will be system—

4

. atically explof®d using the -progran; familytizeg, Binomial-

Fa
ORI R RIS Ao T A 000 = e :

T e T,

£
. - . expansion algorithms are considered the most’ promising; |
’ ' P  parallel a\}g\qrit'.hms will i)e considered later in the tHesis.
} | The chief analytJ:.c aim associated with the ‘progrem fahily
E tree is to make s’tateme‘nts about thxe relative costsrof the L
i ' .

-various design 'decisions associated with differqnt branching :

péints over and above +he analytically-obtained cogt functions ' i

which allow us to choose among the fully-specified algorithms

©
) ”

. on the basis of their time complexity. A knowledge ‘of these

-

L o LAWY
¢

reiative costs allows us to explain the superior\ii:y,‘gleast
. <

.}:ime-cost) ofAone ‘particular algorithn{ as having resulted ) .

from consistgntly lowest-cost °decisions. It also adds weightr

to the conjecture that this particular-algorithm, the best so

‘ 4 = . - .
" far, is optimal. This optimality is- gharanteed if/<xxo superior

.o & ‘

design decision exisis at any bramching point;\ it will be °

. destroyed if and when someone succeeds in imaginlng a desiqn‘

-

decision superior to those considered heie.

' ' » )
. ~,
s 1 \ N ¢« . N N
N v v -
- .
. -
' s ' N .
.
o ’
.
¢
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che parallel case. There is a body-ofnanalysis "9 confirmed

‘powering of siparsea polynomials. This aﬁalysis has be’en done

¥

‘ratios of the parallel algorithms both approach the theoreti-

L3

. For a while, attent:.on vull be restncted to, and \

arguments concern, the sequential case. When’ atterrtlon }3
redirected to the parallel case, the parallel designer must be.
prepared to revise any &ecision which, although clearly correct

1

in the sequential case, is likely to hold t}qck parallelism in -
- \ N
by results obtained& here, which suggests that binomial-expan-
sion ‘,is superior, t® other general approaches used in symbolic
for the sequential case; no one has analytic reSults which
suggest that binomial expansion is also the most promlslng
parallel appr\d',a;?:,h. The parallel algor‘s:thms developed in thls e
thesis are binomial;expan51on algorithms, the chief reason ;for
this being.primarily.the extreme attractiveness of the sequen=

tial-binomial-expansion algorithms. .Although the speed~up . -

cal upper limit, this is no guarantee’ of oi)timality of approach

s

“in the parallel c'ase. Wlth respect to the des1gn decisions .

wn.thln the b:.nomlal expans:Lon sub-famly, J.t h?s generally

been found that those dec1sz.ons which minimize computlng time -

in the sequential case do not. 1nterfeie w1th -the poss:.b:.l:.t.].es
of expl‘oi’ting parallelism in the parallel case. ‘The very
‘bood - parallel algor:.thms, then, make use of the 1deas wh;.ch

" haye been developed for the best sequential algorlthms

=

] ‘Jh,\w,ar“; 3 si .
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4.1 DESIGN DECISIONS

In this section,~we explain the four major design
decision areas which ariée when one cnnéi&ero'algorithms for" - .
oomputing integer powers of sparse polynomials. The program
family tree is a graphical aocompaniment whioh rgcords the

de81gn decisions which dlfferentlate algorithms of the famlly,-

and SO serves to<{elate these algprlthms to each o&per.

% : , |
4.1.1 General Approach . .
. ' ;. - A Ko

Every aléorithm proposed in this thesis takes a binom-

IS

.
t

ial expansion approach to computing Lnteger powers of sparse
polynom;als.‘ Thls means Ehat if one has an 1nput polynom1a1

f, which is to be raised to some‘power n, one splits f ‘into

. two subpolynomlals' f1 and f, (which together, contain all the

-

Qpnomialé of the .original polynomial), obtains tlie appropriate
powers of thei"subpolynomials, and then combines the subpoly—'
nomiél powers together with binomial coefficients according

to the theorem of blnotgal expansion to obtain the final

‘answer, ﬁn. Tﬁpt is, £ is computed as ' o

. . ‘ .,n ‘ '
1= (fate)" = 2 () £
1 2

' . ) - X=0

ﬁino}ial expansion has been chosen in preference to some” other

L4

genéralrapgroach, such as repeated multipiication, repeated

i squarlng, or .some form of multlnomlal expans;on, not because

2
every bxnomlal-expan51on algorlthm is superlor to every non-
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‘ﬁhich represet:zftbe least-cost, "or possibility of least

. ‘ e , ‘ '
-expansion algorithms, are only two of many possible refine- . C
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binomial-expansien algorithm, but rather ‘because the best

T -

.binomial-expansion algorithms are superior to-the best

algofithms in each of the 6ther general approaches.” Tﬁe
position here is that binomial expansxon allows. a lower cost « \-ff
‘refinement in comparison.yith the reflnements avallable in N\l\ A
other dpprbaches. As an;§§hh1cal convention in connection’

with the pioéram ﬁamily tree, we.agree go»draw the braneﬁ ‘ lJ

~n

'cost, on the 1 The first- two branches of the tree, then,.

which descend from the root, are 'blnomlal expansion' on 2

the left, and 'some other approach' on the right. ' The
binomial-expansion family is extremeI&félch in;algorithms. o i
BINA° and BINB, the two previouslyépublished‘bihomial— ‘ B
ments. ‘These refinements differ considerabl; in‘coet; 1t
is the position here that BINB, the best prevlously—publlsh:
~ed binomial—expansion algorithm, does not tak;‘optiﬁal‘hesigﬁ‘b 1
decisions by a wide margin. The obvious strategy to impreve -
1 A ¢ _
ﬁon\BINB, indeed, to look fgg the optimal algorithm, is to

consider a broad range of possible refinements of this most

éttractive\general approach. | o -

4.1.2 Splitting i

O ‘
* . ~

In binomial expansion the original polynomial £ is
split into two parts, f; and’ £f2. The relat;ve sizes ofds
and f; affect the time complexlty of a blnomlal—expan51on'

algorithm in two distxnct and unrelated ways: on the one hand ‘

£l
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they affect the time complexity of generating powers of sub-

\

polynomials; and on the other hand they affect the time com-

- \

plexity of combining appropriate §enerated powers, suitably

multiplied by bino@}al coefficients, in the binomial expan-

sion. Theae effects are so large that an algorithm with

optimal spllttlng and a poor technlque for genefatlng powd%s

“may outperfOrm another algorithm with subOpﬁlmal splitting .and
a good technique for geasyatlng powers. Some of the ways of. .
splitting polynomials into‘two parts are: (af one term
and the rest, (E)"as evenly as possible, (c) as unevenly. as

- possible, a power of t&o an e res£, when the numbér of

terms to be split is not a power of two, else evenly, and

- finally, (d) as e}enly as possible,.a power of two and the

e £

rest. Con91der1ng many ways of splitting is consistent with

the 1dea of’ 1nvest1gat1ng a broad range of possxbfe refznef{)

.

. 4 ments. We found that degree of evenness of Spllttlng is the

only relevant splitting parameter in qhooslng from among the

“four splittings mentloned S

The need to choose the relative sizes-of the subpoly-
~~gomials £, and f2, where f = fi+fz, follows fr/o‘m the very idea -
of, blnomlal expan51on. There is ahother spllttlng deCL51on,

however, whlch arises only if one conﬁlders altetrnative ways

- of generatlng powers of subpolynomials. The twolblnomlal-"

et 9 B
cexpan51on algorlthms BINAxand BINB adopt repeated multiplication

»

as their’ prlnc;pal strategy for computing powers of subpoly-

nomials.. It is characterlstlc of this approach,that/the

original polynqmlal £ is split only once; we call this -

*

.
N
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f,
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.
,/ peated.multlpllcatlon, are such that even splittlng reduces the

] i
characteristic:'single-;evel splittine'. Single—level splitting
is e\consequence ef a "non4recursi§ef ep?roach to the“pronlem,
in which binomial expansion is: used to campute the power of
the whole poigngnial, and something entixeiy different is used
to compute the powers -of subpolynomials. If, on the othe y -
‘hand, one carrlegvthrough and uses b1nom1al expan31on :2\com—

pute the _powers of subpolynomlals, one needs to split the

orlglnal polynomlal over and over agaln, unt11 finally the R

LY

nnnomlal level is reached This is called:'multilevel splltt-
K]

ing'. All the algorlthms presented 1n this the31s use variants
of binomial expansxon for generating powers of subpolynomlals.
and hence adre committed to,multllevel splltE#ng, in contrast
to~previously—pubiished binemial—expansion algori . ‘which

all adopt the single-level splitting approach. '

Analy81s of the fully—spec1f1ed algorithms al{gys one n

to make two assérttons about the preferred design decisions

Te

‘relatlng~q§ splitting. It is less costly to multiply a large )
polynemial by a small polynomial, than to multiply two poly-

nomials of intermediate size. It follows that even splitting

3

increases the cost of combining computed powers of subﬁoly—

nomlals. Allfthe_technlgues for %Smputlng subpolynomial

—r

powers, whe ther, variants of binomial expansion or simply re-

‘cost of computing these powers. In all 1nstance3,,t§e 1atter ‘

-

effect predomznates. Hence, in either a single-level‘or a -

)

muftllevel context, polynomial 5p11tt1ng which’ 18 as even as,

Y
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possible is always to be preferred This is the rirst assert-
“ion. om {the standp01nt of time complexlty, repeated multi--
plicatlon'\s a poor(yay to compute powers. of subpolynomlals.
Both the riants of blnomlal expan51on, to be dlscussed short-~
ly, easily outperform repeatedxmultlpllcatlon for th;s task.
“Hence, in comparlson with sxngle -level spllttlng, multllevel
spllttlng is' to be preferred. And this is the second assert—

ion. | ) A .
- ~J
¥

Of two sequential algorithms wkich are equally parallel-
‘izePle, that is, possess 1dent1cal speed-up ratlos, the least-~

cost sequential algorxthm will glve rise to the least-cost I
parallel algorithm. There is no evidence which‘suggests th&t‘

even splitting reduces the possibilities for parallelism. On

the contrdry, even splitting breaks problems into subproblems

of equal sizes, which Can then be processed sihultaneously.

One may also say that even spllttlng is fully con51stent with
~trying to maximize the number of 1ndependent subtasks, an
'important step in ex;ractlng pargllellsm,from a'sequentlal
algorithm. Repeated multipligation,and hencehsinoleﬁlevel
splitting, hds the following dlsadvantage in the parallel case.
- Because, even for completely sparse polynomlals, there is no
‘theorem which asserts that noﬁllke terms are formed when
gene\atlng subpolynom1al powers through repeated/multlpllca-

g tion, this latter technlque is less easily paralllzable

(be: use of the need to collect llke termﬁf“than ‘the multl— .

fevel ‘binomial~expansion technlques, forthlch it caﬂ'be shown,‘

8 are formed in the

H
'

| e
as’ discussed prévioﬁgly, that no like te
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cross products of the binomial expansion.

Thus far'at'lgaet,

the same decisions seem reasonablefin both the sequential and

parallel cases; no further claim is made. T A _
\ . . T
\-%1.3 Powers of Subpolynomials . | : ) ' 3 :

" Powers of Eubpolynogials must first be computed before

o

N they can be combdned in the binomial expansibn together with

- binomiak coefficients. What- ategy best computes these

shbpoi&noﬁial powers is one of the least immediately apparent

iesqes in the whole binomial-expansion family, and yet one

-~ PR 2

. central to the time complexity.

1

Previous binomial-expansion

algorithms
this task;
thesis use
tedhnlques
eoncerning

taken, the

specified,

will now be explained.

have essent1ally used repeated multiplication for

the new algorithms presented and analysed in this

the techniques of recursion and\blnary merge. These

ﬁs soon as,fhe decisions
depth {(level) and evenness of splitting have been-
splitting of the original polynomial is fully

and may be displayed as‘a‘binary tree. A 'term groupk

N

is one or more’ terms from the orlglnal polynomlal the tree ' is,
/ called the 'term group tree'. The whole polynomlal is placed T
t the rodk. New nodes (subnodes) are formed by taklng the

term group at a node, and Spllttlng 1t into hgaves of approp-

N
rlate 51zes ( etermlned by the evenness dec151on) to form ‘the

. left and right subnodes. Conventiony let the s;ze of the term
&roup i the left  subnode' never be éa;ller than that in the

right subnode. When multilevel spllttlng hgb EEE? addpted this

. _process is repeated until one reaches the individual terms,¢
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. eé4groups‘of powers of subnodes, one may go on to compute -
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A

Recursion prqﬁerly so-called and binary merge are the

two 'recursive' approaches to the computation ofﬁpowers of

] polynomlals. They are con31stent appllcatlons of blnomlal
ansion to the computatlon of powers of poly%@mlals at all

‘ltages, except, of course, at the monomial level itself. The

_idea of recursion is to obtain the powers of the subpolynomials .
< ' , v

by recursive applicatioh of the total algorithm to the sub-

nodes. The weakness of this approach, still vastly superior

o

. to repeated multiplication, is that one never computes single

p&yere of subpolynomials, but rather groups of all powers from

”
o

" two to n. Separate recursive epplication for distinct powers

of arsuhbolynomi?l leads to recohputation: diétinct[powers of

a binomialhhave computable factdre in coﬁmon,' Banary merge is
a form of recursion in which there is no recomputation. One‘

may compute the power of a node or the group of powers (from. °

two to n) of a node, 1f one has the groups of powers (from

two to n) of both subnodes. Equlvalently, once one has comput-

v ) ) Mo ¢ o \

groups of. powers (or single po&%rs)-of ;he father node. In

blnary merge we progress up the tree, startlng from the term1na1

nodes, using the already computed powers of the subnodes (once
'they'have been cdﬁputed) to compute theﬁgroups Jf powers of thé

father nodes. Ultimately, a single power of the root node,

»which contains the.origipal polynomial, is computed.
. 5 : .~

- . O v R V]
. . ) - ‘ . }
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4.1.4 Combining Powers

Y L
, «

-
~ o . ~

e We assume that a table of binomial coefficients (:),

.0 < s <r<n, is available to the computatiori. References to

this table are overhead. According to the cost model, each

multiplication of a monomial by a_binomial coefficient counts ‘

4

s
as one coefficient multiplication. L If the powerj of the two

eubpolynomials f1 and f;, where £ = £, + f,, are available,

o
v

|
{

Cof = (£14£)" = ) ETE T : 3
. . 1 2 : i“

' . { o .
v . - ~ »

may be\obtaihed by combining suitable powers with binomial co- . .-
efficients in the binomi%i expaneion. The broduct (2)frfn-r »
may be obtained e;ther {a }m left to right, irrespective of

€£e relatlve 51zés of" f and f r’ or (b) by -first multiplylng
]

( ) by the smaller of the two polynomlals, and then this re- - k
sult by the remaining polynomial. PiZV1ous algorithms'haVe

1nvar1ab1y used the-first technique, ur best algorithms use

the second technlque. It is 1mmed1ate that the second tech- N
nique redhces the.number of coeff1c1ent multiplications. We
call the first technlque;'left—to-rlght' and .the second

technlque : smaller. If the tirst technique iSGused, the
product may also be.written as fn ol (2)ff . That is,’one

2«
. .

always multiplies by the power of £, first. 1In the second

. . N . . .
technique, one chooses the order of multiplication for eech

. <~
product. N . .
\ .
, . . of
¢ 4
- - L \ \
1]
o
8 . L - N \ M A Y
. L™
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If one were to list the preferred .choiced which have
been made so far, one would have, first, the use of binomial
o :egpansion, second, splitting the polfhomial es evenly as ;
‘possible, third, adoptiné one of the *recurs!?e' 9ppf6aches, ‘
which commits one to muitileVei"splitti;g, fourth, preferring W
binary ﬁerge to\recursion prqperly;so~called, and last; form-

o

ing the cross products using fhe smaller techniqdeu These
L

choices specify an algor;thm wﬁlch we have called’ BINE, about
which it is conjectured that the leadlng terms of the tlme-
complexity cost functlon cannot}be bettered. Thexe is, bow-
i L ’ eyer, one final improvement which car be made. Suppésejtﬁet

» M B o
T ' a and b are the left and right subnodes of the root of the
37 ’ . N . .

0'3' , * term group tré%, and ﬁhaﬁ‘bl and b, are the left and right 4
“~”“ subnodes ot b.. We willpuse the same names for a nede, and for o
the term group assod‘hted with that node. Suppose that we_ are

av

, . computlng-the fourth power of the root. 1In tﬁaﬁ case, we are -
interested in the produdt a?.6b?. It is not necessary to have
previously computed b? as, bi f,p: +.b;.2b;. « Rather, one may
! o ' compute 6b? directly as 6bf + Gbi + b;:12b2. One‘eaves‘as many

coefficient multiplications as £here are terms in the product

P b,.b, at the cost of multiplying 6 by 2. This technique is

.
. . N - 4 o
B " en Y Ak i e, D % SR ek <Dl 2 Tt A

N I\ 4
cal{&dﬁ'dlstrlbutlon'-lt amounts to not having to compute some
of tﬂ‘ lower powers of the left and right subnodes of the root.

Detal*s of the technlque w1ll be glven below in Sectlon 5.6,

uhlchuenalyses the time sav1ngs due to distribution. Dlstrlbu-

tion %e a mixed strategy which deviates from pure blnomlal

expdnﬁﬁon ‘at the highest levels of the term group. tree. If the
?‘ o ‘ (0 C L °
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‘algorithm which differs from BINE only in that distribution

o

‘ is used, be called BINF, then BINF is the least-cost sequential

binomial-expansion algorithm (for computing powers of sparse

s

polyno'miails) known_at the time of writing. p

~

4.1.5 Optimum Desiyn Decisions o, N

-

e °

If we think of dist;ibﬁtion as a mpdified form of merge,

o Q . o7 S
then the whole set of optimum design decisions can be diagrammed

in the following way: - . ~ S

. - binomial expansion ——

&—— “some other approacﬁ
LA .

. even sgplitting ————) ¢— uneven splittin
1% 4 g

é_— sn,ngle level spl:.ttlng

multilevel .
(non-"'recursive' )

splitting
('recursive!')

modified ——)

‘merge

€—— recursion - -

)

et e left~£o-right

smaller —-——)m

FIG., 4.2 THE PROGRAM FAMILY TREE

BI R
NF ph

(Bino;nial F)

The diagram which has been given is a very partial and

3

\

incomplete representatn.on, even of the sub -family of h.momlal-
¥

The reader may -.1mag.1ne the comblna-

) expansion algorlthms.

B

toric possibilities in permutn.ng chojces. Two a?gorlthms will R

differ in cost 1f even one dec:.s.x.on is not the same .
b 1

In the

st 33 A AKAACH S sty «
5
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Obv:.ogsly, all belong to the binomial-expansion -subfamily.

A s movs s

. rithms, most of them new. The superiority of BINF will be -

* upon, ther this algorithm is indeed op

‘subpolyhomial powers. BINA and BINB use left-to-right. Many

‘of the new algorithms use smiller; those that do not pay a time

T e s mcen e hmeeins L Ty e Gt Y SRR L
\ .

40

. : . . \ >
next section we present and analyse some representative algo- H

demonstrate—d; if no leftmost branch above can be improved
~— .

4

Before passing to the section for al description

St . N - )
~and analysis of algorithms, we may use the program family tree

for an initial comparlson between previously exlstlng blnomlal-

expansion algorlthms and those presented in this the31s.

ate r-.-h-‘-"mnnw’““

Fateman's BINA employs monomial. splitting (the most uneven
§p]..itting')‘,, while ‘his éINB splii:s as evenly-as possible. Moet,
of the new algorithms use even splitting; those that do not

pay a time p'er\xaIty'. \B‘INA- and BINB are both non-recursive,
81ngle level spllttlng algorlthms as repeated multlpllcatlon
generates the powers of subpolynom:.als. All the new algorlthms
are 'recurs.lve', multilevel-splitting algorithms, using, various-

- . .
ly, merge, modified merge, or recursion for the generation of

\

penalty. The program family tree is an important complement to \

s. It gives. K .. .

~

the exact, .analytieaily-obtained cos

us a capsule. view of the .full range/of differences beéwe ) any

s

graphical representatfon ) .

°

two algorithms. It also.provides
. . B

In this way, we come to understand why

pexform others.
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We dlscussmelow Fateman s BINB, Wthh we analyse anew,

¢

and four algorlthms -which are all refinements of the blnomlal—

-

.- ‘expansion approach. Each of the four algorithms is superlor "\

h )

to BiNB. The algorithms will be described'usinglthe terminol- .
b'\ j‘ -’ . »

PRI 52\ 10T 2, B AN 2.

- e - o ,
ogy developed in connection with the program family tree of,
o i

Chapter IV. For each algorithm, thg'input is a power n,

. . - polynomial £ completely sparse to power n, while the"\output is

(‘N ' ’ . ‘n - . o . . .

- . the resultant polynomial £ . The aim of the time-complexity _

\ . analysis is to give the cost in coefficient multiplications

i

"as a function of t and n .£or each algorithm.

‘ 5.1 ALGORITHM BINB (Binomial B)* ° ~ g
¢ ) ‘_ Y] , o, ‘ .

» -

o
! a

o This’ka-lgb}:ith'm is specified by the design decisions:

N ST

sofar as recursion is uged for the squares of subpolynomials
- - -—and repeated multiplication for all other powers, and finally,

left-to-right. The cost function proposed in [4] is

.
-

2 ‘ . '
. - + - —-—
. l B(E,n) = (P t(*-/Z;;fll) 2(/2m-ly _
/ : — ) v [ . ’ */\ v,
. ' : .
- t/2(t/4-n-log, (t-1)+4) (5.1.1)
e, . " e ?
“, , : - \
- < As.stated, BINB uses a mixed strategy for computing powers of
>

Y

and a*

binoiniaJ. expansion; even splititing, 's\ingle-lex}el spli'tting,l in-*°

%
-
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a) v

b

subpolynomials:
/

multiplication for higher powers.

- 42

recursion for the squares, and repeated

There may be no deep philo-

sophy behind this; & remark by Fateman in another paper [5]

shows he did not think it made nmuch differenca.
inqéect;ng the s%eps in [4,

the total cost of this algorithm as follows:

9

After closely

p.152-153], we would itemize

Case 1: ' t = 2k f = £,+f, size(f;) = siée(\ = t/2
o |
TABLE 5.1 ITEMIZING THE éOSTé IN BINB
o N a ) - ?
§§ep Compute Cost
1 l 2 2 2
. £2, f t2/4 + kt/2
. < 1 2
£3,.,.£" n-
2 1’ L 2.t/2 I (té%lll)
£3,...F. T2 1
N ) 2 2
3. -‘\\ - (’1‘)f2 .t/2
. B n_i - 0 .
4 ’ 2 n , n-1 t/2+i-1
- £ )‘fzr--'l(n_rl)fz g ( t/z_l ) , -~
0y v " Y
’ i,n, .n~-i » ) :
fl(i)fz ’ t/2+1 1 t/2+n i-1 s
5 - . X ( )( t/z'\l )
l<i<n-l 1 '
_ , ’ ~
B \ ' .
) z
.Total Cost
i \ , . )
- Bitem)= (FTRTh - o(t/2me 1) 4 () (t/24n-1,
- 3
' - t/2(t/2-log,t+1)- - (5.1.2)

LT APV RS g

o
£




43

t #‘zk f= f1+f23‘ szze(f,) = [t/2] f:iB{
‘ size(fz) .= Lt/ZJ

Itemizing the cost as before we get ',

(Bl | tatn-ly o Eadn-l

) +
n n . - n

“Bz ‘t'n) .=

j+n -1 z+n -1

+ b ) +" (t+1) ( ) + p(t) . (5.1.3)

where p(t) is a pdlynoﬁ;al in t of degree 2.

Comparing (5.1.1) with (5.1.2) we note that, even for
't = 2k, the cost we caIculate ig greater than the reported cost.
Thls dlfference will show up in the second leading term of the

cost functlon B(t,n). - T ‘ -

'$.2 ALGORITHM BINC “ (Binomial C)

This algoriéhm is specified by-%heoéesign decisions:
binomia%@ﬁxpansion, even splitting, mﬁ}tilevel splié}ing, as '
recursion is usg@ to genefate all powers of all subpolynomials
R other than monomlals, ‘and final y, left—td-rlght The analy51s
w1ll be carrled through for t = 2. ‘The original polynomlal

[

f is split 1ntp two parts, £q f2, where

‘BiZE(fﬂ.‘= s'i‘ze(fg) =t/2 <

-

e n — I
We use yhe binomial theorem £" = I @ £7£7°F to compute £”.

tah
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" % 5.2.1 Analysis of BINC

S . S

The“powers‘of the subgplynomialé'(other'ihan monomials) are

obtained bylrecursivé”applicatioﬁ”of the algorithm just ™
specified. "' 6 \

L

A
-~ t
-1

> o .o
Let c(t,n) be thé cost in ¢

the form
£ =
we have .
. n-1
C (t,n) = 2clt/2,n 0 Q (5.2.1)
e - 1 .
where Qr‘ is the sum of cosys itemized as follows:
TABLE 5.2  ITEMIZING THE COSTS IN BINC
. . S
., Cost
/\ C(t/2,r) B |
< Ve ,
C(t/2,n-r) .
t/2-1
t/2-1 t/2-1
1 o o .q\ \)
A . A

AR
S T ‘ R e it R T S AN aar i e el s o - e rot e s
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- - n-1
L cqeam) S 20(t/20m) + 2 I c::>§,r) + z (t/izf'1> +

. v

. : . n-1 _ o . ’
L A + I t{f;fll)(t/i;g_i 1 (5.2.2)

i ) . . N 1l

P .- using (2.1) and (2\2) (e obtainh L
H ¢ 4 ) " o . ) \ =, '
; ,J‘ ' " t4n-1 /2+n -1 t/2;n—1 3
' L C(t,n) = ( Ty =2 Y + ( ) -
‘: , ’ ‘ n\ . ’ . n—l
: \ ' ‘ . . ‘ (238 r

. ‘ n )

1 . -

Ll . 1
« ~ )

¥Ne may bootstrap a closed form for C(t,n) into one for c(t,n+l) v

. by using the formula:

\ N 4
K r,. .
c(t,n+l) = nt + "'"I (t+n by 4§ 271 (¥/2 ;""1) A o

1 » -
\

- k ‘l .
J ' .” B +125?t C(t/zr'l,n) f : (5.2.4)
‘ e 1 . o

[
a4 .
!

. N . ‘ o X
’ obtained from (5.2.3) by changing n to n+l and using re- /£ ,
currence on t. Using this formula and induction on n, we - ' \\‘«

‘ _ obtain the general form of 'C(t,n).

N | - |

' 2n-1 ‘ - -

+e 1 a® k"“ . (5.2.5)
n+l ’

‘

{n) tn—i+1
i

n
c(t,n) = I a
‘ 1

-

. R .
® ¥ W/

ion yields- . ~

;polynomial in t and k.

N T '
o
: - J I
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‘r =
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Exact analysis yields the following for n = 2,3, and 4:
‘C(t,2) = t2/2 + t/2 + kt/2 | * (5.2.6)
Y ! - .
C(t,3) = t/6 + 5t3/4 + Tt/12 + t(k+k2/4) (5.2.7)
. ‘ . . ¥
- L Gty = th/24 + £3/3-F 65¢2/24 - t/12 +
+ t(31k/24+5k?/8+k3/12) ' (5.2.8)

For an analysis of the two leading terms of the cost function

C(t,n), we need to know the general form of the second co-

‘ ’
aln) 'his is the coefficient corresponding to the

efficient

7 coefficienf o in C(t,n+l). . N ~ T
. - =

» Using (2.7) see that the coefficient of t" in

S t+n-1, ._ in(n-1) -1
J ’“I‘ n ) i8I |
Similarly, after some manipulation, we obtain the coefficient.
of t" in . v« | ’ L
: 2r-l(t/2r+n-l) ‘g 1 -
, 1 ‘ noy 2nl(2n;1 1)

)
Substltutlng (S 2.5) into (5 2.4) and rearranging. ylelds the co~-

efficient of ¢" in. a A Vo
L n-1 »
e 4 Cr e as A —
: 1 = n1(2"7-1) D
T , »‘." s /

- “Finally, adding and changing n+l to n, i.e., aj“*lY

to a(n)

we obtain the coefficient of the second lead%ng term. It is

. i " b
4 ¢

AW 1 3 o
. ) (_‘.. { 2 » 2(1\‘2) !‘\ (n-l) ! (zn"‘l*zé . v ' P e v

K
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*Lome e oL,

[

The coefficient. of the leadlng term, from

(n) = 1/n! Compare the analySLS in' [2] .

n+l

We c

n-1, ... .
n ) ,i8

~y
an now com-

pare the leading terms of the cost functions B(t,n) and

C(t,n) with the lower-limit cost functipn'L(ﬁ,n).

-

We ﬁave{-

. TABLE 5.3 LEADING TERMS FOR B(t,n), C(t,n), L(t,n)

n 'B(t,n) c(e,n) 2’ n(t,n) o
. ” L 4
{2 5t2/8 t2/2 t2/2
3 t‘/4 ti/6 t/6
’ ‘ 1~n K k
1 n . - ’
n > 3 [n! ETH:_Y_]t t (n! t"/nli ,
/ L
. It*ia‘instyuctive to calculate the relative deviations

»

-

[C(t,n)=L(t,n) ]/L(t,n)

<

For large t . and large

rapidly.

-

L
o~

. tB(t,n)-L(t,n)]}L(t,nL

L

)

-
G

5 '

n

it

[

'3n/(2“’1

(n-1) /271

of B(t,n) and'c(t,n) from the minimum}éosf L(t,n).
\

t) + o(t”

.

+”b(1)

" >

-

[

~We,have:

.
«

2

)

‘ 3

n,C(t,n) approaches L(t,n} mﬁch more .

In fact for n > 2 and t > 16, BINC outperforms

BINB. (See Appendix I). The fac? tﬂat Jphere are (at least)

four algorlthms which are successively better and better an
. . * . . oo\

I | mar £
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L

BINB points up the weakness in the argumen that, because

B(t,n) is asymptotically L(t,n), t@srefo e BINB may be diffi-

. N\ / n
improve upon. Asymptotic arguments c be misused.
is to obtain analytically-exact cost
Y
functions), and,to make a coeff1c1ent by coefflczent compari-
§ . « s B

son of their leading terms.

.-

5.3 ALGORITHM BINS (Binomial S)

&
A}

is identical to BINC,

We cons%i:&éd an algOﬁﬁthm wﬁi.

except that balandgd binary splitting was used in plaéé of

5 v

even splitting.  That is, whenever the si;e of ‘the polynomial

to be split was not a power of 2, the polynomlal s split as ¢

evenly as pOSSlble into two polynomlals such th the size of -

one of them was a power of 2. This splitting is ss even than

,even splitting. Hence, it represents a regression with re-

spect to BINC and is, in fact, more expensive.- This less

attractive algorlthmustll outperforms BINB for t > 12 wé

5

merely quote the final cost function.

e

,Let us suppose that:

Eplitting ist = t; +

the balanced blnary multllef7}/

O e,

iIn thlS notatlon s(t,n) is

\
p-2

= 2ki_
tyo= 2%, Let £l

S(t,n) =

0

%

(i-i)

[¥ ]

- ti'

~

& .

‘(r);"d p . P e,
I s(t ,n=1) + I C(tr,n)+ z ,Tr
) 0 1 ‘1

Q..+t '
Pl

\

i=1,...,p-1.

-1
(5.3.1)

&
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N md mamm T R e % S ememmee e g s et o S T gy s b, [ - " ) —

x (} . ~ - ) . .
: 49

i ro v , \
(r-1), . (¥, ‘
t +n-2 t +n-2 t +n-2 t_+n+l

Trv- 2( rp"l ) + ( n ) - I( n - ) - ( p o n ),

[N 3 _
See [2] fo¥ more detail. N \

. ” <
v . . . ) . ]

5.4 ALGORITHM BIND (Binomial D) ~ : r J

“*his algorithm is specified by the design decisions:
binomial expansion, even éplitting, multilevel épligting} re-

cursion, and smalle*. That is, it is BINC in which left-to- | i

right’ha§ been replaced by smaller. <§ore formally:

o Q1) split £ = £ + f,;size§f,) - Tt/2]
| - - aizeﬁfz) = Lt/2]

"
i
-4

]
(2
N

r
! 2
unless the f, is mopomial. _ . -

(2) For r = 2 to n, compute’ ff andf~f

(3) Forr=1ton--1_
. \ ¥

&y oo

(a) Multiply (2)

by Whichéver of ff and f:‘r

/

has fewer terms

.
N w*

4 -

(b): Multiply this product by the remaining ghétor.

(4) 'Cpllect téé texms of the binomial expansion.

AN

< -

'
Analysis of BIND:

As before, D(t,n) is the cost in coefficient multiplica-

. L '
tions of obtaining f* when size(f) = t. The costs are - .

<
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\
. : N
 itemized as follows: : N A\
o - - )
_ TABLE 5.4 ITEMIZING THE COSTS IN BIND ‘ &
. _ L \
Step Cost |
\\ .
n :
2. g [D(t1ix) + D(t2,x)]
B I n-1 ' :
f . +r- -r-
j(a) , I min [(F1)F )..(tz*“r’-" 1y
‘ 1
he
* x n-r
1l .
- - - Q\’S‘

D(t,ﬁ) is the sum of expressions in the right-hand column.

We restris;,théiénalysis to t = 2k, However, D(t,n) has been
W
\/ .

iabulated for t i.Zk. (See Appendix™L) .

. _ R
: n m
D(t,n) = 2 E D(t/2,r) + 2 I (t/2+r ) 4 s (M/ED/2Ny
n/2
. 2 y 1 .
. // ? ' = ' , »
) 1 t/2-1 t/2-1 : i
m=n/2, Gn =1 when n is even
p ( LS
. . “« Lo . °
.and " - m = (n-1)/2, §, =0 when n is odd.

oy

-
L 4

'Using (2.1) and (2.2) this may be rearranged to yield:

i
a [ '
o




- a——

",

o N

 S—

o

Dt:,xﬂl)" =nt +1 -1 D(t/
{
\

1

k r : - ,
. -l t/2 4 (n=-1)/ .
+ i 2 ( L(n+l) /2" ).‘ ' ’ (5.4.2)

{

b (
o \

If we let m = | (n+l) /2], the last term of the right-hand side

‘i?hefe, Ui is the i=2 symmétric function on 1,2,...,m=1. We : ]

L}

:

simplifies to . & . . .
.o o N ) Ll
i o om-l . m-i-1 I )
| ° t t -1 . 4
2m] izo O’i . ;n:-i—_—l—-z ' (5.4.3)
N th

assume , dfter inspection of the first few special cases,that

the general form fdi D(t,n) is

d
t

n . 21’1-1 o . ¢ . .
D(t,n) = I a, "4t x a ki (5.4.4)
o =1+ i=n+l '

© 3 - 4

2:-1

k.

D(t/zr_l,n) =t. I ' a

where a, f-a‘n). We have : .
i i /f//\\\\ : :
. 3 * - ! ) @ . b \ k



;qsincs'élgq;ithm‘ BIND, in its leading terms, is'¥he'0ptima1

. binomial-expansion  algorithm which uses recursion for comput-
Lo \ - . ¢ ¢
ing powers of subpolynomials, it is worth quoting the closed
form of the cost function D(t,n) in‘full detail. Suﬁstituting

the previous four results in (5.4.2) and\§earrangln$ gives

“*
flnally
ol : _ ] '
n+l ; m-1 .
: . - _t _ 1 _ 1 g (m=1) , um-r ., _
A e T D s mmwy T L T /2D i
. . N n_l ' . . ’ n_l o’(m—l) s .
- L e, @My e p TR Eimennl
1 . " n-mtl ami (2771 §
Co o - a_ 2" od-1) o=y a 2T ¢
+ + r r-1 ]+ I tn-r+l[ + )
(zn-r i) - (n+l) ! 1 2n—rjl L
v (n-l) _ (n-l)
’ I ¢ Op-1 L
+ mFITT 1 + kt(a +§m) +
. ) 2n-1 j-n - ’
S TR R Teatel (5.4.7)
: : n+l. J i=1 '
\ : . 2
\ - (n+1) __. /.
. ‘This formula glves the COfolCl?htS aj of D(t,n+l)/1n terms
{ of the coefficients a;n) of D(t,n). cf. [2].
. .. Ly
When n = 2,3,4, we have,always assuming_t = Zk, :
D(t,2) = t2/2.+ t/2 +. kt/2 _— (5.4.8) .
' \
D(t,3) = t?/6 + t? + 5t/6 + t(5k/4+k*/4) (5.4.9) =
/ B o . - ) o i 4 /
Ea N -
i i \ 3)




ey o d
A

D(t,4) = £%/24 + 11t%/36 + 53t2/24 + 4t/9 + t(Tk/4 +

A \

- 4 3k244x12) 25.4.10)
e o ' ‘ -

In géneral coL : .

»

s .n o '
s n-1 1 - 1 -

D(t,n) = ar ¥ t [§1n-2)! +,(n_1)!(2n:2;1)] '
sowm o e

. P

3

Tﬁe ihprermént of BIND over BINC is given by
. ; -

r -
t

c(t,n) - b(t,n)'= 2L, .i L =T +
' a (n-1)1 (275-2)

+ 0(t™3) : © o (5.4.12)
Another interesting result is that, for n'>'2, | \\\—;.
" N - . ‘ﬁ l
t -+ . L(t,n) .
While L. T ' S : "
" 1im  Blt,n) = L(tin) . _,.n-1 '
tso — L(Em). /2 (5.4.14)
This last result places BINB in a different asymptotic ¢

class from the superior binomial-expansion algbrithms,devélop-
ed here. Thus far, we have seen the first few members of a .

sequence of sucoesaiﬁely better and -better algorithms. ' With

a
5 f




BING. “As the obvious and then the less obvious ‘and thaiathe
an

: of the new algorithm, and then compare the coefficients of

’ .secér}d leading term. L S

) ~
/\ <
- BN
% .
A A g 4 o P e R e+ SN s RV e i aat ' <y sy g

[ 2

, -

the exct;ption of the 'S'tin BINS, the identifying letters

(algorithm na&s)‘have all been chosen so that the time-com-

plexity of the named algorithm dec;reaseé as we move through ,

the alphabet (BINA,BINB,BINC,BIND,BINE,BINF). There is no

-

subtle improvements are i corporated;' it becomes more more

difficult to improve on/each suctessive alg'orithmf.\"'a The slize
of the igprovement decreases. BINC differs from BINB in the
leading term of the cost function, BIND from BINC in the

second leading term. To see clearly the significance of each

Aim‘provement, we must give exactly the anaiytic cost function

the leading texms agéinst the previous best member of the
i £

sequence.’ After BIQC, there are no more improvements in the

' N ‘(] ) - .
leading term. BINE, however, is another improvement in the >

;-
£l

t

. L
5.5 ALGORITHM BINE (Binomial E)

“

»
t

This alg.brithm is specified by the .design decisions:
: P : ] o
binomial expansion, even splitting, multilevel splitting, .
binary merge for computing subpolynomial powers , and smaller.

More formally, we make the following description. _As usual,

! S _—

\

e s o bl
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oL




tl»‘ °

L .
-

.

e ; B s cuand

NP oy mine e 3 S WP mape ARG bl S Ry ks T s 2% o ey o ™y Lo Rdie i St Jaett

' . 55
|} « oo \
Description: - . % " ‘
A .

(1) Create_.t'he binary term-érdup tree for the polynomial

¥

©

(a) Place f at the root

(b) Place f£f,, size(f;) = [size(f) /27, in the\ left

\p’ ‘ sub-node | ‘ :
| )

( {c) Place £, in the right sub-node

(4) Rewpeat\steps‘(b)_ and (c) for the subpolynompials

until each term of f has been placed at [one of

o
- . the terminal nodes of the tree

-

(2) For each term of the original polynomial £, compute
all powers from-2 ta n. This completes the processing

o of the terminal nodes. y

(3) For each strictly interior node, Both of whose sub-
nodes hgve already been processed, compute all powers

from 2 to n according to the following scheme:
i .

> T L
i . v

= '(left sub-node + right sub-node)’:*/ A

kS

y . (node)jr

g expanded ’b,i.nbmiglly .

+ (i) Fors = 1 to r-1 do. ° o o

(a) Multiply '(:) by whichever of (l:eft 'sub-

s . s . /
node)”~ and (right sub-node)?’ has fewer terms.

(b) Multiply the result in (a) lg{_the remaining




J

P i e LY

[

. (ii) Collect :(left sub-node)® + (right sub-node)¥ +

: A v
the products computed in (i).
- B '

(4) Compute the nEE- power‘of the réot according to the&

EY

3 previous scheme.’

. . ‘ S\
o o

Analysis: _— '

’ - . ¢ E
The importancé-of\%his algorithm justifies giving tﬁ;‘
analysis“ip full detail. %ut\for é{stribution, BINE is: -
(cqnjectufally) the optimal sequentiai‘binomial—expénsion
algorithm. We will mgke use of the results and closed-form ‘
expressions in\Chapter II, and lay thé groundwork for the

space-complexity analyses in Chapter VI. We begin by develop-

ing the copcept of a 'power group triangle', which is a iepfe—
: :

- sentation for the binomial expansions (via sub-nodes) of the

powers from 1 to n of a node, the so-called power group Of

that node. The representation follows from the 'smaller’’

' . ° !
& ~

" idea. ' ’ S

3
-

1

- Consider a‘typical po&er'group, i.e., set .of binomial
expansions for all powerg from l“tp n; for the n in“fp.
Moreiﬁ;ecisély, the power gfoup triangle for 5 node a + b is
the graphical representﬁtion in trianguigr forﬁ of all bi-

ﬁom;al expansio@s required to compute all powers from'l to ' n

of that node, .given all powers from 1 to. n of the two sub-

nodeés. - s

)

garmby, o
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J . e LS E . »
p
a’.6b + b%®.6a + a*.15b% + b".15a2 + a’.20b?.

a“*.5b + b".5a-+ a’.10b? + b?.1l0a?

a3;4q;+ b3.4a + a%.6b?
a%?.3b + b?%.3a

a .2b

N\
U
\\ , .

THE POWER GROUP TRIANGLE WHEN n =

This is actually a partially-specified algo}ithm for obtaining
glldpbyef§7from 1 ¢tp° n. of the polfnoﬁial a + b assuming the
3vailabil££y (apar; from b;nom;a% coefficients) of all powers
. from 1 to n of both subpolynoﬁialsz Bécause a is the left |
sub—nodé, and b is the right sub-node, size(a) > size (b). The
first two cglum;s do not igvolve computation. In each of the
remaining tcolumns, the so-called pro@ﬁgﬁ col s, care has
been taken to group £he biﬁomiél coefficient togethé£ witL the
smaller of the two polynomials in each cross product. When

¥ = Zk,'this is rigorously exact. When t ¥ 2¥, there will be a

few isolated instances when a'larger power of the right gub- .

' node will have fewer terms than a smaller power of the left
. o !

instances and maintain the paower

5 :

group triangle in its present  form. o ) y

sub-node. W& ignore such.
7

2

R




, e . .
.. ' Our first dnalytic task is to evaluate BC(s,n), the .
. Yo —_ . X ) . LS / " 4 e . - [ M)
: o "“total binomial-coefficient work reéquired to create the pdwer
¢ ) : 9 .’ ' 4 -

group of. a node whose sub-nodes are of size §. For instance,

l . . v % N +¥ . 'S <
; % oo . .
; BC(s,2) = 8 \ v
\‘«RA: . '\‘ \ f ‘ o ' )
.‘ BC (s l‘3) = 3s . A . ‘ ’ F A \ ‘{".
v g m’k , i .
: BC(s,4) = d(llsts?) —e - \
CI .. - 'BC(s,5).= 3(7s+3s?) . . ) ; 3
@ . ; ¥ . Lo . _
‘?ﬁ SR That 1s, we’ must evaluate the sum of sizes of polynomials ' i;
B o R .- ’
v whlch are multlplled by blnomlal coefflclents. .. §.
- Now : / - -
; Lo - ' ot ’ ‘n-1 s+j-1 -, 8+m-1 v E P
e ' BC(s,2m) - BC(s,2m-2) = 4 I (57371 + ¢ ) °, -
i 4 1 J - 6 m
—/\T./ : . » } t
' ) Lo s+m-1 s+m~1 ¥
: : o : AP T - 1]+ ' ) (5.5.1)
t ‘ . v»‘
, Similarly < y
\ N . ! ] ~
’ ' BC(8,2m+1) - BC(s,2m-1) = 4 LEL) C 1] 3540 '
vy . e n-1
;;ﬁ - o * (5.5.2)
. . Therefore - , .
S g{s,n) - BE(s,n-2) = 4" [(S+P =11+ (S+g‘1-) (5.5.3)
- . . . LN ' 2 )
where . & T
. . .. l_ ‘ ,‘.. ‘n' .’
= |n/2] and, M =1 when n_ is even | :
. . ) NS ‘
T . .= 3 when n is odd .
\ C l‘ o K .~ o . ' “ Q, ) ‘
: Let  x be 2 or 3. BC(s,x) =M (SIQJ A difference . 1
scheme, counting down from n by twos, glve§




-1

“_ ‘ . P s;j ’
BC(s,n) - BC(s,x) = X {4(( i ) - 1] + M (j'+l)} (5.5.4)

- Using (2.1) for the summatiars and adding BC(s,x) gives

3

Bc(s,m) = 4 DR S P14 M [P -21 © (5.5.5)

A closed formlfor Bc(égn) is therefore:'

. -
. p+l 4 g(,~ p-1 k+j | S
KBC(B ) ?El{ —T-[ lJ + DT oo [k+J] (",")2 }5
T
‘ ( (5.5.8)
' ‘ . A < ! ‘(
where .we have used (2. 9) and (2 8), and where it is understood -
: -1 -
‘that I ... is zero. The 1ead1ng term of BC(s, n) is &%&hp.
k=0 pl
‘BC(s, n) is a dense polynomial in 8, of degree p, mlnus the-.

constant term; this al;éws a qonvenlent ‘division of Bc(s,n) by 8.
in-algorithm BINE*‘a power gioup is coﬁputed for each strictly
interlor node, i.e., each node nelther termlnmlnor\root. By

.summlng over all 1n£;£ior nodes, we may obtaln the total groupA
binomial work, uthat is, the total number of multiﬁfications by

' binomial coefficients involved in computlng groups of poweys.

‘ Con51der the foliow1ng term group. tree.

o

-, level 0

- levél k

s FIG. 5.2 A TERM GROUP TREE -

-




‘k - - W ."‘ : . s 60,
- J i - \ b b }
b  : C mere is no binomal work at level k, the level of the termin-

o . .-
al: nodes.‘ The?e is a power group tnan,gle associated with ° .
" each of ‘the darkened, stnctly ihtenor nodes.' The total bi-
: R . -
: m nonial work -here is (counting from the bottom) £t PR o
. - . \ - /. . 1‘,;,,/ R ,—/

t ‘ t ‘ . t '.Q
-z . BC(1,n) +‘I' . BIC(Z,D) +.." + 2.BC(T, n)J

i

A ST A -

or / ~ ‘3 ’ :
. FA k-2 R
» ° - & 277 ac (2’ ,n) ‘
h*
. 0
A - ~ ~
A
Now .
. p > ' hY
» " Lpc(sm = rtal® EEe (5.5.7)
< ’ s 1 3 -
‘ N l
1 ‘where
i N : N “ M p- -1 . ren
, . (n) _ p+l p—l k+j
A 2™ = 5T 3+13 F’ﬁ'—rrr o Tkeid O
A ' : . B,
3 E .The group binomial work (GBW) is, thenefore,
: K
] T ~
. ~k-2 P -
S ‘ ‘ ew=%.1 1 a™ (%It ¥
N . " m=0 j=1 3
: ) ,
L 3N , .
- ) /e
4. P k-2 L
. =A§ . I va@. L (2™ 1
- i=1 NS m=0 ‘
“: e m t (n) tgzn SR T
' . v o= . a (k-—l)+-—.'£ a - ‘
e 20 S 3”,23-1 T §
. - e - \ : p K 1
' i (5.5.8) .
= “‘ Sy
t? '3,5 -
4. ’ ° 4
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| . i : In addition to this group-binomial work (GBW)f/there'is root
[ binomial work (RBW).

a

. * - -1 _ ‘ b .
CRBW =2 I St I N i BN R B2

where r = [n/2] and N = 1 when n 1is even
‘ . = wheh n is: odd.

2 ) ' ¥ .
™ | ; .

RBW = 2 [(

Hence

t/2+r- )

r-1

- 1] + Nn( r

—,

€ ] f , u

[A

ﬁ‘? . grouﬁ(t/2,(—l) + Nn.size(t/Z,r)

> T N, rs ,tyj
= 7;:%5?"“§i[§il](7)j + ?T . Z [j].ﬂf) (5.5.10)

\;/’““/j

The total binomial work in algorithm binomial E (BINE) is the‘

sum of the group blnomlal work and the root b1nom1a1 woyk. The

»

ading term of that work when p > 1, is given by <i

' . ’, N M
( _i_ 12 tp o, n

=

where the first two terms are from RBW and the last term is

(6.5.11)

from GBW. "~ As the leading term of L(t,nLj;s tn/h!, we see that

the leading terms of E(t,n) result from non-binomial work.”

That is, 51nce the b1n0m1a1 work does not affect the 1eédlng
‘ terms of E(t,n), the differences in leadlng terms bebween

] L(t,n) and E(t,n) are due to non—blnomla; work . ‘ L " dé;




i BINE is

e%r:m of’ the work
the work .required

required to 'proc\'esa )

L)

- to evaluate all ¢ro

Gonsider again thd term group tree.

-~ 3

- level 0 . . P’

R

. ¢ ’ M
' FIG. s.f A TERM GROUP TREE ' S

-
il
.

‘is €(n-1), which is o L ' -

~ N '

The group work at level

o

v
ot Ay

S e D

”

[

T " If we'write the binémial expansion with the binomial doeffi—
E_cienﬁs suppressed - ! )

[P

- R -. we see that the non-—blnomlaf work to compute f is given

> ¢ i -

P by sahe(f } = 2.s:.ze(f ), as there is ‘one coefficient mult:.-

- . pllcatlon per extra term formed. Hence,d aftgr,thq group work

- at 1e'0e1 >k has been completed, the addltlonal non~-binomial

j ‘
, ‘

.
) v N . N Y
- 2
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&

‘3

*

s
i

-

work required to compute all powers from Z_Fb n of all nodes

o o tamte . LN R ) 1]
~ | ) /,/3«\ R ;
C . size'(t,n) -/2.size(t/2,n) .

" The total non-binomial work is their sum, namely, S

. or V - B ’
S { N
© e “ -1
1 na.j 2 n- n -.t3 2
ST I3 R IohIG - e s
~ : )
which is ’ . o '1 : o
- , : \ q-\} ‘ * ) ;,0
. ) - n ‘ . - e - K T . N L
- R A T 1 T+ 0(t"?) (5.5.13) ’
Y Zm-D7 T a2 0, -
' "{g et ’ ' o n‘- ) ‘\ \1 .\

' were zero, we would. have the two leading terms the°same as in

at level k-1 is given by §- . group{2,n) - t.group(l,n). The ;

~ : 3
- total nonbinomial work to level k-1 is the sum t -

Y - - . B }.

(N § .group(2,n) = t o ' rﬁ P

, } \A\ J - ' ‘

' By coptinuing tH}s argument, the total non-binomial work to . . i
A . . . . 4 » g '

level 1, the total group pon-binomial work, is just .

. : , o : AN %
2 . group(t/2,n) - t - L8 1.

“The root non-binomial work is simply ) R CoF g

1
:
\ +
3

.8ize(t,n) + 2.group(t/2,n-1) - t

Thls last result is extrfgely 1nterest1ng for the follOW1ng

We have seen ‘that the leadlng terms of E(t n) come

If the second term in brackets

'
a 3
~ N

'reason.

from the non-blnomlal work.
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'f - L(t,n). This means that, even if we reducg¢ the binomial cost

~

to zero, the second term in b.racketst ghOws an excess cost
(::ompared to L(t,n)) necessarily associated with a binary-
merge, binomi@l-expansion algorithm. We can express that
excess cost very simply. Subtracting L(t,n) from the tot;al
- non-binomial work gives a non-binomial éxcesé of 2.group(t/2,n-1).

[} . . "
That is,

?

r

E(t,n) = L(t,n) + 2.group(t/2,n?l) + BW,

¢

? where BW, the total binomial work, is O(tp) . P = Ln/2). The

% . con{p’ﬁte, closed-form expression for E(t,n) is the sum of'the

. | ¢
closed-form expressions for total non-binomial work and total

binomial work, namely, “\

&

B - o
1 2 n-1 .

K n \
‘ = n-.J 3]
E(t,n) r-ﬂ-i [j],t, + o071 § [j+l](2)‘ -t +

o 1

: \ .. p-1 )
! ot % o-afn"(k-l) + £ g a(n) (t/2)r-1

: . =L (5.5.14) "
20 1 M i . A

i

o Y € I (Pl L4 p-J-1 [p-l](k+j).2k’
P 73 p! 5j+l P-)F o Xti" Lk :
?\ o \‘ .
By / “
’ p= Ln/2)] N, =1, M =1 when /4 ie even
r = [n/2] ° Nn = Q, 1, = 3 when /n.is od C :
~ f P . ’ \ — / ' ) i * [ .~
use this to oktain E(t,n) for n=2,3,4. We have:
. . , . . r
/ &
{
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. leading te

lower the

" . not decrea
of E(t,n),
They'are n

improyemen

\ B

.

The improverent of BINE over BIND may be expressed as

‘(i.e., BINF) the coefficient of the second leading term is

P n B 4 ' .o
Blem) = op+ €270 Dyplgyr + S t—T ¢
| Sl

R e ileciinid Y oad “\ e . \
7 Q 65
f’ & ' N C E »
E(t,2) = t2/2,+ t/2 + kt/2 (5.5.15)
’ ) .
| OBlt,3) = £%/6 + 3t2/4 + t/3 + 3kt/2 (5.5.16)

o N .

td
ot
~
- &
]

£%/24. + Tt¥/24 + 29t%/24 - 2t/3 +
11kt/4 - ‘ - _ (5.5.17)

-
+

.,n) - E(t,n) = £l . ‘nEZ’ n-; *
. l (n-1)1(2 -1)2 L_.

Y

"2 (5.5.18)

+ 0(t

'

uence B(t,n) to E(t,n) there is a strictly monotonic
oth of thé cost functions and of the differences

jaéent cost functions. The biggest imppgyement

occurs for the BINB to BINC transition which shows up in the -

rm of the cost function. BIND and BINE successively

coefficient of-the second leading term. After BINE

\

which, ,we conjeéture,‘cannot be improved upon.
. - Nt

bt improved upon by BINF, even though BINF i$ an

t. These terms are given by

0T

+ o(t" %)~ L. L (5.5.19)

sed. It is worth quoting agdin the two leading terms-

q
R T R L W
ST e
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8.6 ALGORITHM BINF (Binomial F)

{!’his algo;athm is spec:.fled by the design dec:Lsa.ons-'

£

e

binomial expans:l.on, even splittlng, multilevel spl tting,
modifﬁa merge for sub—polynomal powers, and smaller.: BINF
differs from BINE only in the handling of mult:.pllcrtlon by
‘ binomal coefficients near the top of the term groub tree.
} As such, it does not affect the non-binomial wo’rk, r the ‘

non-binomial-work cost furictions, which are responsible for oy

the leading terms of the total time-complexity cost function.

N ‘The formal description is as follows. As before, £ = f; + f3.

fn
¥

bescrigtion: ‘ ) ) ~

(1) Form the binary term group tree for the polynomjal f

in the usual manner: place £ at the .root, split f as

evenly as poss:.ble placmg the shghtly larger: half" (1f
N4 Y AN

the sizes are not J.dentlcal) in the left sub-node and

et R T .,

- the other half in the -right sub-node, and continue this ‘

process until monomials are reached. T, e

N R < s N '
-{2) - Process the terminal nodes (original monomials of f)
by forming all powers from'2 to n.

’ s L] .
' (3) For all strictly interior nodes other than the two

sons .of the root, and both of whose sub-nodes have already

' been progessed, compute all powers from 2 to n by:

\

_ (node)T = (left sub-node + right_‘sub-node)r‘ . . ' L

expanded 'binomiélly . ‘ . ' .




4

(1) \For 8 =1 to r-1 do

(a) Multiply,(:) by whichever of-.{left sub- ~
e ' node)® and (right sub-node)®™® has fewer

—t

terms.
' ¢
{(b) Multiply the result in (3) by the remain-

ing factor. —

'ngii)_ Collect (left sub-nodefr + (rigﬁt sub—node)r

the products computed in (i).

(a) For the left sub-node, all powers from 2 to
\ N
L(n-1)/2], if any :
3 . - J
. (b) For the right sub-node, all powers from 2 to '
l(n-1)/21, if any

(5) Compute the n-t-l'l .power of the root according to the
fdllowing scheme. Use binomial expansion 1n the manner of
(3), that 1s, form each Cross product of the expan51on as
(larger sub~pdlynomial power. (blnomlal coeff1c1ent . small-
er sub—polynomial'power)). If the smaller sub-polynoméal
:has-already been‘computéaéin (4), compute the inner paren-

‘thesis as indicated. Otﬁerwise, compute the inner paren-

the51s by dlstrlbutlng the bihomlal coefflclent over ,

the summation which forms the binomial expansion of the

PR
] / ‘
~(‘), _‘For the left and right suyb-nodes of the root compute i
all powers from 2 to n except for the following: SR

3
b g e St . i

e

[T

-

e e # .
T ek A S taghe




)

spaller sub*éolynomial.power. That is, if gr“ is the smaller

sub-polynomial power, compute (ﬁ)gr' as’ )
L) ‘ ‘ s
: n, r n, r n, ,r, 8 Ir-sg
v : + +
. (r)gx : (r)q2 2 (r)(q)qx g,
‘where‘ ' . - _ )
e f=g+h and g=g; + g, ‘ -
a . ) .
Analysis: ‘
- We are ipperestéd inlevaluating E(t,n) - F(t,n), the

number of binomial coefficient multiplicationsy, if any, saved

- by not' compu ing all poweré from 2 to n of the left and

2

right
pJ s . . . —
sub-nodes ‘of the root.” This savings of binomial coefficient

accounts for all of the diffgrence in time-.

complexiiy’betwégn BINE and BINF. The use of distributiép to

by-pass the independent comfutation of subpolynomial powers
\gffectively reduces the‘amdﬁnt of root.biqpméal Qo;k; fhe’
most direct way tq compute F(t,n), then, is simply to re-

evaluate the function RBW(t,n). We have seen previdqsly that,

in BINE, this function is given by
_ R < 3 ' N
e ‘ . - t/2+r-1, . ’ t/2+r-1 .
v . , \ ) v - )
. = 2.§roup(t/2,r—l) + Nn.sfze(t/z,r) " {5.641) -

‘H

vhere »
X . o .
l when n is even

1

, L r=[n/21 and N_ =

"

Pa

-
+

= 0 ‘when nk is odé NN

Lo %




f
R .+ 1 oy
.

-

e S Iy

4 resultant savings is that the b:x.nomlal cost 6€ computing:

e N

‘In BINF, distribution“ is used to evaluate products of,
. . ; X

the form ‘(;1)gs in précisely two cases: (a) when g is

the left sub-node of'the root, and 8 lies between 2 and

- !

\

- . . N B o . AN
[’\ L(p-l)/ZJ, and (b) when g is the right sub-node of the root,
and s lies between 2 and [(n-1)/2]. If g = 'g; + gz, then

distribution means: compute (::)g!s as \ L i(

s-1 . .
n, 8 n, s n,,8, j s-j
+ +
(s)gl f (g9, :Ti :‘(s) (j)gl g,
\ \ . '. ' .
" Thet is, if we allow for the cost of computing the (n) (s) , we
: avo:l.d the cost of multiplying ( ) uy the product ‘terms in the
binomal expansion of g . The cost af forming the i )( ) is
l_s/2_] the number of dlstlnct ( ) when 1 < j < s -1; the
( )g drops from 51ze(g ) to 2.size (g ) & (The cost of multiply-
ing the (S) (j) by the appropriate polynonuhls is already
| accounted for in the binomial cost of computing gg" i.e., Kn‘ /

GBW.) We note that, when s = 1, there are no product terms T

.+ in the binomial expansion of g®. Thus where, for BINE, RBW

il

‘l\'was given by ' - -
. ‘ LY .
. . A \ ' o

. REW = 2. % (t/z? b e .(t/z"r' ) (5.6.2) |

. 1 r ) .

v - . : ¢ E ‘

A8 S N . : | S B
it is now, for BINF, given by L . ‘ R 1
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t = 2%, Construct the sequences ﬁ@"l < i < t, whose jEE

term, 1 < j < size(t,r-1), is obtained by multiplying the‘iEE-
I 3 X . g ‘

term of £ by the ‘jEE' term of fr-l.. That 15, S is the

foduct 6f f£f' 1 with the ite term of £. Next, merge
p Ay

TR g “{{J‘S:l .

-

A -

~

s with-Szi for: 1 < i < t/2, combining terms. Then merge .

2i-1 j
the. resulting sequences in pairs’, combining:*terms, until one
" o .

. . Sy - :
sorted sequence remains. In theory, the sorting time, fhamely,:

\

0(t.k.size (t,r=1))

{

o ' ; - ' . ( o, -, .
. -doriinates the multrplicaticn cost, namely, t.size(t,r-1),

; but we are ignoring sorting time both for the sake of uhiform-

ity and to be generous “to both RMUL and hence BINB., (Fateman,

asserts that the sortlng time for any practlcal problem appears
to be negllglble { 4]). HNone of our algorithms}requires any

- sortlng whatsoeﬁer when the polynomléls are completely sparse.‘
7. Vo - ) ‘ . K;
‘ . . . ‘ S ) §
n by
gn-1 . 1f

The largest core requirements for computing ' £
répeated multiplication occur during the step £" =
’all of "the subsequences .are obtained before merglng, then

. Vo }
t. 51ze(t n-1) terms need to be stored. This is a merge sort. of

Y]

t size(t,n-1) numbers wrth t runs. t%lternatlvely, if’ each

- subsequence is merged 1mmedrately after its formatlon we are

-

interested in the space required to merge the last subsequence

~ \

with ‘the SLquence Whlgh 1s the union (by merge sort) of all.‘

prev%cus spbsequences. A nerge sert of n records typically

réquires 2n, 1ocations. We can‘avoid_thas, and=sort in

-

'Jplace, by applying a list merge sort (rearranging pointers),to’

poiynomielswrepresented as linked lists.. The combined size




of the last tWO lists to be merged does not greatly exceed .

size (tyn), the size of tge flnal result. leen the diversity

of mulblpllcatlon §Ru§—sort1ng schemes, 1t is 91mp1est’to assign’

the follow;ng space complexity to RMUL, whlch is, 1n fact, an -

extremely generous lower 11m1t Taking the combined list size

at the end as roughly size (t n), we assign a space complexity
of 51ze(t n), grovlded a 11nk fleld is attached to each terni.

In that case/ 1f slze(f) = t, the space complex1ty of computlng

‘ g
fh by repeated multlpllcatlon is given by 81ze(t1n) (1+E+P)

13
. - N
central memory words. ‘ ' o ’

oL &> - .
It is our general. conclusion that a linked-iist‘repre-

sentatlon for polynomials, W1th a storage requlremeqtjof (l+E+P)

central-memory words per polynomlal term, makes good sense

e - -

qnfrom both the’ t1me—comp1ex1ty and space—complex1ty
and this for all the”sequential binomial-expansion
considered in this thesis. If this be so, we need

measure the sﬁace complekity asdnumber‘of terms of

stand-points,
algorithms
only

storage

. before they have been used.
" ! .
~naturally give rise to different space complexities.

't@g spirit, -actually, of.dyhamic programfiing) in which pre-

e '

requi ed. The final answer, fn, “may reasonably be writteno
disc, or some other form of secondary storage; Our
real:conéern, then,is to determine, for each algorithm,
the‘indispensabledminimdﬁ cofe—storage required by the compu~
tation: Thls working storage w1ll be essentlally the space‘«
"to store 1ntermed1ate results after they have been obtalned but
The different ways in whlch the
various algorithme generate and use intermeaiate results
i1 " As bin-""

ary mejge is a streamlined form of recursion (very much in

. f
N 3
S - w
} ' > v s
R B . R
f . . -
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. cisély the mihimum amount of -intermediaté res ts\is generated, .
, We cohcentrate here on comparing the space comu-;:esty of the ‘ R
algorithms wh:.ch use merge .for s pol nomial powering with the T
§pace complexrty of the algorlthngs thh use repeated mult:.-
plication. A famly of lmplementatlon strategles for BINE’
]"wiilﬁ.l be considered, leading ultlmatelly to a\ new algorlthrn,

- 8

BINF. = - co N

~

6. l SPACE 'ANALYSIS FOR BINA.AND BINB (Blnomlal A» -~
d B:Lnomlal B) ..

. \“ .
We consider in-core, lipked-list -impl'ementations of =
these two algorlthms, where the. f:n.nal answer, ,fn,' may' be’ ’ o

T [

“"'."' " written to dlsc,aand calculate the m:.nlmum storage requlfed PR

td“store the 1ntermed1ate r_esulte, “The spaceicomplex1t1es .

)
A

o ' .~ of BINA and Bf[NB-have neyer been analysed; in the case of .
»
BINB, we are faced with de0151ons céncernlng the 1mplementa- .-
-2 \‘

tion strategy which will radlcally affect the 5pace complex1ty

L£)

- of the algorithn. " In these algorithms, f " is&;computed as ' -
b A ” ' . -, -

3 ) . .. ,'c'l N "c
f+f +2‘.()ff .

ac where the powers of f and f; are first computed “by ci“epeat:ed
a . _ AN N
s ,mult:.plrcatlon. The d er}ce is that, in BINA,® srze(fl)

IS -

O and size(f,) = t-1, while in BINB, size(f:) s:Lze(fz) = t/2.
- - In the frrst algorlthm, i. e., BINA, the 4space requlred to ‘

. \ ' compute f domrnates all other storage requrrements.. bsimj'
- 4
the prekus generous lower limit for the sPace complexlty of -

& . o RMULSy we may_say that the space complexity of algorlthm BINA . -

' , is size(t-1,n) tentis. ~ This may also be written N, -
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. The 'coe;zficient of t"T is
s t. 1 . n-1 . ) 3 '
- H"[( 2 -.) 1:! <

"soon aé it has been generated.

[

-

: " .‘ \ ‘ : s
i ,’ * 3 *
this space, complexity is not radically less than size (t,n),

4
-

the size of the final answer. _
4 e . \‘. 13 1‘7’
* e it v

-That the space. complexi{:y of BINA is size(t-1,n) “may be

oy R
L8 - .

vl

seen.as follows. - Because the s:Lzes of the ff are ineignifi-\

-

dan t one need not w’brry whlch subpolynom:.al powers to keep in

core; nor in what oz}ier, one first generates all the ~(r)f1'
X e
stores them, and then generates fhe successive powers of f,

[y
. . '

(fxom 2 to n) using each power in the binomial expansion as

In a word,°the tasks .of comput-

()frnr

,;ng the . are independent subtaskg.

‘The most space

is required to generate flz, as e/xpléined. Yet no two powers

.

of £, (apart from f2 itself, of course) need be present in <

core at the same tlme. (One is assumlng eophlstlcated garbege .

col 1ection here, £1

nf1

and the ability to overwri%e in the cells

th.ch held f Th{ls, ideally, “one canfiﬁanage with only

One must chdsose
*

respectlve powers, are more er less the same.

. which powers to store in core., and tha.s is not an easy choice.

-

r




Sud

&f one attempts ‘to held all the poiv'ers of bath f,‘and £ ,in

- ' . g .

)

[

P
O
ASRN L NT o e &

: 7 . .
core before expanding binomially, the total space required is
2.group{t/2,n) , that is, twice the sum ofssizes of .all powers

: v . :

3

from 1 to n.of a polynomial of size t/2. This is’

v

2 g o ..(s.l)

.
. ”
Y el Pt S S e
ST
PR

n
) — L L%
-~ : ‘n! jl J+l

’

which is*not small, but much less than size(t,n). o i

' Two times group,(t/z n) is n&gt a lower bound for the \ 4

space complexity of BINB: we.cdn do better. We observe flrst
'that. a power of £1 or f: not needed to generate higher powers,
¢ \ »

and already used in the blnomlal expans:.on of f , heed not be

retained in core.” The non—negllglble sizes o‘ both the "‘f

and the fr give us less flekxdibility, here, but the kfollow:tng °

: W ‘ .
approach may be tried. (We maintain the), perhaps syergenerous,

agsumptxon that f = f fr -1 may be compixtéd in space size (t/2,‘r)‘.)’

Flrst, generate all powers from 2 to p of both f and f , where

AL

p = Ln/2J If n is even, the produ‘”ct ( )fpfp may now- be form—

ed, and p—£ powers are no longer requ:.red in the blnomlal

expans1on. Next, - successu;ely generate the- powers from p + 1

to n o/”. £i1, using each power in the expan51on as soon as - -
generated (one uses ’fl by wrltlng it to(d:.sc) ' relea51ng powers

off fz whenever possuble (once they have been used) , and not
etalnlng powers of 'f; beyon fp“' Flnali.ly, succe551vely generate L

TN . "
the powers fﬁp + 1to N of £ay proceedlng 141 ‘exactly -the
same manner. e-least valuix

of the minimum space, required
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> occurs when' n is even. After forming ( )fpfp one n eds

l 1

te reta:.n the” powers from l to p—l of. f1 (to match the as yet T
) ungene;ated‘ hlgl_ler powers of £2), a?d pr (to generate these
higher powers.) One also requu:es .space to generate f?.

Thus, at best, the spdce complexz.ty of algor::.thm BINB 1.9
S~— I

size(t/2,n) +, group(t/2,p) . This may also be wrltten\

Y

1

S, = 5
(i

5167 + 3 itg’ﬁ](—)i‘ S

to
=]
HM:l’

T | p = (n/2] (6.1.3)

For future refere&nce , we list the leadlng terms ¢

esp&udmg to size (t, n) and to the space complexity func—

- - . -
N -
L . -
\ PR

l) . , '

tions obtained so far.

» »
» ‘ " n-1y / S
PN Size(t,n) = H + G(t ) - - (6.104)-
. n’ N .
~_ ot =1, e e
) Sa =gy o™y . (6.1.5)
Q ° N - ‘ t 4
. ' 2. group(t/2 ny = —-——1- + o™ (6.1.6)
- n! . t - T .
. w 'n . . - . . » .
- N . - SB»= t n -+ O’(tn-kz “ . . (6-1.7)
» ) . f?nlz R K . . :

LY - W
’

o

These functions ai"re’ listed in strictly decreasing order. One

A

sees that algorzthm BINB has an impressively low space complex- hl

ity, essent:.ally that of the size of its single largest inten- .

mediate xzesult, fx: . (The rest is asymptot:.cally negllgible )

To attemét‘ to match the BINB space complexity, a .family of

(¥

. ) B
. . ‘ .
. .
3 . . \ '\




1

.implementation strategigs for BINE will_. 'be considered, with

the same time complexity but better and better spaceg complex-
ities, until finaliy BINF is considered, neediné;’ less time end l
reqtjlrlng s:.gm.flcantly less space. BINF was developed for

space;reasons. Of all known sequentnal algonthms for this

~prob1ein, BINF has the le_ast time and the least space.
. ,

Y

" 6.2 SPACE ANALYSIS FOR -BINE AND BINF (Binomial E

and Binomial F) |

N w
’ 3

We begln by establishing a result which we have tac1t1y

-X

assumed up until now, namely, if f and . f2 are present ,

in core then ( )f fn r may be obtained with space complex-’

ity not exeeeding the space, if any, recju;'.red- to store the

regult., (That is, there is no need for working storage.) We
. © 1 . A1) )

form the product by rétrieving each term of the smaller poly—

no.mia:l, multiplying by the binomial coefficient, and then

" retrieving and multiplying by each térﬁn of the larger poly-.

" nomial, from which the result follows. Next, we consider the

.

space required to store all powers from 1 to n of all sub-

‘p(.)'lynomials associdted with nodes of'the multilevel term-group

tree; this is pofentiall a ratﬁer iarge number. Consider
a father "node, £, and the/ two sﬁbnodes,' ff and £,. Suppose

fr: and f: are present in core. We compute £? according to
£ = £ 4 £ 4 () ETETT
1 2 X o1 2 .

v . . R "
.

The additional space required to store f® is the space for
the terms from the qrdss producﬁs. Suppose now the groxips of

-




L4

' powers of all nodes at level Xk are;present in.core. The ‘

“from‘l to n of all nodes at all lerels from k to 1 11evef l-\p

’naive approach to lmplementlng BINE ylelds exactly the same . ~

\ ’ '

addltlonal space requlred to store the groups of powers of
all nodes at level k-1 is the space for the terms from the cross N

products. Contlnulng,thls;argument, we may‘form all powers

corresponds to the two subnodes of the root) until flnally

[

our space requlrements increase to 2. group(t/2 n). -

—

The linked-list representatlon for polynomlals allows
o

g »

us to hold all of level k in core, and then all of level k-1,
so on, up to level l, the level of the two ‘sub-nodes of

the, root, without any garbage collectioﬁ. This is because any*

8
power of any node at 1eve1 ) belongs ‘to the blnomlal expan-

N

sion of the: same power of some hode‘at leVéiijﬁl. For example,, e

if _ . ' \ ‘ F‘ . ,' ' : b
. g =g o YIS T o

the linked 1ist\£or gr‘ contains, first, the terms. from, the

- CXOSss products, and second, the two prev1ously exlstlng 118t$,

gf ‘and gz List poncatenatlon absorbs the-llsts at a 1eve1
inta the lists at the next hlgher level. As the levels«of the

term-group tree are succe551vely constructed (startlﬂg from

1,\~
. the termlnal nodes) , no spacezls ever released rather, with (ﬁ) a

. |
each new level, more space must be allocated(tor the new terms : : t-(

-

frggylred to form that level. - The most space requlred is that “'fﬂ

for_ the highest 1eve1 formed, here, 2.group(t/2 n). Thu% a ‘ e

*

sgc:f‘complexlty as the naive approacﬁ to implementing BINB,
“

" - ' o
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»

‘ SN n n n, r
‘ s s = + + z
| g =g *g (r>gl

.
v

. except here there is no generous lower limi¥, sophisticated

~

sorting, ovex;writing and garbagg, colléction, just straight

computation. Dynamic programming is a kind of recursion in

e

~which one keeps track of»subproblems and.never solves the

~

3

' same problenm twice; the te'rm;group tree, with its groups
LY J ' 3

of powérs of subpolynomials, is the' table of solutions to
Y . "9

all subproblems. The ‘simplicity of the‘: space complexity comes

a.bout because the solutlons to the smaller subproblems are

¢
X

E t of the solutlons to the larger subproblems. RS L

i
s

We have agreed that the final answer, f", may be

written to disc rat‘her than retained-in® core. Thus, once the
L4 3 . =

groups of powers of the root subnodes have been obtalned,

\

there is no need for addrtmnal central memorv.\ Bv retalnlng

S

‘a full power group for each npde other than the toot, and

writing the nm_/}{owex;of the root ont on}to disc, we require
s N R B *

2.group(t/2,n) terms of étorage.' Yet.there is no need ever to

retdin the ntl power of any subpolynomial. Let the two sub-"

3

-

nodes of aﬂ'n\ode g be g1 and g2. - ‘

~

N
o B v
e~ N

> . l\ !
l’l n-r . = 7 ,

q

‘Suppose that gn. and g have been written to disc,. and that

- ©

~all other powers of g1 and g2 are ava:.lab}le in gore:. By

[

i r n r .
. wr:.t:.ng the requisite cross préduct} )g to dlsc, we

have wntten g to dlSC. We may i fact, wr:ute to disc the

nth

: 3
power of every node, 1nclud1ng in cere only the

'limited' ‘power :group for ‘each node, -i.e., always excluding

¥
1
!
A

PR
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na

This may also be written

~_1
o ' N \\\ -
= ) ' n..l - \;\ R J
N - = 2 n E 9
. Sg=taonr I Lnl@T 16:2.1)
v " . | \\
o . tn—l ’ S
The ~leading term-here is ——————0—s, and SE < S, asymptoti-
* g\: ' (n‘l) ! 2 . v ! .
cally- . ' o ’ q v, N ~
) ' ) \c . ‘ 4 . [

power n. Not @x;gng the ng- powers at level 1 (an obvious

first }:hodght) gives' BINE a space complexity of ?i.gr’:oup (t/2,n=-1)+

b

L

{Q.siz;(t/‘i,n); not storing the nEh \powers at any leve’i gives . -

BINE a much better space complexity, namely, 2.group(t/2,n-1).

L M o b e oty

o ‘So far we have discussed two sophisticated implementa-

tions of BINE, both with asymptotlcally smaller space complexl-
ties than the lower limit for the space . complex:Lty of BINB,

both based: on the"idea of not. retaining nEh pibwe{:s of sub-

%

polynomials in core. BINB can make no use of this.idea; in =
. - N t ' l

contrast to recursion or dynamic programming (here, binary merge),
repeated multlpllcatlon J..S a whole polynomlal method comm:x.tted ,

to bulldlng up :En and f in core. To see the relative

magnltudes of the space‘comgle’xjjty ‘functioﬁs for BINB (lower

limit) and BINE(two impleméntatione) , consider the following

‘three expressions. ‘ ' ) . .
1 nq,tyj . 1 P p¥l _1_:_ 3
) . - ‘

‘ . (642.2)

AT e oy
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-We need to improve the space complsexlty of our J'se of dynama.c

programmin‘g. ‘ C) : ‘ ) &

N

| o p  meln ooy j
2.group (t/2,n-1) + 4.size(t/4,n) = DT i [jﬂ](i—) +

N +
I . - \ .

|
» * \

e s o e el .

4 n n t J o ) :
»‘ ——
“'v ‘ r i j]f'z_) (\ (6-2.3) . .
\.\ - M >
* l'l"'l ey A . . Y
R O 2 x : Lal@? . sz

. , ) .
R K . . 1 h

These three expressions are listed in strictly decreasing F?, B

AY ' n .

. - . ¥
asymptotic order., The, first has leading term. ~ the ‘f
] . LTy n) 2 S <L
third has lead;‘.ng tern . ’ i
n o :

£n-1 o o0

. —-—-———_—2- . i T : .

‘ . ~ {n-1)12" . - .o
/‘\. ’é} - \\ ‘ ‘ ) ! . : -~

. O ' ‘

When t  grows large, with n fix}\d, Sg grows faster than

“

s s

B (The cross—ovézj point ‘for _the ieading terms occur's for

t = 4n,) 'Stily, there will be values of t and h- for

\/\ \

which the BINB Iower limit 1s less’ than the- BINE actual value.

R D2 I AT

\

N . \, b ! D . o .-
\ v ‘ . ! . . | . *
‘ When dis,cussing the lower limit for BINB space complex- 5

i
il 35

,

ity, we saw that the tasks: of computlng the ( )fr n-r a:re,

e -~

essentlally independent subtasks. There is no partlcular \
reason, when performing' one subtask to store the- 1ntermed1ate ) 1

results nec\essary' to perform.some other subtask. As always,

L3 )
~ Y s ?
- . \ )

- N . 'u'
1= £+ £ 4 p(MEST ‘ . 1
1 2 r 1 2 ! ' |

ALY RTINS g e -
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where

A\

g ma o

they"are succe551vely needed in the binomial expansion.

i
1

f is the root, and f1 and fz the nodes

nenate ( )f

oups(of powers at level 2, ‘we obtaln a space complex;ty

have already b

n- lf

BINE space complexlty as

- e
s

'. Surely,

E

y(:j:;f/{ STfk‘

~

LN

S, = size(t/2,n-1)

(or v1ce-versa)

~

n written to disc.

P

level 1..

:? ijhﬂe\
We now take h

¢ decision ta 'generate the powers. of nodes ét(le;ei 1 (assum-

D

g the existenceé of the powers of nodes at level 2) only ‘as”

is suff1c1ently large, the most space requ1red will be tﬁgt

Taklng into account

/\u )
of 513e(t/2 ,n=-1) + 4“group (t/4,n-1), usding a bar to dls— >

tinguish the new space complex1ty function. w}';ai\w\fte this."

+ 4.gioup(t/45n-l), the '’

T
b
L

@
~J

When , -

>
7

s

. —¥
LS Y~ . s
PR s ML e am mens oW P S WA

Wb

\

.

1owéstﬂobtginable«sﬁnce:complexity for algorithm BINE, .is less

" -than,

- which is a lower hounﬁ on the space complexity of algorlthm )
BINB.‘

size(t/z,n)

1 e., asymptotlcally less than

Sp

= 51ze(t/2 n) + group(t/er):P

size(t/2,n-1).

¢

A

The leading term of S

’ ¥ -

o

ln/2]

)

The f;rst term of the sum omlnates in both- Cases,‘hnd

=2 is

o

b e s o4 e v S % e e



_ 15 seems extremely difficult to avoid in-core Storage for the . ’
. ¥ .

.. powers from 1 to n-1 of€§hevnodes at level 2; these powers
-0 n=d . : :

, . -
e o " are used-again and again at level 1l: they shduld be computed ;

oncé\\iig,stbred. An improyement at level 1l with respect.to
N

storage is, however, possible, if we make use of\diStE}bution o
\ - . N

to precompute directly products of the form (g)ff , which is

e e EpT O REERE
: ’
»

f ~,the chéracterizing idea of algorithm BINF. Cénsider writing
. . , _ , \ t - » 0
(say) f* as . °

3 N 2 . ‘ ‘6"“\‘
T L F" + F% + £Y.4F + £P.4f + £2.6£2,
b ‘ , 2 1 1 e

s 02 1
R i 2,

Kl

:’ : i.e., according to the smaller idéa. Apart fromnf: andif:,
- whgch have already been-wxitfen to disc,‘the binomial expan-‘
h.a . sion of the desired pbwex'gf thg’root COHSlS%S’Of a number of
cross Préduqts of the fd;{; larger polyngmial times binomial

coefficient times smaller golynomial. Thé'laggfr polynomial

will be called the a-list; the product of the smaller poly- .
L nomlal by the binomial coefflclent w1ll be: called the b~list.
" The sum of 1nterest_;hus becomes _ _— ' '8

L

pe a—lxst -+ b-list, -
i Lo R

<

o ‘ These new objects, namely, a—llsts affd b-lists, bélong '

, tn

,”“ to level 1 of the term—group tree. We suppose| that level 2




'of all sub-polynomlals at 1evel‘2 are availéble in core. The

clain is made: that the nEE- power of the - rq&ﬁ may be wrltten

to disg, using only the addltlonal amount of cantral memory

w4
¥

requlred to store the largest b-list. This gives algorithm

BINF a total space complexlty ?f/;:;e(ﬁ/z,p) + 4.group(ty/4,n-1), '

p.= Ln/2). This may also be written

-
r
43

p= ln/2]  (6.2Y¢)

[+]

The leading/ is — - Comparing the -

-

ny 20

we see that S, is far superior. The cldim made above may be

eubstantiated as*follows. Consider a-iist;.b-listﬂ for a

particular wvalue of i, By dlstrlbutlon of the blnomlal co—

‘efficient over. the blnomlal expansion of the smaller poly—'

nomlal the b-list may be represented in terms of constants

*

'an& powers pf sub-polynomlals avallable at level 2. Hénce, 1t ‘

\7

nay be computed, and stored in core ;n a space able, by de-
finition, to hold the largest b-list. That space is of size
size(t/2,p). _ : v

We continue the -dfgument. One partlcular b- llst is

.
v

now available in core. The corre5pond1ng a-llst possesses a-




T

w - 1

IS

'binomlal eéxpansion in terms of hmnomlal coeff1c1ents and

. h

'powers of subpolynomlals avallable at level 2 Thls a—llst Co

may be computed at essentially no addltlonal central*memory s

-

cost. Let the a—llst be g and  let the binomial ¢xpan51on
be . R . - . _"c
r-s» - o

v

R 3 x r, s
= * +
g =g +tg, +I()g

N f‘y' ‘ ) - \ N .

. For each term of gf and gf} multiply by eagh term of/ the’

w

b=list, and write this prgduct to disc. For the crégé'products,

.,

> a pllghtly dlfferent strategy is adoy@ed. “Each cross product
has a larger polynomlal and a smaller~polynom1a1, as uiual.W
‘ For each term of the smaller polynom1a1 multlply by téé

b1nom1al-coeffrd1ent,,then by each'term of the 1arger>poly-

- nomial, and fiq@ll&:by each term of the b-list. The products

- . . . . A . . ’
computed in the inner Yoop are written to disc.’ In pseudo-
Paséal,“this is: | . - ‘ : ‘. o N
-~ , . . N k# s . “ )
' for‘each term of small do

T temp P = cqegflclent * small [il .
for each term of large°do ’ e ;-
e for each term of b-1list do

&

wrlte(temp*large [J]*b—list‘[k])

£

I

The whole loop, of course, is executed once for each. cross

< k]

 product in the binomial expa?sionfof the a-list in question. '

]
=, - '
-~ a

We can catalogue the wvarious spaes:ggmplexity functions

"
<

t

obtained so far. The lower bound on' the BINB space complexlté\\ s

L]

is s;ze(t/2,n) + group(t/z,pj, b = [n/2J). The "space complex;

&



‘.iﬁie‘s of the  various ‘implemenéetions of BINE are: 2. group(t/,z,n) .
é.group(t/z,n—l)+4 size(t/4 ,n) 2. group(t/2 n-—l), and |
size (t/2, n-l) + 4.group(t/4, n-l). The space complex1t§ of the
essentially unlquqqtg‘plementatlon of BINF is, size (t/2,p) +
.group(t/4 n-1),p" \— [n/ZJ._ The E and F comp},ex:.tles dof
represent the space %hat would be used by these 1mplementa-'
tlons, the B complex1ty J./s,\a 1ower bound‘ which is rather
generous, especz.e.ll)f for small values o;E n ‘a.rsd £, Clearly,

we want to compare the relative values of‘lthesé\ fugctions. The

‘ \E and F- series, as written abover'is strictly mono'tonically .

M,
decreas;,ng, each functlon is obtalned \from the prev1ous by sub—

tractlng a strlctly ppsrtlve quant’:.-ﬂty. " The claim was made.

a
aboveféthat the E and F J.mplementatlons which d:Ld not retaln

«n-i—:—h-v powers in core were asymptotlcally superlor to. B, essentlally

\

on the grounds that nE-t-l- powers of sub-polynomlals eventually

B . .. ‘ .
outgrow n-l,—":1£ powers. But there is a danger in all such

e N ‘ : ' «
asymp%oti»c arquments that the asymptotically superiorf*algorithm

N -

becomes superlor Just as we pass beyond the bounds of the

k

. practchIly computable. Hence, we shall now make a more care-

- ful compat‘rlson of :SB and SF' the space complex1t1es, re-

"spectivel \,of the most successful repeated—multlpllcatioh algo-

4

: . \ . . .
_ rithm, and \the most succsssful dynamic-programming algorithm.

23
u.
" '

. ) N - [ q v‘ )

‘When i‘\= 2, not too sur singly,‘ the differences.be- -

tween binomial-expa}msion algorithms disappear. Here,there is no

difference Betwéen sirgle-level and multi-level, dynamic pgtx;ogranun..
) Y

:\'Lng is repeatid ultiplication, and no power of ‘a monomial is

-

‘smaller than Yy \other.° All the formulas given so far for time

%"'%&h}" P S T TS
: QR - M AT R Y

AN ke ik B0 ¢ na
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9,

-

'SB’ = 411, SF-

» * g

co'mplexity\-and-space complexity, with- one exception, were .
i .

der:.ved under the 1mp11c‘}t .assulption that t "was a power of

v

;r’two, when, thrs is not the case, the formulas are only . '-,

0 e \p]’

approx:.mate. To see the relative magm.tudes of Sﬁ and S -
0 . .

. o .
'very\\i.early, these functions wer¢ tabulated for various -

. ‘ ¢ . .. .
values’/ of t = X and n. When t = 4} BINB requires less space;

.= the storage for intermediate results, however, is less even

than the space' requ\ired to store the prbgram. When t > 8,
BINF requlres less space; in the one case of equal:.ty (t = B, d
n = 3), the BINB lower llmlt can be shown to be 1napp11cable. - :

Examlnatn.on of the tabulated results shows that, J.n fact, :Lta .

K3 ’
- \
-

B ¥ over the whole range of the prasiicadly computable (apart \ 1‘5

from the  trivially small) that the Qg’pace complex:Lty ‘6f BINF
7.

is superior to that of BINB.‘ Fo‘x a smah problem, t = 8, n© = 10,

AN

-

272; for a large problem t =:32, n = 5, sg = 15,656,

R &8 » ’ N @ . - ’ t
S_/= 2,112, One may conclude, therefore, that dynamic programmy

;JF

" ing, cpupled with intelligent memory managem/ent 1eadé to space

improvements more dramatic" ven than those in the time, domaln.

- ) t'J [N K_,_,\
One 1s certalnly very far £ om the class:.cal "ided of a space-— g :

&

time tradeeof»;. ('I‘he Tabnle s Appendix III. )

-

This.czjfi“cludes the'd’iscussion of the sequential binomial- ;,8

i“éxpansi'on‘ algorithms. The results obtained depend totally on LN
2 . A .

r

the two mo"de‘;‘Ls for the&robleme which have been adOpted in this

thesis, namely, the cost mode’l and the computatlonal model ‘

K

Nothing extend% the valldlty of these results to other models.

The compu‘tatlonal model -has been that the 1nput polynomlals be

4

multlvarlate polynomlals completely or almost completely sparse

A




1

- m—————

»

to power n, n the power sought." Obviously not’all poly-

nomials are sparse- yet ex:.stlng algebra systems often need

»

.o, to handle multlvarlate problems of a sparsernature. The

¢t

algonthms treat almost sparse polynomrals as if t-hey were.
‘totallby ‘s_‘parse. The cost model has geen that the true run- °
"ta.me cost may accurately be measured..by #.he number of co-
eff;,c1ent multlpllcatlons used in the algor:.thm to generate S
the f1na1 result, this model has been justlfled above. ‘.-" '
Finally, the space J\complex1ty of an algo‘rlthm has been de-

\

frned as the central memory required to store -1x{9termed1ate -
results in the best 1mplementat10n of that algorlthm assum-
/1ng a llnked-llst representatlon for polynomlals, space

complexltles have been quoted in _ number of terms of storage

required. A term may requlre several central memory words,

the exact numbe,;; of which. is' algor:.thm—:.ndependent. . These,
. N 4“( " N
' ‘then, are the chief assumptlons about the input polynomlals v

¢

and about the ways to measure the time and space complex:.tles

of the algorithms. : o P )

Very definite lconol*‘\:sions‘ have been reached about which
K] ) ,
algorithms have least. time complexi'ty, and which least s[:face
complex1ty (BINF, apparently, is optlmal in both respects )

+In‘ad lthn, conclusmns have been drawn about the desz_rablllty

dependent. One example can.be given. When thejolynomials -

are. completely sparse, clearly it is best to sp t tl\e poly-‘

honialsgas evenly as possible. Th1§ reduces costs, as we have

' Ty .i) : ' i/~1'

~

<
sicatiAn,

PN

PR




.geen. Yet nothing rules out the possibility that, for

completely dense polynom:./\l,s the best ch01ce would have =~ -

‘been to split the polynomals as evenlx as- poss:.ble. And so,

on-for the otlyer decisions. The final " conclusion is this.
- .

Ig this section weshave analysed a family of sequentidl bi-
nomial-expansion algorithms for symbblic comp'ytatio‘n of

integer powers of complétely or almost compl,etelyf sparse poly~- .
5 - g .
'nomials. We have analyséd the time and space complexities’ of’

these algorithms. By a sepies of refinements and impripvénients,
N ' A .

based on. the ideas of dynamic programming and -inté],ligex)t .
. \ . y .
memory management, we have arrived at an algorithm, algorithm

-

BINF (prbhoun‘cedf binomial F), wh'ich. we believe.gnd conjecture

to be Optlmal for both time an@l space w thin the binomial- .

expansu:m family under the assmnptlons .Llsted above & Pogsuu.y,

«

ij: is the optimal way to power sparsp polynomials. _
M V. .
J : . L~
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CHAPTEB VII

PARALLEL ALGORITHMS® *
In the discﬁssion of the sequeptial algorithmshwe iaw
that the theo;etical’lower limitfonﬁfhe number of coefficient
multiplicatioﬁsirequired to~coﬁpute the nEE éower of an
arbitrary polyncmial was given b& siZe(t,n) - t, which, for
large t and large n, can beceme‘en extremely large number.'r
This result puts limits on what is practiéélly'computable
Qith a sequential architecture.. Recent techn ical edvances,
in prinéiple, make possible the production of very cost-effec-
tive high—performance computers‘&hich make parallel use of a
large number of precessoré. Researchers have analysed variods
parallel computer aréhltectures, and th;\probiems of adapting
sequefitial algorithms to parallel- machlnes, in applications®,
areaé where enormous amounts of straight computation are .
required. A major lesson has been‘that speeial-perpose'
machines which have been adeqéately tallored to thelr appli-
cations area can perform Spectécularly, even if these same
:machlnes do much less well wﬁen applled to problems theyAwere
never intended to solve. We consideretwo special~-purpose " l
parallel architectures; one multiprogeseer and the other
assoéiative—processor, then examine the adaptat;ions neceesary
to run varignts of the besé sequent;a& blnomlal-expan51on ;
algorlthms on these machines, and flnally calculate the speedr
up ratio/pb%?i?ed fqr‘egch architecture~a1gorithm combination. °

- . Q% - :
The general conclusion is that integer powers of sparse

4
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[

pOIynomlals are well-suited to parallel computatlon with the

actual speed-up Tatios approachlng the theoretical 1deal.

\

A basic division of parallel architectures [ 6 ] is

into sihgle instruction stream,~multiple data stream systems,

'and multiple instruction stream, multiple data streaﬁ systems.
%There are other types.) In the first category, only qée
instruction is executing at any one time (single control unit),
yet may acﬁ on a whole set of da%a (maltiple processing unité);
examples are array processors, and associafive procéssors. In
the. second category many 1nstructlons execute 51multaneously*
(multlple control unlts) on different data (assocxated multiple
proceSSLng unlts), essentially, we have a system of inter- 4
ccnnecte& conventional processers. Of course, an arch1tectur°
can be devised which lies somewhére‘bétweén_théée two extremes.

\

(The £wo extremes'afe having many control-less functional ﬁpits,"
- and having maﬁ&;ggngfal-purpose computers,) In the assoc;ative-‘
processor architecture envisaged here, a large associative

memory (ir which data is addressed by tag rather tﬁan by
address) Willlﬂi coupled with a parallel processing‘argéy

wﬁose elémggts p?rform more or less the same computation simul-~
taneously. In‘the_multiprocessor architecture, there will be

a central control section, capablé of sophisticated process-

.

" ing, and a number of slave processors with extremely limited

.
’

essentially-be SIMD (single instruction stream, multiple data

_control capabilities. That is, the former system will

streém;) while the other system will keep the deviations frqm'

¢

. the SIMD concept to an acceptable minimu?.
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In géﬁeral, one'cannot.obpain good parallel algorithms
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_by‘simple translation of éxisting‘serial algorithms. This is
because a particular parallel architecture will be efficient only
if the computation to be run on it has a particular form. If
6ne is runﬁing on a SIMD machine, then the.originalACOmputa-

tion must be broken up into many smalier subcomputat;pns which
are structurally identical but thch may have different data

a

values. When such a splitting is not possible, one is forced
to(u;e an MIMD machine, in which the subcoﬁputations have
differeht structures as well as diffe;ent data wvalues. JThus,
in the parallel casé, on the one hand, there is a definite ’
algorithm-machine interdependence, and, on the other hand,
starting with a gIVen sgfial algorithm for ﬁarallel adaptation
wiil ?}ace constraints on thé'way the compgtétion may be bgoken

up into subcomphtations. In the sequential binomial-expansion

algorithms, one mulggplies constajts™'times polyndmials, and

polynomials times other potyfiomials. The first operation is

" monomial times polynomial; the second operation is monomial

-

,times polynomial many times. The most elementary 0perétion is

simply monumi7l times moqpmial. One way to achieve parallelism,

insofar as the elementary qperatiéns are completély independent;‘

is to split a composite task, such as polynomial times poly-
N . %
nomial, into sets of elementary sﬁb-tasksﬂ\ Another way to

achieve parallelism, specific tbialgoriﬂhﬁs.wﬁich“employ malti-
— . ., A ‘ .
level splitting, is to take advantage of the structurally-

- B

» (] 3 : . . ] 3 : &‘
identical subcomputations associated with different nodes

.beionging to one particﬁiar level of ﬁhélterm4g;6up.trgeu These

alie i TP peeTrRprpareree e e S SRS DA N
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are the two main approaches. Both are used in connection

t

with the multiprocessor architecture;'tﬂéqformer alone is used .

e

in connection with the associative-processor architecture.!

- ey

b

One needs a criterion to measure the success of a

1
v v MMM xg

y éarticular parallel algoriﬁhm-srchitecture combination, that

]
- ‘.

. o . .
is, essentially some measure of whether the decrease in run-

w

‘time warrants the,adéitional expenditure for the parallel

‘machine. Following Stohe [14], we adopt the measure for

LIRS SPTRTe: Nwgegcery

specific problems of the speed-up ratio defined as:
. - ;A” |
- X . . % O R ‘X
L Computatlon time on a serial computer
-+ Speed P ratio = Computation time on the parallel computer

'~ * . s
U \ o +

To be falr, we c0mpare the best serial algorithm for a- spec1f1c

problem with’ the best parallel algorlthm for the same problem,
whether or not the parallel algorlthm is an‘'adaptation of the }

e
S serial algorlthm. "For a parallel&gxchltecture with a processor

<o
~or funct10nal multlpllclty of N, the ideal speed—up ratlo is N,
this is rarely obtalnable. When the speed-up ratlo is kN,
k < 1, but not much less, .-we have a problem very well—sulted to ,

parallel computatlon. Speed—up ratlos of kN/logzN are less 331

¢ . de51rab1e, while speed-up ratios of k 1og2N are 51mp1y inadg-

B
E R T " W Tl BY b AR a»tw.—-yﬂ-u.....‘
: $

quate. In the present thesis, we‘create the‘best parallel
algorithms by adapting the, best sequenfisl q}gbrithms. As a

.rough apprQX1matlon we consider the cycle trme of -the parallel v

N

Qcomputers -to be.equal to that of the sequential machlnes. Hence,

we measure our speedrup ratios as number of eoefficiept multi-
. ’, ' ) - . N
plications (which{does not change from the sequential case)

i
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divided by the n of cycles required to perform the -’
computation on the parallel 'mac.‘r‘ﬁ:ne.,’ .For‘. bot#h parallel architec~

t\'lr;‘es"considered here, the spéed-up ratios \app;oach the
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‘In thlgiqectlon we describe the parallel archltecture .

A

- .
A v vy By S MERERSEDS Sy A e s
i
-
.
.
&

. \
<§ env1saged glve a\formal épec1f1catlon of the correspondlng

N ; .
parallel algorithm, .and obtain a lower bound onithe’ sReed~up ' T

. -

: -ratio for this systein. We choose to make a'parallel adapta-

oAbt e

?

tion of e seguedbi algorlthm BINE, and call the resultlng

. ,
NIRRT g YL oy "

e
parallel algorlthm-'Multlprocessor EY, The ba51c 1deas in =

< adaptlng BINE are not gdlcally 1fferent from ﬁhose‘lnvolved

'—~ " .in adapting BINF; the descrlptlon and analySLS of Multlprocessor
- & L]

‘E, however, is somewhat 31mp1ex In any case, ‘'ease of parallel

<
-~

“ adaptaelon ic more important than the relativecly minor time = i

. » b .
. difference between BINE and BINF., . - - . - C
a . . o S j
8.1 DESCRIPTION OF THE ARCHITECTURE - ) . i
. w-§ 4'\@5 - é’:
' Ly ‘ ' . : - N i
o Lo The parallel machine:r consists of a control 'unit with

-

Y - 1 - Lo .
’ .. rocessing capabiliE;es,of a conventional computer, N progz

{ cessing units or slave processors-capable of deceding a limited
. ' :

N C e ] : 5 . .
. set of special-purpose instructions set into memory by the
ppe

. R P 3

2

control unit, and a large random-access central memory to ‘'which

both the control processor and all slave procesSqrs have full

.

. access. Schedullng and memory management are the Job of the .

R N

IS

control prpeessor, who allocates himself a reserved section of
. r f ~

e

o : g = PR "
-gentral memory. Qhe slave processors read their instructions




-

.

R
. .

.initialized by the control processor. Let us take N, the

)
N

number of slave pracessors, to'be N = 2°, - o
4 > : e o ) .

. * The blocvgram of the syétém' is:

v - . \ ' TN

.. o

Cantro; e
-Unit ,x

Central
‘Memory -

slave

3

slave

v

s — -

R R T

| 1

FIG. B.1 SYSTEM slave |/ ' | slave
DIAGRAM. =

~

— o‘

.

The npﬁ-reserved portiop of central memory .is usq&‘forgéﬁzifﬁ. -
C o ‘ ‘ .
storage of intermediate results generated by the @omputation, Y

that .is,; by any of the slave %rocessing units. Uéekgf cgntrai‘.

P e

Iy

memory is essentially additive, with more and more results

8

\ , ~ o
being added to an initially empty store. This exploits the

1

feature of dynamic Qrogramming>in BINE in which soIutions to
smaller subproblems are parts of solutions to larger sub-
problems, as disgusse&vabove. Orie overwritipg technique,

°

~ .




-~ -
. t

; ‘ . .\ iee . ¥ m, n-r
however, is employed:.in the ccmputatlon of g, ()

r’'9, , the
' space ulslmately allocated to hold the f1na1 result'ls inltlally

L
allpcated to hold ( )gn r_~ This allows a clean separatlon

/

' within the parallel algorlthm of multlpllcatlon by binomial
vOSP
" coefficients, ané\multlpllcatlon by the- (remalnlng) polynomlal

-

We can give a rough idea of the kind of special-purpose

instructlon decoded by the slave proce531ng unlts. leen ‘the. =

-

character of algorithm BINE how might N 1ndependent prOCessors

‘cooperate to perform the. overall computatlon? The~ latter

) Jconsists of a number of list constant products, each of Wthh
4

sequentially, is the multiplication of.a list (polynomral) by

a constant (a constant productM followed by the multiplication
. r . k] +

-

.0of the resulting list by'adother_listvxa list product.) _A:
: o . . t A
set of list constant progucts therefore, may broken into a
‘.;;set of constant products, and a set of list products; we,

-require that a processor mayébe set to do an—arbitrarx*esount

of the work required'to'compate a set of stant prédpcts, or
. . < ) -OQK,_A . o . E
. a set of list products. These lists are, of cdurse, Teal lists

in the linked—list sense;_ A subllst of a list is ltself a

1)
liSt A llSt May be spec1f1ed by glv1ng both its lead element

v

-] )-—‘~

»
andtlts length. - The special purpose 1nstrpctions,‘or rather

by ' ! ' ' "-n'

\ set5~of'speciai-purpose instructions, for the slave procegs-

"

» -~ 1ing units should now be clear. One slave wunit,-as part of
. . 1 v P -
cdhputiﬁg a set of constant‘products,'might be instructed to

Y T

multlply each of several lists by, one of sev’ral constants.
Another slave unlt, as part of comput1n§ a set of list pro-
o

o b ek e WALA oy NP L ¢

qucts, might be 1nstructed to multlply»each of several lists by




»

L R

e wantera s ST

‘ and hence 1ndependent, (multlpllcatlon). operatlons. The ~ °

"S;;J this is-the '(artific'ial) subtask T;. Continue in-the SRS

. \
e - M.‘I,\v.» e e St Al :\“‘WW"’"‘U’"TZ“ r"\“fwﬁ*’mﬂl"‘ﬂ‘d‘f‘mmwmwc- ey
& . - o
8 ) , - . ' ) . ~ A
. » - * " “ ) . 1
one of severadl other lists. Operarids for these opé€rations - oL /’
} ' ’ = ' AN k3 ’
are specified more or less as described above; the target r ) .
- -

areas in central memory to which the final results are 1;0 bé

4 - . . o b . A
written must alsou be carefully specified. This spec:.flcatlon
A . - ! v,

is an overhead function assumed by the control unit.. « ° DU

-

The total computation of BINE cpnsists of a number Bf T

3 q

sets of list -constant® producﬁ% one such set for each’ node of
< ) @
the term—gr.oup tree. Each ‘set of list. constant products

consists. of a set of constant products, and a set of.list . "t

T e St b a Rt s Bt ¢
4 »

products . Each set of constant products,* and each set of llSt
. o A

products consists of a number of elementary (because monomial) o

p— . . . . .‘

!
' .

assumptxon thdt a slave’ processor may be set to do an arbi!:x;azjy
number of elenentary operatlons 1mp11es that N :Lndependent - &
slave processors may divide the total computatlon '%among them-

selves and yleld a' speed-up not radlcally dlffereqt from N.

We deflne' the idea o-f an N-SEllt oﬁ m subtasks Si' where . ? .
the gubtask S,  consists of- n, elementary operations. Let {
v . .. - 8 ) ® 'Q 1
W = In, and Q= w/N1l . .
. i o -

3

i N - ' °
Create N (new) subtasks Ti' ‘of maximum size Q, in the follow-

ing'-Ma}y. Lay out the m (original) subtasks 55 in linear

order. Count_ off Q élementary operations from the start of

same fashion to obtain thc (arti_ficial) sui;tasks T, thfough~ ;

TN' W}\'ss:i.gn each of -the N' ‘subtaéks Ti' to one of the N ‘ .
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3

© o T
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s We now make this more fqrmal. - . ) " .
. . ) . \ . ; i
. ' The precise operation of a multiprocessor N-églit
explained as follows. For each value of n, there is an ‘ - "
LY ‘- . ' . ’ ~ ., . \
. i
{

104

—

slave p'rocessoi's. Thisoéompletes.the N-split. Inythe present

. @
.. - . . 4

&contextf the m subtasks S;. are either m 'constant ‘products, |

or m 115t ﬁro,ducts. 'I‘hat is, we make an N-—spl:l.,‘.lr of either . | :

a set of constant products or a “set of hst products, and this

N

some number of times untll the total computatn.on is completed

'gbstract object .called. the power gfg)up triangle, which is“useta

in BINE to cbinputé ali powers from 1l to n of g+ b given - L .

all powers from 1l.to n° of each of a and b. For exampley ‘
N ’ - . LR |

t

"_"when;n = 4, the triangle is:

L4

, \a"+b"+a 4b+b34a+a2 2. \ . .

E
a’® +b? + a 3b + 3;1 ‘ : ! L
, - s~ oo .
- . |, a2 +b? + a .2b v, ' . »
. a +b e . |
. ;. ' . RS A
< . > - v TN
-~ ” ~ - ‘ /
. ' : . . - 1.
™ FIG. B.2 POWER GROUP’ TRIANGLE (pgt) FOR n = 4 . w ]
. e . o . . E.
- / . . L ’ “ ) . 1o
/ - v - - v . " F .
In a pgt, there ar;?)f;)\_ionstapt products, and (2) list pro- ' =~ B
. v . R . N ' . ( S 3. [
ducts. * The/ number of) elementary operations in_each product is .
a computable function of s = /siie(a) = size {b) . That is; we
~ 1) -

x '

" have two/sets of (g) ‘subtaskAs S;o. where We can evaluate the : . 3

n. for/eac si b‘f( knoWing,s. That 1s, for each node inm -
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proceeds as desc‘i":{bed above.

" the term~'gr_oup tree, we are able to gerfofin‘ an N-—si)lit (slave

S : L M '

‘processor allaocatpon) for all the binomial wo;:kﬁ in the pgt, and

then a secondl N-split’ for ‘the remaining nonbinomial work: The

n, xare polynomlal functions of s which are f:n.)i:edap once and's

i

X7
for)l all for a glven value of n (the n in f ), but 'Evhich

h

must be re—evaluated by the control um.t each tlme the vakp%*j

/(;% s(equlvalently, tree level) changes. Onvxe the values of /
- y

the n, are known,:;_he N-split (s'lave processor allocatJ.on)

1

e
] r
L

-
?

8.2 ~DESC-RII"TION OF THE ALGORITHM

. 1 ¢

Assumptions:

Let £ i. e. , size(f), and N, i.e., the slave processor

-

mult:Lpllc:Lty, both be powers of two, with N > t. The changes,

to the algorithm when t > N.are trivial,

'Step 1 - Creation of the Term-Group Tree "

. Q .
The control unit, in its section of central memory, =~

Y,

creates al binary term-group tree for the original pelynomi.al

£, All of ‘ go\es into the root, the two halves of £ gé

3

. inte” the two su nodes of E}’:e root, and so on, recursively, with

the. larger half always in the left subnode. A directory is
maintained which, as the computatiion proceeds, for each no’ée
other than the’ root, and each- power from 1 tb\? pomts Eo

the 1lst yh:l.ch conta:.ns the specz.fled powerxr of the specxfled

r
¢

subpolynomials.

- «
A e S SRS ST -

.
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3

. Step 2 - Processing of the Terminal Nodes : ~

¢

2 ’ + 4
. ! .

T . . The control unit aSSLgns one slave processor’to each of

3

the t termindl nodes, and Iets the other N-t'slave processors

\?a N _  sit idle. Aall powers from 2 to n of each term of the

Co . . £ _
original polynomial are computed. This completes the process-
s L (AN

in§ of the terminal nodes. The list pointers are automatically
o T 1 .

retaine® in the control-unit directory. .

b T

13
) -
L) ¢

s

A Step 3 - PTovessing of the - Interior Nodes BN <;\“
f ' : a m( , :
¥ .o .

- . ~ , . a .
‘ T -, For each level of the term-gyC¥p-iree from k-1 to 1, in°

L 4

- that ordef} the control unit causes all powers from 2"tq :n..of

3 v
i e

P

\eli nodes on that lefel to be computed, taking‘advantagezof
Y %he powers>a1ready availeble on the next lowerﬁleyel. The ,
g | fﬁndamentel strategy for compueing ergroup of powers of é nodeg,
: . “ given the ‘groups of powers of the subnodes, is expressed in
| ‘the structure of the power group triangle, dlscussed prevxously.
At level ]“ there gfé 2j nodes, with j < k + 'The control
unit assigns M = N/23 slave -processors to each of -the ;3? o

]
. . : ¢ ay o
nodes at level j. M slave processors cooperate to process one

product grbup friangle, i.e., one node. The control unit
,.evalﬁates the time complexity of the constant Qreducts and

. % . list products involved in processing nodes at this level. - The

-~ . RS

.~ control unit then causes each group of M slave processors

associated with a node to perfornm, flrst an M—spllt of all bl—.

"

nom1a1 work in the pgt, and then an ‘M-split of the,(remalnlng)"

- nofi-binomial Yéfy. That is, the M processors split. the
< s ’ ’ . , ‘.

w
LY

(¥
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constant products, and then the list products.’ The 27 groups

of slave processors work in parallel. At the end of ‘this step,

all powers:from 2 to n of all interior nddes w1ll have been

’

computed. ' As bhefore, the/llst.p01ntersvare automatically re*
tained in*the control-unit directory.: )

Step 4 - Processing of the Root Node . e ey

2 .
At the root level, all N slave processors are assign-

.ed to compute fn, given the availability of the powers from 1

to n of the two sub-polynomials . f; and f,. .Although only

. N ) . o ’ .
the nEEg power of the root is computed, the same strategy

mey be applied. (We meﬁely consider the blnomlal—expan51on of

|

the root, written in accdord w1th the smaller idea, to be a

-~ &

degenerate pgt.) As before, then, the control unit causes the

group df—_/ﬂ—klave processof‘\Txrperfg\‘ flrst an N—sp11t1x;
the n-1 constant products of the root pgt,' and then an N—split‘

of the n-1 list products. This complEtes the processing ‘of

the root. . ‘ ’ o R ; .

P

3

" Multiprocessor E} like its sequential counterpart, BINE,

7. makes full use of the déé&gn decisions: even splittlng, multi-A

s o

level splitting, binary- merge (dynamic programm1n§\ and

smaller. These are the dec1s;ons whlch flx the structure of

o

the term—group tree, and of the product group trlangle. The
latter merely expresses how groups of powers of polynomials .
Qare to be computed from groups‘of powers of subpolynomials"via\\{

bjnomial-expansion using the ‘smaller idea; it is a kind of

J

R Rt TR
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' abbreviated algorithm description. The term-group tree, a

. multilevel, even-—spllttlng expansion of the orlglnal poly-

P I

/ nomial, serves as a dlrecto:ry 1nto the, varlous lists and spb—

s .
. T lmd during the computatlon. The pgtt 's are pro-

13

p‘u

!

L . R . , ‘

{r" cessed by thgr’slc;we processors under the control ef the con- o '

.trol unit, “which also manages. the termzgroup tree. P
. . :

@ .
- , 1

) * 8.3 ANALYSIS OF THE SPEED-UP RATIO

‘

If a subcomputation containing s independently-

T Dn e

-

(g
‘\ ' allocatable units of work be divided (p-split) among p in- '

dependent processors, then “the speed-up is given by s/[s/p],

)

e it . e g e o

where s measures the t‘iwip\r the serialfcompﬁtation, and

LS

ls/p] measures the longest ti‘x\*e taken by any of the p co-
) ' operating processors. The Speed‘/r-upf is less than or equal to p.
If two subcomputations, with sy and s, units of work, respective-"" - -

/ . .
ly, are successively p-split, then the speed-up is given by

,)\ .h\ v.‘ k ' "'k ‘_’

‘ . . ‘ }
. ) ([81/P7 + [82/P7) e N

L . -
. ? - 4
. -

" where

s =81 + 852

In general,

; er/p1 + rsz/pﬂ > [s/pl

That. 1s, in order to maxlmlze the speed-up of the ent:.re computa-

tion. one should mzmlmlze the number of Sub-computatlons which

\




are p~split. Multiprocessor E uses variable p-splitting in-

sofar as M(the processor multiplicity) is a function of tree

. level, ranging”f?om 1 at level k to N at ievel 0. As the

~

monomlal products of the computation are 1ndependently allocat-

0 able, the speed—up ratioc of Multlprocessor E is glven Y

E(t,n) d1v1ded by the sum of the longest tlme takeri e ch tlme

\\\a p-split occurs. The number and multiplicity of the p spllts

are entirely flxed by the“algorlthm spec1f1catlon, they need

-

p - only be summed, or at least'approximated. .Thisiwe now do.

. o .~ More precisely, we calculate T, -the, time taken by
b} N
algorithm Multiprocessor E, where T is measured in units of

thée time taken by a slave processor Eo compute one ﬁonomial
,productl for each noh—terminal node, there are 2 p—splitsr
V-L_ ' one for the constant products, .and one for the llSt products.
_ To calculate. the time taken to process a node we need to know
B ‘ . the processor mult1p11c1ty, the number of monom1a1 products in
| all constant products, and the number of.monpmlal products 1n
'.all llst products. For example, the tlme taken to process

RN -"w
sy

. the root is . L ~ :&f;—

w—«-

I ‘ - - ‘“:.J:;‘b' ; @ , ’ e
¥ .
2, group(t/2 r-1l) + N .sxze(t/z r)] ’ ‘
+ .
N —

s - - — '(8.3.1)

< T . -

+ Eize(t,n) - 2.sise(t/2,n)]

~ where’ r= [nﬁ21,N‘ = 1 (n even) or~0(n odd), and N is the

. number of slave processors available on. the multiprocessor
K

system. The tlme taken to process a strlctly interlor node is

-




1 . /

- |BC(s,n) . '%roup(2s,n) - é.groﬁp(s n) o
[—Trf——] + T M - . - ‘(8.3:2)

.
W el d

where s is the subnode size, and M the -processor multiplicity

N (pef nodeQ'availaHle at that level. . If we add in the n-1

.o

\ time units deedéd'to'compute all powers from 2 to n of the
. \/:v‘\ ¢ . . .
‘terminal nodes (one processor per node), and take the sum over

all levels containing strictly interior nodes, we obtain

\

finally the total time for Multiprocessor E. It is N

z
kY

'

Lo - I
4 -
B T N

o ) L | o o

“ot,n) = size/(t,n) ; 2.S{Ze(t/2:“)] + . {

. \ r - . ) . b . B :

) + . |2.group(t/2,r-1) + Nf .size(t/2,r) h i |
N _ + . ——a = ' .
7o ‘ - (yﬁl. EN ‘ :

| . | N _ . . n L
1 + kZl [Qroup(t/Zj,n) = ?“grouP(t/zj “n) ] + . : L

<5 i 1 ' N/27 - o - é
\ . ~ * . . ' ' i
e \ o ‘ ) .3
. i+ L ‘ ; |

. 4 \ + [Bc(t/z ‘ JP)T o+ n -, l ‘- R . (8-.3.3) g
o , N2 Y : I §
R . )
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vhefe, again r = fn/2~l;&3ry;l (n even) or 0(n odd)., and N ‘is:

the total number of sl ’proc;ssorégiﬁ f?ﬁ/§y3f€m$«~ﬂhe sum P é
runs over levels raﬁhetwthan nodes beﬁgﬁge fhe grqus of M: ’ é
grocessofs (pér noée)bruﬁ in paféllel. C?bejactual speed-up g
ratio is given by‘E(ﬁ,n)/T(t,n). Wéfuée a simple trick tq ._ i

. obtain a lower bound on this ratio by obtaiﬁing an uppéf'

bound on T(t,n). 1In genéral, [ 8/p] < s/p + 1. The quantity

in curly brackets is_ ) < - Lo ’

rd 24




. : oy

. * R ‘ .‘
?“. ' ’ . (3) t3) 93 (o 3) 4o (3) 3 Lo
: - . Q Q 27(Q '+ )
+ o - 2 e 2 < L—2 —+2 (8.3.4)
3 ' Nn/22| 0 |ny2d - SR

Y -

But r2j(Q(J)+Q(J)) is the number, of coeff1c1ent multlpllcatlons

‘whlch ‘occur at level j. (The quantlty in parentheses is the'
number per node.) The _same reasonlng applles at the root level,

that is,

.

\ o [ + [N-l < N + 2 (8.3.5)
e (‘ . - a ]
Herxe, R; + R; is the number of coeff1c1ent multlpllcatlons at,

' .the root level. The tlme taken to process the termlnal nodes,

- namely, n-1, may be written as .
o 'X . ~ n‘ N ‘ \ [ A
- _ t(n-1) . (N-t) (n-1).

< ; - } s

Substituting the previous (in)equaiities in’ the formula for

(8.3.6)

“T(t,n) gives ‘ ‘ s o
q L. -

N T(t,n) < E%_Lﬂ + 2k + ,(N-tl)ve(n‘."l) "(8.3.7) .

or ) - . . \\ 3 .
E(t,n) E(t,n) - :

T(E,n) N. ‘E(t, n)+2kN+(N tYThﬁI) '(8-3-8)

Take N = 2t for definiteness. For large t or large ny

.

' t (4x+n-1) is negligible‘in cbmparison with E(t,n). That is,

for’large'”é "or larée n, E(t/n)/T(t,n), thé speed-up ratio.-
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for algorithm Multiprocessor E, approaches the theoretical ' - ‘
] . .

P

b idee; of y, the number of.processors. The only counter- . . . ;

-~

© " _ balancing factor is the necessary overhead (assumed by the . ‘ o

. ‘
control unit) in properly instructing the slave processors. =

R

‘ The most difficult and expensive ope}ation here is probably

-

o

.determining the starting addresses of the various sublists

i

N
assigned to the slave processors for processing.. -

)

- As it now stands, algoritpm Multiprocessor E does not

have .a space complexity as®low as the more sophisticated i .

LRI -2,

implemmentations of_ the sequentiai algorithm BINE. An algo-
rithm which consistently computes the constant products in a .

pgt before the'list products must have space to stoée those

4
T g

' constant rdducts. , This consistent a 'roach, of course
?

.

- ' ‘allows a con31stent and 51mp11f1ed p—spllttlng strategy; At .

the lower levels of the ¢ree, orne may wrlte the constant

products into the space whlch will subsequently cqntaln the

.4

7
i S

llSt products. At the 1ower levels, then, the space complexity .

does not change. At the hlgher levels, though where the

”~

|t ulruk,

‘3~ . answers are wtitten t% d}sc dlrectly,:more storage will be < -

R ’  required for the’intermediete results. There is, however, no

y i preeson why a sophistzcated-vgfsion of Multiprocessor Fxcdu;d
] ' hot approech‘the space eemplexity,of'the sequehtial algqrithm

FOVPIVIP LS JULS Sacs

BINF. One would simply require a. more elaborate p-éplitting.i'
" . strategy. -Thus, we do not regard Multiprocesser,E as in any .
' (‘x‘ . Al

'way an ideal or optimal multiprocessor algorithm difficult to

_imprové upon; it is mefely a very clear %pdication how a
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multiproqgssof‘pa;éllel architgcﬁuré could be exploited to -
yield agdgépatic speed-up of the %gqueptial computation. TMere

N * \/ R - . LN
%9fho doubt, however, that MultipZocessor E could be much

improved with respect to space complexity." y . T
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ASSOCIATIVE -PROCESSOR O
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Once more, in this section we describe the parallel

v

architecture envisaged, give a fdrmal specification of,the
corfésponding parallel algorithm, and obtain a 19wef'bqund

on’ the speed—up ratio for the system. .This time, howeverh .
'

we choose to make a parallel adaptatlon of the sequentlal

ingﬁf??&ﬁ BINF, sand call the. res ltlng“pa;allel ‘algorithm: | .

3 £3 ‘ - ‘ - « s

‘ °

, g 9, NN L ' . 2 '
Associative F . , - .

-~

A

-

9.1 DESCRIPTION OF THE ARCHIFECTURE :
S A o

The-parallel machine consists o

e . sy

with the processing capabllltles of . ac ventional computer ,

N

(2) a large assoc1at1ve or content-addressable memory in
whlch ea‘ch.memgry cell ,contalns‘ both a tag fleld,and a ter‘
(monoknial) field, and retrieval is by tag value, 23) a
moderately large term buffer for stofing intermediate results,

and-finally, (4l‘a parallel progessing'arraﬁ( that is, an »

/7,
array oflproce551ng elemenﬁs,jin whlch each processing element,

N T —

@

N properly 1n1t1allzed compuges one monomial product in parallel

N

T o

~~been loaded goﬁputes’the product ¢t : .=

with all other proce551ng élements. Each element of the

parallel proce551ng array (PPA) cqntalns a tag field and two

term fields, t, and't?u A’ term field may contaln one term :

X K4

When the PPA is fired, each element which has

(monbmial)./

® -]
‘ . 0 ~

ti*t,; the resulting

R 3 . . h‘ Z.'

. -, : v

ST T o R R ST

IR ERTR T S RRSTIATe FTT

(1) a control unit. L

°

i

o o i empcn

.
,
,
Y
+
s
‘l‘
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. . A
values of the -t fields may be routed either to the term "
buffer or to the associative memory. © °

v

-
-

The block diagram for the 31mplest form of, thls system

L9

is as foilows- / ‘ a

»

/off ta
4 . g

/11117

Control Unit

t(éy terml termé

—

).

m

&

Match - Associative . . JYparallel Processing
Indicator . Memory . Arxray )

FIG. 9.1 SYSTEM DIAGRAM

. . : E
The control unit 1s in 'communication with all other system units.

When the control~un1t sets a tag value into the command bpffér of

c

\ the ass éié;ive memoxry, the entire memory .is searched in parallel

\ . - o > . .

@\and any matches of#tag values are automatlcally-recordedA1n the-
: a .'~ ‘/ X
one-bit-per-cell match inﬁicator. ‘The control un1t may cause

the term flelds of matched assoc1at1ve-memory cells to bé& routed

>
¢

- to the terml-flelds of the parallel proce551ng array. The

'

control unit 1n1t1a11zes the term, fnelds of .the PPA either by
o routlng terms from the termeuffﬁr or by 1nsert1ng terms comput-

ed W1th1n the control . unit 1t3elf The control unit also -

Al

inltlalizes the tag fleldS'of ‘the PPA
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- / - Roughly speaking, } tag value identifies a term belong-

L

_ing to a spec1f1c power of a spec1f1c sub-polynom1a1 that is,

‘j;mme.'to one of the\yarlous 1ntermed1ate polynomlals generated during

R ~

o ' the\cdmputatlon. With an associative memory, rather than

stofing and retrieving these polynomiais\as explicitly-linked '

A lists,\we'do'so'by storing‘and'retrieving the terms belonging

At gy
3

‘ éo a particular polynbmiel on the baxis of their identifying
* . - tag values. Just gé‘we can ﬁanipulate linked lists by re-
| setting the péiQtersy so we can‘manipuifge tagge@ lists by re-
4 setting the tegs. The control unit (CU) requests ‘a specific B

< polynomial from the associative memory (AM) b&ngiding it the

— v v

appropriate tag value; the retfieved terms are then eventually

Y routed to the t; flelds of the PPA, where they are used in the
. computatlon. The PPA generates new—telms of new polynomials
ZE? ehe t. fields. If the tag fields of the PPA. haVe been
pgoperly 1ﬂat1allzed(by the CU) with the new tag values

¥

i . . correspondlng ‘to the new polYnomlals, then, after the PPA has flred

3

the t, fields of the PPA, together with the corresponding tag

. ¢ . o
fields, may be routed back to the AM to store the new polynomials

in the AM so that they can subsequently be retrieved for fu;ther

computation. "It ;é, of course, also the resbonsiBility of the

CU ‘to initialize the t, fields of the PPA prior to each firing.

; - This is one of the two ways the PPA is used in Associative F.

>

{ . . ) ] L] . . '
’ ‘ Clearly, there is a certain overhead in storing inter- .

o

- furthex computation. Therefqre, in certain circumstances, we

# ooy AT TGS T TR L

mediate results in the AM and then retrieving them laterlfor j:z g
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'choose to route the new

PPA to the tefm buffer, w

i
access.
A}

cessed, or when list products are computed.

s

terms computed in the t, fields of the
1thout any correspondlng tag values,
ﬁnd to retrieve them later by the simplest form of random ~ -

PPA results go to._the AM when terminal™nodes are pxro- -

The alternative

routing:is used during the computation of all the”constangt -

products in any one product'column of a pgt.

_ more, a typical pgt, this' one fof n =35,

‘Consider, once

+.2a*.5b + b".5a + a?®
3.4b + b?.4a + a%.6b®
+ a%.3b + b2%.3a B

N <4

‘a? +b? + a ,2b .

.10b2 + b?.10a2
9

ELG. 9.2 ‘Pgt FOR n = 5

-
'

Our task is to up—dateqthe AM, substitutlng

»

0

‘% he father node a + b for the power grougs

odes a and b. //ihe\flrst two’ d%lumns of the

t

t glng coludgﬁ

as this is all that is required here.

v

the ﬁower éroup of

of the two sub-
pgt are re- =

. The

remaining columns are product’ columns, requiring the computa-

o

tion of new terms by multiplications performed within the PPA.

For each product column, first the constant products are sent’

‘ -

to the term buffer, and then the list producfs, _;;n:e sent; to the

3

T TN I N Py
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' associative memory.

3

‘centrai'memory;" Similarly, the siﬁplest‘form of Associative .

_The simplest form of Multiprocessor E will run only if

1

the correqunding pdrallel machine has a generous supply of~

L)

\'-

F requires a large associative memory, and a relatively large - -

term buffer. Bth dlgorithms may be refined (and-comp icated)

whed the large _space reduirements of the simple forms ecome - _
critical. In the simplest form of Associative F, the product >
columns of each pgt are processed separately, all constant .‘w.»'
products ror a column are accumulated in the term buffer. .
Therefore, to process a node, we neéd buffer ‘space to store ‘ .
the largest collection of cégstant products. Let s tthe
subnode sizgd. When s and n are sufflently large, we
require a buffer able to hold size(s,p) terms, p = Lnz2). ,

\’ © ) N . .
Fox root‘processing, s = t/2. The associative memory must be

able ‘to hold the intermediate\;esults from }evel 1 of the

term-group tree; this amounts' to 2.group(t/2,n) assogiative-.

pmemory cells, and the ability to da parallel searches on

M

associative memories of this size. We now present a.version -

-

of Assocxatlve F whlch is su1t§ble for this Very &arge and
a » s »
power%ul parallel machlne" Agaln, we are ‘more concerned w1th
s’

'show1ng how to exploit an associative parallel archltecture

- )

than with dlsplaylng the optlmal associative’ algorlthm there

is no doubt ‘that 1mprovements and reflnements -are- pos51ble.

We suppose that ‘the parallel processmng array has a .

mu1t1p11c1ty of N, and clarjify the precise operatlon of a’

i , >

L
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PPA N-split. Cor%id"er one product c¢olumn, and the constant

'products within it. One polynomial is' to be, multiplied by
¥ . ’ *

4

one or more binom'xa.\cceffi'cie‘nts . The’ st of constant products

is a set of éubtasks in which N‘e'le_mTentary operations at a

gim can be exe%pt'ed ii'zs parallel.b As many copies ‘of the ’\poly—
nomial as tﬁere are 'cqnstant products are Foncat‘evnated,t;o form
one long polynomial. The first N, terms of this long pqiynomial
'..;re loaded i1."xt‘o theoN/tl—fields of "l\:he PPA. ".[‘ﬁe a‘pprOpri.ate
binc‘>mj.a1: coefficients are then loaded into the N t,<fields. :
The PPA is fired and the resgits are routed to ‘the term buffer.
~ This process is cdntinued until all constant prc;ducts fbr that
pr:oduct" column have been cE)mputedh. If W is the number o;f; |
elementary operations. in the set of conétar;t producté, th;zn
[W/N] firings of the PPA will be required to process BRe enti;e- '
set. It is an i\mportantyfeaturé.of'co'nstant-product"N-s lits
that ;ﬁhe PPA is fired prec*isel;;' ‘opce for each time it is loaded.’
Once tha set of cqq;tant i:rgducts for ahproduct column has ~been-
accunulated .m the term buffer, the list produc%s .for: atﬂ
colum® mady be compt':ted'.‘ »'i‘he 1i_st—gr\ofdu'ct': N-splits are slightly)

. 2D .
.more- complicated, basically in that the, PPA is fired several

times fo'r.eéch time tHat it is loaded. This will n?w also be

/<< .

~

explained.

-~ . ’

The l’"is't products in a product column -cqnéist of,'or}e
or more times, a distinct polynomial times another distinct o

- polynomial. These latter distinct polynomials are the constant

products which have &just been computed, and which are all of ~

S
!

i
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‘{i)recisely thé same size. In a previous term.nology, we have, -

LI
one or more times, an a-list times a b list. The a-lists Aare

[}

of -varying sizes, and. are ava'ilable in the AM; the b-lists )

- . A
are all of the same size,” and are available in the term buffer.

a

¢ »
j ¢ All the a-lists of the product column are .goncatenated to -

l . . '. [
form one long polynomlal The, first N terms of\this long

o

polynomial are loaded 1nto the N tl—flelds ©0f the PPA, The.

appropriate first terms of the varlous b—llsts are then loaded

g ]
into the N tz(-fields. The PPA is fired and the results are
- routed to the AM, ~,,_”:g‘he process of loadlng the t; f:.elds and
' ‘ firing the PPA 1s.\continued untll the b—-llsts\are exhausted
&Qhey will all be exhausted simultaneously. ) The next N
’terms of the long polynomial are loaded 1nto the . tt fJ.elds,
,and the whole process of tl-loadlng, ‘t,-load ng, and PPA-

]

flrlng is continued until all list products for that product

! L
column have been computed. If W is the number of terms in the
long polynomial, and S is the b-list 'size, then S.[W/N]“firings
of the PPA will'be required to process the entire set of 1list
.’ \ . , o
products for the product \column. More exactly now, the PPA !
ﬁf . ) - - 7 N )
, is fired precisely §S. .times for each _tlme‘ e t; fields of“
. B the PPA are loaded. ' ' = ' ' f"
. . \ . o
9.2 DESCRIPTION OF THE ALGORITHM
, A Assumptions: ' ' ' Y
~ ' ® ‘ S )

IS v

Let N, the PPA multlpllcn.tf be greater than or equél

G to t, ile.; size (£) . The changes to the algol‘lthm when t >N

)
* 1

L



- are trivial.

. Step 1 - Cregtion of the Term-Group Tree '
5 ‘ .

A

=
(X
i
P

4

A SPAES
e,
Xy

’
LR e o b

buffer’siza, be sufficient

Mo;éover;.let(n, (

to hold-tho largest collection of cdnstant ?roducts of any.. ., é
product column. WHen this tonhdition is not met,. systematic %'
modlflcatlons to Associative F can_ be made wh;ch allow the f
computatlon to- go through, but._ whlch, naturally, reduce the ”‘. §°
jgffd—up ratio. .ej S i “ . o ]

-

DN "

g N .
N N . iy . e een "
This. is essentially a book-keeplng operation. \051ng its

own private random-access memory, the control unlt creates the
¢ <

term-group tree, hot by phy51cally storing terms of the poly- y ' i,
!

B

B

nomial, but rather by allocatlng tag values WhlGh are Sufflclent
!

to unlquely 1dent1fy specific powerswof specific subpolynomlals.

«

-

As lnvthe multlprocessor case, the term-group tree functlons ’ ,

as a Q}rectory into the_various lists {polynomials) stored in ‘

. s e . ) .
the AM. The term-group tree essentially specifies the node-

:subnode relaﬁionship,'and gives the tag valueéJfof’all nodes

Step 2 - Processing of the Terminal Nodes

and all powers concerned.

S

_FJ

The control unit gates the t terms of the original

t, fields of the PPA. .N-t pro- . 4

polynomlal into t of the

cessing units 51t idle throughout thls step. The correspond—

'

ingﬂtag values a}b initialized by the CU and, Ammedlately, B .
) ]
terms .together with tag values qre gated to the AM. Next, i

™ the

.t ‘terms are copied into the matching ti-fields of the
PPA. The lattex is fired n-1 times (tz': = t;ftz), creating

i . \
'
, . . ~
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the powersvfrom 2 to n of the terminal.nodes. .The tag values
are 1n1t1allzed prlor to each firing, and terms plus tags are

gated to the AM after each flrlng " The PPA caﬂ send to the

A}

A AM only from its t, fleiasﬁkand can receive from the AM only

~in’its t. fields.: After n-l firings of the PPA, all terminal -

!

1

e . node processing is complete. . \

- v o

e

<%

a4 ' ' ~ ) .{" H
Step 3 = Processicg of the Lower Interior Nodes : : \
= \

. -
Lot o

. //\ © For each level of the teimfgroup tree from k-llto 2, in

‘that order, all powers from 2 to n of all hodes' at that level
Lo : LY .
are computed. As Associative F uses distribution, level 1 is
. . / ’ . N
" . 7 . . treated separately. The fundamental strategy for cofputing a

- '.group of powers of a node, given the groups of powers of the

Tee ‘ twc‘sub—nodes, is as follows. The entire PPA is allocated to

. . one node at a.time. The pgt for that node is processed -

-produc ylumn by product column, let us say from left to right.
o " , ; E ‘ 'product column consists of some number m of prcducts of

! ’

.
P B R

o

.the form a-list times b-list. The a-llsts are dlstlnct poly-

. ﬁomiéls; the b- llStS are dlstlnct b1nom1al coefflclents times

a _unigye polynomial associated wity the product column., All
b-lists for the column are computed and stored'in the ‘term

buffer u31ng ‘the constant—product N—spllt descrlbeg'earller,

;,“)L . . the unlque polynomial is retrieved from the AM. Next the m
llst products én the ¢column are computed and stored in the AM

"using the llst—product N-Spllt descrlbed in' the same place;

. the Q@ é—llstg are retrleved from the AM as needed to load

o f the t1 flelds ©of the PPA. Prior to each firing of the PPA,
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the CU initializes tﬁgﬁtag fields with "appropriate tagAvalues,
%uhi the t, fields with terms taken from the -teérm buffer. After
each firing, the new values of the ta fielde, and the. corres— .
pondlng values of the tag fle]ds (which 1dent1fy the llStS to
which the new terms belong) are routed to théaAM After all
product columns of all nodes at a“level j have been pFO-:
cessed, the CU causes all terms at levelfj + 1 to be retegged,
making the lists.at the lower level part of the new level, and
thus completing the process ofAhfiting the powerogrOGpe of

all nodes at level j‘into the AM. . At the end of step 3,. the’

AM contains exclusxvely the power groups of all nodes at , T e,

. Y \ /
level 2. ' . : ) . S~ {
Step 47~ Processing of the Nodes at Level:‘l - '\“

i

Proceesiﬁg a.pgt at level 1 is strpctﬁrally ideptical to
proﬁessiné a pgt at a lower level. The d%fferénce is prec%eely
.that, in some hlaces, distribut%on coefficients are.shbstituted
for binomial coefficients before!the‘comgutation begins. If !
a binomial expansion atilevei 1 will be used in a b—list at |

A/f/vel 0, then all blnomlal coeff1c1enﬁs 1n that exp%n51on, if
any, must be substltuted' ForJexample, suppose,that a,b,c(
and d are the nodes atﬂlevel 2," and that (at+b) 2. 6%c¥d)2 is - o
required in the binomial expansion of the root, namely A ~
[(a+b) (cid)]“ As part ‘of, computing the" b-llst 6(c+d) ? .
d;rectly, we substitute c l2d for c.2d4 in the pgt for ¢ + é%
and so on. We defer all blnomlalvcoefflclent mqitlpllcatlons
‘issociat?h with ;etaggfhg columns, e.g., 6(c2;§2), to Step 5.

@ K - 3

»

|
%
¢

e
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) ;n conSEquence, the retagglng Whlch normallf‘follows ‘the . ..

" £

processing of all product columns of all nodes'at a level will

_have to be modified sdmewhathso as to be ‘able to retrieve,

v

say, c? and a? separatély from 12 cd. At the end of Step 4
P

we have computed the a-lists and some terms of the b-lists to

be ysed at level 0.

- . “ 4 \

> -r  'Step~5/- Processing of the Root Node
- (“7

) . - ," . ) ‘.‘\‘

b - o =

’-x’

b C As before, we write* . . . .

. , '\.) J N . - .
e NN n-1 Do L
. : \ f“~ \ﬁn + f '+ I .a-list,.b-list..
"‘ \ ¢ 1 1 . 1
' 7» 7 ! .
This is the usual blnomlal expan51on in which the‘plnomial
\ I

coefficients have been included rn the b llgtsf The poly m*als

f?,fzr and all a-lists hav

en computeq. We use a 51ngle

form all the blnomlal coefficient

.

multiplications necessary to 'omplete the' computation of the

. constant-product N-split to

b-lists. We lo3d the flrst ‘two b-lists into the term. buffer.
we concatenate the first tWO a—lists to form.a long polynomial.

We use a single llst product N-Spllt to ¢compute the first tweo.

e
v

list products, the answers may be wrltten.to dlSC- ‘We contlnu%

~

in this way, two- by*two, untll the n-1 115t products have been

. computed. ~This completes the pr0ce551hg of the root.

-

—_ ¢
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A

vmatlng the functlon P(t,n).

required tp process.a node, at any level from k-1 to 2, when

)
P I e k ! ) ’
, ey R . N )
. _BW(s) [% « (n-i). (S+u l{l , where u = [i/27 (9.3.1).

- This is just the-

et W s
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9.3 ANALYSIS OF THE SPEED-UP. RATIO

o A s ~

-

N,

v

hatt

'We can obtain the speed— " ratio for Associative F

t

. by dividing the number of elementary operatlons in the sequen— ’

tial algorithm (BINF) by “the numbes.of firings of the P?A 1*

the parallel algorithm. We denote these'two guantities by

s

F(t,n) and P(t,n), respectively. We\aSSess the‘speed—up ) -

ratloL7ét n)/P(t,nr\b £irkt calculating and then approxl—
There are n- 1 firings of the PPA to

process the terminal nodes. We calculate the number of firings

tﬁe:sgb—node size is s. We calcu%gte first the number‘of fir-

;nés for all binomial work.in a pgt. This is given by

(I; '

over, uct columns of ceiling of 1/N of

the size '‘of all b-lists in th olumn. Next, we calculate the ,_

L -

) ' z, 8
number of firings for all non~-binomial work. This is given by

) n-1 : n-u ‘ -
NBW(s)= £ (301, [-% g (5t371
. i=1 j‘=V~ J

P - o +
. (o X

and v =\F(i+1)/2]

ﬂ, where u = fi/21(973.2)\‘

This-is‘just the sum over product coluhns of

i

.the size oﬁ\she b-1list times celllng of 1/N of the size of all *

a-llsts in ‘that column "~ We now have, for each node, the number

of flriﬁgs\&? all constant—product N—spllts, and the’ number in -

Al

all llst-product N-splits. ’ ' : ' o

‘r""-"- N T e e Ve LS WA Ny

JURPRPEE Y

Wy s LSRR o>

g 3 8
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4

; . - The two formulas BW(s) and NBW (s) need to be summed

b TR BB

~over all 1nterlor nodes from level k-1 to level” 3 for the ’ ;

total number of flglngs of the PPA in Ehe_glassical pgt work.

.- }v//gzﬁce ;he processing at level 1 differs only in the substipu;
‘ ti £ " @dtribution coefficients, the sum may be extended to :
oo le::;qzt\ﬁmhe nuhber of flrlngs in the’ sxngle constant pr;duct i | Ll
N-5p11t at the root level is. glven by o _

~ .
N “ 3 ‘
. ® N “
< .,

]-l (9.3.3) )

.

( ; -
, ' v l% . [4.group(t/4,r-1) + 2N .size(t/4,r)

9 [T N

where =D[n/21 and N = 1(0) when n is even (odd). This is
- i

just ceiling of 1/N times all oot.binomial work in either of | -

< . the F .algorithms (BINF or A sociat?ve F). ‘The number of

3

o firings in the r-1 or r list product N;Splits at the root level
X R . ..“ ’ ) v . v L\ -

is given by

. N ] | _ )

‘r-1 r : : . . o

+ -3=-11" 2tr— g :

Do (V2N L (V2] (W20 0 "4

j:l " VJ_ R J b o : o . "J k."n

B o T2 . g i

‘ . .- . ﬁ( Y )-I . .n (9'3!4) ‘g.
X whéfe T andixN have the same meanings as above. ’If'wen A T

\ - K . . 2

7
. e

the flrlngs for the root node
- %

. finally an expré§sion 5§f"P(t,

nd the termlnal nodes we - obtaln
.,,i\ .
This is glven by
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: T r-1 .
; < p(em) = 1 - (WAL, [
‘ A 4 3
; i=1 .
‘ ' 3 , . ) ‘ 5 N K
l ' : - .|’l(t/2+‘r l)q‘ + [l . [4.group(t/4t\r':—1)‘ +

2,t/24n-3-17] | t/24r-1, |
5 n-j . )-‘ * Ny r. )t f

N r N

[ ~ - .
. L Y k-1" -
.- ) T+ 2Nn.size‘(t/ 4,r) ]-] + I 23[Bw(t/23",'1) +
. . ) . j=1

R

~ e - . . °
. ’ »

. ,‘\, . <ol . é \. - N o
) R + NBW (/2771 1 4 n -1 . (9.3.5) e

A . f/‘ ‘ o \ >
") As before, we obtain a lower bound on the speed-up ratio

_R(t,n) /P (tn) by obtaining an upper bound:onlt_he quantity P‘(t,n)‘.

L

In general, [s/pl <s/p + 1. We make systematic substitu-

tions of this inequality for each occurrence of the ceiling

v

"function to ébtai’”n an upper bound of the form P(t,n) < F(t,n)/I:I +

Q(t,n‘)l. The contrj.but;ion ‘ﬁo Q{t,n) from the root is just / e

"

;group(t/2,r-1) + Nn‘.”group(t/Z,r) + 1. As explained in the multi-
processor analysis, the terminal nodes give rise to a contri-.
bution of (N=t) (n-1)/N. pr we refer back to the form of BW(s)

\ y o and'NBW(s) , we see that each interior node makes a contributien

W f . o

of n-1.,+ 2.group(s,r~1) + Nx;.size(\s,r), where s , as always, is
Lo the sub-node size,:)

The té,rk'm n-1 comes f‘rg.m’ substituting the
ceiling- iftequality in BW(s)),~ the remaining -terms .from substitpt-

S ‘ ing th‘ga,'s_ame inequality in NBW(s). - B

. N N

C | . &% . " Therefore, we may write .

Fl
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, 4 Q(t,n) = group(t/2,r-1) + N_.size(t/2,r) + } S
i . - ! : g - - - é
| L . L - ,
. k"i . 4 , .+l L. \j' f
- 7 ‘ - A + 1 2] [n-1 + 2.group(t/23 'r'hxh+ ;
' | e Y

A

L)

.

e

23+1

- | . ’ + N .size(t/29* 0] + -ty (-l (9.3.6)

sy
. . . - . i
g 3 - . t . - ‘1‘
- \ . . « . ‘
- \ . f .
[ -

The summation may be written as

- v k22 g om .. : .
: - (n-=1) ¢t-2) + 7. L 2 {2.group(2™,r~-1) + » - o .
'.‘ b m=‘0~ ‘ ] s " ° \\ .’ ” ;
R - . m p ~ . P o ‘g
. ' +3Nn.51ze(2 9 1 , (9.3.7) “
: T . . . LT c . !
f a * “ ) - ° [ ‘ . , .
" i ‘Using the closed forms of group(s,n) and size(s,n) this is ’
L . . . \ . . ‘ R e ¢ i

4 . ' t - ) ° * ~\‘

‘ e K2y -1 ‘

. ©o(n=1)(t-2) + o3 L E I bo¥/(2M3 K

. 1 * . . m=0" j=l J- _

s A

N s

where R "

_ (r) 2 - r nrr x S
. = . = ~
- P50 T T byad toer LA and Ll =0
. . . ’\ . . . a -\
o i oL B ) ‘.. @
3 Simplifying gives 2 . \

. K ' . . . . . . r"'l (\ ) ‘W'
o | | (m-1(e-2) + 5 opF e B e B b (e/2)3-1
N R : , _ 1 . =1 j+1l ZJ—lﬂﬁ .

~ (. LN

» W

” - . " - . ‘ .e O . . . (9.3.9) ‘

- )

o . ' . Finally then ' : ' S ; | . o
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Q(t,n) = group(t/2,r-1l + Nn.size(t/Z,r) +
= o or-1 (x) gy <
RS R P U T R SR L
j=1 J 271 .
+ (-1 (=) +1+ 5 . b %k (9.3.10)

N - ~

3

Since ﬁ(t,n) < F(t,n}/N + Qft,n), we have the follew¥, -

inéxlowev‘boﬁnd on the speed-up ratio for Associative F.

u
o

- . N

F(t,n) , o _. F(t,n) ‘o :
FEn) N FlEm) + N.Q(En), - . {9.3.11)

This speed-up ratio 1s, clearly, less attractlve than the

speed-up ratio for Multlprocessor E. The 1eadlng term of Q(t n)

N . . . R - b
is giVeh)hy ~{( . .
. . . “ !
2-N

4 & o+ __1_._], where P = [n/2]  (9.3.12)
“In comparlson, the leadlng term of’ "F(t,n) is " /nl‘ Therefofe,‘

for large t and 1a;ge n, Q(t,n) w111‘be negllglble 1nbcompar1~

son with F(t,n)~ It follows that, asymptotlcally, the speed-

Y

_up ratio for 355001at1Ve F approaches the theoretlcal ‘ideal.

S

The quantlty N.Q(t,n) is vastly larger than ZkN + (N t)(n—l), -.

the corresponding quantity in the formula for the lower bound
‘on the"speed—ug ratio for Multipigcessor E.' It cannot auto- |

Yy - N
matically be concluded that the multiprocessor parallel archi-

tecture is)superier to the associative-pkocéséor architecture
A : ‘
- for this computation; one would need to make a careful study

D
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- ~ of.the hidden overhead in Multiprocessor E. It seems that . -
1 \

R the overhead in Associative F is considerably less. This may

ultlmately t1p the scales in favour of Assoc1at1ve F. N

+
. ; -
* . . ‘e

Several modifications .and improvements of algorithm v

¢ I ASSociatlve F suggest themselves.‘ One could adopt ‘a unified

‘ ~strategy by processing palrs of product columns in the pgt;

Co “thls ls the way list products are co@puted at the root level in

the present version. " The pa1rw1se strategy would reduce the ‘

s 'contrlbutlon of each node to Q(t,n) to n-1 + group(s,r-1) + °
Nn.51ze(s r) swhich affectsﬂ}he coeff1¢1ent of'the leading term
of o(t,n). (In (9.3.12), " 2-N_ becomes l). In case the term

_\ buffer is not large e%ough a simple modification of the
_archltecturep nameiy, prov1d1ng separate match 1ndlcators for
‘a—llsts and b- l;sts, allows one to segment the subcomputatlons

as_ they are currently deflned and have piecemeal loadlng of

~@arts of a- llStS and parts of b-lists, alternately,- wrthout

add1t10nal a55001at1ve searchlng Flnally, in ch0051ng%$etween
. Multlprocessor E and Associative F, one must consider the

machlne cost. - The processing elements of the PPA are 51mp1er

than the slave .processors of the- Multlprocessor machine. Thus,
it is en x;ély p0551ble that, from an economlc standpornt,

one could %Chleve much 1arger multiplicity with the assoc1at1ve
architectuy e. We bellevevthat Associative F is a strong ‘
’argumentslﬁlfavour of the Very great sultahlllty of an associa-

tive paral{ 1 archltecture for thls class of computations,

- more sultabhe, in fact, than the multiprocessor architecture.

5 _ : , o
@ . 7 Ce
" a * . ¢ ’ . b
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‘clearly it is a good way, for the f0110w1ng reason. We fake -

"of list products by the methgd outlined above, one needs a -

~

We have been careful ndt to claim that algorithm

L .

Associative F is tlrie optimal way to exploit the proposed

.
o . .
A g vt )
Sl e sl RS

spec1al-purpose assoclatn.ve—processor architecture. Yet
‘ 9

AL e

<

5
e ety ek

best use of the PPA by minimizing the number of times it is

fired when it-is. less than completely full.' Associative F.

»
adopts the strategy Of proce351ng the list products in a

pgt at most two product columns at a time. This ensures that

AT -

the b-lists in the set of list products are all of\precisely

one size, say, 'b. It will- require.some number of‘loads of

the t; fn.elds of the PPA to exhar\lst +the a llStS in the set
‘of 1list products. For each such load, except possibly the \ g j

last, there will be b firings of the PPA which use its capa-

01ty to tne fullest. Moreover, thé initializations of the

2 fields of the PPA prior to each firing are stralght— s .

Let Ni t;—flelds of ‘the PPA contain all or p\art °§

a.; the N, matching t,—fields are-all filled with

s 1

i
)gobe. g_(i)gg ternm of’ the correspon\éing -b-lis"_t, bi_.' .w’ith t;ivial
random-access initialization, of the t, fields, we get the
\bené_fit of b firings mof‘all N cells of the PPA befo'reﬁthe' next
~load frém the AM We have reason to believe, theh‘, that we | . ]
are making good use of thi's«pa’ral‘lel' machine; and that process- '

,ing two product columns at a time is the best we can do. -

L4
3 “a
» The space requirements for Associative F a_tfe not

absolute,' in the foilowing gense. Normally, to process:'a set

term buffer &ble to hold all the b-lists belbnging to the set,

. e
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and all at once. When a buffer of this size is mbt available,

the éomputatic_)ﬁ may be performed in a’ piecemeal\fashion, with
a resultant decreése in speed-up ratio. The discussions réla-, :
tive to the space complexity of the sequer;tial\ algorithm BINF
show that one could not hope- 'to implement the parallel algo-
rithm Associ-ative F,» as it now é”taﬁds with less than )
swe(t/z,p) + 4. group(t/4,n -1) cells of aassocz.atlve memory,
nor less than SJ.Ze(t/Z,p) cells of term buffdr, where p = I_n/2J
The two requlremegt:.s are additive. Algorithm modlflcgtlon
amounting to space—time,.tra'tde—off has already ‘\becen mentioned;
g:‘Lven tﬁe lower cost of buffer éelis, it is prébably not' a
good idea to make up for ,insqfficignt buffer size by increasing

N W
the size of the associative memory.

)

A somewhat generous esti-

mate for the space compleitity of Associative F, then, if we

cpmb}ne the two forms of memory, is given by

+

[ .&0
- 2.size (t/2,p) + 4.group(t/4,n-1), p' = Ln/2].

Ei N

4 « 7 V " - (9.3-1‘3)1
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CHAPTER X

CONCLUSION .
. . 'rr i

We have resfrictgd ourselves to the pg:oblém of the
symbolic computation of infl::ege_r,power's of comfletgly or
;lmost conpletely sparse multivariate polynomia’ls.~ Six new
algorithms for 'ghisffﬁroblem, namely, the four sequential
algorithms BINC, BIND, BINE, a}xd BINF, and the two parallel
algorithms’MultiproceSSO{ E and_Aségciative F, ﬁabe;been

é?bpesed and investigated. The twofpa‘rallel algorithms are

specifically intended to be run on two 'special—purposé parallel

machi'nes,' also discussed in this thesis. All six algorithms

N »

are baéea dn the idea of using binomjal expansion as the funda-

s . ) AN
mental and exc1ﬁ51ve 5001 for comp‘\ﬁng\ powers of polynomials,

for- the des;.red power of the original polynomial, fdr powers

PEN .

of subp,olynomlals {(other than monomlals) arising in the
orlglnal blnoma.al expansion, and so on, requrs:.vely. 'Previoﬁs
\anaiysis did suggest the superfority of binomial ex‘plansion as
a géneral approach. ~ Howeve‘r, the previous best sequential

binémial-expansiofl algo’rithm, namely, BINB, did not, carry the'

bln;omlal—exp*xuon approach through systematlcally, i, e.,, re-

‘ curs:n.velya, and so did not realize the full benefits of the
- {\"o
binomial-expansion _approach. _The four new sequential a o—J

rlthms are successive refinements and J.mprovements of th

»

xstematlc b1nom1 al-—expans ion approach.

“

'.l‘he ma:m conclusions for the sequent1a1 algonthms may

be summar:.zed as follows._ Bqth the time complexity and thé




.
s an

o e—_

- W

»

" obtain powers of subpolynomials, both because of the excessive

YPmy— ombeaeye’

) K \
space complex:Lty -of the algor:.thms depend on the de51gn dec:.s\-
_ions relatlng to polynomlal splitting, subpolynomlal powermg '
When the

and cross-product formai;:.on, as discussed above.

roa

. oY
*
! N o

“because of the substantial reduction in the cost of powering .’ >

polynomials are sparse, even splitting is to be preferred

0y

subpolynomlals, this idea is used in allvof these “algorithms;

including BINB. Repeated multlpllcatlon is not alfgood way to ‘ "
2 L) . . i

number of coefficient multiplications required, and because of
AN . . L ) N}
the need td sort the intermediate results; this less than

.

optimal- 'a‘lpproach is used in BINB, but in none of the new algo-

rithms. BiNG and BIND both use recursion to generate powers

BINE uses a modified form of recursion akin

o

'of subpolynoml als.

,to dynamlc programmm BINF uses a modified form of dynamic

some 'intermediate ste%ln this :
ity decreases each time, e think it ,

is very unlikely that there is something better than dynaxilic

programming wh J.ch avoid

the time compl

.series,
> [4

progrémming for computiﬁg the powers .of subpolynomials, given o

the computational and cost models which have been a¥opted -in

n

the thesis, and discussed above.

- 4 \

¢ ' ' : . ]
BINC, alone among the new algorithms in this respect,
- .does not use the rather obvious improvement of always multiply-

» i

J.ng the blnomlal coefficient by the smaller polynomla} flrst,

[

BINB also faa.ls to take advantage of thls lmprovement. When

we analyse the t:.me complex;t:.es of the five sequentlal bJ.—

nomial—expanmon algorlthms BINB BINC, BIND BINE ' and BINF, we
s . L .

— A
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“find that the) respective cost functions form-a eﬁricﬁly mono-

tonical%ﬁ decreasing (finite) sequence. The: new algorlthms

have the further advantage that when the polynomials are

‘&sparse, they do not, unlike BINB, require exponent compari-
X B ! \
"'sons. If one is generous in assigning a low space complexity

[y

to BINB, then only sophisticated 1mp1ementatlons of BINE, and -

" the ‘standard 1Mplementat10n of BINF, have lower space compleX*

* ities. BINF does verylwell from a space-complexity standpelnt;

tﬁe modified form of dynamic programming it uees was .specifi-

cally introduced to save space, not time. We conjecture that >

BINF ks optimal for both time and space among eequential biT

nOmlal-expanslon algorlthas. The cqst.comparisons have been-

made’using both comparison of leading terms of.analytically—‘

obtained cose functions, and straight tabulation; the two o ‘\\;\ .

methods do notigive different-reeulte. | ‘v o
« In the.parallel case, the aim is te devise parallel

algorithms in conjunction with:special—purpose parallel architec-

tures, paralf?l solutlons to the problem of powerlng sparse

polynomlals appear not to have been studled elsewhere. The

‘two parallel algorithms Miltiprocessor E and Assoc1at1ve F , v

both have sﬁeed—up ratios which, asymptetically, approach the

theoretical upper limit. Althouéh tbe‘ealculated speed-up

ratio of the former seems to suggestA{hat Multiprocessor E is

'the superior ef the'two-algoriihmsf»we be}ieve ﬁhat the time

compiexity hidden in the:MuLtiproceesoi E ovérhead, and hard-;

. ] A
ware costs, both shift the balance in favour of Associative F.

’;fhe space complexities of the .two parallel algorithms, abparentiy,"

a4




.
g

B BT O

“~

T -

+

—«Mﬁ‘mﬁwwm T ST ¥ 46 Mmf"“w ¥
. N N

.may be adapted more or less dlrectly, to yield good parallel

research.

i tﬁeoretical computationakl complexity.~ It is the feeling among

algor:.thm BINE with a full implementation in PASCAL 6000. We

-~y vy B

/ | : . N .
are not e?ormously different from the spade complexities of

, . v
. . y

their sequential counterparts. me main éaralleg. result i,e,
not to exhibit optimal parallel algorithms;” but rather to . | ' r-r
show conv1nc1ngly how very well-sulted these or similar parallel
algorlthms' Funnmg*on the two proposed parallel machines, are . ‘ }
to the general problem of powerlng sparse polynomlals. .vIt'
seems also that godsd sequentlal algor:.thms for thJ.s problem ’

alqorlthmsﬂ. The whole parallel area is wide open for further

T S At Rk S o S

This thesis has been inténded as a contribution to
computer é\cientiﬁts“ today that'no new algorithm can be respect-
ably /resented without some analysis of its behaviour. While !

‘ 3
not rejectlng the approach which is based on emplrlcal comparl-
sons of (hopefully reasonable) :melementatlons of competing

algoritﬁms, our approach to algorithm analysis has been essént-

1ally to obtain the analyt:.cally-exagt cost’ funct:.ons, and
compare them. However, we have tested the performance ‘of
state again that major portions of thls thes:Ls have prev1ously

been published in [2]; a.8hort E:omparlsor}/of the

arl:.er i

and later write-ups occurs at the end of Chapte L. B ‘
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APPENDIX I

«

. VALUES OF B(t,n),C(t,n),D(t,n),E(t,n), AND
L(t,n) FOR SELECTED VALUES OF t ANP 'n

[
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69 _
550
5878
7334‘}

, 8980

13173
15792
18657
22048
' 25774
30052
34708
40029;
45785
52304
59323
67212
- 7566
110
"1254
21870 -
. 28687
36664
46830
58558
73178
89846
1110245
133270
" 141013
192060
228972
269974
318160
371338
433203
501086
162 -
2574
71462
98238
131020
174670
227198
295333
376143
.~ 478702
598838
" 748521

'

.~

i

T

—_—

il

.10961 9’

e

98 .
608 .
5116
6252
7%13
9150 -
+.11070 -
13058
15357
. 17922..
21604,
24696
28193
..32054

" 136494

‘419006
46441
52162,

T i58424 - -

178
1419
18988

© 24403
31172
39282
49639
$1715
75003
91200

114527

- 135572
160107

188307

221274

. 258144
300242

347865

401652

290

- 2923

. 42538
84484

113115

149294

© 196715
253107
1323243
409016
532548
652920

~

,J .
. 96
.. 586
' 4944
6065
- 7366
© 8845
10584
12544
14768
17277
20098
. 23265
_246796 .
30715
35054
39839
45104
50876
- 57192
174
1364 -
18412
23796
- 30320
38247 .
47714 |
59076
72442
88247
106632
128144
152932
181503
214134
251457 .

293740

341642
395528

© 284

- 2820 -
61084°
82942
110830
146296 -
190672
246115
314274
397801
498956
621356

. 68
458
4400
- 5434
64648
80&O
9692
. 11555
13482
16494
18818
. 21865,
25276,
. 29075
T 33294
37947
~43080°
48720
o 54984 .
110°
. 1036
116852
21948

e

2

28184 .

35823

45002

96034 "
‘ 69090 °

© 84545 T

102600
123688
148052
176199
208404
245243
287040
334456
387856

’ 164

2140,
"57508
78617
' 105756
140473
184100

238660 -
305936
388580
488852
.. 610067

31

322,

3846Q
4828

5947
729% .

8835
10605
12428
14927
17526
20450
23725
27378
31437
35931
40890
44345

52328

92
784

+ 15488
20332

26316
33630
. 42484
53109
65758
80707
98256
118730
142480
169884
201348
237307
278226
324401,
376960
.80
1708

94248

74596
100929
134577
177080
230209
295988
376717
474996
5937?0

v
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13789564

2867502
226
1894

© 211774
304397

587993
795138

1223406

1

. 1848445
2417758
3122905
3970588
5039559
6309938
7887388

7 . 146466878

921984
1134722

1674418
2010833
2412970 .

4233746

7480

9743108
7 12016489

A}

797703

970146,

1176437
1417035
1699647

2029322

2412504
439

59529

188160
266707
373591
515312
Y06573
947303

1257875

1652874

2203285

- 2820994

3563212
4476529

5598258 "

. 6953642

BS91384
10557437

767598 .

241871
1147714
1390442
1674210
2005249
2388784

T 430 -

2344

© 184740
263151
- 3678964
907323

689254 .

9260686
1228658
1613841
2097304

- 2702731

3450664
4371619
5493950

- 4858651 .

8500808
10472904

12906000} 12821992

N

T 8440284

E L

755124 - 7346255
9282312 906145 .
113280 . 1107540
137418 1344875
1656532 ' 1423130
1986154 1947761
2368272 2324752
230 114
4104 ' 3424
177594 170528
254333 24%140 -
357404 344084
495157 * 48048%
675414 657780
910192 - 888009
1210750 1184018
1593899 1560757
2075328 2035776
2672906°
3422990
4341094
5460578
6821288

10428759
12774256
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-E(T,N)-F(T,N)

33
37

46
51
56
61
67
73
79
85
92
99
106
113
121
129
114 .
118
167
157
202
‘20_%
278
263
326

. 332

429
408

. H92
- . 499°

626

- 598

706
194
228
262 -

o307

352

102

452
515
578
647 .

716

800

.- 884

975
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1174
1282
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l

(t,n) l. AND

VALUES GF S (t,n), S (t,n),
SF(t,n) FOR SELECTED VALUES OF t- AND n
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