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ABSTRACT

4

Simulation and Analysis of Dynamic Loads
on Cylindrical Gears and
An Improved Method for Fatigue Damage Asses@

Q

Selva Kumar Arumugam, Ph.D.
Concordia University, 1986

v

In this thesis, modelling’and solution procedures for
the estimation of gear dynamic 1loads and the resulting
fatigue damage in cylinarical gears & are presented.
Non-linear, non-stationary mathematical models incorporating
the effects of the variable mesh stiffness, the transmission
errors, the backlash, the friction between the teeth as well
as the coupliné between the torsional and lateral modes, are
developed. Both determipistic and stochastic input
.charaéterizations are considered. The mathematical models
are golved for the dynamic-response\ané hence the dynamic
.force, using state-space technique. The use of state-space
technique results in reduced computational effort and at the
same time provides useful information regarding the dynamic
stability of gear system modelled with minimal adqitional
effort. Also, as a part of this thesis, a new modelling and

solution scheme for analysing large dynamic systems is

developed and is applied to gear system dynamics problem.

Is
¥

[
The fatigue damage and the fa;igue life of modelled

gears are then estimated with the use of local stress-strain

- iii -
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fatigque approach. The required local strain history at the
critical 1location in’ the fillet 1is computed by the
application of Boundary Element Methods to gear tooth stress
analysis problem. 'To include the effect -of multi-axial
stress condiyions .at the /fillet; an equivalent strain
quantity is defined, and used as the controlling variable.
The fatigue damage due to the eqﬁivalent strain excursions
is computed based on strain-life curve and,accumulaied with
the use of Miner's tule;ﬁ For 'this purpose, a computer
simulation prograh, incorporating a simple cycle counting
procedure, and the non-linear functional relationships
between the local stres;e; and strains, is implemented: The
program breaks any complex random strain history into
individual cycles, so that_constant loading fatigue data can
be used for damage evaluation.) In contrast to any existing
program, 'the presented simulation program is concise and
does hot require the entire strain history ¢to 'start the
simulation, which makes jt ideal'for‘microfprocessér based

real time, on-line damage evaluation and monitoring -

applications.

At each stage of the thesis, the results from the
simulation are compared with the-available experimental and
numerical results to validate the developed'simulation and

analysis procedures.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW .

£y P e
fy@?"
1.1 General \ RS
Gears, generally defined as ' toothed members -

—
transmitting  rotary motion and/or poyeT from' one shaft to

another, are among the oldest of mechanical devices and are
generally the most rugged dnd durable. They form the vital

n
elements of main and ancillary mechahisms in many machines

—

used in" such -diverse industries as. aerospace, process,
refinery,.constfuctién, mining, marine, aﬂd_,:ransportation.
In all such applications,: there has been a continuing demand
towards higher reliability and higher éfficiency‘at a lower
cost. Gear designers and,.the gear industry in general, are
respondiné to this trend by constantly refining their
analytical, design and manufacturing techniques. Clearly,
overdesigning for better reliability is no longer acceptable
and hence opfimal designs which satisfy the constraints of
improved reliability and ligh;-wéight configuration are
being sought. But the present gear design methods which are

based on empiricism and conservative design principles are

not formulated to obtain optimal designs and thus at best

result in designs which are heavier than necessary and at

worst result in unpredictable and catastropic failure modes.
Also, the‘*most optimal design may not necessarily lie in the
design space defined by the existing gear design standards

(1-3]. Thus, a methodology is needed which would not onlf
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*aiq‘ in the evaluation of existing designs but would, in

hddition,:apply accumulated field data directly and quickly

to new designs in order to achieve.optimal design.

-

‘Towards this goal, a new computer based methodology for
P ‘

a reliable estimation of fatigue life of modern industrial
gears uﬁing measured, simulated, or stochastically estimated
loading data, is propésea in this investigation. This
methodology can be used for either for.simulatihg existing

gear sets or systems, -or for synthesising new designs.

'Broadly, the methodology developed consists of the Egllq!}ng»

three steps:
1) computation of gear dynamic . loads using
realistic analytical modls, g L

2) computation of gear dynag}c stress¢s at critical ;
)

A

3
o

: locations using boundary element ‘ethods,
‘3) computation of gear tﬁoth fatigue life based on
local stress-strain approach. ‘
Even though the proposed methodology is 1appl'icable, in
principle, to analyse any type of cylindrical -gears,’ .spur

gears of both étandard,and non-standard types are used in

. this investigation extenSively as case studies. Because of

th®s, it should be noted here that, unlégs otherwise

mentioned the term 'gear'. in this thesis always denotes
e [

<
‘spur gear'.
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A éomplete)geaf sgstem which includes the mating gears,
the shafts and the support beérings, the ‘'seals and the
housing may fail- in many different ways. However, most.such
failures manifest theﬁsel&és in the failure Iﬁf the gear
teeth. Thé American Gear Manyfacturers Asscosiation (AGMA)
4] citég 21 moaes of éear tooth failure. Of these, wftal
fatique Calbne “accounts for more than 50% of all gear
féilureé; In gears, metal fatique manifests itself as
‘%urfaée fatigue' and bending fat%gue. Though'.
phenomenologiéally bo;h:type of failures are the . same, thg
influencing factors are differedt. " This investigation
primarily dgals with bendin;_ fatigue only. Howéver, the
proposed methodology 1is equally applicable éo the surface

Y,
fatigue life prediction. .y

1.2 Fatigue Heﬁign of gears

The dynaw}? loads acting on the gear teeth, as a result
of the gear |[system dynamics, .cause sfressifluctuations at
critical locations eventually leading to fatigque failure.
The recommended standard [1-3] procedures for fatigue design
of gears is based:-on the ciasgical S-N curve analysis. In

¢

essence, the fatigue design of gears, is carried out éy
ensuring that the bending stress at tg;:ﬁcritical location
icomputed uSiLg the modified Lewis equation and the surface
stress computed dsing the Hertz contact theory are well
below the endurance limit of the gear materiél. Some of the

shortcomings of these methods are outlined in this section.

- -
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Even though gears represent a high'level of engineeriﬁ@l
achievement, conventional design methods [5,6] bgsed on

simple sirength. of material stress models coupled with

.empirical correction factors lack - consistency ' and.

.
universality. Basically, in the conventional design methods,

]

the success 6f a design is ensured with the use of ,numerous
: ; “ : .

modifying factors which provide enough margin of safety.

However, most correction factors are loosely defined, have

no or little analytical Backing, and are mostly based on

experience rather than scientific experiments. Therefore

any application outside the average routine design range is
not supported eithér by theory, or by empifical .data
c&rrehgly availqble. In such cases, the design process is
augmented by répetetive and expensive ﬁééping of prototypes.\
Also the conventional design process is based on tooth type
and AAOes‘nBE.take into account the variations in gear type.

For example, it does not differentiate the external gear

design from internal gear design or gears with.thin rims Ac

A ¢ - -
from gears with thick rims even though experience has shown

otherwise [7];' In addition, current deésign methods consider

~

only the maximum stress level value, while ignoring the

stress recursions occuring at various critical regions.
+ - L] '

' . ‘
Inspite of these’ deficiencies and inspite of the
several other " alternatives proposed by various

r BN ) . ,
investigators, the convéntional gear design methods based on

the modified Lewis equation had stood the test of time and

r

» -
L
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tontinue todate to be: the basisu'for all the accepted
standards such as AGMA [1], 1ISO (2], DIN {3], etc.. The
reasons for this continued aqcepgance’.are: the inherent
simplicity, low cost computation requi;éments, ‘reasonable
correlation with test results i; Ioutiﬁe applicatioﬁé, and
ease of day td‘day engineering use. . Howéver,. the current
design' procedures are winadequate'for the design of modetrn
gears [7] which have to satisfy the conflicting requiremegts
of higher reliability and performance at léwer cost. Thi§

4

inadequacy is borne out b& the fact that.all the gear désign

standards. recommend the use of prototype testing for new or

unique gear designs.

In this investigatiqn: new analyses and siﬁulation
methodologies are 'developed and applied for éétimation of
fatigue life of gears. The underlying principle behind the
‘methodoloéy is to include all the factors %f technological
advances in all the related fields, but only to the extent
that both the cost and reliability can be justified for day
to day. engineering solution of gear problems in industry.*

1.3 Literature review \ S

A review of relevant literature is . presented in the

following subsections, grouped in a sequence sO as to

develop the scope of the investigation presented in this

8-

thesis. :

-

¥
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l.3. l Gear dynamics

~ Most of the pre-1940 investigators were primarily
con;eroed witp component strength and not with reliability
and cost. The earlier efforts of Lewis (8], Buckingham [91],
aod many others are too wellknown to review again here,
Essentially, they. evolved =~ designs to operate gears
indefinitely* at stresses oalculated to be less than the

endurance limit. The calculated stresses, however, varied

aecording to numerous assumptions especially those related

LY

to .stress concentration, shape factors, and 1load sharing

among the teeth. Also during this period, the presence of

dynamic loads on gear tooth was identified and incorporated

into the design procedures in the form of dynamic factors.
. T ..

—

Between 1940 and 1950's, another era in anaiysing.the
dynamic 1loads in gear teeth developed. The studies
conducted during this period utilized more detailed
information on gear‘teeth deflection, and in addition made
use of ﬂumped massispring models under wedge, cam, or
sinusoidal type of exoitations [10,11]. In general, ‘this
group of analyses could be con51dered as using an equivalent
constant mesh stiffness model. \
.

. In the gear dynamic models developed after the late
1950's [12- 17],‘the exc1tatlons due to tooth profile errors,
pitch errors together w1th the effect of periodic wvariation

in mesh sttffness were introduced. Cornell et.al. (18]
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improved and extended' the previous models to High Contact

Ratio' (HCR) gears with and without backlash. And Kasuba

et.al. [19] introduced the variable~variable mesh stiffness

concept wherein the profile errors and tooth deflection

~under static load are taken into account in the formulation

of mesh stiffness. Also, Tobe et.al. [20-22) carried out a
statistfcal analysis of the gear dynamic-loads. ' In recent
years, ‘a number of models [23-29] L‘g?rporating the coupling
Betwegn the torsional ané f?exural _ modes are also
introduced. \Qg addition to these studies on the subject of
dynamic load estimation,. several investigaéibnsﬂ on
compliance/stiffness eétimation (30-33} and: ;ear system
stability [34-36] have aléo been reborted dufﬁng the last
decade. Héwever, none of the gear dynamic models prdposed

so far are compleée enough to simulate or synthesize complex

\
industrial gear sets or systems.

v
'

1.3..2 Gear tooth stress estimation

*"In the conventional design methods, the bending
stresses due to gear tooth 1loads are estimated using
modified Lewisi‘equation, which is based on the cantilever

beam theory. However, the -cantilever beam assumption is
. . i

valid only for the conventional thick rim, external gears

and hence application of modified Lewis equation outside
this classification results in inaccurate stress values. To
overcome this, recently Finite Element Methods ' (FEM)

[37-45], \Boundary Element Methods (BEM) [46-50] and other
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rigorous transformation methods 1like Complex Potential

L

Method (CPM) ([33,51,52] are all attempted. Of these,

-

inspite of the excessive amount of computations involved,
Fwﬁr.is being increasingly deployed in gear stress analysis,
because of its ability to model standard as well as
non-standard gear systems. The BEM being relatively new and
still in the developmental stage: is not as widely used as
FEM, whereas CPM 1is found to be too comgle¥ to be used in
design pracéice [60]. 1In addition to thése analytical and
numerical studies, a nﬁmber of experimeﬁtal studies [53-59]
using §ari6us strain and/or stress measurement tecﬁniques
have also been undertaken to,évaluate gear toéth stresses.
In this study, BEM is employed for stress computaFion,

because of the computational and modelling advantages it

offers. : ) : ”

The foregoing review on gear dynamics' considérs only

those studies ypffn\\are most relevant to the present
. O
investigation. More informatiqQn on gear . dynamics -~

-
inyestigation can be found in [60] and [61].
N \

1.3.3 Gear fatigue

LT Most of ' the studies on gear fatique reported in
literature are of egperimj;tal nature. Typically, in these
studies [62-71]), the effects of various profile parameters
such as addendum, profile errors and prof%}e changes due "to

wear on the fatigue strength of gear tooth aré studied. 1In
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one instance [72], even the effect of vacuum on the bending

) g 2l

~strength of gears was investigated. Recently, with the
increased use of plastic gears, a number of studies [73,74]
on the fatigue strength of such non-metallic gears have been

also reported.:

1l.3.4 New approaches in fatique analysis

Eversince the pioneering fatigue studies conducted by
‘Wohler between 1857 and 1869, " a large number of
investigations on different aspects of fatigue had been
undertafen and published in open literature. As an
indication of the overwhelming interest in mechanical
fatiéue failures by researchers,‘Manson {75] notes: "It is
quite clear thai, if a person wished Fo keep up with thé
literature and read one report per working day, he would
fall begigd,qn the order éf one year for every year that he
read. This would be true if hé started with a knowledge of
the existing literature; catching up on the sécklog would be
almost impoésible." Thus a thorough review of literature on
all aspects of fatigue analysis is beyond the scope of this
investigation. Instead a brief summary of salient features
of common methods of fatique analysis is presented in the
following sections. These methods can be grouped into two

broad categories, namely, the stochastic or the random

procesé approach and the direct approach. -



_}_o_ -

Random process approach & e

Fatigue‘ failures bein;\\essentially a fandom process,
this approach uses the theory of stochastic processes to
analyze the statistical . characteristics. of fatigue
beﬁaviour. The dynamic characteristics of the syé‘em are
generally assumed to be deterministic while the excitation
is taken to be a random process. The objective here is to
determine the reliability of the structure or component to
withstand random excitations and to predict its service life

[76‘i9]¢

- This approach' requires thé knowledge of the stress

process (e.g. narrow or wide bénd\ process) and the
statiéticél parameters of the pegk stress envelope
distribution. 1In general, the probability dehsity‘ funiiégn
(PDF) of the peak stress énvelopé cannot be easily derived
except for under some simplistic loadiﬁg conditions [77].
Thﬁs the random process approach is ﬁot.very practical and
ﬁencg is not widely used in practice.'

-

Direct methods

- .t

These methoés are egéehtially deterministic and the:
variations in fatigue life data are not explicitly included
in the analysis. The classical S-N curve analysisl and the
relatively new local stress-strain*and fracture mechanics
approaches belong to this'. classification. Although there

are siénificant differences in the level of sophisticétion
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"and accuracy of these methods, all are based on the critical
]

location stress/strain concept.

&)

Classical S-N curve analysis'

’ The stress-life jS—N) curveé introduced by thler in
the 1850's have for yéars been the only “fatigue criterion
used for the ‘basic fatigue design of machine elements ard
machine structures'[ﬁ,BO,B;]. Over the‘years, the effects
of ‘m?an stress, stress concentration, and notch sensitivity
were all incorporated into the S-N curve ahalyéis for better
accu}acy. Though the S-N curves are widely uséd for both

E finite life as well as infinte life deéigns, it has been
reported éhat in the low cycle or finite life region the S-N
curve analysis invariablx/ﬁg}ls [80]. This is due to its
inhérent inability to account for the plastic strain presentﬂ//
at the critical locations.

o

New approaches

The evolution of computers ovef ﬁhe past decade has
alloyed the . development of increasingly sophisticated
analysis procedures based on the newly developed
disciplines, namely, the local stress-strain concept
(80,82-87] and the fracture mechanics approaéﬁ [88,89]. For

* this purpose the fatigue proéess' is  divided into two
regions: i) crack initiation and ii) crack proéagation to
fracturé. Currently, the fatigue crack initiation and crack

propagation lives are estimated independéntly based on local

t
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stress-strain and fracture mechanics concepts, respectively.

No unified approach has yet been developed to combine ese

I3 - ;
two estimates. \~/¥}

~

Local stress-strain approaches

»
These approaches, used for the evaluation of crack

initiation 1life, have been débeloped over many years.
Essentially these methods involve first estimation of 1local
stresses and strains as a function of the applied 1loads or
nomindl stresses on reversal by reversal bésis. Then by
assuming that both the deformation response and the fatigue
life behaviour at the critical location are identical to
those of a reference smooth specimen forced through the‘same
critical location deformation history, damage is computed
[81]. Here the specimen is viewed as a filament of material
located in the critical locagion of a complex structure or,

component and the 1life of the specimen is considered

equivalent to the life of the component.

Initial advances in this field were made through the
appljcation of computerized -cyclic dé%ormation models
[90-92], cycle counting methods [93-95], notch a;alysis
[84,85]), and fatigue damage computations 'unéé% variablé
amplitude 1loading [96,97]. It has been reported that when
care is taken to completely and accurately, determine local
stresses and strains in notched specimens then fatigue crack

initiation life can be accurately predicted using these

b
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methods  [92,96,97]. Although the reliability .of this
approach for designs of actual machine components under

service load conditions has been successfully demonstrated
“~

by various investigators [85/56—101], ' industr§§i

——

applications of these techniquéé\have been relatively rare.

This is because the purely research oriented computer

¥

methods have not yet been converted to a more general and

easily accessible format. . Also the precise testing

) techniques that are required to define the needed fatigue

and cyclic deformation properties of materials have only
recently become practical with the development of
servo-hydraulic tesfﬁng equipment and advances in
instrumentation and micro—elec%poﬁqg7. In addition, these
properties, once evaluated, have not been widely circulated
to all iidustrial designers. Furthermore, nébme of the
concepts utilized in these methods represent new additions
to’" the traditional engineering fatigue design philosophy.

wever this situat{on is s#bwly changing and a number of
large design organizations [99—i04} have already started
using these techniques for day to day applications. These
state of art fatigue analyis procedures are incorporated
into the proposed gear design methodology.

A )

1.3.5 Computer aided design of gears

Almost all the aspects of routine mechanical design
procedures including gear design . are now computerized

through customized softwareg}; A number of interactive,

»
e
T

,"’
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computer graphics oriented computer aided design (CAD)
software [106-108] based on conventional gear design
procedures have been introduced recently. These programs,
in general, automate and speed up the routine calculations
thét are required in the conventional design process. And
some of them have built-in data baées conéisting;of material
data asy well as semi-empirical load and geometry data. 1In
addition to these, there are few general purpose interactive
fatigue design software [109,110] available, which can also
be used for fat;gpgﬂ design of gears. Basically these
software are -“4ll based on classical S-N g:rve analysis and

so far no attempts have been made to include the recent

developments in the fatigue analysis area.

Since all the component parts of the present

~
investigation, namely, dynamic lqﬁi simulation, boundary

element stress analysis, and 1local stress-strain fatigue

analysk\, require the use of computers and to facilitate the
use of the proposed methodology on a day to day basis, a
computer aided gear design software is proposed as part of
this investigation.

by

1.4 Scope of the investigation

‘ The objective of this investigation is to develop a
computer aided analysis and simulation procedure, so as to
reduce the empiricism involved in the current methods of

gear design. Broadly this is achieved through the following
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four‘stepév
1) computation of gear dynamic 1loads' using more

- realistic analytical models, ‘
2) computation of gear dynamic stresses at critical
locations using boundary element methods,
3) computation of gear tooth fatigue life based on «
lodal stréss-strain}approac§?
4) fofmulation of coﬁpgtet aided design software

for gear design based on the previous three

steps.

To estimate or compute the dynamic loads on the gear
tooth, the complete gear system with its bariéus components
is considered. And mathematical models incorporating most
of the importAﬁt factors that influence the gear . system
dynamics, are formulated. Based on these mathematical

models, three different dynamic - load simulators are

developed. Two of the. dynamic 1load simulators, one

deterministic aéd the other stochastic, are applicable to

small gear syétems and may also be used for preliminary

design of large gear systems. The third simulator based on

a new if\ethod of modelling and solution techinique, namely,
discrete time transfer matrix method, is used to simulate

large, complex, and practical gear systems. Provision to

use either the actual measured transmission error records or

the stékistical‘ properties of the error records ‘are
. . =~

grovided.
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element models of the gear tooth are then

Boundary

formulated and solved for stress quantities at the critical

1

locations in the fillet using the simulated dynamic loads as

stress history obtained 1is then, processed

‘through 'a newly developed cycle counting algorithm to break
the entire history into a series of individual cycles.
Fatique damage is then computed ‘for each cycle' and
accumulated using Miner's rule. .

Ay
‘o. o ‘
In chapter i, the gear system factors that influence
- - h ]
the gear dynamics are identified and reviewed. Mathematical-

expresgions characterizing the influence of these. factors on

gear dynamics are derived. ' o
o

In chapter 3, mathematical models including most of the
factors 1dent1f1ed and dlscussed in the’ptev1ous chaptﬁgaare

formulated for a set along with its supports.

spur gear

lateral motions are considered. A

Both torsional and

dynamic load simulation procedure based on the mathematical

model is intf&duced. The actual measured ergor records are

The results of the

%
results

used as an input to the simulation.

simulation are compared with the exberimental

reported in the literature.

\
\

. -In chapter 4, a dynamlc load sxmulator using stochastic

error representation is introduced for the cases wherein the

actual transmission error record is not available. ' For this
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purpose the system equations formulated in chapter 3 are

»

augmented with a linear stochastic differential eéuation
representing a sécoﬁd order Markov process. .The state
equations of the augmented system are then discretized and
‘the mean and covariance propagation Fquations are written.
Once again state space technique is usefl to solve the
resultant linear stochastic* difﬁefénae~ equations. The
results of the simulator are then compared with thé results

obtained with other techniques. " -
\
In chap;er\féi‘ a'néwrmetﬁogféf mo&elling and solution
schémé referred to as "discrete time transfer méttix method"
is introduced. The feasibility of the proposed method for
simuiating large practical gear .systems Vith‘ many

p

transmissidn' line components is investigated.

N

In chapter 6, using the dynamic load hiétory record

obtained from the simulators described 1in the previous'

~ chapters as loading data, the strain history at the critical

locations in the gear tooth fillet is computed‘ using BEM.
ke . . ,
The Tesults of the BEM are compared with the experimental

and numerical results obtained from a related study. Also,

¢ a new cycle coun}ing algorithm which is used to break the

complex strain history waveforms* into . individual closed
cycles is 'presented. A fatigue daméée parameter is then
computed for each individual ‘cycle and the damage is

accumulated wusing. the Miner's rule.\° And, design of a

\

1

s
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o 4 -fmicio-processor based on-line damage monitoring system is
3 .- . . . also discussed. o ) ' ,
*( , - ‘a » - [ «
! i T A
' ‘¢ ”

. In (chapter 7, the- extension of the dynamic“load

Ny simulators and the fatigue damage simulator to the cases of
. ' ~ ‘ e . :
. helical géars and non-standard cylindrical gears is
¥ ' ' discussed and described, . '
2 S ] ‘ ‘
. ' ’ s - . ‘
Finally, _the .conclusjions, the highlights and
bt ) 4 y . - ) I ] ’ !
‘. . recommendations for future work are presernted in chapter 8.
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' CHAPTER 2

IDENTIFICATION AND MODELLING OF THE FACTORS

"THAT INFLUENCE GEAR DYNAMIC BEHAVIOUR ’ —
- .

h
2.1 Introduction

4 -

In this chapter, mathematical models characterizing the
various major fiftors that influence the gear dynamics are
formulated. A proper identification of the influencing

factors is necessary since most of these factors are
f . v

"4nter~dependent and some of them are dependent on complex

e
200,

proces?es such as gear lubrjcation, which are not yet
completely understood. Also, ~ these . influencing
characteristics should be classified -in the order of

importance to gear dynamic load estimation, since the more

e

. the number of factors considered the more will be %?e

complexity and computation fequirements of the* simulators.
Thus in the following sections, thé factors that affectlthe
gear- dynamics are first classifie& into two groups and then
reviewed. Expressions relat%ng the influences ;f Fhese
factors are also derived to facilitate their inclusion into

\

the mathematical models' developed subsequently in the
following chapters. The geometric quantities used in the

derivations are given in Fig. 2.1.

-19 -
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2.2 Classification of tQE ihfluencing factors ' —

. ?aétors that affect the gear dynamics can be broadly
grouped into two categories, namely; primary and secondary.
The primary factors are those which influence the mesh;:EN
action directly and are inherent in any gear pair,
irrespective of the gear type and gear system configuration.
They constitute the dynamic excitation to the gear system.
All other faétors are grouped under the second category.
The prkmary and secondéry factors are first 1listed anqJ

x‘:Hdepailed description of these factors and the governing

™~ relationships are presented in the following subsections.
Pfipary factors:

1. .G€ar tranémission errors

2. Variable mesh stiffness

3. Non-linear backlash element

. Secondary factors:

) 1. Shaft elasticities ¥
2. System inertias‘//
3. Dampiné in the system
4. Input torque fluctuations ‘R

5. Variation in contact ratio

6. Coupling between torsional and lateral modes

7. S8liding and rolling friction at the contact

8. ﬁon-linearities from otﬁef components in the
gear system (e.g. coupling characteristicsy

bearing clearances, etc.) . . ﬂ
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2.2.1 Gear transmission error

*..

The gear transmission error, which is the total error
conéisting of the manufacturing errors, mounting errors, and
thé tooth deflection under the applied 1load, is the
principal cause of noise and vibration in gears. This
combined error is considered to be of dynamic in nature’ and
is defined, for any instantaneous position of one gear, as
the depé@ture of the mating gear from the position it would
occgpy if the system were ideal, with constant velocity

ratio, and constant contact ratio [16].

N B . &,
That is,
' eft) = @ -n @ . 2.1
| () =6 -n0 (2.1)
/ , \
where, ’ _ #
e(t) = transmission error,
n = gear ratio,
€p = angular position of pinion,
= angular ‘position of gear.

€g

A continuous time record of this. transmission error is

required to form the dynamic excitation‘£o gear dynamic

“system simulators. Recently introduced , computerized

measuring techniques and equipments [111-113] such as the
Automatic Gear Accuracy Measuring Instrument (AGAMI) [112]
or the optical encoded measuring apparatus described in

(113) make it gs;sible to measure this error precisely.
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These new measuring equipmeﬁts give the transmission error
as a function of'succgssive angular positions of the gear
rotation  and can be converted to a time scale for any éived
rotational speed. 1In cases where’ the transmission’ error
records aré not available, a procedure to use the
statistical'information on transmission errors instead of
the actual transm;ssion errors is given in chapter 4. ‘The
required statistical information on transmission errors can
either be extracted from the error records of similar géar
systems in '‘existence or can be constructed [114,115] from
the measured records of the component errors that constitute

the transmission error. ' C N

-

s

1 . [y

 2.2.2 Variable mesh stiffness \ oo

The stiffness of a teeth.pair in mesh 'is primarily "a
function of contact or load position and hence referred .to

as variable mesh stiffness. The variation of teeth pair

stiffness with load position, and hence with time acts as a

4
parametric excitation to gear system. Also, the load

sharing between the teeth when more than one’pair of teeth
A ' ] e
are in contact is influenced by the variable mesh stiffness.

Thus an accurate evaluation of the actual pattern of

- . R . , . .
stiffness variation is essential for proper simulation.

Although much work [19,30-33] has been done on this Subject,
a complete and accurate method, covering all the factors éas

not yet been achieved.

v

-

%
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The current procedures for gear teeth pair stiffness
estimation can be classified into three groupe,.namely,
1. the'classical abproach [32],
2. the analytical methods, like conformal mapping
(31]) and complex potential methods [30,33].
and |
3. the numerical procedures such as FEM or BEM
[40,50], - ,
In this investigation, the third category, Mﬁemely, the
numerical procedure is used to compute the tooth stlffness
and the teeth pair stlffness. All the component sources of
deflections, including  the loéel compression and rim
deflection can be accounted fo} _with thisi procedure by
proper modelling. The main advantage of numerical procedure
is its flexibility. That is, the procedure ean be used
ifrespective of the gear type (e.é. thin rim, thick rim, or
internal), and gear tooth type (e.g. involute, circular or
non standard). This flexibility is achieved at the cost of
increasing computation time since each new evaluation
requires a proper FE or BE model. However, this cost can be
somewhat reduced by the use of special purpose aytomatic
mesh generator software. Also a' provision to obtzﬁh\an

adequate series approximation of the compliance or inverse

' stiffness variation curve bdsed on a small, finite number of

r

analyses, as suggested in [32], is provided. The
coefficients of this approximate function can then be

retained for future use. Thus, for a given pair of gears, a
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complete stiffness estimation is to be performed only for a

small, finite number of times.

>

Finite elements versus Boundary elements

//// Having GiZided on the use of :numerical methods for
%;iffness evalu@gion of the gear tooth, a choice has to be
- made between the FEM and the BEM. The FEM\Qis by faf the .
most popular’ numerical method Psed for structural anaiysis,
'nowadays. The inherent versatility of the method along with
the reéent develogaérts in modern computer hardware make
fhis méthod a Qery powerful and useful tool. It £gas bgen

used successfully in the recent past, to compute stresses

énd deflections of various types of gear teeth. Eue, for a
proper stress and deflection analysis of a gear tooth, the
FE mesh at the regions of large stress gradients like the
'fillets and at the contact regions [42] on the surface alpng
the path of the contact' should be veryqlfiﬁe. This, 1in
. “addition to ‘the requirement ‘of FEM ‘that the entire geér

tooth be discretized, makes a proper analysis prohibitively

costly for day‘to day use in design applications. i‘&

The above factor has led to the introduction of BEM for
gear stress and deflection analysis [47-50). *\@Eﬁ, while
having its ‘origin in classical elasticity, have only in
recent years began to pla§ a- significant role in solid
mechanics. The main advantége of ' BEM is that the

dimensionality of the problem is reduced by one. This
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, ‘ . . \
reduction in dimension leads to savings in modelling time as
well as computation time. At the same time, the accufgiy of
BEM 1is comparable to that of FEM’as can be seen from the
numerous examples available in 1literature [46,48,50]. In
adaition, it is ideally suited for plane contact Qropiems
. and problems involving large stress gradients. The analysis
of gear tooth falls into this category, and thus BEM is
preferred and has been chosen over the FEM in this study.

Mathematical formulation of the method is given in the

Appendix I.

BE model for stiffness evaluation

The first step iﬂ BE modelling is - to discretize the
gear tooth and the gear blank.' This is done in this study
using a newly developed Automatic Gear Mesh Generator (AGMG) .
describeq in Appendix II. Briefly, the AGMG first §enerates
the tooth profile and blankr configuration from the given
geometry data and then uses the model data specified by the
user to discretize the gear. For proper stiffness
evaluation, the hub region shog&? also bQ_ modelled to
account for the torsional deflection .of the web under

~operating loading " conditions. It is wvery important to

@ datum to account for the web

choose the correct refereps
Jdeflection -correctly¥jﬁk:“vmost of the easliér studies, the
jinner‘r;éidé of the hub is taken to be the reference radius.
However, in this study the centroid radius is used as

reference radius. This choice 1is made based on the
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experimental results obtained técently [59]. Also, the mesh
around contéct or loading point should be fine eﬁoﬂah to
account for the 1local compfession. ’This can be achieved
through AGMG using the usér defined elément option. That
is, the  user caﬁ instruct tge AGMG to place-a particular
element of specified size at a user specified 1location in
the model. AGMG automatically rearranges the surrounding
elements to accomodate the user specified elﬁpent. The
dimension of tbé/ element at the point of contact can be

calculated using the following procedure.

-In -the case of spur gears, since the radius of
curvature ié constant along the line ofvcontact, the contact
would be Hertzian. Thus féf a given concentrated load of W,
aceording to Hertz contact theory [6]}, the half width of

contact 1, is given by

. | )
RN Y (22)
sB R +R, E '
1772
where,
B = face width,
Ri/R3 = radius of curvature at the point of contact,
4 = Poisson's ratio of the gear material,
E = Young's modulus of the gear material.

Using thé usei defined element option in the AGMG, an

element with 21 1length can then be placed at the required

°*

location.
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In contrast to'the FEM, BEM also requires that the load
on the element be distributed rather than concentrated.
Once again using the Hertz contact theory, the load
distribution on the boundary element can be computed as
follo&s. The eiliptically distributed load due to the
concentrated load W at the point of contact, as shown in

Fig. 2.2, is [6], \

- 2 e’y ey
o

Fig. 2.3 shows a typical BE grid pattern for- a single

tooth attached to the rim of a gear wheel. Using these

_grids and the equivalent distributed loads obtained from the

previous analysis as input, -one can readily compute the

deflection § under a load W applied at the point of contact.
) )

The compliance or the inverse stiffness of the gear tooth at

that point of contact is then given by,

C = (2.4)

/
§EB :
Cp -“W_ : (2.5)
Here,
) = deflection of the.tboth‘along the 1line of

‘action,

e
D
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1 ~

load acting on the gear tooth,

face width,

//

-

Young's modulus of elasticity of the gear
" .

material.

-
i

_Similarly the compliance of the meshing gear tooth Cgq can

also be computed. The overall compliance Cpg is then.

obtained by summing up the individual compliances of the two:
meshing teeth at various contact points. . The variation of

the compliance along the line of action-is then approximated

I

by a five term power series‘[32] as, ‘
" C_=C [1+d(s)+a6+da6+a i @0
Pg ° 1 2 3 A , '
” N
where,
Co = tooth pair compliance at the pitch radius,
. ’ B

‘coefficients obtained thfough curve fitting, £

o,
e
u

i=1,2,3,4 ' S e

normalized contact position.

wn
1

@
B

The coefficients of this-equation-are then étored for future
use in the mathematical models. Fig. 2.4 shows the
variation of *®the computedfva}ues of Cp,. Cgsr Cpg as well as
the approximaté function.for Cpg,\for a given gear. As éaﬁ
be seen from this figure,'the approximate function which is
ob;ained throﬁgh least square curve fitting duplicates the

computed compliance variations - for the entire region. of
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.compliance variation curve will not be symmetric and hence

\

_33_
interest. The tooth pair compliancg Cpg is symmetrical
about the pitch point, since the gear and the pinion are
taken to be of same sizé in this particular case. Inicases
wheré the pinibh and the gear are not of the same size, the .

-

the coefficients d; and d3 will not be equal to zero. /
L , ' /

!

In order ’to check the viability of _the procedurev
. a
proposed above for gear tootﬁ stiffness evaluation, the
deflections obtained with BEM are compared with those
obtained from other techniques. For this purpose, the study
by Coy et.al. ([42], whegein a detailed ébmparison of the
deflections obtained from their °‘fine mesh FE model along
with those obtained from a coarse FE model [40) and the
Cornell's classical .approacﬁ {32] was carried out, is
chosen. The lodading pattern and the ‘gear geometry given ih
Fig. 2.5, and Table 2.1, respectively are reproduced from
[42]. . Using these data and based on the analysis givén

earlier, the deflections aloné the line . of action are

computed at different 1loading points. Fig. 2.6 shows

deflection obtained from the BEM along with those reproduced .

from [42]. A#® can be seen from the Fig. 2.6, the deflection
values computed by the proposed analysis method compafes
well with those of Cornell and is slightly less than those

obtained from the FE analysis. This difference is due to
the different reference radius chosen in the FE anatysis,

- 8 ‘ .
whereas Cornell'§/ method and the present study uses

N L]

'Y
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Table 2.1: Spdr gear d&ta (42)

Number of teeth | : : “ 28
Diametral pitch o ' h . ) 8
\ Circular pitch, cm ‘ . : . 0.9975
Whole depth, cm o | 0.762
Addendum,gcm | . ' ' 0.318
~ Chordal-t;oth thicknpess reference, cm J : 0&485
%greisure angle, d?g.ﬂh . : - Ny 20
Pitch diameter, cm - 8.890
Tooth width, cm - ' ‘ | 0.625
Outside diameter, cm ) o 9.525
Root fillet, cm . | o © 0.102 to 0.152
,Measurement over pins, cm “ - 9.6g} to 9.630
- Pin diameter, cm ' - ¥ .‘%T 9.549
. Backlash reference, cm . | ‘ 0.0254
Tip relief, cm s S - 0.001 to 0.0015
o~ Yogng's modulus, llfl/m2 ‘ C ) 2.07x1011 .
o ‘foisson's ratio o ~;,,—' =‘~ - ’ ,“ y 0.30
p * e
\
I
< ’ '
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approximately same reference radius. Cornell's method once
‘formulated, requires lesé coﬁputgtion time and gives the
-component deflections due to various-participating factors.
But, different formulation is required for different types
‘ of geaf tooth type and thus is not. versatile’ for
applications. 1In contrast, both FEM and BEM give gdod
results as well as they have the advantage of beiné
flexible. But, FEM’requires more compitation time than BEM,
thereby -~validating the choice of BEM in the present
jnvestigation. n

PR

2:2.3 Non-linear backlash element

Tgoth backlash, which‘is present in any practical gear
system, is also a contributing factot to the dynamics of the
gea;_system.‘§With lightly loaded' gears at higher speeds
tooth separation and subsequent reverse or forward impact
can occur resulting in higher dynamic overloads [18,19]. 1In
addition; the mechanism of backlasgh was also found ta have
sigﬁificant influence on the system /sé&bility [116]. In
this ~ study, the £ooth backla;h is .mpdelled -as a
non-symmetrnic non-linear element as shown in Fig. 2&7 and is
defined by the following‘equations. | |

For (ute) > 0, ‘ . ‘
w d‘ - kpg(t).(u-n) (27) .

4

For -BL <-(u+E)'< 0, _' ,
B . wd - o ) (2-8)

For ‘(ut+e) < ‘-BL, W ‘ .
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Fig{'2,7:, Gear, tooth backlash model
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where, -
u | = relative .displacement along the 1line of
contact,
e # transmission error, |
BL = backlash.

‘ﬂere, the gears are assumed to be in contact at the start of

)
\f\Figﬁé analysis. Between points 1 and 2, normal meshing takes

place, and between 2 and 3 1loss of contact occurs. And

region 3 to 4 corresponds to meshing at rear flankd+

2.2.4 System inertias and shaft elasticities

In general, for a given tooth configuration, the
variation in the system inertias and shaft elasticities
shift the system natural frequencies and thus the
subharmonic ‘response peak$ of the system. In particular,
the shéft elasticities d;termine‘ the amount of influence
othér components in the drive have on the gear 'dynamics.
For example, when the shaft: elasticities are very small
compared to the mesh stiffness, then the gear ~paif) is
effectively decoupled from the rest of the gear system and
ﬁence its dynamics can be studied with relative ease. Most.
of the earlier studies on gear dynamic loads [14-18,20) made
this assumption and used a single degree of £freedom system
to evalu;té the dynémiC—iaads. But, in réélity this may not
be the case always. Also, since the proposed simulator is

to be used for simulating .existing gear systems as well, a

L% ull
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provision to consider the effects of the shaft elasticities

and system inertias, if required, is provided. -

2.2.5 Damping in the system

Whereas the primary factors and the system inertias
determine the critical regions, the severity of the response
at these critical reéions is determined by the damping‘in
the system. As is shown in a later chaptet, for any gear
system there is a minimum requirement on damping to prevent
Mathew-Hill typé\-of parametric instabilities.’ 1In ‘this
study, the values 'of damping ratio used in the numerical,
gxamﬂ{?s are chosen based on the experimentil results
{55,127].

- ]

2.2.6 Input torque flictuations

It is customary in gear dynamic stgdies to assume
constant input torque.’ In reality, however, .the input
torqué is rarely static. Benton and Seireg [36] studied the
effect bf torque fluctuation on gear dynamics. They
considered an ideal\ case, wherein the éorque fluctuatioﬁs‘
a;e assumed to be sinusoidal, and showed ‘éhaﬁl the torqde
flﬁctdations have significant influence on system stability.
But: under realistic operating - conditions the torque
fluctuations need not be purely sinusoidal due to the
dynamig characteristics of the prime movers. Thus, in the
proposed simulator ﬁrovision is made to include’any complex
variation in the input tofdue by way of diséretization.

v
'

{

.
A
.
.
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2.2.7 Variation in contact ratio

The design contact ratio, which is defined as the ratio
of 1length of the path of contact to the base pitch,
indicates the average number of pairs of teeth in contact.

. §

' d > o
According ' to this definition, and with reference to the

Fig. 2.%1 the contact ratio (CR) will be,

) A-B :
CR -y — _ (2.10)

Py

This ratio is a constant for a given kpair of . gears.
Basicglly, this ratio provides important information on
load sharing between teeth, namely, how many tooth share
load and for how long during one mesh period. Thus, this
parameter has primary influence on the mesh stifffness
fluctuations., Conventional gears, known as Normal Contact
Ratio (NCR) gears, have a contact ratio value between 1 and
"27 AGMA standards specify a minimum valuelof l1.2. This
value of 1.2 means that for 20% of the time at 1least two
teeth pairs are in mesh. 1In.recent years to increase the
load capacity of gears, High Contact Ratio (HCR) gears
having a contact ratio value between 2 and 4 have beeﬁ
increasinély used. Here “the higher 1load capacity |is

achi®ved by reducing the dynamic load acting on each tooth.

4”"‘% . “‘”’!‘ | . ‘ - -

In contrast to the design contact ratio, the

pd
instantaneous contact ratio, again defined as given earlier

is not constant. This is due to the fact that under . _~

N\

~

LN

LY
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operating load condjtions the tooth deflection advances
the point of contact and -delays the point of loosing

contact, thereby effectively“changing the leﬁgth of cobntact.

A'-B’ -
CRi - P, . (2.11)

The quantities A', and B' are defined in Fig. 2.8. Thﬁs in
reality, a complex situation exists wherein, the stiffness
variation determines the contact ratio, which inturn
influences the stiffness variation. To solve this
statically indeterminate problem, Kasuba, et.al. [19]
proposed a search and compute procedure which they referred
to as large scale digitized methoa; As the name implies,
their methodv-involves digitizing the gear and pinion
profiles and using a search procedure to find ' the ; contact

1

points between the deflected tooth pairs in contact.

In this study, however, it is decided to use the design
contact ratio, rather than the instantaneous contact ratio.
It is felt that since the transmission error signals used as
an iﬁput to the simulator includes the effect of all the
contributing factors, including the change in contact ratio,
resulting in non-conjugate action, it will be redundant to

include the variation in contact ratio once again.

i
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O

2.2.8 Coupling between 'torsional and lateral modes

| Even though coupling between torsional and lateral
modes is usual ingpractical gear systems, it is also usual
to ignore the effect of lateral v%p:ation of gear shaftsﬁin'
gear dynamics studies. . Thus almost all the ™ earlier
investigations on gear dynamic loads assume that the lateral
vibration-of'gear shafts does not occur. This éssumption

-

can be expected to be valid, when the operational speed of
S x

the gear pair is not very high. However, with increasing

demands off high speed machinery and hence high speed

‘gearing, it becomes necessary to include the ‘effect of

coupling betweén modes for achieving a proper simulation.
In addftion, since it i§ weil known that 'gear dynamics }S
influenced by factors such as misalignment, mass unbalance,
bearing characteriséicg, gyroscopic teffects, etc., it is
important X\ to include the coupling between modes for
obtaining a proper simulation.

,

Some works on the vibration and whirl of geared rotor

systems have been reported in the 1literature [23-29].

'However, because of the simplifying, Rand non-realistic

assumptions made 1in thez: studies regarding backdash, and

variable mesh stiffness chAgracteristics, these models are

not realistic or can be considered complete. To overcome

these shortcomings of the earlier models, #Mhe coupling

between the two vibration modes is included in the proposed

simulation model without sacrificing the effects, of other

ax vaen -

+

important factors. ~

-

&

m"\\
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2.2.9+«Effect of friction

. The ’effect of friction between teeth_\in mesh is
pormally negiected as aQ simplification in gear dynamic
analysis.  This - simplification was considered to be
necessary, in the past, because of the :lack b6f clear-
understanding of the relatgd topic of gear lubrication.
But, recent advances 'in lubricatiohhstudies '[117,118] make
this simplification unﬁfcassary any more. Also, as was
shown in [58], the presence of fric;ioq/ﬁgtheen teeth may

-, .
introduce self-excitation reésulting in non-linearly

determined limit cycle and discontinuous behaviour in gear
system response. In addition, the presence of friction also
alters the stress pattern radically [58,59].

In\}he‘proposed"simulation model, the mechanisms of

sliding and rolling friction are included with the °

restriction that the gears operate in elastohydrodynamic

-

lubrication (EHD) regime. This restriction is proposed,

P

because, of the various tyéeéaof lubrication regimes that
can ﬁccgr‘ in ﬂfear t;ains, only EHD lubrication is clearly
understood in terms of predictions ([118]. However, this
condition 1is not as testr;cﬁive as it appears<;fja%e many
gears do operate ing*QHD .regime under normal ope{ating
conditionsj It is suggested that when there is quertainty//;y;
Labout this restriction of EHD lubrication regime the

s
friction elements should be neglected.

'
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[

ﬁorces acting on gear tooth

\ Fig. 2.9 shows the normal force, the rolling friction.

. force Wy and the sliding friction force Wg acting on a pair
. o

(jth' pair) of teeth in contact at various positiong along

: 2
the line of contact. The normal force acting between the

teeth in mesh is nothing but the dynamic load under
operating conditibng‘and‘is a direct function of the gear
teeth response, variable mesh stiffness, transmission.error,
ana'bécklash. Its fogmulation ié carried out in detail in

. 9
the next chapter. The formulation of the sliding friction

force and the rolling friction force is carried out here. as

~

follows.

LIS .
.y ‘e

//&he sliding friction force Wgj is a function.of the

coefficient ‘of friction, betwten the slidfng surfaces and

the normal 1load acting between them. And.it always acts

L

opposite to the relative motion of the sliding surfaces.

v

ThUS, N ‘ -
LT ’ - L

L - W Wy (sgn(V,)), (2.12)

where, -

T oM . = goefficient of friction, .

Waj = normal load acting between sliding sutfaces,‘
Vg = sliding velocity. _ .

and 7

L ’ 1
. . - B ;
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sgn(Vg) = +l,'when Vg is +ve;
°. = -1, wheé Vg is -ve.
The coefficient of frictionu, in general, is not a constant
and 'variesb along the path of contact. In this study, the
empiriéal relationship, equation (2.13), . developed by
Benedict and Kelly [119] based on disc machine data ?usefl

to account for the variation’in B

4
' CWeB
# = 0.0127 log (2.13)
. nV * .
. . osr ~e
Here,
]

_C = 29.66 = proportionalit;“constant, , l
Wajy ¢ = normal loéd, N, | '
B-~ = face width of the gears, m,

n, = lubricant absolute viscosity, 1073 N s/mz,
Ve = rolling velocity, m/s, B
© Vg = sliding velocity, m/s. N

«

And the rolling friction force in EHD regime of 1lubrication.

——r

is directly proportional to the lubrication film thickness
F

That is,

wrj— 8.96 x 10. hj. (2.1?)\

A L4

vhere, the film thickness hjainﬁme.tzes.,is_calculated.b.y,u_‘th*e,________._~

method of Dowson and Higginson [118] as given in the

’

following equation.

\
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where, | ' /\
" wg . = normal load, W, , C - -
n. = pressure-vi§cosity coefficient, mz/N,
.17; . = lubricant viscosity, y ' | A
Vm = ‘mean surface speed, m/s, ‘
'Ee = equivalent modulus of elastxcity, N/m?2 )
Re . = effective radius of curvature at contact .
4 o

point, m.

~ * -

The total friction force Wg « and the total rolling

°friction force W, and the corresponding torques Tg and u'r,-

. W
are obtained by direct . summation of the individual”
componénts as given tgeloy.

W'- 121 w.j . ,‘ 5(2.10)
Wim L W R
. J- . ' M ,.
: . 4
T = 32_:‘ W, R e L (2.18) .

/‘ - . L . v .
. Tr’ - j& ‘VJ“j Rj - - (2.19)
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where,
Rj = radius of curvature at the contact point of
. " the jth tooth pair .
j = index denotifly the number of ;ooéﬁ pairs in;//
contact at any given time.
t ., - P
. /

It should be noted that the equations (2.13) and jZ.iS)
used 'here for‘\%he computation of the friction coefficient
and the film thickness respectiVelg are used here without
any rigorous evaluation based on the useful results obtained
with these in gear system power loss studies [120-124]. ' If

7

and when, :;; improved formulations for these parameters are
o
available e

new expressions can be used without any major

-~

Y

2.3 Summary

-

In this chapter, the primary and secondary factors that

o v
affect the gear dynamics are first stated and then reviewed.

~Also, expressions relating the influence of these factors

are derived to facilitate their inclusion into the

" mathematical ‘models developedlsubsaquently in the following

chapters.

1
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CHAPTER 3

DYNAMIC LOAD ESTIMATION - DETERMINISTIC APPROACH

3.1 Introduction

£

- The concern of designers and analysts with dynamic -

loads acting on gear teeth goes back at 1least to the
eighteenth century. For over a century now, gear dynamié
factors or speed factors defined as the ratio of the dynamic
load to the statically transmitted load have been used in
geaf ‘designs to: account for the dynamic effects. By this
defihition the dynamic factor can be viewed as the, gear’'s

. - “
tooth load magnifying factor.

This‘faqtor isi}ntended to account for,
1. the effects of tooth spacing and profile errors,
f 2. the.effect’of pitch line speed and RPM,
3. the inertia and stiffness .pf all rotating
elements, ﬂ
*_4. the transmitted load pef face width,
5. tﬁe todthgﬁtiffness.
But in reality, the empirical dynamic factor fégmulas
“used in. AGMA standards [l1] as well as in many other

standards are functions of gear pitch line speed and the

gear manufacturing quality only. No account is made of the

L)
/

possible variation resulting from specific tooth error .

pa&tern, inertias, loading effects and other system
.o i ‘) .

- 5] -
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dependent characteristics. . Thus, even with increasingly
| tightened restrictions on the applicability range, thea
existing empirical dynamic factor formulas may either
‘overestimate or greatl& underestimate; the actual gear
dynamic loag¢{amplitudes undey certain conditions. In
additidn;' to be able to predict possible failure of a gear
' dufing operation not only the maximum stress but also the
stress excursion at the critical locations. within the gear
bé known. This requires,tQét the dyhamic load history along
the ' entire path of contact and not just the maximum dynamic
load as computed in the conventional design process be
known. Alsé, contrary to the concept of fatigue proceés
.which is induced by the altérnating( as ‘we%} as the mean
loads, the current gear design.proéedures consider only é .
single value of design load as given By the application of
dynamic load factors. Thus quite gbviously, the existing
gear design practice, which uses a very loosely defined

-~

application factor as the only compensation to many

7
¢

important dynamic effects, is inadequate for the design of
modern gears.

Such inconsistencies and inadequacies indicate clearly
the need for a more concrete analytical basis. Towards this

o end, many researchers [12-19] have developed andlytical

L2

_models based on the torsional vibrational behaviour of two

gear wheels. Generally their results agree well with

r

dynamic loads measured using strain gauges at the root of a

¥
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gear tooth, which suggests that such analytical approaches A
can be refined to give an accurate method for determining R
dynamic 1loads. A more complete mathematical model for the
configured, typical gear system incorporating the actual
measured. transmission error record, the variable mesh
stiffness, non—l;ﬁeaf backlash element, friction between the
teeth, and coupling between the torsional and lateral modes,
is formulated in the following sections. Fig. 3.1. showév
schematically the steps involved in dynamic load simulation

y
process, referred to as the dynamic 1load simulator

hereafter, proposed in this investigatioﬁ. )

d N
v

»”

3.2 Modelling of the gear gﬁstem
Depending upon the size of the system énd the
refinement reqhired, two different modelling and so}ution
schemes are presented in this study. For prelimiqary design
of a new spur gear set, wherein the influences of the other
components in the gear system are not known, the two gears ‘
and the two supports close. to it are the4 only elements
considﬁfed. That is, it 1is assumed that gear set is
effectively decoupled from the rest of the éystem (18,20].
7With this assumﬁggon, the equations of motion are set up and -
solved using the sﬁate-space metnéd.a Even though the 8ame
metﬁodology can be used without any change for largér
systems with more number of degrees of freeéoms, the
‘ matrice; involved Dbecdme larger making the analysis

-

prohibitively costly and hence impractical. Thus, for large

, , -
.
“~ ~
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systems such as multi-stage gear trains with other

associated driveline elements such as couplings, bearings, '

etc., a new simulation meﬁgbdology based on the transfer

matrix methods-and the numerical integration ‘procedures is.

introduced in chapter 5.

3.2.1 Schematic configuration of the gear system

In this section, a single stage spdr gear system, shown

in Fig. 3.2, which'represents one of the practical cases in

gearing applications, is considered to develop . the:

. simulation metgoaology. This systém consists of a driving
motor, a driven machine, two intermediate shafts, tgp
flexible couplings, four support bearings and two gears.
Based on the assumptidn stated in the preceding section,
only the gear set and the supports are configured for
modelling. o

—

3.2.2 Modelling of the confiqured gear system

To develop mathematical models and“éssociéted equations
.of motion of any dynamic system, it is first necessary to
generate a substitute vibration s&stem based on the real
system. This new system will then be the basis of the

response and the dynamic load 'simulation procedure.

Fig. 3.3 shows the equivalen£ vibration system for the

configured gear set system shown in Fig. 3.2. The variable

mesh stiffness and damping are denoted as kpg(t), and cpglt)

respectively. The backlash BL between the geéars is modelled

A
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as shown in Ffg. 2.7. Between points f and 2, normal

meshing takes place and between 2 and 3 there occurs a loss

of contact. Region 3 to 4 corresponds to meshing at the
' v

rear flanks. The governing equations of motion. for the ‘gear

pair system considered can be derived using the standard

procedures as given below. - .

Equations »f motion

Torsional mode: N

0 - T T =T 3.1
Jpep"'w.dep lp+rP P_ ; o ()

-

e - . - - - T . 3.2
J‘a‘ w deg 'r.z 'r,g Ts“" n T, . .( ‘)

.Lateral mode: ' ) . }P\
S ‘ “‘”x\th ( .

m R+ x4k x, + Wy sm(a-p).-(w'+w‘,) Co-(a.p)..o‘ (s}) -

mIs * %y , + kyp Yo+ W:E&(Qﬂ) -(w' + Wr) Sin{a-B) = 0 . (8.4)

m X + - i‘ + kxg ,‘(‘ - w a Sin(a-5) -(W' + Wr) Cos{(a-f) = 0 (3.5)

m ¥y +c_y

e Tx * Sy Tg * Kyg Vg - Wa Codla-B) (W, + W) Sin(a-f) = 0 (30)

%
Here,
J = polar moment of inertia,
mass,

'_s
H
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Cx 7 damping coefficient of the Sgarlhg along X
'\direét/ipn’, ' . .
‘kx =‘;Efff;ess of the\beqring along x,direétion,
Cy = damping coefficienp-éf the bearing‘.alopg_ Y
direction, '
) Ky ’ = stiffness of the bearin;.along Y direction,
e ‘ co= torsiﬁnél displace%ent,
x = displacement along X direction, '
y = displacement along & direction,
T 7zgxternai torque applied, y
n . = gear ratio,
a . =’pre;sufe\angle,
L \ = angle used to locate the centre line of the

gear set, g

and the subscripts p and g are used to denote the pinion and

gear quantities respectively.

Depending uﬁbn)the operational si;uation,'with reference to
Fig. 2.7, the gear dynamiclload'wdy and the dynamic load on
-each tooth pair in contact W3y are defined in the following
manner . : e’

For (u+e) > 0, S o t

P Wy = () i ek el - L AT ()

For -BL < (u+e) < 0, . B |
°wd - 0. , ’ N ’ (3-8)

v @ " ‘
For (u+e) < -BL, _ .

Wyl ) +kpgltiaserBLL ' ‘- e

e : 4

S

O
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v ; AN
. _
R for, j m 1,2,. (3.10)
" L 4
L ]
I o . *
.ﬁ o - = index\denoﬁing the number of pairs of teeth
. - X in mesh at any given time. p . ‘
q - N ' ’
e {p‘geag transmission error along the line of
. St actlon
.. §
. u’ . -{dlsplacement alang the line of actlon S
3 .o L
- :
'u’ ‘ BL = backlash
. ?) d‘ d e e
( The eplacement along the 11ne of action u is given by, . .
uf P ..\ . ,
. ’ ﬁ - Rbp 6.’ /bg f+ (x -X ) Sin(a-8) + (y -y‘) Cos(a-8) - (3'.11) o
) l . N \- ’ N ' !
,/‘f :;: which can be rgwrltten concise.lyo asy - o
2 Je? - - Y ' ] s
S NG L e ey '
£ L Toumu i, ’ - (3.12)
. o \} o ‘ -
¢ \ _wr;ere’, . - W ’ -
> - & * . <
- ( ~ < A\
S : - - {0 Og x5 xg,'y’ y Y.} ‘ | (8.18)
8 - T 7 4 . .
and ' ) ] . - ’ "?“
‘ - T . ¢ T
e w o . ) g g : . ; n‘ .
. ll2 - { Rbp' “Rb‘v' Sin(a‘p); -Sin(a-ﬂ), Cdl(a-ﬂ). -Cor(a-ﬁ) J . (3.14*
—' ‘' ? L
' !, o \' ‘ t ) " \ & q
@, S S ‘Here the variable mesh stiffness kpg,J(t) is expressed as a ' &,
. fi've term power ser:.es as ngen in’ equatlon (2. 6)..‘ And.
w, cﬁg(t) ~ia expressedqn terms of, the cnt,lcal damping ratio,
T : ‘ . - AN
» ‘, ‘ { ' “ Yoo, - ’
» ! v ~ . @ ’ . b , ‘ ' . /
® , ‘o ‘T' ' ; P 1 | X i /
h 4 ;"
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the_variable mesh.stiffness kpg(t) and™ the equivalent'moment
~a o .,
of inertia Je, as, . -

’ -
u" ‘ . o ¢ J .
8. ’ —
’ , vcp‘() -2 ¢ kpg(t) R2
] . bp
' With, '
’ 33 :
J - BB N
¢ J + qu
SR , o B P
X A : ‘ ' — | .

_The sliding friction force Wg and the rollﬂgg friction force

W and the corresponding torques Tgp, Tgg.Trps and'Trg are

given by equations (2.12) to (2.19). -\ . *
. - . \ - . N
By choosing t \
. : B N
. o\
\ »
} . ‘ B v’ - __: M . - ' (301?) -
N ﬁl y

¥

the system equations can be rewritten in terms of the state

vector v.as, : ] : - ' .
" () = AlY) v(t) & b(Y) - (3.18)
‘\ | ' ,
qherg.
(G ’ | '
4 v l ' 0 1 ) .
; L CAt) = | Sl ) (3.19)
. T K(t) -C()] ' -

-

V]
o
o
Ny

- . 0 .
‘ IR T St (s20) -
, ¥ " of .. o )T
el
}| — e . i o . o, — . ‘
\ t, yﬁ# ‘ . ? P
¥ a' a B8 - e f - ¢
. oy . =
o L . Ty o
, [ . . ) ’ g .A( L 2
: ‘\ v . B . 4,
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]

. Wi T .
"'lth 0(t) = {Tp, -T, 0,000} - kpg(t) (e) T, for (u+e)>0,

(1

<

) s T . - . p .
‘ f(t) = {Tp. -T g 0,0,0,0} - kpx(t) (e + BL) L !'ol'- (u+¢)<-BL.

, And the matrlces K(t) and C(t) are respectlvely given by the.

equations (3 22) and (3 23)/shown in Fig. 3. 4, for the case
 J

o . L]

So
of no friction.

- -

3.3 Solution procedure

The -time va§§idg non-linear equation of motion given by

equation (3.18) can be solvéd in a straight forward manner

using any suitable numerical iﬁtégratidpjiechnique. In this
gtudy,.however, the state~spaée method which is widely used
*in modé(g‘control system design for time domain analysis is
chosén to sbléz the sysfem equagion (3.18). The advantages
of‘usingcihe state-space technique are: ‘

4 . :
a. As a numerical procedure, this approach is less

;ensiﬁive to the cho;cg of time step [125), and

for a ‘gi;en’ time step, the accuracy of the

. ‘8olution at eaéh time iﬁstant can easily® be
specified‘and‘contrd}led. v

\Jgfji b. In particular, with resﬁect to the problem

o ‘ consldered‘here, the overall tran31txon matrlx

obtained. with the' application of.sti?b—space

™

| f(t) =- {Tp: 'Txo U.O.O:O}T, for -BL<(u+¢)<0, (3.21)°
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digitdl computer, it is first converted to an equivalent

discrete-time state equation, with the assumption that,

. - 64 - ‘
technique provides very useful information on
the stability of the:gear system, which is ane
of the major requirement iﬁ any gear dynamié
analys;s.«

In addition, as will be explained later, the

"overall transition matrix can be used to choose

- the proper initial conditions so as to reach the

steady state condition  immediately after the
start of the analysis. This results in

considerable reduction jn computationalitime. ,
. . ~N

/

TO*s%lve the continuous-time .state equation (3.18) on

the

forcing vector b(t) and the control matrix A(t) change only

at eq‘iily spaced sampling time instants.

- -
‘Thus, ‘
i »
'(ti-f-l) - Q(‘i 1% ) '{( ) <+ bd(ti)
i i-o,l,z,.?...
’ 4
where,
pexy .
I . ' ) ' .
| o, 4) = oAy AT
and, : . f ‘
.;_;‘ \ « . i \
Ve by(t) = [ ot _,8) bt ) dt. .

™

(3.24) .

) %
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Equation (3.24) is a discrete-time state eéuation,
which has identical solution as that of equation (3.18) at

discrete time instants. tg, ti, t2,..., tpm.. In- the

discrete-timg state equation (3.24), the state transition -

matrix d.and the vector bg are assumed to be constant and

have a. value corresponding to ti+1/2 in each time interval

2]
(ti-t%rl). Such ,pieqewise constant approximations are

valid, if the #otal number , of sigpling instants is

B ] 3
sufficiently large and if the time interval chosen |is

sufficiently small [126] compared with the time constantshgf
the system. 1In the present study a ~time intérval "smaller
than one tenth of the smallest system natural period is used
baggd on a empiricalx rule ([132), commonly ‘uéed with

. state-space technique in control system applications.’

Equaﬁion (3.24) is a recurrence relationship and hence

starting from.initial condition v(itg) at time t=ty, the
state variableg at subsequent time instants can’be compute

by time -mthh}ng. . This procedure is best suited ' for
implementation on a Ydigital computer.  The eippnentiilx

.matrix @ and the

N - <

Taylor's series as giﬁen below.| B : & g
That ‘is, " o (AT)'.’A(tH_%)'
ot %) = Z;, 1 . (327)
o Tum . *
i+=' P

’id“i’ - AT % e )

[
+

yvector bg are approximated by truncated .

M
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through the tranbibnt respons decay period. «The proper'
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where, ¥ | o4 "
AT = time step = (tj+1 - ti)..
T = the number of terms u§éd.t6 truncate the
Taylor: series.
s : _ . ' .
3.3.1 Selgction of ifitial conditions ’

In order to& start the solution procedure, 1it is

vegssential to know the initial, values of the state variables
at time t = to. The wusual practice is #o start with

. arbitrary initial wvalues and go through a multi-iteratlive
* ' ' .

-

process so as to reach the steady state conditions. - This
proé%dure “takes up a‘lot of.computational time. HJowever,
with initial conditi?ns properly chosen, the steady state

':gsponSe "begins almost -immediately" without having to go’

-4

choice of initial .conditions is achieved By the following
’procedwre which is based on the fact that after the upassage,

of one .gear mesh, the displacements and velocities‘must be

the same as that for the“Starting condit%pn when no gear

errors are involved. Thus, the procedure is to start with

i

zero ihit;al conditions with' the assumption that there are

no éb%QES, and no f%iction,\and calculate sequentiaiiy the . «
gear mqt}oﬁ’till‘the énd af me;%'cycle. fn thié'pgocessfthév__
overall state ﬁgansgtioh matrix P (tp,to) Cwill also be
co&puted, which inturn can bg used 'go chb?fe the. prbpef

initial conditions as follows. < o i
- . [ } . / e + ) - . R
- \ "‘ 'v.f 1 .
! Yo ) *
(4 g ' ' ’ *
. ' ’ )
' T 4 ) -
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Using the recurrence rélationship (3.24), the state of
the system.at the end of the mesh cycle v(tm) can be written
in terms of the state-at the Séginnipg of the mesh gycle

v(tpy) as,

v(tm) - O(tm,to) v(to) + d(tm) R (3.29)

Here, the overall transition matrix Q(tm,to) which relates

the state variables at the end of the mesh cycle to the

-

state variables at the beginning of mesh cycle, is given by,

- m-l o
0(tm,t°) - il;]o 41»(:l X i), (8.80)
and, .
. m-2 m-1 . ' .
ds ) - ‘z;) H»l ot N o j d(ti) + b d(tm-l) (8.31) |

Since, in the absénce of gear errors, under steady state
'coﬁditidn, . ‘ -
K ‘r(tm) - v(to), ' - (8.82)‘

the equation (3.29) can be written as,. -

vt ) - ot ) V() + a_) ‘ (8.23)

Rearranglng the- terms in the above eq:;tzon, the state of

the 'system at the 1n1t1al tlme to or the initial conditions
L :

will be given by,

w(t) = [1- &t t) rhae) C (3.34)
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Sfarting with these\ known 1initial conditions the
1

solution procedure is. repeated with the inclusion- of

specified gear errors. ASs can be seen, this procedure

:requites only two iterations, one to choose the proper

initial - conditions and one to run the analysis with the
14
proper initial conditions. This results in considerable

savings in computations and this 1is one .of the major

. advantages of using state-space method for the gear dynaﬁiés

problem.

However, ‘tﬁe procedure g%ven above is valid only when
the gear teeth in mesh are in .one of the three linear
portions of mesh stiffness non-lifearity curve shown in
Figu‘2.7, for "the entire mesh cyﬁle. This‘will be the case
iA  the regions ‘awéy from the resonances. When the

opetational' situations change the . gear mesh conditions
-

4

during one mesh cycle, tﬁz overall state transition matrix
<b(tm,lb)'of the system will itself depend on.the choice ' of
the initial conditions and hence the given procedure will
not be §;1§d. In such cases the computer progrém‘ has 'begn
designed to enter automat}cally into a multi-iterative mode
to reach'the stéady state conditions. |

.

3.4 Dynamic load estimation

a

Once the state of the system, namely, }the relative

velocities and the relative displacements at different time

1ndtqhts have been éomputed using the numericaf‘lpfocedure'
)‘ g | 1
< T ' “?
- \\g | ' ~ 1 .
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described 1in the section 3.3, then the dynamic load on each
tooth pair and the total dynamic load on‘thé gears can‘ Se
compﬁted4 at different time instants and hence at different
contact pééitions by using the équations (3.7) - to .(3.10).

3.5 werification of the simulator

In ordé} to . validate the proposed dynamic load
simulator, aj‘éomparison of the simulator results with
‘available* experimental results is carried out.y For this
purpose, experimental results from two recently published
studies [55,127]2 each using different measuring techniques,

are considered.
. » - _ (
Case It N .
" of these, the study by Umezawa et.al. ([127] is of more
value Qince complete details of the experi7eqtal. set up,

shown in Fig. 3.5, including the measured transmission error

A A -

records are provided. In addition to the experimental
‘;esults, which were’ optained by .strain gauge measurements
and acceleration pick-ups, results of numerical simulation
based on ‘torsional motion‘ of the gears are also given in
[127]. éincg, in' the 'propqseé simulator, ‘the coupling

between the lateral and torsional modes'is inéTziSd, the

stiffness of the base supports‘gé the gears need b known.

.For “this ' purpose, a finite element deflection aggfysis qf

the supports is conduc&bd ahd the stiffness ptopetties  pf"

the supports in the vertical difection, hame;y kyp, and Eyg
“‘. i ‘ ‘e * LY
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are obtained. Table 3.1. .gives the various parameters that

are required to define the considered gear system. As was.

suggested'in [127], the d%mplng ratio is taken to :be 0 07.
And because of the 1ack of knowledge about the lubrication
conditiod ;durlng the. experiments [127]), the frictional

non-linearities are not included in the simulation.

-

A Fig. 3.6 shows the results from the proposed simulator

superimposed on the results from [127). As can be seen from
Fig. 3.6, the results of the proposed simula;or compares

very well with the experimental results over the entire

‘frequency range, except that the peak at the support

resonance is slightly shifted to the right. - This could be

attributed to the dlfference in the computed and the actual

values of the support sklffnesses.

Case II:

To further confirm the validigy oé the simulator and to
,qheck the suitability and vérsatility of the simulator to
analyse the dynamics of non-metallic gears, a second

comparative- study is carried out. For this' purpose, the

gxperimeﬁtal results from the study by Kuske [55] is

}

considered. Kuske ([55] showed the dynamic stress and load

measurement on meshing"gear teeth as an example to establish
the viability of the dynamic photoelasticity technique. The

R . .
photoelastc experimental gear 'set parameters [55) are given

"ih‘Table 3.1. TheMtictional non-linearities are neglected,
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=~ Table 3.1: Parameters

oA

_Parameter
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->

of the experimental set-up

Case I [127]  Case II [55] .

Tooth proffle STD. STD:
Module, mm. 3 . - 8
Number of teeth, Gear 1, mm, 45 : .- 25
Number of teeth, Gear 2;'mm. : 48 . . 25
Preséure angle, degl 14.5 } | . 20
Pitch diameter, Gear 1, mm. 192 . 200
Pitch diameter, Gear 2, mm. 192 T 200
Face widtﬁ, mm. . - " 10 ’ " 10
 Cdntact ratio . - 4 1.80 1.87
Backlash, mm. . 0.25 ‘.,0.25
Material 3SCM steel FRP
Torgﬁe, N-m. 196 1.433
- ‘ | 1.933
. . | .
3 .
. R g |
B - |
{ e
- ) < .& ‘ :
o / e
R 3{* ' g y | Uf‘
TN
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because the photoelastic measu%;ments are .taken without any

~

lubrication. In addition, the supports had to be excluded

for‘ the simulation, because éf the lack of complete

n} knowledge of the experiyental set up used in [55]. .Howeveté
inspite of,‘these limiting approximations, the simulatot'

results Edﬁbﬁre ,very wei} with the p otoeiastic results.

Figs. 3.7 and 3.8 show the dynamic load amplitude piotted
against time during a mesh period at two,q;fferent operating
conditions. 'The simulator results follow the trend of the
experimental results for the entire time poriod con?idereo.

The location\of the peaks and the points at which 1loss of
-contaoﬁ between the mating teeth occurs are found to be toe

: same in both th;\égoos. But the magnitude of the load

" levels computed by the simulator are different from those

. “givenvby the photoelastfé stuoy. This difference is due to
the presence of létgo; amount of ~fr§ction at the mesh
‘LcootacEE. Bécauoe of.;he’rough finish introduoéé° by the
machining of pﬁotoelastic material and ,becauée' of the

" absense of lubrication in photoélasticity tests, “the

‘coefficient ot friction at the point of contact is typically

" three to s ;ltlmes higher than- “those of for gears made of

., metals {39], Also, -the sliding friction forces reverse
N ' ~ ‘ r‘
9 " their direction across the pitch point, thus inc;easing &Ze

‘load on the tooth before the pitch point and reducing the
. ' load after the pltch point. The photoelast¢c1ty results
. cleafly show this trend. However, as mentioned earlier, the

f

fgic;ional oharacteristics are excluded in the simulation of

——
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the particular case considered here and hence the °

‘difference.

i , , M :ﬂ ‘
. Y \
3.6 Dynamic load variation .

v

In this section, a parametric study of 'limited stope is
’ ' - . ™ '..
carried out to show that the. dynamic 1load is strongly

dependent on gear system parameters and not'just.‘ihe piﬁch

. : . I ‘ ‘ .
line velocity and gear wquality as  is implied -in the
currently used gear dynamic factor formulae. In. general,

the. dynamfc ‘load and hence the dynamic stress on a gear

o

tooth -varies greatly with cddtact‘pbsition, operating speed,

Jamping, and with the ‘changeé in system inertias and

stiffnesses. It i usual pragfice to use -the dynamic factor

(D.F.), defined as' the ratio of the dynamic load %o the
static -load, to stﬁdy ‘the  variation in dynamic 1load.
:'[Figs: 3.9 and 3.10 show variation in D.F. with various

-

design paramdters, . for .the gear system -defined by the

?

parameters given in Table 3.1.

v

Variation of D.F. ai&ng contact path

Fig. 3.9 gives. the vafiation of’dynamic‘factor along
the contact position for‘three different operating' speedg,
At low speeds (500 R.P.M.), that are well below the resonant
speeds, the D.F. 1is basically in phasé with the stiffness
-_;_change. As' the speed increasgs 'through sub—fesonant
(1600 R.P.M.) and résonant speeds (3000 R.P.N\), ~ the D.F

"increases " in  magnitude. ' Under light damping tooth

o
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separation and subsequent reverse or forward impact may dlso

occur . near the sub-resonant and resonant speeds. Also the :

location of the occurence of the maximum dynamic load moves

—

Wlthln the single tooth pair contact reglon contrary to the
assumptlon used in the cn;rent gear desxgn practice, At low
speeds . the maxxmum dynamic load acts near the poxnt where- -
the s{ngle tooth pair contact beglns. As  the speed
increases it moves through the pitch point towards the point
where the single tooth pair:contact ends. This Wl cates
that during the 're'gula.r operation of any‘gear gtho

critical locations in a gear tooth will "be subjected to

complex stress histories which may lead.to fatigue failures.

-
t

-

)

. Effect of operating speed

The effect of speed'on dynanic\load can be studieq by
plottlng the maximum value of the D.F. at each speed versus
-the operatlng speed. Flg 3.10 shows the maximum D.F. aa a
function of the operating spaed“in R.P.M.. As can be
‘expecteo,lthe\Qariation in meoh stiffness results in several .
aubrha;monic~lresonances,' in addition ‘to‘ thé primary.
‘resonance at 3000 R.P.M.. For comparison, the invcrse.of'
the dynamic factor valués computed according . to the AGMA

oéar design standards [1] are also shown in Fig, 3.10..

Effect of damping
The; damping in the system primarily influences the

dynamic load level near the response peaks. In addition, as



)

;m

.F. along contact position,

.33

8.8
NORMALIZED CONTACT POSI
Vhrlatian'of D

-8.33

:

Fig. 3.9:

l

. —0.67
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is "shown in Fig. 3.11, the sﬁébility of the-systegis
greatly influenced by the amoﬁn£ of daméingcand thus’ there*QJ
is 'a need for' a,\minimum _amouﬁt. of damping ' to 'avoia
instabilities in opeégting'regidn. ‘
In ggnegéi; anyvchaﬁge in‘ thé‘ éyspem -ineLtia and/or
stiffnesseglﬁill tesulp'in a shift in the responsée peaks.

.-

3.7 Stability analysis

In this section, it is shown thﬁt how the stability
characteristics of a gear éysteﬁ can be ;tuéied easily using
'thé state-space approach'-gmployed here.' ‘Geanﬁ}system
staﬁility ié onhe of the major design requiremehts‘}n' modern
gear desigﬂ practice since it has been found in pracgice and '
‘in laporatpyy experimeﬂts that operating a -gear system in -
o the unstable fegion leads to excessive dynamic-loads)and
eventually to complete‘destruétion of’gear teeth [35]., Many.
investigators [34-36) have' gtudied " this ‘éspéct of gear
dynamics uéing the techniques proposed by “Bolotin [128].‘
Even ghough these ‘éechnidues are quite geﬁeral and are
applicable to any dynamical system, in péactice they tené to
be‘ very complex for higher orderysyétems. In this\séction,
it is shown thaf with the wuse- of \state—space method and

Floquet theory- the stability of the gear system can be

carried out in a simple and direct manner.
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; . It is customary in the study-of ﬁhF 5tability of the

gear 'sﬁstem 'to assume that there;is no backlash and that

»
N

'there are no ge%r errors. Though these assumptlons are not

‘,7

true .in actual qear systems, they simplify the otherwise

:complex stablllty ana1y51s procedure. In addltron the local -

stabllity of a non- 11near system can often be 1nferred from

the behavrour of the correspondrng llnearlzed system.

- % . . ~ . . f ’

-’ » - -~

" . M . . ’
b~

~

Since, for a linear ‘system the 'stebility 1s .not.

”2*\

- affected by the external forces, the forc1ng ‘terms can be

omrtted and it 1s enough to cons;der only *th homogeneous
. ¥ .

~

part of the state equatron. R

That "is; S : ’ - | . :

W=anve o e

a
v ’
*y

. : . . : ) ‘ e
where, the matrix A(t) is given by equation (3.19) and is

o

periodic such.that, . \

N .
A N B -

Y . ‘ . .
* With these condltrons, the stability analysrs of the
gear . system,' Flg. 3.3, can be carrred out Lh a. remarkably

simple and general manner as given below.‘“ RN

2

_Converting the equation (3135)'rnto discréf2~£orm,'as;

'(ti-g:l) - .’(tia-l’ti) v(ti) K . . . (&j“)

a

&

. [ ’ ' . . \ ,' '
At ) = AY). . (3.36), -

~“ -
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. -:i toe pe

" and startxng from the 1n1t1a1 state atpthe beglnnlng of the

mesh perlod, the state at the end of’ the rmesh cycle can be

reached by success;ve appllcition dE equat1on (3 37)

1

' That 15, '*“*\\k . ) S .
v ) v

B / .v(t;n) - 1>(tm,t°) '.(to) R (3.38)
} : e ‘ ,
P— - i o N , “ ’ c ::‘ A\

According - to Floquet theory, ‘the overall " state

~

. transition matrix ® (tmrto) glven by equat1on (3.30), also,

*

known as' the growth matrix of the ystbm, governs the

atabillty ‘of the spstem given by equatlon (3 35) [126] " The
given system is asymptotlcally stable, if and only Jif, all

.the eigenvalues :of the growth matrlx have absolute values

-3

less than unity. Thls condltlon " for asymptotlc stabllxty,/

¥

C— 'if \'be ' checked by using a slmple rule . {129],<wh1ch locates

Y ¥
the eigenvalJEs of a pdrfference' system in complex plane

without actually solving for them. For the presént problem,

= 3

SJ \jEYe USe of this rule reduces the computatlonal tlme by ‘mpre
h . . ~ v

an half
HFig 3.11 shows the reglons in operatlng speed range,

where at least one of the eigenvalues of growth matrlx has

e 4.

‘q’ﬁk an +«absolute value larger than 'unity. As cah be seen from

~

1

Fig. 3.11, the damplnglzn the system has a ‘major influence

. on the stabllxty of the gear system. As the damping is

increased the unstable reglon becomes smaller and finally

hd -

.“
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" ) with large enoughxﬁaﬁpﬁng,rthe sy \Sm.becomgggstablg for the
. A ‘ N .

‘entire operating speed range: Thus, there is a requirement;

. . . L . \ o
- O for @ -minimum amount of damping to prevent the parametric¢
: . _ ' ¢

type instabilities.b

+ r

v

- 3.8 SUfmary

In this chapter, mathematical models for a spu;.vgear
-set are formulated incqr?orating both the torsionai motiénj
v ok thé gears and tﬁé'lateral,motion of the supports, with \
. the assumption‘that the actual transmission error record is
available as a continuous time éignal. Non—l’néarities
arising from . the backlash ahd . the frictiord between tﬁe
- meshing teeth are included. It is shown that the use gf
gstate-space technique to ‘solve the équaéions of motion is
- very advantageous both in terms of the -amount of usef&l'
. information th4t can be obéained from a single analy;is and_ J
in terms of the computational requirements. A procedu}e to
- gelect:proper initial condition; so as to begin the analysig

directly in the steady state is given. Verification of the

simulator carried out By comparing the results from the

“ - -

.t simulator with experimental ‘results obtained .using both
\ T * N .
8 vibration measuring instruments and dynamic photoelasticity

\Ztechnique show the viability of the simulator to simulate -
~

both metallic and non-metallic gears. : Als&; the

i . I . *

¢ inadequaciefyof the currently used design practice and the
?>. complexity of the gear dynémic load variation is highlighted

N  with the use of a parametric study. In addition, it is also
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.described in thi® chapter is extended "so as-
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Bhown,_tha%s\the stag!llty of the gear system ca
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o

w-be~gasiiy

_ stydied with the use of state-space technique and Floquet
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In the next chapter, the dynalmic load simulator

.

S
-

to use the
statistical. properties’ of the transmission error -record
rather than the actual measured transmission record

themselves. ' . , &,
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"4.1 Introduction - .

W - -
. «£
! ., ” . . | )
. ‘ I . . M U( .
Ay - CHAPTER 4 - &
' A R s

— DYNAMIC LOAD ESTIMATION - STOCHASTIC APPROACH

\\5\. | :\ . Vo~

& The underlying assumption in the ‘formulation of the

- ’ ¢
dynamic 1load simulator described in the'previous‘chapter is
thet tﬁé .transémission error ,can be co%sidered_ and is
available as a purely deterministic signal. However in a
working gear drive, there are many sources of error such - as
profile wéar, bearing wear, irregularities of clearences in
rotetingybarts, deflection of Leeth, dirt in - the train,
etc., which are randomdin nature. Also, the avaxlablllty of
measu;ed error signals is poss&ble only after manufacturlng

and mountlng the gear system and not at’ the design stage.

‘ Thus, the s1mulatov/g:esenéeq‘1n the last chapter ‘can be

used effectively only to 51mu1ate an ex1st1ng gear system.

. N :
fosbvercome this, a new s1mulatlon\ method, wherein the

]

influence of transmission error _on. gear dynamlc loads is

' studied using a probabilistic approdbh, is introduced in

(’—.—v .
b1
A
&\§ \
)
14 N
-
J"’
S
. e
.
I's
.
.'.'\.";
-
) Y
.
‘3

this. bhapter. The required statistiCal and spectral
. N o (

propertxes of transmission ,error records can elther be*

obtalned from analysing -the transhxssxon error recorded from
similar gear sets wor!ﬁng undé% 51m11§r operating conditions
or canv be reconstructed from ihe statistical properties of

the domponent error records [llh 115] which can be measured
NN &

individually 'w1th the: copventional ,gear meteorology

ifistruments. = - '
‘ ‘

_ - 87 -
v v | -

v



3 i ..88..

lf o= Though many researchers (130,131] have 1nvest19ated the
o ] stat15t1ca1 properties of transmlsgﬁfib error and their
. effect on the v1bratxon and noise of gear systems, only Tobe
ef.al.  [20-22] attempted. a statislicel treatment of the
gear.dynamic loads. They first formed the Fokkef-Planck
equaﬁion for the non-linear spur gear system and derived the
gomeng‘équations from it. The non-linear moment equations
wg% then solved for the first two moments of the response
’ USLHQ'a statistical llnearlzat1on 'technlque., They also
) verified their" theoretical results with experiments {21].
However, inspite of the sophisticated statistical .treatment
ﬂ% '.\~ and good results, .their work was not followed or applied by

o M- —

a other researchers, because of the large number of equations

°© , i . . . _ [ , »
and complebxité _involved.g Inclusion* of other type of

l

non—linearitiéﬁ suchkas.friction.between teeth or eto. into
the analysis further compounds the complexity even for a
s - - o

B ” . Y .
- smaller degree-of~freedom gear system model. J}h addition,

it is known that under certaln dynamic condltlons the ge%z
"gsystem becomes unstable [19, ié 36] . For dynamic systems of
* this type with dlscodtlnuous non-linearities such as
. . backlash the statistically. llnearlzed galns are known to

give hlghly inaccurate ;%sults [1L33].. .
e

&
o

It is shown, in the following  sections, that the
statistical analysis of gear dynamic ‘systems ‘ can  be
performed in a more elegant and easier manner using the

N . . 3 s o o .
" piecewise-constant . approximation and the state-space

e ‘ -
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' assumptions are made:

-89 -
approach. The technique proposed here can be readiiy‘

applied without any modifications to larger

- ‘.

degree-of-freedom gear models. . ..

.- .,

4.2 The mathematical model

Once again, the configured gear system, shown'. in

Fig. 3.3, is used to develop the methodology. This

- configured géaf system is,goberned by eqﬁations of motion

-given by the maériﬂ equation (3.18). In additioq to the
~ (.

- .\-' \—7_ .
assumptions stated in the previdus chapter,. the following

.

1. the transmission error- can be regarded as a
* ' ‘stochastic process which contains a certain
random component due to the rand?m sources of

errQqr mentioned earlier as well as a harmonic¢

v \ .

$ component due tp, thet eccentricity or 'pressure

< .
angle error..

o ' 3
s b ®

2. the random component is assumed to be erbodic,
stationary, normal and independent of  the
-harmonic component ©° based, . -on physical’.

observations [20]. s -

7
i

3. the harmonie component is considered to be’

ot
L]

deterministic.

Based on these assumptions, the deterministic ,simulator
. ) . a~

presented in ‘the previous chapter can be considered as a

special case of the stdchastlc simulator developéd hefe.

3



signal e, is an oscillatory ,random process.

jand spectral propert;es of the transmission error

' * r .\ . K N
.

o : : -’
) - ‘-~ 80~ -

- 4,2.1 Gear transmission error representation

- As can ' be .seen from Fig. 4.1, the transmission error

Tobe et.al,
(20] showed ‘that the random component of gear transmission

error tecords can be generated Wlth good approximation by

_passing a statlonary Gaussxan white noise process through a

tlme-lnqarlant shaplng fllter. Since a second order Markov

"\-’

. 4
process provides a good model of oscillatory random
) phenoﬁena, it is used here as the shaping filter. The
shaping filter state equation is:
) V) = AR) v{t) + g w(t), ‘ (4.1)
. Here, ‘, ' —
‘ YH. N 1
. , 0 1
, .‘.‘f - T . . (42)
. . '.2 'll 7 . .
. 0 . .
- e | Y
\ L 1 , ‘ .
~ . - with, coe ‘h " . .
‘ L - oy 5
\ o S O R * S (44
3 ! P

.The coeff1c1ents aj, and az axe functions of the statxstlcal

rec0rds

&

and - are chosen to fit the autocorrelatlon and PSD plots of

the transm1551on error recoras as aescrlbed 1n Appendxx III.
!’ 4, ) .

‘-
«
- N D
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Typical gear transmission error signal
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Bd w(t)’

followirng

€, 0

whére,
Q(t)
6(s)

4. 2 2 Mathematlcal model

-92 -,

., . . — .

is a Gaussidn white noise process with

properties, . o .

<w(t)> = 0

awin(t)> = Q) 5 (1)

intensity of white noise, -

[3 [RRY
delta function. S
' \\t\‘ ‘
S - . \

v
AR NI u’\ i\

[N

»

obtained by cdmblnlng the equat1ons (3.18) and"(4. 1).

That is,¢

’ where:,.

"

OERNCRACERACETR O}

’

o [ aw| e
AJ? - -*;f f_- .

t
b(q -
. o
g, - {— -

1

ghe

(4.5)

Gm)’

The state equatxons of .theaugmented system can now. be

).
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i 4 . . » \
v ’ ' L
RSl e A o +(811)
' ' vf . .
and, » )
. T “ - " ‘ . ' ) A
u f(t) = {T, Ty 0000} - k"(t). (INXBL) L (4.12) ,

1o

E.

The index IN is set equal to -1, 0, or +1 dependlng upon the
value of (ute), based on the backlash characterlstxc curve
shown in Fig. 4.2. The vector uj and the submatrxces A(t),
and’Af are given by equations (3.14), (3.19) and (4.2)

respectively. And the submatrlp G is defined as,

S G \‘[0 ’0]’ ' T "‘(43)
SR ‘ : , 1

k (t)u,. . 01].. e . N

o -pz() 2 : K :

——— R <

Even-though the éxcitaEion-is a stationary process, .the
system glven by equatlon (4. 7) is non-stationary because’ ‘df’,
Ehe time-varyxng, non—llnear functlon wd -It is dlffxcult

to solve equstion” (4.7) analytxcally. However numerical ,

solution of equatlon (4.7) can be obtained by con51der1ng )/4‘

* the correspondlng equlvalent d1screte-t1me system mode1,

N (M) 1.t)v(t)-t~bd(t)-f="(t) . (4:-12)

.on

. ,Qhere,'thé state transition matrix ltj+1.ti) is given/byﬂ

e

o .. A C:(ti +1’ti) - egp(A'(ti+=).(AT)), L (4.15)

> . ~ o
.
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and, the discrete-time forcing vector bg(tj) is given by,

¢ ‘
N S o ; .
:b d(ti) - Jti 0(ti+l,c) ba(ti-r{) ds, , (4.16)

And w&(ti) is 'a vector valued Gaussian discrete-time

’

. stochastic process with statistical properties exactly

duplicating those of w(t) foé all t;, such that,
A R
<wd(ti)> -0 E ‘ (4.17)

-

o

».' R , . t : . .
<t > = Q) = 4T 80 8, Q) 070 ) &s (419

<w () v dtP> =0, fory o ¢t . (a19)

Thus, equation (4.14) defines a discrete \timé
sto%hastic process awhich has an identical soiution process
as that of equation (4.7) at d;scf?te times
tortist2seceeastm.  In  the discrete-time state equation
presented above, thé state transition matrix )¢ and the
forcing vector b, are taken to be constant in each time
interval (tj+1-tj). These piecewise-constant approximations
are ‘valié:‘ if Egp total number of sampling instants is
sufficiently large and if the time interval is chosen to be

sufficiently small compared with the time constants of the

system [126]. As was mentioned in the previous chapter, in

the present study a time interval smaller than one tenth of

.

the smallest system natural period is used.

.-

ﬂfr

o
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The piecewise-constant: approximation reéulfg in a
. o . ] s "' / !
series of H:near stochastic differential equations of the
. «
form given bx ‘equation ‘(4.l¢) for 'each time interval '
. [ ’ ‘ '
(ti+1-ti). .The c¢orresponding - péigj' and  covariance

propagation equations are [132]:
- m () = #lph) mly) + byl C (420)

P_ (.

reltag) = Bt 1) B8] 970 18) + Qe )

where, .
Pyy = covariance matrix,
my, = mean vector

Equations (4.14), (4.20), and - (4.21) a%e all recurrence
rgiationships and hence starting from the%ihitial condiﬁions
my(tg), and Pyy(tg) ;t time t=ty, the states at other time

instants can be computed by tbeumethod of giﬁe marching.,
This procedure is besg suited for digital computer
implementation. The exponential matrix ¢ and the véctor bg
“Mthe equations (4. 15) and (4.16) are obtained by replacing
the matrlx A in equations (3 27) and (3.28) by Aa. And the
integratlon in equation (4.18) is carrled out by wusing the

v
or

Qd(t) - 0.5 AT (é(t W_'z Q(t) z + 8, Q) s, &7( ) (4-22)

trapezoidal rule, such that,

where, AT = (tj+1 - tj) 1is the time step chosen for time ..

marching.
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4. 2 3 Selection of initial condztions

In the previous chapter, it was shown that, Qith-qa

ice_ of proper initial conditions, the_ steady séii.l
[ .

cho

res?onse can be reaqhed "immediately" without going through

the calculations for the transient response. Also a

R, ;ﬁprécedure for choosing‘such proper initial conditions for
. the gear dynamic system was introduced, in the last chapg;r.‘
zu, Here the same procedure is extended to compute . the
appropriate initial conditions for the mean and covariance

. ‘propagation . equations (4.20) /gné (4.21). Startinq the
analysis. from th? beginnlng gf“the mesh cycle ($=to),-And by

using the equations (4;29)( and (4.21) repetitively, the

'/ntates at -the end of the mesh cyclé {(t=tp) can be computed

"S' .
[ i

° -

f m (i) = $ligte) @J + dll | (4.23)

5!
. P )= .Q(tm,to) P"(to)@T(tm,to) + Dt ) (4.24)

~ with
- ‘ ' m-B m-1 o

d(t_ ) - :Z% ]'111 b(t 1,tj) b d(ti) +b d“m-l) | (4.25)
w3 - ) Ut
Dity) = 2y *liztied Q,(ye” (‘1-4-2' 1) * Yt ) (430)

7
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Here, the overall ttansitipa/hatrix &d(tmrto) is given by,_

.
-—

- m-l E - )
tb(tm,to) - ill Q(ti_'_l‘,ti) 1 (4.27)

-

Since the mesh stiffness variation is periodic, the matrix

»

A; will also be periodic, such that,

mé‘

oy

e At ) = A (L), ()

Under this condltxo&;—vthe sfeady‘ state response of the

system at the beginning of the mesh cycle should be nearly

a0

H

equal to response at the end of the ?fsh.cycle.
Thus, under steady state conditions,

mv(tm) - mv(to), . ‘ ‘ (4.20)

——— . \ . R )
e Pt ) =P (U o . (4.30)

- Substitution of equatlons (4 29) and (4. 30) into equations

{i (4.23) and (4.24) results in

;ﬁ}«”’/"\*\\ -1 ”
7 | m(e) = [1- 0 00" dey) . a)
&(,t)P(t) P(t)o(t ,t)-o(t,t)n(t ). (4.32)
which can be solved for my(tg), and Pyy(tg).  Thus the
'procedure is to start at the beginning of the mésh cycle
with zero initial conditions and to combute the overall -
o
" transition matrlx <b(tm,to) and the forc;ng elements in the
vector d(tp) and matrix D(tp) at the end of the mesh cycle,

" Then by solving equations (4.31) and (4.32), the proper
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initial conditions can be é%mputed. ?ﬁ&s procedure needs
only two iterations. C ', . '

’
[ 4

, .
\ .
However, the above procedure is vdlid only when the

varié&&e mesh stiffness kpg(t) is in one of the three linear

s

.segments of the stiffness curve shown in Fig. 4.2 for the

entire mesh period. When the operational conditions change
"the geér mesh status .during one mesh period, the overall

state transition matrix &(tp,tg) of the system will itself .
A : \J .
depend on the choice of initial conditions and hence the

above procédure will'  not be wvalid. For these cases the
computer progtam has been designed to enter automatically

into a' multi-iterative mode to reach the steady state .

-
L -

condition. ' . .

™ "

° R 4

4.3 Dynahic. load analysis

,‘Once the mean and variance of the response states ;f
the gear system have been determifed using the"numerical
procedure described ea.rlier; the —'statistic } pr'operties\oaf‘,‘:‘,:_,"'
the‘gear dynamic loads can be obtained by dubstituting the“ |
corresponding statistics of tée_ staté.v;riables into tﬁ;

following equations.

’
i

T | . -~ “ .{3 v
A
<W > - w d(<v>,BL,t),/ : (4.33)
<W, W > = k3 it)<vTv>. . (4.34)
d 'd”-  =pg v . .
- T, & . .
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Numerical example

Even though the procedure presented here 15— applicable‘
to gear systems with both harmonic and raﬁdomaertots, for
the numerical example given here, %; is assumed -that the
transmission error consists of only thé random component.
The parameters of the;s&stem to Ee analysed along with ‘:he
‘transmission error statistics are given in Tablé 4.1. Based
on the spectral da?a given, using the steps described in
Appendix III, the values of the constants aj, and a; in
equgtion (4.2) are resbectively set as, 0;11, and 0.102,
‘For the purpose of comparison with Tobe's [20,22] reSulgs,
the nonjlinear backlash element is assumed to be of
sym;ﬁtric type as shown in Fig. 4.2 and the supporﬁs are not
included in the modelling.

In general, the dynamic loadé and hence the dynamic
‘stresses on a gear - tooth vary considetably with contact
position, operating speed, damping, and with the changes in
system inertias. Figs. 4.3 to 4.7 show the variaﬁion in the
"Zhhean and . va iance of' the dynamic factor (D.F.) with
different de51 J parameters for the 'gear system shown in
Fig. 3.3, and d fined in Table 4.1. As can be seen from the
Figs. 4.3 to 4.5, the mean value of the dynamic factor
(D.F.) does not vary with the random erréor magnitude,
whereas the variance of D.F. ’‘increases with the error

_magnitude. This is due to the fact that the mean value of

the random component of error used in the present example is

"
.
v A
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Table 4.1: Salient Parameéters of the gear system

1‘1 o . )
' : - B
v 4 s
Tooth file
ch pARgile |
.Diametrical pitch .
’Numbér of -teeth, Gear 1, mm. ‘
qubér of teetE, Gear 2, mm.
Pressufe angle, deg.
. & .
Pitch diameter, Gear 1, ma. b
Pitch diameter, Gear 2, mm. e
*Pace width, mm. !
. T e 0
Contact ratio '
-
Backlash, mm.
Moment of inertia, Gear 1 i 0.
.Moment of inertia, Gear 2 . 0.

Load per unit'facé width, N/mm.

i Mt
. ~
1 N T »
“ B ] .
" ° =D
° . Vg -’
e ﬂ
b 3
o
[ R .
~
- * : A Y L]
) b
P s
L 1-.‘ o t -
dﬂ"'é ) ”
L]
M ¢
. - '

STD.

20

79y -

20 .

63.5
63.5
25.4

0.25
0051

0051

1.56
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taken to be zero. However in a more general case, the mean .
glso will increase with error magnitude. Fig. 4.6 shows the
effect of random error magnitude and operating speed on Ehe.
mean and variance of the haximpm D.F.. As can be expected
the variation in mesh stiffness results 1in several
sub-harmonic resonances, in addition to  the primary
‘resonance near 92@0 R.P.M.. ;‘ |
jpﬂ?n limitatiop of the statistical 1Ilinearizatien
tecﬁ;ique as applied to the gear dynamic problem can be .seen
from Fig. 4.7. 1In this figure, the mean of the maximum D.F.
computed using three different techniques is plotted againsé
the operating speed. The cufvé designated as ﬁs is obtained
by numerical simplation wherein the actual digitizéd error
ﬁsignal is used as input. Tnisrcurve is taken to be the
basis for comparison of the results from the other two
Ttechniques. The curve designated as PWC is obtained with
the approach presented here, and the curve SL 1is obtained
withv the use of statistical linearization. It is obvious
from this figure that the piecewise constant approxim;tion
results compare very well with the simulation results” for
the entire operating \épeed range. Whereas the results .
obtained with statistical linearizaﬁ&pn compafe well with.
the simulation results only in the speed regions near {the
systed' resonances. This ,can be expected since the gear

system behaves essentially ih a linear manner in the regions

away from the resonance and the equivalent linear system

-
°

D(

J
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“ wil; not correctly represent the actual system in such

cases. ~ In addition it can also be seen from the Fig..4.7
that the -equivalent gains given ‘by the statistical

linearization also shifts the system resonances,

4.4 Suﬁmary

In this chapter, it 1is shown that the statistical
analysis of the gear dynamic load can be carried out in  a
simple and direct hanner usinq‘ piecewise constant mesh
stiffness approximation ‘and the mean and covdtiance
propagation equations of 1linear difference system. It is
also shown that the statistical linearization technique used
by Tobe et.al. [20,22] does not give correct results both
in terms of the magnitude and the location of the occurence
of the maximum  dynamic load under certain dynamic
conditions. In contrast, the piecewise constant
\approximation used here gives truer results provided the
time interval chosen is'sufficiently small. Moreover the
érocedure developed here ';;; the advantage that it can be
applied with ease to higher order systems and to sysfems
with complex mesh stiffness and torque fluctuations. Also
it is éhown that proper selection of initial co?ditions
using the procgdure given earlier, the computagion time

required for the analysis can be considerably reduced.

“*
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CHAPTER 5

‘DISCRETE - TIME TRANSFER MATRIX METHOD

AND ITS APPLICATION*TO GEAR SYSTEM .DYNAMICS
\

\

5.1 Introduction . \

'JEven though %he dynamic loaQ_ganears ié primarily the
result of gear pair dynamiqg, the influence of other
elements in the gear 5ystém is ng? ngcessarily‘minimal. For
€xample, a complete gear syséem such as that shown in
Fig. 5.1, which includes the mating gear pairs, the shafts,
the support bearings, seals and the housing may fail in
different ways. But most such failures manifest themselves
as increased dynamic loads on gears leading to the failufe
of the gear teeth. Thus, in order to estimate or simulate
the dynamic 1load on gears accurately or truly, the entire
gear system including the dynamics of the  individual,
components should be modelled and studied. However, it is
customéry in gear dynamic load analysis [12-29] to neglect
the effect of other system coﬁpongnts, since inclusiqp of
these components makes the model very large and complex.

To study such large éystems, using straight forward
numerical simulation techniques By formulating the equation
of motions and solving them numerically is a cumbersome and
tedious process.' In addition, even théugh most of the gear

systems. are mainly made of same type of fﬁgividual

. A, - . e
components, their numbers and locations within the system

- 109 - -



- 110 -

A typical gear system

1

Fig. 5

N
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vary from system to syspem. Thus, for each gear system
configuration, the entire s;mulation process starting from
formatioh of equations of métion’has to be done anew. These
deficiéncies of the straight forward numerical simulation
procedures can be avoided by usiﬁg,a modular. approach such
as the transfer matrix methods (TMM) [é3,27;l35] or the
dynamic finite element methods (FEM) [37,44) wherein
analytical models defining the dynamic properties of each of
the components in the gear syétem are first constructed and

then assembled in such a way to attain the required gear

~system confiéuration. With such modular approaches once a

library of analytical modules of the components are

‘constructed, any required system configuration can be

simulated by properly assembling these modules. These
techniques are qui:e powerful and yet flexib®e. However,
finite elements having combined torsional and lateral
degrees of freedom are not yet commonly available, thus

making FEM unusable for the coupled gear dynamics problem.

" The TMM on the other hand can accomodate such coupling

-between tqréional and lateral motions. "But.it-is restricted

to only linear time-invariant systems under harmonic
egcitation or free \vipration problems. - Therefore, many
important characteristics of gear systems such as gear tooth
backlash, time-varying mesh stiffness, input torque
fluctuations as well as non-linear characteristics of other
?eat system components like friction clutches, ana

hysteresis dapping in the shafts can not be.included in the
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simulation. Recently, . to overcome some" q£ these

deficiencies, Daws [25] introduced a new TMM formulation
based on harmonic balance method wherein the periodically

-~

time-varying characteristicgg of the gear mesh can be
included. But,‘ inspite “of his emphasis on improved
representation of gear mesh properties, some of the bery
impottant non-linear characteristics of the gear mesh such
as tooth backlash could not be included in their modelling

methodology. Thus it appears that none of the«currently

> ' :
" ,available numerical techniques can be used effectively for

. o~
accurate simulation of gear system dynamics and that there :

is a significant need for an analysis procedure which treats
the system ' components in a mo¥e realistic fashion and
provides for a physically realistic assembly of those

components. '

W |
To achieve such objective, a new modular approach is
troduced in this investigation. This modular approach,"
called Discrete-*ime transfer mat;ix method (DT-TMM), 15
based on the convéntional TMM and the numerical integration
procedures. This method combines the ad&ghtages of both TMM
nd numerical integration procedures in that.the size of the
matrices are small and can be applied‘to a wide range\qﬁ
proBlems including 1linear time—v&rying and non-linea?\\
systems. IBasically it involves splitting any s&stem in to a \\\\\
number of gimple modules and allowing modelling of these

=

modules. Then, as in the Tcase of conventional TMM, the o
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- modules are connected together to represent the requi;ed u“%
ﬁ‘ J ‘ M

i ] . N ’ ) . .
system confi@u:atlon. The proposed .metnod is simple,

straight forward and provides a powerful tool for dynamic

4

analysis of any general dynamic systems.

In the Pollowing sections, the newr\simulation'

meﬁhodology is described and then applied to gear system

« dynamic analysis.

'5,.2 Formulation of the DT-TMM

5.2.1 Basis of the methodology - » "
The DT-TMM is based on the assumption that at any given
time instapt, ti, the'acceleration‘and velocity in any givgn
degree of freedom, say x, can be expres;ed as a linea%
function of™the displacement x with re;sonable accUtaEy.
That is, L A " © . ]
xn(ti) - An(ti):‘:n(ti)'-e- Bn(ti) ) : (5.1) ,--:"\'\\
2 - -
in(ti) - Dn(ti)xn(ti) + En(ti) / R (5.2%

» "™These types of relationships can be obtained from most of
the‘step-by-steé_integrétion procedures employed nérmally.ip
structural respbnse computations. Derivation of these ,
expressions based lon truncated Taylor series can Qé carried

. out as follows.



- 114 -

R o
The starting point . for most of the numerical

integratién schemes used in sgfdctuxalqkésponse analysis ' is
N ) LS

the truncated Taylor series of order 3. ghél is,

P>
-3

x(ti) - x(t l) + AT x(l:i 1) + = 2 x( 1) * X( 1) . (5-35'

%‘l

1)

where, interval AT = (tj - tj-1).

. . R
Different integration schemes with varying sophistication
. and accuracy can then be derived ~ by re¥1acing the
derivatives in equation (5.3) by Einite differences. There
exists a large body of literature on thig, subject of\,how
derivatives can .be approximated by finite differences.
. Here,. one. of the simplest finite difference schemes -
v \.—-&—“ : r.. - v
available is chosen to explain the methodology proposed.

That is, the derivatives X, ¥, and % are replaced by - the

P,

followzng primitive dxfference approxlmations. »
#t) - Xt ) ' -
) L A (5.4)
\ . AT f
o B (58)
, i . AT i
R X - xt, ) N
' % v el (5.9)
- : AT -

¢

@

In addition, it is assumed that the -acceleration is constant
during the time interval (tj = tj~1) and is . equal to the
average of the acceleration values at ti-and tj-3.

Iy
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Thus, ' . 7 !
X =0 . (6.7)
Xt} + s ) :
hd X = , (5\8)
» 2 -
~ - \:) . . '
- . x(ti) + x(ti-l) . '
. X m XAT = 2 AT . (5.9)
b Substitutilon of'.equétions (5.7) and (5.8) back into equation
P - ’ ] I . "
*  (5.3) will result in, .
= . ' . 2 ;‘(ti) + ;‘(ti-x) .
x(ti) - x(tH) + AT ’(ti-l) + AT ‘ 2 . (5.10)
" Equation {5.10) cén be rewritten in ' the form c.if equation
.;'(5-1)' as" ,”\‘}:\ -~
- . «_“_‘; . ' . R )
xn(ti) - An(ti)in(ti) + B'n“i) o ,_'(5.11)
* - where, -
) I LA ==t a (5.12)
: A A . AT . .
. and | . .
° * e AT’ . . .
AR Bn(‘;?*- -An(ti) [x(‘H) + AT i“i-l) + S x(tm)] | (6.18)
. .Simi}atiy, b)?' combining equations (5.9) ‘and‘ (5'.11), a
rélationship in the form 'of_‘equ(xation (5.2) can be obtained, ‘
such that:'.‘f co .
' % (8) = D ()= (8) + E(8) L (_s.u)
o | .
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where, )
- # .
. ‘ D (t) = = 8.1
s oY T AT . (8.18).
and, ’ . .
E (t) = -D_(t) [xt, ;) + &L it ) 5
n'i i Vi 2 N (6.10)

The coefficients 'A(tj), B(tj), D(tj), and‘E(ti)‘are.all
definable for any éub-system n for the " time i;;etval
(ti-ti_l); since these coefficients are all functions of the
time interval AT and the response’ quantities x(ti-lk,
x(tj-1), and %X(tj-1) at the previous time instant which are
all gnown at tiﬁé-ﬁhstant ti. Once these. coefficients are
computed\s“fﬁmt;‘;\ng':‘fro% the specified (i/rxitial Fonditions, the
dicrete time ;;Ensfer matrix e tions can then be

formulated on the basis of equations (5.11) and (5.14), as

explained in the following sections.. It should be noted

A . .
here that the simple finite ydifference -scheme and the

constant accelerétipﬁ‘ assumption used here in - the

formulation are only for explana;ory-purposes and cdnnot be

-used in practice, because of the inaccuracies that would be
' *

introduced. 1Instead, any of the many accurate, and commonly

available numerical integration 4procedures can bé used.

¥
Table 5.1 pro&ides the’ coefficients Ap, Bp,. D, and E, for

»

different numerical integrating procedures.

-

] / | )
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3 <

‘®

Table 5.1: Table of coefficients for different

)

) Y~ integration schemes o
METHOD Aty , B, () D) E )
-Conventional T , 0 ‘ 0 . T °
T™MM : :
2 3 P s 3 P
Fox-Euler R o == [x(t, ,)+ATx(t, )] - - [ x(t,_,)+x(4 )
ox-Bu ar? Ar? | 1 X1 AT AT *"1a1 i1
. . %. N . 1 1 . .~ ['% . -
. ark B - s [x(t, ,)+ATx(t, ,) a1 x(t, )+AT [(1-7)x(t, ,)
. wm ‘ paT T Tpar® -1 1-1 | FAT 1-1 1-1
- +0.8-£)AT x(t, )]  +9B]
«f ~ n
- ’ 8- 8 : 3 - 3. 30AT °
- -. Wiison ¢ . . — [x(t,_,)+0ATx(t, .) ——— e x(t_ )+ x(t_,)
N Tl S (oA'r)’ (aA'r)' 1-1 1-1 §AT AT \1 1 ’a -1
: L - -
+T \ear?y
Houbolt . . - ' o . ’
for 123 :-r’ - _AIF [5x(t,. ,)-4x(t;_g) T ~gar [18x(t,_,)-0x(t, o)
' +x(t|_8)] +’x("|_3)]
3 L 1 ' 11 1 ,
for j=32 — a —— lax(t, . )-2x(t; o) - e [1ex(t; )-8x(t, o)
aT® . AT I-1 I-3 AT 6AT -I 1 i-9 .
+’AT'X(tl_2 } +AT’x(t‘_sn‘ 1 4
. , -
8 3 ' . s . 1 ' B .
—— - [8x(t, ,)+3ATx(t, ) = e [ox(t,_,)+4ATx(t, )
AT AT 1-1 l-1 AT AT i 1- » X1
AT, +aT7x(t, )]
¢ .
\ , »
o ‘; |
\.{ v
L )
A I}
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5.2.2 Formulatibn;of the méthod ‘ s -
For modelliqg purpoées, following the canentions used

in the TMM, a contfnuous structure may be divided into a

certain number of  sub-systems as shown in Fig. 5.2. A

> -
sub-system can be represented by two parts. One part is

defined as a- station where :he mass of the sub-system is

lumped and the external force f(t) and the ex?@{nal

displacements x(t) are to take place. The other part is

-

defined as massless span segment having all the properties

of the . sub-system flexibility and the wviscous damping

connecting the two adjacent mass‘stations% Thus, the nth
sub-system consists of spring stiffness kp, damper element
cnr and mass mp with displacement xp,-and velocity xp. lTne
ends of the\spring-daméer element have displagemeﬁts xn and

§:-1..‘ The superscripts L and R are used fd? designating

-

-

~

quantities to' the left and right of the elements.

For f:g nth sub-system, at the time instant ti, the'
equation of motion is given by,
» ' : ®
t) x " - T
m (8) x (8) = x (&) - x (t) + T () (5.17)
with ' .
A L R L .R
Xy = () belt) - x ()] + e (6) () - 2 () (618)
In addition, since the displacement on either side of mp is
the same, and since the internal forces x acting on either

end of a massless spring-damper element should be the same,

N
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the following identities are valid.

; R L ) .
(.' x - X . ' (5.19)
n n K :
L "R °
- 5.20
Xn Xp-1 ( )

In the conventional TMM, beFause of-. the assumption of
harmonic motion, the acceleration ¥n and the velocity x, are

expressed as -w?

Xnr, and wxp, respectively. But for a system

which is not under harmonic motion, these substitutions are

not valid and hence the limitation of the conventional TMM.

Here, it is proposed that, by using the approximate
¥

relationships of the form given by equations (5.1) and f5.2)

the equations (5.17) and (5.18) can be written as,

R L ' '
m A%, + B] = Xp = Xy + 0, (8.21)

and

~ -

L v L R L R
Xn “ n [xn'xn-l] * % [(ann"'E:i) " (Dn.lxn.l"f En.l) ] (6.22)

Equations (5.19) and (5.'21) can ,{now be assembled into a

v .
'single matrix equation, as,

R L
x 1 0 0 x
- - 5.23
dx |mA, 1 m B X | (6.23)
1 0 0 1 1
n s n
or i
R L - '
n n n ) :
‘4" .

Here, following the convention used in the TMM, the square
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" called the state Qector.

[

L DR L ER. R
. - kn * % n-1 1 'cn(En - n-l) =
* e D" k " D" *
(kn + cn n) ( 1 + cnpn) ( n + cn n)
Ixlal - 0 ' 1 0. {xy . (5.25)
1] L 0 0 1 1
n n-1
or
- L R ~ (5.20)

vn - Fn Tn-l

Here, once again following the conventions used inayﬁﬁ, the

square matrix Fn is named as field matrix.
The transfer matrix T,, which relates the state vectors

at either end of the‘sub-system can then be formulated by
combining equations (5.24) and (5.26) as given below.

| . .

\

- R P F’ R
R ond \ . C Yo " 2 "0 Va1 . : (5'27).
or
) . " R - R , .

/ | - Tn vg—l , (5.28)

where
N T PF 5.29
- ‘“n T Tnn’ (6.29)

matrix P is called the point matrix and the vector v is
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Using equation (5.28) repetitively, the overall
transfer matrix T, whi;h relates the state vectors at either
end of'thg system can be computed.

That is,
T - Ho T, ' (5.80)
)

Once the overall transfer matrix of thé‘system is known, the -

boundary céndifioné of the systeﬁ-can then be" applied and .
' the, unknown quantities in the left most end state vector can
r ‘?é/Lomputed.' Now,'knowing the left most end state vector
completely,‘ the state vector and hence the response at each
sub-systeﬁ at time tj can be computed by the repeqtgd'hse of
equation (5.28). fhe velocity and acceleration quantities
,at time t; are theQ computed using equations (5.1) and (5.2)

respectively. The entire procedure can then be repeated for

time tj+3 and so on.

5.2.3 Algorithm for response computation

. Follo&ing the formulation given above, the dynamic
response - at different time instants for different
sub-systems can now be compﬁted as folf&vs:

1) set i = 1. .
‘a 2) knowing the initial conditions x(tj-1), x{tj-1),
X(tj-1) and the system properties at time tj,

compute the quantities Ap, Bp, D, and Ep for _ ‘gb

each sub-system.
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3) formulate the transfer matrix for -each
sub-system aéd the overall transfer matrix usingf’
eqﬁations (5.28) and (5.30), respect%vely. L

4) apply boundary conditions to the end state
vectors of the system and coﬁpute the unknown
quantities in the left most end sféte vector as -
a function of the elements of the overall
transfer matrix.

5) now, knowing all the elemen?s in the left most
end state vector, the resbonse at each
sub-system at timg instant tj can be computed by
succéssive multiplication of the transfer
matrices, using equation (5.28).

6) using the computed values of the displacement at
tj, compute the values of x(tj), aAd X(tj) using
equations (5.1) and (5.2). ‘

7) let, 1i=i+l, wuse® the computed values of the
previous step as initial conditions and return
to step 2, till the time required for complete
analysis. | ‘

The algorithm is also given as a flow chart in Fig. 5.3.

5.2.4 Time step selection {
Since numerical integration prggedures are very
sensitive to the integration time step used, proper care

should be taken in the choice of the time step. Different

integration schemes are.sen;fﬂive to the time step used i%

B
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»

INITIALIZE: I=0

~ READ INITIAL CONDITIONS

COMPUTE A,, B,, D,, E,

FOR EACH SUB-SYSTEM

A}

conpurzvgiERALL TRANSFER
MATRIX WSING EQN. (5.29)

APPLY BOUNDARY CONDITIONS
AND COMPUTE UNKNOWN
ELEMENTS IN THE LEFT MOST
AND THE RIGHT MOST STATE
- VECTORS

COMPUTE RESPONSE AT EACH
SUB-SYSTEM USING EQN. (5.28)

/ o
COMPUTE VELOCITY AND ‘
ACCELRATION OF STATE'

VECTOR ELEMENTS USING
EQNS. (5.1) AND (5.2)

Algorithm for DT—TMM,formulation

STOP
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various degrees. Thus the time step selection depends' on’

the . scheme -chosen for t

he formulation. In addition, since

the forcing terms and other varying system parameters are

discretized in time, the

time-interval chosen should also be

.

small enough so as not to miss any significant features of

the time~varying functions.

5.2.5 Sources of error

Any numerical s
approximate solution is a
the computed solution.

use of truncated Taylor s

each sub system, the etrors could accumulate both in time as

well as in space domains.
exactly estimating the
computed solut;on. Howe
errors are a function of

finite difference scheme

terms in the assumed

severity of the accumu
obtained by .using dif
difference schemes and by

computed results. So

-

olution proéedure, wherein an
ssumed, will lead to some errors in
In the présent case,‘because ?f the
eries as an approxiﬁate solution at
PR

There is no general method 'of.
accumulated errors involved ip a
ver, since the local truncatibn
the time step chosen as well as thg
used to\approximate the derivative

solution, a general 1idea of ;ne.
lated truncation errors can be
ferent time steps and different
evaluating the quality of the

far in the author's experience with

DT-TMM in solving problems of varied sizes, with time stéb

properly chosen, the truncation error accumulation was not

detrimental to the accuracy of the computed solution.

L)
’
°
|
En
5
*
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On ‘the other hand, the effej'! of propagation of
roundoff error, which 1is a function of the wérd length of
the computing system as wéll as the number of sub-systems to
be modelled, was very significant. Thus it should be‘néted
that even thoﬁgh Eh‘m\ DT-TMM requires smaller cére
requirements .and smaller Computing time to solve a given
problem, these advantages can be offset by the accumulation
of roundoff error, especially. when. analysing very large
systems on small computing systems. A detailed study of
these errors//gh the accuracy of DT-TMM solutions is yet to
be undertikgﬁ.' ‘

,f’" #

s . .

5.2.6 Highlights of the method

1. Irresbective of the size of the system, the -

matrices involved in the analysis are always

! small which:reduces the core size requirements.

2. Unlike the conventional TMM, which is restricted
to harmonic motion analysis alone, the proposed
method is capable of  analysing 'iinear
time-invariant, linear‘ time—vatying,  and
non-linear systems.

3. In contrast ‘Qith“the c0nvéntiona£‘NEﬁM, ‘the
matrices involved ére always real, even when the

damping is included. This simplifies numerical

computation algorithms involved.

g
B
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4. Provides ‘flexibility .in modeliing systems with
varying configurations.' That is, by creating ~«
. ‘library of transfer matrices for commonly
occuring sub-systems and by assembling these -at
the required locations, different configurations

can be modelled easily. 'l
5. Natural frequency analysis can also be performed

. e
along the lines of the conventional TMM without

much effort. / ‘ \

6. Any suitable numerical_integratiéh scheme can be
incluaed in the ﬁormulat?gn, thus providing the
~analyst the maximum flex}bilty.

7. It i§ higly amenable to model chain-like and
branéhing systems such as‘gear trains with larée

: . &
number of components.

5.2.7 Validation of theAQrogoéed methodology
&

In order to validate the proposed simulation procedure,

‘a comparative study of the results obtained using different

Eechniques is undertaken. For this purpose, two dynamic

systems, one  linear and the other time-varying and

non-linear,. are chosen.

Consider the undamped linear hulti*dggree of freedom

spring mass system configured as shown in Fig. 5.4. The

salient parameters of the system are defined” in Table 5.2.

The response of the system is first cémputed by integrating

o
]
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r

Table 5.2:"P'arame{:ers of the system‘ shown in Fi1g. 5.4.

' N

“ o
. o -

* Station &{MQ (Kg) . Stiffness (N/m) Force (N) 'Imitial Conditions

n mo lcn - r xn(to) xn(to)
1 0 55000 0 0 .0
.2 0 50000 0 0 0
3 8 . 45000 0 0 0o
4 7 40000 0 0 0
5 's 40000 0 - 0 0 ¢
6 6 * " 85000 0 0 0’
7 Y 30000 0 0 0 >
¢ 8 5 . 25000 0 0 0 '
0 45 20000 0. 0 o's
T 10 4 15000 0 0 0
1 3.5 10000 0 -0 0
12 4 0000 0 0 0
13 2.5 ' 8000 0 C 0 0
1 2 7000 0 0 0
15 T 9 _ . 6000 1 0 0
', * ‘
‘ # , » s )
e .
a

e
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the equations of motion uging thé Newmarﬁ. ¢' method with
8=1/6 and T=1/2, and is plotted as dotted lines in Fig.NS.S.
Then the same s&stem is modelled and solved using the
presented DT-TMM procedure and the results are shown in
Fig. 5.5 as solid line. For both the caées, the integration
time step 1is taken to be 0.02 sec. As can be seen from
Fig. 5.5, the response of the system obtainéa with DT-TMM is
almost identical to the response computed using direct

numerical integrationL However, as indicated by Fig. 5.6,

N -
the lcomputation time required for response calculaﬁéon is

much smaller with DT-TMM. Thus, the use of DT-TMM ;esul;s
in reduced _cohputayion time. as well' as smalier storage
reéuireménts‘for the diven problem. ° The computatien time
shown in Fig. 5.6 corres?ond‘to the ‘execution time based on
double precision‘ arithmetic operations §n a Vax 11/780
computer. |

.

The suitability of DT-TMM for response calculation of
non—liﬁéar and/or time varying dynam}c systems is studied
with the sgcdnd numericai example.” For tﬁis purpose, a more
practical system,confi@uration such as the spur gear pair
system considered in chapter 3 and shown in Fig. 3.3 is
chosen. The\gear mesh is not ohly non-linear because of the
tooth  backlash, but also has time-varying' stiffness
characteristics. Table 5.3 lists the salient parameters of
the system. In chapter 3, the equations of motion~ of the-

geaf pair system considered are formulated and solved for

&

*
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Table 5.3: Parameters of the gear system shown in Fig. 3.3.

Tooth profile . R _ STD.
Module, mm. . | 4
- Number of feeth, Gear 1, mm, o o . 48
Number of teeth, Gear 2, mn. ' \ S 48
Preésure angle, deg. . - 14.5
Pitch diameter, Gear 1, mm. | ‘ 192
Pitch diameter, Gear 2, mm. ] ' "_ 192
Face width, mm. BN ' . | ' 10
Contact ratio | o ' “ 1 ‘ 1.80
Backlash, mm. ] R 0.25
Torque, N-m. ‘ o - 195
Material ‘ ‘ n ~ 3SCM steel

Damping ratio q ~ : "\ _ 79;913
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. the dynamic response of the gear pair using state-épace
tecﬁnique. Here, for comparison, the torsional response of
th? two gears in mesh are first computed using lumped mass
model described iq chapter 3 and then with DT-TMM.
Identical time step and loading conditions are used in both
the - -cases. Fig. 5.7, which shows the relative response of
the two gears in mesh, confirms the suitability of DT TMM
for analysis of nonilinear and time-varying systems. The
maximum deviation between the two curves is about 0.2%. It
should be notgd here that under certain dynamic conditions
the gear teeth may lopse contact altogether for short
~ddrations: At t e conditions the two' shafts are

‘essentially qnéoupled ang will behave as if they are two
~segaraté systems. For proper modelling using DT-TMM, this

<

phenomena has to be accounted for.

5.3 DT-TMM as applied‘to gear dyramics

Iﬁ the folloying sections, the DT-TMM ggrﬁulation
proposeg’in the pfeviou;'sections .S exténdeédlaj;nélude the.
céupling between vtorsional and flexuralJ modes Jhich is
usually present in gear train dynamics. The tra%g;er matrix
relationships for various modules in the) geEf/ system are
formulated by considering the equilibriJ; condition of each
module upder tbe action of internal as well as extérnal
forces, moments, and torques acting on it. Thé va;ious
assumptions and approximatiogs used in the modelling of some

commonly used modules are first stated and then the state

f
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equations describing the state of the these modules at any

given time instant are formulated. \ .

5.3.1 Massless shaft module

Even though physically the mass of 'the shaft is
distributed over the length. of the shaft, for modé??\ng
purposes the elastic and dynamic properties of the shaft "are
considered separatéT‘ ?his lumped mass approximation is
widely used in rotor dynamics ‘studies because it is
computationally less expensive and provides reasonably
accurate results Qhen the mass point locations are well
chosen. Also, the §5afﬁ modules are assﬁmed to have no
inertia in the present formulation. Howeverf\modelling of
the shaft module with inclusion of distributed mass and
ine?tia is also possible [134].

!

5.3.2 Lumped mass module

)

The lumped mass module .is used to represent the mass of

-the shafts énd other elements in the gear system, It has

L}

only mass properties and no inertial or elastic properties.

1

5.3.3 Disc module

2}

Disc modules having polar moment of inértia and mass
properties is used to model large thating élements of the
gear system such as gears, flywheels, clutch plates etc..
Mass unbalance, and "the gyroscopic moments are also

consideredi As Tas explained in chapter 2, the dynamic
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coupling introduced by the gyroscopic moments are not
included imathe modelling. o

‘ | ‘ | )

5.3.4 Bearing module

3

The bearings of the rotors on wﬁich the gears are
mounted are modelled as shown in Fig. 5.8, Irrespective of
the bearing type, its character;sﬁics can be expressed as a
function of the stiffness coefficients kyx: kyxy and kyy and

damping coefficients cxyx, Cxy, and cyy. Evaluation of these
coefficients for different type of bearings is the subjeét
matter of many studies [135]“and is_ beyond the scope of this

investigation. The support stiffness can also be. included

‘in the model, if required.

General TM relations

Basea\hon these assumptions and observations, the state
equation of each module describing the state of the module
in the two 1lateral directions and the torsionglsdirection
can be formulated. Fig. 5.9 shows for each of the modules
discussed so far the forces, moments, and torques acting on

them.

Combining the state equations of all these individual
modules, a single set of transfer equationslcan be set up as
given below. By including or ignoring the appropriate
duantities‘ in these equations, the transfer ‘matrix

relationships of various different modules can be derived.’
A : . '

‘.
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Model of the support Bearipgs
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For example, letting m, J, U, kxx, kyys Kyys Cxxe Cxyr and
Cyy equgl to zero will result in.the field equations of the
massless shaft module. Similarly, by letting Lp equal to T

—_—

zerwy wi’lli yield the point equations of the disc module and
s0 on.;'

., []

Lateral motion in the X-Y plane

. L,y L |
-y -+ L ¢ + M "21'-31' + V 2 OEI | /(6.31)
s ’ .
¢ -¢ +M —-+v L ' " (5.39)
& yn 2EI
ViV S k X Ve x (5‘33) '
o= Vy +.mi + ’n+ g,n’n* m’n"‘n,n’n* )Wﬂ .
. R L L . ¢
Mx,n - Mx,n +J w¢ -4- 1,& +V y,0 Ln (5.34)

1 %3

Lateral motion in the X-2Z plane

R L. L L!“ 8
X -x +L¢ -+M 3BT ° V&n;ﬁ o (6.35)
®
L L

_— * o
“‘*MnEl Yx,anI (58).
R L Lo AR A L
- - - ’ - - - 5087
Voo = Vea” Bt 7 Uxn  Foa®a " Foa’n T S T ma’a (637)
R L L L _L o
- - - . 5.38 .
M”n My,n ann + Lrbn v xn Ln ‘ , (6.38) .

Torsional motion

For massless shaft module

,, r o=t ) (6.39)
i . .

(640)

s R L R
" k(6 - 0p) "'rcn(én - 6n
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“~. For otg:r modules - . ’ »
C R L L
e - . . 5.41
fn fn -+ ann L )
L TR L
- On - On\"_-v/ (3.42)

“+  Up to this point in the formulation the steps taken are
all essentially same as those taken in.the conventional TMM
procedure. The diffetence between the TMM and the present ;”
formulation lies in the way the time derivative quantities
are expressed. ~;h contrasé to the . conventional TMM
proéqdure whefgin, because of the assumétion of harmonic
‘diéplacements, the acceleration and velocity quantities are
written as function of the ffédﬁency of oscillations, DT-TMM
uses ﬁhe apgéoxémate ‘zelationé of the tipe) given in

equations (5.1) and (5.2).

. L ad
Replacing the time derivative quantities "'in -equations

(5;31) to (5.42) by relafionships 6f the form given by

equations (5.1) and (5.2) will result in ‘the following

. <« X
equations:,
____.__;——-"'_‘—':‘
Lateral motion in the X-Y plane : M}
; )
R "~ 1L L L L ) A
Ty = Tyt Lp¥y + M, 2EI * Vy,o OEI ) .(‘5'43)
TR L 1 L L L’ &\;
' % -¢n+Mx,nﬁ+vy.n-§§-I- o . (5.44)
R L L L L L *
- k X
V’.n Y’ a2t mn(A ’y-c-B’] 2t Ay y(l"'BUan +k yya'n * -
' ﬁ v £ (645
+ cn.n[D’y-o- ,]n +c yx,nle" oo 45)

»

23
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C.s’ '
R.
x,n' y.n

Lateral motion in the X-Z plane

~

. , - 3 3 -
x:_ x; + L ¢ +My,n ":;3! v:,n -OLE
L. b4
 eee *M,nEi Van 261
' -V:n ‘-'.v: - m [A x+Bxl AuxY +BUx] x -k yL
n n,n  xynn-

[D X+ xjn xw.nlD:ry +Er]n

‘R° L L : L L
M -— - -
v, My,n an[D ¢¢+E ¢] + IT{A ¢:ﬁ+B éln vx,n L
Torsjonal motion e TN
Yor massless shaft module
: ® R L
T w7
R

-

»

% k(6 *al‘ D.0+E,) - ( ‘ L
= n( n n') + cn[( 0 "'Eb)n - (Dao"'EQ)nl

For other modules - - :

. o
\

R L ’ L
Y
y AL Jn[A00+§Jn _
' Lo
6 w0 S
n " n —~ .
whicﬁ\paq be put into a single matrix equation as;
- : *
R L
. N v - T' v
. R n

poto T

L]

Here, the state vector v is defingd as,

s Y o ":‘t x ;N-‘véi,\yi'v o,’l‘}T

[y

_ L
M =M +Jw[D¢¢+E¢]+IT[A¢¢+B¢] +V. L

- (5.40)

(5.49)

(5.50)
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and  the square matrix Tp, known as the transfer matrix nth

-~

godule, is given in the Fig.5.10. The expressions - for: the*

coefficients Ap, Bp, Dp, and Ep for various commonly used

integration schemes are given in Table 5.1. .

5.3.5 Gear pair module

Txe gear g%ir is moﬂelled as shown in Fig. 5.11. The
. o . . .
gear esh is represented as a non-linear spring-damper

element with time-varying stiffness and backlash. The

transmission error is 1ntroduceq as dlsplacement exc1tatlon

at one end of the non-llnear spring~damper element. And the
S
gears themselves are cons1§ered as disc modules except that

.the’ presence of dynamzc load and frictional forces between

the gear teeth will introduce additional terms into the

state equations. Thus, the ‘equations (5.45), (5.49) and
. ) 4
(5.53) will be modified as given below. '

=
*

For geaf 1,

Al
LI

N L L
\' -V A y+B U
v~ opp Y mp[ Y+ !]p * - "'BUy]p + kn.p’p + kﬂ.p  J
&
L )
E w - .
+ cn.p[D v+ ,]p + cyx,p[Dxx"'Ex] + dCo-(a B) (5.58) |

R L L
.v - -v - -
~TVxp xp - TplA ”Br‘ IAU U +BU:\]D o=~ Y’

A R . L 7 A04B L ' ' 5
R ple+a)p+Wd bp | (6.00)

P . °xx.p[Dxx+Ex'p U,P(D y’+Ey] - W Sln(a-ﬁ) (5.5-9) -

<
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Fig. 5.10: Transfer matrix' of a gear system component
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Similarly for gear 2,

“

Vi v A y+B ] Ay, U, +B E vy ek x
ye - m"'m\t[r"r'z"'. +Uy]+ et s’

L
+ cn,SID?y-’-E’]‘ +Cg D x+E’J - W Col(a-p) : (5:61)

+

R 1 L L L
-v - “v - A : B - U B k - k
%8 xg - DglAx By [ * Uljk g8 XILE

i ©rx,g D X" ,Jg ,W‘;[Dynqug + wdsm(a-é) | (5.82)
R L
r‘s - rs + J‘{AGG-Q-B] - W.R ‘ | ‘(5&.3)

0'g d ‘bg

~y

Here, the dynamic load is given by equétions‘(3.7) to (3.10)

and the torque due to frictional forces . under

&~

]

elastohydrodynamic lubrication <conditions is given by
equations (2.12) to (2.19)._ Replacingvthe time derivative
quantities in the resulting set of equations by the
relationships of the form given by equatxons {(5.1) and (5. 2)
and combining these modified equations along with the rest
of disc module equations, the tranﬁfer matrix for the gear

%
pair module Tqp can be formulated, as given be}ow.

) &
o,

R L

v - T v . ' (6-6‘)

n g 1

where, -
- -' V 'v v ’
v=ly,y e M g Xy by My Vop B Ty Tp Y

xp’ "Y.P

i | .
Mg Vre o % Ve My Wt O
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As can be seen from equafion (5.65), the state vector of the
gear pair module includes the state variables of both the
gears resulting in extended transfer matrix of nearly twiée
the size of the other module transfer matrices.

AW

5.4 TM for other system components

In addition to the modules defined above, which éfe
absolutely necessary in the constryction of any geé} system,
other driveline components such as clutches, coublings,
Hooke's joints, etc. may also be present. | Transfer
matrices .for these components need also be ‘formulated for
effective " simulation\y of a gear system. Formulation of. the
transfer ma£rices for such components, which is beyond the
scope of the present- investigation, can be carried out using

the same steps as given earlier based on ‘the analytical

‘model of these components.

o)

5.5 Solution procedure

.

Once the modules are properly defined amd assembled to
represént the given system, the next step to be taken is to
‘compute the overall transfer matrix of the system. This
matrix, which relates the state vectors at either end of the
system, is obtained by successive multiplication of the
module transfer matrices in the ofder .Of occurence.‘ Then
‘the boundary conditions are applied and the unknown state
variables in the left most end state vector are computed as

function of the overall transfer matrix elements. Knowing
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the left most end state vector,” the responses at the
individual modqles can ‘be obtained by successive application
of transfer matrix relati?ns. These steps areb’in ‘general;

same for any TMM procedure. The difference between various

TMM procedures lies in the way the overall transfer matrix
Al 4 § N

is obtained.
k
Gear systems which are classified as branched rotor
systems are normally analysed using TMM by replacing. the
multi rotor gear system by an equivalent single rotor

system. The response of the equivalent system is first

computed using the steps given above. Then the actual

responses are recomputed from the response of the equivalent
system. This » procedure requires lot of redundant
computations and is nét straight forward. Though widely
used in rotor dynamic studies [23,135], ét is not Qell
suited for gear system analysis [25,136]). To overcome these
shortcomings. Mitchell [136] proposed ‘a new branching
technique called maffified Hibner method. Thi’wnew techﬁique
does noé require the formulation of any equivglent system

and canneasily accomodate the coupling terms dintroduced by

',geafé. However the size of the matricés involved becomes

quite large for mg;ti-stage gear systems. since the state
vector consists of the state variables of all the rotors.
In addition, it requires that all the rotors in the system
be segmented equally so thatlthe total number of modules

along each rotor be the same, which may unnecessarily
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increase 'the compufation effort. 1In this investigation, a

W

modification to Mitchell's technique is proposed by which

-

the matrix size and thereby the computation effort can be

reduced.

The gfoposed modification is based on the fact that
only the gear pair module of the gear system requires the
extended state vector consisting of the state variables of
both the rotors. It is proposed here that startlng from the
left most end of each shaft in the ;;stem, transfer matrix
of each segment and module be formulated and computed till a
gear pair module is encohntered; At which point an extended
transfer matrix consisting of the transfer matrices of the
two #hafts connected with thé:gear pair involved is formed.
This extended' transfer matrix is then multiplied by the
transfer matrix of the gear pair involved to move acrossﬁghe
gear pa%;,Amodule. .Once past the gear pairjpodule, th?
extenpéﬁltransfer matrix is decomposed into two matrices
each/ one corresponding to the state variables of the two

shafts involved. Then the same procedure is repeated until

another gear pair module or end of the shaft is encountered.

" This procedure reduces the matrix multiplication effort

considerably. Also there is.no restriction on tﬁe number of
modules on each rotor. Fig. 5.12 schematically shows the
mechanics of the conventional TMM, Mitchell's technique, and
the proposed procedure.A A measure of the redpction in

computation effort can be derived as follows.
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Consider a multi-stage gear system consisting of N
rotors., Let the number of state variables required to
describe the state of each rotor be ng. Assuming that all
the rotors are segmented equally, say n modules, the
mﬁltipchation effort ‘in;olved with Mitch;ll's technique
will be, approximately, n(N.ns)z. Whereas for the same
system, the proposed modification will require only
,(n—1+N)N.nS2 resulting in a reduction of about
N(N:!T(n-l)ns2 multiplications. As can be seen from the
givén expression, the savings in computational effort
increases with the number of rotors N, number of modules n,

k]
"and the number of state variables ng.

5.6 Validation of the proposed methodology

In ¢order fb examine the suitability of DT-TMM for

-*modelling large practical gear systems consisting of many

driveline components, the gear system shown in Fig. 5.13 and
defined' in Table 5.4, is chosen as a case study. The gear
system considered is first analysed using Mitchell's
technique with the simplifying assumptions, due to the
limitation of Mitchell's tigpnique, of 'linear' and
time-invariant mesh behaviogq?f Then, the same analysis with
the same assumptions is carried out using the methodology
propbsed in this study. .Fig. 5.14 shows the results of the
‘present simulation along wi%h the ,results Qf Mitchell's

technique. As can be seen from this figure, the dynamic

factor (D.F.) response results are almost identical under



- 152 -
identical conditions. _The maximum difference between the

two curves is about 3%, which can be explained as due to the
-4
loss of significant digits or truncation error which

propagates through successive matrix 'multiplications

involved 1in DT-TMM. Next, for the same gear system, the

’

same analysis is carried out with the inclusion of tooth
backlash and time-varying mesh stiffness and the results are

compared to the simplified analysis <carried out before.
r
From the comparison study, Fig. 5.15, it can be seen that

-

the simplified assumptions which are currently used are not
adequate. For the given problem, it should be noted that
the proposed alternative to Mitchell's technique results in

about 45%_ less number of multiplications.

-~
e
-
-

R

/
5,7 Summary

-

A new method of modelling and analysing technique based
on the conventioﬁal TMM and numerical integration procedures
is introduced for dynamic analysis of large practical gear
systems. The proposed methodolog& is unique in the sense
that it can accomodate both non-linear and time-varying
characteristics of éear system components and at the same
time has the modelling flexibility'of TMM. All the primary
and secondary factors identified in chapter 2 can be easily’
included in the modelling. It is the most complete model
to-date available for the study of gear system dynamics.
Comparison of results obtained with the proposed methoaology

with results obtained from the use of other techniques

| _
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Table 5.4: Parameteré of the gear system

Tooth profile
Module, mm.

Number of teeth, Gear 1, mm.
- — . -

MNumber of teeth,\Gear 2, mm,

Shaft stiffness, shaft 1, N.m/rad

Pressure angle, deg.
Pitch diameter, Gear 1, mm.

Pitch'diameter, Gear 2, mm.

. Face width, mm.

Contact ratio
Backlash, mm,
Torque, N-m.

Damping ratio ,
¢ .
Moment of inertia, Gear 1, Kg.m2 ’ '

Moment of inertia, Gear 2, Kg.mZ

.Moment of inertia, Drive, Kg.m2

Moment of inertia, Load, Kg.m2

~

Shaft stiffness, shaft 2, N.m/rag

STD.

4

20

20

20

63.5

63.5

25.4

1.56

0.25

196

0.07
0.0051

10,0051

0.026
0.026
102,000
102,000
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CHAPTER 6

ESTIMATION OF GEAR. FATIGUE LIFE

6.1 Introduction

-

In recent years, fatigue design tedEnology in general
has evolved rapidly due to the “introduction of computer
aiggd dhalysis“techﬁiques such as - fracture meéhanics and
locél stress—st?aip concep}s. Such advances, hoééver, are
not reflected in the fatigue design of gears. The
indust;ialv gear design standards such as' those proposed by
AGM§\[1]; ISO (2] and others still use a single index value
representing the maximum dynamic load .as Ehe_sasis for
fat&gue dgsign o§ gears. Such simplified design approaches

are found to bhet adequate for routi

ne design applications
<

since the inadequacies of the analy*“ical descriptions are
overcome by the use of empirical service factors and
strength reduction factors compiled over a% long period of

;i&%. .However for’ designs that are outside the range of

routine applications, iterative and expensive experimental.

.verifiéations are required and are heavily relied upon.
This is clearly brought about by the fact that hajor;ty of
the 'studieg on gear fatigue reported in literature are.of
éxperimental in nature. Also, the éh}ignt‘,gear +design
methods costradict the classical fatigue designnconcepts ana
techniqhes empl;yed in tﬁe design of other machine elements.

.For example, %ﬁe dynamic load value used in the current gear

.desigd methods iL assumed to alternate between zero and ‘the
o, r .
o = - =158 -

.
T . . -
. . .
N

o . - e ! A
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maximum value which requirgb that the use 'of mean sStress as
. {

well as the alternating stress for fatigue design. But, <in

reality, the current gea{ design methods use only a single-

‘stress value corresponding to the ma§imum dynamic load as if
the gear tooth is subjected to static 1d#ding without
involving alternating and mean components. In order to
overcome such flaws and the uncertainities invblved iﬁ the
current gear désign methods as well as to obtain a wunified
approach whieh can be 'used over an extended range of

applications and gear types, the use of local stress-strain

.concepts for the fatigue design of gears’'is proposed in this

study.l = These have been widely and successfully used

/

'192,96~-101] for - crack initiation 1life pfediction for
different st;uctural members. Fig. 6.1 shows the essenbial

features of this approach.
" . .

In essence, this approach involves first an estimation

»

of local stresses and strains at a.critical location as .a

+

function of the applied load or nominal stress on a reversal

by reversal basis. Then,~by assuming that both material

deformation response and the fatique life behaviour at the
critical locdtion are identical to those of a reference

smooth specimen’ forced through the same critical location

"

“deformation history [81], the damage is computed. Here, the

' . . . - 13 .
specimen is viewed as a filament of material located in the
[] . D ! L] N -
critical location of a complex structure or component, as

shown in Fig. 6.2, and. the life of the specimen is equated

5
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hd .
to the life of the component. In the following sections,
the first step in the process, namely the computation of
stress-strain history at the critical 1locations within a

gear is carried out.

6.2 Coggytation of the stress-strain history

The knowledge of the stress or strain history at the
critical point is essential for the estimation of éatigue
life of gears. The conventionai gear design methods based
on modified Lewis equation, however, provide only a stress
index not the stress history. Thus, numerical stress
computational procedures such as ¢finite element methods
(FEM) 137—45], boundary element methods (BEM) [46-50]) and
cemplex potential methods (CPM) [51,52] as well as some
analytical formulae [32,59] are increasingly being used for
gear tooth strfss analysis. Of these, the use of ahalyticai
formulae requires less ‘cbmputational effort and they are
easy to use. However, the range of applicability of such
formulae are 4restrictgd usually to only a certain specific
type of tooth. On the other hand,. the numerical stress
analysis S&Qgedures such ag, FEM and BEM are all computation

intensive but offer the following advantages:

4
-

a) the ability to model actual gear geomgtry of
both standard and non-standard gears. .
b) adaptability to static as well as dynamic

loading condit%dhsf
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c) the flexibility to refine the model easily so as

to achieve the required accuracy in stress

" calculations,

d) the capacity for inclusion of inelast}% material

14

properties as~ well as variation  in ;ﬁhese

properties withiﬁ the model.
Also, once QufficienE stress data has been generated using
the numerical stress analysis procedures, émpifical formulae
can be derived based on the acquired data-basg'\[45]. ‘In
this study, BEM is selected over other methods, based on the
observations made in section 2.2.1..
2 ] ..: Q— ' .

BEM consists in the transformation of the bar%}ai

“'dilﬁgrential equation describing the behaviour .of ¢the

s

¢ r
- unknown interior and on the boundary of the domain into an
idﬁ%gral sequation relating ,only the boundary values, and

~the ifding out the numerical solution of this equation.

.

If the ‘values at internal points are required, they are
calculated later frog the boundary data. Since all
. : -

numerical approximations take place gnly at the boundaries,

the dimensibqality of the, problem is reduced by one. The
approach normally conqists'of the following steps:

a) The boundary is discrétized into a series of
Ve

elements over which the potential and its normal

.o, L .
derivative are . assumed to wvary according to an

interpolation functioh, The elements could be’
lines, circular arcs, parabolagz etc.. o

hd 4

3 . .
R .
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b) By the method of collocation, the discretized
‘equation is applied to a number of particular
nédes within each ele&ent\where values of the
potential and its normal derivative are
associated.
c) The integrals 6ver each element are carried out
’ .

by using, in gereral, a numerical quadrature

scheme.

Y .d) By imposing the prescribed boundary conditions

of the problem, a system of linear algebraic
equations is obtained. The solution of this
. system of equations, which can be obtained using

"direct ¢ or iterative methods, produces the

remaining boundary data.

In the following sections, the above-listed steps are

applied for gear tooth stress analysis. The mathematics of
¢ .

the method are given in’Appendix I.

6.2.1 Static Vs Dynamic analysis

Strictly speaking, dynamic analysis should be performed
to obtain stress or strain history due to dynamic loads.

Dynamic analysis will take care of not only the variation in

dynamic load along the contact path but also the speed of

travel. Also influence of other dynamic properties such as

structural damping can be included. Some work.[37,44] on

dynamic analysis of gear, tooth using FE technique has

L]

already’ beeﬁ“‘igtempted. However, a full dxmémiC'analysis
. c - ¢

11
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will require a large amount of computation time and thereby
ymaking it impractical for any day to day design use. Th%s

is a serious drawback. Instead in this study, a qan?

gstatic . analysis is utilized for the computation of

stress/strain history. This involves discretizing the
"dynamic load variation along the contact path into a number

of finite steps‘'and using the discretized 1load levels .as

input to BE ;nalysis at diffe}ent contact positions. .

v

6.2.2 Boundary element anélysis.procedute

Broadly the steps involved in the application of BEM
~ are all same as those used in FEM, namely,Sb
a) construckion of a’suitable model,
b) specificatién of the boundary  conditions so as
to represent the actual gear under load,
c) specificatidn of the loading -data, namely, the

-

magnitude, direction, and the location of the .

N

point of application of the load,

d) analysis, that is, assembling and solving the
+ o . . N ' .
system equations,

and -
e) interpretation of the output_ results.

\
-

6.2.3 The boundary element model

The construction of suitable boundary element’ models
involves the selectjon of proper elements and the.

“discretization of the geér Bqundary, In this study, simple

- —

) \, ‘
. )
)
. Y .

~ ! N

-~y
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g

line elements with linear interpolation functions are chosep
to represent spur‘gears in plane stress condition. And (a
_specially developed automatic gear mesh generator (AGMG)5 -
decribed in Appendix TI, is used for constructing the model
based on the input specification, nayely, the number of
elements required at different parts of the gear boundafyn

"and the parameters to define the gear geometry. The

generated mesh is then corrected to include the loaded --

element at the .point of load application using the ‘'user
defined element' obtion i; AGMG. Fig. 6.3 shows a boundary
element model of"gear tooth and the input déﬁa required to
generate the modéLw.? As a compromise between cost and
accuracy, ﬁsually only the se;ment of a geér is modelled,
exploiting ghe fact that away from the gear teeth being
loaded, the deflections are very small. Here the number of
teeth to be modelled i's based on the maximum number of teeth
in' contact during a mesh cycle. That is for gears having

R’ .
contact ratio between:l and 2,.three teeth are modelled and

for “gear having contact ratio between 2 and 3, five teeth

.
S P
1 -
. L

6.2.4 Boundary eonditions

are modelled.

Specification of  proper boundary conditions is
important, sidce these constraints determine the suiﬁability‘
of the model to represent - the actual gear under

consideration. In this study, based on the experimental

L

results obtained in a related gtuéy (591, two- diffeﬁji5~:

&

-+

e
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schemes ' are used. For the convéntional thick rim or, solid
blank éears, the deflections along the edges at the side of
the gear teeth model and the inner bofindary of tqﬁf&opel are
all set to zero. The inner boundary is fdrmed at the
centroid radius of 'the gear. For thin er gears, in
addltlon to the deflectlon of the gear tooth u;éer load the
rim also deflects [7,41,43,4%]. in ordér to accomodate
theée rim deflections the innerigﬁﬁndﬁry/f;'not constralned,

as-shown in Fig. 6.4.

6.2.5 Loading conditions

éhe dynamic load simulators described in the previous
chapters ;}ve thé dyéamic loads and the friction forces
acf?ng on each pair of teeth that come into contact during
the mesh cycle as a function of normalized contact pogition.
In order fo use these varying loading data for BE analysis,
the loading data are discretized along the contact path as

shown 1in Fig. 6.5. Based on, these discretized load levels,

the equivalent dis;riputed load and the correspondipg,loaded .

element size are determined using the frictionless normal
contact Hertz equations (2.2). Then employlng 'user
defined element' option in AGMG, the loadgd element is

introduced into the model at the required contact point.
v

" This process is then repeated for each discretized load

\

level. The friction forces, if known, are—introduced as
traction forges on the loaded element. Body forces such as

the centrifugal forces are not considered in the present
analysis.
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6.2.6 Output frogm the boundary element analysis
.7 @ ANy

’

Based on the mathematical formulat;on ~given in
Appendix I, a fortran program called BE- GEAR was written and
1mplemented on a Vax 11/780 computer The model data,
boundary \condltlon data and loading datg prepared accbrdxng
to the precedlng steps are then leEﬁ‘ as 1input to the
pfogram. The output £rom the program consists of the
stress, strain and deflection components at the midpoint of
each eleQent' on the beundary. It spould be ‘noted that in
the present ‘invesfigation ~only the strain quantities

computed bzﬁBE—GEAR are .used for fatigue damage computations

L2 TN

and not the stress qﬁanﬁitl@s. This is.due to the fact that

the stress quantltles computed by BE-GEAR ar&\all based on
linear elast1c1ty theory and thus do not take into account

the local plastlglty whlch can occur at critical locations.

- -
. d

For this reason, in this study, the stress quantltxes from
BE-GEAR, refered to as nomlrfal stre‘ssef hereafter,~are all '
uéed only for vaiiéatiné the BQ—EEAR implementalion& The

stress -quentiéies required fo;;fatiguemdemage computation
are obtained "from the- cycllp stress-strain 'relatienship
[80,82];'; Alte;natively, a fhll elasto-plastic 'analysis
could have been cargied out/ﬁsing the cyclic stfees—strain

curva‘ as the governing equation. But such an effort wpuld

require more eren51ve modélllng and excessive computation

time. v . o \\\\\\ N
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.Even though the BE-GEAR program computes the

stress/strain quantities at the ﬁidpoint of each of ﬁhe

boundary element sbecified. the points of interest in the

-present investigation are only-a few critical locations on

the gear boundary. For benéing fatigue analysis, the
critical location is considered as the point on the fillet
at ;hich the maximum stress occurs. In this study, the
H;fer’s method . [39,59] of fihding the wegkest section or
highly stressed section is employed to locate the critical
point in the fiilgt region; ’According £o this method, the

most stressed point on the fillet is the point, the tangent

from which makes 30 deg:* with, the tooth centre line. _

Fig. 6.6 shows the critical point as defined by the Hofer's

method. In reality, however, the critical location is not

“‘stationary and .varies with the load magnitude and the point

of application. of the 1load. Previous numerical [ﬁ3%zand
; o
experimental [59] studies on gear tooth stresses of various

different types of éears show that 'the ‘location varies

between 24 deg. to 36 deg.. It is claimed [59) that the
\ - ~

chpice of a constant value of 30 deg. leads to an

underestimation of the maximum stress by not more than 5%.

Once the critical ' point has been located, the equivalent

strain ¢' at that,gﬁint is computed b§ using thg‘ following

relationship for each load level applied.

€ - 1.-,@./ (61"2)2 + (ff.""'s)2 + '(‘3“1)2 | o)

where, €3,2,3 are the principal strains at the éritﬁcél

location.

s
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The equivalent strain quantity, defired as in - equation

(Gul), cannot be visualized as acting on any specific plane,.

but has the property that in a state of strain defined by

’

/ - I
€2=- €1/2 and €&=- €/2, €= €.

' The equivalent strain is  used as *+he controlling

v o

variable in this study, since the fatigue’hamage parameters
and failure theories such as S-N diagrams and strain-;}fe

diagrams are all developed based on uniaxial constant
amplitude 1loading condit;on and thus require a single in%ex
value to compute fatigue damage. Sucéesgful use of t?é
equivalent strain for {fatigue damage computation of
automotive strué;ural components, and laboratory specimens
under mglti-axial stressed condition,supports thig choice

[85,98].

6.2.7 Validation of boundary element results

To check the validity and accuracy of the BE-GEAR

results, a comparative study _was' carried out. In this

respect, the results from a related study by Kenedi [59] waé

used extensively. Kenedi [59]) conducted a comprehensive
study on gear tooth deflections and stresses i:/y&gh contact
ratio gears using photog}asticity tests, FF analysis, as
well as othe:hJembirical hformulae, thus providing an
excellent data-base for validating the BE-GEAR program.

Fig. 6.7 shows one such comparison between Kenedi's

photoelasticity and FE results -and the present BE-GEAR

Vi —~
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résults for a séecific caﬁe. As éaﬁ be seen ‘from. this
figure, the nominal stress values computed byﬂBE-GEAR agree
awellbwith the FE stress values for the éntire fillet region,

The deviation between the photoelasticity and the numerical

stress results was explained by Kenedi as due t@?e‘
de

friction that existed in the photoelastic models. 1In r

to check this explanation, frictional forces based on a
-coefficient of friction value of 0.1 [59] was included in

the BE analysis. The results of such a preliminary analysis

*

show that indeed the excessive friction present in

photoelasticity models results in reduced stresshlevels than
in actual gear prototypes.

L]

6.3 Construction of duty cycles .

For a gear pair running at constant RPM at steady state

conditions, the dynamic 1load variation, Fig. 6.5, will

repeat itself once every mesh cycle, thus resulting in a

equivalent strain histofy, Fig.ls.é, which will also repeat
itself once every mesh cycle. Theref&re, for a gear pair
running at constant speed, the equivalent strain history at
that speed can be considered as a typical duty byclé and can
be used for computing the fatigue damagé and hencé the

fatigue life in terms of the number of duty cyclés.

- For ‘the more general case, wherein the gear ﬁair"are

' Lo,
not running at stationary operating conditions .for an

extended period of time, the pattern of dynamic load

“
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variation will be conétantly changing. But, evén in such
cases, based on. the nature of the application of gears, a
typical load ﬁistory‘cenSisting ‘of- component load - levels'
jarranged inééﬁe order of their occurence céh be constructed.
7 While noﬂ all inélusive; the conétruqted load history 'mugﬁ
\represent the typical service condition of‘the‘gggrs to be °
modelled. Typically such 1load histories will rgpeéﬁ.

12

themselves after certain time intervals.

To obtain the corresponding equivalent strain history -
using the BE-GEAR program for 'such 1long duration’ load:
. histories -will be prohibitively costly. To oyefcome this

b;oblem, it is proposed here that based on the few finite

o ontact points and the cdrresponding equivalent strain

at the critical loéation, non-linear relationship of

~

the form, L SN

. ' - ‘ _L « .

L , ‘ e_}v4+ (a“l)ds ’ - (6.2)
s 1 2 .
- [N

be constructed. The constants dj, d and, the exponent dj in
the equation (6.2) are all chosen to fit the computed data
at each theoretical contact position chosen. 1In this study,
ten load 1levels and ten different ,gcontact position are
| chosen as a compromise between accuracy and cost. Once

these non-linear relationships relating fhe load levels and

. the equivalent strains has been fprmulated, then
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irrespective' of the duration of the loéd historieg.
\;quivalgnt_strain histories can be conséructed and thus
‘typical duﬁy cycles can be formulated. Relationships of the
form given ig equation (6.2) h;ve been used successfully
Beforé” [(96] fof analysis of automotive structural

-_components. But in -those cases the point of application of

the loads were not varying as in the present case.

T
6.4 Simulation and accumulation é;\zétigue damage
/
The work reported in the following sections deals with

the stage II of the local stréSSvstrain apbroach. For this

4%

stage, it 1is assumed that the 1local strain history is -

available either as measpred‘strain recordg or as a result
of a stress analygis procedure such as BEM. With this
assumption, a computer simulation procedure is developed to
model the c&clié stress—st}ain'behavipur of the metals. In
the'followiég section, this computer simulatiow model |is

explained. For this purpose, a brief introduction of the

cycli¢c behaviour of metals in éeneral is given first.
yclig

6.5 Cyclic behaviour of metals K

Al

6.5.1‘Cyclié stress-strain curve

2

As mentioned earlier, the local stress-~strain approach
requires the local stresses and strains prior to performing
: a cumulative damage evaluation. This rmequires that the

relationships between the cydiic stresses and strains be
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" loads, depending upon' the test condition and the initia
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defined. The monotoniq\stress—strain curve used for static

1 =N

load analysis cannot be used for cyclic loadings,’ since

cyclic loaQ}dg may sigﬁificantly alter material properties

[80). Either hardening or softening\can occur under cyc
state -of the materigl. Hence, fhe concept of cyclig
stress-strain curve was introduced and was defined as the
locus of the stable hysteresis loops from several companion -
tests at different .completely reversed constant ' strain
amplitudes [B82]. This is illustrated in F@g. 6.9. The

curve OABC in Fig. 6.9 gives the%%yclic stress-strain curve. -

~—Note that this curve gives the relat}onship between the

J ,
gmplxtudes of tﬁé\sttesses and é%rains.‘

f

S' To obtain a realistic mathematical relationship
de

’
ribing the cyclic stress-strain curve, the total strain
»

- §

range A€ is divided into elastic and plastic components,

as,
e} . .
w . ‘ Ac = A + AP < (6.3)
. or : | .
Ae¢ = %!' + AP (0.4)
. R
where, "
9
s 4
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© Ae® = the elastic strain range , .

T AeP = the plastic strain range d

. Ao " = the stress range \;; ) L . .

E = modulus of elasticity ' |

- %

! B T

Equaiion (634) can be rewritten‘in terms of stress and;/”‘—“n

" T -

strain amplitudes, as, -

“ /Y /
‘ : ea'-'E"'en .

wbere, -
\ €a = Ae®/2 = the elastic strain amﬁlitudeq "
eP, = AeP/2 = the plastic strain amplitude
f"’*-aa' = A‘G/Z = the stress amplitv:zde . .

On a log-log plot of stress amplitude verses plastic. strain
amplitude, a straight 1line usually results, implying a
mathematical relationship of the form [80,82,96],
N [ p n' ’, .
- - o, =¥ (¢) - (6.0)

: - —

L ,
‘here k* and n' are material constants.

]

“ Combining equations (6.5) and (6.6i, a relationship for

total strain can be obtained as,

A AT A
C. - ’E + ("_,) . ° (6.7)

The cyclic stress-strain curve OABC in Fig. 6.9 is of this

mathematical form. The material constants k' iand n' are
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"defined as cyclic strength coefficeny and. cyclic strain

hardening exponen&- respectively and .are obtained nﬁfony

experiments. These are considered as material properties

-y 4

and the values are reported in literature for different"

engineering materials ([96].

6.5.2 Shape of strefis~strain hysteresis loop
P ~ 2 \ ’

It is to be noted that dufing cyclic 1loading -the .
material does not follow the cyclic stress-strain curve as a
loading paéh in the sense of a monofohic stress-=strain
curve. Rather hysteresis loop curves such as CHF and FGC in

Fig. 6.9 are formed. This is the mosflimportant aspecﬁ"of
.

'cxélic plasticity. 1In order to truly represent the material

defo;mation, it is necessary tb chafacterize the " shape of
such hysteresis loop curves. Z
- r . . i
Fortuhately, for,most'bf the enéineering materials, the
shapé of the hyséeresis loop éurvés can be estimated from
the. <cyclic stress-strain curve. This is illustrated in
Fig. 6:11, where giable hysteresis loops from Fié. 6.9 are
drawn on a shifted axis so that their éompressive tips

coincide. From the definition of the cyclic. stress-strain’

curve, the tensile tips of loops so plotted must lie on the

‘cyclic stress-strain curve expanded with a scale factor of

two. For many engineering materials, this has also been
; .
" 1
experimentally observed .(80,86,87]). Thus, it is reasonable

to assume that all stable hystereé&s loop traces for a given

(
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A »f‘ mat%pial follow a unique curve which may be mathematically

. -

Yescribed b; expanding the cyclic stress-strain curve with a

_ . . scale factor " of ,two and shifting the origin, ([80,96].
- ' N ' ' . P )
Therefore, the loop traces can be expressed as,

. ,C - f ; R l )
R | o ::i._ ::i + _:& v v (0.8)
e RSN 4 . . 2 2E &' :
g T . . a
, where ( €, o ) are instantaneous stress and strain, and
. . oL & . .
: % . . . .
", " ( €, ar) are the coordinates of the previous point of
3 . y - : R
w ) strain reversal,. such as point F in curve FGC in Fig. 6.9.

) , By appropriate sign changéﬁ a similar equation 1is obtained

for hysteresis loop curves during decreasing strain, such as

L]

o ' 'CHF in Fig. 6.9. e

‘ 'Y Y ' '
M € ©O-0 - '1-. )
. r_. r « FHMr in . (o 9)
[__| X + N - K .
, ¢ 2 2E 2k " _
. ' . ) © ' ¥ »

o, Here, ( €r, -or) refer to the point C in Fig. 6.9+
: > ,
‘ ‘\ ’.(. .
There are few engineerinﬁ metgls such ascdfay cast iron
’ y

for which the loop s:EPe appggximation just ‘described does
1

e "not.apply. Different rt atipnships héé to be formé? for
«these materials. ‘ ‘\: )
o . s b | o
5"1 6.5.3 Memory effect T - ‘
A - Another importan égpect of materiAI deformation under
b ‘_ cyclic load?ng is the| "memory effect". Memory is
“\/ R ' : , . -

illustrated in Pig. 612 by a portion of a stress strain:

curve of an engineering material. The specimen was strained

- % , .
*\hmk k) g ) <
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in tension from & to B and then unloaded from B to C and

then ~xstra1ned in tension from C through E. In its

dé}ormatlon from p01nt C to D, the materlal exhibits memory.

L]

é{ oint-B the metal remembers its previous deformation-from

“A to B-and deforms from B to E along the extension of the
previous curve A ‘to B. As shown in’ Fig: 6.13, many
reversals of the kind labelled BCD in Fig.‘6.12, occur in

--gomplex stress-strain histories.

~

[ TR . '

“ o 6 5.4 Cycle,dependent propejgles - ,

The thlrd aspect of cycllc plasticity.is referred to as
tycle dgpendenﬁ“hardening or softening. This phenomenoh is
best 111ustrated )by referrlﬂg to the test//éta (92) in.
Fig. 6.14. copper with three 'dlfferent thermo- mechanlcaﬁ/
prdpertles ‘was subjected to%? constant amplitude of repeated
strains. In each case th& stress required to enforce this
s%rain'(amplitude chang¥&d from one cycle t; the next. The
stress sn the gully annealed sp%cimes increased repi ly
during the first few cyeles of the test. This increase in
resistance to plastic deformation is ‘cycle eependeqt
hardéning. The cold worked copper exhibits cycle dependent

softening and the partially annealed copper exhibits mixed

behaviour, first hardening and then softening.

~.
I3

o : . ,
As can be seen from the Fig. 6.14 the definition of
cyclic stress-strain curve as given earlier will not be

valid during hardening or softening. During this process
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the material properties are constantly changing. However,
hardening and softening are wusually transient phenomeha
" which occur at a decreasizg rate during the first 20% to 40%
of the fatigue life [60,96). Thus, in most of the fatiqgue
analysig models proposed so far these transient cﬁanges in
material properties are ignored and the properties that
define the steady state of the metal are used throughout the
life. The reason for doing so is that the steady state ‘is
reached usually in early cycles and the metal remains in the
steady state for most of its fatigue 1life time. In the
present .analy;is top, only the steady state properties are
used, because of the above reason. However the cyclic
hardening and softening can be introduced into the proposed

material model by cbanging the values of k' and n' for each

loop.

6.6 Computer simulation of the material behaviour

]

material behaviour under chlic loading is due to Iwan [90].
This rheological model does not incluée the cyclic hardening
or softening behaviour. Later Maxtin et.al. [91] proposed
another’ model along the same Mines intluding the cyclic
hardening and softening phenomena. Their mcdel is coﬁposed
of springs and frictional sliders. They used a series
combination, aé shown in  Fig. 6.15. By judicious sélgction
and subsequent manipulation of model parameters, their
program was made to simulate hystereéis and éycle dependent

<«

One of the earliest models proposed for simulating the

T
1
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changes in the -stress-strain response of an alumingm\alloy.
These models give piecewise linear representatién of the
-cyclic stress-strain curve.
- -
After detailed observations of the responses of severai
rheological models, Wetzel [92] introduced a set of rules by
inductive reasoning, which can describe the responses of
these models. ?hese rules can'be used directly as a means'
to simulate the material behaviour of metals. With the
introddction of these set of rules, the rheologica models
were abandoned and most of the current fatigye analysis
programs use wétzel's technique to simulate the\\material
behaviour. A éetailed description of Wetzel's technique can
be found in géferences [87,92,96]). Wetzel's technique, aé
shown in Fig. 6.16, approximates the cyclic stress-strain
curve and the hysteresis loop traces by line segments called
elements. ‘With this technique, in order to reduce round off
errors a large number of elements are required because each
element. is used to .the Ffullest extent. That is, each’
element has to be used in fuli and there is no interpolation’
to obtain a partial element. And, as the number of elements.
increase the number of inputs to the simulation programi
and number of cémputatiqns within the program increase. In

the following sections a new procedure .;or simulation of

material'Behaviour under cyclic loading is introduced.
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. equation (6.7). ’ R
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6.6.1 Proposed simulation mode{

In order to avoid .éh se difficulties in the present
study the various mathematj:;I\\{flationships, equations
(6.7), (6.8) and (6.9), are’directly applied in functional

form. For this purpose, the equations (6.7), (6.8), and

(6.9) are included into the developed computer program as

one equation as follows. -
l *
e o0 LA )
- nir;“ - IN Ij;-rlhl o ‘ . .
where, T .
IN = index used to denote the slope

= +1, for increasing strain

-1, for decreasing strain
k . = +1, for cyclic strain curve
= f% for hysteresis curve

Thus, IN= +1 with k=2 results in equation (6.8), IN= -1 with

k=2 reéults in equation (6.9) and IN= +1 with k=1 results in

-

Equation (6.10) can be applied to each hysteresis loop
resulting from a irregular strain history,‘ Fig. 6.13,

provided ( ,, ) are known for each reversal. Since the

.shape aof the 1loop curves are known, the stress-strain

response can be predicted if it is possible to identify the
strain excursions which results in closed loops. This can

be easily done using the Rain Flow cycle counting method,

«
— -
i +
.
s . ‘

:""i{
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[93-95). - In the ‘present study, howev#fy,, a new algorithm
using the material memory effect described earlier, 1is

introduced to identify the closed loops.

The memory effect of material behaviour can be
characterized in a general manner as follows: a) when the
strain subsequently reaches a value at whicﬁ the _direction
of straining was previously .reversed a stress-strain
hysteresis loop is closed, and the stress-strain path beyond
this point is the same as if the direction of straining had
not been reversed. b) once a strain excursion forms a closed
loop, this excursion does not affect the subsequent
behaviour. In the present computer program for material
deformation simulation, these two' characteristics of the
memory“effect and equation (6.10) yi£h appropriate vaiues of
k”?ﬁa IN is wused to simu{ate the entire stress-strain

response for any strain history.

The simulation starts with the assumption that th
loading starts from the unloaded staée. The %Brrespondingé
peint (origin) in the st?égs—strain diagram is designated as
0. Then basicailyz the simulation procedure involves
reading the strain values one by one in sequence, as they
occur, into the strain vector E, and checking for loop
closure when there are at least three points in thé vector

E. If there is no closed loop identified between the points

present currently in vector E, then more strain points are



.
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read into the vector E until there is a closed leop. Once

closed 1loops are identified the vector E is'compressed and

“reordered by removing those strain points which form the

«

closed 1loops from the vector E. The corresponding log;l
stress values in vector S are computed using equation (6:10)
with appropriate values "of &k and IN. The reference
co-ordinates (€,,0r) for each loop trace are taken to be the
preceding points in the strain and stress vectors E and S
respectively. Since the point designated as 1 in the
stress-strain diagram always lies ‘on the cyclic

stress-strain curve, for the stress-strain path 0-1, k |is

set to unity. Otherwise k is,ﬁ@% equal to two. The value

. of the index IN is fixed in the begining as +1 or -1,

d%penalng upon the sign of the first strain value read.
Then onwards, the sign of IN is changed every time a new
strain wvalue is read. Once all the strain readings are
read,.the simulation is completed by making the 1last read
strain coordinate equal to the strain coordinate
corresponding to the point 1. The logic diagrah given ih
Fig. 6.17 shows the above given procedure in a more

organized way. A Fortran program based on the steps

described so. far is given in Appendix III. The entire.

procedure can be” explained with an example, shown in

Figl 6.13.

In Fig. 6.13, after the first strain coordinate E(1) is

read, equation (6.10) is used with IN= +1, k=1 and

-

.
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I = I+]

READ, STRAIN DATA
4+ EPK(T)

INITIALIZE: I=0

<

-

S

IN-="4]
IF (IN < 0) "IN

COMPUTE STRESS

ALONG CYCLIC

STRESS-STRAIN.

CURVE, SPK(I)
IN = -IN

COMPUTE STRESS

ALONG HYSTERISIS

CURVE, SPK(I) -
IN = ~IN

4+

COMPUTE Dd&F

1
DCTF = --——-
.»\\ D
PRINT DCTF
TN

Fig.‘6.17: Logic diagram for the fatigue damage simulator

.

IN*(EPK(II)—E?K(I)) >0

N

EPK(II)
COMBRUTE:

EPK(

CLOSED LOOP™ EXISTS BETWEEN

AND EPK(1I)

STRESS/STRAIN RANGE,
MEAN STRESS,

DAMAGE FRACTION, D.
SUM DAMAGE, D

II) = EPK(I)
I =11

¥

»>
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( €t=0§%‘

« Op=0) for stress-strain path 0-1. Then the next

strain value is read into E(2) and the point 2 1is reached

from int 1 with IN=-1, k=2 and ( €,=E(1), 0r=S(1)).iaAfter
this ‘the\ next strain value E(3) is read ana since thére are
now ‘least three locations in vector E filled, the ’
con itién fo; loop closure is checked for. Sincé E(3) is
ater than E(1), thére is a closed looa-between 1 and\2.

} .

For damage evaluation, the quantities of interest are

only the stress and strain ranges of the loop 1-2-1. Thus,

(.\_

the entire loop 1-2-1 has to be traversed only®if a plot of
. cyclic stress-strain path is needed. This fact is utilized
in the present compyter program to achieve maximum

- . P : .
efficiency. That is, the <condition for 1loqp closing at

point 1 is checked from point 2 andyif it is /[found that the - 2

loop closes at the point 1, then the loop ath 2-1 is
skipped and the point 3 is reached from point 0. And stress

and strain ranges for 1loop 1-2-1 are computed from the

Ll

coordinates of points 1 and 2.% This "look-ahead" procedure
improves the computing efficiency, which is a basic
requirement for on line damage evaluation applications.

Since, according to the second“memory rule» stated earlier,

o a e ‘
once aﬂglosed loop is formed it does not have any“ﬁnfluence .

»

on the subsequent behaviour, the elements E(1), E(Z); in
3 vector E and é(l), S(2) in vector S can now be removed.

This is achieved by redesignating the/last read point 3 as

Eaay

point 1.

A
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Equation (6.10) used in the abogg procedure is implicit

"in its variables and hence Tust be solved by iterative
methods. Bisection method with relaxation factor of unity’

is used here for solving equation (6.10). QOnvgrgénce is_

rapid and usually occurs within ten iterations.

For the present problem of gear fatigue damage

estimation, knowing the typical duty cycle and the cyclic

material propertiég’for the given gear material, the total
= :

- strain, stress amplitudes and the mean stress level for each.

of the closed hysteresis loop within the auty cycle can be

computed using the steps described in preceding sections.

(4

1 8
6.7 Damage computation

e 1

Having brokeh the complex strain history into a series
of closed: loops, T'f next step would be to compute the

damage corresponding to _each . of the closed loop.

Traditionally, the maximum stress level at the critical

location 1is used as the parameter to measure damage in gear
design applications. However, as was pointed out earlier in

the section 6.1, the use of maximum streés level without

incorporating the alternating and mean components is

contrary to the accepted fatigue concepts and is not

correct. Furthermore, the use of §6-N diagram as the

- governing criteria excludes the effect of 1local cyclic

plasticity which is considered to be the basis of fatigué
. ot

1

.
R 3
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process’ [80]). To overcome such inadequacies, several new

damage parameters have been introduced and experimented

with. Nelson [27] cohducted an exhaustive 'evaluation of

these parameters in terms~g9f their ability to predict

fatigue crack initiation 1lives .of test *specimens. He

concluded that some of these new damage parameters are found

torgive better,correlation’with experimental results than

others for some sSpecific types of 1load histories. 1In .

géﬁeral, none of the parémeters resulted “in grossly

7

erroneous estimates. That is deviations are found to be
withinii3% of the average tést life. Such good‘ correlation
with experimental .results obtained with the test spéciméns
[96?97]'as wéll as actual components [86,96-101] establishes
the gt?e%dlﬁass of such?nnew damage paraﬁeters for crack
ini™Mation life predictions. However their &%efulness_.in
predicting :total, fatigue life which c?nsists of both crack
initiation liEe‘a;é,crack‘propagatiéqw life is yet 'to be

established. . Currently, the crack propagation lives are

computed™With the use of fracture meechanics techniques and
P

added to the crack initiation lives computed with the use of

local stress-strain approach. There is-no unified approach
- ’

available }et. ;

'
-
- - N -
v
A
L]

In this study, the total strain_amplitude is used as

the damage parameter. Equation = (6.1l) defines the

reiatiogship betweenfﬁhe‘totaI strain amplitude 'and the life

N
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in number of cycles ([80) and Fig. 6.18 .shows the same

« graphically. 5 o
7t o 1P b, . o.11)
. ‘;‘E("’Nr)l'*‘r(er)? | . (0.
¢ * A "".
Here, C . N ..
‘ o
€a . = total local strain amplituyde, .
o¢ = fatigue strength coefficient,
g = fatigue ductility coefficient,’
E = Young's modulus of elasticity,
*Nf¢ = number of éycles to failure,
by,bs - = fatigue strength and ductility exponents.,
Hd « 4
. - e .

ig .
f

Fto% Fig. 6:18,:'it ‘can be seen that in low cycle fatigue
regién the plastic,sfrain comp;nent is dominant and in the
hiéh cycle fafigue region 'the elastic strain component is
dominan¥. The commonly used S-N curve can be obtained by-
multiplying the elastic stfain camponent by a’stale factor
of E. The effect of mean stresses which are ignored jjn the
- . ' ‘current gear fatigue design procedures can be conveniently
- included into the strain life équatiqn (6.11), chh that
- [80],

N1+ € @ N2 (6.12)

o, -0
? 0

\ -
‘ ‘a E

» . f

where, 05 is the mean stress. Substituting the total”strain
amplitude, and the mean stress level computed for each of

the identified closed’ loops into the equation (6.12), the

—

o
' . ' [N .
N 1ﬁg ’ - r
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damagé fraction, Dj = 1/Ng, associated with each ‘of closed

) d

loops can be solved for.: And the total damage D occured

within one duty cycle can be computed by summing up the
damage fractions of all the 1loops according to a chosen

cumulative damage model. -

-

6.8 Damage accumulation and-life estimation

-

A number of cumulative damage models rarging from the

simple, linear MiﬁE?'s rule ;[105% to more mathematically
compléi procedures\are available in thdﬂsliterature. of
these, the more , complex models such as those reviewed in
[;7] are mainly of academic interest. only since tbefe is
é{ther little or no experimental evidence to establish. their
usefulness. Thg simpler models, which are usuaily‘ obtained
with the refinement of the Miner's rule are found to give
begter estimate. of fatigue damage ggcumﬁiation in some-

1N
specific cases. 'But, 1in general none is found to give a

better estimate than ther simple Miner's rule and hence the
Miner's‘jrule is widely used in practice. According to this
rule, the component ié assumed t§ have failed when the total
cumulative damage is greater than or equal to unity.

-

That is,

K D = Z;I% > 1 (6.14)
f ‘

A

where,
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damage fraction due to the ith'plosed loop

O
[
]

in the duty cycle -

o
L]

accumulated damage

nggﬁcumﬁlatiye‘,fatrgué 'life of the gear qndéf
considération cgp,'theql~be ostained in‘térms of number of
dﬁty cyéleé” to . failure, by’ taking the ‘inverse: of; éhe
cdmulatigg damage fractions, sﬁchctpaf,~ o

\ DCTF'-i-l)* Lo L (818)

) Ve ‘ I .
where, DCTF denotes the number of duty cycles to failure.
) 7

*

- \ -, \

" 6.9 Summary L . ) Ly
. E L ' -

In this chgpterr é coﬁpuﬁér method for gear fétigue
life prediction based on local stréss—strain‘ concepts .,is
introéuced. This methbd'of life prediption i% significant}y _
more accurate than methods typicalyy'\ﬁsed iA conventional
gear design practices, The superiority of the compuéer\
method results from the faet thaé it evéfﬁéées‘ the events
that- are unique to a complex strain history in a rational
w?y. Alép in.contrast to the current geér ,design\ methods
the mean and alternéfing components of ‘the loading are
in#luded in the ‘analysis.

Specifically,,tﬂe\use of BE analyéis to. obtain stféin
histbry at the critica# location in the fillet Eigion of the

loaded tooth is explained. First, the steps involved in the
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application of BEM are stated and applied to gear tooth
stress analysis problem. Secondly, the formulation and
implgmentalion of the BE-GEAR program is validated by
comparing the nominal sttéss results’ from BE-GEAR program
Jith FE and photoelaéticity test resqlﬁs. Thirdly, the
construction of a typical duty cycle is discussed and the
use of non-linear relationships of the form of equation

(6.2) 1is proposed to  reduce the computations involved in

using BEM extensively.

It shouyd be noted that the BEM is used in this study,

mainly -because of the advantages it offers over FEM by the

‘ way of reduction in dimensionality. Any other FE program,

either inhouse or commercially available programs can also
be used effectively, if-a suitable FE- model pf'ths\ gear to

T
be analysed has been created.

Also a fatigque damaég computation prbcedure,‘with the
foliowing features, is presented. '
a) The functignal relationships deséribing stress
and str;in are used directly without further:
approximation of the nétress—strain equations.
This improves the accuracy and the numerical -
stability.
b) The present program breaks any complex strain

waveform into individual cycles (closed

hysteresis loops), so that constant load;ng data
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[ 4

can be used for damage evaluation.-

» ‘

The cycle cbunting . procedure. used in the
presented program is more efficient than the
other [93-97] counting procedures, since. the

number’ of decision points used -to identify

Cclosed loops as well as - the number of arriifﬁx’ )

required are reduced.

The presé;% program reads the strain peaké and
valleys: as. they occur, in contrast éo the
éxisting programs wpicﬁ).require the strain
history to be rearranged to start at the higheét
value. This feature, lin addition “to the

conciseness of the presented program makes it

best* suited for microprocessor based on-line

damage‘éva;uation\and monitoring applications.

]
Also, since the closed loops are identified as.

-they occur, any loading order sensitive damage

parametér and accumulation model can easily be

.

incorporated. !

'
- . N .
' . ’ . s :
) ’
~ . ' > i
0

-

.



- CHAPTER. 7

EXTENSION TO HELICAL AND OTHER TYPES OF CYLINDRICAL GEARS

7.1 General . *

Involute spur gears have been used extensively 80 far
in fhis' thesis to develop the dynamic load and fatigue
démage estimation methodologies. However, the presented
methoéologies~ are not ,restricted to this class of gears
alone. The use of matrix equations of motion and _solution
procedures as well as the use of mnumerical stress and
deflection . analysis procedures such as BEM, makes the
presented procedureg amenable to model and simulate
cylindrical gears witﬁ different—profiles and Kkinematics.
In this respect, the matrix.equations of motion and solution
procedures described in the chapters 3 to 5 need not be
altered for different typés of gears. Only the size of the
matrices and the composition of the matrices will change.
An this chapter, extension of the presented simulation
methodologies to helical gear 'dynamics is presented in
detail first, and then the possible application to

non-standard cylindrical gears*is discussed.

7.2 Helical gear dynamics

The major characteristics that distinguish tﬁe helical
gear dynamics from spur gear dynamics are the simultaneous
surface contact and the oblique nature of the normal load
aéting on the teeth. ?hese factors cause the contact

- 205 -
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condition and the 1loading on the geér to be three
dimensional, resulting in additional degrees of freedom and
"hence additional equations of \\gofion. . As a first
approximation, the earlier studies on helical gear dynamics
neglected the additional degrees Qf freedom and used virtual
spur gears in the blace of given'helical gears. Recently,
however, a number of coupled lateral-torsional models
[25,29] have been introduced to study helical gear dynamics
'in detail. Of these, the model by Kucukay. [29] can be
considered to be complete, since it incorporates the effects
of additional degrees of f;eedom as well as the wvariable
mesh stiffness characteristics, the tooth errors, and
non-linear characteristics introduced by backlash and 1load
dependent contact ratio. The only draw baék of Kucukay's
model would be the assumption of Hertz~ contact theory to
estimate the tooth stiffness characteristics. In the
g;110wing subsections, the additiohal steps requiréd to -

extend the presented simulators to simulate helical gears -

are presented in detajiil.

*7.2.1 Variable mesh stiffness

In.principlp, the variable mesh stiffness evaluation
procedure for helical gear 1is the éame as the p?btedure
.described in subseétion 2.2.2 for the spur gears. 'But, in
praétice, more elaborate steps are needed to compute helical,
gear tooth stiffness. This due to the fact that, unlike in

spur gears, the radius of curvature at the contact is not a
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\ constant. So, the Hertz contact theory, and hence the
equations (2.3) and (2.4) are no longer applicable. To

sdiVé‘such a three dimensional contact problem, normally

iterative techniques [50] are employed. 'Usinﬁ the iterative

techniques the loaded boundary element, dimension and the

distributed 1load on the element are first estimated. Based

on the computed load and specified boundary conditions, the
o

deflection § in the direction of the normal load W is

computed using BEM. The tooth compliances Cpr Cgq andf the

tooth pair compliance Cpg can then be computed with the use’

of equations (2.5) and (2.6). From which the tooth pair
stiffness in the normal direction kpg,j can'be obtained.
That is, _j/’7

1 g
7. n

ket = J);kpz.j (12)

e

7.2.2 Mathematical model
13

<8 .
T
Neglecting the effect of friction between. the teeth,

the equations of motion for the configured helical gear
system shown in Fig. 7.1, can be derived using the standard
procedures as given below.

- Equations of motion

Torsional mode: . N . _
N 8 - | '
Jo, + W dn% T, (7.3)

4

I8, - WR_ =T =T (7.4)

£E é;;.p | 9
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Fig. 7.1: Helical gear set model
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Lateral mode:

-~

Tmp X e X+ kxp x, + Wd Sin(a-f) = 0 - (2.8)
¥ My Ip * Gp Ip t Ky Ty + Wy Coslaf) =0 (1.0)
C :
o
m‘ X+ c:xx X kxg - W d Sin(a-f) = 0 (7.7)

m_ ii‘ + c"'frg'-c» kn e - \% Cos(a-p) = 0 | (7.8) -

Axial mode:

pd T : - \
mp L Y— c.p L + k'p IP + Wd Tan()\) 0. {7.9)
m i ¥ G g k’g lg' -W, Tan(\) = 0 . (7.10)
Tipping mode:
, - c @
4 - A -0 7.11
I o7, - Wq T R (7.11)

. ~ (S ' . \
\\ 2)
! ; ‘ J ’ T"n X) R \ ( \

Here, .
- J A% polar moment of inertia in torsional mode,

Jy = polar moment of inertia in tipping mode, f//

m = mass, |

. - -~
Cx " = damping coefficient of the bearing .along X,
- ‘direction, . : e
. . ¢ - ’ '
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J Ky ;. = stiffness of the beariné'along X direction,
Cy = d;%ping coéffiéient of the bearing along Y
‘ direction, |
ky = gtiffness of the béaring along Y direction,
. ) cgl : % damping coefficient of the” bearing along 2
- : | direction,‘l | » -
| S ' = stiffness of. the ngring along z direction;
‘cy = damping coefficient of ’tﬁe gear in the
tipping mode, ° '
' Ky = gstiffness of the gear in the tipping mods,
_ 6 o= torsional displacement, o
y g = angular displacement about the X axis,
= X ' = displacement along X directiom, 7
Y = disélacement along Y direction,
z = displacement along Z direction,
T . . = external éorque applied, - 4’( (
© % 3 = gear ratio,
Rp .= base circle radius,
R‘ = radius of the tippiﬁg moment,
a = pré;;ure angle, ‘ ~ ‘
) 8 = angle used to define the rela%iée . locatiop
of shafts, |
ot S A = heiix angle on the base cylinder shown in-

Fié. 7.1, and defined in equation (7.17),

§

and the subscripts p and g are used to denote the pinion and

gear quantities respectively. ¢

TIPS T
=Y DT
|
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With reference to the backlash characteristic curve

shown in Fig. 2.7, the dynamic load Wq along the plane of

action will be,

- —l— () i +x 0 (velh- | (r.19) >
g ~ Cos (x) ,

for -BL,< (u+e) < 0, - ’ ’ :

| R
for (u+e) < ~BL, ’ h ' -

o W, - .—lc ‘(1) i+ k ) (n-:e\-o-BL)] S 01(1.15)
Gos?(n) PE | ‘

» -

where: the displacement along the plane of action u, is . ¥

J — Rbg 6 Bbg ag + {x x‘) Si.n(a-ﬁ) + (y -y ) Con(a-ﬁ)

+ (n, -0 + 3 1 - '15) Tsn(x) ‘ .(7-‘}3) '
’ With, ' ) P ) r-J ' b
- . Tar o C )
Tar(\) = T_an(xo) Cos(a) . ) (B
Here, “/
Ao " = nelix angle, e v T :
ad = pressure angle,
e = ‘'gear transmission error along the line of

5 - e
N

action

5
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in equation (3.15).

backlash

o
3
n

index denoting the number of pairs of teeth

(WY
]

+

in mesh at any glven time.
(

Here’ _the varzabq\gjmesh stlffneés kpg 5(t) is computed as
descrlbed In the ptecedlng sectlon. And Cpg(t) is expressed
in °“terms of the critical damping ratio, the variéble_mesh

stiffness kng(t) and the equivalent moment of inertia Je, as

- - v
By choosing the state vector v as,.
r - .'

-

o

,"' v...{ap a‘,x,x‘, p,y‘,l,l,'lp.'lg.
’ T

-~ ' n,u.XrX;y!y! :1 . } . (7.18)

) PSPSPSPKF!

] ’ > -
ngpe‘ system equations can be rewritten in terms of ‘the state

« \‘ ! o g . ! . N . 'S
Vuctor v as, ‘ -
\ o
L . Ao v 5 !
, v(t) = A(t) w(t) + bB{t) (7.190)
b N ~ \ R
where, - _
, - [,
L
» ‘ o . l . ) ‘
A(t) = ‘ ) (7.20)

and " - . ' o ' -
, ' . oo 0 \

-K(4) -C(t)

o bt - ‘ (2
oL £(t) - .
*‘ N
1) = T, -'r‘,~q.0.o,o.0.0.o,0}T R MONCE B;") u, )
1 * %

&
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Once the equations of ﬁotion (7.1) to (7;12) are
written in the staté-spadgffofm as equatién (7.19), thed ‘the
solution procedure de;cribed in section 3.3 can be directly
applied to solve for the response and'henée the dy;;mic load
along the plane of action Wg(t). The }esulting dynamic logd
in the @direction normal to the tooth flank can then be

obtained from the following relation.

RN

€

. Vvh *
¥y d , (138)

dn = Cos()\)

Letting A equal to zerooin the above eduations, and
neglecting the additional degrées of .freedom z and v, will
reproduce the spur geér simulation models explained in

-~

chapters 3 to 5. .

The  stochastic  model for he%}cal gears can be
constructed by cgmbining equafion (7,}9) with " the shaping

33

?
filter equtaion (4.1).  The mean and covariance propagation

equations can then be formed as described in. section 4.2.2
and solved for. Similarly, using the modelling procedure
described in chapter 5, based on/the additional equations of
motion (7.9) to '(7.12), Ehe discrete-time transfer matrix
for helicgl gear pair module can.be formulatedL Due to the
additionai degrees of freedom introduced, the state vector
size and the transﬁer'matrix size will increase. However,

the solution procedure will remain the same.

~n
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7.3 Extension to other types of cylindrical gears

In addition to the involute spur and helical gears, -
which are the most widely usea in industrial applications, a
gumbet of otherf¢ypes of Eylindrical gears such as harmonic .
'H@rives, circular profile gears, non-gircular gears, etc.
are used in special applicatfons. Conceptualiy, the
presented éear dy;;mic load estimation @mand fatigﬁe damage
. estimati;d*_methodologies can be easily applied to all tHe
different types of cylindrical gears without any chanéz. In
this respect, the modelling flexibility of the BEM and the
presented matrix solution procedures become very useful.
The said versatility of the presented methodologies can be
easily seen By taking a closer lgok at the input information

required for simulation.

The information required as inpﬁt to the dynamic ioad
and fatigue damage simulators described so far can be
classified into the following categories.

l. Gear system configuration: geay type, gear toofﬁ
type, kinematic relations of the gear pair‘ and
the dimensions of the system components. .
2. Operqgiqg conditions: gear ratio, operafing / N
’ speed, applied torque, transmission error
information, backfgsh, etc.
3. Material properties: both monotonic and cyclic
,pgoperties of gear materialss and . other system

e

component materials.

4
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4. Gariable mesh stiffness characteris;ics.

Of these, the variable mesh stiffness characteristic is
the oﬁly quantity which may not be readily available for
different cases considered. However, “this mfssing
information can be easily generated with .the use of BEM.
Foilowing the progeéures described earlier in sections 2.2.2
and 7.2.1 for spur and helical gears, the gear ‘pair
stiffness of the ;ear type considered can be computed.

Then, the variable mesh stiffness pharacteristics for the

giveﬂ gear can be formulated by direct summation of the

individual tgoth pair stiffnesses for the number of tooth

/ .
pairs 1in ¢ontact at any given time. Once the variable mesh

stiffness  characteristic 1is obtained, the equations of

N .

motions can then be set up in stpéeﬁspace form such as

bl

equaEi%ns (3.18) and (7.19) gnd solved for dynamic 1load

using the solution procedures described in chapters 3 to 5.

In order to use the fatigue damage simula¥or preseﬂ%ed
in chapter 6, the 1local stfess/strain history be known.

Once again using the BEM, based on the geometry of the gear

.and the computed normal dynamic 1loads, the equivalent

>

strains at the critical locations of the gear can be solved

£y

forc . [

‘s
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7.4 Summary

In this chapter, the adaifional steps and modelling
consideratioﬁs‘ required to extend the simulation procedures
présented in the pr?ceding chapters to the case of helical
gears and non—standa;d cylindrical gears such as circular
profile gears etcf,‘are presented. ~The construction of the
helical gear dynamic model is dealt with in detail. And the
possible applﬁbatidn,to other types of'cylindrical gears. is

discussed.

&



- | CHAPTER 8

’

* - . CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

8.1 General
*, 3 . N
The procedures - described in this thesis provide

. power ful tools fBr dynamic analysis of an important class of
industrial gears, namely the cylindrical ééars such as spur
.and helical gears. Specifically, the procedures presented
eliminate the empiricism involved in the current gear design

) methods and introduce a sound and rational approach. The
techniques presenéed also have the necessaryrflexibility to
deal with a wide variety of gear types\ and éear failures.
All the three basic modesvbf*failure{ that constitute’gear
fatigue failures, namely the tooth bending fatigue, the
surface fatigue, and the excessive tooth deflection and

"overloading caused by resonance, can be easily accounted for

in the proposed design methodology.

, : 8.2 Specific conclusions e
.
, ‘ . , 2"

8.2.1 Gear dynamic load estimation

> Mathematical models for a gear - set are formulated
incorporating both the torsional motion of the gears and thg
- lateral motion ,of the supéorts, first with the assumption.
that the actual transmission error record is availaple as a
continuous time signal.. Non-linearities arising from the

,bécklash and the friction between .the ' meshing teeth are
-217 - | S
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included. It is shown that the use of state-space technique
to solve the equations of motion is very advantageous both
in terms of the amount of hseful information that can be
obtained from a single analysis\ and in terms of thé
computational requirements. A procedure to sé{gct proper
initial conditions so as to begin the analysis directly in
the steady state is‘given. Verification of the simulafor
carried out by comparing the results from the simulatqr with
experimental results obtained using both vibration mggsuring

instruments and dynamic photoelasticity technique show. the

‘3iability of the simulator to simulate both metallic and

non-metallic gears. .Also, the‘inaaequacies of the cyrrently
used design practice and‘the complexity of the gear dynamic
load variation is high%ighted with the.uée of 'a parametric
study. In additjon, it is also shown, that the stability of
the gear system can be easily studied with the ‘use of

state-space technique and Floquet theory.

//:TZ.2QStochastic estimation of gear dynamic load

~

Next, the dynamic load simulator described is further
gxtended SO0 as to use the statistical properties of the
transmission error record rather than the actual measured

transmission record themselves. It is shown that the

. statistical analysis of the gear dynamic load ‘can be carried

out in a simple and direct manner using piecewise constant

mesh stiffness approximation and the mean and covariance
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propagation equations of linear difference system. It is
also .shown that the statistical lingarization technique
commonly used [20] does not give correct results bgth in
terms of the magnitude and the location of the occurence of
the maximum dynamic load under certain dynamic conditions.,
In céhtrast, the piecewise constant approximaﬁion presented
in this thesis gives truer results provided the ftimg
ifterval chosen is sufficiently small éo as to not miss any
significant events. Moreover the procedure presented here
has the advantage- that it can be applied with ease to higher
order systeﬁs and to systems with complex mesh sgiffness and
torque fluctuations. Also it 1is shown that by proper
selection of initial conditions using the procedure given in
section 4.3, the computation time required for the analysis

can be cénsigerably reduced.

8.2.3 Discrete time transfer matrix m&thod

A new method of modelling and analysing technique based
on the conventionai transfer matrix methods (TMM) and
numerical integration procedufes is introduced for dynamic
analysis of large practical gear systems. The presented
methodology is unique in the sense that it can accomodate
both noﬁ—linear and time-varying characteristics of gear

system components and at the ;same time has the modelling

flexibility of TMM. All the primary and secondary factors:

-~

identified in chapter 2 can -be easily included in the

N
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modelling.” . It is the most complete modeluto—déte available
for the study of d;ear system dynamics. Comparison of
results obtained with the presented methodology with results
oﬁfained from the use of other techniques confirms the
_potential of the method in gear train applications. With
proper ca;e" in modelling, not only the . conventional
”multi—séage gear systems but also the other type of comp%ex’
gear configurations such as planetary gears can also be
modelled. Comparison of " the dynamic response .and the
dynamic load results obtained with the presented analysis

procedure with those of other techniques demonstrates the

suitability of the procedure for gear train dynamic

-~

analysis.

8.2.4 Estimation of gear fatigue life

A combuter method of gear fatigue life prediction baseé
on local stress-strain concepts is introduced. This method
of 1life prediction is significantly more accurate, than
methods typically used in conventi 1 gear design
practices. The superiority of the computer method results
ffom the fact that it evaluates the evgnts that are unique
_&ﬁf?n a rational way. Also fnﬁ
R ifug

Mesign metheds the mean and

to a complex strain histg

contrast to the current gééf

alternating components of the loading can be included in the

analysis. ’ .
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. Specifically, the use of boundary element (BE) analysis
to obtain strain history at the critical location in the
fillet region of the loaded tooth is explained. First, the
steps involved in the application of BEM are stated and
applied to gear tooth stress analysis problem. Secondly,
fhe formulation and implementation of the BE-GEAR program is
validated by comparing the nominal stress results ' from
BE-GEAR progfam with finite element (FE) and photoelasticity
test results. Thirdiyf/ihe construction of a typical duty
cycle 1is disgcussed and the use of non-linear relationships
of the form of equation (6.2) is presented to reduce the
computations involved in wusing BEM extensively. Also a
fatigue damage coﬁputation prqqedure is presented. |The
presented simulation procedure uses the functional
relationships describing stress and strain directly wifhdut
further approximation of the stress-strain equations. This
improves the accuracy andﬁ the numerical stability. The
cycle counting program breaks any complex strain waveform

into individual -cycles or closed hysterisis loops, so that

constant 1loading data can be used for damage evaluation.

The cycle counting procedure used in the presented program

[}

is more efficient than the existing [8] counting procedures,
since the number of decision points used to identify closed
loops as well as the number of arrays required is reduced.
In contrast to the existing program, the presented program
reads the strain values as they occur and is therefore best

i
suitable for 1loading order sensitive damage parameters.

..
»
Lng
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This feature along with the conciseness of the presented
program, makes it best suited for 'ﬁicrop;pcessor based
on-line damage evaluation ana monit&ring applications.
Also, 'the possible extension of the presented
simulation methodologies to helical gnd non-standard gears:

such as circular profile gears is discussed.

Finally,tvsince the ultimate usefulness of the -
procedures presented in this thesis depend upon the ease aﬁd
cost of using them in day to day applications, a single,
menu driven computer software incorporating the three gear
dynamic load simulation methodologies presented in this
thesis is developed as part of this investigation. |

Some of the results of this investigation have also

been presented and published in journals [139-141].

8.3 Recommendations for future work

1) Even thougg the simulation procedures
presented are versatile enough to analyse both
bénding fatigue and surface ,Ealigue in gears,
only the bending fatigue problem is considered
in detail in this thesis. Thus, there is a need

for further work to validate the methods for the

case of surface fatigue in gears.

4
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3)

4)

5)

Q)
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The method of usi the equiyalent strain ¢' for -
computipg fatique ‘ damage wunder multi-axial
stress conditions is selected on the basis of
the successful use of such parameters in some
limited laboratory tests. To be‘more rigorous,
the method of describing the relation between

uniaxial stresses and strains should be

- -

generalized to include multi-axial stress
states.

Design and implementation of a micro-processor
bésed on-line damage monitoring system based on
the 'fatigue simulation program presented in
chapter 6,'will be very useful.

Since, the fatigue damage assessment procedure
presented here identifies the singificant events

in the stress/strain history event by event as

‘they occur, the use of more rigorous stochastic

damage accumulation model is possible and should
be investigated.

The apparent versatility of the procedures

' described to simulate non-standard types of

cylindrical gears should be further investigated
and validated.

Finally, the compu£er software deQeloped as a
part of this thesis need be further enhanced so

as to achieve a comprehensive, easy to use

computer aid%d gear design package.
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APPENDIX I "

OUNDARY ELEMENT METHOD

Fd

The boundary element analysis proéram BE-GEAR
implemented as a part of this investigation is used
» extensively in this thesis for gear tooth stress and
deflection analysis. Presently, the program is capable-of
analysing two dimensiaﬂal plane stress and .plane strain
elastostatic problems. This appendix gives brief
introducgi;n to the boundary element methods and the

“
numerical implementation -scheme.. Detailed decriptions of

the same are available in the recently published texts such

»

as [46]. "

N

Basis of BEM

Consider the portion of the gear to be analysed as an
elastic body defined by 2+TI, where 2 is the domain and T
" is the boundary as shown in Fig. I.l. If 0 is a three
dimensional domain, then I' is the boundary surface. If Q is
a two dimensionai domain, then I is the boundary contour.
b For sugh an elastic body to be in equillibrium wunder the
action of prescribed‘tractions pi and/or displaceﬁents uj,
the wellknown Navier's equation for elastostatic case has'to -
be’satisfigq. . | : ‘ﬁ

Thét is, in Cartesian tensor coordinates,

(A+6G) u+Gu, +b =0 | - (L)

L4
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- with, the boundary conditions,

- and

Here,

9§ -
"3
i and j

3o

&

- i433

The reformulation of the partial diffetential‘equat}on

(itl)'intd‘an integral equation and Ghe numerical solution

s

n ] ] i 0 ",

Py = B =

y -9

-

bulk modulus of rigidty,

Lame constant,
\

body forces,

displacements,

tractions,

prescribed displacements,

prescribed tractions,

stress tensor,

1.2)

(1.3)

unit normal in the ith girection,

denotes partial

differentiation of the

“index used to denote different directions;

variable in the j"-h direction witH* respect

to the variables in itP and jtP direction;

denotes partial

differentiation

of the

variabfe in the ith direction with respect

 to the variable in the jtP ditection, twice.

‘ ; ’

of such.an integral equation is the basis of the BEM. Such o
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'reformulation§ can be achieved through different techniques
[46]) such as weighted residual method or Somigliana identitf

Al

equation, etc., such that,
OO = I wfex) p) W) - 1 pfex) us) arC)

. +f ufex blx) d0(x) - (1.4)
o e b

-~

£ - .. = nodal location where the érescribed
tfactions or displacements occur,

é = field point,

Cij( ) = coeffiecient defined through the condition
_ B of rigid body motion.

- ,LEquation (I.4) provides a relationship between thén boundary
displacements u, boundary tractionshp'and body forces b and
is valid for both two and three dimensional domains. Here,
p*, and u" are known and the unknowns are the values of p
and u over the boundary. For the present problem of gear

tooth stress and deflection aggf?ﬁis, the body force terms

in the equation (I.4) can be neblegﬁgd such that,

YORE = I nen) PR AT - p(6) nx) dT(x) (1)

-

2

}

' " .
The purpose of BEM formulation is to obtain a numerical
solution to this equation.

-

-——
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Numerical solution scheme -

The basic steps involved in the numerical solution
procedure used in BE-GEAR program{y are 1listed in the

following ‘subsections..
<
, .

Step I:
The boundary is discretized into a series of

elements, say N number of elements. The tractions and the
displacements over these elements are assumed to . vary
according to a chosen interpolation funckion. Thé order of
the chosen interpolation function determines the type of

boundary element to be used in the modelling. That is,

T
px) = & p° (L.6)
T ‘ .
ux) = & o .7
where,
& = interpolation function, S )
ul = displacements at the nodes,
p" = tractions at the nodes.
Step II:

. Equation (I.S5) is then applied in discretized form to

each nodal point ¢ of the boundary ', such thaf,.

(&)u,(€) = X I ‘(t,x)'ﬁ'r dr(x) p" + N» ! p.(t.x) 'S dr(x) o (1.8)
@0 = 3 Ty ,);, p

Q

—-
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The integrals in the eguation (I.8) ;;ekggmplted over each-

boundary element wusing a suitable’ numerical integration
. o

scheme. This results in a system of N linear algebric
equations involving a.set of N nodal tractions and nodal

displacements.

Step III:

Next, as in FEM, boundary conditions are prescribed and
the resulting system of N equations is solved for the

" unknown boundary tractions and displacements.

S V'
<E> values of displacements at any specified internal
: S )
points \;Ye then obtained using discretized integral

»

equations.

‘ Step V:

Once thé éisplacement at different points are known;

»

.
)

the strain and stress values at these points are then

obtained through the ‘application 'of strain-displacement’

relations and stress-strain constitutive relations.

(5




— APPENDIX II

AN AUTOMATIC GEAR MESH GENERATOR ( AGHG)
A This appendix describes a newly developed automatic
gear mesh generator which was used extensively during the
course of this thesis work to generate Boundary Element (BE)
and .Finite’ Element (FE) meshes of gears. The new AGMG has
the following features:
a. Interactive - Menu driven commands.
Ny b, Minimal;input.
+ ' ¢©. Automatic profile definition.
d. Automatic node numbering'and element numbering.
e. Option t6 change the numbering'scheqe.
E. Ability to model standard and non-standrad gear
tooth geometry.
g. Ability to form the .mesh_ with different

o elements, Fig. II.1. . ‘
) P

h. Ability to model spur as weil as helical gears.
i. Ability to model single tooth, multiple teeth or
< the whole gear - -

j. Selective mesh refinement and local modification
using the 'user defined element' option;

k. Provides smoother and better distributed
élémenis.' h

*

1. Graphic output and flexible data output format.
- 251 -
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plane triangular '+ quadratic triangular

P

J ~ J

linear isoparametric, 8-node solid ~ A%
quadilateral

J - . J

‘8-node isoparametric ' 20-node solid,
. . h
_ A l — — boundary element

e c Fig. 1¥.1: Element library in AGMG
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¢ . —
m. Ability to interface with the ngetful MOVIEBYU

{137]) graphics program.

Basic construction of AGMG

The actual construction of the mesh within AGMG is
carried out according to the following scheme:’
1. Data input to AGMG - model data, geometry data. ;
2, éeneration,of an Equivalent Rectangular Mesh.
3. Element and nodal dumbering to reduce frontQidth
and/or bandwidth. ' . S .

-

4.‘Mapping of the equivalent mesh on to the

profile..

5. Profile generation. ¢

6. Elemént'smoothing,(if specified. ”

7. Solid element mesh genefation, if specified. . | L

8. Alteration of the generated mesh locally, if ’
specified. 4

9. Output - Graphical display of mesh generated, -

- Data file generation. -

10. Repeat steps 1 to 8, with new data, if changes

are required. Otherwise exit.

Data input

‘There are two kinds of inputs,.name;y model data and
v )

geometry data needed for AGMG. Model data cdné&!tzigglpﬁi‘\\
number of divisions in X-direction (NXD), numbér of °

divisfons in  the involute¥ region (NINVD), number of
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dfvisions in the fillet region (NFILD), number of divisions
in the rim region (NRIMD) and the type of element (IETYPE).
e, -&_ And geometmlc input conélsts of diametrical p;tch, pitch
I 3
» &\‘ diameter,g pressu'eg angle, face width and the typeggf gear
tooth (e.g¥ AGMA,sbd.q AGMA stub, etc). With these minimal

3

p ’%eometry (data the AGMG computes all the other required

qﬁan&ifles such‘/;/root £illet radius, * addendunm, dedendum
]
etc., accordlng to<r%MG tooth type specified. Hoyever, the

\.
user also hes the option to input these parameters manually

, ‘ ) L
FO a to.obtain non-standard types of gear tooth. —
/ e - .

, v ) ..

Fo Equivalent rectanqular mesh .

s « °© AGMG first denerates an eguivalent rectandgular mesh,

N

N ?ig II. 2, wéth°the use of the model data. This‘ eqguivalent

f’garectangular mesh is conceptually srmllar to the 'basic mesh'

. difference between the two concepts is that with Suzuk1 s
7 basic mesh conﬁept, dlfferent basic mﬁfh has to be generated
for drﬁferent types of elements used, whereas with the

? (‘F
.metchod proposed here drfferent types of elements can all be

generated from the same equlvalent mesh Alf the mesh pata,
¢ L excgpththe coordinates oflthe nodes are computed{ based on
' L e ' ' ' ) ' ; ’ oS
! ‘the equivalent/ rectangular mesh. This includes the

. . 4 .ot . L
- computation of total number of .nodes and.-elements in the?

,mesh and nodal and elgment ‘numbering.

concépt 1ntr33g\ed .by Suzuk1 et.al. (41]. ‘The ma%or '
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Node numbering

AGMG, by default, numbers the nodes and elements. in
such a way that it reduces the bandwidth and the frontwidth
of the resulting solution matrices during the FEM analysis.

Since numbering is done based on the equivalent rectangular

-mesh, there are only two options, namely numbering along the

shorter-s§de of the re;tanglg.or along the larger side of
the rectangle. By default AGMG starts the node numbering
from éhe upper left corner and proceeds along the shorter
side of the *réctangle to optimize the bandwidth. However

thewusef~has also been provided with the option to change

‘thé numbering direction. In addition; by default AGMG

numbers first. node las node number 1 and proceeds in

"ascending order in the specified direction. Once again, the

user has the option to define any number as the first node

‘number. This enables the user to model different parts of

the gear tooth separately and combine them later.

Element numbering

L4

JIf the mesh generated is to be analysed with a FE

routine wq}ch uses a ‘'front solver' rather than a 'band

solver', then node numbering becoﬁé unimportant. In this.

case, element numbering is very important.

starts element numbering from the upper leftmost element aib

progyzds along the shorter side: of the equivalent rectangle.

‘Oﬁce again the user is provided w1th the option to change

the numberlng schemeo Dependlng upon the {element«éfpe
) \

f \ M
. . »
/ )\‘ ' ’ ( . . vy

[
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specified the node and element numbering scﬁemes, in AGMG

automatically "~ takes Eare off the midside nodes if they are

present. Fig. II1.3 shows the different numbering .péhemes

possible with AGMG.

Mapping of the Equivalent mesh
The mesh of the actual gear tooth is obtained by

mapping the equivalent réctangular'mesh on to the gear tooth

\profile or contour. For explanation purpose, the equivalent
<; - mesh can be considered as a flexible rubber net. Then, the
mesh model of. the tooth can be generated by stretching the
imaginary rubber net (equivalent mesh) and fitting it onto
the frame of the tooth prdfile or contour form. The
coordinates of the nodes on the tootﬁ profile required for

i .mapping are generated as follows. T

) /Profile definition ’ (_

. \M\\i ' Normally the toot prof&le coordinates‘}re éither iﬁput

L . . ]
“manually or with the h€lp of a 'digitizer. But AGMG

N — ,\\ . ) .‘

generates these coordimates ﬁgfga‘ihe7géome€tical input data
and mathematical fEIélfonships defining the profile.
Fig. II.4 shows the coordinate system used for profile

generation. The involute part of the profile is generated

*

. with eq&htions (I1.1) and (1I1.2) given here., ' ° C .
k. Yo
XF = R, [ Cos(0+8) + @ Sin(6+7) ] ~ o) .
i r ‘
Y = R [ Sin(0+4] - 0 Conl6) | .2
; t . b N

-
.
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where,

X © = X - coordinate value of a point. on ige
inQplute portion ‘

4 =y, cooréinate value of+ a point on the
involute portion ) \

‘Rp | = base radius of ﬁhe gear o

e = involute generating ;ngle

B ? = transformation angle o

And the f{llet or root portioq of the tooth is génergted by
usihg the eéuations given in [138]. Since in AGMG the
" profile generation and the placement of nodes on the profile
are done simultaneou;ly, it £? possible to generate only
those points.where the nodes are located -and” pot the egtire
profile. This results in considerable savingfin computation

time.‘ .

-

i+

The ;équired -divisions in the involqte_part)of th
_profile are obtained'?y dividing the- involute generatfng
angle © by NINVD. To dbtain a better control on thé element
shapes and-sizeé in this tegion, zhe involuté portion .is
divided into two fegiqps. ?gaé is, NINVD s?ould be at _least

eqﬁal to two. One region is between(the tip of the topth

and the pitch point, and the other one is.between the pitch
~ P - . .

point and the intersection point of fillet énd ‘ipvolute
portion. Thus there is always & npdevii these points.

These points and_  the 'corresponding. involute generating

A
-

| 2N
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angles are shown in Fig., II.§. " The spacing pgtween the
involute divisions are varied and controlled by ghe weighing
factor (WN). ‘This factor useq in equation: (1I1.3), divides
the generating aane {n geometric progression. For the
upper involute part a smaller weighing factor (<< 1) ié
suggested, to have smaller divisions near tgg tiﬁ ‘of the
tooth and for the lowe; involute part, .a_factor value
'gieatervthéP unity is suggested to get finer elements near
the fillet; region.  However, the wuser has the option to

» charge the value of this weighing factor during the

é} execution of the program to obtain any specific arrangement.
S ,, . :
1 ol - -
i o = ( 0p -8 )*——WN;‘ + 6 ms)
Yake T WN -1 3
. = 12,...,m
. ‘I - B
where, - ’ . . -
’ PN
! m = number of divisions
WN = Qeighing iector used to control the vertical
’ :

spacing between nodes

o1 " = initial value Qf the involute generating
2 ! # : '
angle
er - = final value of involute generating angle
.61 : = intermediate. value of involute generating

angle required in the "interval 8§ to 6p
The éoordinates of the nodes on the root fillet are
' obta}ned by divxding the trochoid generating anglg (¢q by
* NFILD. 81milar1y the nodes on. the rim‘/qf the gear are

*
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computed by div}ding the «cim thickness by NRIMD. .As the
nodes on the boundary are generated, the hrogram also stores
the coordinates of the correspondinb nodes on the centre
line 6f tooth, Fig. 1I.4. °Once the cootdinat?s of all tﬁe
npdes on the 'profile and centre 1line are computed, the

u

coordinates of other internal nodes (i.e. nodes between the

centre line and outer. profile) are computed by using the

following equation.
! - ‘

» X e (X . x%) XL, xC (.4)
. WF -1 :
‘ i - 1,2,-..-,!!1
; C. WP .C
Ya(y -v0)El,.y* (0.5)
WF™ .1 '
- i'- 1,2,..-.,m
where,
m = number of elements required between the
centre-line and the profile points
= NXD/2 .
xP = X coordinate value
Y = Y coordinate value ' _ .
. WF. = weighing factor - used to controi- the
horizontal spacing between nodes. i
i .= index denotes intermediate values of
B ¢ .
paramaters
"y
P = denbtes ‘points on the tooth profile

= denotes ‘points on the tooth centre-line

By changing weighing factor (WF), the horizontal spacing

between the internal nodes can be changed. AGMG uses a

)
-

]
l
i

!
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1

factor v&iue of greater than unity to get a finer mesh near

éhe tooth boundary. Once=again, the user has the optioh to

change the wvalue of fdctor during execution to obtain
different meshes. As @engipded earlier the coordinates of
the nodes_ on the other half of the tooth are taken as the

mirror image of the coordinates of corresponding nodes

computed so far. In the case of elements with midside

" nodes, the coordinates of the midside nodes are computed as

the average of the two adjacent nodes. é

Smoothing L : '
B It has been found that the shape of elements can be

improved by placing internal nodes at the centre of the

*1

' other surrounding “nodal points. This can be achieved

efficieptly by makiﬁgithe coordinates of an internal node ‘as
the average of ;éhe coordinates of its neighbouring nodes.
This kind of smoothing' process s an ‘iterapfbe process,
since moving ‘one nodal coordinate will affect the other
iﬁternal nodal coordinates. The -iteration is stopped as

soon  as none of ° the internal nodal points change

_significantly. Fig. II.5 shows.the unsmoothed, selectively

smoothed and fully s%pothed meshes generated with AGMG-—
Selective smogshing capability,is provided to have a better

control on the mesh configuration. Also, smoothing can be

switched on and oﬁf‘by the user -during execution ﬁof the

&‘ .

program. v ‘ | #
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£y

¢

Solid element modelling capability

The AGMG also has the capability to generate meshes of

3-D solid elements. This is activated by specifying’ the

number of divisions or elements in the gear thickness
\ direction, NZD, a value greater than zero. The 3-D' meshes
are generated by providing the third dimension (element
fhickness) to the corresponding 2-D mesh generated by AGMG.
The s80lid element thickness is computed by dividing the
faeewidth by NZD. The AGMG node numbering schemee are then.

‘\) repeated NZD times to define the solid elements properly.’
{

Meshes for Helical gears /\

The AGMG solid element generatfbn capablllty can also
be used to create meshes of helxcal gear tooth. For
modelting purpose the hellcal gears can be represented, as
shown in Fig. II.6, by a series of thin spur gear pletes
which. have beee displaced 'angniafly in the‘ plahe of
rotation. As the number of platesr approach’ infinity, the
points on. the gear tooth'ferm into helices. Howeber, for

R ~ meeq gederation one needs to consider Enly finite number of

plates, given by (NzD+l). .
o ~_ i F , -
' ‘ AGMG " first generates the mesh of plate 1, Fig. II.6,
" and then computes the roﬁaticn angle of consee%tjee plates
using equation (II.6). Then using this rotation angle, the

L | coordinates of nodes on each plate.are computed.

Q‘f‘
'
LS
x.; -
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: ¢ = R, Sia(\) ﬁ'gz'ﬁ (1) (m.e)
| = 1,8,..,NZD+1

where, .

R = pitch radius of géﬁ;l
. B* | = face width of gear

NZD = numbgt of elements in the Z direction
i = index used to incremént elements in the 2
- } ) direction
p = angle to generate helical gear teeth
Ao = helix angle of the gear

User defined element option -

The mesh generated by the AGMé can be locally altered

using this option. The user can instruct the AGMG to  place

a particular element Sf spécified size at a-usér specified
location in the quél.' AGMG will automaticaily rearrange
the surrounding elemen£§ to accomodate the‘uset specified
element.

4

Output from AGMG ‘ -

Graphic output capabilities are built into AGMG sc that

the user . can view and evaluate the mesh generated at each

stage. All nodal coordinates and element  definitions are

also written -to. data files specified by the user. The °

formaﬁs can be easiiy cﬁanged to accomodate  different

analysis brogréms. L In addition, AGMG also 1n€3r£aces with

the,poéerful MOVIE.BYU graphics program. This capabllity,
) , : . ‘ - 3

Y .
f ¢ . »
0 L}
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though not egsen%ial for thfloperation of AGMG, provides the
user the ability to display and'manipplate (rotate, _shrink,
section, explode, etc) the graphic imége of the mesh

generated, tp have a better view of the mesh.

Description of AGMG

» 1 : .
The operation of AGMG revolves around the 'AGMG - Main
.'Ménu', shown in'Fié. II.7. All the AGMG -functions originate

from here and, when executed, also return here. 'The user‘

can enter any of the given options by typing in the

corréspodding key value.” If the user by mistake, types in

any other key AGMG ignores the wrong entry and waits for the’

-
correct choice.
~

The first option in the main menu leads the user to

'AGMG - GEOMETRY DATA' table, shown in Fig. II.8. The

.geometry data table ‘displays the name of the p#rameter, and

the current value of the parameter in the current unit

‘sibtey chosen in a tabular format” and prompts the user to

enter new values, if necessary. If the user elects to
modify the current data, then the cursor moves to';hé figpst

parameter in the table. At this point'ihe user can modify

the cﬁrrent value of the first parameter by typing in the
new value and by pressing the 'RETURN' key. - Just pressing

th{ ‘RETURN' key without any new values retains the cufrent.

\ "t Y

value unchanged. .~Th3n the cursor moves. to' the next

parameter in the table and the same process ' is repeated
. ‘ yo ‘ )
b : o , 4ﬂ\'
R . \ | N & | " . ‘y . .

, , .
[ K * oy
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»

, A
the parameter values have been entered,, AGMG pronipts the

- ufgtil all the parameters in the table Aie entered. Once all

. § . ) N
user to find out any’dnore chariges are required.\\ If the user
elects to change any of the parameter values then the cursor

moves next to the first parameter in the table and ‘the above

mentioned process is repeated. Otherwise the, control |

‘ .
returns to the main menu. (
o o .

’

The second option in the main menu leads .the user to
1

the 'AGMG - MESH DATA' table, shown in Fig. II.9. This

<

‘table. is used to _enter the finite élement mésh model

T

parameters, namely, the type of element, the number of

_elements in gpe X-direction, the number of the elements in

the ‘'Y-direction, etc.. Thé_mgpel data can be entered and/or

modified in the same manner as in the geometry data table.

In addition, the usér can also instruct AGMG to read the‘

required .data from # data file and then use the data tables

’

to display and to modify the data.

o -

‘ , s
"%  One of the novel features of AGMG is the following: As

]

T T~ n ¢ ’l)\ .
the cutsor moves to each _parameter in the tables, the

\ .

of the
choice.~. And if the user, despite these messages, enters

- ) * -
wrong data then the error message 'ERROR - TYPE IN AGAIN' is
/ . S } .

flashed- at, the last Yine of fhe'display. Till the user

4 »

¢

trictions on that parameter; the available"OpEibns"énd .
fault’ éeleqtions are displayed at the bottom portion .
]

isplay. ‘This helps " the user to make the right

4
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Fig. II.8: AGMG - geometry data tablé

-
.z
o

. ‘AGHG - MODEL DATA

2

. ‘ BRI R . IETYP @
NINVD B TISMTH e
. INFILD @ - NNDIR @ ¢
’ NRCTD NEDIR - B
. ' . NRIMD  ® : NDIR . @
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~ .

T

NINVD BHOULD BE GREATER THAN THREE AND EVEN'

ZFig.'II:9:‘ AGMG - mesh data table
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enters the proper value, the cursor will ﬁog‘ move to the
next parameter. These self .diagnostic messages and graceful

ygrror recovery procedures make AGMG ' less' error prone and

. very easy to use even for the first time user.

The third option in the main menu instruc%g)AGMG to

generatg'the mesh with the current.geometry and mesH data.

A

Once the mesh is generated successfully, the control returns
. \ - .

N back to thé main menu. Also, if the current geometry and/or

mggﬁg‘data tables are incomplete, then an error message is
flashed on the display and control returns to the main menu,
”~ - . .

At this point the user can enter option 1 or 2 to complete

the required table and proceed to option 3 again.

The generated mesh can be altered loéally by using the’

fourth option in the main menu, namely the 'user defined

elen

nt' option.

option in the main men& is uséd to outpué the
generated ' mes afa in the form of data files and/or in the
nce again only if the third option in the
main menu is completed successfully, the user can enter the
fifth option. Otherwise control is returned to the main
menu with an error message. In the plot mode the user has
the option to use the basic plotting routines <built within

the AGMG or to use the powerful MOVIE.BYU graliics program.

Thé‘£putines within AGMG can only plot the mesh generated
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and manf‘bulatibn of" mesh model ié'not currently 'possihle.
However, the second option m the plot mode leads . the uaer
into the MOVIE.BYU program with the requlred data already
read. The user can use any of the MOVIE.BYU commands to
’manipulate and displa§ the mesh in color or in monoch‘rome.
The control returns to the main menu after exiting from the
'.plot mode. At this point the user has option to choose an |
one of the first fouk options to modify the hdéta and ¢
regeneréte the mesh. Or by choosing_pption 6 the user can: =
exit AGMG. Fig. II1.10. shows some of different méshes
generﬁted with AGMG(V‘ ' . .

47
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\

"SELECTION OF SHAPING"FILTER*PARAMETERS

In chapter 4, a linear, second order shaping filter *of the

form, ' ‘
vt = A1) vL) + g () @y
with ) fo 1 |
. , Aft) = (m.2)
" l ’ "3 %, ' . ]
o : 4
g={0, 1) Lo ‘ (m.3)
C o) = e, )T (m.4)

is used to generate the random component of the transmission
error signal. By varying the filter parameters a;, and aj,
different tiﬁe correlated error signals can be‘generated for

the same stationary, Gaussian white noise input. In this

&

appendix, a procedure for the préper selection of the filter -

parameters to obtain an error signal with  specified

statistics is described. 0

3

-+

Equaiion (III.1) can be rewritten in terms of the

damping ratio ¢ and the natural frequency w;~as,

—

e + 2 ewn;r + w: e - w(t) ‘ (I1.5)
~ Thus,
ll-72 e“& ‘ (m.e)
2 ’ -
.9.'wn \ ! ‘ ‘ ﬂﬂﬂ)
- 273 -
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The cofreépond}ng’autocS?relation fﬁnction will be [20],

'L~ P o .;2 Qut 22' ) ' T /

L YO = o S o o) e
] = Tu‘l—§—2- ) o . (m.g)

' Vi-¢ . o /

- ) o 2. . é .
. ud-\/l.g w (m.})
where, B - | / K
o ‘5 the standard déviation'of “the' trapsmi éion

érfor signai, .
The parameters o, 7, ¢, and w, are all Ehos?n to fit the
éstimate of tﬂe,autocorrelation function of th;‘ equired
transmission error signal. For instance, the is chosen
to fit thé/pbéerved resonant peak in the power speétral
depsityﬁ‘(PSD) piot. -’Simiiarly the frequency/@f whict\the’

. PSD. plbt peaks will g{ve ,the . wp. Als from tRe.

5

_autocorrelation  function plot, the wvariante - 02 ‘Gan be
obtained since, - u
. 2 I\‘ . \q
‘ V(o) - 0 .:n,\‘k (m-ll)
3 vt ’

Once these parameters are known, the shaping filter

. parameters

(

a;, and az . can be obt;}éed from the equations .
(I11.6) and (II1.7). ‘ “ ‘
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Fig. III.1: Autocorrelation and PSD plots for‘a'

second order Markov process
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APPENDIX IV -

FORTRAN PROGRAM FOR FATIGUE SIMULATION

14

PROGRAM CYCLE_COUNT §IMUL

COMMON: E(50),5(50) )
’ COMMON /MATER/ FscC, FSE FDC, FDE, CscC,CsE, EE
1 I=1

., 00000 000

ann ;e

, - 26 . 4 “ﬁ' N

READ IN MATERIAL PROPERTIES <~ - . . "
READ *, FSE,FSE,FDC,FDE,CSC,CSE,EE | {
. READ IN STRAIN PEAK VALUES E(I) ' "/l_N;d//ﬂg\
.~ K =0, DENOTES NO MORE DATA TO READ ‘
CALL DATAIN (E(I),K)
IN =1 | | \
IF (E(I).LT.0.) IN=-1 , \
.COMPUTE STRESS HASED ON CYLIC -STRAIN CURVE
2 IF (I.EQ.1) CALL STRESS .(IN, o.,cﬁ,x-:( /S(1)) '
I = I+l . N
IN = -IN
3 CALL DATAIN (E(i),K)
: IF (K.NE.0) GO TO 5 :
IF (E(I}.EQ.E(I-1)) GO TO 3
C 4 '
c COMPUTE STRESS CORESPONDING TO E(I) BASED ON HYSTERSIS CURVE:
c
CALL STRESS (IN,E(I- 1),S(I-1),E(I),S(I))
4 . IF (1.LT.3) GO TO 2
II = I-2
: IF (IN*(E(II)-E(I)).GT.0.) GO TO 2
,C . - \, )
C CLOSED LOOP IDENTIFIED BETWEEN E(II) AND E(II+1)
< * (11)
c COMPUTE MEAN STRESS AND DAMAGE FRACTION ° L
C .
CALL DAMAGE (II,DAMS)
E(II) = E(I) | S o g
I=1II \ ’ ' o
GO TO 4 :
5 IF (IN*(E(I-1)-E(1))) 7,8,6
6 IN = -IN . ‘ Ny *
V I=1-1 ‘ : | e
7 E(I) = E(1) . . T
. GO TO 4 ‘ S
c - > o
c COMPUTE NUMBER OF BLOCKS TO FAILURE (BTF) - \
c _ \ L
8 . BTF = 1./DAMS . , N
PRINT*, 'NUMBER OF BLOCKS TO FAILORE = ',BTF :
CALL EXIT
END -



- 217 - o
‘ SUBROUTINE STRESS (IN,SRE,SRS,EP,ST)
'\ . . COMMON /MATER/ FSC,FSE,FDC,FDECSC,CSk,EE
STRES(ST,K) = (IN*(ST- SRS)/(K*??))+(IN*(ST—SRS)/
1 (K*CSC))**(1./CSE)y=tHN* (EP-SRE)/K)
K=1
IF (SRE.NE.0. .OR. SRS.NE.0.) K = 2

. . ST = SRS . .
_~/,, - DST = 50. // e _
§2 = STRES /(ST,K) . )
DO 10 I = 1,500
Sl = §2
§2 = STRES (ST,K)
IF (S1*S2 .LT. 0.) DST = -DST/2. y
) IF (ABS(S2) .LE. 0.1E-04) GO TO 20 ‘
10 ST = ST + IN*DST
PRINT *, ' NO CONVERGENCE' 5
20 RETURN ~ : - b
END \ .

_ SUBROUTINE DAMAGE(NN},DAMS)

s

c . R ‘
C COMPUTE DAMAGE ACCORDING TO STRAIN-LIFE CURVE °
c - .

3
COMMON E(50),S(50)
COMMON /MATER/ Fsc,FSE,FDC,FDE, CSC CSE EE

¢ — NN2 = NN1+1 - x;
: EAQQp ABS/E(NN1)-E(NN2))/2. ¥
) g?" SA = ABS(S(NNI)-S(NN2))/2.
- SM = (S(NN1)+S(NN2))/2.

SA = SA/(1.-(SM/FSC))
= 2.%(FSC/SA)**(1./FSE)
DAMS = DAMS+DAM \

PR RETURN -
E \ .
‘ & - .
FSC = fatigue strength coefficient’
FSE = fatigue strength exponent
FDC : = fatigue ‘ductility coefficient
FDE , . = fatigue ductility exponent N
SE | = cyclic strength coefficient ‘
CSE = cyclic strength exponent
EE = modulus of elasticity
Y E(1) = gtrain peak value
S(I) = gtress peak value
DAMS = accumuylated’damage
BTF = number of blocks to failure .
' - IN = index used to indicate the slope
~ K " = index used to identify end of ‘data .

~ .
[ : ‘ '
. . v »
- ' .
. .
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